Science.gov

Sample records for barrier reef ecosystem

  1. Assessment of the water quality and ecosystem health of the Great Barrier Reef (Australia): conceptual models.

    PubMed

    Haynes, David; Brodie, Jon; Waterhouse, Jane; Bainbridge, Zoe; Bass, Deb; Hart, Barry

    2007-12-01

    Run-off containing increased concentrations of sediment, nutrients, and pesticides from land-based anthropogenic activities is a significant influence on water quality and the ecologic conditions of nearshore areas of the Great Barrier Reef World Heritage Area, Australia. The potential and actual impacts of increased pollutant concentrations range from bioaccumulation of contaminants and decreased photosynthetic capacity to major shifts in community structure and health of mangrove, coral reef, and seagrass ecosystems. A detailed conceptual model underpins and illustrates the links between the main anthropogenic pressures or threats (dry-land cattle grazing and intensive sugar cane cropping) and the production of key contaminants or stressors of Great Barrier Reef water quality. The conceptual model also includes longer-term threats to Great Barrier Reef water quality and ecosystem health, such as global climate change, that will potentially confound direct model interrelationships. The model recognises that system-specific attributes, such as monsoonal wind direction, rainfall intensity, and flood plume residence times, will act as system filters to modify the effects of any water-quality system stressor. The model also summarises key ecosystem responses in ecosystem health that can be monitored through indicators at catchment, riverine, and marine scales. Selected indicators include riverine and marine water quality, inshore coral reef and seagrass status, and biota pollutant burdens. These indicators have been adopted as components of a long-term monitoring program to enable assessment of the effectiveness of change in catchment-management practices in improving Great Barrier Reef (and adjacent catchment) water quality under the Queensland and Australian Governments' Reef Water Quality Protection Plan.

  2. Assessment of the Water Quality and Ecosystem Health of the Great Barrier Reef (Australia): Conceptual Models

    NASA Astrophysics Data System (ADS)

    Haynes, David; Brodie, Jon; Waterhouse, Jane; Bainbridge, Zoe; Bass, Deb; Hart, Barry

    2007-12-01

    Run-off containing increased concentrations of sediment, nutrients, and pesticides from land-based anthropogenic activities is a significant influence on water quality and the ecologic conditions of nearshore areas of the Great Barrier Reef World Heritage Area, Australia. The potential and actual impacts of increased pollutant concentrations range from bioaccumulation of contaminants and decreased photosynthetic capacity to major shifts in community structure and health of mangrove, coral reef, and seagrass ecosystems. A detailed conceptual model underpins and illustrates the links between the main anthropogenic pressures or threats (dry-land cattle grazing and intensive sugar cane cropping) and the production of key contaminants or stressors of Great Barrier Reef water quality. The conceptual model also includes longer-term threats to Great Barrier Reef water quality and ecosystem health, such as global climate change, that will potentially confound direct model interrelationships. The model recognises that system-specific attributes, such as monsoonal wind direction, rainfall intensity, and flood plume residence times, will act as system filters to modify the effects of any water-quality system stressor. The model also summarises key ecosystem responses in ecosystem health that can be monitored through indicators at catchment, riverine, and marine scales. Selected indicators include riverine and marine water quality, inshore coral reef and seagrass status, and biota pollutant burdens. These indicators have been adopted as components of a long-term monitoring program to enable assessment of the effectiveness of change in catchment-management practices in improving Great Barrier Reef (and adjacent catchment) water quality under the Queensland and Australian Governments’ Reef Water Quality Protection Plan.

  3. Navigating the transition to ecosystem-based management of the Great Barrier Reef, Australia.

    PubMed

    Olsson, Per; Folke, Carl; Hughes, Terry P

    2008-07-15

    We analyze the strategies and actions that enable transitions toward ecosystem-based management using the recent governance changes of the Great Barrier Reef Marine Park as a case study. The interplay among individual actors, organizations, and institutions at multiple levels is central in such transitions. A flexible organization, the Great Barrier Reef Marine Park Authority, was crucial in initiating the transition to ecosystem-based management. This agency was also instrumental in the subsequent transformation of the governance regime and provided leadership throughout the process. Strategies involved internal reorganization and management innovation, leading to an ability to coordinate the scientific community, to increase public awareness of environmental issues and problems, to involve a broader set of stakeholders, and to maneuver the political system for support at critical times. The transformation process was induced by increased pressure on the Great Barrier Reef (from terrestrial runoff, overharvesting, and global warming) that triggered a new sense of urgency to address these challenges. The focus of governance shifted from protection of selected individual reefs to stewardship of the larger-scale seascape. The study emphasizes the significance of stewardship that can change patterns of interactions among key actors and allow for new forms of management and governance to emerge in response to environmental change. This example illustrates that enabling legislations or other social bounds are essential, but not sufficient for shifting governance toward adaptive comanagement of complex marine ecosystems.

  4. Navigating the transition to ecosystem-based management of the Great Barrier Reef, Australia

    PubMed Central

    Olsson, Per; Folke, Carl; Hughes, Terry P.

    2008-01-01

    We analyze the strategies and actions that enable transitions toward ecosystem-based management using the recent governance changes of the Great Barrier Reef Marine Park as a case study. The interplay among individual actors, organizations, and institutions at multiple levels is central in such transitions. A flexible organization, the Great Barrier Reef Marine Park Authority, was crucial in initiating the transition to ecosystem-based management. This agency was also instrumental in the subsequent transformation of the governance regime and provided leadership throughout the process. Strategies involved internal reorganization and management innovation, leading to an ability to coordinate the scientific community, to increase public awareness of environmental issues and problems, to involve a broader set of stakeholders, and to maneuver the political system for support at critical times. The transformation process was induced by increased pressure on the Great Barrier Reef (from terrestrial runoff, overharvesting, and global warming) that triggered a new sense of urgency to address these challenges. The focus of governance shifted from protection of selected individual reefs to stewardship of the larger-scale seascape. The study emphasizes the significance of stewardship that can change patterns of interactions among key actors and allow for new forms of management and governance to emerge in response to environmental change. This example illustrates that enabling legislations or other social bounds are essential, but not sufficient for shifting governance toward adaptive comanagement of complex marine ecosystems. PMID:18621698

  5. Australia Great Barrier Reef

    NASA Image and Video Library

    2001-04-11

    The Great Barrier Reef extends for 2,000 kilometers along the northeastern coast of Australia. It is not a single reef, but a vast maze of reefs, passages, and coral cays islands that are part of the reef.

  6. Great Barrier Reef

    Atmospheric Science Data Center

    2013-04-16

    article title:  Australia's Great Barrier Reef     View Larger Image ... reef, but a vast maze of reefs, passages, and coral cays (islands that are part of the reef). This nadir true-color image was acquired by ...

  7. The role of sponges in the Mesoamerican Barrier-Reef Ecosystem, Belize.

    PubMed

    Rützler, Klaus

    2012-01-01

    Over the past four decades, sponge research has advanced by leaps and bounds through endeavours such as the Caribbean Coral Reef Ecosystems (CCRE) programme at the U.S. National Museum of Natural History in Washington, D.C. Since its founding in the early 1970s, the programme has been dedicated to a detailed multidisciplinary study of a section of the Mesoamerican Barrier Reef, the Atlantic's largest reef complex, and has generated data far beyond the capability of lone investigators and brief expeditions. This reef complex extends 250 km southward from Yucatan, Mexico, into the Gulf of Honduras, most of it lying 20-40 km off the coast of Belize. A relatively unspoiled ecosystem, it features a great variety of habitats in close proximity, ranging from mangrove islands, seagrass meadows, and patch reefs in its lagoon to the barrier reef along the margin of the continental shelf. Among its varied macrobenthos, sponges stand out for their ubiquity, range of colours, rich species and biomass, and ecological importance; they populate rocky substrates, some sandy bottoms, and the subtidal stilt roots and peat banks of mangroves. Working from a field station established in 1972 on Carrie Bow Cay, a sand islet atop the reef off southern Belize, experts in numerous disciplines from both the Museum and academic institutions throughout the world have explored the area's biodiversity in the broadest sense and community development over time. At last count, 113 researchers (88 working on site) have focused on the biological and geological role of Porifera in Carrie Bow's reef communities, with the results reported in 125 scientific papers to date. The majority of these sponge studies have centred on systematics and faunistics, including quantitative distribution among the various habitats. Taxonomic approaches have ranged from basic morphology to fine structure, DNA barcoding, and ecological manipulations and culminated in a mini-workshop involving several experts on Caribbean

  8. Ecosystem health of the Great Barrier Reef: Time for effective management action based on evidence

    NASA Astrophysics Data System (ADS)

    Brodie, Jon; Pearson, Richard G.

    2016-12-01

    The Great Barrier Reef (GBR) is a World Heritage site off the north-eastern coast of Australia. The GBR is worth A 15-20 billion/year to the Australian economy and provides approximately 64,000 full time jobs. Many of the species and ecosystems of the GBR are in poor condition and continue to decline. The principal causes of the decline are catchment pollutant runoff associated with agricultural and urban land uses, climate change impacts and the effects of fishing. Many important ecosystems of the GBR region are not included inside the boundaries of the World Heritage Area. The current management regime for catchment pollutant runoff and climate change is clearly inadequate to prevent further decline. We propose a refocus of management on a "Greater GBR" (containing not only the major ecosystems and species of the GBR, but also its catchment) and on a set of management actions to halt the decline of the GBR. Proposed actions include: (1) Strengthen management in the areas of the Greater GBR where ecosystems are in good condition, with Torres Strait, northern Cape York and Hervey Bay being the systems with highest current integrity; (2) Investigate methods of cross-boundary management to achieve simultaneous cost-effective terrestrial, freshwater and marine ecosystem protection in the Greater GBR; (3) Develop a detailed, comprehensive, costed water quality management plan for the Greater GBR; (4) Use the Great Barrier Reef Marine Park Act and the Environment Protection and Biodiversity Conservation Act to regulate catchment activities that lead to damage to the Greater GBR, in conjunction with the relevant Queensland legislation; (5) Fund catchment and coastal management to the required level to solve pollution issues for the Greater GBR by 2025, before climate change impacts on Greater GBR ecosystems become overwhelming; (6) Continue enforcement of the zoning plan; (7) Australia to show commitment to protecting the Greater GBR through greenhouse gas emissions

  9. Great Barrier Reef

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A better than average view of the Great Barrier Reef was captured by SeaWiFS on a recent overpass. There is sunglint northeast of the reef and there appears to be some sort of filamentous bloom in the Capricorn Channel.

  10. Great Barrier Reef

    NASA Image and Video Library

    2017-09-27

    Great Barrier Reef - August 8th, 1999 Description: What might be mistaken for dinosaur bones being unearthed at a paleontological dig are some of the individual reefs that make up the Great Barrier Reef, the world's largest tropical coral reef system. The reef stretches more than 2,000 kilometers (1,240 miles) along the coast of Queensland, Australia. It supports astoundingly complex and diverse communities of marine life and is the largest structure on the planet built by living organisms. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  11. Coral Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Yap, Helen T.

    Coral reefs are geological structures of significant dimensions, constructed over millions of years by calcifying organisms. The present day reef-builders are hard corals belonging to the order Scleractinia, phylum Cnidaria. The greatest concentrations of coral reefs are in the tropics, with highest levels of biodiversity situated in reefs of the Indo-West Pacific region. These ecosystems have provided coastal protection and livelihood to human populations over the millennia. Human activities have caused destruction of these habitats, the intensity of which has increased alarmingly since the latter decades of the twentieth century. The severity of this impact is directly related to exponential growth rates of human populations especially in the coastal areas of the developing world. However, a more recently recognized phenomenon concerns disturbances brought about by the changing climate, manifested mainly as rising sea surface temperatures, and increasing acidification of ocean waters due to greater drawdown of higher concentrations of atmospheric carbon dioxide. Management efforts have so far not kept pace with the rates of degradation, so that the spatial extent of damaged reefs and the incidences of localized extinction of reef species are increasing year after year. The major management efforts to date consist of establishing marine protected areas and promoting the active restoration of coral habitats.

  12. Great Barrier Reef, Australia

    NASA Image and Video Library

    1996-01-20

    STS072-727-085 (11-20 Jan. 1996) --- The northern third of the Great Barrier Reef stretches 650 kilometers (km) along the coast of Queensland from south of Cairns to past Princess Charlotte Bay at the base of the Cape York Peninsula. The predominant westerly waves of the ocean create shallower (lighter-colored) convex-eastward rims to coral atolls along the outer edge of the barrier reef. In contrast, islands within the lagoon show the effect of predominant southerly, more-or-less offshore winds. Arcuate clouds suggest that winds were offshore at the time the photograph was taken.

  13. Studies on the Great Barrier Reef

    SciTech Connect

    Walton, S.

    1985-01-01

    Proposals to drill for oil on Australia's Great Barrier Reef have led to the appointment of a royal commission to study the environmental impact of such activities. The Australian Institute of Marine Science has developed a 5-part research plant which covers the Australian mangrove environment; nearshore habitat; processes and interactions, energy flows, resource cycling and their consequences within the reef ecosystems; patterns, abundances and relationships within the reef; and the continental shelf of the Great Barrier Reef region. Research in each of these areas is described.

  14. Ancient reef ecosystem expansion and collapse

    NASA Astrophysics Data System (ADS)

    Copper, P.

    1994-01-01

    Platform carbonate and, particularly, reef ecosystem development (with reefs representing the acme of carbonate platform growth) were highly cyclical in early to mid Paleozoic time, especially in relation to known or postulated times of global warming or cooling. These cycles do not appear to correspond to postulated 26 Ma rhythms seen in diversity patterns, nor were they regular. There were major periods of worldwide reef expansion (e.g. mid-Silurian-Late Devonian), corresponding to global warming well above present day norms, and periods of complete global reef collapse (e.g., mid-Cambrian to mid-Ordovician, Late Devonian) corresponding to global perturbations. At times of major reef expansion in the Paleozoic, areas covered by equatorial reef and inter-reef carbonate platforms are conservatively estimated to have periodically exceeded 5 million sq. km, nearly ten times that in the modern ocean. At times of global reef collapse, e.g. the Famennian (Late Devonian), reef complexes were completely absent or, at best, covered <1000 sq. km. The chief factors relating to periodic collapse and mass extinction of reef biotas appear to be related to climatic change and possibly ocean anoxic events, in turn as a response to large scale, geologically disruptive factors such as plate collisions, plate movement across equatorial belts and volcanism. Stress “signals” in Cambrian through Cretaceous reef ecosystems appear to be comparable to those of today: whether these relate to physical versus biological stress is uncertain. Reef stress is evident in globally reduced areas and thicknesses of reef carbonate production, the absence of large scale barrier reef systems and reduction to smaller patch reef complexes (or, periodically, following mass extinctions, no reefs at all), reduced species and genus diversity, small skeletons or colonies, limited or no biotic zonation along reef transects, and arrested succession and ecologic replacement of complex, more highly evolved

  15. Australia's Great Barrier Reef

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Great Barrier Reef extends for 2,000 kilometers along the northeastern coast of Australia. It is not a single reef, but a vast maze of reefs, passages, and coral cays (islands that are part of the reef). This nadir true-color image was acquired by the MISR instrument on August 26, 2000 (Terra orbit 3679), and shows part of the southern portion of the reef adjacent to the central Queensland coast. The width of the MISR swath is approximately 380 kilometers, with the reef clearly visible up to approximately 200 kilometers from the coast. It may be difficult to see the myriad details in the browse image, but if you retrieve the higher resolution version, a zoomed display reveals the spectacular structure of the many reefs.

    The more northerly coastal area in this image shows the vast extent of sugar cane cultivation, this being the largest sugar producing area in Australia, centered on the city of Mackay. Other industries in the area include coal, cattle, dairying, timber, grain, seafood, and fruit. The large island off the most northerly part of the coast visible in this image is Whitsunday Island, with smaller islands and reefs extending southeast, parallel to the coast. These include some of the better known resort islands such as Hayman, Lindeman, Hamilton, and Brampton Islands.

    Further south, just inland of the small semicircular bay near the right of the image, is Rockhampton, the largest city along the central Queensland coast, and the regional center for much of central Queensland. Rockhampton is just north of the Tropic of Capricorn. Its hinterland is a rich pastoral, agricultural, and mining region.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  16. Great Barrier Reef, Queensland, Australia

    NASA Image and Video Library

    1991-09-18

    STS048-151-250 (12-18 Sept. 1991) --- The Great Barrier Reef extends for roughly 2,000 kilometers along the northeast coast of Australia. The great Barrier Reef is made up of thousands of individual reefs which define the edge of the continental shelf. The southern part of the feature, called Swain Reef, is seen here. Water depths around the reefs are quite shallow (less than 1 meter to about 36 meters in depth), but only a few kilometers offshore, water depths are roughly 1,000 meters.

  17. USGS research on Atlantic coral reef ecosystems

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Yates, Kimberly K.; Zawada, David G.; Richey, Julie N.; Kellogg, Christina A.; Toth, Lauren T.

    2015-10-23

    Coral reefs are massive, biomineralized structures that protect coastal communities by acting as barriers to hazards such as hurricanes and tsunamis. They provide sand for beaches through the natural process of erosion, support tourism and recreational industries, and provide essential habitat for fisheries. The continuing global degradation of coral reef ecosystems is well documented. There is a need for focused, coordinated science to understand the complex physical and biological processes and interactions that are impacting the condition of coral reefs and their ability to respond to a changing environment.

  18. Diet and cross-shelf distribution of rabbitfishes (f. Siganidae) on the northern Great Barrier Reef: implications for ecosystem function

    NASA Astrophysics Data System (ADS)

    Hoey, A. S.; Brandl, S. J.; Bellwood, D. R.

    2013-12-01

    Herbivorous fishes are a critical functional group on coral reefs, and there is a clear need to understand the role and relative importance of individual species in reef processes. While numerous studies have quantified the roles of parrotfishes and surgeonfishes on coral reefs, the rabbitfishes (f. Siganidae) have been largely overlooked. Consequently, they are typically viewed as a uniform group of grazing or browsing fishes. Here, we quantify the diet and distribution of rabbitfish assemblages on six reefs spanning the continental shelf in the northern Great Barrier Reef. Our results revealed marked variation in the diet and distribution of rabbitfish species. Analysis of stomach contents identified four distinct groups: browsers of leathery brown macroalgae ( Siganus canaliculatus, S. javus), croppers of red and green macroalgae ( S. argenteus, S. corallinus, S. doliatus, S. spinus) and mixed feeders of diverse algal material, cyanobacteria, detritus and sediment ( S. lineatus, S. punctatissimus, S. punctatus, S. vulpinus). Surprisingly, the diet of the fourth group ( S. puellus) contained very little algal material (22.5 %) and was instead dominated by sponges (69.1 %). Together with this variation in diet, the distribution of rabbitfishes displayed clear cross-shelf variation. Biomass was greatest on inner-shelf reefs (112.7 ± 18.2 kg.ha-1), decreasing markedly on mid- (37.8 ± 4.6 kg.ha-1) and outer-shelf reefs (9.7 ± 2.2 kg.ha-1). This pattern was largely driven by the browsing S. canaliculatus that accounted for 50 % of the biomass on inner-shelf reefs, but was absent in mid- and outer-shelf reefs. Mixed feeders, although primarily restricted to the reef slope and back reef habitats, also decreased in abundance and biomass from inshore to offshore, while algal cropping taxa were the dominant group on mid-shelf reefs. These results clearly demonstrate the extent to which diet and distribution vary within the Siganidae and emphasise the importance of

  19. Spatial patterns in benthic communities and the dynamics of a mosaic ecosystem on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Ninio, R.; Meekan, M.

    2002-04-01

    The benthic communities of the Great Barrier Reef (GBR) have been characterized as a mosaic with patches at scales of tens to hundreds of kilometres formed by clusters of reefs with comparable environmental settings and histories of disturbance. We use data sets of changes in cover of abundant benthic organisms to examine the relationship between community composition and the dynamics of this mosaic. Our data were compiled from seven annual video surveys of permanent transects on the north-east flanks of up to 52 reefs at different shelf positions throughout most of the GBR. Classification analysis of these data sets identified three distinct groups of reefs, the first dominated by poritid hard corals and alcyoniid soft corals, the second by hard corals of the genus Acropora, and the third by xeniid soft corals. These groups underwent different amounts of change in cover during the period of our study. As acroporan corals are fast growing but susceptible to mortality due to predators and wave action, the group of reefs dominated by this genus displayed rapid rates of growth and loss of cover. In contrast, cover in the remaining groups changed very slowly or remained stable. Some evidence suggests that competition for space may limit growth of acroporan corals and thus rates of change in the group dominated by xeniid soft corals. These contrasting patterns imply that susceptibility to, and recovery from, disturbances such as cyclones, predators, and bleaching events will differ among these groups of reefs.

  20. Benthic community composition on submerged reefs in the central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Roberts, T. E.; Moloney, J. M.; Sweatman, H. P. A.; Bridge, T. C. L.

    2015-06-01

    Community dynamics on coral reefs are often examined only in relatively shallow waters, which are most vulnerable to many disturbances. The Great Barrier Reef World Heritage Area (GBRWHA) includes extensive submerged reefs that do not approach sea level and are within depths that support many coral reef taxa that also occur in shallow water. However, the composition of benthic communities on submerged reefs in the GBRWHA is virtually unknown. We examined spatial patterns in benthic community composition on 13 submerged reefs in the central Great Barrier Reef (GBR) at depths of 10-30 m. We show that benthic communities on submerged reefs include similar species groups to those on neighbouring emergent reefs. The spatial distribution of species groups was well explained by depth and cross-shelf gradients that are well-known determinants of community composition on emergent reefs. Many equivalent species groups occurred at greater depths on submerged reefs, likely due to variability in the hydrodynamic environment among reef morphologies. Hard coral cover and species richness were lowest at the shallowest depth (6 m) on emergent reefs and were consistently higher on submerged reefs for any given depth. These results suggest that disturbances are less frequent on submerged reefs, but evidence that a severe tropical cyclone in 2011 caused significant damage to shallow regions of more exposed submerged reefs demonstrates that they are not immune. Our results confirm that submerged reefs in the central GBR support extensive and diverse coral assemblages that deserve greater attention in ecosystem assessments and management decisions.

  1. Contradicting Barrier Reef relationships for Darwin's Evolution of reef types

    NASA Astrophysics Data System (ADS)

    Purdy, Edward G.; Winterer, Edward L.

    2006-02-01

    The Darwinian progressive subsidence model for the evolution of fringing reefs, barrier reefs and atolls has been generally accepted following the indisputable proof of subsidence provided by drilling results in the Pacific. Nonetheless, there are data that do not fit the expectations of the model, such as the similar lagoon depths of barrier reefs and atolls as opposed to the subsidence theory’s implicit prediction that atolls should have significantly greater depths. In contrast, a great deal of evidence supports the influence of meteoric solution on barrier reef morphology. For example, the maximum lagoon depth of 56 modern barrier reefs is statistically correlated with the lagoon catchment area for modern annual rainfall. These modern rainfall patterns would seem to be a reasonable proxy for relative geographic differences in glacial lowstand rainfall, even though the absolute amounts of such rainfall are unknown. The correlation therefore suggests the importance of Pleistocene subaerial solution in contributing to barrier reef morphology. Further support for antecedent influence occurs in the form of barrier reef passes in which the depth of the reef pass is correlated with onshore drainage volumes. On a larger scale, the Cook Island of Mangaia provides evidence that solution can produce barrier reef morphology independent of reef development. In contrast, there are no examples of the subsidence-predicted lagoon transition of fringing reefs to barrier reefs to atolls. Moreover, the common occurrence of fringing reefs within barrier reefs negates subsidence as a causal factor in their ‘presumed progressive evolutionary development. Consequently, the evidence to date suggests that a solution morphology template has been accentuated by reef construction to produce the diagnostic barrier reef morphology we see today. The importance of subsidence would seem to be in accounting for the overall thickness of the resulting carbonate caps of oceanic examples and in

  2. Quantifying water flow within aquatic ecosystems using load cell sensors: a profile of currents experienced by coral reef organisms around Lizard Island, Great Barrier Reef, Australia.

    PubMed

    Johansen, Jacob L

    2014-01-01

    Current velocity in aquatic environments has major implications for the diversity, abundance and ecology of aquatic organisms, but quantifying these currents has proven difficult. This study utilises a simple and inexpensive instrument (<$150) to provide a detailed current velocity profile of the coral-reef system around Lizard Island (Great Barrier Reef, Australia) at a spatial and temporal scale relevant to the ecology of individual benthos and fish. The instrument uses load-cell sensors to provide a correlation between sensor output and ambient current velocity of 99%. Each instrument is able to continuously record current velocities to >500 cms⁻¹ and wave frequency to >100 Hz over several weeks. Sensor data are registered and processed at 16 MHz and 10 bit resolution, with a measuring precision of 0.06±0.04%, and accuracy of 0.51±0.65% (mean ±S.D.). Each instrument is also pressure rated to 120 m and shear stresses ≤20 kNm⁻² allowing deployment in harsh environments. The instrument was deployed across 27 coral reef sites covering the crest (3 m), mid-slope (6 m) and deep-slope (9 m depth) of habitats directly exposed, oblique or sheltered from prevailing winds. Measurements demonstrate that currents over the reef slope and crest varies immensely depending on depth and exposure: currents differ up to 9-fold within habitats only separated by 3 m depth and 15-fold between exposed, oblique and sheltered habitats. Comparisons to ambient weather conditions reveal that currents around Lizard Island are largely wind driven. Zero to 22.5 knot winds correspond directly to currents of 0 to >82 cms⁻¹, while tidal currents rarely exceed 5.5 cms⁻¹. Rather, current velocity increases exponentially as a function of wave height (0 to 1.6 m) and frequency (0.54 to 0.20 Hz), emphasizing the enormous effect of wind and waves on organisms in these shallow coral reef habitats.

  3. Quantifying Water Flow within Aquatic Ecosystems Using Load Cell Sensors: A Profile of Currents Experienced by Coral Reef Organisms around Lizard Island, Great Barrier Reef, Australia

    PubMed Central

    Johansen, Jacob L.

    2014-01-01

    Current velocity in aquatic environments has major implications for the diversity, abundance and ecology of aquatic organisms, but quantifying these currents has proven difficult. This study utilises a simple and inexpensive instrument (<$150) to provide a detailed current velocity profile of the coral-reef system around Lizard Island (Great Barrier Reef, Australia) at a spatial and temporal scale relevant to the ecology of individual benthos and fish. The instrument uses load-cell sensors to provide a correlation between sensor output and ambient current velocity of 99%. Each instrument is able to continuously record current velocities to >500 cms−1 and wave frequency to >100 Hz over several weeks. Sensor data are registered and processed at 16 MHz and 10 bit resolution, with a measuring precision of 0.06±0.04%, and accuracy of 0.51±0.65% (mean ±S.D.). Each instrument is also pressure rated to 120 m and shear stresses ≤20 kNm−2 allowing deployment in harsh environments. The instrument was deployed across 27 coral reef sites covering the crest (3 m), mid-slope (6 m) and deep-slope (9 m depth) of habitats directly exposed, oblique or sheltered from prevailing winds. Measurements demonstrate that currents over the reef slope and crest varies immensely depending on depth and exposure: Currents differ up to 9-fold within habitats only separated by 3 m depth and 15-fold between exposed, oblique and sheltered habitats. Comparisons to ambient weather conditions reveal that currents around Lizard Island are largely wind driven. Zero to 22.5 knot winds correspond directly to currents of 0 to >82 cms−1, while tidal currents rarely exceed 5.5 cms−1. Rather, current velocity increases exponentially as a function of wave height (0 to 1.6 m) and frequency (0.54 to 0.20 Hz), emphasizing the enormous effect of wind and waves on organisms in these shallow coral reef habitats. PMID:24421878

  4. Using MODIS data for mapping of water types within river plumes in the Great Barrier Reef, Australia: towards the production of river plume risk maps for reef and seagrass ecosystems.

    PubMed

    Petus, Caroline; da Silva, Eduardo Teixeira; Devlin, Michelle; Wenger, Amelia S; Alvarez-Romero, Jorge G

    2014-05-01

    River plumes are the major transport mechanism for nutrients, sediments and other land-based pollutants into the Great Barrier Reef (GBR, Australia) and are a major threat to coastal and marine ecosystems such as coral reefs and seagrass beds. Understanding the spatial extent, frequency of occurrence, loads and ecological impacts of land-based pollutants discharged through river plumes is essential to drive catchment management actions. In this study, a framework to produce river plume risk maps for seagrass and coral ecosystems, using supervised classification of MODIS Level 2 (L2) satellite products, is presented. Based on relevant L2 thresholds, river plumes are classified into Primary, Secondary, and Tertiary water types, which represent distinct water quality (WQ) parameters concentrations and combinations. Annual water type maps are produced over three wet seasons (2010-2013) as a case of study. These maps provide a synoptic basis to assess the likelihood and magnitude of the risk of reduced coastal WQ associated with the river discharge (river plume risk) and in combination with sound knowledge of the regional ecosystems can serve as the basis to assess potential ecological impacts for coastal and marine GBR ecosystems. The methods described herein provide relevant and easily reproducible large-scale information for river plume risk assessment and management.

  5. Catchment management and the Great Barrier Reef.

    PubMed

    Brodie, J; Christie, C; Devlin, M; Haynes, D; Morris, S; Ramsay, M; Waterhouse, J; Yorkston, H

    2001-01-01

    Pollution of coastal regions of the Great Barrier Reef is dominated by runoff from the adjacent catchment. Catchment land-use is dominated by beef grazing and cropping, largely sugarcane cultivation, with relatively minor urban development. Runoff of sediment, nutrients and pesticides is increasing and for nitrogen is now four times the natural amount discharged 150 years ago. Significant effects and potential threats are now evident on inshore reefs, seagrasses and marine animals. There is no effective legislation or processes in place to manage agricultural pollution. The Great Barrier Reef Marine Park Act does not provide effective jurisdiction on the catchment. Queensland legislation relies on voluntary codes and there is no assessment of the effectiveness of the codes. Integrated catchment management strategies, also voluntary, provide some positive outcomes but are of limited success. Pollutant loads are predicted to continue to increase and it is unlikely that current management regimes will prevent this. New mechanisms to prevent continued degradation of inshore ecosystems of the Great Barrier Reef World Heritage Area are urgently needed.

  6. Miocene precursors to Great Barrier Reef

    SciTech Connect

    Davies, P.J.; Symonds, P.A.; Feary, D.A.; Pigram, C.

    1988-01-01

    Huge reefs of Miocene age are present in the Gulf of Papua north of the present-day Great Barrier Reef and to the east on the Marion and Queensland Plateaus. In the Gulf of Papua, Miocene barrier reefs formed the northern forerunner of the Great Barrier Reef, extending for many hundreds of kilometers along the eastern and northern margin of the Australian craton within a developing foreland basin. Barrier reefs, slope pinnacle reefs, and platform reefs are seen in seismic sections and drill holes. Leeside talus deposits testify to the high energy impinging on the eastern margin of these Miocene reefs. The Queensland Plateau is a marginal plateau east of the central Great Barrier Reef and separated from it by a rift trough. Miocene reefs occupied an area of about 50,000 km/sup 2/ and grew on salt-controlled highs on the western margin of the plateau and on a regional basement high extending from the platform interior to its southern margin. Reef growth has continued to the present day, although two major contractions in the area covered by reefs occurred during the Miocene. The Marion Plateau is present directly east of the Great Barrier Reef and during the Micoene formed a 30,000-km/sup 2/ platform with barrier reefs along its northern margin and huge platform reefs and laggons on the platform interior. These reefs grew on a flat peneplained surface, the whole area forming a large shallow epicontinental sea. In all three areas, the middle Miocene formed the acme of reef expansion in the region.

  7. The Great Barrier Reef World Heritage Area seagrasses: Managing this iconic Australian ecosystem resource for the future

    NASA Astrophysics Data System (ADS)

    Coles, Robert G.; Rasheed, Michael A.; McKenzie, Len J.; Grech, Alana; York, Paul H.; Sheaves, Marcus; McKenna, Skye; Bryant, Catherine

    2015-02-01

    The Great Barrier Reef World Heritage Area (GBRWHA) includes one of the world's largest areas of seagrass (35,000 km2) encompassing approximately 20% of the world's species. Mapping and monitoring programs sponsored by the Australian and Queensland Governments and Queensland Port Authorities have tracked a worrying decrease in abundance and area since 2007. This decline has almost certainly been the result of a series of severe tropical storms and associated floods exacerbating existing human induced stressors. A complex variety of marine and terrestrial management actions and plans have been implemented to protect seagrass and other habitats in the GBRWHA. For seagrasses, these actions are inadequate. They provide an impression of effective protection of seagrasses; reduce the sense of urgency needed to trigger action; and waste the valuable and limited supply of "conservation capital". There is a management focus on ports, driven by public concerns about high profile development projects, which exaggerates the importance of these relatively concentrated impacts in comparison to the total range of threats and stressors. For effective management of seagrass at the scale of the GBRWHA, more emphasis needs to be placed on the connectivity between seagrass meadow health, watersheds, and all terrestrial urban and agricultural development associated with human populations. The cumulative impacts to seagrass from coastal and marine processes in the GBRWHA are not evenly distributed, with a mosaic of high and low vulnerability areas. This provides an opportunity to make choices for future coastal development plans that minimise stress on seagrass meadows.

  8. Great Barrier Reef, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Along the coast of Queensland, Australia (18.0S, 147.5E), timbered foothills of the Great Dividing Range separate the semi-arid interior of Queensland from the farmlands of the coastal plains. Prominent cleared areas in the forest indicate deforestation for farm and pasture lands. Offshore, islands and the Great Barrier Reef display sand banks along the southern sides of the structures indicating a dominant southerly wind and current direction.

  9. Herbicides: a new threat to the Great Barrier Reef.

    PubMed

    Lewis, Stephen E; Brodie, Jon E; Bainbridge, Zoë T; Rohde, Ken W; Davis, Aaron M; Masters, Bronwyn L; Maughan, Mirjam; Devlin, Michelle J; Mueller, Jochen F; Schaffelke, Britta

    2009-01-01

    The runoff of pesticides (insecticides, herbicides and fungicides) from agricultural lands is a key concern for the health of the iconic Great Barrier Reef, Australia. Relatively low levels of herbicide residues can reduce the productivity of marine plants and corals. However, the risk of these residues to Great Barrier Reef ecosystems has been poorly quantified due to a lack of large-scale datasets. Here we present results of a study tracing pesticide residues from rivers and creeks in three catchment regions to the adjacent marine environment. Several pesticides (mainly herbicides) were detected in both freshwater and coastal marine waters and were attributed to specific land uses in the catchment. Elevated herbicide concentrations were particularly associated with sugar cane cultivation in the adjacent catchment. We demonstrate that herbicides reach the Great Barrier Reef lagoon and may disturb sensitive marine ecosystems already affected by other pressures such as climate change.

  10. Dynamic fragility of oceanic coral reef ecosystems

    PubMed Central

    Graham, Nicholas A. J.; Wilson, Shaun K.; Jennings, Simon; Polunin, Nicholas V. C.; Bijoux, Jude P.; Robinson, Jan

    2006-01-01

    As one of the most diverse and productive ecosystems known, and one of the first ecosystems to exhibit major climate-warming impacts (coral bleaching), coral reefs have drawn much scientific attention to what may prove to be their Achilles heel, the thermal sensitivity of reef-building corals. Here we show that climate change-driven loss of live coral, and ultimately structural complexity, in the Seychelles results in local extinctions, substantial reductions in species richness, reduced taxonomic distinctness, and a loss of species within key functional groups of reef fish. The importance of deteriorating physical structure to these patterns demonstrates the longer-term impacts of bleaching on reefs and raises questions over the potential for recovery. We suggest that isolated reef systems may be more susceptible to climate change, despite escaping many of the stressors impacting continental reefs. PMID:16709673

  11. The Barrier Reef sediment apron: Tobacco Reef, Belize

    NASA Astrophysics Data System (ADS)

    MacIntyre, Ian G.; Graus, Richard R.; Reinthal, Peter N.; Littler, Mark M.; Littler, Diane S.

    1987-07-01

    Sedimentological and biological surveys of the back-reef sediment apron of Tobacco Reef, a continuous segment of the Belizean Barrier Reef, reveal five distinct biogeological zones: (1) coralline-coral- Dictyota pavement, (2) Turbinaria-Sargassum rubble, (3) Laurencia-Acanthophora sand and gravel, (4) bare sand and 95 Thalassia sand. These zones parallel the entire 9-km reef. The distribution of these zones is related to the spatial patterns of fish herbivory, the size of bottom sediments, and the stability of the substrate. Sedimentological and hydrodynamic studies indicate that most of the sediments in this area are transported from the reef crest and fore reef during periods of storm or hurricane activity and that their size distribution is largely the result of differential transport by high bottom-water velocities during those periods.

  12. Reef Ecosystem Services and Decision Support Database

    EPA Science Inventory

    This scientific and management information database utilizes systems thinking to describe the linkages between decisions, human activities, and provisioning of reef ecosystem goods and services. This database provides: (1) Hierarchy of related topics - Click on topics to navigat...

  13. Reef Ecosystem Services and Decision Support Database

    EPA Science Inventory

    This scientific and management information database utilizes systems thinking to describe the linkages between decisions, human activities, and provisioning of reef ecosystem goods and services. This database provides: (1) Hierarchy of related topics - Click on topics to navigat...

  14. Predicting the location and spatial extent of submerged coral reef habitat in the Great Barrier Reef world heritage area, Australia.

    PubMed

    Bridge, Tom; Beaman, Robin; Done, Terry; Webster, Jody

    2012-01-01

    Coral reef communities occurring in deeper waters have received little research effort compared to their shallow-water counterparts, and even such basic information as their location and extent are currently unknown throughout most of the world. Using the Great Barrier Reef as a case study, habitat suitability modelling is used to predict the distribution of deep-water coral reef communities on the Great Barrier Reef, Australia. We test the effectiveness of a range of geophysical and environmental variables for predicting the location of deep-water coral reef communities on the Great Barrier Reef. Great Barrier Reef, Australia. Maximum entropy modelling is used to identify the spatial extent of two broad communities of habitat-forming megabenthos phototrophs and heterotrophs. Models were generated using combinations of geophysical substrate properties derived from multibeam bathymetry and environmental data derived from Bio-ORACLE, combined with georeferenced occurrence records of mesophotic coral communities from autonomous underwater vehicle, remotely operated vehicle and SCUBA surveys. Model results are used to estimate the total amount of mesophotic coral reef habitat on the GBR. Our models predict extensive but previously undocumented coral communities occurring both along the continental shelf-edge of the Great Barrier Reef and also on submerged reefs inside the lagoon. Habitat suitability for phototrophs is highest on submerged reefs along the outer-shelf and the deeper flanks of emergent reefs inside the GBR lagoon, while suitability for heterotrophs is highest in the deep waters along the shelf-edge. Models using only geophysical variables consistently outperformed models incorporating environmental data for both phototrophs and heterotrophs. Extensive submerged coral reef communities that are currently undocumented are likely to occur throughout the Great Barrier Reef. High-quality bathymetry data can be used to identify these reefs, which may play an

  15. Predicting the Location and Spatial Extent of Submerged Coral Reef Habitat in the Great Barrier Reef World Heritage Area, Australia

    PubMed Central

    Bridge, Tom; Beaman, Robin; Done, Terry; Webster, Jody

    2012-01-01

    Aim Coral reef communities occurring in deeper waters have received little research effort compared to their shallow-water counterparts, and even such basic information as their location and extent are currently unknown throughout most of the world. Using the Great Barrier Reef as a case study, habitat suitability modelling is used to predict the distribution of deep-water coral reef communities on the Great Barrier Reef, Australia. We test the effectiveness of a range of geophysical and environmental variables for predicting the location of deep-water coral reef communities on the Great Barrier Reef. Location Great Barrier Reef, Australia. Methods Maximum entropy modelling is used to identify the spatial extent of two broad communities of habitat-forming megabenthos phototrophs and heterotrophs. Models were generated using combinations of geophysical substrate properties derived from multibeam bathymetry and environmental data derived from Bio-ORACLE, combined with georeferenced occurrence records of mesophotic coral communities from autonomous underwater vehicle, remotely operated vehicle and SCUBA surveys. Model results are used to estimate the total amount of mesophotic coral reef habitat on the GBR. Results Our models predict extensive but previously undocumented coral communities occurring both along the continental shelf-edge of the Great Barrier Reef and also on submerged reefs inside the lagoon. Habitat suitability for phototrophs is highest on submerged reefs along the outer-shelf and the deeper flanks of emergent reefs inside the GBR lagoon, while suitability for heterotrophs is highest in the deep waters along the shelf-edge. Models using only geophysical variables consistently outperformed models incorporating environmental data for both phototrophs and heterotrophs. Main Conclusion Extensive submerged coral reef communities that are currently undocumented are likely to occur throughout the Great Barrier Reef. High-quality bathymetry data can be used

  16. A Paddock to reef monitoring and modelling framework for the Great Barrier Reef: Paddock and catchment component.

    PubMed

    Carroll, Chris; Waters, David; Vardy, Suzanne; Silburn, David M; Attard, Steve; Thorburn, Peter J; Davis, Aaron M; Halpin, Neil; Schmidt, Michael; Wilson, Bruce; Clark, Andrew

    2012-01-01

    Targets for improvements in water quality entering the Great Barrier Reef (GBR) have been set through the Reef Water Quality Protection Plan (Reef Plan). To measure and report on progress towards the targets set a program has been established that combines monitoring and modelling at paddock through to catchment and reef scales; the Paddock to Reef Integrated Monitoring, Modelling and Reporting Program (Paddock to Reef Program). This program aims to provide evidence of links between land management activities, water quality and reef health. Five lines of evidence are used: the effectiveness of management practices to improve water quality; the prevalence of management practice adoption and change in catchment indicators; long-term monitoring of catchment water quality; paddock & catchment modelling to provide a relative assessment of progress towards meeting targets; and finally marine monitoring of GBR water quality and reef ecosystem health. This paper outlines the first four lines of evidence.

  17. Postglacial Fringing-Reef to Barrier-Reef conversion on Tahiti links Darwin's reef types

    PubMed Central

    Blanchon, Paul; Granados-Corea, Marian; Abbey, Elizabeth; Braga, Juan C.; Braithwaite, Colin; Kennedy, David M.; Spencer, Tom; Webster, Jody M.; Woodroffe, Colin D.

    2014-01-01

    In 1842 Charles Darwin claimed that vertical growth on a subsiding foundation caused fringing reefs to transform into barrier reefs then atolls. Yet historically no transition between reef types has been discovered and they are widely considered to develop independently from antecedent foundations during glacio-eustatic sea-level rise. Here we reconstruct reef development from cores recovered by IODP Expedition 310 to Tahiti, and show that a fringing reef retreated upslope during postglacial sea-level rise and transformed into a barrier reef when it encountered a Pleistocene reef-flat platform. The reef became stranded on the platform edge, creating a lagoon that isolated it from coastal sediment and facilitated a switch to a faster-growing coral assemblage dominated by acroporids. The switch increased the reef's accretion rate, allowing it to keep pace with rising sea level, and transform into a barrier reef. This retreat mechanism not only links Darwin's reef types, but explains the re-occupation of reefs during Pleistocene glacio-eustacy. PMID:24845540

  18. Postglacial fringing-reef to barrier-reef conversion on Tahiti links Darwin's reef types.

    PubMed

    Blanchon, Paul; Granados-Corea, Marian; Abbey, Elizabeth; Braga, Juan C; Braithwaite, Colin; Kennedy, David M; Spencer, Tom; Webster, Jody M; Woodroffe, Colin D

    2014-05-21

    In 1842 Charles Darwin claimed that vertical growth on a subsiding foundation caused fringing reefs to transform into barrier reefs then atolls. Yet historically no transition between reef types has been discovered and they are widely considered to develop independently from antecedent foundations during glacio-eustatic sea-level rise. Here we reconstruct reef development from cores recovered by IODP Expedition 310 to Tahiti, and show that a fringing reef retreated upslope during postglacial sea-level rise and transformed into a barrier reef when it encountered a Pleistocene reef-flat platform. The reef became stranded on the platform edge, creating a lagoon that isolated it from coastal sediment and facilitated a switch to a faster-growing coral assemblage dominated by acroporids. The switch increased the reef's accretion rate, allowing it to keep pace with rising sea level, and transform into a barrier reef. This retreat mechanism not only links Darwin's reef types, but explains the re-occupation of reefs during Pleistocene glacio-eustacy.

  19. Postglacial Fringing-Reef to Barrier-Reef conversion on Tahiti links Darwin's reef types

    NASA Astrophysics Data System (ADS)

    Blanchon, Paul; Granados-Corea, Marian; Abbey, Elizabeth; Braga, Juan C.; Braithwaite, Colin; Kennedy, David M.; Spencer, Tom; Webster, Jody M.; Woodroffe, Colin D.

    2014-05-01

    In 1842 Charles Darwin claimed that vertical growth on a subsiding foundation caused fringing reefs to transform into barrier reefs then atolls. Yet historically no transition between reef types has been discovered and they are widely considered to develop independently from antecedent foundations during glacio-eustatic sea-level rise. Here we reconstruct reef development from cores recovered by IODP Expedition 310 to Tahiti, and show that a fringing reef retreated upslope during postglacial sea-level rise and transformed into a barrier reef when it encountered a Pleistocene reef-flat platform. The reef became stranded on the platform edge, creating a lagoon that isolated it from coastal sediment and facilitated a switch to a faster-growing coral assemblage dominated by acroporids. The switch increased the reef's accretion rate, allowing it to keep pace with rising sea level, and transform into a barrier reef. This retreat mechanism not only links Darwin's reef types, but explains the re-occupation of reefs during Pleistocene glacio-eustacy.

  20. Resetting predator baselines in coral reef ecosystems

    PubMed Central

    Bradley, Darcy; Conklin, Eric; Papastamatiou, Yannis P.; McCauley, Douglas J.; Pollock, Kydd; Pollock, Amanda; Kendall, Bruce E.; Gaines, Steven D.; Caselle, Jennifer E.

    2017-01-01

    What did coral reef ecosystems look like before human impacts became pervasive? Early efforts to reconstruct baselines resulted in the controversial suggestion that pristine coral reefs have inverted trophic pyramids, with disproportionally large top predator biomass. The validity of the coral reef inverted trophic pyramid has been questioned, but until now, was not resolved empirically. We use data from an eight-year tag-recapture program with spatially explicit, capture-recapture models to re-examine the population size and density of a key top predator at Palmyra atoll, the same location that inspired the idea of inverted trophic biomass pyramids in coral reef ecosystems. Given that animal movement is suspected to have significantly biased early biomass estimates of highly mobile top predators, we focused our reassessment on the most mobile and most abundant predator at Palmyra, the grey reef shark (Carcharhinus amblyrhynchos). We estimated a density of 21.3 (95% CI 17.8, 24.7) grey reef sharks/km2, which is an order of magnitude lower than the estimates that suggested an inverted trophic pyramid. Our results indicate that the trophic structure of an unexploited reef fish community is not inverted, and that even healthy top predator populations may be considerably smaller, and more precarious, than previously thought. PMID:28220895

  1. Resetting predator baselines in coral reef ecosystems.

    PubMed

    Bradley, Darcy; Conklin, Eric; Papastamatiou, Yannis P; McCauley, Douglas J; Pollock, Kydd; Pollock, Amanda; Kendall, Bruce E; Gaines, Steven D; Caselle, Jennifer E

    2017-02-21

    What did coral reef ecosystems look like before human impacts became pervasive? Early efforts to reconstruct baselines resulted in the controversial suggestion that pristine coral reefs have inverted trophic pyramids, with disproportionally large top predator biomass. The validity of the coral reef inverted trophic pyramid has been questioned, but until now, was not resolved empirically. We use data from an eight-year tag-recapture program with spatially explicit, capture-recapture models to re-examine the population size and density of a key top predator at Palmyra atoll, the same location that inspired the idea of inverted trophic biomass pyramids in coral reef ecosystems. Given that animal movement is suspected to have significantly biased early biomass estimates of highly mobile top predators, we focused our reassessment on the most mobile and most abundant predator at Palmyra, the grey reef shark (Carcharhinus amblyrhynchos). We estimated a density of 21.3 (95% CI 17.8, 24.7) grey reef sharks/km(2), which is an order of magnitude lower than the estimates that suggested an inverted trophic pyramid. Our results indicate that the trophic structure of an unexploited reef fish community is not inverted, and that even healthy top predator populations may be considerably smaller, and more precarious, than previously thought.

  2. Identifying zooplankton community changes between shallow and upper-mesophotic reefs on the Mesoamerican Barrier Reef, Caribbean.

    PubMed

    Andradi-Brown, Dominic A; Head, Catherine E I; Exton, Dan A; Hunt, Christina L; Hendrix, Alicia; Gress, Erika; Rogers, Alex D

    2017-01-01

    Mesophotic coral ecosystems (MCEs, reefs 30-150 m) are understudied, yet the limited research conducted has been biased towards large sessile taxa, such as scleractinian corals and sponges, or mobile taxa such as fishes. Here we investigate zooplankton communities on shallow reefs and MCEs around Utila on the southern Mesoamerican Barrier Reef using planktonic light traps. Zooplankton samples were sorted into broad taxonomic groups. Our results indicate similar taxonomic zooplankton richness and overall biomass between shallow reefs and MCEs. However, the abundance of larger bodied (>2 mm) zooplanktonic groups, including decapod crab zoea, mysid shrimps and peracarid crustaceans, was higher on MCEs than shallow reefs. Our findings highlight the importance of considering zooplankton when identifying broader reef community shifts across the shallow reef to MCE depth gradient.

  3. Identifying zooplankton community changes between shallow and upper-mesophotic reefs on the Mesoamerican Barrier Reef, Caribbean

    PubMed Central

    Head, Catherine E. I.; Exton, Dan A.; Hunt, Christina L.; Hendrix, Alicia; Gress, Erika; Rogers, Alex D.

    2017-01-01

    Mesophotic coral ecosystems (MCEs, reefs 30–150 m) are understudied, yet the limited research conducted has been biased towards large sessile taxa, such as scleractinian corals and sponges, or mobile taxa such as fishes. Here we investigate zooplankton communities on shallow reefs and MCEs around Utila on the southern Mesoamerican Barrier Reef using planktonic light traps. Zooplankton samples were sorted into broad taxonomic groups. Our results indicate similar taxonomic zooplankton richness and overall biomass between shallow reefs and MCEs. However, the abundance of larger bodied (>2 mm) zooplanktonic groups, including decapod crab zoea, mysid shrimps and peracarid crustaceans, was higher on MCEs than shallow reefs. Our findings highlight the importance of considering zooplankton when identifying broader reef community shifts across the shallow reef to MCE depth gradient. PMID:28168098

  4. Benthic Foraminifera from the Capricorn Group, Great Barrier Reef, Australia.

    PubMed

    Mamo, Briony L

    2016-12-23

    Effective reef management and monitoring has become increasingly important as anthropogenic processes impact upon natural ecosystems. One locality that is under direct threat due to human activities is the Australian Great Barrier Reef (GBR). Marine foraminifera represent an abundant and readily applicable tool that can be used in reef studies to investigate a variety of ecological parameters and assist in understanding reef dynamics and influence management protocols. The first step is to establish a baseline knowledge of taxonomic composition within the region to facilitate comparative studies and monitor how assemblages change in order to maximise effective management. A detailed taxonomic assessment is provided of 133 species of benthic foraminifera in 76 genera from Heron Island, One Tree Island, Wistari and Sykes Reefs, which form the core of the Capricorn Group (CG) at the southern end of the GBR. Of these 133 species, 46% belong to the order Miliolida, 34% to Rotaliida, 7% to Textulariida, 5% to Lagenida, 3% to Lituolida, 3% to Spirillinida, 1% to Loftusiida and 1% to Robertinida. Samples were collected from a variety of shallow shelf reef environments including reef flat, lagoonal and channel environments. Seventy species, representing the most abundant forms, are formally described with detailed distribution data for the remaining 63 species supplied.

  5. Quantifying Coral Reef Ecosystem Services

    EPA Science Inventory

    Coral reefs have been declining during the last four decades as a result of both local and global anthropogenic stresses. Numerous research efforts to elucidate the nature, causes, magnitude, and potential remedies for the decline have led to the widely held belief that the recov...

  6. Bioindication in coral reef ecosystems.

    PubMed

    Yap, H T

    1986-01-01

    The concept of bioindication in the sense of the use of organisms for detecting environmental stress has been employed in coral reef conservation and management for the past several years. Important tools are coral growth rates and various community parameters, notably hard coral cover. The present need is the optimal coordination of international efforts for the earliest possible institution of an effective monitoring system.

  7. Quantifying Coral Reef Ecosystem Services

    EPA Science Inventory

    Coral reefs have been declining during the last four decades as a result of both local and global anthropogenic stresses. Numerous research efforts to elucidate the nature, causes, magnitude, and potential remedies for the decline have led to the widely held belief that the recov...

  8. Contradictions to Darwin's Evolution of Reef Types in Barrier Reef Relationships

    NASA Astrophysics Data System (ADS)

    Purdy, E.; Winterer, E. L.

    2004-05-01

    The Darwinian progressive subsidence model for the evolution of fringing reefs, barrier reefs and atolls has been generally accepted following the indisputable proof of subsidence provided by drilling results in the Pacific. Nonetheless, there are data that do not fit the expectations of the model, such as the similar lagoon depths of barrier reefs and atolls as opposed to the subsidence theory's implicit prediction that atolls should have significantly greater depths. In contrast, much evidence supports the influence of meteoric-water solution on barrier reef morphology. For example, the maximum lagoon depth of the 56 modern barrier reefs is statistically correlated with the lagoon catchment area for modern annual rainfall. These modern rainfall patterns are a reasonable proxy for relative geographic differences in glacial lowstand rainfall, even though the absolute amounts of such rainfall are unknown. The correlation therefore stongly suggests the importance of Pleistocene subaerial solution in contributing to barrier reef morphology. Further support for antecedent influence occurs in the form of barrier reef passes in which the depth of the reef pass is correlated with onshore drainage volumes. On a larger scale, the Cook Island of Mangaia provides evidence that solution can produce barrier reef morphology independent of reef development. In contrast, there are no examples of the Darwinian subsidence-predicted lagoon transition of fringing reefs to barrier reefs to atolls. Moreover, the common occurrence of fringing reefs within barrier reefs negates subsidence as a causal factor in their presumed progressive evolutionary development. Consequently, the evidence points to a solution morphology template which has been accentuated by reef construction to produce the diagnostic barrier reef morphology we see today. Rapid subsidence of seamounts by flexural loading during their early history, combined with Pleistocene sealevel fluctuations results in permanent

  9. Quantifying Climatological Ranges and Anomalies for Pacific Coral Reef Ecosystems

    PubMed Central

    Gove, Jamison M.; Williams, Gareth J.; McManus, Margaret A.; Heron, Scott F.; Sandin, Stuart A.; Vetter, Oliver J.; Foley, David G.

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic–biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will

  10. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    PubMed

    Gove, Jamison M; Williams, Gareth J; McManus, Margaret A; Heron, Scott F; Sandin, Stuart A; Vetter, Oliver J; Foley, David G

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help

  11. Aliphatic hydrocarbons in Great Barrier Reef organisms and environment

    NASA Astrophysics Data System (ADS)

    Coates, M.; Connell, D. W.; Bodero, J.; Miller, G. J.; Back, R.

    1986-07-01

    This investigation was undertaken to assess the chemical nature, occurrence, and possible origin of petroleum hydrocarbons in the Great Barrier Reef ecosystem. Aliphatic hydrocarbons in surface sediments, water, and a suite of seven species from widely separated coral reefs in the Great Barrier Reef area were analysed by gas chromatography, and by gas chromatography coupled with mass spectrometry. The hydrocarbons found were substantially of biogenic origin. The major components were n-pentadecane, n-heptadecane, pristane and mono-alkenes based on heptadecane, and were believed to originate from benthic algae and phytoplankton. There was no evidence to suggest that lipid content had any influence on hydrocarbon content. Hydrocarbons from the organisms and sediments have characteristic composition patterns which would be altered by the presence of petroleum hydrocarbons. An unresolved complex mixture, usually considered indicative of petroleum contamination, was found in greater than trace amounts only in Holothuria (sea cucumber) and Acropora (coral) from the Capricorn Group, and in some sediment samples from the Capricorn Group and Lizard Island area.

  12. Framework of barrier reefs threatened by ocean acidification.

    PubMed

    Comeau, Steeve; Lantz, Coulson A; Edmunds, Peter J; Carpenter, Robert C

    2016-03-01

    To date, studies of ocean acidification (OA) on coral reefs have focused on organisms rather than communities, and the few community effects that have been addressed have focused on shallow back reef habitats. The effects of OA on outer barrier reefs, which are the most striking of coral reef habitats and are functionally and physically different from back reefs, are unknown. Using 5-m long outdoor flumes to create treatment conditions, we constructed coral reef communities comprised of calcified algae, corals, and reef pavement that were assembled to match the community structure at 17 m depth on the outer barrier reef of Moorea, French Polynesia. Communities were maintained under ambient and 1200 μatm pCO2 for 7 weeks, and net calcification rates were measured at different flow speeds. Community net calcification was significantly affected by OA, especially at night when net calcification was depressed ~78% compared to ambient pCO2 . Flow speed (2-14 cm s(-1) ) enhanced net calcification only at night under elevated pCO2 . Reef pavement also was affected by OA, with dissolution ~86% higher under elevated pCO2 compared to ambient pCO2 . These results suggest that net accretion of outer barrier reef communities will decline under OA conditions predicted within the next 100 years, largely because of increased dissolution of reef pavement. Such extensive dissolution poses a threat to the carbonate foundation of barrier reef communities.

  13. Environmental quality and preservation; reefs, corals, and carbonate sands; guides to reef-ecosystem health and environment

    USGS Publications Warehouse

    Lidz, Barbara H.

    2001-01-01

    Introduction In recent years, the health of the entire coral reef ecosystem that lines the outer shelf off the Florida Keys has declined markedly. In particular, loss of those coral species that are the building blocks of solid reef framework has significant negative implications for economic vitality of the region. What are the reasons for this decline? Is it due to natural change, or are human activities (recreational diving, ship groundings, farmland runoff, nutrient influx, air-borne contaminants, groundwater pollutants) a contributing factor and if so, to what extent? At risk of loss are biologic resources of the reefs, including habitats for endangered species in shoreline mangroves, productive marine and wetland nurseries, and economic fisheries. A healthy reef ecosystem builds a protective offshore barrier to catastrophic wave action and storm surges generated by tropical storms and hurricanes. In turn, a healthy reef protects the homes, marinas, and infrastructure on the Florida Keys that have been designed to capture a lucrative tourism industry. A healthy reef ecosystem also protects inland agricultural and livestock areas of South Florida whose produce and meat feed much of the United States and other parts of the world. In cooperation with the National Oceanic and Atmospheric Administration's (NOAA) National Marine Sanctuary Program, the U.S. Geological Survey (USGS) continues longterm investigations of factors that may affect Florida's reefs. One of the first steps in distinguishing between natural change and the effects of human activities, however, is to determine how coral reefs have responded to past environmental change, before the advent of man. By so doing, accurate scientific information becomes available for Marine Sanctuary management to understand natural change and thus to assess and regulate potential human impact better. The USGS studies described here evaluate the distribution (location) and historic vitality (thickness) of Holocene

  14. Coral Reefs on the Edge? Carbon Chemistry on Inshore Reefs of the Great Barrier Reef

    PubMed Central

    Uthicke, Sven; Furnas, Miles; Lønborg, Christian

    2014-01-01

    While increasing atmospheric carbon dioxide (CO2) concentration alters global water chemistry (Ocean Acidification; OA), the degree of changes vary on local and regional spatial scales. Inshore fringing coral reefs of the Great Barrier Reef (GBR) are subjected to a variety of local pressures, and some sites may already be marginal habitats for corals. The spatial and temporal variation in directly measured parameters: Total Alkalinity (TA) and dissolved inorganic carbon (DIC) concentration, and derived parameters: partial pressure of CO2 (pCO2); pH and aragonite saturation state (Ωar) were measured at 14 inshore reefs over a two year period in the GBR region. Total Alkalinity varied between 2069 and 2364 µmol kg−1 and DIC concentrations ranged from 1846 to 2099 µmol kg−1. This resulted in pCO2 concentrations from 340 to 554 µatm, with higher values during the wet seasons and pCO2 on inshore reefs distinctly above atmospheric values. However, due to temperature effects, Ωar was not further reduced in the wet season. Aragonite saturation on inshore reefs was consistently lower and pCO2 higher than on GBR reefs further offshore. Thermodynamic effects contribute to this, and anthropogenic runoff may also contribute by altering productivity (P), respiration (R) and P/R ratios. Compared to surveys 18 and 30 years ago, pCO2 on GBR mid- and outer-shelf reefs has risen at the same rate as atmospheric values (∼1.7 µatm yr−1) over 30 years. By contrast, values on inshore reefs have increased at 2.5 to 3 times higher rates. Thus, pCO2 levels on inshore reefs have disproportionately increased compared to atmospheric levels. Our study suggests that inshore GBR reefs are more vulnerable to OA and have less buffering capacity compared to offshore reefs. This may be caused by anthropogenically induced trophic changes in the water column and benthos of inshore reefs subjected to land runoff. PMID:25295864

  15. Coral reefs on the edge? Carbon chemistry on inshore reefs of the great barrier reef.

    PubMed

    Uthicke, Sven; Furnas, Miles; Lønborg, Christian

    2014-01-01

    While increasing atmospheric carbon dioxide (CO2) concentration alters global water chemistry (Ocean Acidification; OA), the degree of changes vary on local and regional spatial scales. Inshore fringing coral reefs of the Great Barrier Reef (GBR) are subjected to a variety of local pressures, and some sites may already be marginal habitats for corals. The spatial and temporal variation in directly measured parameters: Total Alkalinity (TA) and dissolved inorganic carbon (DIC) concentration, and derived parameters: partial pressure of CO2 (pCO2); pH and aragonite saturation state (Ωar) were measured at 14 inshore reefs over a two year period in the GBR region. Total Alkalinity varied between 2069 and 2364 µmol kg-1 and DIC concentrations ranged from 1846 to 2099 µmol kg-1. This resulted in pCO2 concentrations from 340 to 554 µatm, with higher values during the wet seasons and pCO2 on inshore reefs distinctly above atmospheric values. However, due to temperature effects, Ωar was not further reduced in the wet season. Aragonite saturation on inshore reefs was consistently lower and pCO2 higher than on GBR reefs further offshore. Thermodynamic effects contribute to this, and anthropogenic runoff may also contribute by altering productivity (P), respiration (R) and P/R ratios. Compared to surveys 18 and 30 years ago, pCO2 on GBR mid- and outer-shelf reefs has risen at the same rate as atmospheric values (∼1.7 µatm yr-1) over 30 years. By contrast, values on inshore reefs have increased at 2.5 to 3 times higher rates. Thus, pCO2 levels on inshore reefs have disproportionately increased compared to atmospheric levels. Our study suggests that inshore GBR reefs are more vulnerable to OA and have less buffering capacity compared to offshore reefs. This may be caused by anthropogenically induced trophic changes in the water column and benthos of inshore reefs subjected to land runoff.

  16. New evidence for the barrier reef model, Permian Capitan Reef complex, New Mexico

    SciTech Connect

    Kirkland, B.L.; Moore, C.H. Jr. )

    1990-05-01

    Recent paleontologic and petrologic observations suggest that the Capitan Formation was deposited as an organic or ecologic reef that acted as an emergent barrier to incoming wave energy. In outcrops in the Guadalupe Mountains and within Carlsbad Caverns, massive reef boundstone contains a highly diverse assemblage of frame-building and binding organisms. In modern reefs, diversity among frame builders decreases dramatically with depth. Marine cement is abundant in reef boundstone, but limited in back-reef grainstone and packstone. This cementation pattern is similar to that observed in modern emergent barrier reef systems. Based on comparison with modern analogs, these dasycladrominated back-reef sediments and their associated biota are indicative of shallow, hypersaline conditions. Few of these dasyclads exhibit broken or abraded segments and some thallus sections are still articulated suggesting that low-energy, hypersaline conditions occurred immediately shelfward of the reef. In addition, large-scale topographic features, such as possible spur and groove structures between Walnut Canyon and Rattlesnake Canyon, and facies geometries, such as the reef to shelf transition, resemble those found in modern shallow-water reefs. The organisms that formed the Capitan Reef appear to have lived in, and responded to, physical and chemical conditions similar to those that control the geometry of modern shallow-water reefs. Like their modern counterparts, they seem to have strongly influenced adjacent environments. In light of this evidence, consideration should be given to either modifying or abandoning the marginal mound model in favor of the originally proposed barrier reef model.

  17. Influence of hydrodynamic energy on Holocene reef flat accretion, Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Dechnik, Belinda; Webster, Jody M.; Nothdurft, Luke; Webb, Gregory E.; Zhao, Jian-xin; Duce, Stephanie; Braga, Juan C.; Harris, Daniel L.; Vila-Concejo, Ana; Puotinen, Marji

    2016-01-01

    The response of platform reefs to sea-level stabilization over the past 6 ka is well established for the Great Barrier Reef (GBR), with reefs typically accreting laterally from windward to leeward. However, these observations are based on few cores spread across reef zones and may not accurately reflect a reef's true accretional response to the Holocene stillstand. We present a new record of reef accretion based on 49 U/Th ages from Heron and One Tree reefs in conjunction with re-analyzed data from 14 reefs across the GBR. We demonstrate that hydrodynamic energy is the main driver of accretional direction; exposed reefs accreted primarily lagoon-ward while protected reefs accreted seawards, contrary to the traditional growth model in the GBR. Lateral accretion rates varied from 86.3 m/ka-42.4 m/ka on the exposed One Tree windward reef and 68.35 m/ka-15.7 m/ka on the protected leeward Heron reef, suggesting that wind/wave energy is not a dominant control on lateral accretion rates. This represents the most comprehensive statement of lateral accretion direction and rates from the mid-outer platform reefs of the GBR, confirming great variability in reef flat growth both within and between reef margins over the last 6 ka, and highlighting the need for closely-spaced transects.

  18. Ecosystem-scale effects of aragonite saturation, temperature, and nutrients on coral-reef calcification

    NASA Astrophysics Data System (ADS)

    Silverman, J.; Caldeira, K.; Lazar, B.; Erez, J.

    2008-12-01

    We investigated the relations between net calcification of an entire coral reef in the northern Red Sea and annual changes in aragonite saturation, temperature, and nutrient loading over a two year period, and augmented this study with similar observations in the Great Barrier Reef, Australia. In the Red Sea, average calcification rates varied between 60 ± 20 and 30 ± 20 mmol m-2 d-1 in the summer and winter, respectively. These changes primarily reflected seasonal differences in aragonite saturation and temperature. Data for the Great Barrier Reef are still being processed. Calcification rates at the ecosystem scale correlated remarkably well with the kinetics observed in inorganic aragonite precipitation experiments. This is a remarkable finding considering that calcification in coral reefs is primarily a biogenic process; this finding is yet to be explained mechanistically. These relationships are also in agreement with most laboratory studies on individual stony corals and coral mesocosms. The consistency of these responses at levels ranging from inorganic kinetics through the ecosystem scale suggests that these relationships are sufficiently robust to make predictions of coral reef response to ocean acidification and global warming. Finally, in a number of nighttime measurements, we observed net aragonite dissolution despite the supersaturated state of overlying reef water. This apparent dissolution is most likely biologically mediated. Aragonite dissolution, combined with decreasing aragonite precipitation, suggests that at least some reefs will be undergoing net dissolution by the time atmospheric carbon dioxide concentration doubles over its pre- industrial value.

  19. Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study.

    PubMed

    Albright, Rebecca; Anthony, Kenneth R N; Baird, Mark; Beeden, Roger; Byrne, Maria; Collier, Catherine; Dove, Sophie; Fabricius, Katharina; Hoegh-Guldberg, Ove; Kelly, Ryan P; Lough, Janice; Mongin, Mathieu; Munday, Philip L; Pears, Rachel J; Russell, Bayden D; Tilbrook, Bronte; Abal, Eva

    2016-11-01

    Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Distribution, abundance and diversity of crustose coralline algae on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Dean, Angela J.; Steneck, Robert S.; Tager, Danika; Pandolfi, John M.

    2015-06-01

    The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem. Crustose coralline algae (CCA) are important contributors to reef calcium carbonate and can facilitate coral recruitment. Despite the importance of CCA, little is known about species-level distribution, abundance, and diversity, and how these vary across the continental shelf and key habitat zones within the GBR. We quantified CCA species distributions using line transects ( n = 127) at 17 sites in the northern and central regions of the GBR, distributed among inner-, mid-, and outer-shelf regions. At each site, we identified CCA along replicate transects in three habitat zones: reef flat, reef crest, and reef slope. Taxonomically, CCA species are challenging to identify (especially in the field), and there is considerable disagreement in approach. We used published, anatomically based taxonomic schemes for consistent identification. We identified 30 CCA species among 12 genera; the most abundant species were Porolithon onkodes, Paragoniolithon conicum (sensu Adey), Neogoniolithon fosliei, and Hydrolithon reinboldii. Significant cross-shelf differences were observed in CCA community structure and CCA abundance, with inner-shelf reefs exhibiting lower CCA abundance than outer-shelf reefs. Shelf position, habitat zone, latitude, depth, and the interaction of shelf position and habitat were all significantly associated with variation in composition of CCA communities. Collectively, shelf position, habitat, and their interaction contributed to 22.6 % of the variation in coralline communities. Compared to mid- and outer-shelf sites, inner-shelf sites exhibited lower relative abundances of N. fosliei and Lithophyllum species. Reef crest habitats exhibited greater abundance of N. fosliei than reef flat and reef slope habitats. Reef slope habitats exhibited lower abundance of P. onkodes, but greater abundance of Neogoniolithon clavycymosum than reef crest and reef slope habitats. These findings

  1. Congruent patterns of connectivity can inform management for broadcast spawning corals on the Great Barrier Reef.

    PubMed

    Lukoschek, Vimoksalehi; Riginos, Cynthia; van Oppen, Madeleine J H

    2016-07-01

    Connectivity underpins the persistence and recovery of marine ecosystems. The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem and managed by an extensive network of no-take zones; however, information about connectivity was not available to optimize the network's configuration. We use multivariate analyses, Bayesian clustering algorithms and assignment tests of the largest population genetic data set for any organism on the GBR to date (Acropora tenuis, >2500 colonies; >50 reefs, genotyped for ten microsatellite loci) to demonstrate highly congruent patterns of connectivity between this common broadcast spawning reef-building coral and its congener Acropora millepora (~950 colonies; 20 reefs, genotyped for 12 microsatellite loci). For both species, there is a genetic divide at around 19°S latitude, most probably reflecting allopatric differentiation during the Pleistocene. GBR reefs north of 19°S are essentially panmictic whereas southern reefs are genetically distinct with higher levels of genetic diversity and population structure, most notably genetic subdivision between inshore and offshore reefs south of 19°S. These broadly congruent patterns of higher genetic diversities found on southern GBR reefs most likely represent the accumulation of alleles via the southward flowing East Australia Current. In addition, signatures of genetic admixture between the Coral Sea and outer-shelf reefs in the northern, central and southern GBR provide evidence of recent gene flow. Our connectivity results are consistent with predictions from recently published larval dispersal models for broadcast spawning corals on the GBR, thereby providing robust connectivity information about the dominant reef-building genus Acropora for coral reef managers.

  2. The distribution and abundance of reef-associated predatory fishes on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Emslie, Michael J.; Cheal, Alistair J.; Logan, Murray

    2017-09-01

    Predatory fishes are important components of coral-reef ecosystems of the Great Barrier Reef (GBR) through both the ecological functions they perform and their high value to recreational and commercial fisheries, estimated at 30 million in 2014. However, management of GBR predatory fish populations is hampered by a lack of knowledge of their distribution and abundance, aside from that of the highly targeted coral trout ( Plectropomus spp. and Variola spp.). Furthermore, there is little information on how these fishes respond to environmental stressors such as coral bleaching, outbreaks of coral-feeding starfishes ( Acanthaster planci) and storms, which limits adaptive management of their populations as the frequency or severity of such natural disturbances increases under climate change. Here, we document the distribution and abundance of 48 species of reef-associated predatory fishes and assess their vulnerability to a range of natural disturbances. There were clear differences in predatory fish assemblages across the continental shelf, but many species were widespread, with few species restricted to either inshore or offshore waters. There was weak latitudinal structure with only a few species restricted to either the northern or southern GBR. On the whole, predatory fishes were surprisingly resistant to the effects of disturbance, with few clear changes in abundance or species richness following 66 documented disturbances of varying magnitudes.

  3. Llandoverian to Ludlovian barrier reef complex in southeast Wisconsin

    SciTech Connect

    Rovey, C.W. )

    1989-08-01

    Subsurface exploration in the Michigan basin established that a carbonate bank and barrier reef complex prograded basinward during the late Wenlockian to early Ludlovian, but the corresponding Niagaran Series is generally undifferentiated. In southeast Wisconsin the series is well exposed; thus, a better record of depositional history is available. Until now, reefs in the Racine formation of southeast Wisconsin (upper Wenlockian through lower Ludlovian) were interpreted as patch reefs built landward of the barrier complex. However, the following criteria are consistent with an extension of Michigan's northern barrier complex beneath Lake Michigan to southeast Wisconsin: (1) Ubiquitous presence of reef facies along a southwest to northeast trend. This trend is coincident with thickening and a facies change indicative of a deep to shallow water transition, (2) similarity in depositional sequence of the overlying Salina Group in Wisconsin and Michigan. The Salina sediments surround, but are absent over, structures interpreted as pinnacle reefs and form a feather edge against the thicker belt interpreted as a barrier complex. Hence, the Racine reefs are reinterpreted as a barrier complex. Hence, the Racine reefs are reinterpreted as a barrier and pinnacle reef complex. Similar facies changes are also present in older formations. Intraformational truncation surfaces in the underlying Waukesha Dolomite (upper Llandoverian to lower Wenlockian) clearly indicate the presence of a nearby carbonate slope. Therefore, the carbonate buildup originated prior to the Wenlockian and migrated further basinward than previously believed.

  4. Demography of the ecosystem engineer Crassostrea gigas, related to vertical reef accretion and reef persistence

    NASA Astrophysics Data System (ADS)

    Walles, Brenda; Mann, Roger; Ysebaert, Tom; Troost, Karin; Herman, Peter M. J.; Smaal, Aad C.

    2015-03-01

    Marine species characterized as structure building, autogenic ecosystem engineers are recognized worldwide as potential tools for coastal adaptation efforts in the face of sea level rise. Successful employment of ecosystem engineers in coastal protection largely depends on long-term persistence of their structure, which is in turn dependent on the population dynamics of the individual species. Oysters, such as the Pacific oyster (Crassostrea gigas), are recognized as ecosystem engineers with potential for use in coastal protection. Persistence of oyster reefs is strongly determined by recruitment and shell production (growth), processes facilitated by gregarious settlement on extant shell substrate. Although the Pacific oyster has been introduced world-wide, and has formed dense reefs in the receiving coastal waters, the population biology of live oysters and the quantitative mechanisms maintaining these reefs has rarely been studied, hence the aim of the present work. This study had two objectives: (1) to describe the demographics of extant C. gigas reefs, and (2) to estimate vertical reef accretion rates and carbonate production in these oyster reefs. Three long-living oyster reefs (>30 years old), which have not been exploited since their first occurrence, were examined in the Oosterschelde estuary in the Netherlands. A positive reef accretion rate (7.0-16.9 mm year-1 shell material) was observed, consistent with self-maintenance and persistent structure. We provide a framework to predict reef accretion and population persistence under varying recruitment, growth and mortality scenarios.

  5. Impact Of Coral Structures On Wave Directional Spreading Across A Shallow Reef Flat - Lizard Island, Northern Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Leon, J. X.; Baldock, T.; Callaghan, D. P.; Hoegh-guldberg, O.; Mumby, P.; Phinn, S. R.; Roelfsema, C. M.; Saunders, M. I.

    2013-12-01

    Coral reef hydrodynamics operate at several and overlapping spatial-temporal scales. Waves have the most important forcing function on shallow (< 5 m) reefs as they drive most ecological and biogeochemical processes by exerting direct physical stress, directly mixing water (temperature and nutrients) and transporting sediments, nutrients and plankton. Reef flats are very effective at dissipating wave energy and providing an important ecosystem service by protecting highly valued shorelines. The effectiveness of reef flats to dissipate wave energy is related to the extreme hydraulic roughness of the benthos and substrate composition. Hydraulic roughness is usually obtained empirically from frictional-dissipation calculations, as detailed field measurements of bottom roughness (e.g. chain-method or profile gauges) is a very labour and time-consuming task. In this study we measured the impact of coral structures on wave directional spreading. Field data was collected during October 2012 across a reef flat on Lizard Island, northern Great Barrier Reef. Wave surface levels were measured using an array of self-logging pressure sensors. A rapid in situ close-range photogrammetric method was used to create a high-resolution (0.5 cm) image mosaic and digital elevation model. Individual coral heads were extracted from these datasets using geo-morphometric and object-based image analysis techniques. Wave propagation was modelled using a modified version of the SWAN model which includes the measured coral structures in 2m by 1m cells across the reef. The approach followed a cylinder drag approach, neglecting skin friction and inertial components. Testing against field data included bed skin friction. Our results show, for the first time, how the variability of the reef benthos structures affects wave dissipation across a shallow reef flat. This has important implications globally for coral reefs, due to the large extent of their area occupied by reef flats, particularly, as

  6. Symbiodinium (Dinophyceae) diversity in reef-invertebrates along an offshore to inshore reef gradient near Lizard Island, Great Barrier Reef.

    PubMed

    Tonk, Linda; Sampayo, Eugenia M; LaJeunesse, Todd C; Schrameyer, Verena; Hoegh-Guldberg, Ove

    2014-06-01

    Despite extensive work on the genetic diversity of reef invertebrate-dinoflagellate symbioses on the Great Barrier Reef (GBR; Australia), large information gaps exist from northern and inshore regions. Therefore, a broad survey was done comparing the community of inshore, mid-shelf and outer reefs at the latitude of Lizard Island. Symbiodinium (Freudenthal) diversity was characterized using denaturing gradient gel electrophoresis fingerprinting and sequencing of the ITS2 region of the ribosomal DNA. Thirty-nine distinct Symbiodinium types were identified from four subgeneric clades (B, C, D, and G). Several Symbiodinium types originally characterized from the Indian Ocean were discovered as well as eight novel types (C1kk, C1LL, C3nn, C26b, C161a, C162, C165, C166). Multivariate analyses on the Symbiodinium species diversity data showed a strong link with host identity, consistent with previous findings. Of the four environmental variables tested, mean austral winter sea surface temperature (SST) influenced Symbiodinium distribution across shelves most significantly. A similar result was found when the analysis was performed on Symbiodinium diversity data of genera with an open symbiont transmission mode separately with chl a and PAR explaining additional variation. This study underscores the importance of SST and water quality related variables as factors driving Symbiodinium distribution on cross-shelf scales. Furthermore, this study expands our knowledge on Symbiodinium species diversity, ecological partitioning (including host-specificity) and geographic ranges across the GBR. The accelerating rate of environmental change experienced by coral reef ecosystems emphasizes the need to comprehend the full complexity of cnidarian symbioses, including the biotic and abiotic factors that shape their current distributions.

  7. Parrotfish predation on massive Porites on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Bonaldo, R. M.; Bellwood, D. R.

    2011-03-01

    Parrotfish grazing scars on coral colonies were quantified across four reef zones at Lizard Island, Northern Great Barrier Reef (GBR). The abundance of parrotfish grazing scars was highest on reef flat and crest, with massive Porites spp . colonies having more parrotfish grazing scars than all other coral species combined. Massive Porites was the only coral type positively selected for grazing by parrotfishes in all four reef zones. The density of parrotfish grazing scars on massive Porites spp., and the rate of new scar formation, was highest on the reef crest and flat, reflecting the lower massive Porites cover and higher parrotfish abundance in these habitats. Overall, it appears that parrotfish predation pressure on corals could affect the abundance of preferred coral species, especially massive Porites spp , across the reef gradient. Parrotfish predation on corals may have a more important role on the GBR reefs than previously thought.

  8. Freshwater Detention by Oyster Reefs: Quantifying a Keystone Ecosystem Service.

    PubMed

    Kaplan, David A; Olabarrieta, Maitane; Frederick, Peter; Valle-Levinson, Arnoldo

    2016-01-01

    Oyster reefs provide myriad ecosystem services, including water quality improvement, fisheries and other faunal support, shoreline protection from erosion and storm surge, and economic productivity. However, their role in directing flow during non-storm conditions has been largely neglected. In regions where oyster reefs form near the mouth of estuarine rivers, they likely alter ocean-estuary exchange by acting as fresh water "dams". We hypothesize that these reefs have the potential to detain fresh water and influence salinity over extensive areas, thus providing a "keystone" ecosystem service by supporting estuarine functions that rely on the maintenance of estuarine (i.e., brackish) conditions in the near-shore environment. In this work, we investigated the effects of shore-parallel reefs on estuarine salinity using field data and hydrodynamic modeling in a degraded reef complex in the northeastern Gulf of Mexico. Results suggested that freshwater detention by long linear chains of oyster reefs plays an important role in modulating salinities, not only in the oysters' local environment, but over extensive estuarine areas (tens of square kilometers). Field data confirmed the presence of salinity differences between landward and seaward sides of the reef, with long-term mean salinity differences of >30% between sides. Modeled results expanded experimental findings by illustrating how oyster reefs affect the lateral and offshore extent of freshwater influence. In general, the effects of simulated reefs were most pronounced when they were highest in elevation, without gaps, and when riverine discharge was low. Taken together, these results describe a poorly documented ecosystem service provided by oyster reefs; provide an estimate of the magnitude and spatial extent of this service; and offer quantitative information to help guide future oyster reef restoration.

  9. Freshwater Detention by Oyster Reefs: Quantifying a Keystone Ecosystem Service

    PubMed Central

    Olabarrieta, Maitane; Frederick, Peter; Valle-Levinson, Arnoldo

    2016-01-01

    Oyster reefs provide myriad ecosystem services, including water quality improvement, fisheries and other faunal support, shoreline protection from erosion and storm surge, and economic productivity. However, their role in directing flow during non-storm conditions has been largely neglected. In regions where oyster reefs form near the mouth of estuarine rivers, they likely alter ocean-estuary exchange by acting as fresh water “dams”. We hypothesize that these reefs have the potential to detain fresh water and influence salinity over extensive areas, thus providing a “keystone” ecosystem service by supporting estuarine functions that rely on the maintenance of estuarine (i.e., brackish) conditions in the near-shore environment. In this work, we investigated the effects of shore-parallel reefs on estuarine salinity using field data and hydrodynamic modeling in a degraded reef complex in the northeastern Gulf of Mexico. Results suggested that freshwater detention by long linear chains of oyster reefs plays an important role in modulating salinities, not only in the oysters’ local environment, but over extensive estuarine areas (tens of square kilometers). Field data confirmed the presence of salinity differences between landward and seaward sides of the reef, with long-term mean salinity differences of >30% between sides. Modeled results expanded experimental findings by illustrating how oyster reefs affect the lateral and offshore extent of freshwater influence. In general, the effects of simulated reefs were most pronounced when they were highest in elevation, without gaps, and when riverine discharge was low. Taken together, these results describe a poorly documented ecosystem service provided by oyster reefs; provide an estimate of the magnitude and spatial extent of this service; and offer quantitative information to help guide future oyster reef restoration. PMID:27936184

  10. From Corals to Canyons: The Great Barrier Reef Margin

    NASA Astrophysics Data System (ADS)

    Webster, Jody M.; Beaman, Robin J.; Bridge, Thomas; Davies, Peter J.; Byrne, Maria; Williams, Stefan; Manning, Phil; Pizarro, Oscar; Thornborough, Kate; Woolsey, Erika; Thomas, Alex; Tudhope, Sandy

    2008-06-01

    The significance of submerged fossil coral reefs as important archives of abrupt global sea level rise and climate change has been confirmed by investigations in the Caribbean [Fairbanks, 1989] and the Indo-Pacific (see Montaggioni [2005] for a summary) and by recent Integrated Ocean Drilling Program (IODP) activities in Tahiti [Camoin et al., 2007]. Similar submerged (40-130 meters) reef structures are preserved along the margin of the Great Barrier Reef (GBR), but they have not yet been systematically studied.

  11. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem.

    PubMed

    Wild, Christian; Huettel, Markus; Klueter, Anke; Kremb, Stephan G; Rasheed, Mohammed Y M; Jørgensen, Bo B

    2004-03-04

    Zooxanthellae, endosymbiotic algae of reef-building corals, substantially contribute to the high gross primary production of coral reefs, but corals exude up to half of the carbon assimilated by their zooxanthellae as mucus. Here we show that released coral mucus efficiently traps organic matter from the water column and rapidly carries energy and nutrients to the reef lagoon sediment, which acts as a biocatalytic mineralizing filter. In the Great Barrier Reef, the dominant genus of hard corals, Acropora, exudes up to 4.8 litres of mucus per square metre of reef area per day. Between 56% and 80% of this mucus dissolves in the reef water, which is filtered through the lagoon sands. Here, coral mucus is degraded at a turnover rate of at least 7% per hour. Detached undissolved mucus traps suspended particles, increasing its initial organic carbon and nitrogen content by three orders of magnitude within 2 h. Tidal currents concentrate these mucus aggregates into the lagoon, where they rapidly settle. Coral mucus provides light energy harvested by the zooxanthellae and trapped particles to the heterotrophic reef community, thereby establishing a recycling loop that supports benthic life, while reducing loss of energy and nutrients from the reef ecosystem.

  12. Assessing the additive risks of PSII herbicide exposure to the Great Barrier Reef.

    PubMed

    Lewis, Stephen E; Schaffelke, Britta; Shaw, Melanie; Bainbridge, Zoë T; Rohde, Ken W; Kennedy, Karen; Davis, Aaron M; Masters, Bronwyn L; Devlin, Michelle J; Mueller, Jochen F; Brodie, Jon E

    2012-01-01

    Herbicide residues have been measured in the Great Barrier Reef lagoon at concentrations which have the potential to harm marine plant communities. Monitoring on the Great Barrier Reef lagoon following wet season discharge show that 80% of the time when herbicides are detected, more than one are present. These herbicides have been shown to act in an additive manner with regards to photosystem-II inhibition. In this study, the area of the Great Barrier Reef considered to be at risk from herbicides is compared when exposures are considered for each herbicide individually and also for herbicide mixtures. Two normalisation indices for herbicide mixtures were calculated based on current guidelines and PSII inhibition thresholds. The results show that the area of risk for most regions is greatly increased under the proposed additive PSII inhibition threshold and that the resilience of this important ecosystem could be reduced by exposure to these herbicides.

  13. Securing the future of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Hughes, Terry P.; Day, Jon C.; Brodie, Jon

    2015-06-01

    The decline of the Great Barrier Reef can be reversed by improvements to governance and management: current policies that promote fossil fuels and economic development of the Reef region need to be reformed to prioritize long-term protection from climate change and other stressors.

  14. Coral reef community composition in the context of disturbance history on the Great Barrier Reef, Australia.

    PubMed

    Graham, Nicholas A J; Chong-Seng, Karen M; Huchery, Cindy; Januchowski-Hartley, Fraser A; Nash, Kirsty L

    2014-01-01

    Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into

  15. Coral Reef Community Composition in the Context of Disturbance History on the Great Barrier Reef, Australia

    PubMed Central

    Graham, Nicholas A. J.; Chong-Seng, Karen M.; Huchery, Cindy; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.

    2014-01-01

    Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into

  16. Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Albright, R.; Langdon, C.; Anthony, K. R. N.

    2013-10-01

    Ocean acidification is projected to shift coral reefs from a state of net accretion to one of net dissolution this century. Presently, our ability to predict global-scale changes to coral reef calcification is limited by insufficient data relating seawater carbonate chemistry parameters to in situ rates of reef calcification. Here, we investigate diel and seasonal trends in carbonate chemistry of the Davies Reef flat in the central Great Barrier Reef and relate these trends to benthic carbon fluxes by quantifying net ecosystem calcification (nec) and net community production (ncp). Results show that seawater carbonate chemistry of the Davies Reef flat is highly variable over both diel and seasonal cycles. pH (total scale) ranged from 7.92 to 8.17, pCO2 ranged from 272 to 542 μatm, and aragonite saturation state (Ωarag) ranged from 2.9 to 4.1. Diel cycles in carbonate chemistry were primarily driven by ncp, and warming explained 35% and 47% of the seasonal shifts in pCO2 and pH, respectively. Daytime ncp averaged 37 ± 19 mmol C m-2 h-1 in summer and 33 ± 13 mmol C m-2 h-1 in winter; nighttime ncp averaged -30 ± 25 and -7 ± 6 mmol C m-2 h-1 in summer and winter, respectively. Daytime nec averaged 11 ± 4 mmol CaCO3 m-2 h-1 in summer and 8 ± 3 mmol CaCO3 m-2 h-1 in winter, whereas nighttime nec averaged 2 ± 4 mmol and -1 ± 3 mmol CaCO3 m-2 h-1 in summer and winter, respectively. Net ecosystem calcification was highly sensitive to changes in Ωarag for both seasons, indicating that relatively small shifts in Ωarag may drive measurable shifts in calcification rates, and hence carbon budgets, of coral reefs throughout the year.

  17. Stochastic dynamics of a warmer Great Barrier Reef.

    PubMed

    Cooper, Jennifer K; Spencer, Matthew; Bruno, John F

    2015-07-01

    Pressure on natural communities from human activities continues to increase. Even unique ecosystems like the Great Barrier Reef (GBR), that until recently were considered near-pristine and well-protected, are showing signs of rapid degradation. We collated recent (1996-2006) spatiotemporal relationships between benthic community composition on the GBR and environmental variables (ocean temperature and local threats resulting from human activity). We built multivariate models of the effects of these variables on short-term dynamics, and developed an analytical approach to study their long-term consequences. We used this approach to study the effects of ocean warming under different levels of local threat. Observed short-term changes in benthic community structure (e.g., declining coral cover) were associated with ocean temperature (warming) and local threats. Our model projected that, in the long-term, coral cover of less than 10% was not implausible. With increasing temperature and/or local threats, corals were initially replaced by sponges, gorgonians, and other taxa, with an eventual moderately high probability of domination (> 50%) by macroalgae when temperature increase was greatest (e.g., 3.5 degrees C of warming). Our approach to modeling community dynamics, based on multivariate statistical models, enabled us to project how environmental change (and thus local and international policy decisions) will influence the future state of coral reefs. The same approach could be applied to other systems for which time series of ecological and environmental variables are available.

  18. Water quality in the Great Barrier Reef region: responses of mangrove, seagrass and macroalgal communities.

    PubMed

    Schaffelke, Britta; Mellors, Jane; Duke, Norman C

    2005-01-01

    Marine plants colonise several interconnected ecosystems in the Great Barrier Reef region including tidal wetlands, seagrass meadows and coral reefs. Water quality in some coastal areas is declining from human activities. Losses of mangrove and other tidal wetland communities are mostly the result of reclamation for coastal development of estuaries, e.g. for residential use, port infrastructure or marina development, and result in river bank destabilisation, deterioration of water clarity and loss of key coastal marine habitat. Coastal seagrass meadows are characterized by small ephemeral species. They are disturbed by increased turbidity after extreme flood events, but generally recover. There is no evidence of an overall seagrass decline or expansion. High nutrient and substrate availability and low grazing pressure on nearshore reefs have lead to changed benthic communities with high macroalgal abundance. Conservation and management of GBR macrophytes and their ecosystems is hampered by scarce ecological knowledge across macrophyte community types.

  19. The importance of structural complexity in coral reef ecosystems

    NASA Astrophysics Data System (ADS)

    Graham, N. A. J.; Nash, K. L.

    2013-06-01

    The importance of structural complexity in coral reefs has come to the fore with the global degradation of reef condition; however, the limited scale and replication of many studies have restricted our understanding of the role of complexity in the ecosystem. We qualitatively and quantitatively (where sufficient standardised data were available) assess the literature regarding the role of structural complexity in coral reef ecosystems. A rapidly increasing number of publications have studied the role of complexity in reef ecosystems over the past four decades, with a concomitant increase in the diversity of methods used to quantify structure. Quantitative analyses of existing data indicate a strong negative relationship between structural complexity and algal cover, which may reflect the important role complexity plays in enhancing herbivory by reef fishes. The cover of total live coral and branching coral was positively correlated with structural complexity. These habitat attributes may be creating much of the structure, resulting in a collinear relationship; however, there is also evidence of enhanced coral recovery from disturbances where structural complexity is high. Urchin densities were negatively correlated with structural complexity; a relationship that may be driven by urchins eroding reef structure or by their gregarious behaviour when in open space. There was a strong positive relationship between structural complexity and fish density and biomass, likely mediated through density-dependent competition and refuge from predation. More variable responses were found when assessing individual fish families, with all families examined displaying a positive relationship to structural complexity, but only half of these relationships were significant. Although only corroborated with qualitative data, structural complexity also seems to have a positive effect on two ecosystem services: tourism and shoreline protection. Clearly, structural complexity is an

  20. Benthic foraminifera baseline assemblages from a coastal nearshore reef complex on the central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Johnson, Jamie; Perry, Chris; Smithers, Scott; Morgan, Kyle

    2016-04-01

    Declining water quality due to river catchment modification since European settlement (c. 1850 A.D.) represents a major threat to the health of coral reefs on Australia's Great Barrier Reef (GBR), particularly for those located in the coastal waters of the GBR's inner-shelf. These nearshore reefs are widely perceived to be most susceptible to declining water quality owing to their close proximity to river point sources. Despite this, nearshore reefs have been relatively poorly studied with the impacts and magnitudes of environmental degradation still remaining unclear. This is largely due to ongoing debates concerning the significance of increased sediment yields against naturally high background sedimentary regimes. Benthic foraminifera are increasingly used as tools for monitoring environmental and ecological change on coral reefs. On the GBR, the majority of studies have focussed on the spatial distributions of contemporary benthic foraminiferal assemblages. While baseline assemblages from other environments (e.g. inshore reefs and mangroves) have been described, very few records exist for nearshore reefs. Here, we present preliminary results from the first palaeoecological study of foraminiferal assemblages of nearshore reefs on the central GBR. Cores were recovered from the nearshore reef complex at Paluma Shoals using percussion techniques. Recovery was 100%, capturing the entire Holocene reef sequence of the selected reef structures. Radiocarbon dating and subsequent age-depth modelling techniques were used to identify reef sequences pre-dating European settlement. Benthic foraminifera assemblages were reconstructed from the identified sequences to establish pre-European ecological baselines with the aim of providing a record of foraminiferal distribution during vertical reef accretion and against which contemporary ecological change may be assessed.

  1. 78 FR 49258 - Fisheries in the Western Pacific; Special Coral Reef Ecosystem Fishing Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... Coral Reef Ecosystem Fishing Permit AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... assessment; request for comments. SUMMARY: NMFS proposes to issue a Special Coral Reef Ecosystem Fishing Permit that would authorize Kampachi Farms, LLC, to culture and harvest a coral reef ecosystem management...

  2. 77 FR 16211 - Availability of Seats for the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... Coral Reef Ecosystem Reserve Advisory Council AGENCY: Office of National Marine Sanctuaries (ONMS... the following vacant seats on the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve Advisory... . SUPPLEMENTARY INFORMATION: The NWHI Coral Reef Ecosystem Reserve is a marine protected area designed to conserve...

  3. 78 FR 66683 - Fisheries in the Western Pacific; Special Coral Reef Ecosystem Fishing Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... Coral Reef Ecosystem Fishing Permit AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... assessment and finding of no significant impact for the issuance of a special coral reef ecosystem fishing permit. SUMMARY: NMFS issued a Special Coral Reef Ecosystem Fishing Permit that authorizes Kampachi Farms...

  4. 76 FR 77779 - Availability of Seats for the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... Coral Reef Ecosystem Reserve Advisory Council AGENCY: Office of National Marine Sanctuaries (ONMS... the following vacant seats on the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve Advisory....byers@noaa.gov . SUPPLEMENTARY INFORMATION: The NWHI Coral Reef Ecosystem Reserve is a ] marine...

  5. 77 FR 12243 - Proposed Information Collection; Comment Request; Pacific Islands Region Coral Reef Ecosystems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Islands Region Coral Reef Ecosystems Permit Form AGENCY: National Oceanic and Atmospheric Administration... vessel to fish for Western Pacific coral reef ecosystem management unit species in the designated low-use... reef ecosystem regulatory area, to obtain and carry a permit. A receiving vessel must also have a...

  6. 77 FR 12567 - Proposed Information Collection; Comment Request; Pacific Islands Region Coral Reef Ecosystems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... Islands Region Coral Reef Ecosystems Logbook and Reporting AGENCY: National Oceanic and Atmospheric... Special Coral Reef Ecosystem Fishing Permit (authorized under the Fishery Management Plan for Coral Reef Ecosystems of the Western Pacific Region), to complete logbooks and submit them to NMFS. The information in...

  7. Currents Along the Mesoamerican Barrier Reef, Western Caribbean

    NASA Astrophysics Data System (ADS)

    Armstrong, B. N.

    2004-12-01

    To characterize currents and the extent to which they are influenced by winds, Interocean S4 electromagnetic current meter data were analyzed from three locations between Lighthouse Reef (17.4441º N) and Sapodilla Cays (16.1509º N). A better understanding of these currents is important to local fishing efforts, ecotourists and SCUBA divers through its value to conservation efforts with respect to connectivity and repopulation of the reef. The currents were related to regional COAMPS_CENTAM modeled wind data to determine the extent to which winds drive the near reef currents. Harmonic analysis of the currents was also conducted to determine the influence of tidal cycles. This study will test the extent to which:(i) currents seaward of the Mesoamerican Barrier Reef extending from Lighthouse Reef to Sapodilla Cays are wind driven, (ii) tidally influenced and (iii) coherent.

  8. Exploring the hidden shallows: extensive reef development and resilience within the turbid nearshore Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Morgan, Kyle; Perry, Chris; Smithers, Scott; Johnson, Jamie; Daniell, James

    2016-04-01

    Mean coral cover on Australia's Great Barrier Reef (GBR) has reportedly declined by over 15% during the last 30 years. Climate change events and outbreaks of coral disease have been major drivers of degradation, often exacerbating the stresses caused by localised human activities (e.g. elevated sediment and nutrient inputs). Here, however, in the first assessment of nearshore reef occurrence and ecology across meaningful spatial scales (15.5 sq km), we show that areas of the GBR shelf have exhibited strong intra-regional variability in coral resilience to declining water quality. Specifically, within the highly-turbid "mesophotic" nearshore (<10 m depth) of the central GBR, where terrigenous seafloor sediments are persistently resuspended by wave processes, coral cover averages 38% (twice that reported on mid- and outer-shelf reefs). Of the mapped area, 11% of the seafloor has distinct reef or coral community cover, a density comparable to that measured across the entire GBR shelf (9%). Identified coral taxa (21 genera) exhibited clear depth-stratification corresponding closely to light attenuation and seafloor topography. Reefs have accreted relatively rapidly during the late-Holocene (1.8-3.0 mm y-1) with rates of vertical reef growth influenced by intrinsic shifts in coral assemblages associated with reef development. Indeed, these shallow-water reefs may have similar potential as refugia from large-scale disturbance as their deep-water (>30 m) "mesophotic" equivalents, and also provide a basis from which to model future trajectories of reef growth within nearshore areas.

  9. Quantifying Ocean Acidification and its Impacts to Coral Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Manzello, D.; Gledhill, D. K.; Enochs, I.; Andersson, A. J.

    2013-05-01

    Ocean Acidification (OA) describes the uptake of anthropogenic CO2 by the world's oceans and consequent decline in seawater pH and calcium carbonate saturation state. OA is of particular concern for coral reef ecosystems because it is expected to reduce the calcification rates of reef-building corals and other calcifiers, and may simultaneously increase the erosive abilities of key bioeroding taxa. Despite these concerns, we have little understanding of how OA will manifest in the real-world or, if, and how much of the world-wide trajectory of reef decline can be attributed to OA. With this in mind, we will present recommendations for monitoring OA of coral reef waters, as well as its ecosystem impacts over time. Different approaches and metrics, including their individual strengths and weaknesses, will be discussed. The ultimate goal of these efforts is to quantify the effects of OA on coral reef ecosystems in the real-world to robustly predict their structure and function in a high-CO2 world.

  10. Tidally induced ''upwelling'' by the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Thompson, Rory O. R. Y.; Golding, T. J.

    1981-07-01

    The Great Barrier Reef is similar to some other coral reefs in growing right up to the edge of the shelf in a region of nutrient-poor surface water but large tides. It is suggested that the resultant strong tidal currents suck in nutrient-rich water from the depth where the tidal flow speed drops to the fastest internal wave speed. The nutrients could encourage the reef to grow vigorously at the edge of the shelf. Some observations in Cook's Passage (14°32'S, 145°34'E) were made to test the concept and are encouraging.

  11. Ocean-shelf exchange through the Berau barrier reef, Indonesia

    NASA Astrophysics Data System (ADS)

    Tarya, A.; Hoitink, A.; Van Der Vegt, M.

    2011-12-01

    The present study investigates the freshwater spreading on the Berau Continental Shelf, Indonesia, including the ocean-shelf exchange through a barrier reef located at the shelf edge. Moored and shipboard measurements on currents and turbulence were taken as part of the multidisciplinary East Kalimantan Research Programme. These measurements, and collected data on sea levels, currents, wind speed and bathymetry, were used to setup and calibrate a three-dimensional hydrodynamic model in the ECOMSED environment, which is derived from the Princeton Ocean Model. The data and model results were first used to study the tidal propagation and mean circulation patterns on the entire Berau Shelf. The diurnal and semidiurnal tides propagate across the isobaths towards the coast, where amplitudes increase. Tide-induced mean currents dominate over monsoon-driven currents, and feature a southward transport pattern close to the coast and a northward transport patterns at 10 to 20 meters depth. Next, the river plume behaviour is studied. Key factors controlling the river plume behavior include advection of stratified waters by the subtidal motion and mixing, which inhibits the stratified region to extend beyond the reef region. The tides drive freshwater in northeastern direction, towards the reef area. The model is subsequently refined and used to study the freshwater transport and exchange of water via the reef gaps and over the reef flats in detail. Moored ADCP data reveal extremely large roughness heights in the reef passages and reef flats. These limit the exchange of tidal energy to some degree, acting as a control on sealevel gradients over the reefs. The spatial structure of velocity exhibits tidal eddies generated by irregularities of reef gaps. The flow in the center of the reef passage is often opposed to the flow near the reef boundaries. The mean mass transport in the passages that were studied were found to be caused by Eulerian residual currents generated by

  12. Valuing coral reefs: a travel cost analysis of the Great Barrier Reef.

    PubMed

    Carr, Liam; Mendelsohn, Robert

    2003-08-01

    This study examines domestic and international travel to the Great Barrier Reef in order to estimate the benefits the reef provides to the 2 million visitors each year. The study explores the problems of functional form and of measuring travel cost for international visits: comparing actual costs, distance, and lowest price fares. The best estimates of the annual recreational benefits of the Great Barrier Reef range between USD 700 million to 1.6 billion. The domestic value to Australia is about USD 400 million, but the estimated value to more distant countries depends on the definition of travel cost and the functional form. The study conclusively demonstrates that there are very high benefits associated with protecting high quality coral reefs.

  13. Social interactions among grazing reef fish drive material flux in a coral reef ecosystem.

    PubMed

    Gil, Michael A; Hein, Andrew M

    2017-04-10

    In human financial and social systems, exchanges of information among individuals cause speculative bubbles, behavioral cascades, and other correlated actions that profoundly influence system-level function. Exchanges of information are also widespread in ecological systems, but their effects on ecosystem-level processes are largely unknown. Herbivory is a critical ecological process in coral reefs, where diverse assemblages of fish maintain reef health by controlling the abundance of algae. Here, we show that social interactions have a major effect on fish grazing rates in a reef ecosystem. We combined a system for observing and manipulating large foraging areas in a coral reef with a class of dynamical decision-making models to reveal that reef fish use information about the density and actions of nearby fish to decide when to feed on algae and when to flee foraging areas. This "behavioral coupling" causes bursts of feeding activity that account for up to 68% of the fish community's consumption of algae. Moreover, correlations in fish behavior induce a feedback, whereby each fish spends less time feeding when fewer fish are present, suggesting that reducing fish stocks may not only reduce total algal consumption but could decrease the amount of algae each remaining fish consumes. Our results demonstrate that social interactions among consumers can have a dominant effect on the flux of energy and materials through ecosystems, and our methodology paves the way for rigorous in situ measurements of the behavioral rules that underlie ecological rates in other natural systems.

  14. Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, Central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Albright, R.; Langdon, C.; Anthony, K. R. N.

    2013-05-01

    Ocean acidification is projected to shift coral reefs from a state of net accretion to one of net dissolution this century. Presently, our ability to predict global-scale changes to coral reef calcification is limited by insufficient data relating seawater carbonate chemistry parameters to in situ rates of reef calcification. Here, we investigate natural trends in carbonate chemistry of the Davies Reef flat in the central Great Barrier Reef on diel and seasonal timescales and relate these trends to benthic carbon fluxes by quantifying net ecosystem calcification (nec) and net community production (ncp). Results show that seawater carbonate chemistry of the Davies Reef flat is highly variable over both diel and seasonal timescales. pH (total scale) ranged from 7.92 to 8.17, pCO2 ranged from 272 to 542 μatm, and aragonite saturation state (Ωarag) ranged from 2.9 to 4.1. Diel cycles in carbonate chemistry were primarily driven by ncp, and warming explained 35% and 47% of the seasonal shifts in pCO2 and pH, respectively. Daytime ncp averaged 36 ± 19 mmol C m-2 h-1 in summer and 33 ± 13 mmol C m-2 h-1 in winter; nighttime ncp averaged -22 ± 20 and -7 ± 6 mmol C m-2 h-1 in summer and winter, respectively. Daytime nec averaged 11 ± 4 mmol CaCO3 m-2 h-1 in summer and 8 ± 3 mmol CaCO3 m-2 h-1 in winter, whereas nighttime nec averaged 2 ± 4 mmol and -1 ± 3 mmol CaCO3 m-2 h-1 in summer and winter, respectively. Net ecosystem calcification was positively correlated with Ωarag for both seasons. Linear correlations of nec and Ωarag indicate that the Davies Reef flat may transition from a state of net calcification to net dissolution at Ωarag values of 3.4 in summer and 3.2 in winter. Diel trends in Ωarag indicate that the reef flat is currently below this calcification threshold 29.6% of the time in summer and 14.1% of the time in winter.

  15. Predicting water toxicity: pairing passive sampling with bioassays on the Great Barrier Reef.

    PubMed

    Shaw, Melanie; Negri, Andrew; Fabricius, Katharina; Mueller, Jochen F

    2009-11-08

    Many coral reefs worldwide occur adjacent to urban or agricultural land which places these ecosystems at threat of exposure to complex mixtures of pollutants. In this study, the pairing of passive sampler extracts with bioassays is proposed as a tool for predicting effects of organic pollutant mixtures on key biota within coral reef ecosystems. Passive samplers, SDB-RPS Empore disks, which sequester a mixture of the contaminants present in the environment, were deployed at three sites in the Great Barrier Reef (GBR). Extracts from these samplers were analysed for herbicides and applied to bioassays targeting integral life stages or functions of coral reef biota. Biota included scleractinian coral larvae, sea urchin larvae, a marine diatom and marine bacteria. Photosynthesis in the marine diatom Phaeodactylum tricornutum was inhibited at the sampled environmental concentration while an environmental concentration factor of 15 times inhibited luminescence in the marine bacterium Vibrio fischeri. Concentrations of 50 times sampled environmental levels of organic pollutants inhibited >90% of Acropora millepora settlement and 100-fold environmental enrichment inhibited 100% Heliocidaris tuberculata larval development. These results demonstrate the utility of pairing passive sampling with bioassays and reveal that mixtures of organic pollutants in the GBR have the potential to cause detrimental effects to coral reef biota.

  16. Divergence of seafloor elevation and sea level rise in coral reef ecosystems

    NASA Astrophysics Data System (ADS)

    Yates, Kimberly K.; Zawada, David G.; Smiley, Nathan A.; Tiling-Range, Ginger

    2017-04-01

    Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves, and erosion. Projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. Here, we provide a comprehensive assessment of the combined effect of all of the processes affecting seafloor accretion and erosion by measuring changes in seafloor elevation and volume for five coral reef ecosystems in the Atlantic, Pacific, and Caribbean over the last several decades. Regional-scale mean elevation and volume losses were observed at all five study sites and in 77 % of the 60 individual habitats that we examined across all study sites. Mean seafloor elevation losses for whole coral reef ecosystems in our study ranged from -0.09 to -0.8 m, corresponding to net volume losses ranging from 3.4 × 106 to 80.5 × 106 m3 for all study sites. Erosion of both coral-dominated substrate and non-coral substrate suggests that the current rate of carbonate production is no longer sufficient to support net accretion of coral reefs or adjacent habitats. We show that regional-scale loss of seafloor elevation and volume has accelerated the rate of relative sea level rise in these regions. Current water depths have increased to levels not predicted until near the year 2100, placing these ecosystems and nearby communities at elevated and accelerating risk to coastal hazards. Our results set a new baseline for projecting future impacts to coastal communities resulting from degradation of coral reef systems and associated losses of natural and socioeconomic resources.

  17. Divergence of seafloor elevation and sea level rise in coral reef ecosystems

    USGS Publications Warehouse

    Yates, Kimberly K.; Zawada, David G.; Smiley, Nathan A.; Tiling-Range, Ginger

    2017-01-01

    Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves, and erosion. Projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. Here, we provide a comprehensive assessment of the combined effect of all of the processes affecting seafloor accretion and erosion by measuring changes in seafloor elevation and volume for five coral reef ecosystems in the Atlantic, Pacific, and Caribbean over the last several decades. Regional-scale mean elevation and volume losses were observed at all five study sites and in 77 % of the 60 individual habitats that we examined across all study sites. Mean seafloor elevation losses for whole coral reef ecosystems in our study ranged from −0.09 to −0.8 m, corresponding to net volume losses ranging from 3.4  ×  106 to 80.5  ×  106 m3 for all study sites. Erosion of both coral-dominated substrate and non-coral substrate suggests that the current rate of carbonate production is no longer sufficient to support net accretion of coral reefs or adjacent habitats. We show that regional-scale loss of seafloor elevation and volume has accelerated the rate of relative sea level rise in these regions. Current water depths have increased to levels not predicted until near the year 2100, placing these ecosystems and nearby communities at elevated and accelerating risk to coastal hazards. Our results set a new baseline for projecting future impacts to coastal communities resulting from degradation of coral reef systems and associated losses of natural and socioeconomic resources.

  18. Low calcification in corals in the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-10-01

    Reef-building coral communities in the Great Barrier Reef—the world's largest coral reef—may now be calcifying at only about half the rate that they did during the 1970s, even though live coral cover may not have changed over the past 40 years, a new study finds. In recent decades, coral reefs around the world, home to large numbers of fish and other marine species, have been threatened by such human activities as pollution, overfishing, global warming, and ocean acidification; the latter affects ambient water chemistry and availability of calcium ions, which are critical for coral communities to calcify, build, and maintain reefs. Comparing data from reef surveys during the 1970s, 1980s, and 1990s with present-day (2009) measurements of calcification rates in One Tree Island, a coral reef covering 13 square kilometers in the southern part of the Great Barrier Reef, Silverman et al. show that the total calcification rates (the rate of calcification minus the rate of dissolution) in these coral communities have decreased by 44% over the past 40 years; the decrease appears to stem from a threefold reduction in calcification rates during nighttime.

  19. First frozen repository for the Great Barrier Reef coral created.

    PubMed

    Hagedorn, Mary; van Oppen, Madeleine J H; Carter, Virginia; Henley, Mike; Abrego, David; Puill-Stephan, Eneour; Negri, Andrew; Heyward, Andrew; MacFarlane, Doug; Spindler, Rebecca

    2012-10-01

    To build new tools for the continued protection and propagation of coral from the Great Barrier Reef (GBR), an international group of coral and cryopreservation scientists known as the Reef Recovery Initiative joined forces during the November 2011 mass-spawning event. The outcome was the creation of the first frozen bank for Australian coral from two important GBR reef-building species, Acropora tenuis and Acropora millepora. Approximately 190 frozen samples each with billions of cells were placed into long-term storage. Sperm cells were successfully cryopreserved, and after thawing, samples were used to fertilize eggs, resulting in functioning larvae. Additionally, developing larvae were dissociated, and these pluripotent cells were cryopreserved and viable after thawing. Now, we are in a unique position to move our work from the laboratory to the reefs to develop collaborative, practical conservation management tools to help secure Australia's coral biodiversity.

  20. Controls on Diel and Seasonal Aragonite Saturation State and Carbon Dioxide Variability in a Hawaiian Coral Reef Ecosystem

    NASA Astrophysics Data System (ADS)

    Shamberger, K. E.; Drupp, P.; Feely, R. A.; Sabine, C. L.; Solomon, R. F.; De Carlo, E. H.; Mackenzie, F. T.; Atkinson, M. J.

    2011-12-01

    The Coral Reef Instrumented Monitoring and CO2-Platform (CRIMP-CO2) was deployed in the southern Kaneohe Bay lagoon from December 2005 through May 2008, then on the Kaneohe Bay barrier reef from June 2008 to the present. The surface water temperature, partial pressure of carbon dioxide (pCO2sw), and aragonite saturation state (Ωarag) of barrier reef waters were similar to those in the southern bay lagoon on seasonal and annual time scales. The pCO2sw in Kaneohe Bay was higher in the summer than winter because temperature was also higher in summer. However, temperature and pCO2sw have opposing effects on Ωarag which resulted in a lack of seasonality in Ωarag. Deeper southern bay lagoon waters had attenuated diel cycles compared to the shallow and biogeochemically active barrier reef. Photosynthesis and respiration controlled the diel cycles of Ωarag and pCO2sw and resulted in large changes in both parameters on hourly time scales. The Ωarag levels in Kaneohe Bay were depressed, and pCO2sw levels elevated, compared to levels in the open ocean and in other coral reef systems because of high net ecosystem calcification (NEC) rates. NEC produced enough CO2 to maintain high pCO2sw levels while daily net photosynthesis consumed some CO2. As demonstrated for Kaneohe Bay, the biogeochemical cycles occurring in coral reef ecosystems strongly alter the Ωarag and pCO2sw of their open-ocean source waters. Taking into account the CO2 cycling within coral reef ecosystems may help determine which reefs will be negatively affected by ocean acidification in the near future.

  1. Surface alkaline phosphatase activities of macroalgae on coral reefs of the central Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Schaffelke, B.

    2001-05-01

    Inshore reefs of the Great Barrier Reef (GBR) are subject to episodic nutrient supply, mainly by flood events, whereas midshelf reefs have a more consistent low nutrient availability. Alkaline phosphatase activity (APA) enables macroalgae to increase their phosphorus (P) supply by using organic P. APA was high (~4.0 to 15.5 µmol PO4 3- g DW-1 h-1) in species colonising predominantly inshore reefs and low (<2 µmol PO4 3- g DW-1 h-1) in species with a cross-shelf distribution. However, APA values of GBR algae in this study were much lower than data reported from other coral reef systems. In experiments with two Sargassum species tissue P levels were correlated negatively, and N:P ratios were positively correlated with APA. High APA can compensate for a relative P-limitation of macroalgae in coral reef systems that are subject to significant N-inputs, such as the GBR inshore reefs. APA and other mechanisms to acquire a range of nutrient species allow inshore species to thrive in habitats with episodic nutrient supply. These species also are likely to benefit from an increased nutrient supply caused by human activity, which currently is a global problem.

  2. Physical connectivity in the Mesoamerican Barrier Reef System inferred from 9 years of ocean color observations

    NASA Astrophysics Data System (ADS)

    Soto, I.; Andréfouët, S.; Hu, C.; Muller-Karger, F. E.; Wall, C. C.; Sheng, J.; Hatcher, B. G.

    2009-06-01

    Ocean color images acquired from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) from 1998 to 2006 were used to examine the patterns of physical connectivity between land and reefs, and among reefs in the Mesoamerican Barrier Reef System (MBRS) in the northwestern Caribbean Sea. Connectivity was inferred by tracking surface water features in weekly climatologies and a time series of weekly mean chlorophyll- a concentrations derived from satellite imagery. Frequency of spatial connections between 17 pre-defined, geomorphological domains that include the major reefs in the MBRS and river deltas in Honduras and Nicaragua were recorded and tabulated as percentage of connections. The 9-year time series of 466 weekly mean images portrays clearly the seasonal patterns of connectivity, including river plumes and transitions in the aftermath of perturbations such as hurricanes. River plumes extended offshore from the Honduras coast to the Bay Islands (Utila, Cayo Cochinos, Guanaja, and Roatán) in 70% of the weekly mean images. Belizean reefs, especially those in the southern section of the barrier reef and Glovers Atoll, were also affected by riverine discharges in every one of the 9 years. Glovers Atoll was exposed to river plumes originating in Honduras 104/466 times (22%) during this period. Plumes from eastern Honduras went as far as Banco Chinchorro and Cozumel in Mexico. Chinchorro appeared to be more frequently connected to Turneffe Atoll and Honduran rivers than with Glovers and Lighthouse Atolls, despite their geographic proximity. This new satellite data analysis provides long-term, quantitative assessments of the main pathways of connectivity in the region. The percentage of connections can be used to validate predictions made using other approaches such as numerical modeling, and provides valuable information to ecosystem-based management in coral reef provinces.

  3. An observational heat budget analysis of a coral reef, Heron Reef, Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    MacKellar, Mellissa C.; McGowan, Hamish A.; Phinn, Stuart R.

    2013-03-01

    Measurements of the surface energy balance, the structure and evolution of the convective atmospheric reef layer (CARL), and local meteorology and hydrodynamics were made during June 2009 and February 2010 at Heron Reef, Australia, to establish the relative partitioning of heating within the water and atmosphere. Horizontal advection was shown to moderate temperature in the CARL and the water, having a cooling influence on the atmosphere, and providing an additional source or sink of energy to the water overlying the reef, depending on tide. The key driver of atmospheric heating was surface sensible heat flux, while heating of the reef water was primarily due to solar radiation, and thermal conduction and convection from the reef substrate. Heating and cooling processes were more defined during winter due to higher sensible and latent heat fluxes and strong diurnal evolution of the CARL. Sudden increases in water temperature were associated with inundation of warmer oceanic water during the flood tide, particularly in winter due to enhanced nocturnal cooling of water overlying the reef. Similarly, cooling of the water over the reef occurred during the ebb tide as heat was transported off the reef to the surrounding ocean. While these results are the first to shed light on the heat budget of a coral reef and overlying CARL, longer-term, systematic measurements of reef thermal budgets are needed under a range of meteorological and hydrodynamic conditions, and across various reef types to elucidate the influence on larger-scale oceanic and atmospheric processes. This is essential for understanding the role of coral reefs in tropical and sub-tropical meteorology; the physical processes that take place during coral bleaching events, and coral and algal community dynamics on coral reefs.

  4. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management.

    PubMed

    Weijerman, Mariska; Fulton, Elizabeth A; Brainard, Russell E

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated 'full regulation' scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario.

  5. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management

    PubMed Central

    Weijerman, Mariska; Fulton, Elizabeth A.; Brainard, Russell E.

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated ‘full regulation’ scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario. PMID:27023183

  6. Environmental Records from Great Barrier Reef Corals: Inshore versus Offshore Drivers

    PubMed Central

    Walther, Benjamin D.; Kingsford, Michael J.; McCulloch, Malcolm T.

    2013-01-01

    The biogenic structures of stationary organisms can be effective recorders of environmental fluctuations. These proxy records of environmental change are preserved as geochemical signals in the carbonate skeletons of scleractinian corals and are useful for reconstructions of temporal and spatial fluctuations in the physical and chemical environments of coral reef ecosystems, including The Great Barrier Reef (GBR). We compared multi-year monitoring of water temperature and dissolved elements with analyses of chemical proxies recorded in Porites coral skeletons to identify the divergent mechanisms driving environmental variation at inshore versus offshore reefs. At inshore reefs, water Ba/Ca increased with the onset of monsoonal rains each year, indicating a dominant control of flooding on inshore ambient chemistry. Inshore multi-decadal records of coral Ba/Ca were also highly periodic in response to flood-driven pulses of terrigenous material. In contrast, an offshore reef at the edge of the continental shelf was subject to annual upwelling of waters that were presumed to be richer in Ba during summer months. Regular pulses of deep cold water were delivered to the reef as indicated by in situ temperature loggers and coral Ba/Ca. Our results indicate that although much of the GBR is subject to periodic environmental fluctuations, the mechanisms driving variation depend on proximity to the coast. Inshore reefs are primarily influenced by variable freshwater delivery and terrigenous erosion of catchments, while offshore reefs are dominated by seasonal and inter-annual variations in oceanographic conditions that influence the propensity for upwelling. The careful choice of sites can help distinguish between the various factors that promote Ba uptake in corals and therefore increase the utility of corals as monitors of spatial and temporal variation in environmental conditions. PMID:24204743

  7. Environmental Records from Great Barrier Reef Corals: inshore versus offshore drivers.

    PubMed

    Walther, Benjamin D; Kingsford, Michael J; McCulloch, Malcolm T

    2013-01-01

    The biogenic structures of stationary organisms can be effective recorders of environmental fluctuations. These proxy records of environmental change are preserved as geochemical signals in the carbonate skeletons of scleractinian corals and are useful for reconstructions of temporal and spatial fluctuations in the physical and chemical environments of coral reef ecosystems, including The Great Barrier Reef (GBR). We compared multi-year monitoring of water temperature and dissolved elements with analyses of chemical proxies recorded in Porites coral skeletons to identify the divergent mechanisms driving environmental variation at inshore versus offshore reefs. At inshore reefs, water Ba/Ca increased with the onset of monsoonal rains each year, indicating a dominant control of flooding on inshore ambient chemistry. Inshore multi-decadal records of coral Ba/Ca were also highly periodic in response to flood-driven pulses of terrigenous material. In contrast, an offshore reef at the edge of the continental shelf was subject to annual upwelling of waters that were presumed to be richer in Ba during summer months. Regular pulses of deep cold water were delivered to the reef as indicated by in situ temperature loggers and coral Ba/Ca. Our results indicate that although much of the GBR is subject to periodic environmental fluctuations, the mechanisms driving variation depend on proximity to the coast. Inshore reefs are primarily influenced by variable freshwater delivery and terrigenous erosion of catchments, while offshore reefs are dominated by seasonal and inter-annual variations in oceanographic conditions that influence the propensity for upwelling. The careful choice of sites can help distinguish between the various factors that promote Ba uptake in corals and therefore increase the utility of corals as monitors of spatial and temporal variation in environmental conditions.

  8. Temporal clustering of tropical cyclones on the Great Barrier Reef and its ecological importance

    NASA Astrophysics Data System (ADS)

    Wolff, Nicholas H.; Wong, Aaron; Vitolo, Renato; Stolberg, Kristin; Anthony, Kenneth R. N.; Mumby, Peter J.

    2016-06-01

    Tropical cyclones have been a major cause of reef coral decline during recent decades, including on the Great Barrier Reef (GBR). While cyclones are a natural element of the disturbance regime of coral reefs, the role of temporal clustering has previously been overlooked. Here, we examine the consequences of different types of cyclone temporal distributions (clustered, stochastic or regular) on reef ecosystems. We subdivided the GBR into 14 adjoining regions, each spanning roughly 300 km, and quantified both the rate and clustering of cyclones using dispersion statistics. To interpret the consequences of such cyclone variability for coral reef health, we used a model of observed coral population dynamics. Results showed that clustering occurs on the margins of the cyclone belt, being strongest in the southern reefs and the far northern GBR, which also has the lowest cyclone rate. In the central GBR, where rates were greatest, cyclones had a relatively regular temporal pattern. Modelled dynamics of the dominant coral genus, Acropora, suggest that the long-term average cover might be more than 13 % greater (in absolute cover units) under a clustered cyclone regime compared to stochastic or regular regimes. Thus, not only does cyclone clustering vary significantly along the GBR but such clustering is predicted to have a marked, and management-relevant, impact on the status of coral populations. Additionally, we use our regional clustering and rate results to sample from a library of over 7000 synthetic cyclone tracks for the GBR. This allowed us to provide robust reef-scale maps of annual cyclone frequency and cyclone impacts on Acropora. We conclude that assessments of coral reef vulnerability need to account for both spatial and temporal cyclone distributions.

  9. Linking Terrigenous Sediment Delivery to Declines in Coral Reef Ecosystem Services

    EPA Science Inventory

    Worldwide coral reef conditions continue to decline despite the valuable socioeconomic benefits of these ecosystems. There is growing recognition that quantifying reefs in terms reflecting what stakeholders value is vital for comparing inherent tradeoffs among coastal management ...

  10. Linking Terrigenous Sediment Delivery to Declines in Coral Reef Ecosystem Services

    EPA Science Inventory

    Worldwide coral reef conditions continue to decline despite the valuable socioeconomic benefits of these ecosystems. There is growing recognition that quantifying reefs in terms reflecting what stakeholders value is vital for comparing inherent tradeoffs among coastal management ...

  11. Devonian Great Barrier Reef of Canning basin, Western Australia

    SciTech Connect

    Playford, P.E.

    1980-06-01

    A well-preserved Middle to Upper Devonian barrier-reef belt is exhumed as a series of limestone ranges for 350 km along the northern margin of the Canning basin. The reefs are of international importance for reef research because of the excellence of exposures and the lack of extensive dolomitization or structural deformation. They are also known in the subsurface, where they are regarded as prime objectives for oil exploration. The platforms were built by stromatoporoids, algae, and corals in the Givetian and Frasnian, and by algae in the Famennian. The platform and basin deposits were laid down nearly horizontally, whereas the marginal-slope deposits accumulated on steep depositional slopes. Geopetal fabrics, which quantify depositional and tectonic-compactional dip components, provide paleobathymetric data concerning the reef complexes and their fossil biotas. The reef limestones were subject to strong submarine cementation, resulting in very early porosity destruction, whereas the back-reef deposits of the platform interiors remained largely uncemented and retained most of their primary porosity. Stylolitization and associated compaction were greatest in limestones whose primary porosity was not destroyed by early submarine cementation. Consequently the platform interiors have compacted more than the margins, resulting in the typical concave shape of many platforms. Cementation concomitant with stylolitization destroyed most of the porosity that remained in the limestones after early submarine diagenesis. The most porous rocks now are dolomites having secondary moldic porosity. 27 figures.

  12. The influence of sea level and cyclones on Holocene reef flat development: Middle Island, central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Ryan, E. J.; Smithers, S. G.; Lewis, S. E.; Clark, T. R.; Zhao, J. X.

    2016-09-01

    The geomorphology and chronostratigraphy of the reef flat (including microatoll ages and elevations) were investigated to better understand the long-term development of the reef at Middle Island, inshore central Great Barrier Reef. Eleven cores across the fringing reef captured reef initiation, framework accretion and matrix sediments, allowing a comprehensive appreciation of reef development. Precise uranium-thorium ages obtained from coral skeletons revealed that the reef initiated ~7873 ± 17 years before present (yBP), and most of the reef was emplaced in the following 1000 yr. Average rates of vertical reef accretion ranged between 3.5 and 7.6 mm yr-1. Reef framework was dominated by branching corals ( Acropora and Montipora). An age hiatus of ~5000 yr between 6439 ± 19 and 1617 ± 10 yBP was observed in the core data and attributed to stripping of the reef structure by intense cyclones during the mid- to late-Holocene. Large shingle ridges deposited onshore and basset edges preserved on the reef flat document the influence of cyclones at Middle Island and represent potential sinks for much of the stripped material. Stripping of the upper reef structure around the outer margin of the reef flat by cyclones created accommodation space for a thin (<1.2 m) veneer of reef growth after 1617 ± 10 yBP that grew over the eroded mid-Holocene reef structure. Although limited fetch and open-water exposure might suggest the reef flat at Middle Island is quite protected, our results show that high-energy waves presumably generated by cyclones have significantly influenced both Holocene reef growth and contemporary reef flat geomorphology.

  13. Coral reef origins of atmospheric dimethylsulfide at Heron Island, southern Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Swan, Hilton B.; Jones, Graham B.; Deschaseaux, Elisabeth S. M.; Eyre, Bradley D.

    2017-01-01

    Atmospheric dimethylsulfide (DMSa), continually derived from the world's oceans, is a feed gas for the tropospheric production of new sulfate particles, leading to cloud condensation nuclei that influence the formation and properties of marine clouds and ultimately the Earth's radiation budget. Previous studies on the Great Barrier Reef (GBR), Australia, have indicated coral reefs are significant sessile sources of DMSa capable of enhancing the tropospheric DMSa burden mainly derived from phytoplankton in the surface ocean; however, specific environmental evidence of coral reef DMS emissions and their characteristics is lacking. By using on-site automated continuous analysis of DMSa and meteorological parameters at Heron Island in the southern GBR, we show that the coral reef was the source of occasional spikes of DMSa identified above the oceanic DMSa background signal. In most instances, these DMSa spikes were detected at low tide under low wind speeds, indicating they originated from the lagoonal platform reef surrounding the island, although evidence of longer-range transport of DMSa from a 70 km stretch of coral reefs in the southern GBR was also observed. The most intense DMSa spike occurred in the winter dry season at low tide when convective precipitation fell onto the aerially exposed platform reef. This co-occurrence of events appeared to biologically shock the coral resulting in a seasonally aberrant extreme DMSa spike concentration of 45.9 nmol m-3 (1122 ppt). Seasonal DMS emission fluxes for the 2012 wet season and 2013 dry season campaigns at Heron Island were 5.0 and 1.4 µmol m-2 day-1, respectively, of which the coral reef was estimated to contribute 4 % during the wet season and 14 % during the dry season to the dominant oceanic flux.

  14. Declining coral calcification on the Great Barrier Reef.

    PubMed

    De'ath, Glenn; Lough, Janice M; Fabricius, Katharina E

    2009-01-02

    Reef-building corals are under increasing physiological stress from a changing climate and ocean absorption of increasing atmospheric carbon dioxide. We investigated 328 colonies of massive Porites corals from 69 reefs of the Great Barrier Reef (GBR) in Australia. Their skeletal records show that throughout the GBR, calcification has declined by 14.2% since 1990, predominantly because extension (linear growth) has declined by 13.3%. The data suggest that such a severe and sudden decline in calcification is unprecedented in at least the past 400 years. Calcification increases linearly with increasing large-scale sea surface temperature but responds nonlinearly to annual temperature anomalies. The causes of the decline remain unknown; however, this study suggests that increasing temperature stress and a declining saturation state of seawater aragonite may be diminishing the ability of GBR corals to deposit calcium carbonate.

  15. Declining Coral Calcification on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    De'ath, Glenn; Lough, Janice M.; Fabricius, Katharina E.

    2009-01-01

    Reef-building corals are under increasing physiological stress from a changing climate and ocean absorption of increasing atmospheric carbon dioxide. We investigated 328 colonies of massive Porites corals from 69 reefs of the Great Barrier Reef (GBR) in Australia. Their skeletal records show that throughout the GBR, calcification has declined by 14.2% since 1990, predominantly because extension (linear growth) has declined by 13.3%. The data suggest that such a severe and sudden decline in calcification is unprecedented in at least the past 400 years. Calcification increases linearly with increasing large-scale sea surface temperature but responds nonlinearly to annual temperature anomalies. The causes of the decline remain unknown; however, this study suggests that increasing temperature stress and a declining saturation state of seawater aragonite may be diminishing the ability of GBR corals to deposit calcium carbonate.

  16. Comparison of Coral Reef Ecosystems along a Fishing Pressure Gradient

    PubMed Central

    Weijerman, Mariska; Fulton, Elizabeth A.; Parrish, Frank A.

    2013-01-01

    Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all three models, enhancing comparability. Model outputs–such as net system production, size structure of the community, total throughput, production, consumption, production-to-respiration ratio, and Finn’s cycling index and mean path length–indicate that the systems around the unpopulated French Frigate Shoals and along the relatively lightly populated Kona Coast of Hawai’i Island are mature, stable systems with a high efficiency in recycling of biomass. In contrast, model results show that the reef system around the most populated island in the State of Hawai’i, O’ahu, is in a transitional state with reduced ecosystem resilience and appears to be shifting to an algal-dominated system. Evaluation of the candidate indicators for fishing pressure showed that indicators at the community level (e.g., total biomass, community size structure, trophic level of the community) were most robust (i.e., showed the clearest trend) and that multiple indicators are necessary to identify fishing perturbations. These indicators could be used as performance indicators when compared to a baseline for management purposes. This study shows that ecosystem models can be valuable tools in identification of the system state in terms of complexity, stability, and resilience and, therefore, can complement biological metrics currently used by monitoring programs as indicators for coral reef status. Moreover, ecosystem models can improve our understanding of a system’s internal structure that can be used to support management in identification of approaches to reverse unfavorable states. PMID:23737951

  17. Freshwater impacts in the central Great Barrier Reef: 1648-2011

    NASA Astrophysics Data System (ADS)

    Lough, J. M.; Lewis, S. E.; Cantin, N. E.

    2015-09-01

    The Australian summer monsoon is highly variable from year to year resulting in high variability in the magnitude and extent of freshwater river flood plumes affecting the Great Barrier Reef (GBR). These flood plumes transport terrestrial materials and contaminants to the reef and can have significant impacts on both water quality and ecosystem health. The occurrence and intensity of these freshwater flood plumes are reliably recorded as annual luminescent lines in inshore massive corals and occasional luminescent lines in mid-shelf corals. We use measured luminescence in a long Porites core and four recently collected short cores from Havannah Island (a nearshore reef in the central GBR) to reconstruct Burdekin River flow, 1648-2011, and five recent short cores from Britomart Reef (a mid-shelf reef, 65 km northeast of Havannah Island) to assess the frequency of flood plume events extending beyond the inshore to mid-shelf reefs. The reconstruction highlights that the frequency of high flow events has increased in the GBR from 1 in every 20 yr prior to European settlement (1748-1847) to 1 in every 6 yr reoccurrence (1948-2011). Three of the most extreme events in the past 364 yr have occurred since 1974, including 2011. The reconstruction also shows a shift to higher flows, increased variability from the latter half of the nineteenth century, and likely more frequent freshwater impacts on mid-shelf reefs. This change coincided with European settlement of northern Queensland and substantial changes in land use, which resulted in increased sediment loads exported to the GBR. The consequences of increased sediment loads to the GBR were, therefore, likely exacerbated by this climate shift. This change in Burdekin River flow characteristics appears to be associated with a shift towards greater El Niño-Southern Oscillation variability and rapid warming in the southwest Pacific, evident in independent palaeoclimatic records.

  18. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Cheal, A. J.; MacNeil, M. Aaron; Cripps, E.; Emslie, M. J.; Jonker, M.; Schaffelke, B.; Sweatman, H.

    2010-12-01

    Changes from coral to macroalgal dominance following disturbances to corals symbolize the global degradation of coral reefs. The development of effective conservation measures depends on understanding the causes of such phase shifts. The prevailing view that coral-macroalgal phase shifts commonly occur due to insufficient grazing by fishes is based on correlation with overfishing and inferences from models and small-scale experiments rather than on long-term quantitative field studies of fish communities at affected and resilient sites. Consequently, the specific characteristics of herbivorous fish communities that most promote reef resilience under natural conditions are not known, though this information is critical for identifying vulnerable ecosystems. In this study, 11 years of field surveys recorded the development of the most persistent coral-macroalgal phase shift (>7 years) yet observed on Australia’s Great Barrier Reef (GBR). This shift followed extensive coral mortality caused by thermal stress (coral bleaching) and damaging storms. Comparisons with two similar reefs that suffered similar disturbances but recovered relatively rapidly demonstrated that the phase shift occurred despite high abundances of one herbivore functional group (scraping/excavating parrotfishes: Labridae). However, the shift was strongly associated with low fish herbivore diversity and low abundances of algal browsers (predominantly Siganidae) and grazers/detritivores (Acanthuridae), suggesting that one or more of these factors underpin reef resilience and so deserve particular protection. Herbivorous fishes are not harvested on the GBR, and the phase shift was not enhanced by unusually high nutrient levels. This shows that unexploited populations of herbivorous fishes cannot ensure reef resilience even under benign conditions and suggests that reefs could lose resilience under relatively low fishing pressure. Predictions of more severe and widespread coral mortality due to global

  19. Inadequate evaluation and management of threats in Australia's Marine Parks, including the Great Barrier Reef, misdirect Marine conservation.

    PubMed

    Kearney, Bob; Farebrother, Graham

    2014-01-01

    The magnificence of the Great Barrier Reef and its worthiness of extraordinary efforts to protect it from whatever threats may arise are unquestioned. Yet almost four decades after the establishment of the Great Barrier Reef Marine Park, Australia's most expensive and intensely researched Marine Protected Area, the health of the Reef is reported to be declining alarmingly. The management of the suite of threats to the health of the reef has clearly been inadequate, even though there have been several notable successes. It is argued that the failure to prioritise correctly all major threats to the reef, coupled with the exaggeration of the benefits of calling the park a protected area and zoning subsets of areas as 'no-take', has distracted attention from adequately addressing the real causes of impact. Australia's marine conservation efforts have been dominated by commitment to a National Representative System of Marine Protected Areas. In so doing, Australia has displaced the internationally accepted primary priority for pursuing effective protection of marine environments with inadequately critical adherence to the principle of having more and bigger marine parks. The continuing decline in the health of the Great Barrier Reef and other Australian coastal areas confirms the limitations of current area management for combating threats to marine ecosystems. There is great need for more critical evaluation of how marine environments can be protected effectively and managed efficiently.

  20. Reef core insights into mid-Holocene water temperatures of the southern Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Sadler, James; Webb, Gregory E.; Leonard, Nicole D.; Nothdurft, Luke D.; Clark, Tara R.

    2016-10-01

    The tropical and subtropical oceans of the Southern Hemisphere are poorly represented in present-day climate models, necessitating an increased number of paleoclimate records from this key region to both understand the Earth's climate system and help constrain model simulations. Here we present a site-specific calibration of live collected massive Porites Sr/Ca records against concomitant in situ instrumental water temperature data from the fore-reef slope of Heron Reef, southern Great Barrier Reef (GBR). The resultant calibration, and a previously published Acropora calibration from the same site, was applied to subfossil coral material to investigate Holocene water temperatures at Heron Reef. U-Th-dated samples of massive Porites suggest cooler water temperatures with reduced seasonal amplitude at 5.2 ka (2.76-1.31°C cooler than present) and 7 ka (1.26°C cooler than present) at Heron Reef. These results contrast the previous suggestion of a mid-Holocene Thermal Maximum in the central GBR around 5.35 ka and 4.48 ka, yet may be explained by differences in temperature of the shallow ponded reef flat (central GBR) and the deeper reef slope waters (this study) and potential large reservoir correction errors associated with early radiocarbon dates. Combining coral-based water temperature anomaly reconstructions from the tropical and subtropical western Pacific indicates a coherent temperature response across the meridional gradient from Indonesia and Papua New Guinea down to the southern GBR. This similarity in reconstructed temperature anomalies suggests a high probability of an earlier expression of a mid-Holocene Thermal Maximum on the GBR between 6.8 and 6.0 ka.

  1. Lower Mesophotic Coral Communities (60-125 m Depth) of the Northern Great Barrier Reef and Coral Sea

    PubMed Central

    Englebert, Norbert; Bongaerts, Pim; Muir, Paul R.; Hay, Kyra B.; Pichon, Michel; Hoegh-Guldberg, Ove

    2017-01-01

    Mesophotic coral ecosystems in the Indo-Pacific remain relatively unexplored, particularly at lower mesophotic depths (≥60 m), despite their potentially large spatial extent. Here, we used a remotely operated vehicle to conduct a qualitative assessment of the zooxanthellate coral community at lower mesophotic depths (60–125 m) at 10 different locations in the Great Barrier Reef Marine Park and the Coral Sea Commonwealth Marine Reserve. Lower mesophotic coral communities were present at all 10 locations, with zooxanthellate scleractinian corals extending down to ~100 metres on walls and ~125 m on steep slopes. Lower mesophotic coral communities were most diverse in the 60–80 m zone, while at depths of ≥100 m the coral community consisted almost exclusively of the genus Leptoseris. Collections of coral specimens (n = 213) between 60 and 125 m depth confirmed the presence of at least 29 different species belonging to 18 genera, including several potential new species and geographic/depth range extensions. Overall, this study highlights that lower mesophotic coral ecosystems are likely to be ubiquitous features on the outer reefs of the Great Barrier Reef and atolls of the Coral Sea, and harbour a generic and species richness of corals that is much higher than thus far reported. Further research efforts are urgently required to better understand and manage these ecosystems as part of the Great Barrier Reef Marine Park and Coral Sea Commonwealth Marine Reserve. PMID:28146574

  2. Lower Mesophotic Coral Communities (60-125 m Depth) of the Northern Great Barrier Reef and Coral Sea.

    PubMed

    Englebert, Norbert; Bongaerts, Pim; Muir, Paul R; Hay, Kyra B; Pichon, Michel; Hoegh-Guldberg, Ove

    2017-01-01

    Mesophotic coral ecosystems in the Indo-Pacific remain relatively unexplored, particularly at lower mesophotic depths (≥60 m), despite their potentially large spatial extent. Here, we used a remotely operated vehicle to conduct a qualitative assessment of the zooxanthellate coral community at lower mesophotic depths (60-125 m) at 10 different locations in the Great Barrier Reef Marine Park and the Coral Sea Commonwealth Marine Reserve. Lower mesophotic coral communities were present at all 10 locations, with zooxanthellate scleractinian corals extending down to ~100 metres on walls and ~125 m on steep slopes. Lower mesophotic coral communities were most diverse in the 60-80 m zone, while at depths of ≥100 m the coral community consisted almost exclusively of the genus Leptoseris. Collections of coral specimens (n = 213) between 60 and 125 m depth confirmed the presence of at least 29 different species belonging to 18 genera, including several potential new species and geographic/depth range extensions. Overall, this study highlights that lower mesophotic coral ecosystems are likely to be ubiquitous features on the outer reefs of the Great Barrier Reef and atolls of the Coral Sea, and harbour a generic and species richness of corals that is much higher than thus far reported. Further research efforts are urgently required to better understand and manage these ecosystems as part of the Great Barrier Reef Marine Park and Coral Sea Commonwealth Marine Reserve.

  3. Bioerosion experiments at Lizard Island, Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Kiene, W. E.; Hutchings, P. A.

    1994-05-01

    The rates at which dead coral substrates are modified by bioerosional processes were determined by exposing recently killed corals for up to four years in a variety of reef environments at Lizard Island (northern Great Barrier Reef). Grazers were the major croding agents of these coral substrates and exhibited differences between sites that varied between sampling periods. Subtidal reef slopes and lagoon environments of water depths < 20 m were subjected to higher average rates of grazing erosion (0.30 1.96 kg/m2/y) than shallow depths less than 1 m (0.07 0.26 kg/m2/y). A deep site at 20 m experienced low average rates of grazing (0.08 0.29 kg/m2/y). Boring rates by worms (polychaetes and sipunculans), sponges and molluscs were relatively low and varied between sites, but increased with length of sampling period as larger borers succeeded the initial colonizing small polychaete worms. We hypothesize from these experiments that the extent of boring in reef substrates will be influenced by the interaction between the succession of the boring community and the rate at which the substrate is destroyed by grazing. We suggest that the level of grazing modifies the successional pattern of borers by removing the surface substrate and continually exposing bare substrate that can be colonized by early boring colonists. Thus, constant high levels of grazing may maintain the boring community at an early successional stage and prevent the development of a “mature” boring community. In order to establish large borer populations, reef substrates must be protected from extensive grazing bioerosion. This interaction of grazing and boring has important implications for the way dead coral is preserved in different reef environments.

  4. PAHs in the Great Barrier Reef Lagoon reach potentially toxic levels from coal port activities

    NASA Astrophysics Data System (ADS)

    Burns, Kathryn A.

    2014-05-01

    In view of the controversy over expanding the coastal coal ports bordering the Great Barrier Reef (GBR) Lagoon and the World Heritage Area, I re-evaluated the data published in Burns and Brinkman (2011). I used the US EPA procedures for the determination of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the protection of benthic organisms (Hansen et al., 2003), and the new proposed ANZECC/ARMCANZ (2013) sediment quality guidelines (Simpson et al., 2013) and determined that the coastal sediments offshore from the Hay Point coal terminal and suspended sediments caught in sediment traps inshore and at the offshore coral reefs contained levels of PAHs that approach the estimates for toxicity to benthic and water column organisms. This result is discussed in relation to risks posed to the GBR ecosystem by the port practices and the imminent expansion of the Abbott Point, Hay Point and other coal terminals.

  5. The role the Great Barrier Reef plays in resident wellbeing and implications for its management.

    PubMed

    Larson, Silva; Stoeckl, Natalie; Farr, Marina; Esparon, Michelle

    2015-04-01

    Improvements in human wellbeing are dependent on improving ecosystems. Such considerations are particularly pertinent for regions of high ecological, but also social and cultural importance that are facing rapid change. One such region is the Great Barrier Reef (GBR). Although the GBR has world heritage status for its 'outstanding universal value', little is known about resident perceptions of its values. We surveyed 1545 residents, finding that absence of visible rubbish; healthy reef fish, coral cover, and mangroves; and iconic marine species, are considered to be more important to quality of life than the jobs and incomes associated with industry (most respondents were dissatisfied with the benefits they received from industry). Highly educated females placed more importance on environmental non-use values than other respondents; less educated males and those employed in mining found non-market use-values relatively more important. Environmental non-use values emerged as the most important management priority for all.

  6. The exposure of the Great Barrier Reef to ocean acidification.

    PubMed

    Mongin, Mathieu; Baird, Mark E; Tilbrook, Bronte; Matear, Richard J; Lenton, Andrew; Herzfeld, Mike; Wild-Allen, Karen; Skerratt, Jenny; Margvelashvili, Nugzar; Robson, Barbara J; Duarte, Carlos M; Gustafsson, Malin S M; Ralph, Peter J; Steven, Andrew D L

    2016-02-23

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation-biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report.

  7. Emergent connectivity patterns on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Hock, K.; Wolff, N.; Condie, S. A.; Mumby, P. J.

    2016-02-01

    The analysis of connectivity networks of marine organisms can help us assess the relative importance of local populations as sources of larvae for the wider system. However, these connectivity patterns will be inherently dynamic and transient due to factors such as seasonal variability in ocean currents and local disturbance regimes. While there are many examples that use connectivity networks to represent the structure of metapopulations and plan reserves in marine systems, capturing the spatio-temporal dynamics of the emergent connectivity patterns has proven challenging. Here, we explore the connectivity dynamics of populations inhabiting individual reefs that together comprise Australia's iconic Great Barrier Reef. We first discuss how network analysis methods can be used to explicitly capture the dynamics of larval connectivity patterns at different spatial and temporal scales and consequently assess the importance of individual reefs as sources of coral larvae. We then consider how network analysis can also be used to understand the disturbance risks that periodic population explosions of coral-eating crown-of-thorns starfish pose to coral metapopulations. These predatory starfish not only devastate local coral populations, but also form emergent connectivity patterns by spreading among the reefs in a manner similar to rapidly expanding exotic species. Finally, we introduce a model framework that jointly considers the dynamic connectivity networks of both coral and starfish. This framework will help managers to adaptively deploy limited resources at strategic locations with maximum efficiency and under changing circumstances.

  8. The exposure of the Great Barrier Reef to ocean acidification

    PubMed Central

    Mongin, Mathieu; Baird, Mark E.; Tilbrook, Bronte; Matear, Richard J.; Lenton, Andrew; Herzfeld, Mike; Wild-Allen, Karen; Skerratt, Jenny; Margvelashvili, Nugzar; Robson, Barbara J.; Duarte, Carlos M.; Gustafsson, Malin S. M.; Ralph, Peter J.; Steven, Andrew D. L.

    2016-01-01

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation–biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report. PMID:26907171

  9. Diurnal warming in shallow coastal seas: Observations from the Caribbean and Great Barrier Reef regions

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Minnett, P. J.; Berkelmans, R.; Hendee, J.; Manfrino, C.

    2014-07-01

    A good understanding of diurnal warming in the upper ocean is important for the validation of satellite-derived sea surface temperature (SST) against in-situ buoy data and for merging satellite SSTs taken at different times of the same day. For shallow coastal regions, better understanding of diurnal heating could also help improve monitoring and prediction of ecosystem health, such as coral reef bleaching. Compared to its open ocean counterpart which has been studied extensively and modeled with good success, coastal diurnal warming has complicating localized characteristics, including coastline geometry, bathymetry, water types, tidal and wave mixing. Our goal is to characterize coastal diurnal warming using two extensive in-situ temperature and weather datasets from the Caribbean and Great Barrier Reef (GBR), Australia. Results showed clear daily warming patterns in most stations from both datasets. For the three Caribbean stations where solar radiation is the main cause of daily warming, the mean diurnal warming amplitudes were about 0.4 K at depths of 4-7 m and 0.6-0.7 K at shallower depths of 1-2 m; the largest warming value was 2.1 K. For coral top temperatures of the GBR, 20% of days had warming amplitudes >1 K, with the largest >4 K. The bottom warming at shallower sites has higher daily maximum temperatures and lower daily minimum temperatures than deeper sites nearby. The averaged daily warming amplitudes were shown to be closely related to daily average wind speed and maximum insolation, as found in the open ocean. Diurnal heating also depends on local features including water depth, location on different sections of the reef (reef flat vs. reef slope), the relative distance from the barrier reef chain (coast vs. lagoon stations vs. inner barrier reef sites vs. outer rim sites); and the proximity to the tidal inlets. In addition, the influence of tides on daily temperature changes and its relative importance compared to solar radiation was quantified by

  10. Reef sharks exhibit site-fidelity and higher relative abundance in marine reserves on the Mesoamerican Barrier Reef.

    PubMed

    Bond, Mark E; Babcock, Elizabeth A; Pikitch, Ellen K; Abercrombie, Debra L; Lamb, Norlan F; Chapman, Demian D

    2012-01-01

    Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as "reef sharks", are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves). Key predictions of this hypothesis are that (a) individual reef sharks exhibit high site-fidelity to these protected areas and (b) their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV) surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi), the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR), Belize. Acoustically tagged sharks (N = 34) were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs) showed that the factor "marine reserve" had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s) involved: reduced fishing mortality or enhanced prey availability.

  11. Reef Sharks Exhibit Site-Fidelity and Higher Relative Abundance in Marine Reserves on the Mesoamerican Barrier Reef

    PubMed Central

    Bond, Mark E.; Babcock, Elizabeth A.; Pikitch, Ellen K.; Abercrombie, Debra L.; Lamb, Norlan F.; Chapman, Demian D.

    2012-01-01

    Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as “reef sharks”, are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves). Key predictions of this hypothesis are that (a) individual reef sharks exhibit high site-fidelity to these protected areas and (b) their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV) surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi), the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR), Belize. Acoustically tagged sharks (N = 34) were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs) showed that the factor “marine reserve” had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s) involved: reduced fishing mortality or enhanced prey availability. PMID:22412965

  12. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.220 Hawaii coral reef ecosystem fisheries. ...

  13. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.620 PRIA coral reef ecosystem fisheries. ...

  14. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Mariana Archipelago Fisheries § 665.420 Mariana coral reef ecosystem fisheries. ...

  15. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.620 PRIA coral reef ecosystem fisheries. ...

  16. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.220 Hawaii coral reef ecosystem fisheries. ...

  17. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.620 PRIA coral reef ecosystem fisheries. ...

  18. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.220 Hawaii coral reef ecosystem fisheries. ...

  19. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC American Samoa Fisheries § 665.120 American Samoa coral reef ecosystem fisheries. ...

  20. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC American Samoa Fisheries § 665.120 American Samoa coral reef ecosystem fisheries. ...

  1. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC American Samoa Fisheries § 665.120 American Samoa coral reef ecosystem fisheries. ...

  2. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Mariana Archipelago Fisheries § 665.420 Mariana coral reef ecosystem fisheries. ...

  3. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.220 Hawaii coral reef ecosystem fisheries. ...

  4. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Mariana Archipelago Fisheries § 665.420 Mariana coral reef ecosystem fisheries. ...

  5. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.620 PRIA coral reef ecosystem fisheries. ...

  6. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.620 PRIA coral reef ecosystem fisheries. ...

  7. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC American Samoa Fisheries § 665.120 American Samoa coral reef ecosystem fisheries. ...

  8. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC American Samoa Fisheries § 665.120 American Samoa coral reef ecosystem fisheries. ...

  9. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Mariana Archipelago Fisheries § 665.420 Mariana coral reef ecosystem fisheries. ...

  10. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.220 Hawaii coral reef ecosystem fisheries. ...

  11. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Mariana Archipelago Fisheries § 665.420 Mariana coral reef ecosystem fisheries. ...

  12. Local variation in herbivore feeding activity on an inshore reef of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Cvitanovic, C.; Bellwood, D. R.

    2009-03-01

    Threats to coral reefs may be manifested through an increase in macroalgae. Across the globe, phase-shifts from coral to macroalgal dominance have been reported from the Caribbean, Indian and Pacific Oceans. While the Great Barrier Reef (GBR) is in relatively good condition, inshore reefs may exhibit over 50% macroalgal cover. However, our understanding of the processes preventing the macroalgal expansion remains uncertain. Using a remote video bioassay approach, this study quantified herbivory in three bays along the leeward margin of Orpheus Island. Despite significant with-in bay variation in herbivory there was no detectable statistical difference in the rates of herbivory among bays. Furthermore, of the 45 herbivore species recorded from the island, only three played a significant role in bioassay removal, Siganus canaliculatus, Siganus javus and Kyphosus vaigiensis, with only one species predominating in each bay. Reefs of the GBR may therefore be more vulnerable than previously thought, with the removal of macroalgae depending on just a few species, which exhibit considerable spatial variability in their feeding behaviour.

  13. The tides of the central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Andrews, John C.; Bode, Lance

    1988-09-01

    The central third of the Great Barrier Reef is a diffuse matrix of platform reefs on the outer half of a 300 km long segment of continental shelf. The subset of constituents O 1, P 1, K 1, N 2, M 2, S 2 and K 2 describes adequately both the vertical tides and tidal currents in the reef zone and lagoon. Sea level amplitudes and phases display quasi-linear changes in space throughout the region away from the coastal boundary, while sea level amplitude and phase gradients are very small along the shelf break. Cross-shelf sea level and phase gradients are relatively large, but decay equatorward, particularly where the shelf narrows from 120 to 60 km. This variation is reflected in current amplitudes, which range from spring maxima near 30 cm s -1 in the south to within the background noise in the north. The tidal data obtained in the field part of this study are used as boundary conditions to force a nonlinear numerical tidal model of the region, which is driven by the five principal constituents over a period of a month. This provides an overall picture of the dynamics, with results comparing well with measured data on a relatively coarse 5 nmi grid. Nowhere in this region are the reefs concentrated as an identifiable barrier, and it is found by comparative numerical experiments that, due to their scattered nature, they need not be modelled explicitly at this resolution. The M 2 tides dominate and energy propagates across the shelf break in the south of this central section to turn poleward on the shelf. Elsewhere, the M 2 energy flow is basically longshore and equatorward.

  14. A bioindicator system for water quality on inshore coral reefs of the Great Barrier Reef.

    PubMed

    Fabricius, Katharina E; Cooper, Timothy F; Humphrey, Craig; Uthicke, Sven; De'ath, Glenn; Davidson, Johnston; LeGrand, Hélène; Thompson, Angus; Schaffelke, Britta

    2012-01-01

    Responses of bioindicator candidates for water quality were quantified in two studies on inshore coral reefs of the Great Barrier Reef (GBR). In Study 1, 33 of the 38 investigated candidate indicators (including coral physiology, benthos composition, coral recruitment, macrobioeroder densities and FORAM index) showed significant relationships with a composite index of 13 water quality variables. These relationships were confirmed in Study 2 along four other water quality gradients (turbidity and chlorophyll). Changes in water quality led to multi-faceted shifts from phototrophic to heterotrophic benthic communities, and from diverse coral dominated communities to low-diversity communities dominated by macroalgae. Turbidity was the best predictor of biota; hence turbidity measurements remain essential to directly monitor water quality on the GBR, potentially complemented by our final calibrated 12 bioindicators. In combination, this bioindicator system may be used to assess changes in water quality, especially where direct water quality data are unavailable.

  15. Halimeda biomass, growth rates and sediment generation on reefs in the central great barrier reef province

    NASA Astrophysics Data System (ADS)

    Drew, Edward A.

    1983-06-01

    The average biomass of Halimeda per m2 of solid substratum increased progressively on a series of reefs situated at increasing distances from the shore in the central Great Barrier Reef. There was none on a reef close inshore, increasing to nearly 500 g m-2 total biomass (≃90% calcium carbonate) on an oceanic atoll system in the Coral Sea. The biomass measured contained 13 species of Halimeda but was dominated by only two species, H. copiosa and H. opuntia, except on the atoll where H. minima was dominant. Three sand-dwelling species were also present but did not occur anywhere in substantial quantities. Growth rates of the dominant species were measured bv tagging individual branch tips. A mean value of 0.16 segments d-1 was recorded but 41% of the branch tips did not grow any new segments whilst only 1% grew more than one per day. The number of branch tips per unit biomass was very constant and has been used in conjunction with growth rates and biomass to calculate productivity rates, and thence sedimentation, in the lagoon of one of the reefs. Biomass doubling time of 15 d and production of 6.9 g dry wt m-2 d-1 are considerably higher than previously reported values for Halimeda vegetation and there was little seasonal change detected over a whole year. Those values indicate annual accretion of 184.9 g m-2 year-1 of Halimeda segment debris over the entire lagoon floor (5.9 km2) of Davies Reef, equivalent to 0.13 mm year-1 due to Halimeda alone, or 1 m every 1,892 years when other contributions to that sediment are taken into account.

  16. Coral bleaching: one disturbance too many for near-shore reefs of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Thompson, A. A.; Dolman, A. M.

    2010-09-01

    The dynamic nature of coral communities can make it difficult to judge whether a reef system is resilient to the current disturbance regime. To address this question of resilience for near-shore coral communities of the Great Barrier Reef (Australia) a data set consisting of 350 annual observations of benthic community change was compiled from existing monitoring data. These data spanned the period 1985-2007 and were derived from coral reefs within 20 km of the coast. During years without major disturbance events, cover increase of the Acroporidae was much faster than it was for other coral families; a median of 11% per annum compared to medians of less than 4% for other coral families. Conversely, Acroporidae were more severely affected by cyclones and bleaching events than most other families. A simulation model parameterised with these observations indicated that while recovery rates of hard corals were sufficient to compensate for impacts associated with cyclones and crown-of-thorns starfish, the advent of mass bleaching has lead to a significant change in the composition of the community and a rapid decline in hard coral cover. Furthermore, if bleaching events continue to occur with the same frequency and severity as in the recent past, the model predicts that the cover of Acroporidae will continue to decline. Although significant cover of live coral remains on near-shore reefs, and recovery is observed during inter-disturbance periods, it appears that this system will not be resilient to the recent disturbance regime over the long term. Conservation strategies for coral reefs should focus on both mitigating local factors that act synergistically to increase the susceptibility of Acroporidae to climate change while promoting initiatives that maximise the recovery potential from inevitable disturbances.

  17. Nephtyidae (Annelida: Phyllodocida) of Lizard Island, Great Barrier Reef, Australia.

    PubMed

    Murray, Anna; Wong, Eunice; Hutchings, Pat

    2015-09-18

    Seven species of the family Nephtyidae are recorded from Lizard Island, none previously reported from the Great Barrier Reef. Two species of Aglaophamus, four species of Micronephthys, one new and one previously unreported from Australia, and one species of Nephtys, were identified from samples collected during the Lizard Island Polychaete Workshop 2013, as well as from ecological studies undertaken during the 1970s and deposited in the Australian Museum marine invertebrate Collections. A dichotomous key to aid identification of these species newly reported from Lizard Island is provided.

  18. Advances in monitoring the human dimension of natural resource systems: an example from the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Marshall, N. A.; Bohensky, E.; Curnock, M.; Goldberg, J.; Gooch, M.; Nicotra, B.; Pert, P.; Scherl, L. M.; Stone-Jovicich, S.; Tobin, R. C.

    2016-11-01

    The aim of this paper is to demonstrate the feasibility and potential utility of decision-centric social-economic monitoring using data collected from Great Barrier Reef (Reef) region. The social and economic long term monitoring program (SELTMP) for the Reef is a novel attempt to monitor the social and economic dimensions of social-ecological change in a globally and nationally important region. It represents the current status and condition of the major user groups of the Reef with the potential to simultaneously consider trends, interconnections, conflicts, dependencies and vulnerabilities. Our approach was to combine a well-established conceptual framework with a strong governance structure and partnership arrangement that enabled the co-production of knowledge. The framework is a modification of the Millennium Ecosystem Assessment and it was used to guide indicator choice. Indicators were categorised as; (i) resource use and dependency, (ii) ecosystem benefits and well-being, and (iii) drivers of change. Data were collected through secondary datasets where existing and new datasets were created where not, using standard survey techniques. Here we present an overview of baseline results of new survey data from commercial-fishers (n = 210), marine-based tourism operators (n = 119), tourists (n = 2877), local residents (n = 3181), and other Australians (n = 2002). The indicators chosen describe both social and economic components of the Reef system and represent an unprecedented insight into the ways in which people currently use and depend on the Reef, the benefits that they derive, and how they perceive, value and relate to the Reef and each other. However, the success of a program such as the SELTMP can only occur with well-translated cutting-edge data and knowledge that are collaboratively produced, adaptive, and directly feeds into current management processes. We discuss how data from the SELTMP have already been incorporated into Reef management decision

  19. Seasonal variations in the subsurface ultraviolet-B on an inshore Pacific coral reef ecosystem.

    PubMed

    Downs, Nathan J; Schouten, Peter W; Parisi, Alfio V

    2013-01-01

    Fringing coral reefs provide a unique opportunity to study shallow aquatic ecosystems. A fringing coral reef system located in close proximity to a developed region was considered in this study. In such an environment, the rate of decay of dissolved organic matter is high and the penetration of higher energy ultraviolet-B (UVB) extends a greater influence on species diversity, particularly upon shallow benthic communities. Results from a 9 month subsurface UVB exposure measurement campaign performed at a site located on the southern Queensland coast (Hervey Bay, 25°S) are presented in this research. For this, a novel dosimetric technique was utilized to measure long-term subsurface UVB exposures. The resultant data set includes exposure measurements made during the significant La Niña event of late 2010 which resulted in unprecedented high sea surface temperatures and severe flooding across eastern Australia, impacting upon the lagoon regions of the Great Barrier Reef and Queensland's southern estuaries, including the study site. The influence of season, diurnal tidal variation, cloud cover and solar zenith angle were analyzed over the campaign period. Mean minimum daylight water depth was found to be the most significant factor influencing subsurface UVB. © 2013 The American Society of Photobiology.

  20. Towards protecting the Great Barrier Reef from land-based pollution.

    PubMed

    Kroon, Frederieke J; Thorburn, Peter; Schaffelke, Britta; Whitten, Stuart

    2016-06-01

    The Great Barrier Reef (GBR) is an iconic coral reef system extending over 2000 km along the north-east coast of Australia. Global recognition of its Outstanding Universal Value resulted in the listing of the 348 000 km(2) GBR World Heritage Area (WHA) by UNESCO in 1981. Despite various levels of national and international protection, the condition of GBR ecosystems has deteriorated over the past decades, with land-based pollution from the adjacent catchments being a major and ongoing cause for this decline. To reduce land-based pollution, the Australian and Queensland Governments have implemented a range of policy initiatives since 2003. Here, we evaluate the effectiveness of existing initiatives to reduce discharge of land-based pollutants into the waters of the GBR. We conclude that recent efforts in the GBR catchments to reduce land-based pollution are unlikely to be sufficient to protect the GBR ecosystems from declining water quality within the aspired time frames. To support management decisions for desired ecological outcomes for the GBR WHA, we identify potential improvements to current policies and incentives, as well as potential changes to current agricultural land use, based on overseas experiences and Australia's unique potential. The experience in the GBR may provide useful guidance for the management of other marine ecosystems, as reducing land-based pollution by better managing agricultural sources is a challenge for coastal communities around the world. © 2016 John Wiley & Sons Ltd.

  1. Spatial and temporal variations in turbidity on two inshore turbid reefs on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Browne, N. K.; Smithers, S. G.; Perry, C. T.

    2013-03-01

    This study describes the natural turbidity regimes at two inshore turbid reefs on the central Great Barrier Reef where wind-driven waves are the main agent of sediment resuspension. Many corals on inshore turbid reefs have adapted to high and fluctuating turbidity, however, anthropogenic activities such as dredging are speculated to produce larger and more prolonged turbidity events that may exceed the environmental tolerance and adaptive capacity of corals on these reefs. Natural turbidity regimes must be described and understood to determine whether and when coral communities on inshore turbid reefs are at risk from anthropogenically elevated turbidity, but at present few baseline studies exist. Here, we present turbidity data from (a) Middle Reef, a semi-protected reef located between Magnetic Island and Townsville and (b) Paluma Shoals, a reef exposed to higher energy wind and waves located in Halifax Bay. Instruments were deployed on both reefs for 16 days to measure spatial and temporal variations in turbidity and its driving forces (waves, currents, tides). Locally driven wind waves were the key driver of turbidity, but the strength of the relationship was dependent on wave exposure. Turbidity regimes thus vary markedly over individual reefs and this is reflected in community assemblage distributions, with a high abundance of heterotrophic corals (e.g. Goniopora) in reef habitats subjected to large fluctuations in turbidity (>100 NTU). A turbidity model developed using local wind speed data explained up to 75 % and up to 46 % of the variance in turbidity at Paluma Shoals and Middle Reef, respectively. Although the model was based on a brief two-week observational period, it reliably predicted variations in 24-h averaged turbidity and identified periods when turbidity rose above ambient baseline levels, offering reef managers insights into turbidity responses to modified climate and coastal sediment delivery regimes.

  2. Remote video bioassays reveal the potential feeding impact of the rabbitfish Siganus canaliculatus (f: Siganidae) on an inner-shelf reef of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Fox, R. J.; Bellwood, D. R.

    2008-09-01

    Herbivores are widely acknowledged as key elements maintaining the health and resilience of terrestrial and aquatic ecosystems. Understanding and quantifying the impact of herbivores in ecosystems are fundamental to our ability to manage these systems. The traditional method of quantifying the impact of herbivorous fishes on coral reefs has been to use transplanted pieces of seagrass or algae as “bioassays”. However, these experiments leave a key question unanswered, namely: Which species are responsible for the impact being quantified? This study revisits the use of bioassays and tested the assumption that the visual abundance of species reflects their role in the removal of assay material. Using remote video cameras to film removal of assay material on an inner-shelf reef of the Great Barrier Reef, the species responsible for assay-based herbivory were identified. The video footage revealed that Siganus canaliculatus, a species not previously recorded at the study site, was primarily responsible for removal of macroalgal biomass. The average percentage decrease in thallus length of whole plants of Sargassum at the reef crest was 54 ± 8.9% (mean ± SE), and 50.4 ± 9.8% for individually presented Sargassum strands (for a 4.5-h deployment). Of the 14,656 bites taken from Sargassum plants and strands across all reef zones, nearly half (6,784 bites or 46%) were taken by S. canaliculatus, with the majority of the remainder attributable to Siganus doliatus. However, multiple regression analysis demonstrated that only the bites of S. canaliculatus were removing macroalgal biomass. The results indicate that, even with detailed observations, the species of herbivore that may be responsible for maintaining benthic community structure can go unnoticed. Some of our fundamental ideas of the relative importance of individual species in ecosystem processes may be in need of re-evaluation.

  3. Sea level record obtained from submerged the Great Barrier Reef coral reefs

    NASA Astrophysics Data System (ADS)

    Yokoyama, Y.; Esat, T. M.; Thompson, W. G.; Thomas, A. L.; Webster, J.; Miyairi, Y.; Matsuzaki, H.; Okuno, J.; Fallon, S.; Braga, J.; Humblet, M.; Iryu, Y.; Potts, D. C.

    2013-12-01

    The last glacial is an interesting time in climate history. The growth and decay of large northern hemisphere ice sheets acting in harmony with major changes in ocean circulation amplified climate variations and resulted in severe and rapid climate swings throughout this time. The variability is not limited to climate but includes rapid, large scale changes in sea level recorded by tropical corals (eg., Yokoyama and Esat, 2011 Oceanography). Research done in the last decade using corals provides a better picture of the climate system, though only a few samples older than 15 ka are available. The Integrated Ocean Drilling Program (IODP) Expedition 325 drilled 34 holes across 17 sites in the Great Barrier Reef, Australia to recover fossil coral reef deposits. We recovered reef materials from water depth to 126 m that ranged in age from 9,000 years to older than 30,000 years ago covering several paleoclimatologically important events, including the Last Glacial Maximum. Two transects separated more than 600 km apart show an identical sea-level history thereby verifying the reliability of the records. Radiometrically dated corals and coralline algae indicate periods of rapid sea-level fluctuation at this time, likely due to complex interactions between ocean currents and ice sheets of the North Atlantic.

  4. Intrusive upwelling in the Central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Benthuysen, Jessica A.; Tonin, Hemerson; Brinkman, Richard; Herzfeld, Michael; Steinberg, Craig

    2016-11-01

    In the Central Great Barrier Reef, the outer continental shelf has an open reef matrix that facilitates the exchange of waters with the Coral Sea. During austral summer, cool water intrudes onto the shelf along the seafloor. Temperature observations reveal cool, bottom intrusions during a 6 year period from the Queensland Integrated Marine Observing System's Palm Passage mooring. A metric is used to identify 64 intrusion events. These intrusions predominantly occur from October to March including the wet season. During an event, the outer-shelf's near-bottom temperature decreases by 1-3°C typically over 1 week. The near-bottom salinity tends to increase, while near-surface changes do not reflect these tendencies. Intrusion events occur predominantly with either weakening equatorward winds or poleward wind bursts. A regional hydrodynamic model for the Great Barrier Reef captures the timing and amplitude of these intrusions. During intrusion events, isotherms tend to uplift over the continental slope and onto the shelf and the East Australian Current intensifies poleward. Over the shelf, a bottom-intensified onshore current coincides with bottom cooling. For numerous events, the model diagnostics reveal that the cross-shelf flow is dominated by the geostrophic contribution. A vertical circulation tilts the isopycnals upward on the southern side of the passage, causing an along-shelf density gradient and geostrophic onshore flow with depth. While wind fluctuations play a major role in controlling the along-shelf currents, model results indicate that a concurrent topographically induced circulation can assist the onshore spread of cool water.

  5. Ecological bridges and barriers in pelagic ecosystems

    NASA Astrophysics Data System (ADS)

    Briscoe, Dana K.; Hobday, Alistair J.; Carlisle, Aaron; Scales, Kylie; Eveson, J. Paige; Arrizabalaga, Haritz; Druon, Jean Noel; Fromentin, Jean-Marc

    2017-06-01

    Many highly mobile species are known to use persistent pathways or corridors to move between habitat patches in which conditions are favorable for particular activities, such as breeding or foraging. In the marine realm, environmental variability can lead to the development of temporary periods of anomalous oceanographic conditions that can connect individuals to areas of habitat outside a population's usual range, or alternatively, restrict individuals from areas usually within their range, thus acting as ecological bridges or ecological barriers. These temporary features can result in novel or irregular trophic interactions and changes in population spatial dynamics, and, therefore, may have significant implications for management of marine ecosystems. Here, we provide evidence of ecological bridges and barriers in different ocean regions, drawing upon five case studies in which particular oceanographic conditions have facilitated or restricted the movements of individuals from highly migratory species. We discuss the potential population-level significance of ecological bridges and barriers, with respect to the life history characteristics of different species, and inter- and intra-population variability in habitat use. Finally, we summarize the persistence of bridge dynamics with time, our ability to monitor bridges and barriers in a changing climate, and implications for forecasting future climate-mediated ecosystem change.

  6. Biogeochemical responses following coral mass spawning on the Great Barrier Reef: pelagic-benthic coupling

    NASA Astrophysics Data System (ADS)

    Wild, C.; Jantzen, C.; Struck, U.; Hoegh-Guldberg, O.; Huettel, M.

    2008-03-01

    This study quantified how the pulse of organic matter from the release of coral gametes triggered a chain of pelagic and benthic processes during an annual mass spawning event on the Australian Great Barrier Reef. Particulate organic matter (POM) concentrations in reef waters increased by threefold to 11-fold the day after spawning and resulted in a stimulation of pelagic oxygen consumption rates that lasted for at least 1 week. Water column microbial communities degraded the organic carbon of gametes of the broadcast-spawning coral Acropora millepora at a rate of >15% h-1, which is about three times faster than the degradation rate measured for larvae of the brooding coral Stylophora pistillata. Stable isotope signatures of POM in the water column reflected the fast transfer of organic matter from coral gametes into higher levels of the food chain, and the amount of POM reaching the seafloor immediately increased after coral spawning and then tailed-off in the next 2 weeks. Short-lasting phytoplankton blooms developed within a few days after the spawning event, indicating a prompt recycling of nutrients released through the degradation of spawning products. These data show the profound effects of coral mass spawning on the reef community and demonstrate the tight recycling of nutrients in this oligotrophic ecosystem.

  7. Holocene aggradation of the Dry Tortugas coral reef ecosystem

    USGS Publications Warehouse

    Brock, J.C.; Palaseanu-Lovejoy, M.; Poore, R.Z.; Nayegandhi, A.; Wright, C.W.

    2010-01-01

    Radiometric age dating of reef cores acquired at the Dry Tortugas coral reef ecosystem (DTCRE) was merged with lidar topographic mapping to examine Holocene reef development linked to spatial variation in growth and erosion under the control of sea level. Analysis of variance of lidar topography confirmed the presence of three distinct terraces on all three major DTCRE banks (Loggerhead Bank, Garden Bank, and Pulaski Bank). Reef building on the middle terrace (T2) began atop Pleistocene edifices on Loggerhead Bank by 8.0 ka (thousands of years ago) and on Garden Bank by 7.2 ka at elevations of about −16.0 m and −11.9 m, respectively, relative to present mean sea level. Following this initiation at different elevations, T2 aggraded vertically on both banks at different rates during the early Holocene under foundering conditions until a highstand at 5.2 ka, resulting in a 2.21 m offset in present mean T2 elevation between these banks. Initiation of an upper terrace (T1) occurred on both Loggerhead Bank and Garden Bank in association with sea-level fall to a lowstand at near 4.8 ka. This upper terrace initiated on Garden Bank at about 5.0 ka and then grew upward at rate of 2.5 mm year−1 until approximately 3.8 ka. On Loggerhead Bank, the upper T1 terrace formed after 4.5 ka at a higher vertical aggradation rate of 4.1 mm year−1, but at a lower elevation than on Garden Bank. Terrace T1 aggraded on Loggerhead Bank below the elevation of lowstands during late Holocene sea-level oscillation, and consequently erosion on Loggerhead Bank was minimal and likely limited to the crest of the upper terrace. In contrast, after 3.8 ka terrace T1 on Garden Bank likely tracked sea level and consequently underwent erosion when sea level fell to second, third and fourth lowstands at 3.3, 1.1, and 0.3 ka.

  8. Holocene aggradation of the Dry Tortugas coral reef ecosystem

    NASA Astrophysics Data System (ADS)

    Brock, J. C.; Palaseanu-Lovejoy, M.; Poore, R. Z.; Nayegandhi, A.; Wright, C. W.

    2010-12-01

    Radiometric age dating of reef cores acquired at the Dry Tortugas coral reef ecosystem (DTCRE) was merged with lidar topographic mapping to examine Holocene reef development linked to spatial variation in growth and erosion under the control of sea level. Analysis of variance of lidar topography confirmed the presence of three distinct terraces on all three major DTCRE banks (Loggerhead Bank, Garden Bank, and Pulaski Bank). Reef building on the middle terrace (T2) began atop Pleistocene edifices on Loggerhead Bank by 8.0 ka (thousands of years ago) and on Garden Bank by 7.2 ka at elevations of about -16.0 m and -11.9 m, respectively, relative to present mean sea level. Following this initiation at different elevations, T2 aggraded vertically on both banks at different rates during the early Holocene under foundering conditions until a highstand at 5.2 ka, resulting in a 2.21 m offset in present mean T2 elevation between these banks. Initiation of an upper terrace (T1) occurred on both Loggerhead Bank and Garden Bank in association with sea-level fall to a lowstand at near 4.8 ka. This upper terrace initiated on Garden Bank at about 5.0 ka and then grew upward at rate of 2.5 mm year-1 until approximately 3.8 ka. On Loggerhead Bank, the upper T1 terrace formed after 4.5 ka at a higher vertical aggradation rate of 4.1 mm year-1, but at a lower elevation than on Garden Bank. Terrace T1 aggraded on Loggerhead Bank below the elevation of lowstands during late Holocene sea-level oscillation, and consequently erosion on Loggerhead Bank was minimal and likely limited to the crest of the upper terrace. In contrast, after 3.8 ka terrace T1 on Garden Bank likely tracked sea level and consequently underwent erosion when sea level fell to second, third and fourth lowstands at 3.3, 1.1, and 0.3 ka.

  9. Adaptive management of the Great Barrier Reef: A globally significant demonstration of the benefits of networks of marine reserves

    PubMed Central

    McCook, Laurence J.; Ayling, Tony; Cappo, Mike; Choat, J. Howard; Evans, Richard D.; De Freitas, Debora M.; Heupel, Michelle; Hughes, Terry P.; Jones, Geoffrey P.; Mapstone, Bruce; Marsh, Helene; Mills, Morena; Molloy, Fergus J.; Pitcher, C. Roland; Pressey, Robert L.; Russ, Garry R.; Sutton, Stephen; Sweatman, Hugh; Tobin, Renae; Wachenfeld, David R.; Williamson, David H.

    2010-01-01

    The Great Barrier Reef (GBR) provides a globally significant demonstration of the effectiveness of large-scale networks of marine reserves in contributing to integrated, adaptive management. Comprehensive review of available evidence shows major, rapid benefits of no-take areas for targeted fish and sharks, in both reef and nonreef habitats, with potential benefits for fisheries as well as biodiversity conservation. Large, mobile species like sharks benefit less than smaller, site-attached fish. Critically, reserves also appear to benefit overall ecosystem health and resilience: outbreaks of coral-eating, crown-of-thorns starfish appear less frequent on no-take reefs, which consequently have higher abundance of coral, the very foundation of reef ecosystems. Effective marine reserves require regular review of compliance: fish abundances in no-entry zones suggest that even no-take zones may be significantly depleted due to poaching. Spatial analyses comparing zoning with seabed biodiversity or dugong distributions illustrate significant benefits from application of best-practice conservation principles in data-poor situations. Increases in the marine reserve network in 2004 affected fishers, but preliminary economic analysis suggests considerable net benefits, in terms of protecting environmental and tourism values. Relative to the revenue generated by reef tourism, current expenditure on protection is minor. Recent implementation of an Outlook Report provides regular, formal review of environmental condition and management and links to policy responses, key aspects of adaptive management. Given the major threat posed by climate change, the expanded network of marine reserves provides a critical and cost-effective contribution to enhancing the resilience of the Great Barrier Reef. PMID:20176947

  10. Adaptive management of the Great Barrier Reef: a globally significant demonstration of the benefits of networks of marine reserves.

    PubMed

    McCook, Laurence J; Ayling, Tony; Cappo, Mike; Choat, J Howard; Evans, Richard D; De Freitas, Debora M; Heupel, Michelle; Hughes, Terry P; Jones, Geoffrey P; Mapstone, Bruce; Marsh, Helene; Mills, Morena; Molloy, Fergus J; Pitcher, C Roland; Pressey, Robert L; Russ, Garry R; Sutton, Stephen; Sweatman, Hugh; Tobin, Renae; Wachenfeld, David R; Williamson, David H

    2010-10-26

    The Great Barrier Reef (GBR) provides a globally significant demonstration of the effectiveness of large-scale networks of marine reserves in contributing to integrated, adaptive management. Comprehensive review of available evidence shows major, rapid benefits of no-take areas for targeted fish and sharks, in both reef and nonreef habitats, with potential benefits for fisheries as well as biodiversity conservation. Large, mobile species like sharks benefit less than smaller, site-attached fish. Critically, reserves also appear to benefit overall ecosystem health and resilience: outbreaks of coral-eating, crown-of-thorns starfish appear less frequent on no-take reefs, which consequently have higher abundance of coral, the very foundation of reef ecosystems. Effective marine reserves require regular review of compliance: fish abundances in no-entry zones suggest that even no-take zones may be significantly depleted due to poaching. Spatial analyses comparing zoning with seabed biodiversity or dugong distributions illustrate significant benefits from application of best-practice conservation principles in data-poor situations. Increases in the marine reserve network in 2004 affected fishers, but preliminary economic analysis suggests considerable net benefits, in terms of protecting environmental and tourism values. Relative to the revenue generated by reef tourism, current expenditure on protection is minor. Recent implementation of an Outlook Report provides regular, formal review of environmental condition and management and links to policy responses, key aspects of adaptive management. Given the major threat posed by climate change, the expanded network of marine reserves provides a critical and cost-effective contribution to enhancing the resilience of the Great Barrier Reef.

  11. Impacts and recovery from severe tropical cyclone Yasi on the Great Barrier Reef.

    PubMed

    Beeden, Roger; Maynard, Jeffrey; Puotinen, Marjetta; Marshall, Paul; Dryden, Jen; Goldberg, Jeremy; Williams, Gareth

    2015-01-01

    Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1-Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance.

  12. Impact of an experimental eutrophication on the processes of bioerosion on the reef: One Tree Island, Great Barrier Reef, Australia.

    PubMed

    Chazottes, Veronique; Hutchings, Pat; Osorno, Alicia

    2017-02-23

    The components of bioerosion were investigated during ENCORE (The Effect of Nutrient Enrichment on Coral Reefs) over 2years of controlled additions of dissolved inorganic nitrogen and phosphorus. The study was carried out at One Tree Island, southern Great Barrier Reef, Australia. Rates of microbioerosion and external erosion by grazing were significantly higher at the enriched sites than at the control sites. Rates of accretion by coralline algae were also significantly higher at enriched sites. In contrast, rates of macroboring were not significantly different between enriched and control sites. This study highlights the importance of improving water quality on the reef to reduce rates of bioerosion given that quantities of dead coral substrates have recently substantially increased as a result of coral bleaching (Hughes et al., 2015) and several Crown of Thorns plagues (Fabricius et al., 2010; De'ath et al., 2012), on the Great Barrier Reef.

  13. Coral Reef and Coastal Ecosystems Decision Support Workshop April 27-29, 2010 Caribbean Coral Reef Institute, La Parguera, Puerto Rico

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) and Caribbean Coral Reef Institute (CCRI) hosted a Coral Reef and Coastal Ecosystems Decision Support Workshop on April 27-28, 2010 at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico. Forty-three participants, includin...

  14. Coral Reef and Coastal Ecosystems Decision Support Workshop April 27-29, 2010 Caribbean Coral Reef Institute, La Parguera, Puerto Rico

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) and Caribbean Coral Reef Institute (CCRI) hosted a Coral Reef and Coastal Ecosystems Decision Support Workshop on April 27-28, 2010 at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico. Forty-three participants, includin...

  15. Understanding Biophysical Interactions In The Great Barrier Reef Catchments: Better Landscape Management For Water Quality Outcomes

    NASA Astrophysics Data System (ADS)

    Bui, E. N.; Wilkinson, S. N.; Bartley, R.

    2014-12-01

    Sediment input to the Great Barrier Reef (GBR) lagoon has had deleterious impacts on seagrass and coral ecosystems. The response of the Australian government has been to develop policies to: (i) reverse the impact of threats from sediments and nutrients, and improve water quality and aquatic health of the GBR lagoon; and (ii) to facilitate the uptake of sustainable farming and land management practices that deliver improved ecosystem services, by at least 30 per cent of farmers. The Reef2050 Long term sustainability plan aims to identify priority locations for on-ground investment of remediation options that will result in a reduction of constituent loads to the GBR. Recent sediment tracing studies indicate that subsoil from erosion features such as gullies and channel banks are the dominant contributors of sediment in the GBR catchments. Better control of gully and streambank erosion and restoration of riparian habitats are therefore necessary. Here we review the evidence for bank erosion in the GBR catchments and how scientific evidence on feedback relationships between climate- geochemistry-vegetation-landforms can be used to develop better guidelines for streambank and gully re-vegetation.

  16. Genetic relatedness of foraminiferan ( Marginopora vertebralis) populations from reefs in the Western Coral Sea and Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Benzie, John A. H.

    1991-07-01

    Allozyme variation at four loci and phenetic variation for esterase were examined in M. vertebralis populations from 10 reefs from the Western Coral Sea and two from the Great Barrier Reef (GBR). Genetic distances (Nei's D) among populations on different reefs ranged from 0 0.932 and was neither related to geographical separation of reefs nor to depth of water separating reefs. These findings suggest long-distance dispersal by some means is sufficient to prevent genetic differentiation of M. vertebralis populations, and that M. vertebralis populations need not be connected by habitats suitable for the continued existence of the foraminiferan for genetic differentiation to be prevented. The Western Coral Sea reef populations did not form a related group that were genetically distinct from those on the GBR but were differentiated latitudinally. Reefs to the extreme north and south formed outliers while those on the northern half of the Queensland Plateau showed some differentiation from those on the southern half of the Plateau. This pattern of genetic variation appeared to reflect the distribution of populations north and south of the southern limit of the Southern Equatorial Current. Further work will be required to establish the soundness of this relationship, and to exclude other possible explanations related to historical events or the effects of selection. Relatively high dispersal was inferred between the Southern Queensland Plateau reefs and those sampled on the GBR (average Neis D=0.011). Holmes and Marion reefs formed discrete genetic outliers (average Neis D=0.69 and 0.20 respectively). In the case of Holmes reef other factors (e.g. history of recruitment) will need to be investigated to account for its marked genetic differentiation from the other reefs in the Queensland Plateau.

  17. Prey Density Threshold and Tidal Influence on Reef Manta Ray Foraging at an Aggregation Site on the Great Barrier Reef

    PubMed Central

    Armstrong, Asia O.; Armstrong, Amelia J.; Jaine, Fabrice R. A.; Couturier, Lydie I. E.; Fiora, Kym; Uribe-Palomino, Julian; Weeks, Scarla J.; Townsend, Kathy A.; Bennett, Mike B.; Richardson, Anthony J.

    2016-01-01

    Large tropical and sub-tropical marine animals must meet their energetic requirements in a largely oligotrophic environment. Many planktivorous elasmobranchs, whose thermal ecologies prevent foraging in nutrient-rich polar waters, aggregate seasonally at predictable locations throughout tropical oceans where they are observed feeding. Here we investigate the foraging and oceanographic environment around Lady Elliot Island, a known aggregation site for reef manta rays Manta alfredi in the southern Great Barrier Reef. The foraging behaviour of reef manta rays was analysed in relation to zooplankton populations and local oceanography, and compared to long-term sighting records of reef manta rays from the dive operator on the island. Reef manta rays fed at Lady Elliot Island when zooplankton biomass and abundance were significantly higher than other times. The critical prey density threshold that triggered feeding was 11.2 mg m-3 while zooplankton size had no significant effect on feeding. The community composition and size structure of the zooplankton was similar when reef manta rays were feeding or not, with only the density of zooplankton changing. Higher zooplankton biomass was observed prior to low tide, and long-term (~5 years) sighting data confirmed that more reef manta rays are also observed feeding during this tidal phase than other times. This is the first study to examine prey availability at an aggregation site for reef manta rays and it indicates that they feed in locations and at times of higher zooplankton biomass. PMID:27144343

  18. Prey Density Threshold and Tidal Influence on Reef Manta Ray Foraging at an Aggregation Site on the Great Barrier Reef.

    PubMed

    Armstrong, Asia O; Armstrong, Amelia J; Jaine, Fabrice R A; Couturier, Lydie I E; Fiora, Kym; Uribe-Palomino, Julian; Weeks, Scarla J; Townsend, Kathy A; Bennett, Mike B; Richardson, Anthony J

    2016-01-01

    Large tropical and sub-tropical marine animals must meet their energetic requirements in a largely oligotrophic environment. Many planktivorous elasmobranchs, whose thermal ecologies prevent foraging in nutrient-rich polar waters, aggregate seasonally at predictable locations throughout tropical oceans where they are observed feeding. Here we investigate the foraging and oceanographic environment around Lady Elliot Island, a known aggregation site for reef manta rays Manta alfredi in the southern Great Barrier Reef. The foraging behaviour of reef manta rays was analysed in relation to zooplankton populations and local oceanography, and compared to long-term sighting records of reef manta rays from the dive operator on the island. Reef manta rays fed at Lady Elliot Island when zooplankton biomass and abundance were significantly higher than other times. The critical prey density threshold that triggered feeding was 11.2 mg m-3 while zooplankton size had no significant effect on feeding. The community composition and size structure of the zooplankton was similar when reef manta rays were feeding or not, with only the density of zooplankton changing. Higher zooplankton biomass was observed prior to low tide, and long-term (~5 years) sighting data confirmed that more reef manta rays are also observed feeding during this tidal phase than other times. This is the first study to examine prey availability at an aggregation site for reef manta rays and it indicates that they feed in locations and at times of higher zooplankton biomass.

  19. Patterns in the distribution of coral communities across the central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Done, T. J.

    1982-10-01

    Despite the pre-eminence of the Great Barrier Reef, there has been little systematic description of its biotic communities, and in particular, of the corals themselves. Only recently have the problems of coral taxonomy been sufficiently resolved to allow a beginning to be made in rectifying this deficiency. The present study describes seventeen assemblages of corals which occupy the major habitat types found in and near the central Great Barrier Reef. The habitats studied range from the wave swept reef flats of Coral Sea atolls to the slopes of small reefs occupying sheltered, muddy conditions near the coast. These, and the array of reefs between, have characteristic suites of coral communities which provide the basis for a classification of reefs into non- Acropora reefs and various Acropora reefs. It is speculated that the faunistic differences are maintained because reefs are primarily self-seeded and because the majority of larvae from external sources are of species which are already present. The greatest diversity of both species and community types was found on reefs near the middle of the continental shelf, while the oceanic atolls and nearshore silt-affected reefs are almost equally depauperate.

  20. Carbon Cycle Model of a Hawaiian Barrier Reef under Rising Ocean Acidification and Temperature Conditions of the Anthropocene

    NASA Astrophysics Data System (ADS)

    Drupp, P. S.; Mackenzie, F. T.; De Carlo, E. H.; Guidry, M.

    2015-12-01

    A CO2-carbonic acid system biogeochemical box model (CRESCAM, Coral Reef and Sediment Carbonate Model) of the barrier reef flat in Kaneohe Bay, Hawai'i was developed to determine how increasing temperature and dissolved inorganic carbon (DIC) content of open ocean source waters, resulting from rising anthropogenic CO2 emissions and ocean acidification, affect the CaCO3budget of coral reef ecosystems. CRESCAM consists of 17 reservoirs and 59 fluxes, including a surface water column domain, a two-layer permeable sediment domain, and a coral framework domain. Physical, chemical, and biological processes such as advection, carbonate precipitation/dissolution, and net ecosystem production and calcification were modeled. The initial model parameters were constrained by experimental and field data from previous coral reef studies, mostly in Kaneohe Bay over the past 50 years. The field studies include data collected by our research group for both the water column and sediment-porewater system.The model system, initially in a quasi-steady state condition estimated for the early 21st century, was perturbed using future projections to the year 2100 of the Anthropocene of atmospheric CO2 ­concentrations, temperature, and source water DIC. These perturbations were derived from the most recent (2013) IPCC's Representative Concentration Pathway (RCP) scenarios, which predict CO2 atmospheric concentrations and temperature anomalies out to 2100. A series of model case studies were also performed whereby one or more parameters (e.g., coral calcification response to declining surface water pH) were altered to investigate potential future outcomes. Our model simulations predict that although the Kaneohe Bay barrier reef will likely see a significant decline in NEC over the coming century, it is unlikely to reach a state of net erosion - a result contrary to several global coral reef model projections. In addition, we show that depending on the future response of NEP and NEC to OA

  1. Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995-2009).

    PubMed

    Osborne, Kate; Dolman, Andrew M; Burgess, Scott C; Johns, Kerryn A

    2011-03-10

    Coral reef ecosystems worldwide are under pressure from chronic and acute stressors that threaten their continued existence. Most obvious among changes to reefs is loss of hard coral cover, but a precise multi-scale estimate of coral cover dynamics for the Great Barrier Reef (GBR) is currently lacking. Monitoring data collected annually from fixed sites at 47 reefs across 1300 km of the GBR indicate that overall regional coral cover was stable (averaging 29% and ranging from 23% to 33% cover across years) with no net decline between 1995 and 2009. Subregional trends (10-100 km) in hard coral were diverse with some being very dynamic and others changing little. Coral cover increased in six subregions and decreased in seven subregions. Persistent decline of corals occurred in one subregion for hard coral and Acroporidae and in four subregions in non-Acroporidae families. Change in Acroporidae accounted for 68% of change in hard coral. Crown-of-thorns starfish (Acanthaster planci) outbreaks and storm damage were responsible for more coral loss during this period than either bleaching or disease despite two mass bleaching events and an increase in the incidence of coral disease. While the limited data for the GBR prior to the 1980's suggests that coral cover was higher than in our survey, we found no evidence of consistent, system-wide decline in coral cover since 1995. Instead, fluctuations in coral cover at subregional scales (10-100 km), driven mostly by changes in fast-growing Acroporidae, occurred as a result of localized disturbance events and subsequent recovery.

  2. Nereididae (Annelida: Phyllodocida) of Lizard Island, Great Barrier Reef, Australia.

    PubMed

    Glasby, Christopher J

    2015-09-18

    Nereididae is one of the most ubiquitous of polychaete families, yet knowledge of their diversity in the northern Great Barrier Reef is poor; few species have been previously reported from any of the atolls or islands including Lizard Island. In this study, the diversity of the family from Lizard Island and surrounding reefs is documented based on museum collections derived from surveys conducted mostly over the last seven years. The Lizard Island nereidid fauna was found to be represented by 14 genera and 38 species/species groups, including 11 putative new species. Twelve species are newly reported from Lizard Island; four of these are also first records for Australia. For each genus and species, diagnoses and/or taxonomic remarks are provided in addition to notes on their habitat on Lizard Island, and general distribution; the existence of tissue samples tied to vouchered museum specimens is indicated. Fluorescence photography is used to help distinguish closely similar species of Nereis and Platynereis. A key is provided to facilitate identification and encourage further taxonomic, molecular and ecological studies on the group.

  3. Evaluating the attractiveness and effectiveness of artificial coral reefs as a recreational ecosystem service.

    PubMed

    Belhassen, Yaniv; Rousseau, Meghan; Tynyakov, Jenny; Shashar, Nadav

    2017-12-01

    Artificial reefs are increasingly being used around the globe to attract recreational divers, for both environmental and commercial reasons. This paper examines artificial coral reefs as recreational ecosystem services (RES) by evaluating their attractiveness and effectiveness and by examining divers' attitudes toward them. An online survey targeted at divers in Israel (n = 263) indicated that 35% of the dives in Eilat (a resort city on the shore of the Red Sea) take place at artificial reefs. A second study monitored divers' behavior around the Tamar artificial reef, one of the most popular submerged artificial reefs in Eilat, and juxtaposed it with divers' activities around two adjacent natural reefs. Findings show that the average diver density at the artificial reef was higher than at the two nearby natural knolls and that the artificial reef effectively diverts divers from natural knolls. A third study that examined the attitudes towards natural vs. artificial reefs found that the artificial reefs are considered more appropriate for training, but that divers feel less relaxed around them. By utilizing the RES approach as a framework, the study offers a comprehensive methodology that brings together the aesthetic, behavioral, and attitudinal aspects in terms of which artificial reefs can be evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Helium-3 inside atoll barrier reef interstitial water: A clue for geothermal endo-upwelling

    SciTech Connect

    Rougerie, F. ); Andrie, C. ); Jean-Baptiste, P.

    1991-01-01

    Interstitial waters from boreholes in the reef conglomerate of Tikehau atoll (S.W. Pacific) contain positive anomalous concentrations of dissolved inorganic nutrients compared to adjacent oceanic and lagoonal waters. These anomalies have been interpreted by geothermal circulation of deep oceanic waters penetrating the porous reef carbonates and ascending through the atoll flanks by thermo-convective advection as already proposed for other atolls. The authors present here a new strong evidence of this geothermal circulation inside atoll reefs from the record of helium-3 anomalies in borehole waters of Tikehau atoll. These results bear directly on three controversial aspects of reef history: the efficiency of thermal energy for circulation of reef pore waters, the sources of nutrients to support the net productivity of reef ecosystems, the early diagenesis of reef foundation carbonates.

  5. Serpulidae (Annelida) of Lizard Island, Great Barrier Reef, Australia.

    PubMed

    Kupriyanova, Elena K; Sun, Yanan; Hove, Harry A Ten; Wong, Eunice; Rouse, Greg W

    2015-09-18

    Serpulidae are obligatory sedentary polychaetes inhabiting calcareous tubes that are most common in subtropical and tropical areas of the world. This paper describes serpulid polychaetes collected from Lizard Island, Great Barrier Reef, Australia in 1983-2013 and deposited in Australian museums and overseas. In total, 17 serpulid genera were recorded, but although the study deals with 44 nominal taxa, the exact number of species remains unclear because a number of genera (i.e., Salmacina, Protula, Serpula, Spirobranchus, and Vermiliopsis) need world-wide revisions. Some species described herein are commonly found in the waters around Lizard Island, but had not previously been formally reported. A new species of Hydroides (H. lirs) and two new species of Semivermilia (S. annehoggettae and S. lylevaili) are described. A taxonomic key to all taxa found at Lizard Island is provided.

  6. Broadcast spawning by Pocillopora species on the Great Barrier Reef.

    PubMed

    Schmidt-Roach, Sebastian; Miller, Karen J; Woolsey, Erika; Gerlach, Gabriele; Baird, Andrew H

    2012-01-01

    The coral genus Pocillopora is one of the few to include some species that broadcast spawn gametes and some species that brood larvae, although reports of reproductive mode and timing vary within and among species across their range. Notably, the ubiquitous Pocillopora damicornis has been described as both a brooder and spawner, although evidence of broadcast spawning is rare. Here, we report observations of broadcast-spawning in four species of Pocillopora on the Great Barrier Reef (GBR), including P. damicornis. All species spawned predictably during the early morning, two days following the full moon, and spawning was observed in multiple months over the summer period (November to February). Eggs and sperm were free-spawned concurrently. Eggs were negatively buoyant and contained Symbiodinium. This newfound knowledge on the mode, timing and regularity of broadcast spawning in Pocillopora spp. on the GBR brings us one step closer to elucidating the complex reproductive ecology of these species.

  7. Horizontal mixing of Great Barrier Reef waters: Offshore diffusivity determined from radium isotope distribution

    NASA Astrophysics Data System (ADS)

    Hancock, Gary J.; Webster, Ian. T.; Stieglitz, Thomas C.

    2006-12-01

    The Great Barrier Reef (GBR), northern Australia, is the largest coral reef system in the world and provides habitat for highly diverse tropical marine ecosystems. Mixing in the coastal waters of the GBR is an important parameter influencing the health of these ecosystems. We have used the distribution of the four naturally occurring radium isotopes to determine the rate of mixing of nearshore waters of the central part of the GBR lagoon with water from the Coral Sea. The observed radium distribution is modeled using a one-dimensional diffusion model. The model improves on previous radium offshore mixing models by incorporating the benthic flux of radium diffusing across the sediment-water interface and offshore changes in water column depth. We find that the inner lagoon diffusivity (<20 km offshore) is best estimated using the short-lived isotopes 224Ra and 223Ra. The concordance of Kx estimated using the two different isotopes and the apparent consistency between measured riverine inflows to the lagoon and inflows inferred from the modeled salinity distribution provide confidence in the results. The mean value of Kx for the inner lagoon region of the southern central zone between latitudes 15.8°S and 19.0°S (265 ± 36 m2 s-1) is more than twice that in the northern central zone (14.3°S to 15.8°S). This difference likely reflects the different reef matrix density in the two zones. The distribution of the longer-lived isotope 228Ra indicates more rapid mixing in the middle and outer lagoon. These results indicate that central GBR water within 20 km of coast is flushed with outer lagoon water on a timescale of 18-45 days, with the flushing time increasing northward.

  8. Deep-reef fish assemblages of the Great Barrier Reef shelf-break (Australia).

    PubMed

    Sih, Tiffany L; Cappo, Mike; Kingsford, Michael

    2017-09-07

    Tropical mesophotic and sub-mesophotic fish ecology is poorly understood despite increasing vulnerability of deeper fish assemblages. Worldwide there is greater fishing pressure on continental shelf-breaks and the effects of disturbances on deeper fish species have not yet been assessed. Difficult to access, deeper reefs host undocumented fish diversity and abundance. Baited Remote Underwater Video Stations (BRUVS) with lights were used to sample deeper habitats (54-260 m), in the Great Barrier Reef (GBR), Australia. Here we describe fish biodiversity, relative abundance and richness, assessing the prediction that depth would drive assemblage structure in the GBR. Distinct groups of fishes were found with depth whilst overall richness and abundance decreased steeply between 100 and 260 m. Commercially-valuable Lutjanidae species from Pristipomoides and Etelis genera, were absent from shallower depths. Few fish species overlapped between adjacent depth strata, indicating unique assemblages with depth. We also detected new location records and potential new species records. The high biodiversity of fish found in shelf-break environments is poorly appreciated and depth is a strong predictor of assemblage composition. This may pose a challenge for managers of commercial fisheries as distinct depth ranges of taxa may translate to more readily targeted habitats, and therefore, an inherent vulnerability to exploitation.

  9. Recruitment Variability of Coral Reef Sessile Communities of the Far North Great Barrier Reef.

    PubMed

    Luter, Heidi M; Duckworth, Alan R; Wolff, Carsten W; Evans-Illidge, Elizabeth; Whalan, Steve

    2016-01-01

    One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered <5% of each tile. In contrast, mean abundances of sponges, ascidians, algae, and bryozoans combined was generally less than 20% of total recruitment, with percentage cover ranging between 15-30% per tile. Coral recruitment was very low, with <1 recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m-among tiles). Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs.

  10. Recruitment Variability of Coral Reef Sessile Communities of the Far North Great Barrier Reef

    PubMed Central

    Luter, Heidi M.; Duckworth, Alan R.; Wolff, Carsten W.; Evans-Illidge, Elizabeth; Whalan, Steve

    2016-01-01

    One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered <5% of each tile. In contrast, mean abundances of sponges, ascidians, algae, and bryozoans combined was generally less than 20% of total recruitment, with percentage cover ranging between 15–30% per tile. Coral recruitment was very low, with <1 recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m—among tiles). Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs. PMID:27049650

  11. Critical research needs for identifying future changes in Gulf coral reef ecosystems.

    PubMed

    Feary, David A; Burt, John A; Bauman, Andrew G; Al Hazeem, Shaker; Abdel-Moati, Mohamed A; Al-Khalifa, Khalifa A; Anderson, Donald M; Amos, Carl; Baker, Andrew; Bartholomew, Aaron; Bento, Rita; Cavalcante, Geórgenes H; Chen, Chaolun Allen; Coles, Steve L; Dab, Koosha; Fowler, Ashley M; George, David; Grandcourt, Edwin; Hill, Ross; John, David M; Jones, David A; Keshavmurthy, Shashank; Mahmoud, Huda; Moradi Och Tapeh, Mahdi; Mostafavi, Pargol Ghavam; Naser, Humood; Pichon, Michel; Purkis, Sam; Riegl, Bernhard; Samimi-Namin, Kaveh; Sheppard, Charles; Vajed Samiei, Jahangir; Voolstra, Christian R; Wiedenmann, Joerg

    2013-07-30

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/Persian Gulf (thereafter 'Gulf') coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region.

  12. Critical research needs for identifying future changes in Gulf coral reef ecosystems

    PubMed Central

    Feary, David A.; Burt, John A.; Bauman, Andrew G.; Al Hazeem, Shaker; Abdel-Moati, Mohamed A.; Al-Khalifa, Khalifa A.; Anderson, Donald M.; Amos, Carl; Baker, Andrew; Bartholomew, Aaron; Bento, Rita; Cavalcante, Geórgenes H.; Chen, Chaolun Allen; Coles, Steve L.; Dab, Koosha; Fowler, Ashley M.; George, David; Grandcourt, Edwin; Hill, Ross; John, David M.; Jones, David A.; Keshavmurthy, Shashank; Mahmoud, Huda; Moradi Och Tapeh, Mahdi; Mostafavi, Pargol Ghavam; Naser, Humood; Pichon, Michel; Purkis, Sam; Riegl, Bernhard; Samimi-Namin, Kaveh; Sheppard, Charles; Vajed Samiei, Jahangir; Voolstra, Christian R.; Wiedenmann, Joerg

    2014-01-01

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/ Persian Gulf (thereafter ‘Gulf’) coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region. PMID:23643407

  13. Understanding the future impacts of rapid ocean warming and acidification on the carbonate balance of coral reefs. ecosystems.

    NASA Astrophysics Data System (ADS)

    Hoegh-Guldberg, O.; Dove, S. G.

    2011-12-01

    Marine organisms and ecosystems are undergoing fundamental changes as a consequence of ocean warming and acidification, which must be understood if we are to anticipate and respond to the resulting changes to ecosystem services and functions. We have been investigating potential changes to the calcification and bioerosion rates of coral reefs using flow-through mesocosms at Heron Island on the southern Great Barrier Reef. In these experiments, we have been manipulating the temperature and pCO2 in order to simulate future ocean conditions described by IPCC scenarios (specifically B2, A1FI). We have also created pre-industrial conditions for comparison. Importantly, our system not only provides fine control over experimental conditions but also allows temperature and pCO2 to fluctuate with daily and seasonal changes measured (integrated over 3 h) at specific locations of interest on the Heron Island Reef, which allows a more 'realistic' analysis of the combined influences of ocean warming and acidification. In our first set of experiments, we have examined the impact of IPCC scenarios (year 2100) for a range of ecosystem phenomena relating to the carbonate balance of coral reefs including (1) phototrophic microborers within the dead skeletons of two coral species; (2) calcareous coralline algae, (3) turf algal communities in the presence and absence of grazing damselfish; (4) the calcification, growth, mortality and recruitment of the reef-building corals, and (5) microbial communities associated with corals. The overall conclusion of the studies conducted to date strongly suggests rapid movement to a negative carbonate balance for shallow water tropical coral reefs even under medium (B2) climate scenarios that involve SST increases of approximately +1.5oC and +250 ppm pCO2. Our conclusion is based on observations regarding key organisms that are involved in establishing the carbonate balance of coral reef organisms, and on the observed impacts of these conditions on

  14. The interaction of ocean acidification and carbonate chemistry on coral reef calcification: evaluating the carbonate chemistry Coral Reef Ecosystem Feedback (CREF) hypothesis on the Bermuda coral reef

    NASA Astrophysics Data System (ADS)

    Bates, N. R.; Amat, A.; Andersson, A. J.

    2009-07-01

    Despite the potential impact of ocean acidification on ecosystems such as coral reefs, surprisingly, there is very limited field data on the relationships between calcification and carbonate chemistry. In this study, contemporaneous in situ datasets of carbonate chemistry and calcification rates from the high-latitude coral reef of Bermuda over annual timescales provide a framework for investigating the present and future potential impact of rising pCO2 and ocean acidification on coral reef ecosystems in their natural environment. A strong correlation was found between the in situ rates of calcification for the major framework building coral species Diploria labyrinthiformis and the seasonal variability of [CO32-] and Ωaragonite, rather than other environmental factors such as light and temperature. These field observations also provide sufficient data to hypothesize that there is a seasonal "Carbonate Chemistry Coral Reef Ecosystem Feedback" (CREF hypothesis) between the primary components of the reef ecosystem (i.e. scleractinian hard corals and macroalgae) and carbonate chemistry. In early summer, strong net autotrophy from benthic components of the reef system enhance [CO32-] and Ωaragonite conditions, and rates of coral calcification due to the photosynthetic uptake of CO2. In late summer, rates of coral calcification are suppressed by release of CO2 from reef metabolism during a period of strong net heterotrophy. It is likely that this seasonal CREF mechanism is present in other tropical reefs although attenuated compared to high-latitude reefs such as Bermuda. Due to lower annual mean surface seawater [CO32-] and Ωaragonite in Bermuda compared to tropical regions, we anticipate that Bermuda corals will experiences seasonal periods of zero net calcification within the next decade at [CO32-] and Ωaragonite thresholds of ~184 mmoles kg-1 and 2.65. The Bermuda coral reef is one of the first responders to the negative impacts of ocean acidification, and we

  15. Guiding principles for the improved governance of port and shipping impacts in the Great Barrier Reef.

    PubMed

    Grech, A; Bos, M; Brodie, J; Coles, R; Dale, A; Gilbert, R; Hamann, M; Marsh, H; Neil, K; Pressey, R L; Rasheed, M A; Sheaves, M; Smith, A

    2013-10-15

    The Great Barrier Reef (GBR) region of Queensland, Australia, encompasses a complex and diverse array of tropical marine ecosystems of global significance. The region is also a World Heritage Area and largely within one of the world's best managed marine protected areas. However, a recent World Heritage Committee report drew attention to serious governance problems associated with the management of ports and shipping. We review the impacts of ports and shipping on biodiversity in the GBR, and propose a series of guiding principles to improve the current governance arrangements. Implementing these principles will increase the capacity of decision makers to minimize the impacts of ports and shipping on biodiversity, and will provide certainty and clarity to port operators and developers. A 'business as usual' approach could lead to the GBR's inclusion on the List of World Heritage in Danger in 2014.

  16. Dangerous demographics: the lack of juvenile humphead parrotfishes Bolbometopon muricatum on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Bellwood, D. R.; Choat, J. H.

    2011-06-01

    The humphead parrotfish, Bolbometopon muricatum, the largest of all parrotfish species, is heavily fished throughout most of its range. In remote and heavily protected locations, such as the Great Barrier Reef (GBR), it is a major component of parrotfish biomass and plays a critical role in ecosystem processes. However, extensive surveys of GBR populations have revealed a striking lack of juveniles. Of 633 individuals censused, just four were juveniles. This represents 0.6% juveniles and contrasts markedly with the 20.2-40.2% juveniles recorded in eight other medium to large parrotfish species. These low values in Bolbometopon are corroborated by over 5,000 h of independent observations and extensive museum collections. Whilst there is no evidence to suggest that this is an extraordinary new condition for GBR Bolbometopon, it may nevertheless expose them to special risks in a changing and unpredictable world. Despite excellent management on the GBR, Bolbometopon populations may be more vulnerable than previously thought.

  17. Fletcher field: a Silurian patch/barrier-reef complex in southwestern Ontario

    SciTech Connect

    Meadows, J.R.; Churcher, P.L.; Lawson, D.E.; Dusseault, M.B.

    1986-08-01

    The importance of reef growth to Silurian oil and gas production in the Michigan basin is reflected in the large number of studies that have been conducted. Unfortunately, most of these studies have focused on pinnacle reefs, with patch and barrier reefs being virtually ignored, although they represent viable oil and gas exploration targets. Many patch reefs in Ontario also represent targets for enhanced oil recovery projects. Without detailed geologic studies, these projects cannot be readily implemented. A recent sedimentologic study defined the facies distribution of a patch- and barrier-reef complex and its associated producing zones (A-1 carbonate). The Fletcher field, located in southwestern Ontario, was chosen for study. Structures and facies relationships were defined using nine cored holes and geophysical well logs. In addition, detailed studies were made of the clay mineralogy and the controversial Guelph A-1 carbonate contact. Defined facies relationships indicate that the Fletcher patch/barrier reef differs in many respects to pinnacle reefs. The facies are simpler and fewer, consisting of a poorly zoned reef core overlain by a micritized reef-top, lagoonal, and supratidal sequence. The origin of the green shale at the Guelph A-1 contact is interpreted as resulting partly from subaerial exposure and partly from the concentration of insolubles by pressure solution. The clay mineralogy consists of a monomineralic assemblage of illite. The amount and distribution of this assemblage would not significantly affect enhanced oil recovery.

  18. Integration of coral reef ecosystem process studies and remote sensing: Chapter 5

    USGS Publications Warehouse

    Brook, John; Yates, Kimberly; Halley, Robert

    2006-01-01

    Worldwide, local-scale anthropogenic stress combined with global climate change is driving shifts in the state of reef benthic communities from coral-rich to micro- or macroalgal-dominated (Knowlton, 1992; Done, 1999). Such phase shifts in reef benthic communities may be either abrupt or gradual, and case studies from diverse ocean basins demonstrate that recovery, while uncertain (Hughes, 1994), typically involves progression through successional stages (Done, 1992). These transitions in benthic community structure involve changes in community metabolism, and accordingly, the holistic evaluation of associated biogeochemical variables is of great intrinsic value (Done, 1992). Effective reef management requires advance prediction of coral reef alteration in the face of anthropogenic stress and change in the global environment (Hatcher, 1997a). In practice, this goal requires techniques that can rapidly discern, at an early stage, sublethal effects that may cause long-term increases in mortality (brown, 1988; Grigg and Dollar, 1990). Such methods would improve our understanding of the differences in the population, community, and ecosystem structure, as well as function, between pristine and degraded reefs. This knowledge base could then support scientifically based management strategies (Done, 1992). Brown (1988) noted the general lack of rigor in the assessment of stress on coral reefs and suggested that more quantitative approaches than currently exist are needed to allow objective understanding of coral reef dynamics. Sensitive techniques for the timely appraisal of pollution effects or generalized endemic stress in coral reefs are sorely lacking (Grigg and Dollar, 1990; Wilkinsin, 1992). Moreover, monitoring methods based on population inventories, sclerochronology, or reproductive biology tend to myopic and may give inconsistent results. Ideally, an improved means of evaluating reef stress would discriminate mortality due to natural causes from morality to

  19. Water quality and coral bleaching thresholds: formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia.

    PubMed

    Wooldridge, Scott A

    2009-05-01

    The threats of wide-scale coral bleaching and reef demise associated with anthropogenic climate change are widely known. Here, the additional role of poor water quality in lowering the thermal tolerance (i.e. bleaching 'resistance') of symbiotic reef corals is considered. In particular, a quantitative linkage is established between terrestrially-sourced dissolved inorganic nitrogen (DIN) loading and the upper thermal bleaching thresholds of inshore reefs on the Great Barrier Reef, Australia. Significantly, this biophysical linkage provides concrete evidence for the oft-expressed belief that improved coral reef management will increase the regional-scale survival prospects of corals reefs to global climate change. Indeed, for inshore reef areas with a high runoff exposure risk, it is shown that the potential benefit of this 'local' management imperative is equivalent to approximately 2.0-2.5 degrees C in relation to the upper thermal bleaching limit; though in this case, a potentially cost-prohibitive reduction in end-of-river DIN of >50-80% would be required. An integrated socio-economic modelling framework is outlined that will assist future efforts to understand (optimise) the alternate tradeoffs that the water quality/coral bleaching linkage presents.

  20. Spatial Scales of Bacterial Diversity in Cold-Water Coral Reef Ecosystems

    PubMed Central

    Schöttner, Sandra; Wild, Christian; Hoffmann, Friederike; Boetius, Antje; Ramette, Alban

    2012-01-01

    Background Cold-water coral reef ecosystems are recognized as biodiversity hotspots in the deep sea, but insights into their associated bacterial communities are still limited. Deciphering principle patterns of bacterial community variation over multiple spatial scales may however prove critical for a better understanding of factors contributing to cold-water coral reef stability and functioning. Methodology/Principal Findings Bacterial community structure, as determined by Automated Ribosomal Intergenic Spacer Analysis (ARISA), was investigated with respect to (i) microbial habitat type and (ii) coral species and color, as well as the three spatial components (iii) geomorphologic reef zoning, (iv) reef boundary, and (v) reef location. Communities revealed fundamental differences between coral-generated (branch surface, mucus) and ambient microbial habitats (seawater, sediments). This habitat specificity appeared pivotal for determining bacterial community shifts over all other study levels investigated. Coral-derived surfaces showed species-specific patterns, differing significantly between Lophelia pertusa and Madrepora oculata, but not between L. pertusa color types. Within the reef center, no community distinction corresponded to geomorphologic reef zoning for both coral-generated and ambient microbial habitats. Beyond the reef center, however, bacterial communities varied considerably from local to regional scales, with marked shifts toward the reef periphery as well as between different in- and offshore reef sites, suggesting significant biogeographic imprinting but weak microbe-host specificity. Conclusions/Significance This study presents the first multi-scale survey of bacterial diversity in cold-water coral reefs, spanning a total of five observational levels including three spatial scales. It demonstrates that bacterial communities in cold-water coral reefs are structured by multiple factors acting at different spatial scales, which has fundamental

  1. Temporal variation in development of ecosystem services from oyster reef restoration

    USGS Publications Warehouse

    LaPeyre, Megan K.; Humphries, Austin T.; Casas, Sandra M.; La Peyre, Jerome F.

    2014-01-01

    Restoration ecology relies heavily on ecosystem development theories that generally assume development of fully functioning natural systems over time, but often fail to identify the time-frame required for provision of desired functions, or acknowledge different pathways of functional development. In estuaries, a decline of overall habitat quality and functioning has led to significant efforts to restore critical ecosystem services, recently through the creation and restoration of oyster reefs. Oyster reef restoration generally occurs with goals of (1) increasing water quality via filtration through sustainable oyster recruitment, (2) stabilizing shorelines, and (3) creating and enhancing critical estuarine habitat for fish and invertebrates. We restored over 260 m2 of oyster reef habitat in coastal Louisiana and followed the development and provision of these ecosystem services from 2009 through 2012. Oysters recruited to reefs immediately, with densities of oysters greater than 75 mm exceeding 80 ind m−2 after 3 years, and provision of filtration rates of 1002 ± 187 L h−1 m−2; shoreline stabilization effects of the created reefs were minimal over the three years of monitoring, with some evidence of positive shoreline stabilization during higher wind/energy events only; increased nekton abundance of resident, but not larger transient fish was immediately measurable at the reefs, however, this failed to increase through time. Our results provide critical insights into the development trajectories of ecosystem services provided by restored oyster reefs, as well as the mechanisms mediating these changes. This is critical both ecologically to understand how and where a reef thrives, and for policy and management to guide decision-making related to oyster reef restoration and the crediting and accounting of ecosystem services.

  2. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs.

    PubMed

    Bellwood, David R; Hoey, Andrew S; Hughes, Terence P

    2012-04-22

    Around the globe, coral reefs and other marine ecosystems are increasingly overfished. Conventionally, studies of fishing impacts have focused on the population size and dynamics of targeted stocks rather than the broader ecosystem-wide effects of harvesting. Using parrotfishes as an example, we show how coral reef fish populations respond to escalating fishing pressure across the Indian and Pacific Oceans. Based on these fish abundance data, we infer the potential impact on four key functional roles performed by parrotfishes. Rates of bioerosion and coral predation are highly sensitive to human activity, whereas grazing and sediment removal are resilient to fishing. Our results offer new insights into the vulnerability and resilience of coral reefs to the ever-growing human footprint. The depletion of fishes causes differential decline of key ecosystem functions, radically changing the dynamics of coral reefs and setting the stage for future ecological surprises.

  3. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs

    PubMed Central

    Bellwood, David R.; Hoey, Andrew S.; Hughes, Terence P.

    2012-01-01

    Around the globe, coral reefs and other marine ecosystems are increasingly overfished. Conventionally, studies of fishing impacts have focused on the population size and dynamics of targeted stocks rather than the broader ecosystem-wide effects of harvesting. Using parrotfishes as an example, we show how coral reef fish populations respond to escalating fishing pressure across the Indian and Pacific Oceans. Based on these fish abundance data, we infer the potential impact on four key functional roles performed by parrotfishes. Rates of bioerosion and coral predation are highly sensitive to human activity, whereas grazing and sediment removal are resilient to fishing. Our results offer new insights into the vulnerability and resilience of coral reefs to the ever-growing human footprint. The depletion of fishes causes differential decline of key ecosystem functions, radically changing the dynamics of coral reefs and setting the stage for future ecological surprises. PMID:22090383

  4. Barriers, Opportunities, and Strategies for Urban Ecosystem ...

    EPA Pesticide Factsheets

    Urban ecosystem restoration can be especially difficult to accomplish because of complications like industrial pollutants, population density, infrastructure, and expense, however, the unique opportunities in urban settings, including the potential to provide benefits to many people, can make urban restoration especially rewarding. The success of urban restoration projects—even those focused primarily on ecological targets—depends on incorporating the findings of social research, though that research is relatively rare. This work attempts to fill that gap by presenting barriers, opportunities, and strategies for restoration projects in urban settings. Building from interviews with restoration managers involved in a suite of aquatic restoration projects in Rhode Island, we contribute to the learning axis of adaptive management by identifying and synthesizing the lessons learned from managers’ work in urban settings. We then consider how managers can design creative solutions to accomplish restoration goals by thinking more broadly about the multiple social or institutional, biophysical, and discursive dimensions of barriers to and opportunities for urban restoration. This report describes the results from 27 interviews with restoration managers, and informs managers about barriers, opportunities, and strategies for restoration in urban settings.

  5. Barriers, Opportunities, and Strategies for Urban Ecosystem ...

    EPA Pesticide Factsheets

    Urban ecosystem restoration can be especially difficult to accomplish because of complications like industrial pollutants, population density, infrastructure, and expense, however, the unique opportunities in urban settings, including the potential to provide benefits to many people, can make urban restoration especially rewarding. The success of urban restoration projects—even those focused primarily on ecological targets—depends on incorporating the findings of social research, though that research is relatively rare. This work attempts to fill that gap by presenting barriers, opportunities, and strategies for restoration projects in urban settings. Building from interviews with restoration managers involved in a suite of aquatic restoration projects in Rhode Island, we contribute to the learning axis of adaptive management by identifying and synthesizing the lessons learned from managers’ work in urban settings. We then consider how managers can design creative solutions to accomplish restoration goals by thinking more broadly about the multiple social or institutional, biophysical, and discursive dimensions of barriers to and opportunities for urban restoration. This report describes the results from 27 interviews with restoration managers, and informs managers about barriers, opportunities, and strategies for restoration in urban settings.

  6. [Effects of artificial reef construction to marine ecosystem services value: a case of Yang-Meikeng artificial reef region in Shenzhen].

    PubMed

    Qin, Chuan-xin; Chem, Pi-mao; Jia, Xiao-ping

    2011-08-01

    Based on the researches and statistic data of Yangmeikeng artificial reef region in Shenzhen in 2008 and by the method of ecosystem services value, this paper analyzed the effects of artificial reef construction in the region on the marine ecosystem services. After the artificial reef construction, the tourism service value in the region decreased from 87% to 42%, food supply service value increased from 7% to 27%, and the services value of raw material supply, climatic regulation, air quality regulation, water quality regulation, harmful organism and disease regulation, and knowledge expansion had a slight increase, as compared to the surrounding coastal areas. The total services value per unit area of Yangmeikeng artificial reef region in 2008 was 1714.7 x 10(4) yuan x km(-2), far higher than the mean services value of coastal marine ecosystem in the surrounding areas of Shenzhen and in the world. Artificial reef construction affected and altered the structure of regional marine ecosystem services value, and improved the regional ecosystem services value, being of significance for the rational exploitation and utilization of marine resources and the successful recovery of damaged marine eco-environment and fish resources. Utilizing the method of ecosystem services value to evaluate artificial reef construction region could better elucidate the benefits of artificial reef construction, effectively promote the development of our artificial reef construction, and improve the management of marine ecosystem.

  7. Carbon budget of coral reef systems: an overview of observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific regions

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Kawahata, Hodaka

    2003-04-01

    The seawater CO2 system and carbon budget were examined in coral reefs of wide variety with respect to topographic types and oceanographic settings in the Indo-Pacific oceans. A system-level net organic-to-inorganic carbon production ratio (ROI) is a master parameter for controlling the carbon cycle in coral reef systems, including their sink/source behavior for atmospheric CO2. A reef system with ROI less than approximately 0.6 has a potential for releasing CO2. The production ratio, however, is not easy to estimate on a particular reef. Instead, observations planned to detect the offshore-lagoon difference in partial pressure of CO2 (pCO2) and a graphic approach based on a total alkalinity-dissolved inorganic carbon diagram can reveal system-level performance of the carbon cycle in coral reefs. Surface pCO2 values in the lagoons of atolls and barrier reefs were consistently higher than those in their offshore waters, showing differences between 6 and 46 μatm, together with a depletion in total alkalinity up to 100 μmol kg-1, indicating predominant carbonate production relative to net organic carbon production. Reef topography, especially residence time of lagoon water, has a secondary effect on the magnitude of the offshore-lagoon pCO2 difference. Terrestrial influence was recognized in costal reefs, including the GBR lagoon and a fringing reef of the Ryukyu Islands. High carbon input appears to enhance CO2 efflux to the atmosphere because of their high dissolved C:P ratios. Coral reefs, in general, act as an alkalinity sink and a potentially CO2-releasing site due to carbonate precipitation and land-derived carbon.

  8. Rapid survey protocol that provides dynamic information on reef condition to managers of the Great Barrier Reef.

    PubMed

    Beeden, R J; Turner, M A; Dryden, J; Merida, F; Goudkamp, K; Malone, C; Marshall, P A; Birtles, A; Maynard, J A

    2014-12-01

    Managing to support coral reef resilience as the climate changes requires strategic and responsive actions that reduce anthropogenic stress. Managers can only target and tailor these actions if they regularly receive information on system condition and impact severity. In large coral reef areas like the Great Barrier Reef Marine Park (GBRMP), acquiring condition and impact data with good spatial and temporal coverage requires using a large network of observers. Here, we describe the result of ~10 years of evolving and refining participatory monitoring programs used in the GBR that have rangers, tourism operators and members of the public as observers. Participants complete Reef Health and Impact Surveys (RHIS) using a protocol that meets coral reef managers' needs for up-to-date information on the following: benthic community composition, reef condition and impacts including coral diseases, damage, predation and the presence of rubbish. Training programs ensure that the information gathered is sufficiently precise to inform management decisions. Participants regularly report because the demands of the survey methodology have been matched to their time availability. Undertaking the RHIS protocol we describe involves three ~20 min surveys at each site. Participants enter data into an online data management system that can create reports for managers and participants within minutes of data being submitted. Since 2009, 211 participants have completed a total of more than 10,415 surveys at more than 625 different reefs. The two-way exchange of information between managers and participants increases the capacity to manage reefs adaptively, meets education and outreach objectives and can increase stewardship. The general approach used and the survey methodology are both sufficiently adaptable to be used in all reef regions.

  9. Fish predation on sea urchins on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Young, M. A. L.; Bellwood, D. R.

    2012-09-01

    Predators are important for regulating adult sea urchin densities. Here, we employ remote underwater video cameras to record diurnal predation on tethered sea urchins at Lizard Island on the Great Barrier Reef (GBR). We identified four fish predators of adult sea urchins ( Balistoides viridescens, Balistapus undulatus, Lethrinus atkinsoni and Choerodon schoenleinii). Predator activity appeared to be site-specific. Balistoides viridescens and B. undulatus (f: Balistidae) were the two most important predators of Echinometra mathaei with the former handling E. mathaei significantly faster (mean 0.7 min) than B. undulatus (5.2 min). Balistoides viridescens also successfully preyed on 70 % of detections, while C. schoenleinii, B. undulatus and L. atkinsoni preyed on just 33, 17 and <1 %, respectively. Additionally, B. viridescens were behaviourally dominant among predator species and were observed as aggressors in 30 encounters with B. undulatus and 8 encounters with L. atkinsoni. In only one encounter was B. viridescens the recipient of any aggression (from B. undulatus). In terms of relative vulnerability, of the three sea urchin species examined, E. mathaei were more vulnerable to predation than Diadema setosum or Echinothrix calamaris, with mean handling times of 1.2, 4.8 and 10.3 min, respectively. Balistoides viridescens and B. undulatus both appear to be able to play an important role as predators of sea urchins on the relatively intact coral reefs of Lizard Island. However, B. viridescens emerge as the most efficient predator in terms of handling speed and the proportion of detections preyed upon. They were also the behaviourally dominant predator. This preliminary study of the predators of sea urchins on the GBR highlights the potential significance of relatively scarce but functionally important species.

  10. Deglacial origin of barrier reefs along low-latitude mixed siliciclastic and carbonate continental shelf edges.

    PubMed

    Droxler, André W; Jorry, Stéphan J

    2013-01-01

    Because the initial phase of barrier reef evolution is often buried under more recent phases of coralgal growth, the origins of modern barrier reefs have remained elusive. Direct observations on the nature of the substrate on top of which barrier reefs have developed are lacking, and simple questions about whether the substrate contributes to their overall linear morphology have remained unanswered. We present here a review dedicated to late-Quaternary shelf-edge deposition in tropical mixed siliciclastic-carbonate systems. These modern analogs are used to develop a quantitative understanding of shelf-edge barrier reef formation during different segments of relatively well-established sea-level cycles. The onset of rapid sea-level rise during early deglaciations, when siliciclastics were deposited along newly formed coasts at up-dip positions, provided opportune time windows for coralgal communities to establish themselves on top of maximum lowstand siliciclastic coastal deposits, such as beach ridges and lowstand shelf-edge deltas.

  11. Reef Fish Community Biomass and Trophic Structure Changes across Shallow to Upper-Mesophotic Reefs in the Mesoamerican Barrier Reef, Caribbean

    PubMed Central

    Gress, Erika; Wright, Georgina; Exton, Dan A.; Rogers, Alex D.

    2016-01-01

    Mesophotic coral ecosystems (MCEs; reefs 30-150m depth) are of increased research interest because of their potential role as depth refuges from many shallow reef threats. Yet few studies have identified patterns in fish species composition and trophic group structure between MCEs and their shallow counterparts. Here we explore reef fish species and biomass distributions across shallow to upper-MCE Caribbean reef gradients (5-40m) around Utila, Honduras, using a diver-operated stereo-video system. Broadly, we found reef fish species richness, abundance and biomass declining with depth. At the trophic group level we identified declines in herbivores (both total and relative community biomass) with depth, mostly driven by declines in parrotfish (Scaridae). Piscivores increased as a proportion of the community with increased depth while, in contrast to previous studies, we found no change in relative planktivorous reef fish biomass across the depth gradient. In addition, we also found evidence of ontogenetic migrations in the blue tang (Acanthurus coeruleus), striped parrotfish (Scarus iserti), blue chromis (Chromis cyanea), creole wrasse (Clepticus parrae), bluehead wrasse (Thalassoma bifasciatum) and yellowtail snapper (Ocyurus chrysurus), with a higher proportion of larger individuals at mesophotic and near-mesophotic depths than on shallow reefs. Our results highlight the importance of using biomass measures when considering fish community changes across depth gradients, with biomass generating different results to simple abundance counts. PMID:27332811

  12. Reef Fish Community Biomass and Trophic Structure Changes across Shallow to Upper-Mesophotic Reefs in the Mesoamerican Barrier Reef, Caribbean.

    PubMed

    Andradi-Brown, Dominic A; Gress, Erika; Wright, Georgina; Exton, Dan A; Rogers, Alex D

    2016-01-01

    Mesophotic coral ecosystems (MCEs; reefs 30-150m depth) are of increased research interest because of their potential role as depth refuges from many shallow reef threats. Yet few studies have identified patterns in fish species composition and trophic group structure between MCEs and their shallow counterparts. Here we explore reef fish species and biomass distributions across shallow to upper-MCE Caribbean reef gradients (5-40m) around Utila, Honduras, using a diver-operated stereo-video system. Broadly, we found reef fish species richness, abundance and biomass declining with depth. At the trophic group level we identified declines in herbivores (both total and relative community biomass) with depth, mostly driven by declines in parrotfish (Scaridae). Piscivores increased as a proportion of the community with increased depth while, in contrast to previous studies, we found no change in relative planktivorous reef fish biomass across the depth gradient. In addition, we also found evidence of ontogenetic migrations in the blue tang (Acanthurus coeruleus), striped parrotfish (Scarus iserti), blue chromis (Chromis cyanea), creole wrasse (Clepticus parrae), bluehead wrasse (Thalassoma bifasciatum) and yellowtail snapper (Ocyurus chrysurus), with a higher proportion of larger individuals at mesophotic and near-mesophotic depths than on shallow reefs. Our results highlight the importance of using biomass measures when considering fish community changes across depth gradients, with biomass generating different results to simple abundance counts.

  13. Coral community change on a turbid-zone reef complex: developing baseline records for the central Great Barrier Reef's nearshore coral reefs

    NASA Astrophysics Data System (ADS)

    Johnson, Jamie; Perry, Chris; Smithers, Scott; Morgan, Kyle; Johnson, Kenneth

    2016-04-01

    Understanding past coral community development and reef growth is crucial for placing contemporary ecological and environmental change within appropriate reef-building timescales. Coral reefs located within coastal inner-shelf zones are widely perceived to be most susceptible to declining water quality due to their proximity to modified river catchments. On the inner-shelf of Australia's Great Barrier Reef (GBR) the impacts and magnitude of declining water quality since European settlement (c. 1850 A.D.) still remain unclear. This relates to ongoing debates concerning the significance of increased sediment yields against the naturally high background sedimentary regimes and the paucity of long-term (>decadal) ecological datasets. To provide baseline records for interpreting coral community change within the turbid inner-shelf waters of the GBR, 21 cores were recovered from five nearshore reefs spanning an evolutionary spectrum of reef development. Discrete intervals pre- and post-dating European settlement, but deposited at equivalent water depths, were identified by radiocarbon dating, enabling the discrimination of extrinsic and intrinsic driven shifts within the coral palaeo-record. We report no discernible evidence of anthropogenically-driven disturbance on the coral community records at these sites. Instead, significant transitions in coral community assemblages relating to water depth and vertical reef accretion were observed. We suggest that these records may be used to contextualise observed contemporary ecological change within similar environments on the GBR.

  14. Lower Cretaceous barrier reef and outer shelf facies, Sligo Formation, south Texas

    SciTech Connect

    Kirkland, B.L.; Lighty, R.G.; Rezak, R.; Tieh, T.T.

    1987-09-01

    Along the south Texas margin, a vast carbonate-shelf complex with an extensive barrier-reef system and abundant shallow-lagoon and skeletal-shoal deposits existed during the Aptian to Albian. The Sligo Formation represents more than 609.6 m (2000 ft) of deposition along this margin. Facies types along the shelf edge were quantitatively delineated by cluster analysis of detailed point-count data from 90 thin sections of whole cores from five wells. In addition, studies of 42.6 m (140 ft) of core slabs and thin sections of well cuttings from four other wells were used to establish a regional depositional model. Along the Sligo shelf edge, three major facies occur: reef or reef rubble (two subfacies), back reef (three subfacies), and lagoonal (two subfacies). Reef facies are dominated by caprinids and also contain solenoporid algae, stromatoporoids, and an assortment of corals. Behind the reef, a spectrum of extensive back-reef deposits interfinger with shallow (< 5 m), lagoonal sediments. Farther behind the shelf-margin reef complex, along the outer shelf, benthic foraminifera, peloids, and ooids were deposited in high-energy shoals, and are interbedded with low-energy lagoonal sediments. The two types of buildups probably existed along the Sligo shelf margin and the equivalent Cupido shelf margin to the south: (1) wave-resistant coral-caprinid-stromatoporid barrier reefs (adjacent to restricted lagoonal facies), and (2) low-lying rudist banks (adjacent to diverse, washed lagoonal facies).

  15. Seasonal Dynamical Prediction of Coral Bleaching in the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Spillman, C. M.; Alves, O.

    2009-05-01

    Sea surface temperature (SST) is now recognised as the primary cause of mass coral bleaching events. Coral bleaching occurs during times of stress, particularly when SSTs exceed the coral colony's tolerance level. Global warming is potentially a serious threat to the future of the world's reef systems with predictions by the international community that bleaching will increase in both frequency and severity. Advance warning of anomalous sea surface temperatures, and thus potential bleaching events, would allow for the implementation of management strategies to minimise reef damage. Seasonal SST forecasts from the coupled ocean-atmosphere model POAMA (Bureau of Meteorology) have skill in the Great Barrier Reef (Australia) several months into the future. We will present model forecasts and probabilistic products for use in reef management, and assess model skill in the region. These products will revolutionise the way in which coral bleaching events are monitored and assessed in the Great Barrier Reef and Australian region.

  16. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    PubMed Central

    Rix, Laura; de Goeij, Jasper M.; Mueller, Christina E.; Struck, Ulrich; Middelburg, Jack J.; van Duyl, Fleur C.; Al-Horani, Fuad A.; Wild, Christian; Naumann, Malik S.; van Oevelen, Dick

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21–40% of the mucus carbon and 32–39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019

  17. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    PubMed

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-07

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.

  18. Climate variability of the Great Barrier Reef in relation to the Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Redondo Rodriguez, A.; Lough, J.; Weeks, S.

    2010-12-01

    The Great Barrier Reef (GBR) is a large and complex system encompassing a range of meteorological and oceanographic conditions that operate on different temporal and spatial scales. Superimposed on mean conditions are seasonal cycles of differing magnitudes along with inter-annual and longer time-scale variations of climate. The complexity of these conditions increases from broad scale global circulation patterns to regional and local reef scales. Many inferences about reef processes rely on isolated (in space and time) collections of observations. These need to be interpreted against the background of natural variability of the physical environment. In particular, how does GBR climate variability relate to that of the Tropical Pacific Ocean? This study expands upon earlier studies of climatic conditions near the GBR by examining temperature, pressure, winds and currents for a common 61-year period. It focuses on how the dynamics of the different physical environmental variables are related to larger-scale climate variability of the Tropical Pacific. The impact of El Niño-Southern Oscillation (ENSO) events on climate anomalies in the GBR is also re-assessed. Average surface climate conditions for the tropical Pacific Ocean and near the GBR, including average seasonal cycles, are presented with a brief description of the dynamics of the different variables over the period 1948 to 2009. This provides the necessary background for considering the nature of the anomalous climatic conditions that prevail in the GBR and Coral Sea region. Understanding the nature and causes of recent climate variability of the GBR is fundamental to assessing the impacts of future climate changes on this complex ecosystem.

  19. Challenges for Ecosystem Services Provided by Coral Reefs In the Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Kikuchi, R. K.; Elliff, C. I.

    2014-12-01

    Coral reefs provide many ecosystem services of which coastal populations are especially dependent upon, both in cases of extreme events and in daily life. However, adaptation to climate change is still relatively unknown territory regarding the ecosystem services provided by coastal environments, such as coral reefs. Management strategies usually consider climate change as a distant issue and rarely include ecosystem services in decision-making. Coral reefs are among the most vulnerable environments to climate change, considering the impact that increased ocean temperature and acidity have on the organisms that compose this ecosystem. If no actions are taken, the most likely scenario to occur will be of extreme decline in the ecosystem services provided by coral reefs. Loss of biodiversity due to the pressures of ocean warming and acidification will lead to increased price of seafood products, negative impact on food security, and ecological imbalances. Also, sea-level rise and fragile structures due to carbonate dissolution will increase vulnerability to storms, which can lead to shoreline erosion and ultimately threaten coastal communities. Both these conditions will undoubtedly affect recreation and tourism, which are often the most important use values in the case of coral reef systems. Adaptation strategies to climate change must take on an ecosystem-based approach with continuous monitoring programs, so that multiple ecosystem services are considered and not only retrospective trends are analyzed. Brazilian coral reefs have been monitored on a regular basis since 2000 and, considering that these marginal coral reefs of the eastern Atlantic are naturally under stressful conditions (e.g. high sedimentation rates), inshore reefs of Brazil, such as those in Tinharé-Boipeba, have shown lower vitality rates due to greater impacts from the proximity to the coastal area (e.g. pollution, overfishing, sediment run-off). This chronic negative impact must be addressed

  20. Evolving polycentric governance of the Great Barrier Reef.

    PubMed

    Morrison, Tiffany H

    2017-04-11

    A growing field of sustainability science examines how environments are transformed through polycentric governance. However, many studies are only snapshot analyses of the initial design or the emergent structure of polycentric regimes. There is less systematic analysis of the longitudinal robustness of polycentric regimes. The problem of robustness is approached by focusing not only on the structure of a regime but also on its context and effectiveness. These dimensions are examined through a longitudinal analysis of the Great Barrier Reef (GBR) governance regime, drawing on in-depth interviews and demographic, economic, and employment data, as well as organizational records and participant observation. Between 1975 and 2011, the GBR regime evolved into a robust polycentric structure as evident in an established set of multiactor, multilevel arrangements addressing marine, terrestrial, and global threats. However, from 2005 onward, multiscale drivers precipitated at least 10 types of regime change, ranging from contextual change that encouraged regime drift to deliberate changes that threatened regime conversion. More recently, regime realignment also has occurred in response to steering by international organizations and shocks such as the 2016 mass coral-bleaching event. The results show that structural density and stability in a governance regime can coexist with major changes in that regime's context and effectiveness. Clear analysis of the vulnerability of polycentric governance to both diminishing effectiveness and the masking effects of increasing complexity provides sustainability science and governance actors with a stronger basis to understand and respond to regime change.

  1. Evolving polycentric governance of the Great Barrier Reef

    PubMed Central

    Morrison, Tiffany H.

    2017-01-01

    A growing field of sustainability science examines how environments are transformed through polycentric governance. However, many studies are only snapshot analyses of the initial design or the emergent structure of polycentric regimes. There is less systematic analysis of the longitudinal robustness of polycentric regimes. The problem of robustness is approached by focusing not only on the structure of a regime but also on its context and effectiveness. These dimensions are examined through a longitudinal analysis of the Great Barrier Reef (GBR) governance regime, drawing on in-depth interviews and demographic, economic, and employment data, as well as organizational records and participant observation. Between 1975 and 2011, the GBR regime evolved into a robust polycentric structure as evident in an established set of multiactor, multilevel arrangements addressing marine, terrestrial, and global threats. However, from 2005 onward, multiscale drivers precipitated at least 10 types of regime change, ranging from contextual change that encouraged regime drift to deliberate changes that threatened regime conversion. More recently, regime realignment also has occurred in response to steering by international organizations and shocks such as the 2016 mass coral-bleaching event. The results show that structural density and stability in a governance regime can coexist with major changes in that regime’s context and effectiveness. Clear analysis of the vulnerability of polycentric governance to both diminishing effectiveness and the masking effects of increasing complexity provides sustainability science and governance actors with a stronger basis to understand and respond to regime change. PMID:28348238

  2. Estaurine Freshwater Entrainment By Oyster Reefs: Quantifying A Keystone Ecosystem Service

    NASA Astrophysics Data System (ADS)

    Kaplan, D. A.; Olabarrieta, M.; Frederick, P.; Valle-Levinson, A.; Seavey, J.

    2014-12-01

    Oyster reefs have been shown to provide myriad critical ecosystem services, however their role in directing flow and currents during non-storm conditions has been largely neglected. In many regions, oyster reefs form as linear structures perpendicular to the coast and across the path of streams and rivers, potentially entraining large volumes of freshwater flow and altering nearshore mixing. We hypothesize that these reefs have the potential to influence salinity over large areas, providing a "keystone" ecosystem service by supporting multiple estuarine functions. Here we present results from a field and modeling study to quantify the effects of reef extent and elevation on estuarine salinities under varying river discharge. We found salinity differences ranging from 2 to 16 g/kg between inshore and offshore sides of degraded oyster reefs in the Suwannee Sound (FL, USA), supporting the role of reefs as local-scale freshwater dams. Moreover, differences between inshore and offshore salinities were correlated with flow, with the most marked differences during periods of low flow. Hydrodynamic modeling using the 3-D Regional Ocean Modeling System (ROMS) suggests that the currently degraded reef system entrained greater volumes of freshwater in the past, buffering the landward advance of high salinities, particularly during low flow events related to droughts. Using ROMS, we also modeled a variety of hypothetical oyster bar morphology scenarios (historical, current, and "restored") to understand how changes in reef structure (elevation, extent, and completeness) impact estuarine mixing and near-shore salinities. Taken together, these results serve to: 1) elucidate a poorly documented ecosystem service of oyster reefs; 2) provide an estimate of the magnitude and sptial extent of the freshwater entrainment effect; and 3) offer quantitative information to managers and restoration specialists interested in restoring oyster habitat.

  3. Water quality in the inshore Great Barrier Reef lagoon: Implications for long-term monitoring and management.

    PubMed

    Schaffelke, Britta; Carleton, John; Skuza, Michele; Zagorskis, Irena; Furnas, Miles J

    2012-01-01

    Coastal and inshore areas of the Great Barrier Reef lagoon receive substantial amounts of material from adjacent developed catchments, which can affect the ecological integrity of coral reefs and other inshore ecosystems. A 5-year water quality monitoring dataset provides a 'base range' of water quality conditions for the inshore GBR lagoon and illustrates the considerable temporal and spatial variability in this system. Typical at many sites were high turbidity levels and elevated chlorophyll a and phosphorus concentrations, especially close to river mouths. Water quality variability was mainly driven by seasonal processes such as river floods and sporadic wind-driven resuspension as well as by regional differences such as land use. Extreme events, such as floods, caused large and sustained increases in water quality variables. Given the highly variable climate in the GBR region, long-term monitoring of marine water quality will be essential to detect future changes due to improved catchment management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Coral reef ecosystem decline: changing dynamics of coral reef carbonate production and implications for reef growth potential

    NASA Astrophysics Data System (ADS)

    Perry, Chris

    2016-04-01

    Global-scale deteriorations in coral reef health have caused major shifts in species composition and are likely to be exacerbated by climate change. It has been suggested that one effect of these ecological changes will be to lower reef carbonate production rates, which will impair reef growth potential and, ultimately, may lead to states of net reef erosion. However, quantitative data to support such assertions are limited, and linkages between the ecological state of coral reefs and their past and present geomorphic performance (in other words their growth potential) are poorly resolved. Using recently collected data from sites in the Caribbean and Indian Ocean, and which have undergone very different post-disturbance ecological trajectories over the last ~20-30 years, the differential impacts of disturbance on contemporary carbonate production regimes and on reef growth potential can be explored. In the Caribbean, a region which has been severely impacted ecological over the last 30+ years, our datasets show that average carbonate production rates on reefs are now less than 50% of pre-disturbance rates, and that calculated accretion rates (mm yr-1) are an about order of magnitude lower within shallow water habitats compared to Holocene averages. Collectively, these data suggest that recent ecological declines are now propagating through the system to impact on the geomorphic performance of Caribbean reefs and will impair their future growth potential. In contrast, the carbonate budgets of most reefs across the Chagos archipelago (central Indian Ocean), which is geographically remote and largely isolated from direct human disturbances, have recovered rapidly from major past disturbances (specifically the 1998 coral bleaching event). The carbonate budgets on these remote reefs now average +3.7 G (G = kg CaCO3 m-2 yr-1). Most significantly the production rates on Acropora-dominated reefs, which were most severely impacted by the 1998 bleaching event, average +8.4 G

  5. Small change, big difference: Sea surface temperature distributions for tropical coral reef ecosystems, 1950-2011

    NASA Astrophysics Data System (ADS)

    Lough, J. M.

    2012-09-01

    Changes in tropical sea surface temperature (SST) are examined over the period 1950-2011 during which global average temperature warmed by 0.4°C. Average tropical SST is warming about 70% of the global average rate. Spatially, significant warming between the two time periods, 1950-1980 and 1981-2011, has occurred across 65% of the tropical oceans. Coral reef ecosystems occupy 10% of the tropical oceans, typically in regions of warmer (+1.8°C) and less variable SST (80% of months within 3.3°C range) compared to non-reef areas (80% of months within 7.0°C range). SST is a primary controlling factor of coral reef distribution and coral reef organisms have already shown their sensitivity to the relatively small amount of warming observed so far through, for example, more frequent coral bleaching events and outbreaks of coral disease. Experimental evidence is also emerging of possible thermal thresholds in the range 30°C-32°C for some physiological processes of coral reef organisms. Relatively small changes in SST have already resulted in quite large differences in SST distribution with a maximum ‘hot spot’ of change in the near-equatorial Indo-Pacific which encompasses both the Indo-Pacific warm pools and the center of coral reef biodiversity. Identification of this hot spot of SST change is not new but this study highlights its significance with respect to tropical coral reef ecosystems. Given the modest amount of warming to date, changes in SST distribution are of particular concern for coral reefs given additional local anthropogenic stresses on many reefs and ongoing ocean acidification likely to increasingly compromise coral reef processes.

  6. Anticipative management for coral reef ecosystem services in the 21st century.

    PubMed

    Rogers, Alice; Harborne, Alastair R; Brown, Christopher J; Bozec, Yves-Marie; Castro, Carolina; Chollett, Iliana; Hock, Karlo; Knowland, Cheryl A; Marshell, Alyssa; Ortiz, Juan C; Razak, Tries; Roff, George; Samper-Villarreal, Jimena; Saunders, Megan I; Wolff, Nicholas H; Mumby, Peter J

    2015-02-01

    Under projections of global climate change and other stressors, significant changes in the ecology, structure and function of coral reefs are predicted. Current management strategies tend to look to the past to set goals, focusing on halting declines and restoring baseline conditions. Here, we explore a complementary approach to decision making that is based on the anticipation of future changes in ecosystem state, function and services. Reviewing the existing literature and utilizing a scenario planning approach, we explore how the structure of coral reef communities might change in the future in response to global climate change and overfishing. We incorporate uncertainties in our predictions by considering heterogeneity in reef types in relation to structural complexity and primary productivity. We examine 14 ecosystem services provided by reefs, and rate their sensitivity to a range of future scenarios and management options. Our predictions suggest that the efficacy of management is highly dependent on biophysical characteristics and reef state. Reserves are currently widely used and are predicted to remain effective for reefs with high structural complexity. However, when complexity is lost, maximizing service provision requires a broader portfolio of management approaches, including the provision of artificial complexity, coral restoration, fish aggregation devices and herbivore management. Increased use of such management tools will require capacity building and technique refinement and we therefore conclude that diversification of our management toolbox should be considered urgently to prepare for the challenges of managing reefs into the 21st century.

  7. Climate Warming, Marine Protected Areas and the Ocean-Scale Integrity of Coral Reef Ecosystems

    PubMed Central

    Graham, Nicholas A. J.; McClanahan, Tim R.; MacNeil, M. Aaron; Wilson, Shaun K.; Polunin, Nicholas V. C.; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D.; Letourneur, Yves; Bigot, Lionel; Galzin, René; Öhman, Marcus C.; Garpe, Kajsa C.; Edwards, Alasdair J.; Sheppard, Charles R. C.

    2008-01-01

    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change. PMID:18728776

  8. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    PubMed

    Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Polunin, Nicholas V C; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D; Letourneur, Yves; Bigot, Lionel; Galzin, René; Ohman, Marcus C; Garpe, Kajsa C; Edwards, Alasdair J; Sheppard, Charles R C

    2008-08-27

    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  9. Impacts and Recovery from Severe Tropical Cyclone Yasi on the Great Barrier Reef

    PubMed Central

    Beeden, Roger; Maynard, Jeffrey; Puotinen, Marjetta; Marshall, Paul; Dryden, Jen; Goldberg, Jeremy; Williams, Gareth

    2015-01-01

    Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1—Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance. PMID:25874718

  10. Cross-shelf exchanges between the Coral Sea and the Great Barrier Reef lagoon determined from a regional-scale numerical model

    NASA Astrophysics Data System (ADS)

    Schiller, Andreas; Herzfeld, Mike; Brinkman, Richard; Rizwi, Farhan; Andrewartha, John

    2015-10-01

    Analyses of the variability in a 3.5-year run of a hydrodynamic model developed for simulating the circulation of the Great Barrier Reef (GBR) are presented. Sea-surface temperature, salinity, currents and cross-shelf transports between the GBR lagoon and the deep ocean offshore are investigated and compare well to available observations. Water mass intrusions and flushing events are critical factors in determining the health of coral reef and continental shelf ecosystems. Results from tracer release experiments provide a synoptic view of the variability of residence times within the GBR and identify critical regions of shelf-ocean exchange. One such region of significant tracer contribution to the shelf is identified in the vicinity of the Pompey Reefs in an area characterised by increased frequency of upslope transported water. Another location of enhanced flux on to the shelf exists in the region bracketing Palm Passage, where the reef matrix is very open, and provides little obstacle to cross-shelf exchange. The Palm Passage location is the origin of a northwards plume of elevated concentration. The model circulation provides a robust and useful picture of the Great Barrier Reef, rendering the model suitable for providing input to biogeochemical and sediment models to simulate, at a broad scale, the ecosystem health, water quality, transport and fate of water and waterborne material, moving through catchments and into the GBR lagoon.

  11. Large-scale pesticide monitoring across Great Barrier Reef catchments--Paddock to Reef Integrated Monitoring, Modelling and Reporting Program.

    PubMed

    Smith, Rachael; Middlebrook, Rachael; Turner, Ryan; Huggins, Rae; Vardy, Suzanne; Warne, Michael

    2012-01-01

    The transport and potential toxicity of pesticides in Queensland (QLD) catchments from agricultural areas is a key concern for the Great Barrier Reef (GBR). In 2009, a pesticide monitoring program was established as part of the Australian and QLD Governments' Reef Plan (2009). Samples were collected at eight End of System sites (above the tidal zone) and three sub-catchment sites. At least two pesticides were detected at every site including insecticides, fungicides, herbicides, and the Reef Plan's (2009) five priority photosystem II (PSII) herbicides (diuron, atrazine, hexazinone, tebuthiuron and ametryn). Diuron, atrazine and metolachlor exceeded Australian and New Zealand water quality guideline trigger values (TVs) at eight sites. Accounting for PSII herbicide mixtures increased the estimated toxicity and led to larger exceedances of the TVs at more sites. This study demonstrates the widespread contamination of pesticides, particularly PSII herbicides, across the GBR catchment area which discharges to the GBR. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  12. Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef

    PubMed Central

    Valdivia, Abel; Cox, Courtney E.; Silbiger, Nyssa J.; Bruno, John F.

    2017-01-01

    Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0–10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations. PMID:28560093

  13. Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef.

    PubMed

    Hackerott, Serena; Valdivia, Abel; Cox, Courtney E; Silbiger, Nyssa J; Bruno, John F

    2017-01-01

    Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0-10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.

  14. Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs

    NASA Astrophysics Data System (ADS)

    D'Olivo, J. P.; McCulloch, M. T.; Eggins, S. M.; Trotter, J.

    2015-02-01

    The boron isotopic (δ11Bcarb) compositions of long-lived Porites coral are used to reconstruct reef-water pH across the central Great Barrier Reef (GBR) and assess the impact of river runoff on inshore reefs. For the period from 1940 to 2009, corals from both inner- and mid-shelf sites exhibit the same overall decrease in δ11Bcarb of 0.086 ± 0.033‰ per decade, equivalent to a decline in seawater pH (pHsw) of ~0.017 ± 0.007 pH units per decade. This decline is consistent with the long-term effects of ocean acidification based on estimates of CO2 uptake by surface waters due to rising atmospheric levels. We also find that, compared to the mid-shelf corals, the δ11Bcarb compositions of inner-shelf corals subject to river discharge events have higher and more variable values, and hence higher inferred pHsw values. These higher δ11Bcarb values of inner-shelf corals are particularly evident during wet years, despite river waters having lower pH. The main effect of river discharge on reef-water carbonate chemistry thus appears to be from reduced aragonite saturation state and higher nutrients driving increased phytoplankton productivity, resulting in the drawdown of pCO2 and increase in pHsw. Increased primary production therefore has the potential to counter the more transient effects of low-pH river water (pHrw) discharged into near-shore environments. Importantly, however, inshore reefs also show a consistent pattern of sharply declining coral growth that coincides with periods of high river discharge. This occurs despite these reefs having higher pHsw, demonstrating the overriding importance of local reef-water quality and reduced aragonite saturation state on coral reef health.

  15. Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs

    NASA Astrophysics Data System (ADS)

    D'Olivo, J. P.; McCulloch, M. T.; Eggins, S. M.; Trotter, J.

    2014-07-01

    The boron isotopic (δ11Bcarb) compositions of long-lived Porites coral are used to reconstruct reef-water pH across the central Great Barrier Reef (GBR) and assess the impact of river runoff on inshore reefs. For the period from 1940 to 2009, corals from both inner as well as mid-shelf sites exhibit the same overall decrease in δ11Bcarb of 0.086 ± 0.033‰ per decade, equivalent to a~decline in seawater pH (pHsw) of ~ 0.017 ± 0.007 pH units per decade. This decline is consistent with the long-term effects of ocean acidification based on estimates of CO2 uptake by surface waters due to rising atmospheric levels. We also find that compared to the mid-shelf corals, the δ11Bcarb compositions for inner shelf corals subject to river discharge events, have higher and more variable values and hence higher inferred pHsw values. These higher δ11Bcarb values for inner-shelf corals are particularly evident during wet years, despite river waters having lower pH. The main effect of river discharge on reef-water carbonate chemistry thus appears to be from higher nutrients driving increased phytoplankton productivity, resulting in the drawdown of pCO2 and increase in pHsw. Increased primary production therefore has the potential to counter the more transient effects of low pH river water (pHrw) discharged into near-shore environments. Importantly however, inshore reefs also show a consistent pattern of sharply declining coral growth that coincides with periods of high river discharge. This occurs despite these reefs having higher pHsw values and hence higher seawater aragonite saturation states, demonstrating the over-riding importance of local reef-water quality on coral reef health.

  16. Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes

    PubMed Central

    Mora, Camilo; Aburto-Oropeza, Octavio; Ayala Bocos, Arturo; Ayotte, Paula M.; Banks, Stuart; Bauman, Andrew G.; Beger, Maria; Bessudo, Sandra; Booth, David J.; Brokovich, Eran; Brooks, Andrew; Chabanet, Pascale; Cinner, Joshua E.; Cortés, Jorge; Cruz-Motta, Juan J.; Cupul Magaña, Amilcar; DeMartini, Edward E.; Edgar, Graham J.; Feary, David A.; Ferse, Sebastian C. A.; Friedlander, Alan M.; Gaston, Kevin J.; Gough, Charlotte; Graham, Nicholas A. J.; Green, Alison; Guzman, Hector; Hardt, Marah; Kulbicki, Michel; Letourneur, Yves; López Pérez, Andres; Loreau, Michel; Loya, Yossi; Martinez, Camilo; Mascareñas-Osorio, Ismael; Morove, Tau; Nadon, Marc-Olivier; Nakamura, Yohei; Paredes, Gustavo; Polunin, Nicholas V. C.; Pratchett, Morgan S.; Reyes Bonilla, Héctor; Rivera, Fernando; Sala, Enric; Sandin, Stuart A.; Soler, German; Stuart-Smith, Rick; Tessier, Emmanuel; Tittensor, Derek P.; Tupper, Mark; Usseglio, Paolo; Vigliola, Laurent; Wantiez, Laurent; Williams, Ivor; Wilson, Shaun K.; Zapata, Fernando A.

    2011-01-01

    Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas. PMID:21483714

  17. Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes.

    PubMed

    Mora, Camilo; Aburto-Oropeza, Octavio; Ayala Bocos, Arturo; Ayotte, Paula M; Banks, Stuart; Bauman, Andrew G; Beger, Maria; Bessudo, Sandra; Booth, David J; Brokovich, Eran; Brooks, Andrew; Chabanet, Pascale; Cinner, Joshua E; Cortés, Jorge; Cruz-Motta, Juan J; Cupul Magaña, Amilcar; Demartini, Edward E; Edgar, Graham J; Feary, David A; Ferse, Sebastian C A; Friedlander, Alan M; Gaston, Kevin J; Gough, Charlotte; Graham, Nicholas A J; Green, Alison; Guzman, Hector; Hardt, Marah; Kulbicki, Michel; Letourneur, Yves; López Pérez, Andres; Loreau, Michel; Loya, Yossi; Martinez, Camilo; Mascareñas-Osorio, Ismael; Morove, Tau; Nadon, Marc-Olivier; Nakamura, Yohei; Paredes, Gustavo; Polunin, Nicholas V C; Pratchett, Morgan S; Reyes Bonilla, Héctor; Rivera, Fernando; Sala, Enric; Sandin, Stuart A; Soler, German; Stuart-Smith, Rick; Tessier, Emmanuel; Tittensor, Derek P; Tupper, Mark; Usseglio, Paolo; Vigliola, Laurent; Wantiez, Laurent; Williams, Ivor; Wilson, Shaun K; Zapata, Fernando A

    2011-04-01

    Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas.

  18. Assessing the value of Earth Observation for managing coral reefs: an example from the Great Barrier Reef.

    PubMed

    Bouma, Jetske A; Kuik, Onno; Dekker, Arnold G

    2011-10-01

    The Integrated Global Observing Strategy (IGOS, 2003) argues that further investments in Earth Observation information are required to improve coral reef protection worldwide. The IGOS Strategy does not specify what levels of investments are needed nor does it quantify the benefits associated with better-protected reefs. Evaluating costs and benefits is important for determining optimal investment levels and for convincing policy-makers that investments are required indeed. Few studies have quantitatively assessed the economic benefits of Earth Observation information or evaluated the economic value of information for environmental management. This paper uses an expert elicitation approach based on Bayesian Decision Theory to estimate the possible contribution of global Earth Observation to the management of the Great Barrier Reef. The Great Barrier Reef including its lagoon is a World Heritage Area affected by anthropogenic changes in land-use as well as climate change resulting in increased flows of sediments, nutrients and carbon to the GBR lagoon. Since European settlement, nutrient and sediment loads having increased 5-10 times and the change in water quality is causing damages to the reef. Earth Observation information from ocean and coastal color satellite sensors can provide spatially and temporally dense information on sediment flows. We hypothesize that Earth Observation improves decision-making by enabling better-targeted run-off reduction measures and we assess the benefits (cost savings) of this improved targeting by optimizing run-off reductions under different states of the world. The analysis suggests that the benefits of Earth Observation can indeed be substantial, depending on the perceived accuracy of the information and on the prior beliefs of decision-makers. The results indicate that increasing informational accuracy is the most effective way for developers of Earth Observation information to increase the added value of Earth Observation for

  19. Geochemical Records of Bleaching Events and the Associated Stressors From the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Roark, E. B.; McCulloch, M.; Ingram, B. L.; Marshall, J. F.

    2003-12-01

    The health of coral reefs world-wide is increasingly threatened by a wide array of stressors. On the Great Barrier Reef (GBR) these stressors include increased sediment flux associated with land use changes, increased sea surface temperatures (SST) and salinity changes due to large floods, the latter two of which are factors in an increased number of bleaching events. The ability to document long-term change in these stressors along with changes in the number of bleaching events would help discern what are natural and anthropogenic changes in this ecosystem. Here we present results of an initial calibration effort aimed at identifying bleaching events and the associated stressors using stable isotopic and trace element analysis in coral cores. Three ˜15-year time series of geochemical measurements (δ 13C, δ 18O, and Sr/Ca) on Porites coral cores obtained from Pandora Reef and the Keppel Islands on the GBR have been developed at near weekly resolution. Since the δ 13C of the coral skeletal carbonate is known to be affected by both environmental factors (e.g. insolation and temperature) and physiological factors (e.g. photosynthesis, calcification, and the statues of the symbiotic relationship between corals and zooxanthellae) it is the most promising proxy for reconstructing past bleaching events. The first record (PAN-98) comes from a coral head that had undergone bleaching and died shortly after the large-scale bleaching events on Pandora Reef in 1998. A second core (PAN-02) was collected from a living coral within 10m of PAN-98 in 2002. Sr/Ca ratios in both cores tracked even the smallest details of an in situ SST record. The increase in SST that occurred three to four weeks prior to bleaching was faithfully recorded by a similar decrease in the Sr/Ca ratio in PAN-98, indicating that calcification continued despite the high SST of 30-31° C. The δ 13C values decreased by about 5‰ , one week after the SST increase, and remained at this value for about 4

  20. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park.

    PubMed

    Williamson, David H; Harrison, Hugo B; Almany, Glenn R; Berumen, Michael L; Bode, Michael; Bonin, Mary C; Choukroun, Severine; Doherty, Peter J; Frisch, Ashley J; Saenz-Agudelo, Pablo; Jones, Geoffrey P

    2016-12-01

    Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60-220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.

  1. The importance of large benthic foraminifera to reef island sediment budget and dynamics at Raine Island, northern Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Dawson, John L.; Smithers, Scott G.; Hua, Quan

    2014-10-01

    Low-lying reef islands are among the most vulnerable environments on earth to anthropogenic-induced climate change and sea-level rise over the next century because they are low, composed of unconsolidated sediment that is able to be mobilised by waves and currents, and depend on sediments supplied by reef organisms that are particularly sensitive to environmental changes (e.g. ocean temperatures and chemistry). Therefore, the spatial and temporal links between active carbonate production and island formation and dynamics are fundamental to predicting future island resilience, yet remain poorly quantified. In this paper we present results of a detailed geomorphological and sedimentological study of a reef and sand cay on the northern Great Barrier Reef. We provide an empirical investigation of the temporal linkages between sediment production and reef island development using a large collection of single grain AMS 14C dates. Large benthic foraminifera (LBF) are the single most important contributor to contemporary island sand mass (47%; ranging from 36% to 63%) at Raine Island, reflecting rapid rates of sediment production and delivery. Standing stock data reveal extremely high production rates on the reef (1.8 kg m- 2 yr- 1), while AMS 14C dates of single LBF tests indicate rapid rates of sediment transferral across the reef. We also demonstrate that age is statistically related to preservation and taphonomic grade (severely abraded tests > moderately abraded tests > pristine tests). We construct a contemporary reef and island sediment budget model for Raine Island that shows that LBF (Baculogypsina, Marginopora and Amphistegina) contribute 55% of the sediment produced on the reef annually, of which a large proportion (54%) contribute to the net annual accretion of the island. The tight temporal coupling between LBF growth and island sediment supply combined with the sensitivity of LBF to bleaching and ocean acidification suggests that islands dominated by LBF are

  2. Symbiodinium (Dinophyceae) community patterns in invertebrate hosts from inshore marginal reefs of the southern Great Barrier Reef, Australia.

    PubMed

    Tonk, Linda; Sampayo, Eugenia M; Chai, Aaron; Schrameyer, Verena; Hoegh-Guldberg, Ove

    2017-02-14

    The broad range in physiological variation displayed by Symbiodinium spp. has proven imperative during periods of environmental change and contribute to the survival of their coral host. Characterizing how host and Symbiodinium community assemblages differ across environmentally distinct habitats provides useful information to predict how corals will respond to major environmental change. Despite the extensive characterizations of Symbiodinium diversity found amongst reef cnidarians on the Great Barrier Reef (GBR) substantial biogeographic gaps exist, especially across inshore habitats. Here, we investigate Symbiodinium community patterns in invertebrates from inshore and mid-shelf reefs on the southern GBR, Australia. Dominant Symbiodinium types were characterized using denaturing gradient gel electrophoresis fingerprinting and sequencing of the ITS2 region of the ribosomal DNA. Twenty one genetically distinct Symbiodinium types including four novel types were identified from 321 reef-invertebrate samples comprising three sub-generic clades (A, C, and D). A range of host genera harbored C22a, which is normally rare or absent from inshore or low latitude reefs in the GBR. Multivariate analysis showed that host identity and sea surface temperature best explained the variation in symbiont communities across sites. Patterns of changes in Symbiodinium community assemblage over small geographic distances (100s of kilometers or less) indicate the likelihood that shifts in Symbiodinium distributions and associated host populations, may occur in response to future climate change impacting the GBR.

  3. River loads of suspended solids, nitrogen, phosphorus and herbicides delivered to the Great Barrier Reef lagoon.

    PubMed

    Kroon, Frederieke J; Kuhnert, Petra M; Henderson, Brent L; Wilkinson, Scott N; Kinsey-Henderson, Anne; Abbott, Brett; Brodie, Jon E; Turner, Ryan D R

    2012-01-01

    Degradation of coastal ecosystems in the Great Barrier Reef (GBR) lagoon, Australia, has been linked with increased land-based runoff of suspended solids, nutrients and pesticides since European settlement. This study estimated the increase in river loads for all 35 GBR basins, using the best available estimates of pre-European and current loads derived from catchment modelling and monitoring. The mean-annual load to the GBR lagoon for (i) total suspended solids has increased by 5.5 times to 17,000ktonnes/year, (ii) total nitrogen by 5.7 times to 80,000tonnes/year, (iii) total phosphorus by 8.9 times to 16,000tonnes/year, and (iv) PSII herbicides is 30,000kg/year. The increases in river loads differ across the 10 pollutants and 35 basins examined, reflecting differences in surface runoff, urbanisation, deforestation, agricultural practices, mining and retention by reservoirs. These estimates will facilitate target setting for water quality and desired ecosystem states, and enable prioritisation of critical sources for management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Holocene key coral species in the Northwest Pacific: indicators of reef formation and reef ecosystem responses to global climate change and anthropogenic stresses in the near future

    NASA Astrophysics Data System (ADS)

    Hongo, Chuki

    2012-03-01

    The geological record of key coral species that contribute to reef formation and maintenance of reef ecosystems is important for understanding the ecosystem response to global-scale climate change and anthropogenic stresses in the near future. Future responses can be predicted from accumulated data on Holocene reef species identified in drillcore and from data on raised reef terraces. The present study analyzes a dataset based on 27 drillcores, raised reef terraces, and 134 radiocarbon and U-Th ages from reefs of the Northwest Pacific, with the aim of examining the role of key coral species in reef growth and maintenance for reef ecosystem during Holocene sea-level change. The results indicate a latitudinal change in key coral species: arborescent Acropora (Acropora intermedia and Acropora muricata) was the dominant reef builder at reef crests in the tropics, whereas Porites (Porites australiensis, Porites lutea, and Porites lobata) was the dominant contributor to reef growth in the subtropics between 10,000 and 7000 cal. years BP (when the rate of sea-level rise was 10 m/ka). Acropora digitifera, Acropora hyacinthus, Acropora robusta/A. abrotanoides, Isopora palifera, Favia stelligera, and Goniastrea retiformis from the corymbose and tabular Acropora facies were the main key coral species at reef crests between 7000 and 5000 cal. years BP (when the rate of sea-level rise was 5 m/ka) and during the following period of stable sea-level. Massive Porites (P. australiensis, P. lutea, and P. lobata) contributed to reef growth in shallow lagoons during the period of stable sea level. Key coral species from the corymbose and tabular Acropora facies have the potential to build reefs and maintain ecosystems in the near future under a global sea-level rise of 2-6 m/ka, as do key coral species from the arborescent Acropora facies and massive Porites facies, which show vigorous growth and are tolerant to relatively deep-water, low-energy environments. However, these species

  5. Terrestrial pollutant runoff to the Great Barrier Reef: An update of issues, priorities and management responses.

    PubMed

    Brodie, J E; Kroon, F J; Schaffelke, B; Wolanski, E C; Lewis, S E; Devlin, M J; Bohnet, I C; Bainbridge, Z T; Waterhouse, J; Davis, A M

    2012-01-01

    The Great Barrier Reef (GBR) is a World Heritage Area and contains extensive areas of coral reef, seagrass meadows and fisheries resources. From adjacent catchments, numerous rivers discharge pollutants from agricultural, urban, mining and industrial activity. Pollutant sources have been identified and include suspended sediment from erosion in cattle grazing areas; nitrate from fertiliser application on crop lands; and herbicides from various land uses. The fate and effects of these pollutants in the receiving marine environment are relatively well understood. The Australian and Queensland Governments responded to the concerns of pollution of the GBR from catchment runoff with a plan to address this issue in 2003 (Reef Plan; updated 2009), incentive-based voluntary management initiatives in 2007 (Reef Rescue) and a State regulatory approach in 2009, the Reef Protection Package. This paper reviews new research relevant to the catchment to GBR continuum and evaluates the appropriateness of current management responses.

  6. Presence of Symbiodinium spp. in macroalgal microhabitats from the southern Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Venera-Ponton, D. E.; Diaz-Pulido, G.; Rodriguez-Lanetty, M.; Hoegh-Guldberg, O.

    2010-12-01

    Coral reefs are highly dependent on the mutualistic symbiosis between reef-building corals and dinoflagellates from the genus Symbiodinium. These dinoflagellates spend part of their life cycle outside the coral host and in the majority of the cases have to re-infect corals each generation. While considerable insight has been gained about Symbiodinium in corals, little is known about the ecology and biology of Symbiodinium in other reef microhabitats. This study documents Symbiodinium associating with benthic macroalgae on the southern Great Barrier Reef, including some Symbiodinium that are genetically close to the symbiotic strains from reef-building corals. It is possible that some of these Symbiodinium were in hospite, associated to soritid foraminifera or ciliates; nevertheless, the presence of Symbiodinium C3 and C15 in macroalgal microhabitats may also suggest a potential link between communities of Symbiodinium associating with both coral hosts and macroalgae.

  7. Genetic differentiation among populations of the brooding soft coral Clavularia koellikeri on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Bastidas, C.; Benzie, J.; Fabricius, K.

    2002-09-01

    The contribution of sexual and asexual reproduction, the spatial patterns of genetic structure, and the potential gene flow among populations were determined for the soft coral Clavularia koellikeri (Octocorallia: Alcyonacea, Clavulariidae) at ten sites among six reefs from two well-separated regions of the Great Barrier Reef (GBR), Australia. Eight allozyme loci indicated that colonies of C. koellikeri separated ≥3 m were produced sexually. Genetic diversity was lower in the southern (18°S) compared with the northern (10°S) populations, suggesting that reefs closer to the southernmost limit of the distribution of C. koellikeri within the GBR (19°S) may represent a more marginal habitat for this species. High levels of genetic differentiation were significant at all spatial scales (sites within reefs, reefs, and regions) from <4 km up to 1,000 km, indicating that C. koellikeri has restricted dispersal, consistent with having brooded larvae.

  8. Dynamical seasonal prediction of summer sea surface temperatures in the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Spillman, C. M.; Alves, O.

    2009-03-01

    Coral bleaching is a serious problem threatening the world coral reef systems, triggered by high sea surface temperatures (SST) which are becoming more prevalent as a result of global warming. Seasonal forecasts from coupled ocean-atmosphere models can be used to predict anomalous SST months in advance. In this study, we assess the ability of the Australian Bureau of Meteorology seasonal forecast model (POAMA) to forecast SST anomalies in the Great Barrier Reef, Australia, with particular focus on the major 1998 and 2002 bleaching events. Advance warning of potential bleaching events allows for the implementation of management strategies to minimise reef damage. This study represents the first attempt to apply a dynamical seasonal model to the problem of coral bleaching and predict SST over a reef system for up to 6 months lead-time, a potentially invaluable tool for reef managers.

  9. Geomorphology and sediment transport on a submerged back-reef sand apron: One Tree Reef, Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Harris, Daniel L.; Vila-Concejo, Ana; Webster, Jody M.

    2014-10-01

    Back-reef sand aprons are conspicuous and dynamic sedimentary features in coral reef systems. The development of these features influences the evolution and defines the maturity of coral reefs. However, the hydrodynamic processes that drive changes on sand aprons are poorly understood with only a few studies directly assessing sediment entrainment and transport. Current and wave conditions on a back-reef sand apron were measured during this study and a digital elevation model was developed through topographic and bathymetric surveying of the sand apron, reef flats and lagoon. The current and wave processes that may entrain and transport sediment were assessed using second order small amplitude (Stokes) wave theory and Shields equations. The morphodynamic interactions between current flow and geomorphology were also examined. The results showed that sediment transport occurs under modal hydrodynamic conditions with waves the main force entraining sediment rather than average currents. A morphodynamic relationship between current flow and geomorphology was also observed with current flow primarily towards the lagoon in shallow areas of the sand apron and deeper channel-like areas directing current off the sand apron towards the lagoon or the reef crest. These results show that the short-term mutual interaction of hydrodynamics and geomorphology in coral reefs can result in morphodynamic equilibrium.

  10. How models can support ecosystem-based management of coral reefs

    NASA Astrophysics Data System (ADS)

    Weijerman, Mariska; Fulton, Elizabeth A.; Janssen, Annette B. G.; Kuiper, Jan J.; Leemans, Rik; Robson, Barbara J.; van de Leemput, Ingrid A.; Mooij, Wolf M.

    2015-11-01

    Despite the importance of coral reef ecosystems to the social and economic welfare of coastal communities, the condition of these marine ecosystems have generally degraded over the past decades. With an increased knowledge of coral reef ecosystem processes and a rise in computer power, dynamic models are useful tools in assessing the synergistic effects of local and global stressors on ecosystem functions. We review representative approaches for dynamically modeling coral reef ecosystems and categorize them as minimal, intermediate and complex models. The categorization was based on the leading principle for model development and their level of realism and process detail. This review aims to improve the knowledge of concurrent approaches in coral reef ecosystem modeling and highlights the importance of choosing an appropriate approach based on the type of question(s) to be answered. We contend that minimal and intermediate models are generally valuable tools to assess the response of key states to main stressors and, hence, contribute to understanding ecological surprises. As has been shown in freshwater resources management, insight into these conceptual relations profoundly influences how natural resource managers perceive their systems and how they manage ecosystem recovery. We argue that adaptive resource management requires integrated thinking and decision support, which demands a diversity of modeling approaches. Integration can be achieved through complimentary use of models or through integrated models that systemically combine all relevant aspects in one model. Such whole-of-system models can be useful tools for quantitatively evaluating scenarios. These models allow an assessment of the interactive effects of multiple stressors on various, potentially conflicting, management objectives. All models simplify reality and, as such, have their weaknesses. While minimal models lack multidimensionality, system models are likely difficult to interpret as they

  11. The structure of Mediterranean rocky reef ecosystems across environmental and human gradients, and conservation implications.

    PubMed

    Sala, Enric; Ballesteros, Enric; Dendrinos, Panagiotis; Di Franco, Antonio; Ferretti, Francesco; Foley, David; Fraschetti, Simonetta; Friedlander, Alan; Garrabou, Joaquim; Güçlüsoy, Harun; Guidetti, Paolo; Halpern, Benjamin S; Hereu, Bernat; Karamanlidis, Alexandros A; Kizilkaya, Zafer; Macpherson, Enrique; Mangialajo, Luisa; Mariani, Simone; Micheli, Fiorenza; Pais, Antonio; Riser, Kristin; Rosenberg, Andrew A; Sales, Marta; Selkoe, Kimberly A; Starr, Rick; Tomas, Fiona; Zabala, Mikel

    2012-01-01

    Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m(-2)). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.

  12. The Structure of Mediterranean Rocky Reef Ecosystems across Environmental and Human Gradients, and Conservation Implications

    PubMed Central

    Sala, Enric; Ballesteros, Enric; Dendrinos, Panagiotis; Di Franco, Antonio; Ferretti, Francesco; Foley, David; Fraschetti, Simonetta; Friedlander, Alan; Garrabou, Joaquim; Güçlüsoy, Harun; Guidetti, Paolo; Halpern, Benjamin S.; Hereu, Bernat; Karamanlidis, Alexandros A.; Kizilkaya, Zafer; Macpherson, Enrique; Mangialajo, Luisa; Mariani, Simone; Micheli, Fiorenza; Pais, Antonio; Riser, Kristin; Rosenberg, Andrew A.; Sales, Marta; Selkoe, Kimberly A.; Starr, Rick; Tomas, Fiona; Zabala, Mikel

    2012-01-01

    Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m−2). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas. PMID:22393445

  13. The structure of Mediterranean rocky reef ecosystems across environmental and human gradients, and conservation implications

    USGS Publications Warehouse

    Sala, Enric; Ballesteros, Enric; Dendrinos, Panagiotis; Di Franco, Antonio; Ferretti, Francesco; Foley, David; Fraschetti, Simonetta; Friedlander, Alan M.; Garrabou, Joaquim; Guclusoy, Harun; Guidetti, Paolo; Halpern, Benjamin S.; Hereu, Bernat; Karamanlidis, Alexandros A.; Kizilkaya, Zafer; Macpherson, Enrique; Mangialajo, Luisa; Mariani, Simone; Micheli, Fiorenza; Pais, Antonio; Riser, Kristin; Rosenberg, Andrew A.; Sales, Marta; Selkoe, Kimberly A.; Starr, Rick; Tomas, Fiona; Zabala, Mikel

    2012-01-01

    Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m-2). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.

  14. Occurrence and distribution of antifouling biocide Irgarol-1051 in coral reef ecosystems, Zanzibar.

    PubMed

    Sheikh, Mohammed A; Juma, Fatma S; Staehr, Peter; Dahl, Karsten; Rashid, Rashid J; Mohammed, Mohammed S; Ussi, Ali M; Ali, Hassan R

    2016-08-15

    2-methythiol-4-tert-butylamino-6-cyclopropylamino-s-triazine (Irgarol-1051) has been widely used as effective alternative antifouling paint in marine structures including ships. However, it has been causing deleterious effects to marine organisms including reef building corals. The main objective of this study was to establish baseline levels of Irgarol-1051 around coral reefs and nearby ecosystems along coastline of Zanzibar Island. The levels of Irgarol-1051 ranged from 1.35ng/L around coral reefs to 15.44ng/L around harbor with average concentration of 4.11 (mean)±0.57 (SD) ng/L. This is below Environmental Risk Limit of 24ng/L as proposed by Dutch Authorities which suggests that the contamination is not alarming especially for coral reef ecosystem health. The main possible sources of the contamination are from shipping activities. This paper provides important baseline information of Irgarol-1051 around the coral reef ecosystems within the Western Indian Ocean (WIO) region and may be useful for formulation of marine conservation strategies and policies.

  15. Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Hoey, A. S.; Bellwood, D. R.

    2008-03-01

    Herbivorous fishes are a key functional group on coral reefs. These fishes are central to the capacity of reefs to resist phase shifts and regenerate after disturbance. Despite this importance few studies have quantified the direct impact of these fishes on coral reefs. In this study the roles of parrotfishes, a ubiquitous group of herbivorous fishes, were examined on reefs in the northern Great Barrier Reef. The distribution of 24 species of parrotfish was quantified on three reefs in each of three cross-shelf regions. Functional roles (grazing, erosion, coral predation and sediment reworking) were calculated as the product of fish density, bite area or volume, bite rate, and the proportion of bites taken from various substrata. Inner-shelf reefs supported high densities but low biomass of parrotfishes, with high rates of grazing and sediment reworking. In contrast, outer-shelf reefs were characterised by low densities and high biomass of parrotfish, with high rates of erosion and coral predation. Mid-shelf reefs displayed moderate levels of all roles examined. The majority of this variation in functional roles was attributable to just two species. Despite being rare, Bolbometopon muricatum, the largest parrotfish species, accounted for 87.5% of the erosion and 99.5% of the coral predation on outer-shelf reefs. B. muricatum displayed little evidence of selectivity of feeding, with most substrata being consumed in proportion to their availability. In contrast, the high density of Scarus rivulatus accounted for over 70% of the total grazing and sediment reworking on inner-shelf reefs. This marked variation in the roles of parrotfishes across the continental shelf suggests that each shelf system is shaped by fundamentally different processes.

  16. Trematodes of the Great Barrier Reef, Australia: emerging patterns of diversity and richness in coral reef fishes.

    PubMed

    Cribb, Thomas H; Bott, Nathan J; Bray, Rodney A; McNamara, Marissa K A; Miller, Terrence L; Nolan, Mathew J; Cutmore, Scott C

    2014-10-15

    The Great Barrier Reef holds the richest array of marine life found anywhere in Australia, including a diverse and fascinating parasite fauna. Members of one group, the trematodes, occur as sexually mature adult worms in almost all Great Barrier Reef bony fish species. Although the first reports of these parasites were made 100 years ago, the fauna has been studied systematically for only the last 25 years. When the fauna was last reviewed in 1994 there were 94 species known from the Great Barrier Reef and it was predicted that there might be 2,270 in total. There are now 326 species reported for the region, suggesting that we are in a much improved position to make an accurate prediction of true trematode richness. Here we review the current state of knowledge of the fauna and the ways in which our understanding of this fascinating group is changing. Our best estimate of the true richness is now a range, 1,100-1,800 species. However there remains considerable scope for even these figures to be incorrect given that fewer than one-third of the fish species of the region have been examined for trematodes. Our goal is a comprehensive characterisation of this fauna, and we outline what work needs to be done to achieve this and discuss whether this goal is practically achievable or philosophically justifiable. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  17. Localized Dispersal and Recruitment in Great Barrier Reef Corals: The Helix Experiment

    NASA Astrophysics Data System (ADS)

    Sammarco, Paul W.; Andrews, John C.

    1988-03-01

    To examine the problem of how far coral larvae disperse from their natal reef, coral recruitment densities were experimentally determined at distances up to 5 kilometers from a small, relatively isolated platform reef, Helix Reef, on the central Great Barrier Reef for 7 months. High concentrations of recruits, accounting for up to 40 percent of all recruitment, were found downstream of the reef in areas of high water residence time, suggesting that near-field (proximal) circulation has a profound influence on dispersal and recruitment of coral larvae. Coral recruitment declined logarithmically with distance from the reef, decreasing by an order of magnitude at radial distances of only 600 to 1200 meters. On an ecological time scale, advective dispersal of semipassive marine larvae with relatively short planktonic lives (minimally days) may be extensive, but success of recruitment is highly limited. Through evolutionary time, sufficient dispersal occurs to ensure gene flow to reef tracts hundreds or possibly thousands of kilometers apart. In the short term, however, coral reefs appear to be primarily self-seeded with respect to coral larvae.

  18. Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs.

    PubMed

    Baldock, T E; Golshani, A; Callaghan, D P; Saunders, M I; Mumby, P J

    2014-06-15

    A one-dimensional wave model was used to investigate the reef top wave dynamics across a large suite of idealized reef-lagoon profiles, representing barrier coral reef systems under different sea-level rise (SLR) scenarios. The modeling shows that the impacts of SLR vary spatially and are strongly influenced by the bathymetry of the reef and coral type. A complex response occurs for the wave orbital velocity and forces on corals, such that the changes in the wave dynamics vary reef by reef. Different wave loading regimes on massive and branching corals also leads to contrasting impacts from SLR. For many reef bathymetries, wave orbital velocities increase with SLR and cyclonic wave forces are reduced for certain coral species. These changes may be beneficial to coral health and colony resilience and imply that predicting SLR impacts on coral reefs requires careful consideration of the reef bathymetry and the mix of coral species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Clues to Coral Reef Ecosystem Health: Spectral Analysis Coupled with Radiative Transfer Modeling

    NASA Astrophysics Data System (ADS)

    Guild, L.; Ganapol, B.; Kramer, P.; Armstrong, R.; Gleason, A.; Torres, J.; Johnson, L.; Garfield, N.

    2003-12-01

    Coral reefs are among the world's most productive and biologically rich ecosystems and are some of the oldest ecosystems on Earth. Coralline structures protect coastlines from storms, maintain high diversity of marine life, and provide nurseries for marine species. Coral reefs play a role in carbon cycling through high rates of organic carbon metabolism and calcification. Coral reefs provide fisheries habitat that are the sole protein source for humans on remote islands. Reefs respond immediately to environmental change and therefore are considered "canaries" of the oceans. However, the world's reefs are in peril: they have shrunk 10-50% from their historical extent due to climate change and anthropogenic activity. An important contribution to coral reef research is improved spectral distinction of reef species' health where anthropogenic activity and climate change impacts are high. Relatively little is known concerning the spectral properties of coral or how coral structures reflect and transmit light. New insights into optical processes of corals under stressed conditions can lead to improved interpretation of airborne and satellite data and forecasting of immediate or long-term impacts of events such as bleaching and disease in coral. We are investigating the spatial and spectral resolution required to detect remotely changes in reef health by coupling spectral analysis of in situ spectra and airborne spectral data with a new radiative transfer model called CorMOD2. Challenges include light attenuation by the water column, atmospheric scattering, and scattering caused by the coral themselves that confound the spectral signal. In CorMOD2, input coral reflectance measurements produce modeled absorption through an inversion at each visible wavelength. The first model development phase of CorMOD2 imposes a scattering baseline that is constant regardless of coral condition, and further specifies that coral is optically thick. Evolution of CorMOD2 is towards a coral

  20. Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Uthicke, S.; Thompson, A.; Schaffelke, B.

    2010-03-01

    Although the debate about coral reef decline focuses on global disturbances (e.g., increasing temperatures and acidification), local stressors (nutrient runoff and overfishing) continue to affect reef health and resilience. The effectiveness of foraminiferal and hard-coral assemblages as indicators of changes in water quality was assessed on 27 inshore reefs along the Great Barrier Reef. Environmental variables (i.e., several water quality and sediment parameters) and the composition of both benthic foraminiferal and hard-coral assemblages differed significantly between four regions (Whitsunday, Burdekin, Fitzroy, and the Wet Tropics). Grain size and organic carbon and nitrogen content of sediments, and a composite water column parameter (based on turbidity and concentrations of particulate matter) explained a significant amount of variation in the data (tested by redundancy analyses) in both assemblages. Heterotrophic species of foraminifera were dominant in sediments with high organic content and in localities with low light availability, whereas symbiont-bearing mixotrophic species were dominant elsewhere. A similar suite of parameters explained 89% of the variation in the FORAM index (a Caribbean coral reef health indicator) and 61% in foraminiferal species richness. Coral richness was not related to environmental setting. Coral assemblages varied in response to environmental variables, but were strongly shaped by acute disturbances (e.g., cyclones, Acanthaster planci outbreaks, and bleaching), thus different coral assemblages may be found at sites with the same environmental conditions. Disturbances also affect foraminiferal assemblages, but they appeared to recover more rapidly than corals. Foraminiferal assemblages are effective bioindicators of turbidity/light regimes and organic enrichment of sediments on coral reefs.

  1. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries.

    PubMed

    McClanahan, Tim R; Graham, Nicholas A J; MacNeil, M Aaron; Muthiga, Nyawira A; Cinner, Joshua E; Bruggemann, J Henrich; Wilson, Shaun K

    2011-10-11

    Sustainably managing ecosystems is challenging, especially for complex systems such as coral reefs. This study develops critical reference points for sustainable management by using a large empirical dataset on the coral reefs of the western Indian Ocean to investigate associations between levels of target fish biomass (as an indicator of fishing intensity) and eight metrics of ecosystem state. These eight ecological metrics each exhibited specific thresholds along a continuum of fishable biomass ranging from heavily fished sites to old fisheries closures. Three thresholds lay above and five below a hypothesized window of fishable biomass expected to produce a maximum multispecies sustainable yield (B(MMSY)). Evaluating three management systems in nine countries, we found that unregulated fisheries often operate below the B(MMSY), whereas fisheries closures and, less frequently, gear-restricted fisheries were within or above this window. These findings provide tangible management targets for multispecies coral reef fisheries and highlight key tradeoffs required to achieve different fisheries and conservation goals.

  2. EFFECTS OF GLOBAL CHANGE ON CORAL REEF ECOSYSTEMS

    EPA Science Inventory

    Corals and coral reefs of the Caribbean and through the world are deteriorating at an accelerated rate. Several stressors are believed to contrbute to this decline, including global changes in atmospheric gases and land use patterns. In particular, warmer water temperatures and...

  3. EFFECTS OF GLOBAL CHANGE ON CORAL REEF ECOSYSTEMS

    EPA Science Inventory

    Corals and coral reefs of the Caribbean and through the world are deteriorating at an accelerated rate. Several stressors are believed to contrbute to this decline, including global changes in atmospheric gases and land use patterns. In particular, warmer water temperatures and...

  4. The mapping of the Posidonia oceanica (L.) Delile barrier reef meadow in the southeastern Gulf of Tunis (Tunisia)

    NASA Astrophysics Data System (ADS)

    Hachani, Mohamed Amine; Ziadi, Boutheina; Langar, Habib; Sami, Djallouli Aslem; Turki, Souad; Aleya, Lotfi

    2016-09-01

    Barrier reefs are among the most important ecomorphosis for Posidonia oceanica meadows and have long been subjected to anthropic pressures. The authors mapped the entire Sidi Rais (northeastern Tunisia) Posidonia oceanica barrier reef by means of remote sensing based on processing a satellite image acquired via Google Earth © software, coupled with field observations obtained by snorkeling. The map thus produced represents the P. oceanica barrier reef in its current state, covering a total area of 156.77 ha, the reef being divided into three distinct sections separated by reverse flows with each section subject to varied anthropic factors and disturbances.

  5. STS-32 Earth observation of the western Coral Sea and the Great Barrier Reef

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-32 Earth observation taken onboard Columbia, Orbiter Vehicle (OV) 102, is of the western Coral Sea and the Great Barrier Reef. The scene shows phytoplankton or algal bloom in the northwest Coral Sea. The western Coral Sea and the Great Barrier Reef waters offshore Queensland, Australia are the sites of some of the larger concentrations or 'blooms' of phytoplankton and algae in the open ocean. In the instance illustrated here, the leading edge of a probable concentration of algae or phytoplankton is seen as a light irregular line and sheen between the offshore Great Barrier Reef and the Queensland coast. Previous phytoplankton concentrations in this area have been reported by ships at sea as having formed floating mats as thick as two meters.

  6. STS-32 Earth observation of the western Coral Sea and the Great Barrier Reef

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-32 Earth observation taken onboard Columbia, Orbiter Vehicle (OV) 102, is of the western Coral Sea and the Great Barrier Reef. The scene shows phytoplankton or algal bloom in the northwest Coral Sea. The western Coral Sea and the Great Barrier Reef waters offshore Queensland, Australia are the sites of some of the larger concentrations or 'blooms' of phytoplankton and algae in the open ocean. In the instance illustrated here, the leading edge of a probable concentration of algae or phytoplankton is seen as a light irregular line and sheen between the offshore Great Barrier Reef and the Queensland coast. Previous phytoplankton concentrations in this area have been reported by ships at sea as having formed floating mats as thick as two meters.

  7. Diuron tolerance and potential degradation by pelagic microbiomes in the Great Barrier Reef lagoon

    PubMed Central

    Pantos, Olga; Morgan, Thomas C.; Rich, Virginia; Tonin, Hemerson; Bourne, David G.; Mercurio, Philip; Negri, Andrew P.; Tyson, Gene W.

    2016-01-01

    Diuron is a herbicide commonly used in agricultural areas where excess application causes it to leach into rivers, reach sensitive marine environments like the Great Barrier Reef (GBR) lagoon and pose risks to marine life. To investigate the impact of diuron on whole prokaryotic communities that underpin the marine food web and are integral to coral reef health, GBR lagoon water was incubated with diuron at environmentally-relevant concentration (8 µg/L), and sequenced at specific time points over the following year. 16S rRNA gene amplicon profiling revealed no significant short- or long-term effect of diuron on microbiome structure. The relative abundance of prokaryotic phototrophs was not significantly altered by diuron, which suggests that they were largely tolerant at this concentration. Assembly of a metagenome derived from waters sampled at a similar location in the GBR lagoon did not reveal the presence of mutations in the cyanobacterial photosystem that could explain diuron tolerance. However, resident phages displayed several variants of this gene and could potentially play a role in tolerance acquisition. Slow biodegradation of diuron was reported in the incubation flasks, but no correlation with the relative abundance of heterotrophs was evident. Analysis of metagenomic reads supports the hypothesis that previously uncharacterized hydrolases carried by low-abundance species may mediate herbicide degradation in the GBR lagoon. Overall, this study offers evidence that pelagic phototrophs of the GBR lagoon may be more tolerant of diuron than other tropical organisms, and that heterotrophs in the microbial seed bank may have the potential to degrade diuron and alleviate local anthropogenic stresses to inshore GBR ecosystems. PMID:26989611

  8. Diuron tolerance and potential degradation by pelagic microbiomes in the Great Barrier Reef lagoon.

    PubMed

    Angly, Florent E; Pantos, Olga; Morgan, Thomas C; Rich, Virginia; Tonin, Hemerson; Bourne, David G; Mercurio, Philip; Negri, Andrew P; Tyson, Gene W

    2016-01-01

    Diuron is a herbicide commonly used in agricultural areas where excess application causes it to leach into rivers, reach sensitive marine environments like the Great Barrier Reef (GBR) lagoon and pose risks to marine life. To investigate the impact of diuron on whole prokaryotic communities that underpin the marine food web and are integral to coral reef health, GBR lagoon water was incubated with diuron at environmentally-relevant concentration (8 µg/L), and sequenced at specific time points over the following year. 16S rRNA gene amplicon profiling revealed no significant short- or long-term effect of diuron on microbiome structure. The relative abundance of prokaryotic phototrophs was not significantly altered by diuron, which suggests that they were largely tolerant at this concentration. Assembly of a metagenome derived from waters sampled at a similar location in the GBR lagoon did not reveal the presence of mutations in the cyanobacterial photosystem that could explain diuron tolerance. However, resident phages displayed several variants of this gene and could potentially play a role in tolerance acquisition. Slow biodegradation of diuron was reported in the incubation flasks, but no correlation with the relative abundance of heterotrophs was evident. Analysis of metagenomic reads supports the hypothesis that previously uncharacterized hydrolases carried by low-abundance species may mediate herbicide degradation in the GBR lagoon. Overall, this study offers evidence that pelagic phototrophs of the GBR lagoon may be more tolerant of diuron than other tropical organisms, and that heterotrophs in the microbial seed bank may have the potential to degrade diuron and alleviate local anthropogenic stresses to inshore GBR ecosystems.

  9. Seismic evidence of glacial-age river incision into the Tahaa barrier reef, French Polynesia

    USGS Publications Warehouse

    Toomey, Michael; Woodruff, Jonathan D.; Ashton, Andrew D.; Perron, J. Taylor

    2016-01-01

    Rivers have long been recognized for their ability to shape reef-bound volcanic islands. On the time-scale of glacial–interglacial sea-level cycles, fluvial incision of exposed barrier reef lagoons may compete with constructional coral growth to shape the coastal geomorphology of ocean islands. However, overprinting of Pleistocene landscapes by Holocene erosion or sedimentation has largely obscured the role lowstand river incision may have played in developing the deep lagoons typical of modern barrier reefs. Here we use high-resolution seismic imagery and core stratigraphy to examine how erosion and/or deposition by upland drainage networks has shaped coastal morphology on Tahaa, a barrier reef-bound island located along the Society Islands hotspot chain in French Polynesia. At Tahaa, we find that many channels, incised into the lagoon floor during Pleistocene sea-level lowstands, are located near the mouths of upstream terrestrial drainages. Steeper antecedent topography appears to have enhanced lowstand fluvial erosion along Tahaa's southwestern coast and maintained a deep pass. During highstands, upland drainages appear to contribute little sediment to refilling accommodation space in the lagoon. Rather, the flushing of fine carbonate sediment out of incised fluvial channels by storms and currents appears to have limited lagoonal infilling and further reinforced development of deep barrier reef lagoons during periods of highstand submersion.

  10. Organic biomarkers to describe the major carbon inputs and cycling of organic matter in the central Great Barrier Reef region

    NASA Astrophysics Data System (ADS)

    Burns, Kathryn; Brinkman, Diane

    2011-06-01

    Controversy surrounds the sources and transport of land derived pollutants in the Great Barrier Reef ecosystem because there is insufficient knowledge of the mechanism of movement of organic contaminants and the cycling of organic matter in this dynamic system. Thus a sediment and sediment trap study was used to describe the composition of resuspended and surface sediments in the south central Great Barrier Reef and its lagoon. This region is characterised by strong tides (6-8 m at Mackay) and trade winds regularly about 15-20 knots. A series of organic biomarkers detailed the cyclical processes of sediment resuspension, recolonising with marine algae and bacteria, packaging into zooplankton faecal pellets and resettlement to sediments where the organics undergo further diagenesis. With each cycle the inshore sediments are diluted with CaCO 3 reef sediments and moved further offshore with the strong ebb tide currents. This results in transport of land derived materials offshore and little storage of organic materials in the lagoon or reef sediments. These processes were detailed by inorganic measurements such as %CaCO 3 and Al/Ca ratios, and by the compositions of hydrocarbon, sterol, alcohol, and fatty acid lipid fractions. Persistent contaminants such as coal dust from a coastal loading facility can be detected in high concentration inshore and decreasing out to the shelf break at 180 m approximately 40 nautical miles offshore. The normal processes would likely be amplified during cyclonic and other storms. The lipids show the sources of carbon to include diatoms and other phytoplankton, creanaerchaeota, sulfate reducing and other bacteria, land plants including mangrove leaves, plus coal dust and other petroleum contaminants.

  11. Last interglacial reef growth beneath Belize barrier and isolated platform reefs

    NASA Astrophysics Data System (ADS)

    Gischler, Eberhard; Lomando, Anthony J.; Hudson, J. Harold; Holmes, Charles W.

    2000-05-01

    We report the first radiometric dates (thermal-ionization mass spectrometry) from late Pleistocene reef deposits from offshore Belize, the location of the largest modern reef complex in the Atlantic Ocean. The results presented here can be used to explain significant differences in bathymetry, sedimentary facies, and reef development of this major reef area, and the results are significant because they contribute to the knowledge of the regional geology of the eastern Yucatán. The previously held concept of a neotectonically stable eastern Yucatán is challenged. The dates indicate that Pleistocene reefs and shallow-water limestones, which form the basement of modern reefs in the area, accumulated ca. 125 130 ka. Significant differences in elevation of the samples relative to present sea level (>10 m) have several possible causes. Differential subsidence along a series of continental margin fault blocks in combination with variation in karstification are probably the prime causes. Differential subsidence is presumably related to initial extension and later left-lateral movements along the adjacent active boundary between the North American and Caribbean plates. Increasing dissolution toward the south during Pleistocene sea-level lowstands is probably a consequence of higher precipitation rates in mountainous southern Belize.

  12. Last interglacial reef growth beneath Belize barrier and isolated platform reefs

    USGS Publications Warehouse

    Gischler, Eberhard; Lomando, Anthony J.; Hudson, J. Harold; Holmes, Charles W.

    2000-01-01

    We report the first radiometric dates (thermal-ionization mass spectrometry) from late Pleistocene reef deposits from offshore Belize, the location of the largest modern reef complex in the Atlantic Ocean. The results presented here can be used to explain significant differences in bathymetry, sedimentary facies, and reef development of this major reef area, and the results are significant because they contribute to the knowledge of the regional geology of the eastern Yucatán. The previously held concept of a neotectonically stable eastern Yucatán is challenged. The dates indicate that Pleistocene reefs and shallow-water limestones, which form the basement of modern reefs in the area, accumulated ca. 125–130 ka. Significant differences in elevation of the samples relative to present sea level (>10 m) have several possible causes. Differential subsidence along a series of continental margin fault blocks in combination with variation in karstification are probably the prime causes. Differential subsidence is presumably related to initial extension and later left-lateral movements along the adjacent active boundary between the North American and Caribbean plates. Increasing dissolution toward the south during Pleistocene sea-level lowstands is probably a consequence of higher precipitation rates in mountainous southern Belize.

  13. The Great Barrier Reef Ocean Observing System Mooring array: Monitoring the Western Boundary Currents of the Coral Sea and Impacts on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Steinberg, C. R.; McAllister, F.; Brinkman, B. W.; Pitcher, C.; Luetchford, J.; Rigby, P.

    2009-05-01

    Since 1987 Great Barrier Reef weather and water temperature observations have been transmitted in near real time using HF radio from pontoons or towers on coral reefs by AIMS. In contrast oceanographic measurements have however been restricted to loggers serviced at quarterly to half yearly downloads. The Great Barrier Reef Ocean Observing System (GBROOS) is a regional node of the Integrated Marine Observing System (IMOS). IMOS is an Australian Government initiative established under the National Collaborative Research Infrastructure Strategy and has been supported by Queensland Government since 2006. GBROOS comprises real time observations from weather stations, oceanographic moorings, underway ship observations, ocean surface radar, satellite image reception and reef based sensor networks. This paper focuses on an array of in-line moorings that have been deployed along the outer Great Barrier Reef in order to monitor the Western Boundary currents of the Coral Sea. The Westward flowing Southern Equatorial Current bifurcates into the poleward flowing East Australian Current and the equatorward North Queensland Current. The 4 mooring pairs consist of a continental slope mooring, nominally in 200m of water and one on the outer continental shelf within the GBR matrix in depths of 30 to 70m. The array is designed to detect any changes in circulation, temperature response, mixed layer depth and ocean-shelf interactions. A review of likely impacts of climate change on the physical oceanography of the GBR is providing a basis upon which to explore what processes may be affected by climate change. Sample data and results from the initial year of observations will be presented.

  14. Satellite Remote Sensing of Coral Reefs: By Learning about Coral Reefs, Students Gain an Understanding of Ecosystems and How Cutting-Edge Technology Can Be Used to Study Ecological Change

    ERIC Educational Resources Information Center

    Palandro, David; Thoms, Kristin; Kusek, Kristen; Muller-Karger, Frank; Greely, Teresa

    2005-01-01

    Coral reefs are one of the most important ecosystems on the planet, providing sustenance to both marine organisms and humans. Yet they are also one of the most endangered ecosystems as coral reef coverage has declined dramatically in the past three decades. Researchers continually seek better ways to map coral reef coverage and monitor changes…

  15. Satellite Remote Sensing of Coral Reefs: By Learning about Coral Reefs, Students Gain an Understanding of Ecosystems and How Cutting-Edge Technology Can Be Used to Study Ecological Change

    ERIC Educational Resources Information Center

    Palandro, David; Thoms, Kristin; Kusek, Kristen; Muller-Karger, Frank; Greely, Teresa

    2005-01-01

    Coral reefs are one of the most important ecosystems on the planet, providing sustenance to both marine organisms and humans. Yet they are also one of the most endangered ecosystems as coral reef coverage has declined dramatically in the past three decades. Researchers continually seek better ways to map coral reef coverage and monitor changes…

  16. Some nemerteans (Nemertea) from Queensland and the Great Barrier Reef, Australia.

    PubMed

    Gibson, R; Sundberg, P

    2001-12-01

    Three species of marine nemerteans described and illustrated from Queensland and the Great Barrier Reef, Australia, include one new genus and two new species: these are the monostiliferous hoplonemerteans Thallasionemertes leucocephala gen. et sp. nov. and Correanemertes polyophthalma sp. nov. A new colour variety of the heteronemertean Micrura callima is also reported, this species previously only being known from Rottnest Island, Western Australia. A key for the field identification of the marine nemerteans recorded from coastal Queensland and the Great Barrier Reef is provided.

  17. Coral skeletons provide historical evidence of phosphorus runoff on the great barrier reef.

    PubMed

    Mallela, Jennie; Lewis, Stephen E; Croke, Barry

    2013-01-01

    Recently, the inshore reefs of the Great Barrier Reef have declined rapidly because of deteriorating water quality. Increased catchment runoff is one potential culprit. The impacts of land-use on coral growth and reef health however are largely circumstantial due to limited long-term data on water quality and reef health. Here we use a 60 year coral core record to show that phosphorus contained in the skeletons (P/Ca) of long-lived, near-shore Porites corals on the Great Barrier Reef correlates with annual records of fertiliser application and particulate phosphorus loads in the adjacent catchment. Skeletal P/Ca also correlates with Ba/Ca, a proxy for fluvial sediment loading, again linking near-shore phosphorus records with river runoff. Coral core records suggest that phosphorus levels increased 8 fold between 1949 and 2008 with the greatest levels coinciding with periods of high fertiliser-phosphorus use. Periods of high P/Ca correspond with intense agricultural activity and increased fertiliser application in the river catchment following agricultural expansion and replanting after cyclone damage. Our results demonstrate how coral P/Ca records can be used to assess terrestrial nutrient loading of vulnerable near-shore reefs.

  18. The 27-year decline of coral cover on the Great Barrier Reef and its causes.

    PubMed

    De'ath, Glenn; Fabricius, Katharina E; Sweatman, Hugh; Puotinen, Marji

    2012-10-30

    The world's coral reefs are being degraded, and the need to reduce local pressures to offset the effects of increasing global pressures is now widely recognized. This study investigates the spatial and temporal dynamics of coral cover, identifies the main drivers of coral mortality, and quantifies the rates of potential recovery of the Great Barrier Reef. Based on the world's most extensive time series data on reef condition (2,258 surveys of 214 reefs over 1985-2012), we show a major decline in coral cover from 28.0% to 13.8% (0.53% y(-1)), a loss of 50.7% of initial coral cover. Tropical cyclones, coral predation by crown-of-thorns starfish (COTS), and coral bleaching accounted for 48%, 42%, and 10% of the respective estimated losses, amounting to 3.38% y(-1) mortality rate. Importantly, the relatively pristine northern region showed no overall decline. The estimated rate of increase in coral cover in the absence of cyclones, COTS, and bleaching was 2.85% y(-1), demonstrating substantial capacity for recovery of reefs. In the absence of COTS, coral cover would increase at 0.89% y(-1), despite ongoing losses due to cyclones and bleaching. Thus, reducing COTS populations, by improving water quality and developing alternative control measures, could prevent further coral decline and improve the outlook for the Great Barrier Reef. Such strategies can, however, only be successful if climatic conditions are stabilized, as losses due to bleaching and cyclones will otherwise increase.

  19. Coral Skeletons Provide Historical Evidence of Phosphorus Runoff on the Great Barrier Reef

    PubMed Central

    Mallela, Jennie; Lewis, Stephen E.; Croke, Barry

    2013-01-01

    Recently, the inshore reefs of the Great Barrier Reef have declined rapidly because of deteriorating water quality. Increased catchment runoff is one potential culprit. The impacts of land-use on coral growth and reef health however are largely circumstantial due to limited long-term data on water quality and reef health. Here we use a 60 year coral core record to show that phosphorus contained in the skeletons (P/Ca) of long-lived, near-shore Porites corals on the Great Barrier Reef correlates with annual records of fertiliser application and particulate phosphorus loads in the adjacent catchment. Skeletal P/Ca also correlates with Ba/Ca, a proxy for fluvial sediment loading, again linking near-shore phosphorus records with river runoff. Coral core records suggest that phosphorus levels increased 8 fold between 1949 and 2008 with the greatest levels coinciding with periods of high fertiliser-phosphorus use. Periods of high P/Ca correspond with intense agricultural activity and increased fertiliser application in the river catchment following agricultural expansion and replanting after cyclone damage. Our results demonstrate how coral P/Ca records can be used to assess terrestrial nutrient loading of vulnerable near-shore reefs. PMID:24086606

  20. Sedimentary petrology of a declining reef ecosystem, Florida reef tract (U.S.A.)

    USGS Publications Warehouse

    Lidz, B.H.; Hallock, P.

    2000-01-01

    Petrologic evaluation of biogenic sediments collected shelf-wide along the Florida reef tract in 1989 revealed three principal components: coral, the calcareous green alga Halimeda, and mollusc. The dominant grain was dependent in part upon local morphology that controlled composition and vitality of the biota. Either Halimeda or mollusc grains prevailed in sands off the upper Keys. In the middle and lower Keys, Halimeda grains prevailed nearshore and coral grains offshore. Comparison with similar analyses of samples collected in 1952 and 1963 indicates that, over 37 years, the relative abundance of molluscan grains more than doubled in the upper Keys and that of particulate coral tripled in the middle Keys. These changes can be interpreted in the context of physical and biological events that affected Florida Keys reefs over that period of time. In the 1970s, outbreaks of extremely cold water killed even representatives of the hardiest coral species. In the 1980s, black-band and white-band diseases decimated the major reef-building acroporid corals, and the pivotal herbivore, Diadema antillarum, disappeared. Although Diadema is a major coral bioeroder, the sea urchin is also essential to healthy reef growth. The increase in coral debris in the middle Keys may be related to Hurricane Donna in 1960, but it is also consistent with the prediction of accelerated bioerosion by boring organisms in response to increased plankton productivity. Plankton productivity is stimulated by nutrients from Florida Bay and by well-documented eutrophication of nearshore environments. In the upper Keys, where reefs are somewhat removed from bay and nearshore influence, a relative decrease in coral debris over the 37 years may reflect proliferation of algae and algae-grazing molluscs as well as suppressed rates of bioerosion in the absence of Diadema. Human activities have substantially increased the natural flux of fixed nitrogen to coastal systems worldwide. Waters in the Florida Keys

  1. Patterns in the distribution of soft corals across the central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Dinesen, Z. D.

    1983-05-01

    Distribution patterns of soft coral genera were examined at 11 reefs situated in a broad transect from inshore to the Coral Sea in the central region of the Great Barrier Reef. Twenty-five genera representing the Orders Alcyonacea and Stolonifera were recorded, and the survey also included one genus of the Order Gorgonacea. Total living soft coral cover is greatest on outershelf reef slopes, and is often less than and inversely related to the cover by stony corals. Soft coral diversity is generally low on reef flats, where soft coral cover is low or nil except in protected, inshore areas. The most diverse assemblages occur on reef slopes in midshelf and outershelf areas, where Efflatounaria and nephtheid genera predominate, and widely distributed alcyoniid genera are common. These richer assemblages are less well represented in the Coral Sea, while innershelf reefs support a less diverse fauna of somewhat different generic composition. Distribution patterns of soft corals across the transect broadly match similar variations in the distributions of stony corals and fishes, inshore reefs being generally depauperate. Such variations across the continental shelf are closely associated with changes in prevailing environmental conditions, but further research will be required to elucidate the effects of environmental parameters on benthic community structure.

  2. Effects of different disturbance types on butterflyfish communities of Australia's Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Emslie, M. J.; Pratchett, M. S.; Cheal, A. J.

    2011-06-01

    The effects of disturbances on coral reef fishes have been extensively documented but most studies have relied on opportunistic sampling following single events. Few studies have the spatial and temporal extent to directly compare the effects of multiple disturbances over a large geographic scale. Here, benthic communities and butterflyfishes on 47 reefs of the Great Barrier Reef were surveyed annually to examine their responses to physical disturbances (cyclones and storms) and/or biological disturbances (bleaching, outbreaks of crown-of-thorns starfish and white syndrome disease). The effects on benthic and butterflyfish communities varied among reefs depending on the structure and geographical setting of each community, on the size and type of disturbance, and on the disturbance history of that reef. There was considerable variability in the response of butterflyfishes to different disturbances: physical disturbances (occurring with or without biological disturbances) produced substantial declines in abundance, whilst biological disturbances occurring on their own did not. Butterflyfishes with the narrowest feeding preferences, such as obligate corallivores, were always the species most affected. The response of generalist feeders varied with the extent of damage. Wholesale changes to the butterflyfish community were only recorded where structural complexity of reefs was drastically reduced. The observed effects of disturbances on butterflyfishes coupled with predictions of increased frequency and intensity of disturbances sound a dire warning for the future of butterflyfish communities in particular and reef fish communities in general.

  3. Sedimentary environments of the Central Region of the Great Barrier Reef of Australia

    NASA Astrophysics Data System (ADS)

    Scoffin, Terence P.; Tudhope, Alexander W.

    1985-09-01

    The sediments and calcareous organisms on the outer reefal shelf of the Central Region of the Great Barrier Reef were collected and observed by SCUBA diving and research vessel techniques (including underwater television) to understand the production and processes of deposition of the sediment. The carbonate grains are mainly sand and gravel size and solely of skeletal origin. Over the whole area the major CaCO3 producers, in order of decreasing importance are: benthic foraminiferans (chiefly Operculina, Amphistegina, Marginopora, Alveolinella and Cycloclypeus), the calcareous green alga Halimeda, molluscs and corals. Coral abundance is high only close to reefs and submerged rocky substrates. Benthic foraminiferal sands dominate the inter-reef areas i.e. the bulk of the shelf, and Halimeda gravels form an outer shelf band between 60 and 100 m depths. Seven distinct facies are recognised after quantitative analyses of the sediments. These are: A. Shelf edge slope (>120 m depth); B. Shelf edge (with rocky outcrops); C. Outer shelf with high Halimeda (>40%); D. Inter-reef I; E. Inter-reef II ( 100 m depth but >2% pelagics); F. Lee-ward reef talus wedge (<2 km from sea level reefs); G. Lagoonal.

  4. Coral reefs of the turbid inner-shelf of the Great Barrier Reef, Australia: An environmental and geomorphic perspective on their occurrence, composition and growth

    NASA Astrophysics Data System (ADS)

    Browne, N. K.; Smithers, S. G.; Perry, C. T.

    2012-10-01

    Investigations of the geomorphic and sedimentary context in which turbid zone reefs exist, both in the modern and fossil reef record, can inform key ecological debates regarding species tolerances and adaptability to elevated turbidity and sedimentation. Furthermore, these investigations can address critical geological and palaeoecological questions surrounding longer-term coral-sediment interactions and reef growth histories. Here we review current knowledge about turbid zone reefs from the inner-shelf regions of the Great Barrier Reef (GBR) in Australia to consider these issues and to evaluate reef growth in the period prior to and post European settlement. We also consider the future prospects of these reefs under reported changing water quality regimes. Turbid zone reefs on the GBR are relatively well known compared to those in other reef regions. They occur within 20 km of the mainland coast where reef development may be influenced by continual or episodic terrigenous sediment inputs, fluctuating salinities (24-36 ppt), and reduced water quality through increased nutrient and pollutant delivery from urban and agricultural runoff. Individually, and in synergy, these environmental conditions are widely viewed as unfavourable for sustained and vigorous coral reef growth, and thus these reefs are widely perceived as marginal compared to clear water reef systems. However, recent research has revealed that this view is misleading, and that in fact many turbid zone reefs in this region are resilient, exhibit relatively high live coral cover (> 30%) and have distinctive community assemblages dominated by fast growing (Acropora, Montipora) and/or sediment tolerant species (Turbinaria, Goniopora, Galaxea, Porites). Palaeoecological reconstructions based on the analysis of reef cores show that community assemblages are relatively stable at millennial timescales, and that many reefs are actively accreting (average 2-7 mm/year) where accommodation space is available

  5. Volcanic Acidification of a Coral Reef at Maug Island: Influences on Biological Processes and Ecosystem Structure

    NASA Astrophysics Data System (ADS)

    Enochs, I.; Manzello, D.; Donham, E. M.; Johnston, L.; Valentino, L.; Young, C.; Kolodziej, G.; Carlton, R.; Price, N.

    2016-02-01

    Coral reef ecosystems are expected to be strongly impacted by ocean acidification (OA) in the coming century. The influences of OA on coral reefs will be numerous, involving diverse species with different degrees of susceptibility. Naturally acidified systems provide a way to study these individual responses and a means to investigate how myriad alterations manifest at the ecosystem-scale over long periods of time. To this end, we characterized the unique coral reef ecosystem surrounding the volcanic carbon dioxide vent at Maug Island in the Commonwealth of the Northern Mariana Islands (CNMI). We present data on the spatial extent of carbonate chemistry alteration through interpolation of water bottle samples, and data on the temporal nature of this gradient through the deployment of three SeaFET pH loggers over a period of three months. We analyze trace-gas concentrations and characterize fluctuations in light, current, tides, and temperature. We tie these environmental data to high-resolution photo mosaics and in situ biodiversity surveys to examine changes in reef community structure correlated with this natural OA gradient. Finally, we investigate the influence of vent proximity on biological processes affecting reef habitat growth and erosion. Using computed tomography (CT) and analysis of coral growth bands, we analyze changes in the calcification of massive Porites coral. Using crystalline calcium carbonate (calcite) blocks, we quantify the settlement and erosion rate of microboring algae. Together these measurements underscore the strong influence that OA will have on reef persistence and highlight the value of the Maug site for future OA research.

  6. Disease outbreaks, bleaching and a cyclone drive changes in coral assemblages on an inshore reef of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Haapkylä, J.; Melbourne-Thomas, J.; Flavell, M.; Willis, B. L.

    2013-09-01

    Coral disease is a major threat to the resilience of coral reefs; thus, understanding linkages between disease outbreaks and disturbances predicted to increase with climate change is becoming increasingly important. Coral disease surveys conducted twice yearly between 2008 and 2011 at a turbid inshore reef in the central Great Barrier Reef spanned two disturbance events, a coral bleaching event in 2009 and a severe cyclone (cyclone `Yasi') in 2011. Surveys of coral cover, community structure and disease prevalence throughout this 4-yr study provide a unique opportunity to explore cumulative impacts of disturbance events and disease for inshore coral assemblages. The principal coral disease at the study site was atramentous necrosis (AtN), and it primarily affected the key inshore, reef-building coral Montipora aequituberculata. Other diseases detected were growth anomalies, white syndrome and brown band syndrome. Diseases affected eight coral genera, although Montipora was, by far, the genus mostly affected. The prevalence of AtN followed a clear seasonal pattern, with disease outbreaks occurring only in wet seasons. Mean prevalence of AtN on Montipora spp. (63.8 % ± 3.03) was three- to tenfold greater in the wet season of 2009, which coincided with the 2009 bleaching event, than in other years. Persistent wet season outbreaks of AtN combined with the impacts of bleaching and cyclone events resulted in a 50-80 % proportional decline in total coral cover. The greatest losses of branching and tabular acroporids occurred following the low-salinity-induced bleaching event of 2009, and the greatest losses of laminar montiporids occurred following AtN outbreaks in 2009 and in 2011 following cyclone Yasi. The shift to a less diverse coral assemblage and the concomitant loss of structural complexity are likely to have long-term consequences for associated vertebrate and invertebrate communities on Magnetic Island reefs.

  7. The Gulf Coast Vulnerability Assessment: Mangrove, Tidal Emergent Marsh, Barrier Islands, and Oyster Reef

    USGS Publications Warehouse

    Watson, Amanda; Reece, Joshua S.; Tirpak, Blair; Edwards, Cynthia Kallio; Geselbracht, Laura; Woodrey, Mark; LaPeyre, Megan K.; Dalyander, P. Soupy

    2015-01-01

    Climate, sea level rise, and urbanization are undergoing unprecedented levels of combined change and are expected to have large effects on natural resources—particularly along the Gulf of Mexico coastline (Gulf Coast). Management decisions to address these effects (i.e., adaptation) require an understanding of the relative vulnerability of various resources to these stressors. To meet this need, the four Landscape Conservation Cooperatives along the Gulf partnered with the Gulf of Mexico Alliance to conduct this Gulf Coast Vulnerability Assessment (GCVA). Vulnerability in this context incorporates the aspects of exposure and sensitivity to threats, coupled with the adaptive capacity to mitigate those threats. Potential impact and adaptive capacity reflect natural history features of target species and ecosystems. The GCVA used an expert opinion approach to qualitatively assess the vulnerability of four ecosystems: mangrove, oyster reef, tidal emergent marsh, and barrier islands, and a suite of wildlife species that depend on them. More than 50 individuals participated in the completion of the GCVA, facilitated via Ecosystem and Species Expert Teams. Of the species assessed, Kemp’s ridley sea turtle was identified as the most vulnerable species across the Gulf Coast. Experts identified the main threats as loss of nesting habitat to sea level rise, erosion, and urbanization. Kemp’s ridley also had an overall low adaptive capacity score due to their low genetic diversity, and higher nest site fidelity as compared to other assessed species. Tidal emergent marsh was the most vulnerable ecosystem, due in part to sea level rise and erosion. In general, avian species were more vulnerable than fish because of nesting habitat loss to sea level rise, erosion, and potential increases in storm surge. Assessors commonly indicated a lack of information regarding impacts due to projected changes in the disturbance regime, biotic interactions, and synergistic effects in both

  8. Gulf Coast vulnerability assessment: Mangrove, tidal emergent marsh, barrier islands and oyster reef

    USGS Publications Warehouse

    Watson, Amanda; Reece, Joshua; Tirpak, Blair; Edwards, Cynthia Kallio; Geselbracht, Laura; Woodrey, Mark; LaPeyre, Megan K.; Dalyander, Patricia (Soupy)

    2017-01-01

    Climate, sea level rise, and urbanization are undergoing unprecedented levels of combined change and are expected to have large effects on natural resources—particularly along the Gulf of Mexico coastline (Gulf Coast). Management decisions to address these effects (i.e., adaptation) require an understanding of the relative vulnerability of various resources to these stressors. To meet this need, the four Landscape Conservation Cooperatives along the Gulf partnered with the Gulf of Mexico Alliance to conduct this Gulf Coast Vulnerability Assessment (GCVA). Vulnerability in this context incorporates exposure and sensitivity to threats (potential impact), coupled with the adaptive capacity to mitigate those threats. Potential impact and adaptive capacity reflect natural history features of target species and ecosystems. The GCVA used an expert opinion approach to qualitatively assess the vulnerability of four ecosystems: mangrove, oyster reef, tidal emergent marsh, and barrier islands, and a suite of wildlife species that depend on them. More than 50 individuals participated in the completion of the GCVA, facilitated via Ecosystem and Species Expert Teams. Of the species assessed, Kemp’s ridley sea turtle was identified as the most vulnerable species across the Gulf Coast. Experts identified the main threats as loss of nesting habitat to sea level rise, erosion, and urbanization. Kemp’s ridley also had an overall low adaptive capacity score due to their low genetic diversity, and higher nest site fidelity as compared to other assessed species. Tidal emergent marsh was the most vulnerable ecosystem, due in part to sea level rise and erosion. In general, avian species were more vulnerable than fish because of nesting habitat loss to sea level rise, erosion, and potential increases in storm surge. Assessors commonly indicated a lack of information regarding impacts due to projected changes in the disturbance regime, biotic interactions, and synergistic effects in

  9. The effects of river run-off on water clarity across the central Great Barrier Reef.

    PubMed

    Fabricius, K E; Logan, M; Weeks, S; Brodie, J

    2014-07-15

    Changes in water clarity across the shallow continental shelf of the central Great Barrier Reef were investigated from ten years of daily river load, oceanographic and MODIS-Aqua data. Mean photic depth (i.e., the depth of 10% of surface irradiance) was related to river loads after statistical removal of wave and tidal effects. Across the ∼25,000 km(2) area, photic depth was strongly related to river freshwater and phosphorus loads (R(2)=0.65 and 0.51, respectively). In the six wetter years, photic depth was reduced by 19.8% and below water quality guidelines for 156 days, compared to 9 days in the drier years. After onset of the seasonal river floods, photic depth was reduced for on average 6-8 months, gradually returning to clearer baseline values. Relationships were strongest inshore and midshelf (∼12-80 km from the coast), and weaker near the chronically turbid coast. The data show that reductions in river loads would measurably improve shelf water clarity, with significant ecosystem health benefits.

  10. Satellite Remote Sensing of Sea-Surface Temperatures over the Great Barrier Reef.

    NASA Astrophysics Data System (ADS)

    Minnett, P. J.; Zhu, X.; Beggs, H.; Steinberg, C. R.

    2016-02-01

    Coastal areas have great societal and economic importance but present particular problems for satellite remote sensing. Regarding the determination of sea-surface temperatures, microwave radiometry is rendered useless because of the contamination of the measurements by land surface emission through the antenna side lobes, so infrared radiometry has to be used. The challenges concern identifying pixels contaminated by clouds and aerosols, and correcting for the effects of the clear atmosphere. We will present results of a recent study to assess errors and uncertainties in satellite measurements of sea-surface temperature over the Great Barrier Reef, obtained by comparisons between satellite retrievals and in situ measurements at the depth of the corals. Despite the added complications of small scale temperature structure in such a complex coastal environment, and the consequences of a specific distribution of atmospheric properties, the accuracies of the satellite-derived surface temperatures are comparable to what can be achieved in the open ocean. This gives encouragement to the prospect of using satellite data to monitor the thermal structure in a delicate ecosystem that is threatened by natural and anthropogenic stresses. Even though the spatial resolution of currently available data is generally much poorer than that of anticipated sensors, the accuracy of present-day radiometers is limited by factors that will still be present for future missions.

  11. Net ecosystem production, calcification and CO2 fluxes on a reef flat in Northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Longhini, Cybelle M.; Souza, Marcelo F. L.; Silva, Ananda M.

    2015-12-01

    The carbon cycle in coral reefs is usually dominated by the organic carbon metabolism and precipitation-dissolution of CaCO3, processes that control the CO2 partial pressure (pCO2) in seawater and the CO2 fluxes through the air-sea interface. In order to characterize these processes and the carbonate system, four sampling surveys were conducted at the reef flat of Coroa Vermelha during low tide (exposed flat). Net ecosystem production (NEP), net precipitation-dissolution of CaCO3 (G) and CO2 fluxes across the air-water interface were calculated. The reef presented net autotrophy and calcification at daytime low tide. The NEP ranged from -8.7 to 31.6 mmol C m-2 h-1 and calcification from -13.1 to 26.0 mmol C m-2 h-1. The highest calcification rates occurred in August 2007, coinciding with the greater NEP rates. The daytime CO2 fluxes varied from -9.7 to 22.6 μmol CO2 m-2 h-1, but reached up to 13,900 μmol CO2 m-2 h-1 during nighttime. Carbon dioxide influx to seawater was predominant in the reef flat during low tide. The regions adjacent to the reef showed a supersaturation of CO2, acting as a source of CO2 to the atmosphere (from -22.8 to -2.6 mol CO2 m-2 h-1) in the reef flat during ebbing tide. Nighttime gas release to the atmosphere indicates a net CO2 release from the Coroa Vermelha reef flat within 24 h, and that these fluxes can be important to carbon budget in coral reefs.

  12. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems.

    PubMed

    Allgeier, Jacob E; Layman, Craig A; Mumby, Peter J; Rosemond, Amy D

    2014-08-01

    Corals thrive in low nutrient environments and the conservation of these globally imperiled ecosystems is largely dependent on mitigating the effects of anthropogenic nutrient enrichment. However, to better understand the implications of anthropogenic nutrients requires a heightened understanding of baseline nutrient dynamics within these ecosystems. Here, we provide a novel perspective on coral reef nutrient dynamics by examining the role of fish communities in the supply and storage of nitrogen (N) and phosphorus (P). We quantified fish-mediated nutrient storage and supply for 144 species and modeled these data onto 172 fish communities (71 729 individual fish), in four types of coral reefs, as well as seagrass and mangrove ecosystems, throughout the Northern Antilles. Fish communities supplied and stored large quantities of nutrients, with rates varying among ecosystem types. The size structure and diversity of the fish communities best predicted N and P supply and storage and N : P supply, suggesting that alterations to fish communities (e.g., overfishing) will have important implications for nutrient dynamics in these systems. The stoichiometric ratio (N : P) for storage in fish mass (~8 : 1) and supply (~20 : 1) was notably consistent across the four coral reef types (but not seagrass or mangrove ecosystems). Published nutrient enrichment studies on corals show that deviations from this N : P supply ratio may be associated with poor coral fitness, providing qualitative support for the hypothesis that corals and their symbionts may be adapted to specific ratios of nutrient supply. Consumer nutrient stoichiometry provides a baseline from which to better understand nutrient dynamics in coral reef and other coastal ecosystems, information that is greatly needed if we are to implement more effective measures to ensure the future health of the world's oceans.

  13. Tidal jets, nutrient upwelling and their influence on the productivity of the alga Halimeda in the Ribbon Reefs, Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Wolanski, Eric; Drew, Edward; Abel, Kay M.; O'Brien, John

    1988-02-01

    A field experiment was carried out to study water circulation and benthic biological productivity near a passage through the Ribbon Reefs in the northern Great Barrier Reef of Australia. The currents through the passage were phase-locked with the tide. During rising tides, strong currents through the passage generated localized upwelling on the upper continental slope, enriching the depleted surface waters in nutrients, particularly nitrate and phosphate. Simultaneously, on the shelf side of the passage, a tidal jet-vortex pair system developed, which separated from the Ribbon Reefs so that the coral reefs themselves received little of the upwelled water. This was propagated as a bottom-trapped layer towards the meadows of the calcareous alga Halimeda situated several kilometres inshore of the reefs. Halimeda can accumulate nutrients, particularly nitrate, from the relatively low concentrations available from the upwelling events. The quantity of nitrogen upwelled was more than sufficient to supply the total nitrogen requirements of the Halimeda vegetation. A tidal jet also formed, offshore from the reef passage, during falling tides and the coral-covered offshore side of the Ribbon Reefs may be sustained by the subsequent vertical turbulent entrainment into the jet of deep, nutrient-rich water immediately offshore from the reef passages. These processes require a continuous barrier reef with only narrow passages several kilometers apart. Numerical models successfully reproduce the observations of jet-driven upwelling and of the dynamics of the tidal jet-vortex pair system. The model predictions are very sensitive to the details of the bathymetry of reef passages. As such data are presently unavailable, it is not yet possible to use these models to calculate the jet-driven nutrient upwelling for the whole Great Barrier Reef.

  14. The evolution of the Great Barrier Reef during the Last Interglacial Period

    NASA Astrophysics Data System (ADS)

    Dechnik, Belinda; Webster, Jody M.; Webb, Gregory E.; Nothdurft, Luke; Dutton, Andrea; Braga, Juan-Carlos; Zhao, Jian-xin; Duce, Stephanie; Sadler, James

    2017-02-01

    Reef response to Last Interglacial (LIG) sea level and palaeoenvironmental change has been well documented at a limited number of far-field sites remote from former ice sheets. However, the age and development of LIG reefs in the Great Barrier Reef (GBR) remain poorly understood due to their location beneath modern living reefs. Here we report thirty-nine new mass spectrometry U-Th ages from seven LIG platform reefs across the northern, central and southern GBR. Two distinct geochemical populations of corals were observed, displaying activity ratios consistent with either closed or open system evolution. Our closed-system ages ( 129-126 ka) provide the first reliable LIG ages for the entire GBR. Combined with our open-system model ages, we are able to constrain the interval of significant LIG reef growth in the southern GBR to between 129-121 ka. Using age-elevation data in conjunction with newly defined coralgal assemblages and sedimentary facies analysis we have defined three distinct phases of LIG reef development in response to major sea level and oceanographic changes. These phases include: Phase 1 (> 129 ka), a shallow-water coralgal colonisation phase following initial flooding of the older, likely Marine Isotope Stage 7 (MIS7) antecedent platform; Phase 2 ( 129 ka), a near drowning event in response to rapid sea level rise and greater nutrient-rich upwelling and; Phase 3 ( 128-121 ka), establishment of significant reef framework through catch-up reef growth, initially characterised by deeper, more turbid coralgal assemblages (Phase 3a) that transition to shallow-water assemblages following sea level stabilisation (Phase 3b). Coralgal assemblage analysis indicates that the palaeoenvironments during initial reef growth phases (1 and 2) of the LIG were significantly different than the initial reef growth phases in the Holocene. However, the similar composition of ultimate shallow-water coralgal assemblages and slow reef accretion rates following stabilisation

  15. Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Strong, Alan E.; Skirving, William

    Early in 2002, satellites of the U.S. National Oceanic and Atmospheric Administration (NOAA) detected anomalously high sea surface temperatures (SST) developing in the western Coral Sea, midway along Australia's Great Barrier Reef (GBR). This was the beginning of what was to become the most significant GBR coral bleaching event on record [Wilkinson, 2002]. During this time, NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) provided satellite data as part of ongoing collaborative work on coral reef health with the Australian Institute of Marine Science (AIMS) and the Great Barrier Reef Marine Park Authority (GBRMPA). These data proved invaluable to AIMS and GBRMPA as they monitored and assessed the development and evolution of SSTs throughout the austral summer, enabling them to keep stakeholders, government, and the general public informed and up to date.

  16. Assessment of crown-of-thorns skeletal elements in surface sediment of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Henderson, R. A.

    1992-07-01

    A total of 1655 crown-of-thorns starfish skeletal elements were recovered from 237 surface sediment samples from Davies, Centipede, Myrmidon, Hope, Holbourne Island, 22 110, Gannet Cay and Lady Musgrave Island Reefs of the central and southern sectors of the Great Barrier Reef. Three categories of reef may be recognised on the incidence of Acanthaster planci skeletal elements in surface sediment from these and previously studied reefs: category A (abundant, >12 elements kg1-), category C (common, 3 8 elements kg-1) and category C (rare, 0 0.1 elements kg-1). These categories parallel estimates of crown-of-thorns populations in the period 1986 1990. “A” reefs have generally experienced high intensity outbreaks, “C” reefs less intense or perhaps less frequent outbreaks and “R” reefs have had little or no crown-of-thorns presence. The incidence of crown-of-thorns skeletal elements in surface sediment potentially provides an indication of population densities and outbreaks over a time scale of several decades. A perspective of contemporary crown-of-thorns incidence on the many reefs of the GBR lacking direct observational records may thereby be obtained. For Holbourne Island a comparison was made of element incidence in an area of known mass mortality induced by poisoning with a control area that was undisturbed. The incidence of A. planci skeletal elements is comparable in the two areas and similar to the incidence established for other reefs such as Green Island and John Brewer where high intensity outbreaks are known to have occurred. A direct relationship between high incidence of elements in surface sediment and mass mortality following outbreak events is indicated.

  17. Spatial Analyses of Benthic Habitats to Define Coral Reef Ecosystem Regions and Potential Biogeographic Boundaries along a Latitudinal Gradient

    PubMed Central

    Walker, Brian K.

    2012-01-01

    Marine organism diversity typically attenuates latitudinally from tropical to colder climate regimes. Since the distribution of many marine species relates to certain habitats and depth regimes, mapping data provide valuable information in the absence of detailed ecological data that can be used to identify and spatially quantify smaller scale (10 s km) coral reef ecosystem regions and potential physical biogeographic barriers. This study focused on the southeast Florida coast due to a recognized, but understudied, tropical to subtropical biogeographic gradient. GIS spatial analyses were conducted on recent, accurate, shallow-water (0–30 m) benthic habitat maps to identify and quantify specific regions along the coast that were statistically distinct in the number and amount of major benthic habitat types. Habitat type and width were measured for 209 evenly-spaced cross-shelf transects. Evaluation of groupings from a cluster analysis at 75% similarity yielded five distinct regions. The number of benthic habitats and their area, width, distance from shore, distance from each other, and LIDAR depths were calculated in GIS and examined to determine regional statistical differences. The number of benthic habitats decreased with increasing latitude from 9 in the south to 4 in the north and many of the habitat metrics statistically differed between regions. Three potential biogeographic barriers were found at the Boca, Hillsboro, and Biscayne boundaries, where specific shallow-water habitats were absent further north; Middle Reef, Inner Reef, and oceanic seagrass beds respectively. The Bahamas Fault Zone boundary was also noted where changes in coastal morphologies occurred that could relate to subtle ecological changes. The analyses defined regions on a smaller scale more appropriate to regional management decisions, hence strengthening marine conservation planning with an objective, scientific foundation for decision making. They provide a framework for similar

  18. Spatial analyses of benthic habitats to define coral reef ecosystem regions and potential biogeographic boundaries along a latitudinal gradient.

    PubMed

    Walker, Brian K

    2012-01-01

    Marine organism diversity typically attenuates latitudinally from tropical to colder climate regimes. Since the distribution of many marine species relates to certain habitats and depth regimes, mapping data provide valuable information in the absence of detailed ecological data that can be used to identify and spatially quantify smaller scale (10 s km) coral reef ecosystem regions and potential physical biogeographic barriers. This study focused on the southeast Florida coast due to a recognized, but understudied, tropical to subtropical biogeographic gradient. GIS spatial analyses were conducted on recent, accurate, shallow-water (0-30 m) benthic habitat maps to identify and quantify specific regions along the coast that were statistically distinct in the number and amount of major benthic habitat types. Habitat type and width were measured for 209 evenly-spaced cross-shelf transects. Evaluation of groupings from a cluster analysis at 75% similarity yielded five distinct regions. The number of benthic habitats and their area, width, distance from shore, distance from each other, and LIDAR depths were calculated in GIS and examined to determine regional statistical differences. The number of benthic habitats decreased with increasing latitude from 9 in the south to 4 in the north and many of the habitat metrics statistically differed between regions. Three potential biogeographic barriers were found at the Boca, Hillsboro, and Biscayne boundaries, where specific shallow-water habitats were absent further north; Middle Reef, Inner Reef, and oceanic seagrass beds respectively. The Bahamas Fault Zone boundary was also noted where changes in coastal morphologies occurred that could relate to subtle ecological changes. The analyses defined regions on a smaller scale more appropriate to regional management decisions, hence strengthening marine conservation planning with an objective, scientific foundation for decision making. They provide a framework for similar

  19. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate

    PubMed Central

    Weijerman, Mariska; Fulton, Elizabeth A.; Kaplan, Isaac C.; Gorton, Rebecca; Leemans, Rik; Mooij, Wolf M.; Brainard, Russell E.

    2015-01-01

    Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP) and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1) ratio of calcifying to non-calcifying benthic groups, 2) trophic level of the community, 3) biomass of apex predators, 4) biomass of herbivorous fishes, 5) total biomass of living groups and 6) the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations), climate change impacts have a slight positive interaction with other drivers

  20. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate.

    PubMed

    Weijerman, Mariska; Fulton, Elizabeth A; Kaplan, Isaac C; Gorton, Rebecca; Leemans, Rik; Mooij, Wolf M; Brainard, Russell E

    2015-01-01

    Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP) and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1) ratio of calcifying to non-calcifying benthic groups, 2) trophic level of the community, 3) biomass of apex predators, 4) biomass of herbivorous fishes, 5) total biomass of living groups and 6) the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations), climate change impacts have a slight positive interaction with other drivers

  1. Climate change and environmentally responsible behavior on the Great Barrier Reef, Australia

    Treesearch

    Jee In Yoon; Gerard Kyle; Carena J. vanRiper; Stephen G. Sutton

    2012-01-01

    This study explored the relationship between Australians' perceptions of climate change, its impact on the Great Barrier Reef (GBR), and predictors of environmentally responsible behavior (ERB). Our hypothesized model suggested that general attitudes toward climate change, social pressure for engaging in ERBs (subjective norms), and perceived behavioral control (...

  2. Angler segmentation using perceptions of experiential quality in the Great Barrier Reef Marine Park

    Treesearch

    William Smith; Gerard Kyle; Stephen G. Sutton

    2012-01-01

    This study investigated the efficacy of segmenting anglers using their perceptions of trip quality in the Great Barrier Reef Marine Park (GBRMP). Analysis revealed five segments of anglers whose perceptions differed on trip quality.We named the segments: slow action, plenty of action, weather sensitive, gloomy gusses, and ok corral and assessed variation among them...

  3. Australian community members' attitudes toward climate change impacts at the Great Barrier Reef

    Treesearch

    Carena J. vanRiper; Gerard Kyle; Jee In Yoon; Stephen G. Sutton

    2012-01-01

    This research identified homogenous groups of Australian community members that share similar attitudes toward climate change impacts within the Great Barrier Reef World Heritage Area (GBRWHA). A questionnaire was administered to a random sample of adult residents living near the GBRWHA (n = 1,623) in order to assess public awareness of climate change, concern about...

  4. Impacts of human activities on coral reef ecosystems of southern Taiwan: a long-term study.

    PubMed

    Liu, Pi-Jen; Meng, Pei-Jie; Liu, Li-Lian; Wang, Jih-Terng; Leu, Ming-Yih

    2012-06-01

    In July 2001, the National Museum of Marine Biology and Aquarium, co-sponsored by the Kenting National Park Headquarters and Taiwan's National Science Council, launched a Long-Term Ecological Research (LTER) program to monitor anthropogenic impacts on the ecosystems of southern Taiwan, specifically the coral reefs of Kenting National Park (KNP), which are facing an increasing amount of anthropogenic pressure. We found that the seawater of the reef flats along Nanwan Bay, Taiwan's southernmost embayment, was polluted by sewage discharge at certain monitoring stations. Furthermore, the consequently higher nutrient and suspended sediment levels had led to algal blooms and sediment smothering of shallow water corals at some sampling sites. Finally, our results show that, in addition to this influx of anthropogenically-derived sewage, increasing tourist numbers are correlated with decreasing shallow water coral cover, highlighting the urgency of a more proactive management plan for KNP's coral reefs.

  5. Sustaining Ecosystem Services in the Global Coral Reef Crisis

    NASA Astrophysics Data System (ADS)

    Aronson, Richard B.; Precht, William F.

    2009-07-01

    Objective science is critical to understanding the relative impacts of the many putative causal agents in the global coral reef crisis. This paper provides an evidence-based scenario of causality leading to the current state of reef degradation. Contrary to revisionist narratives that emphasize the local-scale effects of fishing and nutrient loading, coral populations were and are degrading primarily due to regional-to global-scale factors. Most important among these large-scale factors are disease outbreaks and coral bleaching, both of which are related to climate change. Because policy recommendations and management strategies will differ depending on which cause(s) are perceived to exert the greatest influence, scientists must be explicit about when they are acting as advocates and when they are objectively conveying scientific results. Legitimate scientific debate is healthy and in no way diminishes the goal of creating cogent policy. Forced ideological unification, in contrast, risks obfuscation, undermining the scientific process. Science must move forward unfettered by political expediency; however, the situation is dire enough to warrant immediate action on local, regional, and global levels, based on the best scientific information at hand, in parallel with continuing research.

  6. An Ecosystem Service Evaluation Tool to Support Ridge-to-Reef Management and Conservation in Hawaii

    NASA Astrophysics Data System (ADS)

    Oleson, K.; Callender, T.; Delevaux, J. M. S.; Falinski, K. A.; Htun, H.; Jin, G.

    2014-12-01

    Faced with increasing anthropogenic stressors and diverse stakeholders, local managers are adopting a ridge-to-reef and multi-objective management approach to restore declining coral reef health state. An ecosystem services framework, which integrates ecological indicators and stakeholder values, can foster more applied and integrated research, data collection, and modeling, and thus better inform the decision-making process and realize decision outcomes grounded in stakeholders' values. Here, we describe a research program that (i) leverages remotely sensed and empirical data to build an ecosystem services-based decision-support tool geared towards ridge-to-reef management; and (ii) applies it as part of a structured, value-based decision-making process to inform management in west Maui, a NOAA coral reef conservation priority site. The tool links terrestrial and marine biophysical models in a spatially explicit manner to quantify and map changes in ecosystem services delivery resulting from management actions, projected climate change impacts, and adaptive responses. We couple model outputs with localized valuation studies to translate ecosystem service outcomes into benefits and their associated socio-cultural and/or economic values. Managers can use this tool to run scenarios during their deliberations to evaluate trade-offs, cost-effectiveness, and equity implications of proposed policies. Ultimately, this research program aims at improving the effectiveness, efficiency, and equity outcomes of ecosystem-based management. This presentation will describe our approach, summarize initial results from the terrestrial modeling and economic valuations for west Maui, and highlight how this decision support tool benefits managers in west Maui.

  7. The interactive effects of nutrient and salinity stress on corals from distinct environments on the Belize Barrier Reef System

    NASA Astrophysics Data System (ADS)

    Townsend, J. E.; Bove, C. B.; Baumann, J.; Davies, S. W.; Castillo, K.

    2016-02-01

    Global climate change has induced shifts in local weather patterns near many coral reef ecosystems, resulting in greater frequency and intensity of major rainfall events. These changes in precipitation, combined with land use changes, have resulted in greater nutrient loading and more severe seasonal decreases in seawater salinity surrounding coral reefs. In order to investigate how different populations of corals might respond to these stressors, we are quantifying the effects of salinity and nitrate (NO3-) concentrations on calcification across corals from nearshore and forereef environments. Colonies of Siderastrea siderea, a commonly found highly stress tolerant species in the southern portion of the Belize Barrier Reef System (BBRS) were collected, fragmented, and reared in four salinity/nutrient treatments that simulate natural seasonal conditions: 1) local average salinity (32 psu) and nutrient concentration ([NO3-] = 2.5 μmol), 2) low salinity (24 psu) with average nutrient concentration, 3) average salinity and increased nutrient concentration (([NO3-] = 5.5 μmol), and 4) low salinity and increased nutrient concentration. S. siderea were collected from nearshore, where nutrient loading and depressed salinity occur regularly during the rainy season , and the forereef, where corals are less commonly exposed to these stressors. Changes in coral calcification and symbiont density were monitored for 60 days in order to simulate the duration of one rainy season in southern Belize, which experiences 2-3 months of heavy rainfall each year. Understanding these interactive roles of nutrients and salinity, as well as the role that local environments play in coral survivorship, will be important considerations for the future of coral reefs in the face of climate change.

  8. Trophic significance of herbivorous macroinvertebrates on the central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Klumpp, D. W.; Pulfrich, A.

    1989-12-01

    The common herbivorous macroinvertebrates on reef flats of the central Great Barrier Reef (GBR) were, in order of abundance: gastropod molluscs ( Turbo and Trochus spp.); pagurid crabs; and the starfish, Linckia laevigata. The density of macroinvertebrates on Davies Reef was lowest in the thick-turf habitats at the windward reef-crest (0.6 0.9 m-2) compared with 3.1 to 5.2 m-2 elsewhere on the reef flat. Invertebrate grazer densities were similar on mid-shelf reef flats (mean: 2.3 3.6 m-2) and significantly lower on outer-shelf reefs (0.3 1.0 m-2). The ingestion rate of Turbo chrysostomus, the most abundant macroinvertebrate species, was derived from (a) faecal production and food absorption efficiency, (b) comparison of algal biomass on grazed and ungrazed natural substrata and (c) gut-filling rate and feeding periodicity in field populations. The ingestion rate of Trochus pyramis, the most common trochid and an abundant component of the macroinvertebrate fauna, was also estimated using (a). This gastropod fed continuously, whereas T. chrysostomus showed a distinct nocturnal feeding periodicity. T. chrysostomus and T. pyramis ingested daily means of 35 and 54 mgC animal-1, respectively. Total gastropod grazing rates (mgC m-2d-1 in the field ranged from 11 in a thick-turf, reef-crest habitat to 144 on the open-grazed main flat. Grazing by gastropods accounted for between 0.3 and 8% of the net production of benthic algal food resources, depending on location on the reef flat. Across the whole reef flat the mean (areally-weighted) gastropod grazing rate was 6% of net production. A comparison of the relative roles of different types of grazers led to the conclusion that fishes are likely to have the greatest overall trophic impact on reefs of the central GBR. Even where macroinvertebrates are most abundant on reef flats, the yield from benthic algal communities to macroinvertebrates is estimated to be only one third of that due to fishes.

  9. Net Ecosystem Calcification by a Coral Reef Community under Natural Acidification

    NASA Astrophysics Data System (ADS)

    Shamberger, K.; Lentz, S. J.; Cohen, A. L.

    2016-02-01

    Net Ecosystem Calcification (NEC) is a measure of the balance between calcium carbonate production (calcification) and loss (dissolution) within a coral reef system. Establishing baseline NEC estimates for a broad range of coral reef systems today provides much needed information to constrain spatial and temporal variability within and amongst different systems, investigate the sensitivity of ecosystem scale calcification to environmental forcing, and improve projections of coral reef futures under ocean acidification throughout this century. Previous NEC studies have been limited to coral reefs with unidirectional (Lagrangian and flow respirometry studies) or negligible (slack water Eulerian studies) water flow across the reef for at least part of the day, usually on the order of hours. Here, we present NEC rates in a naturally low pH, semi-enclosed coral reef lagoon with high coral cover and diversity and tidally driven flow within the Palau Rock Islands. NEC was determined from data collected over the full diel cycle for four consecutive days, during two successive years and different seasons, using total alkalinity (TA), salinity, and volume budgets. Two different methods used to calculate NEC are in good agreement and show that the coral community is net calcifying despite high rates of bioerosion and pH (mean pH = 7.88 ± 0.02) and aragonite saturation state (Ωar = 2.66 ± 0.11) levels close to those projected for the end of this century. Critically, NEC rates in year 1 (17.0 - 23.7 mmol m-2 d-1) were half those of year 2 (42.0 - 48.1 mmol m-2 d-1), though the carbonate chemistry of the source water did not change between years. This suggests that single occupations and short term measurements do not adequately capture the full range of NEC variability within a system and that factors other than ocean acidification play an important role in modulating NEC rates.

  10. Wave transformations across a Caribbean fringing-barrier Coral Reef

    NASA Astrophysics Data System (ADS)

    Lugo-Fernández, Alexis; Roberts, Harry H.; Suhayda, Joseph N.

    1998-08-01

    Wave measurements during three experiments at Tague Reef, St. Croix (U.S.V.I.) in April 1987 showed a net energy decrease across the reef profile of 65-71% between the forereef and crest, wave propagation to the backreef increased energy reduction to 78-88%. Tidally induced water depth changes (range of 0.3 m) increased wave energy dissipation by 15% between forereef and crest and 20% between forereef and backreef. Significant wave heights throughout the experiment were low (<0.5 m) and exhibited a tidal modulation in the backreef or lagoon. Wave transmission over the reef averaged 0.46 and modulated by the tide (0.32 at low tide vs 0.62 at high tide). The spectral time-delay model applied to analyzed wave transformations across the reef produced attenuation coefficients that averaged 0.62 between 0.05 and 0.1 cps (20-10 s) and afterwards oscillate between 0.22 and 0.35. For waves between the forereef and backreef, the attenuation coefficients from the time-delay model decay exponentially between 0.05 and 0.1 cps, afterwards they oscillate between 0.13 and 0.2. The steady wave-energy model with bottom friction, essentially form drag, and wave breaking dissipation yield wave heights modulated by the tides and errors of <19% in the crest and >20% at the backreef. The model revealed that while frictional and wave-breaking dissipation are equally important, frictional dissipation is greater.

  11. An all-taxon microbial inventory of the Moorea coral reef ecosystem

    PubMed Central

    McCliment, Elizabeth A; Nelson, Craig E; Carlson, Craig A; Alldredge, Alice L; Witting, Jan; Amaral-Zettler, Linda A

    2012-01-01

    The Moorea Coral Reef Long Term Ecological Research (LTER) Site (17.50°S, 149.83°W) comprises the fringe of coral reefs and lagoons surrounding the volcanic island of Moorea in the Society Islands of French Polynesia. As part of our Microbial Inventory Research Across Diverse Aquatic LTERS biodiversity inventory project, we characterized microbial community composition across all three domains of life using amplicon pyrosequencing of the V6 (bacterial and archaeal) and V9 (eukaryotic) hypervariable regions of small-subunit ribosomal RNA genes. Our survey spanned eight locations along a 130-km transect from the reef lagoon to the open ocean to examine changes in communities along inshore to offshore gradients. Our results illustrate consistent community differentiation between inshore and offshore ecosystems across all three domains, with greater richness in all domains in the reef-associated habitats. Bacterial communities were more homogenous among open ocean sites spanning >100 km than among inshore sites separated by <1 km, whereas eukaryotic communities varied more offshore than inshore, and archaea showed more equal levels of dissimilarity among subhabitats. We identified signature communities representative of specific geographic and geochemical milieu, and characterized co-occurrence patterns of specific microbial taxa within the inshore ecosystem including several bacterial groups that persist in geographical niches across time. Bacterial and archaeal communities were dominated by few abundant taxa but spatial patterning was consistent through time and space in both rare and abundant communities. This is the first in-depth inventory analysis of biogeographic variation of all three microbial domains within a coral reef ecosystem. PMID:21900967

  12. An all-taxon microbial inventory of the Moorea coral reef ecosystem.

    PubMed

    McCliment, Elizabeth A; Nelson, Craig E; Carlson, Craig A; Alldredge, Alice L; Witting, Jan; Amaral-Zettler, Linda A

    2012-02-01

    The Moorea Coral Reef Long Term Ecological Research (LTER) Site (17.50°S, 149.83°W) comprises the fringe of coral reefs and lagoons surrounding the volcanic island of Moorea in the Society Islands of French Polynesia. As part of our Microbial Inventory Research Across Diverse Aquatic LTERS biodiversity inventory project, we characterized microbial community composition across all three domains of life using amplicon pyrosequencing of the V6 (bacterial and archaeal) and V9 (eukaryotic) hypervariable regions of small-subunit ribosomal RNA genes. Our survey spanned eight locations along a 130-km transect from the reef lagoon to the open ocean to examine changes in communities along inshore to offshore gradients. Our results illustrate consistent community differentiation between inshore and offshore ecosystems across all three domains, with greater richness in all domains in the reef-associated habitats. Bacterial communities were more homogenous among open ocean sites spanning >100 km than among inshore sites separated by <1 km, whereas eukaryotic communities varied more offshore than inshore, and archaea showed more equal levels of dissimilarity among subhabitats. We identified signature communities representative of specific geographic and geochemical milieu, and characterized co-occurrence patterns of specific microbial taxa within the inshore ecosystem including several bacterial groups that persist in geographical niches across time. Bacterial and archaeal communities were dominated by few abundant taxa but spatial patterning was consistent through time and space in both rare and abundant communities. This is the first in-depth inventory analysis of biogeographic variation of all three microbial domains within a coral reef ecosystem.

  13. Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification.

    PubMed

    Andersson, Andreas J; Gledhill, Dwight

    2013-01-01

    The persistence of carbonate structures on coral reefs is essential in providing habitats for a large number of species and maintaining the extraordinary biodiversity associated with these ecosystems. As a consequence of ocean acidification (OA), the ability of marine calcifiers to produce calcium carbonate (CaCO(3)) and their rate of CaCO(3) production could decrease while rates of bioerosion and CaCO(3) dissolution could increase, resulting in a transition from a condition of net accretion to one of net erosion. This would have negative consequences for the role and function of coral reefs and the eco-services they provide to dependent human communities. In this article, we review estimates of bioerosion, CaCO(3) dissolution, and net ecosystem calcification (NEC) and how these processes will change in response to OA. Furthermore, we critically evaluate the observed relationships between NEC and seawater aragonite saturation state (Ω(a)). Finally, we propose that standardized NEC rates combined with observed changes in the ratios of dissolved inorganic carbon to total alkalinity owing to net reef metabolism may provide a biogeochemical tool to monitor the effects of OA in coral reef environments.

  14. Community calcification in Lizard Island, Great Barrier Reef: A 33 year perspective

    NASA Astrophysics Data System (ADS)

    Silverman, J.; Schneider, K.; Kline, D. I.; Rivlin, T.; Rivlin, A.; Hamylton, S.; Lazar, B.; Erez, J.; Caldeira, K.

    2014-11-01

    Measurements of community calcification (Gnet) were made during September 2008 and October 2009 on a reef flat in Lizard Island, Great Barrier Reef, Australia, 33 years after the first measurements were made there by the LIMER expedition in 1975. In 2008 and 2009 we measured Gnet = 61 ± 12 and 54 ± 13 mmol CaCO3 m-2·day-1, respectively. These rates are 27-49% lower than those measured during the same season in 1975-76. These rates agree well with those estimated from the measured temperature and degree of aragonite saturation using a reef calcification rate equation developed from observations in a Red Sea coral reef. Community structure surveys across the Lizard Island reef flat during our study using the same methods employed in 1978 showed that live coral coverage had not changed significantly (∼8%). However, it should be noted that the uncertainty in the live coral coverage estimates in this study and in 1978 were fairly large and inherent to this methodology. Using the reef calcification rate equation while assuming that seawater above the reef was at equilibrium with atmospheric PCO2 and given that live coral cover had not changed Gnet should have declined by 30 ± 8% since the LIMER study as indeed observed. We note, however, that the error in estimated Gnet decrease relative to the 1970's could be much larger due to the uncertainties in the coral coverage measurements. Nonetheless, the similarity between the predicted and the measured decrease in Gnet suggests that ocean acidification may be the primary cause for the lower CaCO3 precipitation rate on the Lizard Island reef flat.

  15. Rebecca shoal barrier reef complex of Gulfian and Paleocene age - onshore and offshore Florida

    SciTech Connect

    Winston, G.O.

    1989-03-01

    Surrounding the Florida Peninsula and the offshore portion of the South Florida basin is a 1300-mi long dolomite barrier reef complex that occupies a 3800-ft composite interval spanning most of the Gulfian and Paleocene. Forty-four wells have penetrated various aspects of this complex. Growth began with the Card Sound facies (some 1400 ft thick) in the lower Gulfian, shortly after the end of the Early Cretaceous. This facies is present in only two wells, 4 mi apart on Key Largo. The appearance of the Rebecca Shoal reef in the earliest Gulfian indicates that the Florida Straits were then present, as deep water would have been necessary to support a growing reef of this magnitude. During the late Gulfian, the reef (Plantation equivalent) expanded northward along the East Coast and westward along the Keys. The width now was over 6 mi. By the beginning of the Paleocene, the reef (Tavernier facies) had completely surrounded the peninsula, resulting in the deposition of the Cedar Keys dolomite-anhydrite lagoonal facies. The width of the complex was now as much as 20 mi. At the close of the Paleocene, the Rebecca Shoals reef ended abruptly. It was overlain by an orange/brown anhedral dolomite characteristic of the basal Eocene. The lithology of the outer region of the reef complex is characterized by a light-colored, porous, fine to medium crystalline euhedral dolomite. Large cavities, including a 60-ft cavern, have been reported. Two core samples show a taluslike rubble texture with vug porosity between the square-sided fragments. Behind the Tavernier reef, this facies is gradually replaced by nonporous anhedral and cryptocrystalline dolomite. Farther lagoonward, these three lithologies become interbedded with typical Cedar keys, a very fine microcrystalline to microcrystalline dolomite.

  16. Cross-shelf variation in browsing intensity on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Hoey, A. S.; Bellwood, D. R.

    2010-06-01

    Herbivory is widely accepted as a key process determining the structure and resilience of coral reefs, with regional reductions in herbivores often being related to shifts from dominance by coral to leathery macroalgae. The removal of leathery macroalgae may therefore be viewed as a critical process on coral reefs. However, few studies have examined this process beyond a within-reef scale. Here, browsing activity was examined across the entire Great Barrier Reef shelf using bioassays of the leathery macroalga Sargassum to directly quantify algal removal. The assays revealed marked cross-shelf variation in browsing intensity, with the highest rates recorded on mid-shelf reefs (55.2-79.9% day-1) and decreasing significantly on inner- (10.8-17.0% day-1) and outer-shelf (10.1-10.4% day-1) reefs. Surprisingly, the variation in browsing intensity was not directly related to estimates of macroalgal browser biomass; rather, it appears to be shaped primarily by the local environment and behaviour of the component species. Removal rates across the inner- and mid-shelf reefs appear to be related to the attractiveness of the assays relative to the resident algal communities. Controlling for the influence of the resident algal communities revealed a positive relationship between removal rates and the biomass of a single macroalgal browsing species, Naso unicornis. In contrast, the low removal rates on the outer-shelf reefs displayed no relationship to algal or herbivore communities and appeared to reflect a negative behavioural response by the resident fishes to a novel, or unfamiliar, alga. These findings not only highlight the complexities of the relationship between fish presence and ecological function, but also the value of examining ecological processes across broader spatial scales.

  17. Population growth rates of reef sharks with and without fishing on the great barrier reef: robust estimation with multiple models.

    PubMed

    Hisano, Mizue; Connolly, Sean R; Robbins, William D

    2011-01-01

    Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple

  18. Population Growth Rates of Reef Sharks with and without Fishing on the Great Barrier Reef: Robust Estimation with Multiple Models

    PubMed Central

    Hisano, Mizue; Connolly, Sean R.; Robbins, William D.

    2011-01-01

    Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple

  19. A critical review of environmental management of the 'not so Great' Barrier Reef

    NASA Astrophysics Data System (ADS)

    Brodie, Jon; Waterhouse, Jane

    2012-06-01

    Recent estimates put average coral cover across the Great Barrier Reef (GBR) at about 20-30%. This is estimated to be a large reduction since the 1960s. The Great Barrier Reef Marine Park Act was enacted in 1975 and the Great Barrier Reef Marine Park Authority (GBRMPA) set up shortly afterwards. So the question is: why has coral cover continued to decline when the GBR is being managed with a management regime often recognised as 'the best managed coral reef system in the world', based on a strong science-for-management ethic. The stressors which are known to be most responsible for the loss of coral cover (and general 'reef health') are terrestrial pollution including the link to outbreaks of crown of thorns starfish, fishing impacts and climate change. These have been established through a long and intensive research effort over the last 30 years. However the management response of the GBRMPA after 1975, while based on a strong science-for-management program, did not concentrate on these issues but instead on managing access through zoning with restrictions on fishing in very limited areas and tourism management. Significant action on fishing, including trawling, did not occur until the Trawl Management Plan of 2000 and the rezoning of the GBR Marine Park in 2004. Effective action on terrestrial pollution did not occur until the Australian Government Reef Rescue initiative which commenced in 2008. Effective action on climate change has yet to begin either nationally or globally. Thus it is not surprising that coral cover on the GBR has reduced to values similar to those seen in other coral reef areas in the world such as Indonesia and the Philippines. Science has always required long periods to acquire sufficient evidence to drive management action and hence there is a considerable time lag between the establishment of scientific evidence and the introduction of effective management. It can still be credibly claimed that the GBR is the best managed coral reef

  20. Factors affecting adoption of improved management practices in the pastoral industry in Great Barrier Reef catchments.

    PubMed

    Rolfe, John; Gregg, Daniel

    2015-07-01

    Substantial efforts are being made by industry and government in Australia to reduce adverse impacts of pastoral operations on water quality draining to the Great Barrier Reef. A key target is to achieve rapid adoption of better management practices by landholders, but current theoretical frameworks provide limited guidance about priorities for improving adoption. In this study information from direct surveys with landholders in the two largest catchments draining into the Great Barrier Reef has been collected and analysed. Study outcomes have important implications for policy settings, because they confirm that substantial variations in adoption drivers exist across landholders, enterprises and practices. The results confirm that the three broad barriers to adoption of information gaps, financial incentives and risk perceptions are relevant. This implies that different policy mechanisms, including extension and incentive programs, remain important, although financial incentives were only identified as important to meet capital and transformational costs rather than recurrent costs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Positive and negative effects of a threatened parrotfish on reef ecosystems.

    PubMed

    McCauley, Douglas J; Young, Hillary S; Guevara, Roger; Williams, Gareth J; Power, Eleanor A; Dunbar, Robert B; Bird, Douglas W; Durham, William H; Micheli, Fiorenza

    2014-10-01

    Species that are strong interactors play disproportionately important roles in the dynamics of natural ecosystems. It has been proposed that their presence is necessary for positively shaping the structure and functioning of ecosystems. We evaluated this hypothesis using the case of the world's largest parrotfish (Bolbometopon muricatum), a globally imperiled species. We used direct observation, animal tracking, and computer simulations to examine the diverse routes through which B. muricatum affects the diversity, dispersal, relative abundance, and survival of the corals that comprise the foundation of reef ecosystems. Our results suggest that this species can influence reef building corals in both positive and negative ways. Field observation and simulation outputs indicated that B. muricatum reduced the abundance of macroalgae that can outcompete corals, but they also feed directly on corals, decreasing coral abundance, diversity, and colony size. B. muricatum appeared to facilitate coral advancement by mechanically dispersing coral fragments and opening up bare space for coral settlement, but they also damaged adult corals and remobilized a large volume of potentially stressful carbonate sediment. The impacts this species has on reefs appears to be regulated in part by its abundance-the effects of B. muricatum were more intense in simulation scenarios populated with high densities of these fish. Observations conducted in regions with high and low predator (e.g., sharks) abundance generated results that are consistent with the hypothesis that these predators of B. muricatum may play a role in governing their abundance; thus, predation may modulate the intensity of the effects they have on reef dynamics. Overall our results illustrate that functionally unique and threatened species may not have universally positive impacts on ecosystems and that it may be necessary for environmental managers to consider the diverse effects of such species and the forces that

  2. Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes

    PubMed Central

    Luiz, Osmar J.; Madin, Joshua S.; Robertson, D. Ross; Rocha, Luiz A.; Wirtz, Peter; Floeter, Sergio R.

    2012-01-01

    How do biogeographically different provinces arise in response to oceanic barriers to dispersal? Here, we analyse how traits related to the pelagic dispersal and adult biology of 985 tropical reef fish species correlate with their establishing populations on both sides of two Atlantic marine barriers: the Mid-Atlantic Barrier (MAB) and the Amazon–Orinoco Plume (AOP). Generalized linear mixed-effects models indicate that predictors for successful barrier crossing are the ability to raft with flotsam for the deep-water MAB, non-reef habitat usage for the freshwater and sediment-rich AOP, and large adult-size and large latitudinal-range for both barriers. Variation in larval-development mode, often thought to be broadly related to larval-dispersal potential, is not a significant predictor in either case. Many more species of greater taxonomic diversity cross the AOP than the MAB. Rafters readily cross both barriers but represent a much smaller proportion of AOP crossers than MAB crossers. Successful establishment after crossing both barriers may be facilitated by broad environmental tolerance associated with large body size and wide latitudinal-range. These results highlight the need to look beyond larval-dispersal potential and assess adult-biology traits when assessing determinants of successful movements across marine barriers. PMID:21920979

  3. Excess seawater nutrients, enlarged algal symbiont densities and bleaching sensitive reef locations: 2. A regional-scale predictive model for the Great Barrier Reef, Australia.

    PubMed

    Wooldridge, Scott A; Heron, Scott F; Brodie, Jon E; Done, Terence J; Masiri, Itsara; Hinrichs, Saskia

    2017-01-15

    A spatial risk assessment model is developed for the Great Barrier Reef (GBR, Australia) that helps identify reef locations at higher or lower risk of coral bleaching in summer heat-wave conditions. The model confirms the considerable benefit of discriminating nutrient-enriched areas that contain corals with enlarged (suboptimal) symbiont densities for the purpose of identifying bleaching-sensitive reef locations. The benefit of the new system-level understanding is showcased in terms of: (i) improving early-warning forecasts of summer bleaching risk, (ii) explaining historical bleaching patterns, (iii) testing the bleaching-resistant quality of the current marine protected area (MPA) network (iv) identifying routinely monitored coral health attributes, such as the tissue energy reserves and skeletal growth characteristics (viz. density and extension rates) that correlate with bleaching resistant reef locations, and (v) targeting region-specific water quality improvement strategies that may increase reef-scale coral health and bleaching resistance.

  4. Reefs of the deep: the biology and geology of cold-water coral ecosystems.

    PubMed

    Roberts, J Murray; Wheeler, Andrew J; Freiwald, André

    2006-04-28

    Coral reefs are generally associated with shallow tropical seas; however, recent deep-ocean exploration using advanced acoustics and submersibles has revealed unexpectedly widespread and diverse coral ecosystems in deep waters on continental shelves, slopes, seamounts, and ridge systems around the world. Advances reviewed here include the use of corals as paleoclimatic archives and their biogeological functioning, biodiversity, and biogeography. Threats to these fragile, long-lived, and rich ecosystems are mounting: The impacts of deep-water trawling are already widespread, and effects of ocean acidification are potentially devastating.

  5. Oyster Reefs Support Coastal Resilience by Altering Nearshore Salinity: An Observational and Modeling Study to Quantify a "Keystone" Ecosystem Service

    NASA Astrophysics Data System (ADS)

    Kaplan, D. A.; Olabarrieta, M.; Frederick, P.; Valle-Levinson, A.

    2016-12-01

    Oyster reefs provide myriad ecosystem services, including water quality improvement, fisheries and other faunal support, shoreline protection from erosion and storm surge, and economic productivity. However, their role in directing flow during non-storm conditions has been largely neglected. In regions where oyster reefs form near the mouth of estuarine rivers, they likely alter ocean-estuary exchange by acting as fresh water "dams". We hypothesize that these reefs have the potential to detain fresh water and influence salinity over extensive areas, thus providing a "keystone" ecosystem service by supporting estuarine functions that rely on the maintenance of estuarine (i.e., brackish) conditions in the near-shore environment. In this work, we investigated the effects of shore-parallel reefs on near-shore salinity using field data and hydrodynamic modeling in a degraded reef complex in Suwannee Sound (Florida, USA). Results suggested that freshwater detention by long linear chains of oyster reefs plays an important role in modulating salinities, not only in the oysters' local environment, but over extensive estuarine areas (tens of square kilometers). Field data confirmed the presence of salinity differences between landward and seaward sides of the reef, with long-term mean salinity differences of >30% between sides. Modeled results expanded experimental findings by illustrating how oyster reefs affect the lateral and offshore extent of freshwater influence. In general, the effects of simulated reefs were most pronounced when they were highest in elevation, without gaps, and when riverine discharge was low. Taken together, these results describe a poorly documented ecosystem service provided by oyster reefs; provide an estimate of the magnitude and spatial extent of this service; and offer quantitative information to help guide future oyster reef restoration.

  6. Effects of tropical cyclone waves on ecological and geomorphological structures on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Done, T. J.

    1992-07-01

    Damage to coral reefs caused by Tropical Cyclone Ivor (March 1990) on 46 sites over 150 km of the Great Barrier Reef was patchily distributed within 50 km of the path, while at distances 50km from the eye, it was uniformly low. These distances suggest that local wind-generated waves, not ocean swells, may be the major cause of destruction. Wind component incident on each site, UN, was therefore hindcast from tropical cyclone circulation models. The sum of hourly UN explained about 82% of the variance in an index of total damage and 90% of the destruction of a veneer of dense coral growth up to 1.5 m in thickness. This correlation is consistent with an "attrition" model, in which cyclone waves exfoliate reefs, chunk by chunk, over the period of storm waves.

  7. Seasonal organic matter dynamics in the Great Barrier Reef lagoon: Contribution of carbohydrates and proteins

    NASA Astrophysics Data System (ADS)

    Lønborg, Christian; Doyle, Jason; Furnas, Miles; Menendez, Patricia; Benthuysen, Jessica A.; Carreira, Cátia

    2017-04-01

    Organic matter (OM) plays a fundamental role in sustaining the high productivity of coral reef ecosystems. Carbohydrates and proteins constitute two of the major chemical classes identified in the OM pool and are used as indicators of bioavailability due to their fast turn-over. We conducted three cruises across the southern shelf of the Great Barrier Reef (GBR) during the early dry, late dry and wet seasons in 2009-2010 to 1) assess the relative bioavailability of particulate (POM) and dissolved (DOM) organic matter, 2) track the temporal and spatial variability in the carbohydrate and protein contribution to the OM pool, and 3) assess factors influencing protein and carbohydrate fractions of the OM pool. Generally, higher concentrations of particulate carbohydrates were found during the wet season, while similar concentrations of particulate protein were found during the three seasons. Both the dissolved carbohydrates and proteins had highest levels during the early dry season and lowest during the wet season, suggesting seasonal variations in the chemical composition of the DOM pool. Spatially, carbohydrates showed higher concentrations at the inshore stations, while no clear spatial pattern was found for the protein concentrations. On average carbohydrates and proteins accounted for a similar fraction (13±5 and 12±6% respectively) of POM, while carbohydrates accounted for a smaller fraction of the DOM than the proteins (6±3 and 13±10%). This suggests that the POM bioavailability was similar between seasons, while the DOM bioavailability varied seasonally with highest levels during the early dry season. This demonstrates that carbohydrates and proteins in the GBR have temporal and spatial variations. Our statistical analysis showed that 1) both carbohydrates and proteins were related with the POM and DOM C:N:P stoichiometry, demonstrating that both bulk estimates (stoichiometry) and specific compounds (CHO and Prot) provide useful measures of OM

  8. Distribution of two species of sea snakes, Aipysurus laevis and Emydocephalus annulatus, in the southern Great Barrier Reef: metapopulation dynamics, marine protected areas and conservation

    NASA Astrophysics Data System (ADS)

    Lukoschek, V.; Heatwole, H.; Grech, A.; Burns, G.; Marsh, H.

    2007-06-01

    Aipysurus laevis and Emydocephalus annulatus typically occur in spatially discrete populations, characteristic of metapopulations; however, little is known about the factors influencing the spatial and temporal stability of populations or whether specific conservation strategies, such as networks of marine protected areas, will ensure the persistence of species. Classification tree analyses of 35 years of distribution data (90 reefs, surveyed 1-11 times) in the southern Great Barrier Reef (GBR) revealed that longitude was a major factor determining the status of A. laevis on reefs (present = 38, absent = 38 and changed = 14). Reef exposure and reef area were also important; however, these factors did not specifically account for the population fluctuations and the recent local extinctions of A. laevis in this region. There were no relationships between the status of E. annulatus (present = 16, absent = 68 and changed = 6) and spatial or physical variables. Moreover, prior protection status of reefs did not account for the distribution of either species. Biotic factors, such as habitat and prey availability and the distribution of predators, which may account for the observed patterns of distribution, are discussed. The potential for inter-population exchange among sea snake populations is poorly understood, as is the degree of protection that will be afforded to sea snakes by the recently implemented network of No-take areas in the GBR. Data from this study provide a baseline for evaluating the responses of A. laevis and E. annulatus populations to changes in biotic factors and the degree of protection afforded on reefs within an ecosystem network of No-take marine protected areas in the southern GBR.

  9. Benthic Foraminifera as ecological indicators for water quality on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Uthicke, Sven; Nobes, Kristie

    2008-07-01

    Benthic foraminifera are established indicators for Water Quality (WQ) in Florida and the Caribbean. However, nearshore coral reefs of the Great Barrier Reef (GBR) and other Pacific regions are also subjected to increased nutrient and sediment loads. Here, we investigate the use of benthic foraminifera as indicators to assess status and trends of WQ on GBR reefs. We quantified several sediment parameters and the foraminiferan assemblage composition on 20 reefs in four geographic regions of the GBR, and along a water column nutrient and turbidity gradient. Twenty-seven easily recognisable benthic foraminiferan taxa (>63 μm) were distinguished. All four geographic regions differed significantly ( p < 0.05, ANOSIM) in their assemblage composition, and a redundancy analysis (RDA) showed that sediment parameters only explained a small proportion of the variance in the assemblage composition. On nine reefs along a previously studied water quality gradient, foraminifera showed a distinct shift in assemblage composition towards larger symbiont-bearing taxa from turbid inner shelf towards clearer outer shelf reefs. A RDA separated symbiotic and aposymbiotic (heterotrophic) taxa. In addition, total suspended solid and water column chlorophyll a concentrations were negatively correlated, and optical depth and distance to the mainland were positively correlated, with the abundance of symbiont-bearing taxa. Several large foraminifera were identified as indicators for offshore, clear water conditions. In contrast, heterotrophic rotaliids and a species retaining plastids ( Elphidium sp.) where highly characteristic for low light, higher nutrient conditions. Application of the FORAM index to GBR assemblage composition showed a significant increase in the value of this index with increased distance from the mainland in the Whitsunday region ( r2 = 0.75, p < 0.001), and therefore with increasing light and decreased nutrient availability. We conclude that it will be possible to

  10. Variation in growth rates of branching corals along Australia's Great Barrier Reef.

    PubMed

    Anderson, Kristen D; Cantin, Neal E; Heron, Scott F; Pisapia, Chiara; Pratchett, Morgan S

    2017-06-07

    Coral growth is an important component of reef health and resilience. However, few studies have investigated temporal and/or spatial variation in growth of branching corals, which are important contributors to the structure and function of reef habitats. This study assessed growth (linear extension, density, and calcification) of three branching coral species (Acropora muricata, Pocillopora damicornis and Isopora palifera) at three distinct locations (Lizard Island, Davies/Trunk Reef, and Heron Island) along Australia's Great Barrier Reef (GBR). Annual growth rates of all species were highest at Lizard Island and declined with increasing latitude, corresponding with differences in temperature. Within locations, however, seasonal variation in growth did not directly correlate with temperature. Between October 2012 and October 2014, the highest growth of A. muricata was in the 2013-14 summer at Lizard Island, which was unusually cool and ~0.5 °C less than the long-term summer average temperature. At locations where temperatures reached or exceeded the long-term summer maxima, coral growth during summer periods was equal to, if not lower than, winter periods. This study shows that temperature has a significant influence on spatiotemporal patterns of branching coral growth, and high summer temperatures in the northern GBR may already be constraining coral growth and reef resilience.

  11. Evidence of reduced mid-Holocene ENSO variance on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Leonard, N. D.; Welsh, K. J.; Lough, J. M.; Feng, Y.-x.; Pandolfi, J. M.; Clark, T. R.; Zhao, J.-x.

    2016-09-01

    Globally, coral reefs are under increasing pressure both through direct anthropogenic influence and increases in climate extremes. Understanding past climate dynamics that negatively affected coral reef growth is imperative for both improving management strategies and for modeling coral reef responses to a changing climate. The El Niño-Southern Oscillation (ENSO) is the primary source of climate variability at interannual timescales on the Great Barrier Reef (GBR), northeastern Australia. Applying continuous wavelet transforms to visually assessed coral luminescence intensity in massive Porites corals from the central GBR we demonstrate that these records reliably reproduce ENSO variance patterns for the period 1880-1985. We then applied this method to three subfossil corals from the same reef to reconstruct ENSO variance from ~5200 to 4300 years before present (yBP). We show that ENSO events were less extreme and less frequent after ~5200 yBP on the GBR compared to modern records. Growth characteristics of the corals are consistent with cooler sea surface temperatures (SSTs) between 5200 and 4300 yBP compared to both the millennia prior (~6000 yBP) and modern records. Understanding ENSO dynamics in response to SST variability at geological timescales will be important for improving predictions of future ENSO response to a rapidly warming climate.

  12. Social, institutional, and knowledge mechanisms mediate diverse ecosystem service benefits from coral reefs

    PubMed Central

    Cinner, Joshua E.

    2014-01-01

    Ecosystem services are supplied by nature but, by definition, are received by people. Ecosystem service assessments, intended to influence the decisions people make regarding their interactions with nature, need to understand how people benefit from different ecosystem services. A critical question is therefore, What determines the distribution of ecosystem service benefits between different sections of society? Here, we use an entitlements approach to examine how people perceive ecosystem service benefits across 28 coral reef fishing communities in four countries. In doing so, we quantitatively show that bundles of benefits are mediated by key access mechanisms (e.g., rights-based, economic, knowledge, social, and institutional). We find that specific access mechanisms influence which ecosystem services people prioritize. Social, institutional, and knowledge mechanisms are associated with the largest number and diversity of benefits. However, local context strongly determines whether specific access mechanisms enable or constrain benefits. Local ecological knowledge enabled people to prioritize a habitat benefit in Kenya, but constrained people from prioritizing the same benefit in Madagascar. Ecosystem service assessments, and their resultant policies, need to include the broad suite of access mechanisms that enable different people to benefit from a supply of ecosystem services. PMID:25453100

  13. Social, institutional, and knowledge mechanisms mediate diverse ecosystem service benefits from coral reefs.

    PubMed

    Hicks, Christina C; Cinner, Joshua E

    2014-12-16

    Ecosystem services are supplied by nature but, by definition, are received by people. Ecosystem service assessments, intended to influence the decisions people make regarding their interactions with nature, need to understand how people benefit from different ecosystem services. A critical question is therefore, What determines the distribution of ecosystem service benefits between different sections of society? Here, we use an entitlements approach to examine how people perceive ecosystem service benefits across 28 coral reef fishing communities in four countries. In doing so, we quantitatively show that bundles of benefits are mediated by key access mechanisms (e.g., rights-based, economic, knowledge, social, and institutional). We find that specific access mechanisms influence which ecosystem services people prioritize. Social, institutional, and knowledge mechanisms are associated with the largest number and diversity of benefits. However, local context strongly determines whether specific access mechanisms enable or constrain benefits. Local ecological knowledge enabled people to prioritize a habitat benefit in Kenya, but constrained people from prioritizing the same benefit in Madagascar. Ecosystem service assessments, and their resultant policies, need to include the broad suite of access mechanisms that enable different people to benefit from a supply of ecosystem services.

  14. Symbiont acquisition strategy drives host-symbiont associations in the southern Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Stat, M.; Loh, W. K. W.; Hoegh-Guldberg, O.; Carter, D. A.

    2008-12-01

    Coral larvae acquire populations of the symbiotic dinoflagellate Symbiodinium from the external environment (horizontal acquisition) or inherit their symbionts from the parent colony (maternal or vertical acquisition). The effect of the symbiont acquisition strategy on Symbiodinium-host associations has not been fully resolved. Previous studies have provided mixed results, probably due to factors such as low sample replication of Symbiodinium from a single coral host, biogeographic differences in Symbiodinium diversity, and the presence of some apparently host-specific symbiont lineages in coral with either symbiont acquisition strategies. This study set out to assess the effect of the symbiont acquisition strategy by sampling Symbiodinium from 10 coral species (five with a horizontal and five with a vertical symbiont acquisition strategy) across two adjacent reefs in the southern Great Barrier Reef. Symbiodinium diversity was assessed using single-stranded conformational polymorphism of partial nuclear large subunit rDNA and denaturing gradient gel electrophoresis of the internal transcribed spacer 2 region. The Symbiodinium population in hosts with a vertical symbiont acquisition strategy partitioned according to coral species, while hosts with a horizontal symbiont acquisition strategy shared a common symbiont type across the two reef environments. Comparative analysis of existing data from the southern Great Barrier Reef found that the majority of corals with a vertical symbiont acquisition strategy associated with distinct species- or genus-specific Symbiodinium lineages, but some could also associate with symbiont types that were more commonly found in hosts with a horizontal symbiont acquisition strategy.

  15. Polycyclic aromatic hydrocarbons in clams, sediments, and seawater from the Great Barrier Reef region, Australia

    SciTech Connect

    Bagg, J.; Smith, J.D. )

    1988-09-01

    On the Great Barrier Reef actively growing organisms occur mainly in shallow water, between the low-water mark and about 5m depth. The effects of hydrocarbon pollution either from discharge into the sea or run-off from the shore might be expected to be most significantly at air/water or solid/water interfaces and so the earliest indications of contamination are likely to be found in species that live in this vulnerable zone. For this reason the clam Tridacna maxima which is found in the intertidal region was chosen to be analyzed for PAH content. This clam occurs in adequate numbers along the entire length of the Great Barrier Reef and yields enough tissue to permit detection of PAH at very low concentrations. In addition during collection their shells close so that the chance of significant contamination during transport is very small. Clams were taken from a number of sites including isolated reefs such as John Brewer Reef, the research stations, Heron and Lizard Islands, and a tourist resort, Green Island. At all these sites sediments were analyzed for PAH and at Green Island, in addition, seawater was analyzed.

  16. Integrating observational and modelling systems for the management of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Baird, M. E.; Jones, E. M.; Margvelashvili, N.; Mongin, M.; Rizwi, F.; Robson, B.; Schroeder, T.; Skerratt, J.; Steven, A. D.; Wild-Allen, K.

    2016-02-01

    Observational and modelling systems provide two sources of knowledge that must be combined to provide a more complete view than either observations or models alone can provide. Here we describe the eReefs coupled hydrodynamic, sediment and biogeochemical model that has been developed for the Great Barrier Reef; and the multiple observations that are used to constrain the model. Two contrasting examples of model - observational integration are highlighted. First we explore the carbon chemistry of the waters above the reef, for which observations are accurate, but expensive and therefore sparse, while model behaviour is highly skilful. For carbon chemistry, observations are used to constrain model parameterisation and quantify model error, with the model output itself providing the most useable knowledge for management purposes. In contrast, ocean colour provides inaccurate, but cheap and spatially and temporally extensive observations. Thus observations are best combined with the model in a data assimilating framework, where a custom-designed optical model has been developed for the purposes of incorporating ocean colour observations. The future management of Great Barrier Reef water quality will be based on an integration of observing and modelling systems, providing the most robust information available.

  17. [A review of the role and function of microbes in coral reef ecosystem].

    PubMed

    Zhou, Jin; Jin, Hui; Cai, Zhong-Hua

    2014-03-01

    Coral reef is consisted with several kinds of reef-associated organisms, including coral, fish, benthos, algae and microbes, which is an important marine ecosystem. Coral reef lives in the oligotrophic environment, has very highly primary productivity and net productivity, and is called "tropical rain forest in ocean". In corals, diverse microorganisms exert a significant influence on biogeochemical and ecological processes, including food webs, organism life cycles, and nutrient cycling. With the development of molecular biology, the role of microorganisms in a coral system is becoming more outstanding. In this article, we reviewed current understanding on 1) the onset of coral-bacterial associations; 2) the characteristics of microbes in coral (specificity, plasticity and co-evolution) ; 3) the role and signal regulation of microbes in the health and disease of coral; and 4) the response mechanism of microbes for global climatic change and consequent effects, such as temperature rise, ocean acidification and eutrophication. The aims of this article were to summarize the latest theories and achievements, clear the mechanism of microbial ecology in coral reefs and provide a theoretical reference for better protection and maintaining the coral's biodiversity.

  18. Spatial and temporal genetic structure of Symbiodinium populations within a common reef-building coral on the Great Barrier Reef.

    PubMed

    Howells, Emily J; Willis, Bette L; Bay, Line K; van Oppen, Madeleine J H

    2013-07-01

    The dinoflagellate photosymbiont Symbiodinium plays a fundamental role in defining the physiological tolerances of coral holobionts, but little is known about the dynamics of these endosymbiotic populations on coral reefs. Sparse data indicate that Symbiodinium populations show limited spatial connectivity; however, no studies have investigated temporal dynamics for in hospite Symbiodinium populations following significant mortality and recruitment events in coral populations. We investigated the combined influences of spatial isolation and disturbance on the population dynamics of the generalist Symbiodinium type C2 (ITS1 rDNA) hosted by the scleractinian coral Acropora millepora in the central Great Barrier Reef. Using eight microsatellite markers, we genotyped Symbiodinium in a total of 401 coral colonies, which were sampled from seven sites across a 12-year period including during flood plume-induced coral bleaching. Genetic differentiation of Symbiodinium was greatest within sites, explaining 70-86% of the total genetic variation. An additional 9-27% of variation was explained by significant differentiation of populations among sites separated by 0.4-13 km, which is consistent with low levels of dispersal via water movement and historical disturbance regimes. Sampling year accounted for 6-7% of total genetic variation and was related to significant coral mortality following severe bleaching in 1998 and a cyclone in 2006. Only 3% of the total genetic variation was related to coral bleaching status, reflecting generally small (8%) reductions in allelic diversity within bleached corals. This reduction probably reflected a loss of genotypes in hospite during bleaching, although no site-wide changes in genetic diversity were observed. Combined, our results indicate the importance of disturbance regimes acting together with limited oceanographic transport to determine the genetic composition of Symbiodinium types within reefs.

  19. Economic valuation of ecosystem services from coral reefs in the South Pacific: taking stock of recent experience.

    PubMed

    Laurans, Yann; Pascal, Nicolas; Binet, Thomas; Brander, Luke; Clua, Eric; David, Gilbert; Rojat, Dominique; Seidl, Andrew

    2013-02-15

    The economic valuation of coral reefs ecosystem services is currently seen as a promising approach to demonstrate the benefits of sustainable management of coral ecosystems to policymakers and to provide useful information for improved decisions. Most coral reefs economic studies have been conducted in the United States, Southeast Asia and the Caribbean, and only a few have covered the South Pacific region. In this region, coral reefs are essential assets for small island developing states as well as for developed countries. Accordingly, a series of ecosystem services valuations has been carried out recently in the South Pacific, to try and supply decision-makers with new information. Applying ecosystem services valuation to the specific ecological, social, economic and cultural contexts of the South Pacific is however not straightforward. This paper analyses how extant valuations address the various management challenges of coral reef regions in general and more specifically for the South Pacific. Bearing in mind that economic valuation has to match policy-making contexts, we emphasize a series of specific considerations when conducting and applying ecosystem services valuation in South Pacific ecological and social contexts. Finally, the paper examines the decision-making situations in which extant valuations took place. We conclude that, although ecosystem valuations have been effectively used as a means to raise awareness with respect to coral reef conservation, methodologies will have to be further developed, with multidisciplinary inputs, if they are to provide valuable inputs in local and technical decision-making.

  20. Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: Impacts on gill structure and microbiome.

    PubMed

    Hess, Sybille; Wenger, Amelia S; Ainsworth, Tracy D; Rummer, Jodie L

    2015-06-22

    Worldwide, increasing coastal development has played a major role in shaping coral reef species assemblages, but the mechanisms underpinning distribution patterns remain poorly understood. Recent research demonstrated delayed development in larval fishes exposed to suspended sediment, highlighting the need to further understand the interaction between suspended sediment as a stressor and energetically costly activities such as growth and development that are essential to support biological fitness. We examined the gill morphology and the gill microbiome in clownfish larvae (Amphiprion percula) exposed to suspended sediment concentrations (using Australian bentonite) commonly found on the inshore Great Barrier Reef. The gills of larvae exposed to 45 mg L(-1) of suspended sediment had excessive mucous discharge and growth of protective cell layers, resulting in a 56% thicker gill epithelium compared to fish from the control group. Further, we found a shift from 'healthy' to pathogenic bacterial communities on the gills, which could increase the disease susceptibility of larvae. The impact of suspended sediments on larval gills may represent an underlying mechanism behind the distribution patterns of fish assemblages. Our findings underscore the necessity for future coastal development to consider adverse effects of suspended sediments on fish recruitment, and consequently fish populations and ecosystem health.

  1. Dynamics of an outbreak population of Acanthaster planci at Lizard Island, northern Great Barrier Reef (1995 1999)

    NASA Astrophysics Data System (ADS)

    Pratchett, Morgan S.

    2005-11-01

    Despite their significant influence on coral reef ecosystems, causes of population outbreaks of crown-of-thorns starfish ( Acanthaster planci L.) are still poorly understood. Essentially, outbreaks of A. planci could arise from either (1) a single mass recruitment event or (2) the progressive accumulation of starfish from multiple cohorts. This study explored fine-scale variation in the size, distribution, and abundance of A. planci, during an outbreak at Lizard Island in the northern Great Barrier Reef, to assess the mechanism by which the outbreak occurred. Densities of A. planci around Lizard Island increased very gradually from October 1994 until December 1996, then remained at around 1.0 starfish per 200 m2 until June 1998. The population of A. planci comprised individuals ranging in size from 11-cm to 62-cm diameter, representing individuals from multiple (at least four) different cohorts. These data suggest that the outbreak of A. planci at Lizard Island resulted from a prolonged build-up in starfish numbers through multiple successive recruitment events. This study shows that outbreaks of A. planci may arise independently of any sudden or substantial increase in rates of recruitment, such that any factor(s) responsible for the initial onset of outbreaks are likely to be very subtle and difficult to detect.

  2. Community production modulates coral reef pH and the sensitivity of ecosystem calcification to ocean acidification

    NASA Astrophysics Data System (ADS)

    DeCarlo, Thomas M.; Cohen, Anne L.; Wong, George T. F.; Shiah, Fuh-Kwo; Lentz, Steven J.; Davis, Kristen A.; Shamberger, Kathryn E. F.; Lohmann, Pat

    2017-01-01

    Coral reefs are built of calcium carbonate (CaCO3) produced biogenically by a diversity of calcifying plants, animals, and microbes. As the ocean warms and acidifies, there is mounting concern that declining calcification rates could shift coral reef CaCO3 budgets from net accretion to net dissolution. We quantified net ecosystem calcification (NEC) and production (NEP) on Dongsha Atoll, northern South China Sea, over a 2 week period that included a transient bleaching event. Peak daytime pH on the wide, shallow reef flat during the nonbleaching period was ˜8.5, significantly elevated above that of the surrounding open ocean (˜8.0-8.1) as a consequence of daytime NEP (up to 112 mmol C m-2 h-1). Diurnal-averaged NEC was 390 ± 90 mmol CaCO3 m-2 d-1, higher than any other coral reef studied to date despite comparable calcifier cover (25%) and relatively high fleshy algal cover (19%). Coral bleaching linked to elevated temperatures significantly reduced daytime NEP by 29 mmol C m-2 h-1. pH on the reef flat declined by 0.2 units, causing a 40% reduction in NEC in the absence of pH changes in the surrounding open ocean. Our findings highlight the interactive relationship between carbonate chemistry of coral reef ecosystems and ecosystem production and calcification rates, which are in turn impacted by ocean warming. As open-ocean waters bathing coral reefs warm and acidify over the 21st century, the health and composition of reef benthic communities will play a major role in determining on-reef conditions that will in turn dictate the ecosystem response to climate change.

  3. STS-32 Earth observation of the western Coral Sea and the Great Barrier Reef

    NASA Image and Video Library

    1990-01-20

    STS032-520-014 (9-20 Jan. 1990) --- STS-32 astronauts took this 70mm scene showing phytoplankton oralgal bloom in the northwest Coral Sea. The Western Coral Sea and the Great Barrier Reef waters offshore Queensland, Australia are the sites of some of the larger concentrations or "blooms" of phytoplankton and algae in the open ocean. In the instance illustrated here, the leading edge of a probable concentration of algae or phytoplankton is seen as a light irregular line and sheen between the offshore Great Barrier Reef and the Queensland coast. Previous phytoplankton concentrations in this area have been reported by ships at sea as having formed floating mats as thick as two meters. This picture was used by the STS-32 astronauts at their Jan. 30, 1990 post-flight press conference.

  4. Three new species of Calyptotheca (Bryozoa: Lanceoporidae) from the Great Barrier Reef, tropical Australia.

    PubMed

    Sebastian, Pascal; Cumming, Robyn L

    2016-02-15

    The cheilostome bryozoans Calyptotheca wulguru n. sp. and Calyptotheca tilbrooki n. sp. (Lanceoporidae) are described from inter-reefal, sediment-dominated habitats of the Great Barrier Reef, and Calyptotheca churro n. sp. was washed up on a Heron Island beach, with uncertain origin. Calyptotheca wulguru n. sp. and C. churro n. sp. belong to a subgroup of Calyptotheca species with numerous small, oval, marginal adventitious avicularia and suboral nodular thickening or umbones. The vicarious avicularia of C. tilbrooki n. sp. are elongate-oval, unlike those of other known Calyptotheca species, and C. tilbrooki n. sp. has more pronounced orificial dimorphism than in any other known Calyptotheca species. Calyptotheca churro n. sp. has the most pronounced suboral umbo of all known Calyptotheca species. This study increases the known Calyptotheca species of the Great Barrier Reef to ten, and of tropical Australia to 14.

  5. Declining coral skeletal extension for forereef colonies of Siderastrea siderea on the Mesoamerican Barrier Reef System, Southern Belize.

    PubMed

    Castillo, Karl D; Ries, Justin B; Weiss, Jack M

    2011-02-16

    Natural and anthropogenic stressors are predicted to have increasingly negative impacts on coral reefs. Understanding how these environmental stressors have impacted coral skeletal growth should improve our ability to predict how they may affect coral reefs in the future. We investigated century-scale variations in skeletal extension for the slow-growing massive scleractinian coral Siderastrea siderea inhabiting the forereef, backreef, and nearshore reefs of the Mesoamerican Barrier Reef System (MBRS) in the western Caribbean Sea. Thirteen S. siderea cores were extracted, slabbed, and X-rayed. Annual skeletal extension was estimated from adjacent low- and high-density growth bands. Since the early 1900s, forereef S. siderea colonies have shifted from exhibiting the fastest to the slowest average annual skeletal extension, while values for backreef and nearshore colonies have remained relatively constant. The rates of change in annual skeletal extension were -0.020±0.005, 0.011±0.006, and -0.008±0.006 mm yr⁻¹ per year [mean±SE] for forereef, backreef, and nearshore colonies respectively. These values for forereef and nearshore S. siderea were significantly lower by 0.031±0.008 and by 0.019±0.009 mm yr⁻¹ per year, respectively, than for backreef colonies. However, only forereef S. siderea exhibited a statistically significant decline in annual skeletal extension over the last century. Our results suggest that forereef S. siderea colonies are more susceptible to environmental stress than backreef and nearshore counterparts, which may have historically been exposed to higher natural baseline stressors. Alternatively, sediment plumes, nutrients, and pollution originating from watersheds of Guatemala and Honduras may disproportionately impact the forereef environment of the MBRS. We are presently reconstructing the history of environmental stressors that have impacted the MBRS to constrain the cause(s) of the observed reductions in coral skeletal growth. This

  6. Declining Coral Skeletal Extension for Forereef Colonies of Siderastrea siderea on the Mesoamerican Barrier Reef System, Southern Belize

    PubMed Central

    Castillo, Karl D.; Ries, Justin B.; Weiss, Jack M.

    2011-01-01

    Background Natural and anthropogenic stressors are predicted to have increasingly negative impacts on coral reefs. Understanding how these environmental stressors have impacted coral skeletal growth should improve our ability to predict how they may affect coral reefs in the future. We investigated century-scale variations in skeletal extension for the slow-growing massive scleractinian coral Siderastrea siderea inhabiting the forereef, backreef, and nearshore reefs of the Mesoamerican Barrier Reef System (MBRS) in the western Caribbean Sea. Methodology/Principal Findings Thirteen S. siderea cores were extracted, slabbed, and X-rayed. Annual skeletal extension was estimated from adjacent low- and high-density growth bands. Since the early 1900s, forereef S. siderea colonies have shifted from exhibiting the fastest to the slowest average annual skeletal extension, while values for backreef and nearshore colonies have remained relatively constant. The rates of change in annual skeletal extension were −0.020±0.005, 0.011±0.006, and −0.008±0.006 mm yr−1 per year [mean±SE] for forereef, backreef, and nearshore colonies respectively. These values for forereef and nearshore S. siderea were significantly lower by 0.031±0.008 and by 0.019±0.009 mm yr−1 per year, respectively, than for backreef colonies. However, only forereef S. siderea exhibited a statistically significant decline in annual skeletal extension over the last century. Conclusions/Significance Our results suggest that forereef S. siderea colonies are more susceptible to environmental stress than backreef and nearshore counterparts, which may have historically been exposed to higher natural baseline stressors. Alternatively, sediment plumes, nutrients, and pollution originating from watersheds of Guatemala and Honduras may disproportionately impact the forereef environment of the MBRS. We are presently reconstructing the history of environmental stressors that have impacted the MBRS to constrain

  7. Neosabellides lizae, a new species of Ampharetidae (Annelida) from Lizard Island, Great Barrier Reef, Australia.

    PubMed

    Alvestad, Tom; Budaeva, Nataliya

    2015-09-18

    Neosabellides lizae, a new species of Ampharetidae, is described from the intertidal zone off Lizard Island, Great Barrier Reef, Queensland, Australia. The new species is referred to the genus Neosabellides based on the shape of the prostomium, three pairs of branchiae, 14 thoracic segments with notopodia, 12 thoracic uncinigerous segments, and the first two pairs of abdominal uncinigers of thoracic type. The new species differs from all known species of Neosabellides in having 14 abdominal uncinigerous segments.

  8. Baseline data for evaluating development trajectory and provision of ecosystem services of created fringing oyster reefs in Vermilion Bay, Louisiana

    USGS Publications Warehouse

    La Peyre, Megan K.; Schwarting, Lindsay; Miller, Shea

    2013-01-01

    Understanding the time frame in which ecosystem services (that is, water quality maintenance, shoreline protection, habitat provision) are expected to be provided is important when restoration projects are being designed and implemented. Restoration of three-dimensional shell habitats in coastal Louisiana and elsewhere presents a valuable and potentially self-sustaining approach to providing shoreline protection, enhancing nekton habitat, and providing water quality maintenance. As with most restoration projects, the development of expected different ecosystem services often occurs over varying time frames, with some services provided immediately and others taking longer to develop. This project was designed initially to compare the provision and development of ecosystem services by created fringing shoreline reefs in subtidal and intertidal environments in Vermilion Bay, Louisiana. Specifically, the goal was to test the null hypothesis that over time, the oyster recruitment and development of a sustainable oyster reef community would be similar at both intertidal and subtidal reef bases, and these sustainable reefs would in time provide similar shoreline stabilization, nekton habitat, and water quality services over similar time frames. Because the ecosystem services hypothesized to be provided by oyster reefs reflect long-term processes, fully testing the above-stated null hypothesis requires a longer-time frame than this project allowed. As such, this project was designed to provide the initial data on reef development and provision of ecosystem services, to identify services that may develop immediately, and to provide baseline data to allow for longer-term follow up studies tracking reef development over time. Unfortunately, these initially created reef bases (subtidal, intertidal) were not constructed as planned because of the Deepwater Horizon oil spill in April 2010, which resulted in reef duplicates being created 6 months apart. Further confounding the

  9. COLLABORATIVE GUIDE: A REEF MANAGER'S GUIDE TO ...

    EPA Pesticide Factsheets

    Innovative strategies to conserve the world's coral reefs are included in a new guide released today by NOAA, and the Australian Great Barrier Reef Marine Park Authority, with author contributions from a variety of international partners from government agencies, non-governmental organizations, and academic institutions. Referred to as A Reef Manager's Guide to Coral Bleaching, the guide will provide coral reef managers with the latest scientific information on the causes of coral bleaching and new management strategies for responding to this significant threat to coral reef ecosystems. Innovative strategies to conserve the world's coral reefs are included in a new guide released today by NOAA, and the Australian Great Barrier Reef Marine Park Authority, with author contributions from a variety of international partners from government agencies, non-governmental organizations, and academic institutions. Dr. Jordan West, of the National Center for Environmental Assessment, was a major contributor to the guide. Referred to as

  10. Insights into the Coral Microbiome: Underpinning the Health and Resilience of Reef Ecosystems.

    PubMed

    Bourne, David G; Morrow, Kathleen M; Webster, Nicole S

    2016-09-08

    Corals are fundamental ecosystem engineers, creating large, intricate reefs that support diverse and abundant marine life. At the core of a healthy coral animal is a dynamic relationship with microorganisms, including a mutually beneficial symbiosis with photosynthetic dinoflagellates (Symbiodinium spp.) and enduring partnerships with an array of bacterial, archaeal, fungal, protistan, and viral associates, collectively termed the coral holobiont. The combined genomes of this coral holobiont form a coral hologenome, and genomic interactions within the hologenome ultimately define the coral phenotype. Here we integrate contemporary scientific knowledge regarding the ecological, host-specific, and environmental forces shaping the diversity, specificity, and distribution of microbial symbionts within the coral holobiont, explore physiological pathways that contribute to holobiont fitness, and describe potential mechanisms for holobiont homeostasis. Understanding the role of the microbiome in coral resilience, acclimation, and environmental adaptation is a new frontier in reef science that will require large-scale collaborative research efforts.

  11. Symbiosis and microbiome flexibility in calcifying benthic foraminifera of the Great Barrier Reef.

    PubMed

    Prazeres, Martina; Ainsworth, Tracy; Roberts, T Edward; Pandolfi, John M; Leggat, William

    2017-03-23

    Symbiosis is a phenomenon that allows organisms to colonise a wide range of environments and occupy a variety of ecological niches in marine environments. Large benthic foraminifera (LBF) are crucial marine calcifiers that rely on photo-endosymbionts for growth and calcification, yet the influence of environmental conditions in shaping their interactions with prokaryotic and eukaryotic associates is poorly known. Here, we used next-generation sequencing to identify eukaryotic photosynthesizing and prokaryotic microbes associated with the common LBF Amphistegina lobifera across a physio-chemical gradient on the Great Barrier Reef (GBR). We collected samples from three reef sites located in the inner-, mid- and outer-shelf regions of the northern section of the GBR. Results showed the consistent presence of Bacillaryophyta as the main eukaryotic taxa associated with A. lobifera across all reef sites analysed; however, the abundance and the diversity of prokaryotic organisms varied among reef sites. Inner-shelf specimens showed the highest diversity of prokaryote associates, with a total of 231 genotypes in their core microbiome. A total of 30 taxa were identified in the core microbiome across all reef sites. Within these taxa, Proteobacteria was the most abundant bacteria present. The presence of groups such as Actinobacteria was significantly correlated with inner-shelf populations, whereas the abundance of Bacteroidetes and Firmicutes was associated with A. lobifera collected from mid- and outer-shelf reef sites. We found that benthic foraminifera form stable and persistent symbiosis with eukaryotic partners, but flexible and site-specific associations with prokaryotic microbes that likely influence the ecological success of these crucial calcifying organisms on the GBR.

  12. Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Bridge, T. C. L.; Fabricius, K. E.; Bongaerts, P.; Wallace, C. C.; Muir, P. R.; Done, T. J.; Webster, J. M.

    2012-03-01

    Mesophotic coral reefs in the Indo-West Pacific, the most diverse coral reef region on earth, are among the least documented. This study provides the first detailed investigation of the diversity of Scleractinia and Octocorallia of the mesophotic Great Barrier Reef (GBR). Specimens were collected by 100-m rock dredge tows at 47-163 m depth on 23 sites in four regions (15.3°-19.7° latitude South). Twenty-nine hard coral species from 19 families were recorded, with the greatest diversity found at <60 m depth, and no specimen was found >102 m. Many of these species are also commonly observed at shallower depths, particularly in inshore areas. Twenty-seven octocoral genera were collected, 25 of which represented azooxanthellate genera. Generic richness of octocorals was highest at depths >60 m. Sixteen of the 25 azooxanthellate genera were either absent or very rare at <18 m, and only five azooxanthellate genera were common on both shallow and mesophotic reefs. Species-area models indicated that the total diversity of hard corals on the deep mesophotic reefs sampled during this study was ~84 species while octocorals were represented by ~37 genera; however, the wide 95% confidence limits indicates that more intensive sampling effort is required to improve the accuracy of these estimates. Nonetheless, these results show that the taxonomic richness, particularly of hard corals, on mesophotic reefs may be much higher than previously thought, a finding that has implications for the comprehensive and adequate protection of the full range of biodiversity of the GBR.

  13. Oceanic inflow from the Coral Sea into the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Brinkman, R.; Wolanski, E.; Deleersnijder, E.; McAllister, F.; Skirving, W.

    2002-04-01

    Long-term current meter data from the continental shelf region of the Great Barrier Reef show that there exists a zone of oceanic inflow onto the shelf. This oceanic inflow splits into two branches on meeting the continental shelf slope, resulting in two net longshore currents on the slope, one to the north and the other to the south of the separation point. In 1981 this separation point was located between 17°S and 18°S. This circulation was successfully predicted using a depth-averaged two-dimensional model in which the regional sea level gradient is explicitly added in the momentum equations. The resulting circulation on the continental shelf is controlled by an oceanic inflow of 0·58 Sv, spread over 500 km of the shelf edge both north and south of the separation point. The inflow appears measurably impeded by the presence of coral reefs, with >50% of the inflow occurring in a 150 km long area where reef density is small. Satellite images confirm this spatial variability. Longshore currents on the shelf generated by the inflow are modulated by the wind and tides, which can deflect the mean current away from areas of high reef density and generate localized outflows to the Coral Sea. Oceanic inflow is believed to be important because it flushes the shelf even in the absence of wind; it controls the dominant direction of across-shelf and along-shelf spread of spawn material from reefs; it makes it possible for upwelled water to spread quickly over the GBR shelf; it may also protect coral reefs by preventing river plumes from spreading onto the outer shelf.

  14. Surviving coral bleaching events: porites growth anomalies on the Great Barrier Reef.

    PubMed

    Cantin, Neal E; Lough, Janice M

    2014-01-01

    Mass coral bleaching affected large parts of the Great Barrier Reef (GBR) in 1998 and 2002. In this study, we assessed if signatures of these major thermal stress events were recorded in the growth characteristics of massive Porites colonies. In 2005 a suite of short (<50 cm) cores were collected from apparently healthy, surviving Porites colonies, from reefs in the central GBR (18-19°S) that have documented observations of widespread bleaching. Sites included inshore (Nelly Bay, Pandora Reef), annually affected by freshwater flood events, midshelf (Rib Reef), only occasionally affected by freshwater floods and offshore (Myrmidon Reef) locations primarily exposed to open ocean conditions. Annual growth characteristics (extension, density and calcification) were measured in 144 cores from 79 coral colonies and analysed over the common 24-year period, 1980-2003. Visual examination of the annual density bands revealed growth hiatuses associated with the bleaching years in the form of abrupt decreases in annual linear extension rates, high density stress bands and partial mortality. The 1998 mass-bleaching event reduced Porites calcification by 13 and 18% on the two inshore locations for 4 years, followed by recovery to baseline calcification rates in 2002. Evidence of partial mortality was apparent in 10% of the offshore colonies in 2002; however no significant effects of the bleaching events were evident in the calcification rates at the mid shelf and offshore sites. These results highlight the spatial variation of mass bleaching events and that all reef locations within the GBR were not equally stressed by the 1998 and 2002 mass bleaching events, as some models tend to suggest, which enabled recovery of calcification on the GBR within 4 years. The dynamics in annual calcification rates and recovery displayed here should be used to improve model outputs that project how coral calcification will respond to ongoing warming of the tropical oceans.

  15. Surviving Coral Bleaching Events: Porites Growth Anomalies on the Great Barrier Reef

    PubMed Central

    Cantin, Neal E.; Lough, Janice M.

    2014-01-01

    Mass coral bleaching affected large parts of the Great Barrier Reef (GBR) in 1998 and 2002. In this study, we assessed if signatures of these major thermal stress events were recorded in the growth characteristics of massive Porites colonies. In 2005 a suite of short (<50 cm) cores were collected from apparently healthy, surviving Porites colonies, from reefs in the central GBR (18–19°S) that have documented observations of widespread bleaching. Sites included inshore (Nelly Bay, Pandora Reef), annually affected by freshwater flood events, midshelf (Rib Reef), only occasionally affected by freshwater floods and offshore (Myrmidon Reef) locations primarily exposed to open ocean conditions. Annual growth characteristics (extension, density and calcification) were measured in 144 cores from 79 coral colonies and analysed over the common 24-year period, 1980–2003. Visual examination of the annual density bands revealed growth hiatuses associated with the bleaching years in the form of abrupt decreases in annual linear extension rates, high density stress bands and partial mortality. The 1998 mass-bleaching event reduced Porites calcification by 13 and 18% on the two inshore locations for 4 years, followed by recovery to baseline calcification rates in 2002. Evidence of partial mortality was apparent in 10% of the offshore colonies in 2002; however no significant effects of the bleaching events were evident in the calcification rates at the mid shelf and offshore sites. These results highlight the spatial variation of mass bleaching events and that all reef locations within the GBR were not equally stressed by the 1998 and 2002 mass bleaching events, as some models tend to suggest, which enabled recovery of calcification on the GBR within 4 years. The dynamics in annual calcification rates and recovery displayed here should be used to improve model outputs that project how coral calcification will respond to ongoing warming of the tropical oceans. PMID:24586377

  16. Climate-Smart Design for Ecosystem Management: A Test Application for Coral Reefs

    NASA Astrophysics Data System (ADS)

    West, Jordan M.; Courtney, Catherine A.; Hamilton, Anna T.; Parker, Britt A.; Julius, Susan H.; Hoffman, Jennie; Koltes, Karen H.; MacGowan, Petra

    2017-01-01

    The interactive and cumulative impacts of climate change on natural resources such as coral reefs present numerous challenges for conservation planning and management. Climate change adaptation is complex due to climate-stressor interactions across multiple spatial and temporal scales. This leaves decision makers worldwide faced with local, regional, and global-scale threats to ecosystem processes and services, occurring over time frames that require both near-term and long-term planning. Thus there is a need for structured approaches to adaptation planning that integrate existing methods for vulnerability assessment with design and evaluation of effective adaptation responses. The Corals and Climate Adaptation Planning project of the U.S. Coral Reef Task Force seeks to develop guidance for improving coral reef management through tailored application of a climate-smart approach. This approach is based on principles from a recently-published guide which provides a framework for adopting forward-looking goals, based on assessing vulnerabilities to climate change and applying a structured process to design effective adaptation strategies. Work presented in this paper includes: (1) examination of the climate-smart management cycle as it relates to coral reefs; (2) a compilation of adaptation strategies for coral reefs drawn from a comprehensive review of the literature; (3) in-depth demonstration of climate-smart design for place-based crafting of robust adaptation actions; and (4) feedback from stakeholders on the perceived usefulness of the approach. We conclude with a discussion of lessons-learned on integrating climate-smart design into real-world management planning processes and a call from stakeholders for an "adaptation design tool" that is now under development.

  17. Climate-Smart Design for Ecosystem Management: A Test Application for Coral Reefs.

    PubMed

    West, Jordan M; Courtney, Catherine A; Hamilton, Anna T; Parker, Britt A; Julius, Susan H; Hoffman, Jennie; Koltes, Karen H; MacGowan, Petra

    2017-01-01

    The interactive and cumulative impacts of climate change on natural resources such as coral reefs present numerous challenges for conservation planning and management. Climate change adaptation is complex due to climate-stressor interactions across multiple spatial and temporal scales. This leaves decision makers worldwide faced with local, regional, and global-scale threats to ecosystem processes and services, occurring over time frames that require both near-term and long-term planning. Thus there is a need for structured approaches to adaptation planning that integrate existing methods for vulnerability assessment with design and evaluation of effective adaptation responses. The Corals and Climate Adaptation Planning project of the U.S. Coral Reef Task Force seeks to develop guidance for improving coral reef management through tailored application of a climate-smart approach. This approach is based on principles from a recently-published guide which provides a framework for adopting forward-looking goals, based on assessing vulnerabilities to climate change and applying a structured process to design effective adaptation strategies. Work presented in this paper includes: (1) examination of the climate-smart management cycle as it relates to coral reefs; (2) a compilation of adaptation strategies for coral reefs drawn from a comprehensive review of the literature; (3) in-depth demonstration of climate-smart design for place-based crafting of robust adaptation actions; and (4) feedback from stakeholders on the perceived usefulness of the approach. We conclude with a discussion of lessons-learned on integrating climate-smart design into real-world management planning processes and a call from stakeholders for an "adaptation design tool" that is now under development.

  18. Rapid Environmental Assessment Methodology (REAM) of Coral Reef Ecosystems at the Atlantic Undersea Test and Evaluation Center (AUTEC) on Andros Island, Bahamas

    DTIC Science & Technology

    2002-06-18

    Bahamas. The facility is adjacent to one of the largest near-shore coral reef ecosystems in the world. As part of the Navy’s environmental stewardship...reef development in terms of long-term sustained growth. This report describes the methodology used in developing of the baseline coral reef assessment

  19. A model of the effects of land-based, human activities on the health of coral reefs in the Great Barrier Reef and in Fouha Bay, Guam, Micronesia

    NASA Astrophysics Data System (ADS)

    Wolanski, Eric; Richmond, Robert H.; McCook, Laurence

    2004-05-01

    A model is proposed to explain coral and algal abundance on coastal coral reefs as a function of spike-like natural disturbances from tropical cyclones and turbid river floods, followed by long recovery periods where the rate of reef recovery depends on ambient water and substratum quality. The model includes competition for space between corals and algae, coral recruitment and reef connectivity. The model is applied to a 400-km stretch of Australia's Great Barrier Reef and to the 200-m-long reef tract at Fouha Bay, in Guam, Micronesia. For these two sites and at these two scales, the model appears successful at reproducing the observed distribution of algae and coral. For both sites, it is suggested that the reefs have been degraded by human activities on land and that they will recover provided remedial measures are implemented on land to restore the water and substrate conditions. We suggest ways to improve the model and to use the model to guide future ecological research and management efforts on coastal coral reefs.

  20. The ecosystem service value of living versus dead biogenic reef

    NASA Astrophysics Data System (ADS)

    Sheehan, E. V.; Bridger, D.; Attrill, M. J.

    2015-03-01

    Mixed maerl beds (corralline red algae) comprise dead thalli with varying amounts of live maerl fragments, but previously it was not known whether the presence of the live maerl increases the ecosystem service 'habitat provision' of the dead maerl for the associated epibenthos. A 'flying array' towed sled with high definition video was used to film transects of the epibenthos in dead maerl and mixed maerl beds in two locations to the north and south of the English Channel (Falmouth and Jersey). Mixed maerl beds supported greater number of taxa and abundance than dead beds in Falmouth, while in Jersey, mixed and dead beds supported similar number of taxa and dead beds had a greater abundance of epifauna. Scallops tended to be more abundant on mixed beds than dead beds. Tube worms were more abundant on mixed beds in Falmouth and dead beds in Jersey. An increasing percentage occurrence of live maerl thalli correlated with increasing number of taxa in Falmouth but not Jersey. It was concluded that while live thalli can increase the functional role of dead maerl beds for the epibenthos, this is dependent on location and response variable. As a result of this work, maerl habitat in SE Jersey has been protected from towed demersal fishing gear.

  1. Spionidae (Annelida) from Lizard Island, Great Barrier Reef, Australia: the genera Aonides, Dipolydora, Polydorella, Prionospio, Pseudopolydora, Rhynchospio, and Tripolydora.

    PubMed

    Radashevsky, Vasily I

    2015-09-18

    Nineteen species in seven genera of spionid polychaetes are described and illustrated based on new material collected from the intertidal and shallow waters around the Lizard Island Group, northern Great Barrier Reef. Only one of these species had been previously reported from the Reef. Six species are described as new to science, and the taxonomy of seven species should be clarified in the future. Prionospio sensu lato is the most diverse group with 11 species identified in the present study. One species is identified in each of the genera Dipolydora, Polydorella, Rhynchospio and Tripolydora, and two species are identified in each of the genera Aonides and Pseudopolydora. The fauna of spionid polychaetes of the Great Barrier Reef seems to be more diverse than previously described and more species are expected to be found in the future. An identification key is provided to 16 genera of Spionidae reported from or likely to be found on the Great Barrier Reef.

  2. Barrier island forest ecosystem: role of meteorologic nutrient inputs.

    PubMed

    Art, H W; Bormann, F H; Voigt, G K; Woodwell, G M

    1974-04-05

    The Sunken Forest, located on Fire Island, a barrier island in the Atlantic Ocean off Long Island, New York, is an ecosystem in which most of the basic cation input is in the form of salt spray. This meteorologic input is sufficient to compensate for the lack of certain nutrients in the highly weathered sandy soils. In other ecosystems these nutrients are generally supplied by weathering of soil particles. The compensatory effect of meteorologic input allows for primary production rates in the Sunken Forest similar to those of inland temperate forests.

  3. [Expedition glycocalyx. A newly discovered "Great Barrier Reef"].

    PubMed

    Chappell, D; Jacob, M; Becker, B F; Hofmann-Kiefer, K; Conzen, P; Rehm, M

    2008-10-01

    Healthy vascular endothelium is luminally coated by an endothelial glycocalyx, which interacts with the bloodstream and assumes a filter function on the vascular wall. Although this structure was discovered nearly 70 years ago, its physiological importance has been underestimated for a long time. Recent findings indicate that the glycocalyx is, in addition to the endothelial cells themselves, a main constituent part of the vascular barrier. The existence of different colloid osmotic gradients within and beneath this structure has now led to a modification of the Starling equation. In many vascular beds the interstitial space features a protein concentration similar to that of the plasma. The inwardly directed gradient, which retains water and proteins in the vascular system, is generated beneath the glycocalyx by selective protein filtration over this structure. The endothelial glycocalyx, as an additional competent vascular permeability barrier has, therefore, not only a key role for perioperative fluid and protein shifts into the interstitial space, but it seems to be intimately involved in the pathophysiology of diabetes, arteriosclerosis, sepsis and ischemia/reperfusion, especially with respect to associated vascular dysfunctions. The fragile glycocalyx can be destroyed in the course of surgery, trauma, ischemia/reperfusion and sepsis and by inflammatory mediators such as TNF-alpha, causing leukocyte adhesion, platelet aggregation and edema formation. Recent studies have shown that protecting this structure not only maintains the vascular barrier, but constitutes an important component of a rational perioperative fluid therapy.

  4. Algal Turf Sediments and Sediment Production by Parrotfishes across the Continental Shelf of the Northern Great Barrier Reef.

    PubMed

    Tebbett, Sterling B; Goatley, Christopher H R; Bellwood, David R

    2017-01-01

    Sediments are found in the epilithic algal matrix (EAM) of all coral reefs and play important roles in ecological processes. Although we have some understanding of patterns of EAM sediments across individual reefs, our knowledge of patterns across broader spatial scales is limited. We used an underwater vacuum sampler to quantify patterns in two of the most ecologically relevant factors of EAM sediments across the Great Barrier Reef: total load and grain size distribution. We compare these patterns with rates of sediment production and reworking by parrotfishes to gain insights into the potential contribution of parrotfishes to EAM sediments. Inner-shelf reef EAMs had the highest sediment loads with a mean of 864.1 g m-2, compared to 126.8 g m-2 and 287.4 g m-2 on mid- and outer-shelf reefs, respectively. High sediment loads were expected on inner-shelf reefs due to their proximity to the mainland, however, terrigenous siliceous sediments only accounted for 13-24% of total mass. On inner-shelf reef crests parrotfishes would take three months to produce the equivalent mass of sediment found in the EAM. On the outer-shelf it would take just three days, suggesting that inner-shelf EAMs are characterised by low rates of sediment turnover. By contrast, on-reef sediment production by parrotfishes is high on outer-shelf crests. However, exposure to oceanic swells means that much of this production is likely to be lost. Hydrodynamic activity also appears to structure sediment patterns at within-reef scales, with coarser sediments (> 250 μm) typifying exposed reef crest EAMs, and finer sediments (< 250 μm) typifying sheltered back-reef EAMs. As both the load and grain size of EAM sediments mediate a number of important ecological processes on coral reefs, the observed sediment gradients are likely to play a key role in the structure and function of the associated coral reef communities.

  5. Algal Turf Sediments and Sediment Production by Parrotfishes across the Continental Shelf of the Northern Great Barrier Reef

    PubMed Central

    Goatley, Christopher H. R.; Bellwood, David R.

    2017-01-01

    Sediments are found in the epilithic algal matrix (EAM) of all coral reefs and play important roles in ecological processes. Although we have some understanding of patterns of EAM sediments across individual reefs, our knowledge of patterns across broader spatial scales is limited. We used an underwater vacuum sampler to quantify patterns in two of the most ecologically relevant factors of EAM sediments across the Great Barrier Reef: total load and grain size distribution. We compare these patterns with rates of sediment production and reworking by parrotfishes to gain insights into the potential contribution of parrotfishes to EAM sediments. Inner-shelf reef EAMs had the highest sediment loads with a mean of 864.1 g m-2, compared to 126.8 g m-2 and 287.4 g m-2 on mid- and outer-shelf reefs, respectively. High sediment loads were expected on inner-shelf reefs due to their proximity to the mainland, however, terrigenous siliceous sediments only accounted for 13–24% of total mass. On inner-shelf reef crests parrotfishes would take three months to produce the equivalent mass of sediment found in the EAM. On the outer-shelf it would take just three days, suggesting that inner-shelf EAMs are characterised by low rates of sediment turnover. By contrast, on-reef sediment production by parrotfishes is high on outer-shelf crests. However, exposure to oceanic swells means that much of this production is likely to be lost. Hydrodynamic activity also appears to structure sediment patterns at within-reef scales, with coarser sediments (> 250 μm) typifying exposed reef crest EAMs, and finer sediments (< 250 μm) typifying sheltered back-reef EAMs. As both the load and grain size of EAM sediments mediate a number of important ecological processes on coral reefs, the observed sediment gradients are likely to play a key role in the structure and function of the associated coral reef communities. PMID:28122042

  6. Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia.

    PubMed

    Ayre, D J; Hughes, T P

    2000-10-01

    Marine organisms exhibit great variation in reproductive modes, larval types, and other life-history traits that may have major evolutionary consequences. We measured local and regional patterns of genetic variation in corals along Australia's Great Barrier Reef to determine the relative contributions of sexual and asexual reproduction to recruitment and to infer levels of gene flow both locally (among adjacent sites, < 5 km apart) and regionally (among reefs separated by 500-1,200 km). We selected five common brooding species (Acropora cuneata, A. palifera, Pocillopora damicornis, Seriatopora hystrix, and Stylophora pistillata) and four broadcast spawners (Acropora hyacinthus, A. cytherea, A. millepora, and A. valida), which encompassed a wide range of larval types and potential dispersal capabilities. We found substantial genotypic diversity at local scales in six of the nine species (four brooders, two spawners). For these six, each local population displayed approximately the levels of multilocus genotypic diversity (Go) expected for outcrossed sexual reproduction (mean values of Go:Ge ranged from 0.85 to 1.02), although consistent single-locus heterozygous deficits indicate that inbreeding occurs at the scale of whole reefs. The remaining three species, the brooder S. hystrix and the spawners A. valida and A. millepora displayed significantly less multilocus genotypic diversity (Go) than was expected for outcrossed sexual reproduction (Ge) within each of several sites. Acropora valida and A. millepora showed evidence of extensive localized asexual replication: (1) a small number of multilocus (clonal) genotypes were numerically dominant within some sites (Go:Ge values were as low as 0.17 and 0.20): (2) single-locus genotype frequencies were characterized by both excesses and deficits of heterozygotes (cf. Hardy-Weinberg expectations), and (3) significant linkage disequilibria occurred. For the brooding S. hystrix Go:Ge values were also low within each of four

  7. Submerged Shelf Edge Features on Australia's Great Barrier Reef and Their Response to Quaternary Sea-Level Changes

    NASA Astrophysics Data System (ADS)

    Abbey, E. A.; Webster, J. M.; Beaman, R. J.

    2010-12-01

    Australia has the largest extant barrier reef system in the world, the Great Barrier Reef. As sensitive indicators of their environment, tropical coral reefs are also valuable repositories of climate and sea-level histories. As sea-levels oscillate, reefs wax and wane along shallow shelf margins. During rapid transgressions, many reefs are unable to keep up and become drowned. Submerged, or drowned, reefs can provide a wealth of information as to the nature and timing of local oceanic conditions, and are well-recognised for their value as relative sea-level indicators. The Great Barrier Reef may hold the largest repository of Pleistocene and Holocene climate and sea-level records in the world, in the form of submerged reefs. The current understanding of submerged reefs along the Great Barrier Reef shelf edge is based on widely-spaced singlebeam echosounder profiles and several small scale (3-8 km2) multibeam surveys. In spite of these earlier studies that hinted at the wide distribution of submerged reefs, no regional-scale work has been undertaken using high-resolution multibeam swath bathymetry. Here we investigate four widely-spaced sites (200 km) from depths of 45-130 m ranging in size up to 400 km2 along Australia’s north-east margin using high-resolution multibeam swath bathymetry and surficial dredge samples. The aims of this study include characterising the morphology, distribution and variety of features, as well as identifying the processes associated with their origin, to gain a better understanding of the history of the Great Barrier Reef and its response to Quaternary sea-level changes. The high-resolution (cell pixel size 5 m) dataset presented here has allowed an unprecedented view of the seabed topography. This highly detailed imagery reveals very subtle characteristics of features that can indicate their environmental setting: for example, submarine or subaerial, and constructional or erosional. Comprehensive mapping of each site has resulted in

  8. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef

    PubMed Central

    Meyer, Friedrich W.; Vogel, Nikolas; Diele, Karen; Kunzmann, Andreas; Uthicke, Sven; Wild, Christian

    2016-01-01

    Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as

  9. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef.

    PubMed

    Meyer, Friedrich W; Vogel, Nikolas; Diele, Karen; Kunzmann, Andreas; Uthicke, Sven; Wild, Christian

    2016-01-01

    Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as

  10. Phytoplankton, bacterioplankton and virioplankton structure and function across the southern Great Barrier Reef shelf

    NASA Astrophysics Data System (ADS)

    Alongi, Daniel M.; Patten, Nicole L.; McKinnon, David; Köstner, Nicole; Bourne, David G.; Brinkman, Richard

    2015-02-01

    Bacterioplankton and phytoplankton dynamics, pelagic respiration, virioplankton abundance, and the diversity of pelagic diazotrophs and other bacteria were examined in relation to water-column nutrients and vertical mixing across the southern Great Barrier Reef (GBR) shelf where sharp inshore to offshore gradients in water chemistry and hydrology prevail. A principal component analysis (PCA) revealed station groups clustered geographically, suggesting across-shelf differences in plankton function and structure driven by changes in mixing intensity, sediment resuspension, and the relative contributions of terrestrial, reef and oceanic nutrients. At most stations and sampling periods, microbial abundance and activities peaked both inshore and at channels between outer shelf reefs of the Pompey Reef complex. PCA also revealed that virioplankton numbers and biomass correlated with bacterioplankton numbers and production, and that bacterial growth and respiration correlated with net primary production, suggesting close virus-bacteria-phytoplankton interactions; all plankton groups correlated with particulate C, N, and P. Strong vertical mixing facilitates tight coupling of pelagic and benthic shelf processes as, on average, 37% and 56% of N and P demands of phytoplankton are derived from benthic nutrient regeneration and resuspension. These across-shelf planktonic trends mirror those of the benthic microbial community.

  11. Diversity of sponges (Porifera) from cryptic habitats on the Belize barrier reef near Carrie Bow Cay.

    PubMed

    Rützler, Klaus; Piantoni, Carla; Van Soest, Rob W M; Díaz, M Cristina

    2014-05-29

    The Caribbean barrier reef near Carrie Bow Cay, Belize, has been a focus of Smithsonian Institution (Washington) reef and mangrove investigations since the early 1970s. Systematics and biology of sponges (Porifera) were addressed by several researchers but none of the studies dealt with cryptic habitats, such as the shaded undersides of coral rubble, reef crevices, and caves, although a high species diversity was recognized and samples were taken for future reference and study. This paper is the result of processing samples taken between 1972 and 2012. In all, 122 species were identified, 14 of them new (including one new genus). The new species are Tetralophophora (new genus) mesoamericana, Geodia cribrata, Placospongia caribica, Prosuberites carriebowensis, Timea diplasterina, Timea oxyasterina, Rhaphidhistia belizensis, Wigginsia curlewensis, Phorbas aurantiacus, Myrmekioderma laminatum, Niphates arenata, Siphonodictyon occultum, Xestospongia purpurea, and Aplysina sciophila. We determined that about 75 of the 122 cryptic sponge species studied (61%) are exclusive members of the sciophilic community, 47 (39 %) occur in both, light-exposed and shaded or dark habitats. Since we estimate the previously known sponge population of Carrie Bow reefs and mangroves at about 200 species, the cryptic fauna makes up 38 % of total diversity.

  12. Cool, Near-Bottom Intrusions in the Central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Benthuysen, J.; Tonin, H. E.; Brinkman, R. M.; Steinberg, C. R.

    2016-02-01

    The Central Great Barrier Reef is characterised by an open reef matrix on the outer continental shelf. Channels between emergent reefs facilitate the exchange of cool, nutrient-rich slope waters into the lagoon. Over the slope, the poleward East Australian Current flows in the opposite direction of southeasterly winds. Shelf and slope moorings are deployed as part of the Queensland node of the Integrated Marine Observing System (Q-IMOS). From 2009 - 2015, observations of ocean thermal structure reveal cool, near-bottom intrusions on the shelf. These observations are compared with output from a regional baroclinic hydrodynamic model developed as part of the eReefs project. A metric is developed and used to identify 64 bottom intrusion events over the six year period. These events occur predominantly during the austral summer wet season. The intrusions are associated with cooling of near-bottom temperatures by 1 to 3 deg. C over approximately one week. Intrusion events tend to occur during weakened southeasterly winds or poleward wind bursts. Over the slope, uplift of sub-surface water provides the source waters for the intrusions. Over the shelf, onshore flow leads to near-bottom cooling. Model analyses quantify the processes involved in driving these intrusions onto the shelf, including the roles of geostrophic flows and Ekman currents.

  13. Depleted dissolved organic carbon and distinct bacterial communities in the water column of a rapid-flushing coral reef ecosystem

    PubMed Central

    Nelson, Craig E; Alldredge, Alice L; McCliment, Elizabeth A; Amaral-Zettler, Linda A; Carlson, Craig A

    2011-01-01

    Coral reefs are highly productive ecosystems bathed in unproductive, low-nutrient oceanic waters, where microbially dominated food webs are supported largely by bacterioplankton recycling of dissolved compounds. Despite evidence that benthic reef organisms efficiently scavenge particulate organic matter and inorganic nutrients from advected oceanic waters, our understanding of the role of bacterioplankton and dissolved organic matter (DOM) in the interaction between reefs and the surrounding ocean remains limited. In this study, we present the results of a 4-year study conducted in a well-characterized coral reef ecosystem (Paopao Bay, Moorea, French Polynesia) where changes in bacterioplankton abundance and dissolved organic carbon (DOC) concentrations were quantified and bacterial community structure variation was examined along spatial gradients of the reef:ocean interface. Our results illustrate that the reef is consistently depleted in concentrations of both DOC and bacterioplankton relative to offshore waters (averaging 79 μmol l−1 DOC and 5.5 × 108 cells l−1 offshore and 68 μmol l−1 DOC and 3.1 × 108 cells l−1 over the reef, respectively) across a 4-year time period. In addition, using a suite of culture-independent measures of bacterial community structure, we found consistent differentiation of reef bacterioplankton communities from those offshore or in a nearby embayment across all taxonomic levels. Reef habitats were enriched in Gamma-, Delta-, and Betaproteobacteria, Bacteriodetes, Actinobacteria and Firmicutes. Specific bacterial phylotypes, including members of the SAR11, SAR116, Flavobacteria, and Synechococcus clades, exhibited clear gradients in relative abundance among nearshore habitats. Our observations indicate that this reef system removes oceanic DOC and exerts selective pressures on bacterioplankton community structure on timescales approximating reef water residence times, observations which are notable both because

  14. Depleted dissolved organic carbon and distinct bacterial communities in the water column of a rapid-flushing coral reef ecosystem.

    PubMed

    Nelson, Craig E; Alldredge, Alice L; McCliment, Elizabeth A; Amaral-Zettler, Linda A; Carlson, Craig A

    2011-08-01

    Coral reefs are highly productive ecosystems bathed in unproductive, low-nutrient oceanic waters, where microbially dominated food webs are supported largely by bacterioplankton recycling of dissolved compounds. Despite evidence that benthic reef organisms efficiently scavenge particulate organic matter and inorganic nutrients from advected oceanic waters, our understanding of the role of bacterioplankton and dissolved organic matter (DOM) in the interaction between reefs and the surrounding ocean remains limited. In this study, we present the results of a 4-year study conducted in a well-characterized coral reef ecosystem (Paopao Bay, Moorea, French Polynesia) where changes in bacterioplankton abundance and dissolved organic carbon (DOC) concentrations were quantified and bacterial community structure variation was examined along spatial gradients of the reef:ocean interface. Our results illustrate that the reef is consistently depleted in concentrations of both DOC and bacterioplankton relative to offshore waters (averaging 79 μmol l(-1) DOC and 5.5 × 10(8) cells l(-1) offshore and 68 μmol l(-1) DOC and 3.1 × 10(8) cells l(-1) over the reef, respectively) across a 4-year time period. In addition, using a suite of culture-independent measures of bacterial community structure, we found consistent differentiation of reef bacterioplankton communities from those offshore or in a nearby embayment across all taxonomic levels. Reef habitats were enriched in Gamma-, Delta-, and Betaproteobacteria, Bacteriodetes, Actinobacteria and Firmicutes. Specific bacterial phylotypes, including members of the SAR11, SAR116, Flavobacteria, and Synechococcus clades, exhibited clear gradients in relative abundance among nearshore habitats. Our observations indicate that this reef system removes oceanic DOC and exerts selective pressures on bacterioplankton community structure on timescales approximating reef water residence times, observations which are notable both because fringing

  15. Building resilience into practical conservation: identifying local management responses to global climate change in the southern Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Maynard, J. A.; Marshall, P. A.; Johnson, J. E.; Harman, S.

    2010-06-01

    Climate change is now considered the greatest long-term threat to coral reefs, with some future change inevitable despite mitigation efforts. Managers must therefore focus on supporting the natural resilience of reefs, requiring that resilient reefs and reef regions be identified. We develop a framework for assessing resilience and trial it by applying the framework to target management responses to climate change on the southern Great Barrier Reef. The framework generates a resilience score for a site based on the evaluation of 19 differentially weighted indicators known or thought to confer resilience to coral reefs. Scores are summed, and sites within a region are ranked in terms of (1) their resilience relative to the other sites being assessed, and (2) the extent to which managers can influence their resilience. The framework was applied to 31 sites in Keppel Bay of the southern Great Barrier Reef, which has a long history of disturbance and recovery. Resilience and ‘management influence potential’ were both found to vary widely in Keppel Bay, informing site selection for the staged implementation of resilience-based management strategies. The assessment framework represents a step towards making the concept of resilience operational to reef managers and conservationists. Also, it is customisable, easy to teach and implement and effective in building support among local communities and stakeholders for management responses to climate change.

  16. Regional and local variability in recovery of shallow coral communities: Moorea, French Polynesia and central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Done, T. J.; Dayton, P. K.; Dayton, A. E.; Steger, R.

    1991-01-01

    Coral communities at Moorea, French Polynesia, and on the Great Barrier Reef (GBR), Australia, were severely depleted by disturbances early in the 1980s. Corals were killed by the predatory starfish Acanthaster planci, by cyclones, and/or by depressed sea level. This study compares benthic community structure and coral population structures on three disturbed reefs (Vaipahu-Moorea; Rib and John Brewer Reefs-GBR) and one undisturbed reef (Davies Reef-GBR) in 1987 89. Moorea barrier reefs had been invaded by tall macrophytes Turbinaria ornata and Sargassum sp., whereas the damaged GBR reefs were colonised by a diverse mixture of short macrophytes, turfs and coralline algae. The disturbed areas had broadly similar patterns of living and dead standing coral, and similar progress in recolonisation, which suggests their structure may converge towards that of undisturbed Davies Reef. Corals occupying denuded areas at Vaipahu, Rib and John Brewer were small (median diameter 5 cm in each case) and sparse (means 4 8 m-2) compared to longer established corals at Davies Reef (median diameter 9 cm; mean 18 m-2). At Moorea, damselfish and sea urchins interacted with corals in ways not observed in the GBR reefs. Territories of the damselfish Stegastes nigricans covered much of Moorea's shallow reef top. They had significantly higher diversity and density of post-disturbance corals than areas outside of territories, suggesting that the damselfish exerts some influences on coral community dynamics. Sea urchins on Moorea ( Diadema setosum Echinometra mathaei, Echinotrix calamaris) were causing widespread destruction of dead standing coral skeletons. Overall, it appears that the future direction and speed of change in the communities will be explicable more in terms of local than regional processes.

  17. Deepwater Chondrichthyan Bycatch of the Eastern King Prawn Fishery in the Southern Great Barrier Reef, Australia.

    PubMed

    Rigby, Cassandra L; White, William T; Simpfendorfer, Colin A

    2016-01-01

    The deepwater chondrichthyan fauna of the Great Barrier Reef is poorly known and life history information is required to enable their effective management as they are inherently vulnerable to exploitation. The chondrichthyan bycatch from the deepwater eastern king prawn fishery at the Swain Reefs in the southern Great Barrier Reef was examined to determine the species present and provide information on their life histories. In all, 1533 individuals were collected from 11 deepwater chondrichthyan species, with the Argus skate Dipturus polyommata, piked spurdog Squalus megalops and pale spotted catshark Asymbolus pallidus the most commonly caught. All but one species is endemic to Australia with five species restricted to waters offshore from Queensland. The extent of life history information available for each species varied but the life history traits across all species were characteristic of deep water chondrichthyans with relatively large length at maturity, small litters and low ovarian fecundity; all indicative of low biological productivity. However, variability among these traits and spatial and bathymetric distributions of the species suggests differing degrees of resilience to fishing pressure. To ensure the sustainability of these bycatch species, monitoring of their catches in the deepwater eastern king prawn fishery is recommended.

  18. Shelf sediment dispersal during the dry season, Princess Charlotte Bay, Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Sahl, Lauren E.; Marsden, M. A. H.

    1987-10-01

    Princess Charlotte Bay, located on the northern Great Barrier Reef, is an environment of terrigenous and carbonate deposition. The dynamics on this shelf are controlled by the Great Barrier Reef at the edge of the shelf, and the mid-shelf, shore-normal reefs. This study examines the dynamics during the dry season, with six time-series records from instrumented tripod deployments and numerous hydrographic stations. The shallow nearshore waters and the estuaries prove to be the sites where most active sediment resuspension and transport takes place. Sediment resuspension is effected primarily by waves in the nearshore, and channeling of tidal currents in the estuaries. Bedload transport did not occur during this study, mainly because current velocities were too low. Suspended particulate matter (SPM) transport in the bay is governed by tides and winds. Strong tidal flow imparts a strong offshore component to the transport, and strong southeast winds impart an alongshore component that transports SPM out of the bay to the northwest. Rattlesnake Channel, east of Princess Charlotte Bay, is another route by which SPM leaves the bay. Flow through this channel is predominantly tidal, with ebb waters (leaving Princess Charlotte Bay) carrying higher SPM concentrations than flood waters. SPM flux in the nearshore was an order of magnitude higher than at offshore stations, with highest fluxes generally occurring at times of sustained southeast winds. Transect data show that SPM drops to average bay values in water 11 m deep, indicating most SPM is transported in nearshore waters.

  19. Deepwater Chondrichthyan Bycatch of the Eastern King Prawn Fishery in the Southern Great Barrier Reef, Australia

    PubMed Central

    Rigby, Cassandra L.; White, William T.; Simpfendorfer, Colin A.

    2016-01-01

    The deepwater chondrichthyan fauna of the Great Barrier Reef is poorly known and life history information is required to enable their effective management as they are inherently vulnerable to exploitation. The chondrichthyan bycatch from the deepwater eastern king prawn fishery at the Swain Reefs in the southern Great Barrier Reef was examined to determine the species present and provide information on their life histories. In all, 1533 individuals were collected from 11 deepwater chondrichthyan species, with the Argus skate Dipturus polyommata, piked spurdog Squalus megalops and pale spotted catshark Asymbolus pallidus the most commonly caught. All but one species is endemic to Australia with five species restricted to waters offshore from Queensland. The extent of life history information available for each species varied but the life history traits across all species were characteristic of deep water chondrichthyans with relatively large length at maturity, small litters and low ovarian fecundity; all indicative of low biological productivity. However, variability among these traits and spatial and bathymetric distributions of the species suggests differing degrees of resilience to fishing pressure. To ensure the sustainability of these bycatch species, monitoring of their catches in the deepwater eastern king prawn fishery is recommended. PMID:27218654

  20. Sponge Prokaryote Communities in Taiwanese Coral Reef and Shallow Hydrothermal Vent Ecosystems.

    PubMed

    Coelho, F J R C; Cleary, D F R; Gomes, N C M; Pólonia, A R M; Huang, Y M; Liu, L-L; de Voogd, N J

    2017-07-11

    Previously, it was believed that the prokaryote communities of typical 'low-microbial abundance' (LMA) or 'non-symbiont harboring' sponges were merely subsets of the prokaryote plankton community. Recent research has, however, shown that these sponges are dominated by particular clades of Proteobacteria or Cyanobacteria. Here, we expand on this research and assess the composition and putative functional profiles of prokaryotic communities from LMA sponges collected in two ecosystems (coral reef and hydrothermal vent) from vicinal islands of Taiwan with distinct physicochemical conditions. Six sponge species identified as Acanthella cavernosa (Bubarida), Echinodictyum asperum, Ptilocaulis spiculifer (Axinellida), Jaspis splendens (Tetractinellida), Stylissa carteri (Scopalinida) and Suberites sp. (Suberitida) were sampled in coral reefs in the Penghu archipelago. One sponge species provisionally identified as Hymeniacidon novo spec. (Suberitida) was sampled in hydrothermal vent habitat. Each sponge was dominated by a limited set of operational taxonomic units which were similar to sequences from organisms previously obtained from other LMA sponges. There was a distinct bacterial community between sponges collected in coral reef and in hydrothermal vents. The putative functional profile revealed that the prokaryote community from sponges collected in hydrothermal vents was significantly enriched for pathways related to DNA replication and repair.

  1. Informing policy to protect coastal coral reefs: insight from a global review of reducing agricultural pollution to coastal ecosystems.

    PubMed

    Kroon, Frederieke J; Schaffelke, Britta; Bartley, Rebecca

    2014-08-15

    The continuing degradation of coral reefs has serious consequences for the provision of ecosystem goods and services to local and regional communities. While climate change is considered the most serious risk to coral reefs, agricultural pollution threatens approximately 25% of the total global reef area with further increases in sediment and nutrient fluxes projected over the next 50 years. Here, we aim to inform coral reef management using insights learned from management examples that were successful in reducing agricultural pollution to coastal ecosystems. We identify multiple examples reporting reduced fluxes of sediment and nutrients at end-of-river, and associated declines in nutrient concentrations and algal biomass in receiving coastal waters. Based on the insights obtained, we recommend that future protection of coral reef ecosystems demands policy focused on desired ecosystem outcomes, targeted regulatory approaches, up-scaling of watershed management, and long-term maintenance of scientifically robust monitoring programs linked with adaptive management. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  2. Phytotoxicity induced in isolated zooxanthellae by herbicides extracted from Great Barrier Reef flood waters.

    PubMed

    Shaw, C M; Brodie, J; Mueller, J F

    2012-01-01

    To date there has been limited evidence anthropogenically sourced pollution from catchments reaching corals of the Great Barrier Reef (GBR). In this study, freshly isolated zooxanthellae were exposed to polar chemicals (chiefly herbicides) extracted from water samples collected in a flood plume in the GBR lagoon. Photosynthetic potential of the isolated zooxanthellae declined after exposure to concentrated extracts (10 times) from all but one of the sampling sites. Photosynthetic potential demonstrated a significant positive relationship with the concentration of diuron in the concentrated extracts and a significant inverse relationship with salinity measured at the sampling site. This study demonstrates that runoff from land based application of herbicides may reduce photosynthetic efficiency in corals of inshore reefs in the GBR. The ecological impacts of the chemicals in combination with other potential stressors on corals remain unclear. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Climate change disables coral bleaching protection on the Great Barrier Reef.

    PubMed

    Ainsworth, Tracy D; Heron, Scott F; Ortiz, Juan Carlos; Mumby, Peter J; Grech, Alana; Ogawa, Daisie; Eakin, C Mark; Leggat, William

    2016-04-15

    Coral bleaching events threaten the sustainability of the Great Barrier Reef (GBR). Here we show that bleaching events of the past three decades have been mitigated by induced thermal tolerance of reef-building corals, and this protective mechanism is likely to be lost under near-future climate change scenarios. We show that 75% of past thermal stress events have been characterized by a temperature trajectory that subjects corals to a protective, sub-bleaching stress, before reaching temperatures that cause bleaching. Such conditions confer thermal tolerance, decreasing coral cell mortality and symbiont loss during bleaching by over 50%. We find that near-future increases in local temperature of as little as 0.5°C result in this protective mechanism being lost, which may increase the rate of degradation of the GBR.

  4. Spatial Variation in Background Mortality among Dominant Coral Taxa on Australia's Great Barrier Reef

    PubMed Central

    Pisapia, Chiara; Pratchett, Morgan S.

    2014-01-01

    Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are consistently subject to high levels of background mortality, which undermines individual fitness and resilience of coral colonies. Partial mortality may impact coral response to climate change by reducing colony ability to recover between major acute stressors. This study quantified proportion of injured versus uninjured colonies (the prevalence of injuries) and instantaneous measures of areal extent of injuries across individual colonies (the severity of injuries), in four common coral species along the Great Barrier Reef in Australia: massive Porites, encrusting Montipora, Acropora hyacinthus and Pocillopora damicornis. A total of 2,276 adult colonies were surveyed three latitudinal sectors, nine reefs and 27 sites along 1000 km2 on the Great Barrier Reef. The prevalence of injuries was very high, especially for Porites spp (91%) and Montipora encrusting (85%) and varied significantly, but most lay at small spatial scales (e.g., among colonies positioned <10-m apart). Similarly, severity of background partial mortality was surprisingly high (between 5% and 21%) but varied greatly among colonies within the same site and habitat. This study suggests that intraspecific variation in partial mortality between adjacent colonies may be more important than variation between colonies in different latitudinal sectors or reefs. Differences in the prevalence and severity of background partial mortality have significant ramifications for coral capacity to cope with increasing acute disturbances, such as climate-induced coral bleaching. These data are important for understanding coral responses to increasing stressors, and in particular for predicting their capacity to recover between subsequent disturbances. PMID:24959921

  5. Sea spray aerosol in the Great Barrier Reef and the presence of nonvolatile organics

    NASA Astrophysics Data System (ADS)

    Mallet, Marc; Cravigan, Luke; Miljevic, Branka; Vaattovaara, Petri; Deschaseaux, Elisabeth; Swan, Hilton; Jones, Graham; Ristovski, Zoran

    2016-06-01

    Sea spray aerosol (SSA) particles produced from the ocean surface in regions of biological activity can vary greatly in size, number and composition, and in their influence on cloud formation. Algal species such as phytoplankton can alter the SSA composition. Numerous studies have investigated nascent SSA properties, but all of these have focused on aerosol particles produced by seawater from noncoral related phytoplankton and in coastal regions. Bubble chamber experiments were performed with seawater samples taken from the reef flat around Heron Island in the Great Barrier Reef during winter 2011. Here we show that the SSA from these samples was composed of an internal mixture of varying fractions of sea salt, semivolatile organics, as well as nonvolatile (below 550°C) organics. A relatively constant volume fraction of semivolatile organics of 10%-13% was observed, while nonvolatile organic volume fractions varied from 29% to 49% for 60 nm SSA. SSA organic fractions were estimated to reduce the activation ratios of SSA to cloud condensation nuclei by up to 14% when compared with artificial sea salt. Additionally, a sea-salt calibration was applied so that a compact time-of-flight aerosol mass spectrometer could be used to quantify the contribution of sea salt to submicron SSA, which yielded organic volume fractions of 3%-6%. Overall, these results indicate a high fraction of organics associated with wintertime Aitken mode SSA generated from Great Barrier Reef seawater. Further work is required to fully distinguish any differences coral reefs have on SSA composition when compared to open oceans.

  6. Spatial variation in background mortality among dominant coral taxa on Australia's Great Barrier Reef.

    PubMed

    Pisapia, Chiara; Pratchett, Morgan S

    2014-01-01

    Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are consistently subject to high levels of background mortality, which undermines individual fitness and resilience of coral colonies. Partial mortality may impact coral response to climate change by reducing colony ability to recover between major acute stressors. This study quantified proportion of injured versus uninjured colonies (the prevalence of injuries) and instantaneous measures of areal extent of injuries across individual colonies (the severity of injuries), in four common coral species along the Great Barrier Reef in Australia: massive Porites, encrusting Montipora, Acropora hyacinthus and Pocillopora damicornis. A total of 2,276 adult colonies were surveyed three latitudinal sectors, nine reefs and 27 sites along 1000 km2 on the Great Barrier Reef. The prevalence of injuries was very high, especially for Porites spp (91%) and Montipora encrusting (85%) and varied significantly, but most lay at small spatial scales (e.g., among colonies positioned <10-m apart). Similarly, severity of background partial mortality was surprisingly high (between 5% and 21%) but varied greatly among colonies within the same site and habitat. This study suggests that intraspecific variation in partial mortality between adjacent colonies may be more important than variation between colonies in different latitudinal sectors or reefs. Differences in the prevalence and severity of background partial mortality have significant ramifications for coral capacity to cope with increasing acute disturbances, such as climate-induced coral bleaching. These data are important for understanding coral responses to increasing stressors, and in particular for predicting their capacity to recover between subsequent disturbances.

  7. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification.

    PubMed

    Couce, Elena; Ridgwell, Andy; Hendy, Erica J

    2013-12-01

    Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature-driven decline in habitat suitability for many of the most significant and bio-diverse tropical coral regions, particularly in the central Indo-Pacific. This is accompanied by a temperature-driven poleward range expansion of favorable conditions accelerating up to 40-70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered 'marginal' for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short-term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on coral

  8. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification

    PubMed Central

    Couce, Elena; Ridgwell, Andy; Hendy, Erica J

    2013-01-01

    Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature-driven decline in habitat suitability for many of the most significant and bio-diverse tropical coral regions, particularly in the central Indo-Pacific. This is accompanied by a temperature-driven poleward range expansion of favorable conditions accelerating up to 40–70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered ‘marginal’ for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short-term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on

  9. Multivariate analysis of water quality and environmental variables in the Great Barrier Reef catchments

    NASA Astrophysics Data System (ADS)

    Ryu, D.; Liu, S.; Western, A. W.; Webb, J. A.; Lintern, A.; Leahy, P.; Wilson, P.; Watson, M.; Waters, D.; Bende-Michl, U.

    2016-12-01

    The Great Barrier Reef (GBR) lagoon has been experiencing significant water quality deterioration due in part to agricultural intensification and urban settlement in adjacent catchments. The degradation of water quality in rivers is caused by land-derived pollutants (i.e. sediment, nutrient and pesticide). A better understanding of dynamics of water quality is essential for land management to improve the GBR ecosystem. However, water quality is also greatly influenced by natural hydrological processes. To assess influencing factors and predict the water quality accurately, selection of the most important predictors of water quality is necessary. In this work, multivariate statistical techniques - cluster analysis (CA), principal component analysis (PCA) and factor analysis (FA) - are used to reduce the complexity derived from the multidimensional water quality monitoring data. Seventeen stations are selected across the GBR catchments, and the event-based measurements of 12 variables monitored during 9 years (2006 - 2014) were analysed by means of CA and PCA/FA. The key findings are: (1) 17 stations can be grouped into two clusters according to the hierarchical CA, and the spatial dissimilarity between these sites is characterised by the different climatic and land use in the GBR catchments. (2) PCA results indicate that the first 3 PCs explain 85% of the total variance, and FA on the entire data set shows that the varifactor (VF) loadings can be used to interpret the sources of spatial variation in water quality on the GBR catchments level. The impact of soil erosion and non-point source of pollutants from agriculture contribution to VF1 and the variability in hydrological conditions and biogeochemical processes can explain the loadings in VF2. (3) FA is also performed on two groups of sites identified in CA individually, to evaluate the underlying sources that are responsible for spatial variability in water quality in the two groups. For the Cluster 1 sites

  10. The Effect of the Great Barrier Reef on the Propagation of the 2007 Solomon Islands Tsunami Recorded in Northeastern Australia

    NASA Astrophysics Data System (ADS)

    Baba, Toshitaka; Mleczko, Richard; Burbidge, David; Cummins, Phil R.; Thio, Hong Kie

    2008-12-01

    The effect of offshore coral reefs on the impact from a tsunami remains controversial. For example, field surveys after the 2004 Indian Ocean tsunami indicate that the energy of the tsunami was reduced by natural coral reef barriers in Sri Lanka, but there was no indication that coral reefs off Banda Aceh, Indonesia had any effect on the tsunami. In this paper, we investigate whether the Great Barrier Reef (GBR) offshore Queensland, Australia, may have weakened the tsunami impact from the 2007 Solomon Islands earthquake. The fault slip distribution of the 2007 Solomon Islands earthquake was firstly obtained by teleseismic inversion. The tsunami was then propagated to shallow water just offshore the coast by solving the linear shallow water equations using a staggered grid finite-difference method. We used a relatively high resolution (approximately 250 m) bathymetric grid for the region just off the coast containing the reef. The tsunami waveforms recorded at tide gauge stations along the Australian coast were then compared to the results from the tsunami simulation when using both the realistic 250 m resolution bathymetry and with two grids having fictitious bathymetry: One in which the the GBR has been replaced by a smooth interpolation from depths outside the GBR to the coast (the “No GBR” grid), and one in which the GBR has been replaced by a flat plane at a depth equal to the mean water depth of the GBR (the “Average GBR” grid). From the comparison between the synthetic waveforms both with and without the Great Barrier Reef, we found that the Great Barrier Reef significantly weakened the tsunami impact. According to our model, the coral reefs delayed the tsunami arrival time by 5-10 minutes, decreased the amplitude of the first tsunami pulse to half or less, and lengthened the period of the tsunami.

  11. Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory.

    PubMed

    Alleway, Heidi K; Connell, Sean D

    2015-06-01

    Oyster reefs form over extensive areas and the diversity and productivity of sheltered coasts depend on them. Due to the relatively recent population growth of coastal settlements in Australia, we were able to evaluate the collapse and extirpation of native oyster reefs (Ostrea angasi) over the course of a commercial fishery. We used historical records to quantify commercial catch of O. angasi in southern Australia from early colonization, around 1836, to some of the last recorded catches in 1944 and used our estimates of catch and effort to map their past distribution and assess oyster abundance over 180 years. Significant declines in catch and effort occurred from 1886 to 1946 and no native oyster reefs occur today, but historically oyster reefs extended across more than 1,500 km of coastline. That oyster reefs were characteristic of much of the coastline of South Australia from 1836 to 1910 appears not to be known because there is no contemporary consideration of their ecological and economic value. Based on the concept of a shifted baseline, we consider this contemporary state to reflect a collective, intergenerational amnesia. Our model of generational amnesia accounts for differences in intergenerational expectations of food, economic value, and ecosystem services of nearshore areas. An ecological system that once surrounded much of the coast and possibly the past presence of oyster reefs altogether may be forgotten and could not only undermine progress towards their recovery, but also reduce our expectations of these coastal ecosystems. © 2015 Society for Conservation Biology.

  12. Conservation objectives and sea-surface temperature anomalies in the Great Barrier Reef.

    PubMed

    Ban, Natalie C; Pressey, Robert L; Weeks, Scarla

    2012-10-01

    Spatial and temporal dynamics of ecological processes have long been considered important in marine systems, but seldom have conservation objectives been set for them. Climate change makes the consideration of the dynamics of ecological processes in the design of marine protected areas critical. We analyzed sea-surface temperature (SST) trends and variability in Great Barrier Reef Marine Park (GBRMP) for 25 years and formulated and tested whether three sets of notional conservation objectives were met to illustrate the potential for planning to address climate change. Given mixed and limited evidence that no-take areas increase resilience to disturbances such as anomalously high temperatures (i.e., temperatures ≥1 °C above weekly mean temperature), our conservation objectives focused on areas less likely to be affected by such events at extents ranging from the entire Great Barrier Reef to the system of no-take zones and individual no-take zones. The objective sets were (1) at least 50% of temperature refugia (i.e., pixels that had high-temperature anomalies <5% or <7% of the time) within no-take zones, (2) maximum occurrence of high-temperature anomalies is <10%,< 20%, or <30% of total no-take area 90% of the time, and (3) coverage of any single no-take zone by high-temperature anomalies occurs <5% or <10% of the time. We used satellite imagery from 1985-2009 to measure SST to determine high-temperature anomalies. SSTs in the Great Barrier Reef increased significantly in some regions, and some of the conservation objectives were met by the park's current zoning plan. Dialogue between conservation scientists and managers is needed to develop appropriate conservation objectives under climate change and strategies to meet them.

  13. Two new species of Phyllodistomum Braun, 1899 (Trematoda: Gorgoderidae Looss, 1899) from Great Barrier Reef fishes.

    PubMed

    Ho, Hei Wa; Bray, Rodney A; Cutmore, Scott C; Ward, Selina; Cribb, Thomas H

    2014-03-19

    Two new species of Phyllodistomum Braun, 1899 are described from the urinary bladder of fishes of the Great Barrier Reef. Phyllodistomum hoggettae n. sp. is described from Plectropomus leopardus (leopard coralgrouper) (Serranidae) and P. vaili n. sp. is described from Mulloidichthys vanicolensis (yellowfin goatfish) and M. flavolineatus (yellowstripe goatfish) (Mullidae). These species are compared with 26 previously described marine Phyllodistomum species and found to be distinct in combinations of body shape, sucker ratio and shape of the gonads. Preliminary molecular data also demonstrate that they are distinct from each other and for those other species for which data are available.

  14. Great Barrier Reef coral luminescence reveals rainfall variability over northeastern Australia since the 17th century

    NASA Astrophysics Data System (ADS)

    Lough, Janice M.

    2011-06-01

    Northeast tropical Queensland rainfall is concentrated in the summer half year and characterized by high interannual variability, partly related to El Niño-Southern Oscillation (ENSO) events. This results in highly variable river flows affecting nearshore coral reefs of the Great Barrier Reef, Australia. Freshwater flood events are recorded in long-lived, annually banded massive coral skeletons as luminescent lines. Quantitative measurements of luminescence intensity were made for 20 Porites coral cores from nearshore reef sites between 11°S and 23°S. Seventeen of the coral luminescence series were significantly correlated with an instrumental record of northeast Queensland summer rainfall and were used to develop seven significantly calibrated and verified rainfall reconstructions based on between 17 (starting 1891) and 1 (starting 1639) coral series. The longest reconstruction, based on more than one coral, provides insights into northeast Queensland rainfall variability from the late 17th century. Comparisons with various independent climate proxies are equivocal: the magnitude and significance of relationships with, for example, a proxy ENSO index vary through time. An extended drier period reconstructed from approximately the 1760s to the 1850s is associated with lower interannual rainfall variability. Since the late 19th century average rainfall and its variability have significantly increased, with wet and dry extremes becoming more frequent than in earlier centuries. This suggests that a warming global climate maybe associated with more variable tropical Queensland rainfall.

  15. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef.

    PubMed

    Macdonald, Rachael K; Ridd, Peter V; Whinney, James C; Larcombe, Piers; Neil, David T

    2013-09-15

    Water turbidity and suspended sediment concentration (SSC) are commonly used as part of marine monitoring and water quality plans. Current management plans utilise threshold SSC values derived from mean-annual turbidity concentrations. Little published work documents typical ranges of turbidity for reefs within open coastal waters. Here, time-series turbidity measurements from 61 sites in the Great Barrier Reef (GBR) and Moreton Bay, Australia, are presented as turbidity exceedance curves and derivatives. This contributes to the understanding of turbidity and SSC in the context of environmental management in open-coastal reef environments. Exceedance results indicate strong spatial and temporal variability in water turbidity across inter/intraregional scales. The highest turbidity across 61 sites, at 50% exceedance (T50) is 15.3 NTU and at 90% exceedance (T90) 4.1 NTU. Mean/median turbidity comparisons show strong differences between the two, consistent with a strongly skewed turbidity regime. Results may contribute towards promoting refinement of water quality management protocols.

  16. Sea surface temperature as a tracer to estimate cross-shelf turbulent diffusivity and flushing time in the Great Barrier Reef lagoon

    NASA Astrophysics Data System (ADS)

    Mao, Yadan; Ridd, Peter V.

    2015-06-01

    Accurate parameterization of spatially variable diffusivity in complex shelf regions such as the Great Barrier Reef (GBR) lagoon is an unresolved issue for hydrodynamic models. This leads to large uncertainties to the flushing time derived from them and to the evaluation of ecosystem resilience to terrestrially derived pollution. In fact, numerical hydrodynamic models and analytical cross-shore diffusion models have predicted very different flushing times for the GBR lagoon. Nevertheless, scarcity of in situ measurements used previously in the latter method prevents derivation of detailed diffusivity profiles. Here detailed cross-shore profiles of diffusivity were calculated explicitly in a closed form for the first time from the steady state transects of sea surface temperature for different sections of the GBR lagoon. We find that diffusivity remains relatively constant within the inner lagoon (<˜20 km) where tidal current is weak, and increases linearly with sufficiently large tidal amplitude in reef-devoid regions, but increases dramatically where the reef matrixes start and fluctuates with reef size and density. The cross-shelf profile of steady state salinity calculated using the derived diffusivity values agrees well with field measurements. The calculated diffusivity values are also consistent with values derived from satellite-tracked drifters. Flushing time by offshore diffusion is of the order of 1 month, suggesting the important role of turbulent diffusion in flushing the lagoon, especially in reef-distributed regions. The results imply that previous very large residence times predicted by numerical hydrodynamic models may result from underestimation of diffusivity. Our findings can guide parameterization of diffusivity in hydrodynamic modeling.

  17. Coral reef habitats as surrogates of species, ecological functions, and ecosystem services.

    PubMed

    Mumby, Peter J; Broad, Kenneth; Brumbaugh, Daniel R; Dahlgren, Craig P; Harborne, Alastair R; Hastings, Alan; Holmes, Katherine E; Kappel, Carrie V; Micheli, Fiorenza; Sanchirico, James N

    2008-08-01

    Habitat maps are often the core spatially consistent data set on which marine reserve networks are designed, but their efficacy as surrogates for species richness and applicability to other conservation measures is poorly understood. Combining an analysis of field survey data, literature review, and expert assessment by a multidisciplinary working group, we examined the degree to which Caribbean coastal habitats provide useful planning information on 4 conservation measures: species richness, the ecological functions of fish species, ecosystem processes, and ecosystem services. Approximately one-quarter to one-third of benthic invertebrate species and fish species (disaggregated by life phase; hereafter fish species) occurred in a single habitat, and Montastraea-dominated forereefs consistently had the highest richness of all species, processes, and services. All 11 habitats were needed to represent all 277 fish species in the seascape, although reducing the conservation target to 95% of species approximately halved the number of habitats required to ensure representation. Species accumulation indices (SAIs) were used to compare the efficacy of surrogates and revealed that fish species were a more appropriate surrogate of benthic species (SAI = 71%) than benthic species were for fishes (SAI = 42%). Species of reef fishes were also distributed more widely across the seascape than invertebrates and therefore their use as a surrogate simultaneously included mangroves, sea grass, and coral reef habitats. Functional classes of fishes served as effective surrogates of fish and benthic species which, given their ease to survey, makes them a particularly useful measure for conservation planning. Ecosystem processes and services exhibited great redundancy among habitats and were ineffective as surrogates of species. Therefore, processes and services in this case were generally unsuitable for a complementarity-based approach to reserve design. In contrast, the representation

  18. A continuous, real-time water quality monitoring system for the coral reef ecosystems of Nanwan Bay, Southern Taiwan.

    PubMed

    Tew, Kwee Siong; Leu, Ming-Yih; Wang, Jih-Terng; Chang, Chia-Ming; Chen, Chung-Chi; Meng, Pei-Jie

    2014-08-30

    The coral reef ecosystems of Nanwan Bay, Southern Taiwan are undergoing degradation due to anthropogenic impacts, and as such have resulted in a decline in coral cover. As a first step in preventing the continual degradation of these coral reef environments, it is important to understand how changes in water quality affect these ecosystems on a fine-tuned timescale. To this end, a real-time water quality monitoring system was implemented in Nanwan Bay in 2010. We found that natural events, such as cold water intrusion due to upwelling, tended to elicit temporal shifts in coral spawning between 2010 and 2011. In addition, Degree Heating Weeks (DHWs), a commonly utilized predictor of coral bleaching, were 0.92 and 0.59 in summer 2010 and 2011, respectively. Though this quantity of DHW was below the presumed stress-inducing value for these reefs, a rise in DHWs in the future may stress the resident corals.

  19. Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002-2013

    NASA Astrophysics Data System (ADS)

    Fabricius, K. E.; Logan, M.; Weeks, S. J.; Lewis, S. E.; Brodie, J.

    2016-05-01

    Water clarity is a key factor for the health of marine ecosystems. The Australian Great Barrier Reef (GBR) is located on a continental shelf, with >35 major seasonal rivers discharging into this 344,000 km2 tropical to subtropical ecosystem. This work investigates how river discharges affect water clarity in different zones along and across the GBR. For each day over 11 years (2002-2013) we calculated 'photic depth' as a proxy measure of water clarity (calibrated to be equivalent to Secchi depth), for each 1 km2 pixel from MODIS-Aqua remote sensing data. Long-term and seasonal changes in photic depth were related to the daily discharge volumes of the nearest rivers, after statistically removing the effects of waves and tides on photic depth. The relationships between photic depths and rivers differed across and along the GBR. They typically declined from the coastal to offshore zones, and were strongest in proximity to rivers in agriculturally modified catchments. In most southern inner zones, photic depth declined consistently throughout the 11-year observation period; such long-term trend was not observed offshore nor in the northern regions. Averaged across the GBR, photic depths declined to 47% of local maximum values soon after the onset of river floods, and recovery to 95% of maximum values took on average 6 months (range: 150-260 days). The river effects were strongest at latitude 14.5°-19.0°S, where river loads are high and the continental shelf is narrow. Here, even offshore zones showed a >40% seasonal decline in photic depth, and 17-24% reductions in annual mean photic depth in years with large river nutrients and sediment loads. Our methodology is based on freely available data and tools and may be applied to other shelf systems, providing valuable insights in support of ecosystem management.

  20. Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002-2013

    NASA Astrophysics Data System (ADS)

    Fabricius, K. E.; Logan, M.; Weeks, S. J.; Lewis, S. E.; Brodie, J.

    2016-05-01

    Water clarity is a key factor for the health of marine ecosystems. The Australian Great Barrier Reef (GBR) is located on a continental shelf, with >35 major seasonal rivers discharging into this 344,000 km2 tropical to subtropical ecosystem. This work investigates how river discharges affect water clarity in different zones along and across the GBR. For each day over 11 years (2002-2013) we calculated 'photic depth' as a proxy measure of water clarity (calibrated to be equivalent to Secchi depth), for each 1 km2 pixel from MODIS-Aqua remote sensing data. Long-term and seasonal changes in photic depth were related to the daily discharge volumes of the nearest rivers, after statistically removing the effects of waves and tides on photic depth. The relationships between photic depths and rivers differed across and along the GBR. They typically declined from the coastal to offshore zones, and were strongest in proximity to rivers in agriculturally modified catchments. In most southern inner zones, photic depth declined consistently throughout the 11-year observation period; such long-term trend was not observed offshore nor in the northern regions. Averaged across the GBR, photic depths declined to 47% of local maximum values soon after the onset of river floods, and recovery to 95% of maximum values took on average 6 months (range: 150-260 days). The river effects were strongest at latitude 14.5°-19.0°S, where river loads are high and the continental shelf is narrow. Here, even offshore zones showed a >40% seasonal decline in photic depth, and 17-24% reductions in annual mean photic depth in years with large river nutrients and sediment loads. Our methodology is based on freely available data and tools and may be applied to other shelf systems, providing valuable insights in support of ecosystem management.

  1. Source of trace element variability in Great Barrier Reef corals affected by the Burdekin flood plumes

    NASA Astrophysics Data System (ADS)

    Alibert, Chantal; Kinsley, Les; Fallon, Stewart J.; McCulloch, Malcolm T.; Berkelmans, Ray; McAllister, Felicity

    2003-01-01

    Massive corals in the Great Barrier Reef, analyzed at high-resolution for Sr/Ca (thermal ionization mass spectrometry) and trace elements such as Ba and Mn (laser ablation inductively coupled plasma mass spectrometry), can provide continuous proxy records of dissolved seawater concentrations, as well as sea surface temperature (SST). A 10-yr record (1989 to 1998) from Pandora Reef, an inshore reef regularly impacted by the freshwater plumes of the Burdekin River, is compared with an overlapping record from a midshelf reef, away from runoff influences. Surface seawater samples, taken away from river plumes, show little variability for Sr/Ca (8484 ± 10 μmol/mol) and Ba (33.7 ± 0.7 nmol/kg). Discrete Ba/Ca peaks in the inshore coral coincide with flood events. The magnitude of this Ba/Ca enrichment is most likely controlled by the amount of suspended sediments delivered to the estuary, which remains difficult to monitor. The maximum flow rate at peak river discharge is used here as a proxy for the sediment load and is shown to be strongly correlated with coral Ba/Ca ( r = 0.97). After the wet summer of 1991, the coral Ba/Ca flood peak is followed by a plateau that lingers for several months after dissipation of plume waters, signifying an additional flux of Ba that may originate from submarine groundwater seeps and/or mangrove reservoirs. Both Mn and Y are enriched by a factor of ˜5 in inshore relative to midshelf corals. Mn/Ca ratios show a seasonal cycle that follows SST ( r = 0.7), not river discharge, with an additional high variability in summer suggesting a link with biological activity. P and Cd show no significant seasonal variation and are at a low level at both inshore and midreef locations. However, leaching experiments suggest that part of the coral P is not lattice bound.

  2. Expectations and Outcomes of Reserve Network Performance following Re-zoning of the Great Barrier Reef Marine Park.

    PubMed

    Emslie, Michael J; Logan, Murray; Williamson, David H; Ayling, Anthony M; MacNeil, M Aaron; Ceccarelli, Daniela; Cheal, Alistair J; Evans, Richard D; Johns, Kerryn A; Jonker, Michelle J; Miller, Ian R; Osborne, Kate; Russ, Garry R; Sweatman, Hugh P A

    2015-04-20

    Networks of no-take marine reserves (NTMRs) are widely advocated for preserving exploited fish stocks and for conserving biodiversity. We used underwater visual surveys of coral reef fish and benthic communities to quantify the short- to medium-term (5 to 30 years) ecological effects of the establishment of NTMRs within the Great Barrier Reef Marine Park (GBRMP). The density, mean length, and biomass of principal fishery species, coral trout (Plectropomus spp., Variola spp.), were consistently greater in NTMRs than on fished reefs over both the short and medium term. However, there were no clear or consistent differences in the structure of fish or benthic assemblages, non-target fish density, fish species richness, or coral cover between NTMR and fished reefs. There was no indication that the displacement and concentration of fishing effort reduced coral trout populations on fished reefs. A severe tropical cyclone impacted many survey reefs during the study, causing similar declines in coral cover and fish density on both NTMR and fished reefs. However, coral trout biomass declined only on fished reefs after the cyclone. The GBRMP is performing as expected in terms of the protection of fished stocks and biodiversity for a developed country in which fishing is not excessive and targets a narrow range of species. NTMRs cannot protect coral reefs directly from acute regional-scale disturbance but, after a strong tropical cyclone, impacted NTMR reefs supported higher biomass of key fishery-targeted species and so should provide valuable sources of larvae to enhance population recovery and long-term persistence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Tropical river flow and rainfall reconstructions from coral luminescence: Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Lough, Janice M.

    2007-06-01

    Rainfall and river flow in northeast Queensland, Australia, are highly seasonal and show high interannual and decadal variability that is modulated by El Niño-Southern Oscillation (ENSO) events and the Pacific Decadal Oscillation (PDO). Reconstructions of October-September freshwater input to the Great Barrier Reef lagoon and October-September Queensland rainfall are developed from visual assessment of the occurrence and intensity of luminescent lines in massive Porites from up to 25 coral cores from 15 nearshore reefs regularly influenced by river flood plumes. Separate reconstructions are developed for four rivers (Herbert, Burdekin, Pioneer, and Fitzroy), and these are used to reconstruct total annual freshwater flow into the Great Barrier Reef (69-74% variance calibrated) and an index of Queensland rainfall (53-57% variance calibrated). The reconstructions extend back to 1631 but are most reliable from 1661 and capture significant decadal variability. The reconstructions provide insights into long-term tropical rainfall and river flow variability and the behavior of ENSO and the PDO over several centuries. Significant, though weak, relationships are found between these reconstructions and an independent reconstruction of ENSO. The reconstructions highlight that observations from the instrumental records of high interannual and decadal rainfall and river flow variability in northeast Australia also characterize the past few centuries. Although there appears to be no overall trend toward wetter or drier conditions, the reconstructions suggest that the variability of rainfall and river flow has increased during the twentieth century with more very wet and very dry extremes than in earlier centuries, as projected for the region as a consequence of global warming.

  4. Crowding Norms in Marine Settings: A Case Study of Snorkeling on the Great Barrier Reef.

    PubMed

    Inglis; Johnson; Ponte

    1999-10-01

    / Research on crowding in natural environments has traditionally been concerned with encounters in terrestrial settings. Increased visitation to tropical marine environments, however, has meant that evaluations of aesthetic quality are increasingly becoming issues for managers of marine parks. In this study, we used image-capture techniques to develop a series of above- and below-water images depicting different numbers of people snorkeling in acoral reef setting. The presence of safety facilities in the above-water settings was manipulated to examine the influence of human-made structures on perception of crowding. Four respondent groups-a scuba-diving club, local residents, tourists, and US university students-representing different levels of experience in marine recreation on the Great Barrier Reef, were asked to rate the acceptability of each image. Ratings were significantly influenced by the number of people in the images, the prior experience and gender of the respondents, and the presence of safety infrastructure. Experienced scuba divers preferred scenes without people or infrastructure, while novices regarded the presence of both as more acceptable. The results suggest that evaluations of social density and crowding may vary between below-water scenes and the more familiar above-water setting. A lack of concordance between how respondents rated the images and their nominated preferences for the number of other people in the settings highlights a need for more research on how perceptions of resource conditions should be measured in marine environments.KEY WORDS: Recreation; Great Barrier Reef Marine Park; Image capture technology; Crowding norms; Snorkelinghttp://link.springer-ny.com/link/service/journals/00267/bibs/24n3p369.html

  5. Net ecosystem calcification and net primary production in two Hawaii back-reef systems

    NASA Astrophysics Data System (ADS)

    Kiili, S.; Colbert, S.; Hart, K.

    2016-02-01

    Back-reef systems have complex carbon cycling, driven by dominant benthic communities that change with environmental conditions and display characteristic patterns of net primary production (NP) and net ecosystem calcification (G). The G/NP ratio provides a fundamental community-level assessment to compare systems spatially and to evaluate temporal changes in carbon cycling. Carbon dynamics were examined at leeward Hōnaunau and windward Waíōpae, Hawaíi Island. Both locations discharge brackish groundwater, including geothermal water at Waíōpae. The change in total CO2 (TCO2) and total alkalinity (TA) between morning and afternoon was measured to calculate the G/NP ratio along a salinity gradient. At both sites, aragonite saturation (ΩAr) was lower than open ocean conditions, and increased with salinity. Between the morning and afternoon, ΩAr increased by at least 1 as photosynthesis consumed CO2. At Waíōpae, water was corrosive to aragonite due to the input of acidic groundwater, but not at Honaunau, demonstrating the importance of local watershed characteristics on ΩAr. Across the salinity gradient, TA and TCO2 decreased between morning and afternoon. At Hōnaunau, G/NP increased from 0.11 to 0.31 with salinity, consistent with an offshore increase in coral cover. But at Waíōpae, G/NP decreased from 0.49 to 0.0 with salinity, despite an increase in coral cover with salinity. Low G may be caused by benthic processes, including coral bleaching or high rates of carbonate dissolution in interstitial waters between tide pools. Broader environmental conditions than just salinity, including pH of fresh groundwater inputs, shape the carbon cycling in the back-reef system. Examining the G/NP ratio of a back-reef system allows for a simple method to establish community level activity, and possibly indicate changes in a dynamic system.

  6. No gene flow across the Eastern Pacific Barrier in the reef-building coral Porites lobata.

    PubMed

    Baums, Iliana B; Boulay, Jennifer N; Polato, Nicholas R; Hellberg, Michael E

    2012-11-01

    The expanse of deep water between the central Pacific islands and the continental shelf of the Eastern Tropical Pacific is regarded as the world's most potent marine biogeographic barrier. During recurrent climatic fluctuations (ENSO, El Niño Southern Oscillation), however, changes in water temperature and the speed and direction of currents become favourable for trans-oceanic dispersal of larvae from central Pacific to marginal eastern Pacific reefs. Here, we investigate the population connectivity of the reef-building coral Porites lobata across the Eastern Pacific Barrier (EPB). Patterns of recent gene flow in samples (n = 1173) from the central Pacific and the Eastern Tropical Pacific (ETP) were analysed with 12 microsatellite loci. Results indicated that P. lobata from the ETP are strongly isolated from those in the central Pacific and Hawaii (F(ct) ' = 0.509; P < 0.001). However, samples from Clipperton Atoll, an oceanic island on the eastern side of the EPB, grouped with the central Pacific. Within the central Pacific, Hawaiian populations were strongly isolated from three co-occurring clusters found throughout the remainder of the central Pacific. No further substructure was evident in the ETP. Changes in oceanographic conditions during ENSO over the past several thousand years thus appear insufficient to support larval deliveries from the central Pacific to the ETP or strong postsettlement selection acts on ETP settlers from the central Pacific. Recovery of P. lobata populations in the frequently disturbed ETP thus must depend on local larval sources.

  7. Polycyclic aromatic hydrocarbons in the clam Tridacna maxima from the Great Barrier Reef, Australia

    SciTech Connect

    Smith, J.D.; Bagg, J.; Bycroft, B.M.

    1984-05-01

    The concentrations of eight polycyclic aromatic hydrocarbons (PAH), anthracene, pyrene, chrysene, benzo(k)fluoranthene, benzo(a)pyrene, benzo(ghi)perylene, fluoranthene, and perylene, were measured in clams, Tridacna maxima, collected from sites on the Great Barrier Reef ranging in latitude from 14/sup 0/31'S to 23/sup 0/33' S. At most locations the concentrations of PAH were not significantly above the limit of detection, e.g., pyrene < 0.07 ..mu..g/kg wet weight, benzo(a)pyrene < 0.01 ..mu..g/kg, and chrysene < 0.07 ..mu..g/kg. These levels of PAH appear to be the lowest reported for clams anywhere in the world, indicating the pristine nature of the Great Barrier Reef at the present time. Concentrations significantly above detection levels were found at only two sites, Lizard Island First Beach (anthracene, 3.2 ..mu..g/kg; pyrene, 1.4 ..mu..g/kg) and Heron Island Harbour (pyrene, 1.2 ..mu..g/kg; benzo(a)pyrene, 0.02 ..mu..g/kg). Both sites are frequently visited by power boats which are the most likely source of hydrocarbon contamination. These low levels of contamination would not have been demonstrated by the measurement of only the most commonly studied PAH, benzo(a)pyrene. Simultaneous determination of several PAH was necessary to show clearly that some localized pollution had occurred.

  8. Eddy covariance measurement of the spatial heterogeneity of surface energy exchanges over Heron Reef, Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    MacKellar, M.; McGowan, H. A.; Phinn, S. R.

    2011-12-01

    Coral reefs cover 2.8 to 6.0 x 105 km2 of the Earth's surface and are warm, shallow regions that are believed to contribute enhanced sensible and latent heat to the atmosphere, relative to the surrounding ocean. To predict the impact of climate variability on coral reefs and their weather and climate including cloud, winds, rainfall patterns and cyclone genesis, accurate parameterisation of air-sea energy exchanges over coral reefs is essential. This is also important for the parameterisation and validation of regional to global scale forecast models to improve prediction of tropical and sub-tropical marine and coastal weather. Eddy covariance measurements of air-sea fluxes over coral reefs are rare due to the complexities of installing instrumentation over shallow, tidal water. Consequently, measurements of radiation and turbulent flux data for coral reefs have been captured remotely (satellite data) or via single measurement sites downwind of coral reefs (e.g. terrestrial or shipboard instrumentation). The resolution of such measurements and those that have been made at single locations on reefs may not capture the spatial heterogeneity of surface-atmosphere energy exchanges due to the different geomorphic and biological zones on coral reefs. Accordingly, the heterogeneity of coral reefs with regard to substrate, benthic communities and hydrodynamic processes are not considered in the characterization of the surface radiation energy flux transfers across the water-atmosphere interface. In this paper we present a unique dataset of concurrent in situ eddy covariance measurements made on instrumented pontoons of the surface energy balance over different geomorphic zones of a coral reef (shallow reef flat, shallow and deep lagoons). Significant differences in radiation transfers and air-sea turbulent flux exchanges over the reef were highlighted, with higher Bowen ratios over the shallow reef flat. Increasing wind speed was shown to increase flux divergence between

  9. In situ biodeposition measurements on a Modiolus modiolus (horse mussel) reef provide insights into ecosystem services

    NASA Astrophysics Data System (ADS)

    Kent, Flora E. A.; Last, Kim S.; Harries, Daniel B.; Sanderson, William G.

    2017-01-01

    Horse mussel (Modiolus modiolus) shellfish reefs are a threatened and declining habitat in the North East Atlantic and support high levels of biodiversity. Shellfish can influence the surrounding water column and modify the quality of material that reaches the seabed by filtering water, actively depositing particles and changing the benthic boundary layer due to surface roughness. In the present study M. modiolus biodeposition was measured in a field location for the first time. The results show that M. modiolus enhance sedimentation and contribute to the downward flux of material to the seabed. Approximately 30% of the total sediment deposition was attributed to active filter feeding and overall, the presence of horse mussels enhanced deposition two fold. The results are discussed in terms of the potential for horse mussel reefs to provide ecosystem services to society, through functions such as benthopelagic coupling and sediment stabilisation. Highlighting the societal benefits supplied by marine habitats can help prioritise conservation efforts and feed into the sustainable management of coastal water bodies.

  10. Spatial variation in the effects of grazing on epilithic algal turfs on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Bonaldo, R. M.; Bellwood, D. R.

    2011-06-01

    Of all benthic components on tropical reefs, algal turfs are the most widespread and the main source of primary productivity. We compared the importance of grazing by herbivores on algal turfs on two zones with marked differences in terms of benthic composition, herbivore biomass and grazing pressure, the inner flat and crest, of an inshore reef on the Great Barrier Reef, Australia. A combination of herbivore exclusion cages and transplants of coral rubble covered by algal turfs between reef zones was used to examine changes in algal turfs over a 4-day experimental period. In situ crest turfs had lower algal height, sediment loads and particulate content than reef flat turfs. Caged samples on the crest exhibited an increase in all three variables. In contrast, in situ and caged treatments on the flat presented algal turfs with similar values for the three analysed variables, with high algal height and heavy particulate and sediment loads. In the absence of cages, reef flat turfs transplanted to the crest had decreased algal height, total particulate material and particulate inorganic content, while the opposite was found in crest turf samples transplanted to the flat. Our results highlight the dynamic nature of algal turfs and the clear differences in the relative importance of herbivory in shaping turf length and sediment load between the reef crest and inner flat.

  11. Assessing the impact of fishing in shallow rocky reefs: a multivariate approach to ecosystem management.

    PubMed

    Sangil, Carlos; Martín-García, Laura; Clemente, Sabrina

    2013-11-15

    In this paper we develop a tool to assess the impact of fishing on ecosystem functioning in shallow rocky reefs. The relationships between biological parameters (fishes, sea urchins, seaweeds), and fishing activities (fish traps, boats, land-based fishing, spearfishing) were tested in La Palma island (Canary Islands). Data from fishing activities and biological parameters were analyzed using principal component analyses. We produced two models using the first component of these analyses. This component was interpreted as a new variable that described the fishing pressure and the conservation status at each studied site. Subsequently the scores on the first axis were mapped using universal kriging methods and the models obtained were extrapolated across the whole island to display the expected fishing pressure and conservation status more widely. The fishing pressure and conservation status models were spatially related; zones where fishing pressure was high coincided with zones in the unhealthiest ecological state. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Patterns of Reef Ecosystem Recovery Indicate That Adverse Early Triassic Ocean Conditions Extended into Middle Triassic Time

    NASA Astrophysics Data System (ADS)

    Kelley, B. M.; Yu, M.; Lehrmann, D. J.; Jost, A. B.; Lau, K. V.; Li, X.; Schaal, E. K.; Payne, J.

    2013-12-01

    The pattern of reef ecosystem recovery from the end-Permian extinction is poorly constrained due to the limited stratigraphic, spatial, and geographic range of reef buildups in Early Triassic and Anisian (early Middle Triassic) strata. In this study, we combined field studies and petrographic analysis to examine the pattern of reef evolution in latest Permian to Late Triassic carbonate platforms in the Nanpanjiang Basin of South China, an area of extensive shallow-water carbonate deposition in the tropical eastern Tethys. We find that early Mesozoic reef recovery in the eastern Tethys was a five-step process: (1) in the immediate aftermath of extinction, calcimicrobial biostromes (P/T boundary microbialites) developed in shallow-water platform settings; (2) in late Induan time, biohermal stromatolites developed in platform interior settings; (3) in latest Spathian time, large-scale Tubiphytes, microbial, and cement reefs lacking skeletal metazoans initiated on the margins and steep upper slopes of carbonate platforms, signaling the return of reefs to platform-margin settings; (4) in the Aegean or Bithynian (early Anisian), diminutive (mm-scale) calcareous sponges and calcareous algae appeared in the Tubiphytes reef, marking the reappearance of skeletal metazoans and calcareous algae to reefs in the eastern Tethys; and (5) in the late Anisian, the appearance of scleractinian corals coincided with increased abundance, size, and diversity of metazoan and algal reef builders. Early Mesozoic reefs of the eastern Tethys were dominated by microbes, Tubiphytes, and early-marine cements until the late Anisian, several million years into the Middle Triassic. The appearance of small metazoan buildups in Early Triassic strata in other parts of the world indicates that potential reef-building organisms were present much earlier. The limited stratigraphic range of those buildups, however, reinforces the interpretation that episodic environmental disturbances such as euxinia

  13. Environmental triggers for primary outbreaks of crown-of-thorns starfish on the Great Barrier Reef, Australia.

    PubMed

    Wooldridge, Scott A; Brodie, Jon E

    2015-12-30

    In this paper, we postulate a unique environmental triggering sequence for primary outbreaks of crown-of-thorns starfish (COTS, Acanthaster planci) on the central Great Barrier Reef (GBR, Australia). Notably, we extend the previous terrestrial runoff hypothesis, viz. nutrient-enriched terrestrial runoff → elevated phytoplankton 'bloom' concentrations → enhanced COTS larval survival, to include the additional importance of strong larvae retention around reefs or within reef groups (clusters) that share enhanced phytoplankton concentrations. For the central GBR, this scenario is shown to occur when El Niño-Southern Oscillation (ENSO) linked hydrodynamic conditions cause the 'regional' larval connectivity network to fragment into smaller 'local' reef clusters due to low ocean current velocities. As inter-annual variations in hydrodynamic circulation patterns are not amenable to direct management intervention, the ability to reduce the future frequency of COTS outbreaks on the central GBR is shown to be contingent on reducing terrestrial bioavailable nutrient loads ~20-40%.

  14. Monitoring Watershed Water Quality Impacts on Near-Shore Coral Reef Ecosystems in American Samoa using NASA Earth Observations

    NASA Astrophysics Data System (ADS)

    Teaby, A.; Price, J.; Minovitz, D.; Makely, L.; Torres-Perez, J. L.; Schmidt, C.; Guild, L. S.; Palacios, S. L.

    2014-12-01

    Land use changes can greatly increase erosion and sediment loads reaching watersheds and downstream coastal waters. In coastal environments with steep terrain and small drainage basins, sedimentation directly influences water quality in near-shore marine environments. Poor water quality indicators (i.e., dissolved nutrients and high particulates) affect coral calcification, photosynthesis, and coral cover. The abundance, recruitment, and biodiversity of American Samoa's coral reefs have been heavily affected by population growth, land cover change, pollution, and sediment influx. Monitoring, managing, and protecting these fragile ecosystems remains difficult due to limited resource availability, steep terrain, and local land ownership. Despite extensive field hours, traditional field and lab-based water quality research produces temporally and spatially limited datasets. Using a 'ridge to reef' effort, this project built a management tool to assess coral reef vulnerability using land use, hydrology, water quality, and coral reef cover in American Samoa to provide local agencies and partners with spatial representation of water quality parameters and site-specific implications for coral reef vulnerability. This project used land cover classified from Landsat 7 and 8 images, precipitation data from NOAA, and physical ocean factors from Terra MODIS. Changes in land cover from 2000 to 2014 were also estimated using Landsat imagery. Final products were distributed to partners to enhance water quality management, community outreach, and coral reef conservation.

  15. Reefs of the Deep: Moving Toward Integrated Ocean Basin-scale Study of Cold-water Coral Ecosystems

    NASA Astrophysics Data System (ADS)

    Roberts, J. M.

    2007-12-01

    Scleractinian hard corals in deep, cold waters have been known since the eighteenth century but advances in deep-ocean exploration are now revealing the true scale and distribution of cold-water coral reefs. Hundreds of tropical coral species build shallow reefs, but less than ten cold-water species form deep reef frameworks. Of these the best characterised is Lophelia pertusa which dominates in the north east Atlantic. Assemblages of octocorals and hydrocorals are found in other parts of the world's oceans, such as the north Pacific. Cold-water coral skeletons provide well-preserved, high resolution palaeoclimatic archives and recent advances have been made in interpreting geochemical proxies for seawater temperature and ocean ventilation history. The reefs form long-lived, structurally complex habitats supporting many other species. This complexity makes them vulnerable to mechanical damage from deep-water bottom trawling and modelled scenarios suggest that cold-water coral reefs may be threatened by ocean acidification. Despite these threats, our understanding of many aspects of cold-water coral ecosystems remains in its infancy and studies have been geographically limited in their scope. Here I summarise recent advances and emerging research themes and discuss the importance of moving toward integrated interdisciplinary study at the scale of an ocean basin if we are to appreciate the broad scale importance and connections between these reefs of the deep.

  16. Genotype – environment correlations in corals from the Great Barrier Reef

    PubMed Central

    2013-01-01

    Background Knowledge of genetic markers that are correlated to stress tolerance may improve spatial mapping of reef vulnerability and can inform restoration efforts, including the choice of genotypes for breeding and reseeding. In this manuscript we present two methods for screening transcriptome data for candidate genetic markers in two reef building corals, Acropora millepora and Pocillopora damicornis (types α and β). In A. millepora, Single Nucleotide Polymorphisms (SNPs) were pre-selected by targeting genes believed to be involved in the coral thermal stress responses. In P. damicornis (type α and β), SNPs showing varying allele frequencies between two populations from distinct environments were pre-selected. Allele frequencies at nine, five and eight of the pre-selected SNP loci were correlated against gradients of water clarity and temperature in a large number of populations along the Great Barrier Reef. Results A significant correlation between environmental category and SNP allele frequency was detected in up to 55% of the tested loci, which is an exceptional success rate for these types of tests. In P. damicornis, SNP allele frequencies of β-hexosaminidase and Elongation factor 1-α were significantly correlated to temperature in type α and to temperature and/or water clarity respectively in type β. Type α also showed a correlation between water clarity and SNP allele frequency in a gene of unknown function. In A. millepora, allele frequencies at five (β-gamma crystallin, Galaxin, Ubiquitin, Ligand of Numb X2 and Thioredoxin) SNP loci showed significant correlations. Conclusions After validation of these candidate loci through laboratory or field assessment of relative stress tolerance of colonies harbouring different alleles, it is anticipated that a proportion of these markers may represent the first coral candidate Quantitative Trait Loci for environmental stress tolerance and provide an important genetic tool that can be incorporated into

  17. Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef.

    PubMed

    De'ath, Glenn; Fabricius, Katharina

    2010-04-01

    Degradation of inshore coral reefs due to poor water quality is a major issue, yet it has proved difficult to demonstrate this linkage at other than local scales. This study modeled the relationships between large-scale data on water clarity and chlorophyll and four measures of reef status along the whole Great Barrier Reef, Australia (GBR; 12-24 degrees S). Four biotic groups with different trophic requirements, namely, the cover of macroalgae and the taxonomic richness of hard corals and phototrophic and heterotrophic octocorals, were predicted from water quality and spatial location. Water clarity and chlorophyll showed strong spatial patterns, with water clarity increasing more than threefold from inshore to offshore waters and chlorophyll decreasing approximately twofold from inshore to offshore and approximately twofold from south to north. Richness of hard corals and phototrophic octocorals declined with increasing turbidity and chlorophyll, whereas macroalgae and the richness of heterotrophic octocorals increased. Macroalgal cover experienced the largest water quality effects, increasing fivefold with decreasing water clarity and 1.4-fold with increasing chlorophyll. For each of the four biota, -45% of variation was predictable, with water quality effects accounting for 18-46% of that variation and spatial effects accounting for the remainder. Effects were consistent with the trophic requirements of the biota, suggesting that both macroalgal cover and coral biodiversity are partially controlled by energy supply limitation. Throughout the GBR, mean annual values of >10 m Secchi disk depth (a measure of water clarity) and < 0.45 g/L chlorophyll were associated with low macroalgal cover and high coral richness, indicating these values to be potentially useful water quality guidelines. The models predict that on the 22.8% of GBR reefs where guideline values are currently exceeded, water quality improvement, e.g., by minimizing agricultural runoff, should reduce

  18. New constraints on the origin of the Australian Great Barrier Reef: Results from an international project of deep coring

    NASA Astrophysics Data System (ADS)

    ConsortiumGreat Barrier Reef Drilling, International

    2001-06-01

    Two new boreholes provide the first direct evidence of the age of the Australian Great Barrier Reef. An inner shelf sequence (total depth, 86 m; basal age = 210 ± 40 ka) comprises a dominantly siliciclastic unit (thickness ˜52 86 m), overlain by four carbonate units (total thickness 0 34 m). A shelf-edge and slope sequence (total depth 210 m) reveals three major sections: (1) a lower section of resedimented flows deposited on a lower slope, (2) a mid-section including intervals of corals, rhodoliths, and calcarenites with low- angle graded laminae, and (3) an upper section of four shelf- margin coral-reef units separated by karst surfaces bearing paleosols. Sr isotope and magnetostratigraphic data indicate that the central Great Barrier Reef is relatively young (post Brühnes-Matuyama boundary time), and our best estimate for the onset of reef growth on the outer barrier system is ca. 600 ± 280 ka. This date suggests that reef initiation may have been related to the onset of full eccentricity-dominated glacio-eustatic sea-level oscillation as inferred from large-amplitude “saw-tooth” 100 k.y. δ18O cycles (after marine isotope stage 17), rather than to some regional environmental parameter. A major question raised by our study is whether reef margins globally display a similar growth history. The possibility of a global reef initiation event has important implications for basin to shelf partitioning of CaCO3, atmospheric carbon dioxide levels, and global temperature change during Quaternary time.

  19. Observations of Surface Energy Fluxes and Boundary-Layer Structure Over Heron Reef, Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    MacKellar, Mellissa C.; McGowan, Hamish A.; Phinn, Stuart R.; Soderholm, Joshua S.

    2013-02-01

    Over warm, shallow coral reefs the surface radiation and energy fluxes differ from those of the open ocean and result in modification to the marine atmospheric boundary layer via the development of convective internal boundary layers. The complex interrelationships between the surface energy balance and boundary-layer characteristics influence local weather (wind, temperature, humidity) and hydrodynamics (water temperature and currents), as well as larger scale processes, including cloud field properties and precipitation. The nature of these inter-relationships has not been accurately described for coral reef environments. This study presents the first measurements of the surface energy balance, radiation budget and boundary layer thermodynamics made over a coral reef using an eddy-covariance system and radiosonde aerological profiling of the lower atmosphere. Results show that changes in surface properties and the associated energetics across the ocean-reef boundary resulted in modification to the marine atmospheric boundary layer during the Austral winter and summer. Internal convective boundary layers developed within the marine atmospheric boundary layer over the reef and were found to be deeper in the summer, yet more unstable during the winter when cold and drier flow from the mainland enhances heat and moisture fluxes to the atmosphere. A mixed layer was identified in the marine atmospheric boundary layer varying from 375 to 1,200 m above the surface, and was deeper during the summer, particularly under stable anticyclonic conditions. Significant cloud cover and at times rain resulted in the development of a stable stratified atmosphere over the reef. Our findings show that, for Heron Reef, a lagoonal platform reef, there was a horizontal discontinuity in surface energy fluxes across the ocean-reef boundary, which modified the marine atmospheric boundary layer.

  20. The functional value of Caribbean coral reef, seagrass and mangrove habitats to ecosystem processes.

    PubMed

    Harborne, Alastair R; Mumby, Peter J; Micheli, Fiorenza; Perry, Christopher T; Dahlgren, Craig P; Holmes, Katherine E; Brumbaugh, Daniel R

    2006-01-01

    Caribbean coral reef habitats, seagrass beds and mangroves provide important goods and services both individually and through functional linkages. A range of anthropogenic factors are threatening the ecological and economic importance of these habitats and it is vital to understand how ecosystem processes vary across seascapes. A greater understanding of processes will facilitate further insight into the effects of disturbances and assist with assessing management options. Despite the need to study processes across whole seascapes, few spatially explicit ecosystem-scale assessments exist. We review the empirical literature to examine the role of different habitat types for a range of processes. The importance of each of 10 generic habitats to each process is defined as its "functional value" (none, low, medium or high), quantitatively derived from published data wherever possible and summarised in a single figure. This summary represents the first time the importance of habitats across an entire Caribbean seascape has been assessed for a range of processes. Furthermore, we review the susceptibility of each habitat to disturbances to investigate spatial patterns that might affect functional values. Habitat types are considered at the scale discriminated by remotely-sensed imagery and we envisage that functional values can be combined with habitat maps to provide spatially explicit information on processes across ecosystems. We provide examples of mapping the functional values of habitats for populations of three commercially important species. The resulting data layers were then used to generate seascape-scale assessments of "hot spots" of functional value that might be considered priorities for conservation. We also provide an example of how the literature reviewed here can be used to parameterise a habitat-specific model investigating reef resilience under different scenarios of herbivory. Finally, we use multidimensional scaling to provide a basic analysis of the

  1. Taxonomy, host specificity and dietary implications of Hurleytrematoides (Digenea: Monorchiidae) from chaetodontid fishes on the Great Barrier Reef.

    PubMed

    McNamara, M K A; Cribb, T H

    2011-09-01

    Five new and five previously described species of Hurleytrematoides are reported from 19 of 34 chaetodontid species examined from the Great Barrier Reef; new species are H. faliexae n. sp., H. galzini n. sp., H. loi n. sp., H. morandi n. sp., and H. sasali n. sp. Previously described species are H. coronatum, H. fijiensis, H. prevoti, H. bartolii, and H. zebrasomae. The genus is rediagnosed in the light of morphological variation of the new species; the degree of spination and shape of the terminal genitalia distinguish individual species. Species of Hurleytrematoides infect almost every clade of the family Chaetodontidae found on the Great Barrier Reef, but obligate corallivores are not infected. All ten species were found at Heron Island on the southern Great Barrier Reef, but only six at Lizard Island on the northern Great Barrier Reef. For three of the four species not present at Lizard Island, the absence appears to be statistically significant. Although all species are apparently restricted to chaetodontids on the GBR, specificity within the family varies from oioxenous to euryxenous; a core/satellite host paradigm explains the distribution of several species.

  2. Risk analysis of the governance system affecting outcomes in the Great Barrier Reef.

    PubMed

    Dale, Allan P; Vella, Karen; Pressey, Robert L; Brodie, Jon; Gooch, Margaret; Potts, Ruth; Eberhard, Rachel

    2016-12-01

    The state and trend of the Great Barrier Reef's (GBR's) ecological health remains problematic, influencing United Nations Educational, Scientific and Cultural Organization (UNESCO) statements regarding GBR governance. While UNESCO's concerns triggered separate strategic assessments by the Australian and Queensland governments, there has been no independent and integrated review of the key risks within the overall system of governance influencing GBR outcomes. As a case study of international significance, this paper applies Governance Systems Analysis (GSA), a novel analytical framework that identifies the governance themes, domains and subdomains most likely to influence environmental and socio-economic outcomes in complex natural systems. This GBR-focussed application of GSA identifies governance subdomains that present high, medium, or low risk of failure to produce positive outcomes for the Reef. This enabled us to determine that three "whole of system" governance problems could undermine GBR outcomes. First, we stress the integrative importance of the Long Term Sustainability Plan (LTSP) Subdomain. Sponsored by the Australian and Queensland governments, this subdomain concerns the primary institutional arrangements for coordinated GBR planning and delivery, but due to its recent emergence, it faces several internal governance challenges. Second, we find a major risk of implementation failure in the achievement of GBR water quality actions due to a lack of system-wide focus on building strong and stable delivery systems at catchment scale. Finally, we conclude that the LTSP Subdomain currently has too limited a mandate/capacity to influence several high-risk subdomains that have not been, but must be more strongly aligned with Reef management (e.g. the Greenhouse Gas Emission Management Subdomain). Our analysis enables exploration of governance system reforms needed to address environmental trends in the GBR and reflects on the potential application of GSA in

  3. Temporal consistency in background mortality of four dominant coral taxa along Australia's Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Pisapia, C.; Anderson, K. D.; Pratchett, M. S.

    2016-09-01

    Studies on the population and community dynamics of scleractinian corals typically focus on catastrophic mortality associated with acute disturbances (e.g., coral bleaching and outbreaks of crown-of-thorns starfish), though corals are subject to high levels of background mortality and injuries caused by routine and chronic processes. This study quantified prevalence (proportion of colonies with injuries) and severity (areal extent of injuries on individual colonies) of background mortality and injuries for four common coral taxa (massive Porites, encrusting Montipora, Acropora hyacinthus and branching Pocillopora) on the Great Barrier Reef, Australia. Sampling was conducted over three consecutive years during which there were no major acute disturbances. A total of 2276 adult colonies were surveyed across 27 sites, within nine reefs and three distinct latitudinal sectors. The prevalence of injuries was very high (>83%) across all four taxa, but highest for Porites (91%) and Montipora (85%). For these taxa ( Montipora and Pocillopora), there was also significant temporal and spatial variation in prevalence of partial mortality. The severity of injuries ranged from 3% to more than 80% and varied among coral taxa, but was fairly constant spatially and temporally. This shows that some injuries have considerable longevity and that corals may invest relatively little in regenerating tissue over sites of previous injuries. Inter-colony variation in the severity of injury also had no apparent effect on the realized growth of individual colonies, suggesting that energy diverted to regeneration has a limited bearing on overall energetic allocation, or impacts on other life-history processes (e.g., reproduction) rather than growth. Establishing background levels of injury and regeneration is important for understanding energy investment and life-history consequences for reef-building corals as well as for predicting susceptibility to, and capacity to recover from, acute

  4. Impacts of Cyclone Yasi on nearshore, terrigenous sediment-dominated reefs of the central Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Perry, C. T.; Smithers, S. G.; Kench, P. S.; Pears, B.

    2014-10-01

    Tropical Cyclone (TC) Yasi (Category 5) was a large (~ 700 km across) cyclone that crossed Australia's Queensland coast on the 3rd of February 2011. TC Yasi was one of the region's most powerful recorded cyclones, with winds gusting to 290 km/h and wave heights exceeding 7 m. Here we describe the impacts of TC Yasi on a number of nearshore, turbid-zone coral reefs, that include several in the immediate vicinity of the cyclone's landfall path (King Reef, Lugger Shoal and Dunk Island), as well as a more distally located reef (Paluma Shoals) ~ 150 km to the south in Halifax Bay. These reefs were the focus of recent (between 2006 and 2009) pre-Yasi studies into their geomorphology, sedimentology and community structure, and here we discuss data from a recent (August 2011) post-Yasi re-assessment. This provided a unique opportunity to identify and describe the impacts of an intense tropical cyclone on nearshore reefs, which are often assumed to be vulnerable to physical disturbance and reworking due to their poorly lithified framework. Observed impacts of TC Yasi were site specific and spatially highly heterogeneous, but appear to have been strongly influenced by the contemporary evolutionary stage and ecological make-up of the individual reefs, with site setting (i.e. exposure to prevailing wave action) apparently more important than proximity to the landfall path. The most significant ecological impacts occurred at King Reef (probably a result of freshwater bleaching) and at Paluma Shoals, where widespread physical destruction of branched Acropora occurred. New coral recruits are, however, common at all sites and colony re-growth clearly evident at King Reef. Only localised geomorphic change was evident, mainly in the form of coral fracturing, rubble deposition, and sediment movement, but again these impacts were highly site specific. The dominant impact at Paluma Shoals was localised storm ridge/shingle sheet deposition, at Lugger Shoal major offshore fine sediment

  5. Privately managed marine reserves as a mechanism for the conservation of coral reef ecosystems: a case study from Vietnam.

    PubMed

    Svensson, Patrik; Rodwell, Lynda D; Attrill, Martin J

    2009-03-01

    Coral reef ecosystems have been declining at an alarming rate during recent decades, despite increasing numbers of marine protected areas (MPAs) encompassing coral reefs. However, many MPAs have not met reserve objectives, inhibiting effective protection. This study focuses on the potential effectiveness of a Hotel Managed Marine Reserve (HMMR) at enhancing reef fish stocks. Biannual visual fish census surveys were conducted at two marine reserves adjacent to Whale Island Resort, Vietnam, October 2005 to April 2007. The 6-year protected Whale Island Bay Reserve (11 ha) showed significantly higher fish densities, richness, average size, and number of fish >15 cm compared with two unprotected control sites. Fish stocks at a second newer reserve, Whale Island Bay Peninsula (5 ha), quickly increased after protection. This study has demonstrated the effectiveness of HMMRs, suggesting a global network of such privately managed reserves could play a part in the conservation of the world's coastal resources, while alleviating financial pressure on governments.

  6. Climate change, coral reef ecosystems, and management options for marine protected areas.

    PubMed

    Keller, Brian D; Gleason, Daniel F; McLeod, Elizabeth; Woodley, Christa M; Airamé, Satie; Causey, Billy D; Friedlander, Alan M; Grober-Dunsmor