Longitudinal phase-space coating of beam in a storage ring
NASA Astrophysics Data System (ADS)
Bhat, C. M.
2014-06-01
In this Letter, I report on a novel scheme for beam stacking without any beam emittance dilution using a barrier rf system in synchrotrons. The general principle of the scheme called longitudinal phase-space coating, validation of the concept via multi-particle beam dynamics simulations applied to the Fermilab Recycler, and its experimental demonstration are presented. In addition, it has been shown and illustrated that the rf gymnastics involved in this scheme can be used in measuring the incoherent synchrotron tune spectrum of the beam in barrier buckets and in producing a clean hollow beam in longitudinal phase space. The method of beam stacking in synchrotrons presented here is the first of its kind.
Pbar Beam Stacking in the Recycler by Longitudinal Phase-space Coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, C. M.
2013-08-06
Barrier rf buckets have brought about new challenges in longitudinal beam dynamics of charged particle beams in synchrotrons and at the same time led to many new remarkable prospects in beam handling. In this paper, I describe a novel beam stacking scheme for synchrotrons using barrier buckets without any emittance dilution to the beam. First I discuss the general principle of the method, called longitudinal phase-space coating. Multi-particle beam dynamics simulations of the scheme applied to the Recycler, convincingly validates the concepts and feasibility of the method. Then I demonstrate the technique experimentally in the Recycler and also use itmore » in operation. A spin-off of this scheme is its usefulness in mapping the incoherent synchrotron tune spectrum of the beam particles in barrier buckets and producing a clean hollow beam in longitudinal phase space. Both of which are described here in detail with illustrations. The beam stacking scheme presented here is the first of its kind.« less
Slip-stacking Dynamics for High-Power Proton Beams at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey Scott
Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles andmore » identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.« less
Enhanced dynamical stability with harmonic slip stacking
Eldred, Jeffrey; Zwaska, Robert
2016-10-26
We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out themore » resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip-stacking simulation. In conclusion, we demonstrate that the harmonic rf cavity can not only reduce particle loss during slip-stacking, but also reduce the final longitudinal emittance.« less
Enhanced dynamical stability with harmonic slip stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey; Zwaska, Robert
We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out themore » resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip-stacking simulation. In conclusion, we demonstrate that the harmonic rf cavity can not only reduce particle loss during slip-stacking, but also reduce the final longitudinal emittance.« less
Proposed Cavity for Reduced Slip-Stacking Loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, J.; Zwaska, R.
This paper employs a novel dynamical mechanism to improve the performance of slip-stacking. Slip-stacking in an accumulation technique used at Fermilab since 2004 which nearly double the proton intensity. During slip-stacking, the Recycler or the Main Injector stores two particles beams that spatially overlap but have different momenta. The two particle beams are longitudinally focused by two 53 MHz 100 kV RF cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV RF cavity, with a frequency at the double the average of the upper and lower main RF frequencies. In simulation, we findmore » the proposed RF cavity significantly enhances the stable bucket area and reduces slip-stacking losses under reasonable injection scenarios. We quantify and map the stability of the parameter space for any accelerator implementing slip-stacking with the addition of a harmonic RF cavity.« less
A new slip stacking RF system for a twofold power upgrade of Fermilab's Accelerator Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madrak, Robyn
2014-05-15
Fermilab's Accelerator Complex has been recently upgraded, in order to increase the 120 GeV proton beam power on target from about 400 kW to over 700 kW for NOvA and other future intensity frontier experiments. One of the key ingredients of the upgrade is the offloading of some Main Injector synchrotron operations - beam injection and RF manipulation called ''slip stacking'' - to the 8GeV Recycler Ring, which had until recently been used only for low-intensity antiproton storage and cooling. This required construction of two new 53 MHz RF systems for the slip-stacking manipulations. The cavities operate simultaneously at Vmore » peak ≲150 kV, but at slightly different frequencies (Δf=1260 Hz). Their installation was completed in September 2013. This article describes the novel solutions used in the design of the new cavities, their tuning system, and the associated high power RF system. First results showing effective operation of the RF system, beam capture and successful slip-stacking in the Recycler Ring are presented.« less
Environmental barrier material for organic light emitting device and method of making
Graff, Gordon L [West Richland, WA; Gross, Mark E [Pasco, WA; Affinito, John D [Kennewick, WA; Shi, Ming-Kun [Richland, WA; Hall, Michael [West Richland, WA; Mast, Eric [Richland, WA
2003-02-18
An encapsulated organic light emitting device. The device includes a first barrier stack comprising at least one first barrier layer and at least one first polymer layer. There is an organic light emitting layer stack adjacent to the first barrier stack. A second barrier stack is adjacent to the organic light emitting layer stack. The second barrier stack has at least one second barrier layer and at least one second polymer layer. A method of making the encapsulated organic light emitting device is also provided.
A novel compact model for on-chip stacked transformers in RF-CMOS technology
NASA Astrophysics Data System (ADS)
Jun, Liu; Jincai, Wen; Qian, Zhao; Lingling, Sun
2013-08-01
A novel compact model for on-chip stacked transformers is presented. The proposed model topology gives a clear distinction to the eddy current, resistive and capacitive losses of the primary and secondary coils in the substrate. A method to analytically determine the non-ideal parasitics between the primary coil and substrate is provided. The model is further verified by the excellent match between the measured and simulated S -parameters on the extracted parameters for a 1 : 1 stacked transformer manufactured in a commercial RF-CMOS technology.
Laser Ablation Electrodynamic Ion Funnel for In Situ Mass Spectrometry on Mars
NASA Technical Reports Server (NTRS)
Johnson, Paul V.; Hodyss, Robert P.; Tang, Keqi; Smith, Richard D.
2012-01-01
A front-end instrument, the laser ablation ion funnel, was developed, which would ionize rock and soil samples in the ambient Martian atmosphere, and efficiently transport the product ions into a mass spectrometer for in situ analysis. Laser ablation creates elemental ions from a solid with a high-power pulse within ambient Mars atmospheric conditions. Ions are captured and focused with an ion funnel into a mass spectrometer for analysis. The electrodynamic ion funnel consists of a series of axially concentric ring-shaped electrodes whose inside diameters (IDs) decrease over the length of the funnel. DC potentials are applied to each electrode, producing a smooth potential slope along the axial direction. Two radio-frequency (RF) AC potentials, equal in amplitude and 180 out of phase, are applied alternately to the ring electrodes. This creates an effective potential barrier along the inner surface of the electrode stack. Ions entering the funnel drift axially under the influence of the DC potential while being restricted radially by the effective potential barrier created by the applied RF. The net result is to effectively focus the ions as they traverse the length of the funnel.
Implications of a 20-Hz Booster cycle-rate for Slip-stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey; Zwaska, Robert
2014-06-10
We examine the potential impacts to slip-stacking from a change of the Booster cycle-rate from 15- to 20-Hz. We find that changing the Booster cycle-rate to 20-Hz would greatly increase the slip-stacking bucket area, while potentially requiring greater usage of the Recycler momentum aperture and additional power dissipation in the RF cavities. In particular, the losses from RF interference can be reduced by a factor of 4-10 (depending on Booster beam longitudinal parameters). We discuss the aspect ratio and beam emittance requirements for efficient slip-stacking in both cycle-rate cases. Using a different injection scheme can eliminate the need for greatermore » momentum aperture in the Recycler.« less
Impact of Lateral Straggle on the Analog/RF Performance of Asymmetric Gate Stack Double Gate MOSFET
NASA Astrophysics Data System (ADS)
Sivaram, Gollamudi Sai; Chakraborty, Shramana; Das, Rahul; Dasgupta, Arpan; Kundu, Atanu; Sarkar, Chandan K.
2016-09-01
This paper presents a systematic comparative study of Analog and RF performances of an underlapped double gate (U-DG) NMOSFET with Gate Stack (GS) for varying straggle lengths. Asymmetric underlap devices (A-U-DG) have been proposed as one of the remedies for reducing Short Channel Effects (SCE's) with the underlap being present towards the source for sub 20 nm devices. However, the Source to Drain (S/D) implant lateral diffusion leads to a variation in the effective underlap length. This paper investigates the impact of variation of straggle length on the Analog and RF parameters of the device. The RF performance is analyzed by considering the intrinsic capacitances (Cgd, Cgs), intrinsic resistances (Rgd, Rgs), transport delay (τm), inductance (Lsd), cutoff frequency (fT), and the maximum frequency of oscillations (fmax). The circuit performance of the devices are also studied. It is seen that the Analog and RF performances of the devices are improved by optimizing the S/D lateral straggle.
Novel Sn-Based Contact Structure for GeTe Phase Change Materials.
Simchi, Hamed; Cooley, Kayla A; Ding, Zelong; Molina, Alex; Mohney, Suzanne E
2018-05-16
Germanium telluride (GeTe) is a phase change material (PCM) that has gained recent attention because of its incorporation as an active material for radio frequency (RF) switches, as well as memory and novel optoelectronic devices. Considering PCM-based RF switches, parasitic resistances from Ohmic contacts can be a limiting factor in device performance. Reduction of the contact resistance ( R c ) is therefore critical for reducing the on-state resistance to meet the requirements of high-frequency RF applications. To engineer the Schottky barrier between the metal contact and GeTe, Sn was tested as an interesting candidate to alter the composition of the semiconductor near its surface, potentially forming a narrow band gap (0.2 eV) SnTe or a graded alloy with SnTe in GeTe. For this purpose, a novel contact stack of Sn/Fe/Au was employed and compared to a conventional Ti/Pt/Au stack. Two different premetallization surface treatments of HCl and deionized (DI) H 2 O were employed to make a Te-rich and Ge-rich interface, respectively. Contact resistance values were extracted using the refined transfer length method. The best results were obtained with DI H 2 O for the Sn-based contacts but HCl treatment for the Ti/Pt/Au contacts. The as-deposited contacts had the R c (ρ c ) of 0.006 Ω·mm (8 × 10 -9 Ω·cm 2 ) for Sn/Fe/Au and 0.010 Ω·mm (3 × 10 -8 Ω·cm 2 ) for Ti/Pt/Au. However, the Sn/Fe/Au contacts were thermally stable, and their resistance decreased further to 0.004 Ω·mm (4 × 10 -9 Ω·cm 2 ) after annealing at 200 °C. In contrast, the contact resistance of the Ti/Pt/Au stack increased to 0.012 Ω·mm (4 × 10 -8 Ω·cm 2 ). Transmission electron microscopy was used to characterize the interfacial reactions between the metals and GeTe. It was found that formation of SnTe at the interface, in addition to Fe diffusion (doping) into GeTe, is likely responsible for the superior performance of Sn/Fe/Au contacts, resulting in one of the lowest reported contact resistances on GeTe.
Manifold seal for fuel cell stack assembly
Schmitten, Phillip F.; Wright, Maynard K.
1989-01-01
An assembly for sealing a manifold to a stack of fuel cells includes a first resilient member for providing a first sealing barrier between the manifold and the stack. A second resilient member provides a second sealing barrier between the manifold and the stack. The first and second resilient members are retained in such a manner as to define an area therebetween adapted for retaining a sealing composition.
Challenges in graphene integration for high-frequency electronics
NASA Astrophysics Data System (ADS)
Giannazzo, F.; Fisichella, G.; Greco, G.; Roccaforte, F.
2016-06-01
This paper provides an overview of the state-of-the-art research on graphene (Gr) for high-frequency (RF) devices. After discussing current limitations of lateral Gr RF transistors, novel vertical devices concepts such as the Gr Base Hot Electron Transistor (GBHET) will be introduced and the main challenges in Gr integration within these architectures will be discussed. In particular, a GBHET device based on Gr/AlGaN/GaN heterostructure will be considered. An approach to the fabrication of this heterostructure by transfer of CVD grown Gr on copper to the AlGaN surface will be presented. The morphological and electrical properties of this system have been investigated at nanoscale by atomic force microscopy (AFM) and conductive atomic force microscopy (CAFM). In particular, local current-voltage measurements by the CAFM probe revealed the formation of a Schottky contact with low barrier height (˜0.41 eV) and excellent lateral uniformity between Gr and AlGaN. Basing on the electrical parameters extracted from this characterization, the theoretical performances of a GBHET formed by a metal/Al2O3/Gr/AlGaN/GaN stack have been evaluated.
Special Technology Area Review on Vacuum Electronics Technology for RF Applications
2000-12-12
systems. QUESTIONS TO BE ADDRESSED AT THE STAR: 1. What are the RF applications and systems that will benefit from advances in Vacuum Electronic...technologies? What are the status and prospects of early insertion efforts? What is the impact if technology efforts are successful? 2. What are the RF...technical barriers best addressed by Vacuum Electronic technologies? What are the technology advancement needs and opportunities? Can the barriers
Control of Internal Transport Barriers in Magnetically Confined Fusion Plasmas
NASA Astrophysics Data System (ADS)
Panta, Soma; Newman, David; Sanchez, Raul; Terry, Paul
2016-10-01
In magnetic confinement fusion devices the best performance often involves some sort of transport barriers to reduce the energy and particle flow from core to edge. Those barriers create gradients in the temperature and density profiles. If gradients in the profiles are too steep that can lead to instabilities and the system collapses. Control of these barriers is therefore an important challenge for fusion devices (burning plasmas). In this work we focus on the dynamics of internal transport barriers. Using a simple 7 field transport model, extensively used for barrier dynamics and control studies, we explore the use of RF heating to control the local gradients and therefore the growth rates and shearing rates for barrier initiation and control in self-heated fusion plasmas. Ion channel barriers can be formed in self-heated plasmas with some NBI heating but electron channel barriers are very sensitive. They can be formed in self-heated plasmas with additional auxiliary heating i.e. NBI and radio-frequency(RF). Using RF heating on both electrons and ions at proper locations, electron channel barriers along with ion channel barriers can be formed and removed demonstrating a control technique. Investigating the role of pellet injection in controlling the barriers is our next goal. Work supported by DOE Grant DE-FG02-04ER54741.
Stacked silicide/silicon mid- to long-wavelength infrared detector
NASA Technical Reports Server (NTRS)
Maserjian, Joseph (Inventor)
1990-01-01
The use of stacked Schottky barriers (16) with epitaxially grown thin silicides (10) combined with selective doping (22) of the barriers provides high quantum efficiency infrared detectors (30) at longer wavelengths that is compatible with existing silicon VLSI technology.
Stacked silicide/silicon mid- to long-wavelength infrared detector
Maserjian, Joseph
1990-03-13
The use of stacked Schottky barriers (16) with epitaxially grown thin silicides (10) combined with selective doping (22) of the barriers provides high quantum efficiency infrared detectors (30) at longer wavelengths that is compatible with existing silicon VLSI technology.
Development and production integration of a planarized AlCu interconnect process for submicron CMOS
NASA Astrophysics Data System (ADS)
Brown, Kevin C.; Hill, Rodney; Reddy, Krishna; Gadepally, Kamesh
1995-09-01
A planarized aluminum alloy interconnect has been developed as an alternative to tungsten plugs for a 0.65 (mu) CMOS technology. Contact resistance can increase with either an inadequate RF sputter clean or titanium that is too thin to reduce the native oxide. Diffusion barrier results show that a minimum amount of titanium nitride, whether deposited conventionally or with collimation, is necessary for low junction leakage and good sort yield. Stacked contacts and vias are supported while via resistance and defect density are improved. Electrical bridging due to silicon residues from AlSiCu can be minimized with metal overetching, but not to the extent of AlCu. Sidewall pitting was observed to be due to galvanic corrosion from copper precipitate formation. Overall yield has been improved along with decreased wafer cost compared to conventional tungsten plug technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consiglio, S.; Dey, S.; Yu, K.
2016-01-01
Ultrathin TaN and Ta 1-xAl xN y films with x = 0.21 to 0.88 were deposited by atomic layer deposition (ALD) and evaluated for Cu diffusion barrier effectiveness compared to physical vapor deposition (PVD) grown TaN. Cu diffusion barrier effectiveness was investigated using in-situ ramp anneal synchrotron X-ray diffraction (XRD) on Cu/1.8 nm barrier/Si stacks. A Kissinger-like analysis was used to assess the kinetics of Cu 3Si formation and determine the effective activation energy (E a) for Cu silicidation. Compared to the stack with a PVD TaN barrier, the stacks with the ALD films exhibited a higher crystallization temperature (Tmore » c) for Cu silicidation. The Ea values of Cu 3Si formation for stacks with the ALD films were close to the reported value for grain boundary diffusion of Cu whereas the Ea of Cu 3Si formation for the stack with PVD TaN is closer to the reported value for lattice diffusion. For 3 nm films, grazing incidence in-plane XRD showed evidence of nanocrystallites in an amorphous matrix with broad peaks corresponding to high density cubic phase for the ALD grown films and lower density hexagonal phase for the PVD grown film further elucidating the difference in initial failure mechanisms due to differences in barrier crystallinity and associated phase.« less
NASA Astrophysics Data System (ADS)
Liu, Y.; Peeters, F. J. J.; Starostin, S. A.; van de Sanden, M. C. M.; de Vries, H. W.
2018-01-01
This letter reports a novel approach to improve the uniformity of atmospheric-pressure dielectric barrier discharges using a dual-frequency excitation consisting of a low frequency (LF) at 200 kHz and a radio frequency (RF) at 13.56 MHz. It is shown that due to the periodic oscillation of the RF electric field, the electron acceleration and thus the gas ionization is temporally modulated, i.e. enhanced and suppressed during each RF cycle. As a result, the discharge development is slowed down with a lower amplitude and a longer duration of the LF discharge current. Hence, the RF electric field facilitates improved stability and uniformity simultaneously allowing a higher input power.
Integrated fuel cell stack shunt current prevention arrangement
Roche, Robert P.; Nowak, Michael P.
1992-01-01
A fuel cell stack includes a plurality of fuel cells juxtaposed with one another in the stack and each including a pair of plate-shaped anode and cathode electrodes that face one another, and a quantity of liquid electrolyte present at least between the electrodes. A separator plate is interposed between each two successive electrodes of adjacent ones of the fuel cells and is unified therewith into an integral separator plate. Each integral separator plate is provided with a circumferentially complete barrier that prevents flow of shunt currents onto and on an outer peripheral surface of the separator plate. This barrier consists of electrolyte-nonwettable barrier members that are accommodated, prior to the formation of the integral separator plate, in corresponding edge recesses situated at the interfaces between the electrodes and the separator plate proper. Each barrier member extends over the entire length of the associated marginal portion and is flush with the outer periphery of the integral separator plate. This barrier also prevents cell-to-cell migration of any electrolyte that may be present at the outer periphery of the integral separator plate while the latter is incorporated in the fuel cell stack.
Retrieving Coherent Receiver Function Images with Dense Arrays
NASA Astrophysics Data System (ADS)
Zhong, M.; Zhan, Z.
2016-12-01
Receiver functions highlight converted phases (e.g., Ps, PpPs, sP) and have been widely used to study seismic interfaces. With a dense array, receiver functions (RFs) at multiple stations form a RF image that can provide more robust/detailed constraints. However, due to noise in data, non-uniqueness of deconvolution, and local structures that cannot be detected across neighboring stations, traditional RF images are often noisy and hard to interpret. Previous attempts to enhance coherence by stacking RFs from multiple events or post-filtering the RF images have not produced satisfactory improvements. Here, we propose a new method to retrieve coherent RF images with dense arrays. We take advantage of the waveform coherency at neighboring stations and invert for a small number of coherent arrivals for their RFs. The new RF images contain only the coherent arrivals required to fit data well. Synthetic tests and preliminary applications on real data demonstrate that the new RF images are easier to interpret and improve our ability to infer Earth structures using receiver functions.
Cu Pillar Low Temperature Bonding and Interconnection Technology of for 3D RF Microsystem
NASA Astrophysics Data System (ADS)
Shi, G. X.; Qian, K. Q.; Huang, M.; Yu, Y. W.; Zhu, J.
2018-03-01
In this paper 3D interconnects technologies used Cu pillars are discussed with respect to RF microsystem. While 2.5D Si interposer and 3D packaging seem to rely to cu pillars for the coming years, RF microsystem used the heterogeneous chip such as GaAs integration with Si interposers should be at low temperature. The pillars were constituted by Cu (2 micron) -Ni (2 micron) -Cu (3 micron) -Sn (1 micron) multilayer metal and total height is 8 micron on the front-side of the wafer by using electroplating. The wafer backside Cu pillar is obtained by temporary bonding, thinning and silicon surface etching. The RF interposers are stacked by Cu-Sn eutectic bonding at 260 °C. Analyzed the reliability of different pillar bonding structure.
NASA Astrophysics Data System (ADS)
Singh, Prashant; Jha, Rajesh Kumar; Singh, Rajat Kumar; Singh, B. R.
2018-02-01
We report the integration of multilayer ferroelectric film deposited by RF magnetron sputtering and explore the electrical characteristics for its application as the gate of ferroelectric field effect transistor for non-volatile memories. PZT (Pb[Zr0.35Ti0.65]O3) and SBN (SrBi2Nb2O9) ferroelectric materials were selected for the stack fabrication due to their large polarization and fatigue free properties respectively. Electrical characterization has been carried out to obtain memory window, leakage current density, PUND and endurance characteristics. Fabricated multilayer ferroelectric film capacitor structure shows large memory window of 17.73 V and leakage current density of the order 10-6 A cm-2 for the voltage sweep of -30 to +30 V. This multilayer gate stack of PZT/SBN shows promising endurance property with no degradation in the remnant polarization for the read/write iteration cycles upto 108.
Performance investigation of InAs based dual electrode tunnel FET on the analog/RF platform
NASA Astrophysics Data System (ADS)
Anand, Sunny; Sarin, R. K.
2016-09-01
In this paper for the first time, InAs based doping-less Tunnel FET is proposed and investigated. This paper also demonstrates and discusses the impact of gate stacking (SiO2 + HfO2) with equivalent oxide thickness EOT = 0.8 for analog/RF performance. The charge plasma technique is used to form source/drain region on an intrinsic InAs body by selecting proper work function of metal electrode. The paper compares different combinations of gate stacking (SiO2 and HfO2) on the basis of different analog and RF parameters such as transconductance (gm), transconductance to drive current ratio (gm/ID), output conductance (gd), intrinsic gain (AV), total gate capacitance (Cgg) and unity-gain cutoff frequency (fT). The proposed device produces an ON state current of ION ∼6 mA along with ION/IOFF ∼1012, point subthreshold slope (SS ∼ 1.9 mV/dec), average subthreshold slope (AV-SS ∼ 14.2 mV/dec) and cut-off frequency in Terahertz. The focus of this work is to eliminate the fabrication issues and providing the enhanced performance compared to doped device.
High output lamp with high brightness
Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.
2002-01-01
An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.
NASA Astrophysics Data System (ADS)
Symon, Keith R.
2005-04-01
In the late 1950's and the 1960's the MURA (Midwestern Universities Research Association) working group developed fixed field alternating gradient (FFAG) particle accelerators. FFAG accelerators are a natural corollary of the invention of alternating gradient focusing. The fixed guide field accommodates all orbits from the injection to the final energy. For this reason, the transverse motion in the guide field is nearly decoupled from the longitudinal acceleration. This allows a wide variety of acceleration schemes, using betatron or rf accelerating fields, beam stacking, bucket lifts, phase displacement, etc. It also simplifies theoretical and experimental studies of accelerators. Theoretical studies included an extensive analysis of rf acceleration processes, nonlinear orbit dynamics, and collective instabilities. Two FFAG designs, radial sector and spiral sector, were invented. The MURA team built small electron models of each type, and used them to study orbit dynamics, acceleration processes, orbit instabilities, and space charge limits. A practical result of these studies was the invention of the spiral sector cyclotron. Another was beam stacking, which led to the first practical way of achieving colliding beams. A 50 MeV two-way radial sector model was built in which it proved possible to stack a beam of over 10 amperes of electrons.
NASA Astrophysics Data System (ADS)
Dedrick, J.; Boswell, R. W.; Charles, C.
2010-09-01
Barrier discharges are a proven method of generating plasmas at high pressures, having applications in industrial processing, materials science and aerodynamics. In this paper, we present new measurements of an asymmetric surface barrier discharge plasma driven by pulsed radio frequency (rf 13.56 MHz) power in atmospheric pressure air. The voltage, current and optical emission of the discharge are measured temporally using 2.4 kVp-p (peak to peak) 13.56 MHz rf pulses, 20 µs in duration. The results exhibit different characteristics to plasma actuators, which have similar discharge geometry but are typically driven at frequencies of up to about 10 kHz. However, the electrical measurements are similar to some other atmospheric pressure, rf capacitively coupled discharge systems with symmetric electrode configurations and different feed gases.
Planar varactor frequency multiplier devices with blocking barrier
NASA Technical Reports Server (NTRS)
Lieneweg, Udo (Inventor); Frerking, Margaret A. (Inventor); Maserjian, Joseph (Inventor)
1994-01-01
The invention relates to planar varactor frequency multiplier devices with a heterojunction blocking barrier for near millimeter wave radiation of moderate power from a fundamental input wave. The space charge limitation of the submillimeter frequency multiplier devices of the BIN(sup +) type is overcome by a diode structure comprising an n(sup +) doped layer of semiconductor material functioning as a low resistance back contact, a layer of semiconductor material with n-type doping functioning as a drift region grown on the back contact layer, a delta doping sheet forming a positive charge at the interface of the drift region layer with a barrier layer, and a surface metal contact. The layers thus formed on an n(sup +) doped layer may be divided into two isolated back-to-back BNN(sup +) diodes by separately depositing two surface metal contacts. By repeating the sequence of the drift region layer and the barrier layer with the delta doping sheet at the interfaces between the drift and barrier layers, a plurality of stacked diodes is formed. The novelty of the invention resides in providing n-type semiconductor material for the drift region in a GaAs/AlGaAs structure, and in stacking a plurality of such BNN(sup +) diodes stacked for greater output power with and connected back-to-back with the n(sup +) GaAs layer as an internal back contact and separate metal contact over an AlGaAs barrier layer on top of each stack.
Electron current extraction from radio frequency excited micro-dielectric barrier discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun-Chieh; Kushner, Mark J.; Leoni, Napoleon
Micro dielectric barrier discharges (mDBDs) consist of micro-plasma devices (10-100 {mu}m diameter) in which the electrodes are fully or partially covered by dielectrics, and often operate at atmospheric pressure driven with radio frequency (rf) waveforms. In certain applications, it may be desirable to extract electron current out of the mDBD plasma, which necessitates a third electrode. As a result, the physical structure of the m-DBD and the electron emitting properties of its materials are important to its operation. In this paper, results from a two-dimensional computer simulation of current extraction from mDBDs sustained in atmospheric pressure N{sub 2} will bemore » discussed. The mDBDs are sandwich structures with an opening of tens-of-microns excited with rf voltage waveforms of up to 25 MHz. Following avalanche by electron impact ionization in the mDBD cavity, the plasma can be expelled from the cavity towards the extraction electrode during the part of the rf cycle when the extraction electrode appears anodic. The electron current extraction can be enhanced by biasing this electrode. The charge collection can be controlled by choice of rf frequency, rf driving voltage, and permittivity of the dielectric barrier.« less
Dynamic Stacking Pathway of Perylene Dimers in Aromatic and Nonaromatic Solvents.
Hollfelder, Manuel; Gekle, Stephan
2015-08-13
Using molecular dynamics simulations, we elucidate in detail the dynamics of the π-π stacking process of a perylene bisimide (PBI) dimer solvated in toluene. Our calculations show that the transition from the open (unstacked) to the stacked configuration is hindered by a small free energy barrier of approximately 1kBT in toluene but not in the nonaromatic solvent hexane. A similar effect is observed tor two non-covalently linked monomers. The origin of this barrier is traced back to π-π interactions between perylene and the aromatic solvent which are very similar in nature to those between two PBI monomers. The stacking process proceeds in three phases via two well-defined transition states: (i) in the first phase, the two PBI molecules share part of their respective solvation shells forming the first transition state. Further approach needs to squeeze out the shared solvent layer, thus creating the energy barrier. (ii) After removal of the separating solvent, the two PBIs form a second transition state with one monomer located at a random position in the other's solvation shell. (iii) Finally, the two PBIs slide on top of each other into their final stacked position.
Stacking fault induced tunnel barrier in platelet graphite nanofiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, Yann-Wen, E-mail: chiidong@phys.sinica.edu.tw, E-mail: ywlan@phys.sinica.edu.tw; Chang, Yuan-Chih; Chang, Chia-Seng
A correlation study using image inspection and electrical characterization of platelet graphite nanofiber devices is conducted. Close transmission electron microscopy and diffraction pattern inspection reveal layers with inflection angles appearing in otherwise perfectly stacked graphene platelets, separating nanofibers into two domains. Electrical measurement gives a stability diagram consisting of alternating small-large Coulomb blockade diamonds, suggesting that there are two charging islands coupled together through a tunnel junction. Based on these two findings, we propose that a stacking fault can behave as a tunnel barrier for conducting electrons and is responsible for the observed double-island single electron transistor characteristics.
Stacked Metal Silicide/Silicon Far-Infrared Detectors
NASA Technical Reports Server (NTRS)
Maserjian, Joseph
1988-01-01
Selective doping of silicon in proposed metal silicide/silicon Schottky-barrier infrared photodetector increases maximum detectable wavelength. Stacking layers to form multiple Schottky barriers increases quantum efficiency of detector. Detectors of new type enhance capabilities of far-infrared imaging arrays. Grows by molecular-beam epitaxy on silicon waferscontaining very-large-scale integrated circuits. Imaging arrays of detectors made in monolithic units with image-preprocessing circuitry.
NASA Astrophysics Data System (ADS)
Fisichella, M.; Shotter, A. C.; Di Pietro, A.; Figuera, P.; Lattuada, M.; Marchetta, C.; Privitera, V.; Romano, L.; Ruiz, C.; Zadro, M.
2015-12-01
For low energy reaction studies involving radioactive ion beams, the experimental reaction yields are generally small due to the low intensity of the beams. For this reason, the stacked target technique has been often used to measure excitation functions. This technique offers considerable advantages since the reaction cross-section at several energies can be simultaneously measured. In a further effort to increase yields, thick targets are also employed. The main disadvantage of the method is the degradation of the beam quality as it passes through the stack due to the statistical nature of energy loss processes and any nonuniformity of the stacked targets. This degradation can lead to ambiguities of associating effective beam energies to reaction product yields for the targets within the stack and, as a consequence, to an error in the determination of the excitation function for the reaction under study. A thorough investigation of these ambiguities is reported, and a best practice procedure of analyzing data obtained using the stacked target technique with radioactive ion beams is recommended. Using this procedure a re-evaluation is reported of some previously published sub-barrier fusion data in order to demonstrate the possibility of misinterpretations of derived excitation functions. In addition, this best practice procedure has been used to evaluate, from a new data set, the sub-barrier fusion excitation function for the reaction 6Li+120Sn .
AN INTERNET RACK MONITOR-CONTROLLER FOR APS LINAC RF ELECTRONICS UPGRADE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Hengjie; Smith, Terry; Nassiri, Alireza
To support the research and development in APS LINAC area, the existing LINAC rf control performance needs to be much improved, and thus an upgrade of the legacy LINAC rf electronics becomes necessary. The proposed upgrade plan centers on the concept of using a modern, network-attached, rackmount digital electronics platform –Internet Rack Monitor-Controller (or IRMC) to achieve the goal of modernizing the rf electronics at a lower cost. The system model of the envisioned IRMC is basically a 3-tier stack with a high-performance DSP in the mid-layer to perform the core tasks of real-time rf data processing and controls. Themore » Digital Front-End (DFE) attachment layer at bottom bridges the applicationspecific rf front-ends to the DSP. A network communication gateway, together with an embedded event receiver (EVR) in the top layer merges the Internet Rack MonitorController node into the networks of the accelerator controls infrastructure. Although the concept is very much in trend with today’s Internet-of-Things (IoT), this implementation has actually been used in the accelerators for over two decades.« less
NASA Astrophysics Data System (ADS)
Bryzgunov, M. I.; Kamerdzhiev, V.; Li, J.; Mao, L. J.; Parkhomchuk, V. V.; Reva, V. B.; Yang, X. D.; Zhao, H.
2017-07-01
Electron cooling is used for damping both transverse and longitudinal oscillations of heavy particle. The cooling of bunch ion beam (with RF voltage on) is important part of experiments with inner target, ion collision system, stacking and RF manipulation. The short length of an ion bunch increases the peak luminosity, gives a start-time point for using of the time-of-flight methods and obtains a short extraction beam pulse. This article describes the review of last experiments with electron cooling carried out on the CSRm, CSRe (China) and COSY (Germany) storage rings. The accumulated experience may be used for the project of electron cooler on 2.5 MeV (NICA) and 0.5 MeV HIAF for obtaining high luminosity, depressing beam-beam effects and RF manipulation.
NASA Astrophysics Data System (ADS)
Paul, Subir; Nagesh Kumar, D.
2018-04-01
Hyperspectral (HS) data comprises of continuous spectral responses of hundreds of narrow spectral bands with very fine spectral resolution or bandwidth, which offer feature identification and classification with high accuracy. In the present study, Mutual Information (MI) based Segmented Stacked Autoencoder (S-SAE) approach for spectral-spatial classification of the HS data is proposed to reduce the complexity and computational time compared to Stacked Autoencoder (SAE) based feature extraction. A non-parametric dependency measure (MI) based spectral segmentation is proposed instead of linear and parametric dependency measure to take care of both linear and nonlinear inter-band dependency for spectral segmentation of the HS bands. Then morphological profiles are created corresponding to segmented spectral features to assimilate the spatial information in the spectral-spatial classification approach. Two non-parametric classifiers, Support Vector Machine (SVM) with Gaussian kernel and Random Forest (RF) are used for classification of the three most popularly used HS datasets. Results of the numerical experiments carried out in this study have shown that SVM with a Gaussian kernel is providing better results for the Pavia University and Botswana datasets whereas RF is performing better for Indian Pines dataset. The experiments performed with the proposed methodology provide encouraging results compared to numerous existing approaches.
Enhanced spin-torque in double tunnel junctions using a nonmagnetic-metal spacer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C. H.; Cheng, Y. H.; Ko, C. W.
2015-10-12
This study proposes an enhancement in the spin-transfer torque of a magnetic tunnel junction (MTJ) designed with double-barrier layer structure using a nonmagnetic metal spacer, as a replacement for the ferromagnetic material, which is traditionally used in these double-barrier stacks. Our calculation results show that the spin-transfer torque and charge current density of the proposed double-barrier MTJ can be as much as two orders of magnitude larger than the traditional double-barrier one. In other words, the proposed double-barrier MTJ has a spin-transfer torque that is three orders larger than that of the single-barrier stack. This improvement may be attributed tomore » the quantum-well states that are formed in the nonmagnetic metal spacer and the resonant tunneling mechanism that exists throughout the system.« less
Electrolyte creepage barrier for liquid electrolyte fuel cells
Li, Jian [Alberta, CA; Farooque, Mohammad [Danbury, CT; Yuh, Chao-Yi [New Milford, CT
2008-01-22
A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.
NASA Astrophysics Data System (ADS)
Hussain, S.; Qazi, H. I. A.; Badar, M. A.
2014-03-01
An experimental investigation to characterize the properties and highlight the benefits of atmospheric pressure radio-frequency dielectric-barrier discharge (rf DBD) with dielectric electrodes fabricated by anodizing aluminium substrate is presented. The current-voltage characteristics and millisecond images are used to distinguish the α and γ modes. This atmospheric rf DBD is observed to retain the discharge volume without constriction in γ mode. Optical emission spectroscopy demonstrates that the large discharge current leads to more abundant reactive species in this plasma source.
Leistra, Abigail N; Han, Jong Hyun; Tang, Shengzhuang; Orr, Bradford G; Banaszak Holl, Mark M; Choi, Seok Ki; Sinniah, Kumar
2015-05-07
Putative riboflavin receptors are considered as biomarkers due to their overexpression in breast and prostate cancers. Hence, these receptors can be potentially exploited for use in targeted drug delivery systems where dendrimer nanoparticles with multivalent ligand attachments can lead to greater specificity in cellular interactions. In this study, the single molecule force spectroscopy technique was used to assess the physical strength of multivalent interactions by employing a riboflavin (RF)-conjugated generation 5 PAMAM dendrimer G5(RF)n nanoparticle. By varying the average RF ligand valency (n = 0, 3, 5), the rupture force was measured between G5(RF)n and the riboflavin binding protein (RFBP). The rupture force increased when the valency of RF increased. We observed at the higher valency (n = 5) three binding events that increased in rupture force with increasing loading rate. Assuming a single energy barrier, the Bell-Evans model was used to determine the kinetic off-rate and barrier width for all binding interactions. The analysis of our results appears to indicate that multivalent interactions are resulting in changes to rupture force and kinetic off-rates.
Wang, Jian; Hou, Peipei; Cai, Haiwen; Sun, Jianfeng; Wang, Shunan; Wang, Lijuan; Yang, Fei
2015-04-06
We propose an optically controlled phased array antenna (PAA) based on differential true time delay constructed optical beamforming network (OBFN). Differential true time delay is realized by stack integrated micro-optical components. Optically-controlled angle steering of radio frequency (RF) beams are realized and demonstrated by this configuration. Experimental results demonstrate that OBFN based PAA can accomplish RF-independent broadband beam steering without beam squint effect and can achieve continuous angle steering. In addition, multi-beams for different steering angles are acquired synchronously.
Homoepitaxial graphene tunnel barriers for spin transport
NASA Astrophysics Data System (ADS)
Friedman, Adam
Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. We demonstrate successful tunneling, charge, and spin transport with a fluorinated graphene tunnel barrier on a graphene channel. We show that while spin transport stops short of room temperature, spin polarization efficiency values are the highest of any graphene spin devices. We also demonstrate that hydrogenation of graphene can also be used to create a tunnel barrier. We begin with a four-layer stack of graphene and hydrogenate the top few layers to decouple them from the graphene transport channel beneath. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies. The measured spin polarization efficiencies for hydrogenated graphene are higher than most oxide tunnel barriers on graphene, but not as high as with fluorinated graphene tunnel barriers. However, here we show that spin transport persists up to room temperature. Our results for the hydrogenated graphene tunnel barriers are compared with fluorinated tunnel barriers and we discuss the possibility that magnetic moments in the graphene tunnel barriers affect the spin transport of our devices.
Simulations of RF capture with barrier bucket in booster at injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, C.J.
2012-01-23
As part of the effort to increase the number of ions per bunch in RHIC, a new scheme for RF capture of EBIS ions in Booster at injection has been developed. The scheme was proposed by M. Blaskiewicz and J.M. Brennan. It employs a barrier bucket to hold a half turn of beam in place during capture into two adjacent harmonic 4 buckets. After acceleration, this allows for 8 transfers of 2 bunches from Booster into 16 buckets on the AGS injection porch. During the Fall of 2011 the necessary hardware was developed and implemented by the RF and Controlsmore » groups. The scheme is presently being commissioned by K.L. Zeno with Au32+ ions from EBIS. In this note we carry out simulations of the RF capture. These are meant to serve as benchmarks for what can be achieved in practice. They also allow for an estimate of the longitudinal emittance of the bunches on the AGS injection porch.« less
Hegde, Vinay I; Tan, Jin-Chong; Waghmare, Umesh V; Cheetham, Anthony K
2013-10-17
We determine the nonlinear mechanical behavior of a prototypical zeolitic imidazolate framework (ZIF-8) along two modes of mechanical failure in response to tensile and shear forces using first-principles simulations. Our generalized stacking fault energy surface reveals an intrinsic stacking fault of surprisingly low energy comparable to that in copper, though the energy barrier associated with its formation is much higher. The lack of vibrational spectroscopic evidence for such faults in experiments can be explained with the structural instability of the barrier state to form a denser and disordered state of ZIF-8 seen in our analysis, that is, large shear leads to its amorphization rather than formation of faults.
NASA Astrophysics Data System (ADS)
Gurevich, A.; Ciovati, G.
2008-03-01
We consider the nonlinear dynamics of a single vortex in a superconductor in a strong rf magnetic field B0sinωt . Using the London theory, we calculate the dissipated power Q(B0,ω) and the transient time scales of vortex motion. For the linear Bardeen-Stephen viscous drag force, vortex velocities reach unphysically high values during vortex penetration through the oscillating surface barrier. It is shown that penetration of a single vortex through the ac surface barrier always involves penetration of an antivortex and the subsequent annihilation of the vortex-antivortex pairs. Using the nonlinear Larkin-Ovchinnikov (LO) viscous drag force at higher vortex velocities v(t) results in a jumpwise vortex penetration through the surface barrier and a significant increase of the dissipated power. We calculate the effect of dissipation on the nonlinear vortex viscosity η(v) and the rf vortex dynamics and show that it can also result in the LO-type behavior, instabilities, and thermal localization of penetrating vortex channels. We propose a thermal feedback model of η(v) , which not only results in the LO dependence of η(v) for a steady-state motion, but also takes into account retardation of the temperature field around a rapidly accelerating vortex and a long-range interaction with the surface. We also address the effect of pinning on the nonlinear rf vortex dynamics and the effect of trapped magnetic flux on the surface resistance Rs calculated as a function of rf frequency and field. It is shown that trapped flux can result in a temperature-independent residual resistance Ri at low T and a hysteretic low-field dependence of Ri(B0) , which can decrease as B0 is increased, reaching a minimum at B0 much smaller than the thermodynamic critical field Bc . We propose that cycling of the rf field can reduce Ri due to rf annealing of the magnetic flux which is pumped out by the rf field from a thin surface layer of the order of the London penetration depth.
A broadband permeability measurement of FeTaN lamination stack by the shorted microstrip line method
NASA Astrophysics Data System (ADS)
Chen, Xin; Ma, Yungui; Xu, Feng; Wang, Peng; Ong, C. K.
2009-01-01
In this paper, the microwave characteristics of a FeTaN lamination stack are studied with a shorted microstrip line method. The FeTaN lamination stack was fabricated by gluing 54 layers of FeTaN units with epoxy together. The FeTaN units were deposited on both sides of an 8 μm polyethylene terephthate (Mylar) film as the substrate by rf magnetron sputtering. On each side of the Mylar substrate, three 100-nm FeTaN layers are laminated with two 8 nm Al2O3 layers. The complex permeability of FeTaN lamination stack is calculated by the scattering parameters using the shorted load transmission line model based on the quasi-transverse-electromagnetic approximation. A full wave analysis combined with an optimization process is employed to determine the accurate effective permeability values. The optimized complex permeability data can be used for the microwave filter design.
NASA Astrophysics Data System (ADS)
Li, Jing; Tian, Xiubo; Gong, Chunzhi; Yang, Shiqin; Fu, Ricky K. Y.; Chu, Paul K.
2009-12-01
A hybrid radio-frequency (rf)/direct-current (dc) system has been developed to control the biasing effects during deposition of diamondlike carbon (DLC) films onto the inner wall of polyethylene terephthalate (PET) bottles. An additional dc bias is coupled to the rf electrode to produce the effect of equivalent rf self-biasing. This allows more flexible control of the deposition of the DLC films which are intended to improve the gas barrier characteristics. The experimental results demonstrate that the additional dc bias improves the adhesion strength between the DLC film and PET, although the enhancement in the gas barrier properties is not significantly larger compared to the one without dc bias. The apparatus and methodology have practical importance in the food and beverage industry.
Stacking with stochastic cooling
NASA Astrophysics Data System (ADS)
Caspers, Fritz; Möhl, Dieter
2004-10-01
Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105 the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some considerations to the 'azimuthal' schemes.
NASA Astrophysics Data System (ADS)
Steves, Simon; Styrnoll, Tim; Mitschker, Felix; Bienholz, Stefan; Nikita, Bibinov; Awakowicz, Peter
2013-11-01
Optical emission spectroscopy (OES) and multipole resonance probe (MRP) are adopted to characterize low-pressure microwave (MW) and radio frequency (RF) discharges in oxygen. In this context, both discharges are usually applied for the deposition of permeation barrier SiOx films on plastic foils or the inner surface of plastic bottles. For technological reasons the MW excitation is modulated and a continuous wave (cw) RF bias is used. The RF voltage produces a stationary low-density plasma, whereas the high-density MW discharge is pulsed. For the optimization of deposition process and the quality of the deposited barrier films, plasma conditions are characterized using OES and MRP. To simplify the comparison of applied diagnostics, both MW and RF discharges are studied separately in cw mode. The OES and MRP diagnostic methods complement each other and provide reliable information about electron density and electron temperature. In the MW case, electron density amounts to ne = (1.25 ± 0.26) × 1017 m-3, and kTe to 1.93 ± 0.20 eV, in the RF case ne = (6.8 ± 1.8)×1015 m-3 and kTe = 2.6 ± 0.35 eV. The corresponding gas temperatures are 760±40 K and 440±20 K.
Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.
Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V
2014-09-24
We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.
Overview of High Power Vacuum Dry RF Load Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnykh, Anatoly
2015-08-27
A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is tomore » use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.« less
Double Barriers and Magnetic Field in Bilayer Graphene
NASA Astrophysics Data System (ADS)
Redouani, Ilham; Jellal, Ahmed; Bahlouli, Hocine
2015-12-01
We study the transmission probability in an AB-stacked bilayer graphene of Dirac fermions scattered by a double-barrier structure in the presence of a magnetic field. We take into account the full four bands structure of the energy spectrum and use the suitable boundary conditions to determine the transmission probability. Our numerical results show that for energies higher than the interlayer coupling, four ways for transmission are possible while for energies less than the height of the barrier, Dirac fermions exhibit transmission resonances and only one transmission channel is available. We show that, for AB-stacked bilayer graphene, there is no Klein tunneling at normal incidence. We find that the transmission displays sharp peaks inside the transmission gap around the Dirac point within the barrier regions while they are absent around the Dirac point in the well region. The effect of the magnetic field, interlayer electrostatic potential, and various barrier geometry parameters on the transmission probabilities is also discussed.
Barrier inhomogeneities at vertically stacked graphene-based heterostructures.
Lin, Yen-Fu; Li, Wenwu; Li, Song-Lin; Xu, Yong; Aparecido-Ferreira, Alex; Komatsu, Katsuyoshi; Sun, Huabin; Nakaharai, Shu; Tsukagoshi, Kazuhito
2014-01-21
The integration of graphene and other atomically flat, two-dimensional materials has attracted much interest and been materialized very recently. An in-depth understanding of transport mechanisms in such heterostructures is essential. In this study, vertically stacked graphene-based heterostructure transistors were manufactured to elucidate the mechanism of electron injection at the interface. The temperature dependence of the electrical characteristics was investigated from 300 to 90 K. In a careful analysis of current-voltage characteristics, an unusual decrease in the effective Schottky barrier height and increase in the ideality factor were observed with decreasing temperature. A model of thermionic emission with a Gaussian distribution of barriers was able to precisely interpret the conduction mechanism. Furthermore, mapping of the effective Schottky barrier height is unmasked as a function of temperature and gate voltage. The results offer significant insight for the development of future layer-integration technology based on graphene-based heterostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dali, E-mail: wangdali@mail.ahnu.edu.cn; National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093; Jin, Guojun, E-mail: gjin@nju.edu.cn
2013-12-21
We investigate the effect of a vertical electric field on the electron tunneling and magnetoresistance in an AA-stacked graphene bilayer modulated by the double magnetic barriers with parallel or antiparallel configuration. The results show that the electronic transmission properties in the system are sensitive to the magnetic-barrier configuration and the bias voltage between the graphene layers. In particular, it is found that for the antiparallel configuration, within the low energy region, the blocking effect is more obvious compared with the case for the parallel configuration, and even there may exist a transmission spectrum gap which can be arbitrarily tuned bymore » the field-induced interlayer bias voltage. We also demonstrate that the significant discrepancy between the conductance for both parallel and antiparallel configurations would result in a giant tunneling magnetoresistance ratio, and further the maximal magnetoresistance ratio can be strongly modified by the interlayer bias voltage. This leads to the possible realization of high-quality magnetic sensors controlled by a vertical electric field in the AA-stacked graphene bilayer.« less
Near Source Modeling: Building Downwash and Roadside Barriers
Knowing the fate of effluent from an industrial stack is important for assessing its impact on human health. AERMOD is one of several Gaussian plume models containing algorithms to evaluate the effect of buildings on the movement of the effluent from a stack. The goal of this s...
Influence of barrier absorption properties on laser patterning thin organic films
NASA Astrophysics Data System (ADS)
Naithani, Sanjeev; Mandamparambil, Rajesh; van Assche, Ferdie; Schaubroeck, David; Fledderus, Henri; Prenen, An; Van Steenberge, Geert; Vanfleteren, Jan
2012-06-01
This paper presents a study of selective ablation of thin organic films (LEP- Light Emitting Polymer, PEDOT:PSS- Poly 3,4-ethylenedioxythiophene: polystyrene sulfonate) by using 248 nm Excimer laser, on various kinds of multilayered SiN barrier foils for the development of Organic Light Emitting Diodes (OLED). Different Silicon Nitride (SiN) barrier foils with dedicated absorption spectra are taken into account for this purpose. The drive for looking into different types of SiN originates from the fact that the laser selective removal of a polymer without damage to the barrier layer underneath is challenging in the dynamic laser processing of thin films. The barrier is solely responsible for the proper encapsulation of the OLED stack. The main limitation of current OLED design is its shorter life span, which is directly related to the moisture or water permeation into the stack, leading to black spots. An optimization of laser parameters like fluence and number of shots has been carried out for the various types of SiN barrier foils. We are able to obtain a wider working process window for the selective removal of LEP and PEDOT:PSS from SiN barrier, by variation of the different types of SiN.
Three-Dimensional Electron Optics Model Developed for Traveling-Wave Tubes
NASA Technical Reports Server (NTRS)
Kory, Carol L.
2000-01-01
A three-dimensional traveling-wave tube (TWT) electron beam optics model including periodic permanent magnet (PPM) focusing has been developed at the NASA Glenn Research Center at Lewis Field. This accurate model allows a TWT designer to develop a focusing structure while reducing the expensive and time-consuming task of building the TWT and hot-testing it (with the electron beam). In addition, the model allows, for the first time, an investigation of the effect on TWT operation of the important azimuthally asymmetric features of the focusing stack. The TWT is a vacuum device that amplifies signals by transferring energy from an electron beam to a radiofrequency (RF) signal. A critically important component is the focusing structure, which keeps the electron beam from diverging and intercepting the RF slow wave circuit. Such an interception can result in excessive circuit heating and decreased efficiency, whereas excessive growth in the beam diameter can lead to backward wave oscillations and premature saturation, indicating a serious reduction in tube performance. The most commonly used focusing structure is the PPM stack, which consists of a sequence of cylindrical iron pole pieces and opposite-polarity magnets. Typically, two-dimensional electron optics codes are used in the design of magnetic focusing devices. In general, these codes track the beam from the gun downstream by solving equations of motion for the electron beam in static-electric and magnetic fields in an azimuthally symmetric structure. Because these two-dimensional codes cannot adequately simulate a number of important effects, the simulation code MAFIA (solution of Maxwell's equations by the Finite-Integration-Algorithm) was used at Glenn to develop a three-dimensional electron optics model. First, a PPM stack was modeled in three dimensions. Then, the fields obtained using the magnetostatic solver were loaded into a particle-in-cell solver where the fully three-dimensional behavior of the beam was simulated in the magnetic focusing field. For the first time, the effects of azimuthally asymmetric designs and critical azimuthally asymmetric characteristics of the focusing stack (such as shunts, C-magnets, or magnet misalignment) on electron beam behavior have been investigated. A cutaway portion of a simulated electron beam focused by a PPM stack is illustrated.
Can You Hear Me Now? Come in Loud and Clear with a Wireless Classroom Audio System
ERIC Educational Resources Information Center
Smith, Mark
2006-01-01
As school performance under NCLB becomes increasingly important, districts can not afford to have barriers to learning. That is where wireless sound-field amplification systems come into play. Wireless sound-field amplification systems come in two types: radio frequency (RF) and infrared (IR). RF systems are based on FCC-approved FM and UHF bands…
NASA Astrophysics Data System (ADS)
Park, Ji-Sang; Kim, Sunghyun; Walsh, Aron
2018-01-01
We investigated stability and the electronic structure of extended defects including antisite domain boundaries and stacking faults in the kesterite-structured semiconductors, Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe). Our hybrid density functional theory calculations show that stacking faults in CZTS and CZTSe induce a higher conduction band edge than the bulk counterparts, and thus the stacking faults act as electron barriers. Antisite domain boundaries, however, accumulate electrons as the conduction band edge is reduced in energy, having an opposite role. An Ising model was constructed to account for the stability of stacking faults, which shows the nearest-neighbor interaction is stronger in the case of the selenide.
Homoepitaxial graphene tunnel barriers for spin transport
NASA Astrophysics Data System (ADS)
Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.
2016-05-01
Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.
NASA Astrophysics Data System (ADS)
Zhang, De-Lin; Schliep, Karl B.; Wu, Ryan J.; Quarterman, P.; Reifsnyder Hickey, Danielle; Lv, Yang; Chao, Xiaohui; Li, Hongshi; Chen, Jun-Yang; Zhao, Zhengyang; Jamali, Mahdi; Mkhoyan, K. Andre; Wang, Jian-Ping
2018-04-01
We studied the tunnel magnetoresistance (TMR) of L10-FePd perpendicular magnetic tunnel junctions (p-MTJs) with an FePd free layer and an inserted diffusion barrier. The diffusion barriers studied here (Ta and W) were shown to enhance the TMR ratio of the p-MTJs formed using high-temperature annealing, which are necessary for the formation of high quality L10-FePd films and MgO barriers. The L10-FePd p-MTJ stack was developed with an FePd free layer with a stack of FePd/X/Co20Fe60B20, where X is the diffusion barrier, and patterned into micron-sized MTJ pillars. The addition of the diffusion barrier was found to greatly enhance the magneto-transport behavior of the L10-FePd p-MTJ pillars such that those without a diffusion barrier exhibited negligible TMR ratios (<1.0%), whereas those with a Ta (W) diffusion barrier exhibited TMR ratios of 8.0% (7.0%) at room temperature and 35.0% (46.0%) at 10 K after post-annealing at 350 °C. These results indicate that diffusion barriers could play a crucial role in realizing high TMR ratios in bulk p-MTJs such as those based on FePd and Mn-based perpendicular magnetic anisotropy materials for spintronic applications.
Plasma Oxidation Of Silver And Zinc In Low-Emissivity Stacks
NASA Astrophysics Data System (ADS)
Ross, R. C.; Sherman, R.,; Bunger, R. A.; Nadel, S. J.
1987-11-01
The oxidation of silver and zinc films was studied by exposing metallic films to low-power 02 plasmas and analyzing the reacted films. This type of oxidation is an important phenomenon near the barrier layer in sputter-deposited metal-oxide/Ag/metal-oxide low-emissivity (low-e) coatings. Barrier layers generally are deposited on the Ag layer to prevent its degradation during subsequent 02 reactive sputtering. Both individual layers and complete stacks were studied. In addition, the thermal stability of plasma-oxidized Ag was examined. There are several important findings for the individual layers. Ag oxidizes rapidly in the plasma, forming Ag≍1.70 after complete reaction. Relative to the original Ag, the 9ide has -l.7 times greater thick-ness, >10 times higher electrical resistiv-ity (p), and increased surface roughness. Zn oxidizes slowly, at only -1% to 0.1% times the rate for Ag, and is thus more difficult to characterize. The results for individual layers are discussed as they relate to practical pro-perties of low-e stacks: the difficulty of obtaining complete barrier layer oxidation without partially degrading the Ag layer as well as the effects of heat treatment and aging.
NASA Astrophysics Data System (ADS)
Vo, V. T.; Koon, K. L.; Hu, Z. R.; Dharmasiri, C. N.; Subramaniam, S. C.; Rezazadeh, A. A.
2004-04-01
Electrical isolation in multilayer GaAs planar doped barrier (PDB) diode structures produced by H+ and Fe+ ion implantation were investigated. For an H+ bombardment with a dose of 1×1015cm-2, a sheet resistivity as high as 3×108 Ω/sq and thermal stability up to 400 °C has been achieved. For samples bombarded by Fe+ ions, a similar high sheet resistivity has also been achieved although a longer annealing time (15 min) and a higher annealing temperature (550 °C) were needed. The rf dissipation losses of coplanar waveguide (CPW) "thru" lines fabricated on bombarded multilayer PDBD structure samples were also examined. The measured rf losses were 1.65 dB/cm at 10 GHz and 3 dB/cm at 40 GHz, similar to the values that a CPW line exhibits on a semi-isolating GaAs substrate.
NASA Astrophysics Data System (ADS)
Lee, Chang-Chun; Huang, Pei-Chen; He, Jing-Yan
2018-04-01
Organic light-emitting diode-based flexible and rollable displays have become a promising candidate for next-generation flexible electronics. For this reason, the design of surface multi-layered barriers should be optimized to enhance the long-term mechanical reliability of a flexible encapsulation that prevents the penetration of oxygen and vapor. In this study, finite element-based stress simulation was proposed to estimate the mechanical reliability of gas/vapor barrier design with low-k/silicon nitride (low-k/SiNx) stacking architecture. Consequently, stress-induced failure of critical thin films within the flexible display under various bending conditions must be considered. The feasibility of one pair SiO2/SiNx barrier design, which overcomes the complex lamination process, and the critical bending radius, which is decreased to 1.22 mm, were also examined. In addition, the influence of distance between neutral axes to the concerned layer surface dominated the induced-stress magnitude rather than the stress compliant mechanism provided from stacked low-k films.
Development of a compact permanent magnet helicon plasma source for ion beam bioengineering.
Kerdtongmee, P; Srinoum, D; Nisoa, M
2011-10-01
A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 Ω impedance matching. A plasma density up to 1.1 × 10(12) cm(-3) in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power.
Development of a compact permanent magnet helicon plasma source for ion beam bioengineering
NASA Astrophysics Data System (ADS)
Kerdtongmee, P.; Srinoum, D.; Nisoa, M.
2011-10-01
A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 Ω impedance matching. A plasma density up to 1.1 × 1012 cm-3 in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power.
A Robust High-Performance GPS L1 Receiver with Single-stage Quadrature Redio-Frequency Circuit
NASA Astrophysics Data System (ADS)
Liu, Jianghua; Xu, Weilin; Wan, Qinq; Liu, Tianci
2018-03-01
A low power current reuse single-stage quadrature raido-frequency part (SQRF) is proposed for GPS L1 receiver in 180nm CMOS process. The proposed circuit consists of LNA, Mixer, QVCO, is called the QLMV cell. A two blocks stacked topology is adopted in this design. The parallel QVCO and mixer placed on the top forms the upper stacked block, and the LNA placed on the bottom forms the other stacked block. The two blocks share the current and achieve low power performance. To improve the stability, a float current source is proposed. The float current isolated the local oscillation signal and the input RF signal, which bring the whole circuit robust high-performance. The result shows conversion gain is 34 dB, noise figure is three dB, the phase noise is -110 dBc/Hz at 1MHz and IIP3 is -20 dBm. The proposed circuit dissipated 1.7mW with 1 V supply voltage.
Anti-Ig autoantibody and complement-mediated destruction of neoplastic cells
NASA Technical Reports Server (NTRS)
Towmey, J. J.
1976-01-01
Some immune response are effected through immunoglobulins (Ig), of which five classes have been recognized, namely, IgA, IgD, IgE, IgG, and IgM. Auto-antibodies associated with rheumatoid arthritis, termed rheumatoid factors (RF) react with antigenic determinants on IgG heavy chains. RF has predominant but not complete IgM specificity. This auto-antibody response was not detected in treated patients with primary brain tumors (where tissue is sequestered from the immune system by an intact bloodbrain barrier) or with multiple myeloma where humoral immunity is usually impaired. In addition, the prevalence of RF is not increased with solid tumors prior to initiation of chemotherapy or radiotherapy. It is proposed that RF is related to prior chemotherapy or radiotherapy of tumors anatomically accessible to immunologic tissues capable of antibody responses. A primary IgG response occurs, antigen-antibody complexes form, complexed IgG becomes immunologic, and an RF response results.
Time Series of Images to Improve Tree Species Classification
NASA Astrophysics Data System (ADS)
Miyoshi, G. T.; Imai, N. N.; de Moraes, M. V. A.; Tommaselli, A. M. G.; Näsi, R.
2017-10-01
Tree species classification provides valuable information to forest monitoring and management. The high floristic variation of the tree species appears as a challenging issue in the tree species classification because the vegetation characteristics changes according to the season. To help to monitor this complex environment, the imaging spectroscopy has been largely applied since the development of miniaturized sensors attached to Unmanned Aerial Vehicles (UAV). Considering the seasonal changes in forests and the higher spectral and spatial resolution acquired with sensors attached to UAV, we present the use of time series of images to classify four tree species. The study area is an Atlantic Forest area located in the western part of São Paulo State. Images were acquired in August 2015 and August 2016, generating three data sets of images: only with the image spectra of 2015; only with the image spectra of 2016; with the layer stacking of images from 2015 and 2016. Four tree species were classified using Spectral angle mapper (SAM), Spectral information divergence (SID) and Random Forest (RF). The results showed that SAM and SID caused an overfitting of the data whereas RF showed better results and the use of the layer stacking improved the classification achieving a kappa coefficient of 18.26 %.
Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul
2011-01-01
A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device's good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.
NASA Astrophysics Data System (ADS)
Liu, Y.; Starostin, S. A.; Peeters, F. J. J.; van de Sanden, M. C. M.; de Vries, H. W.
2018-03-01
Atmospheric-pressure diffuse dielectric barrier discharges (DBDs) were obtained in Ar/O2 gas mixture using dual-frequency (DF) excitation at 200 kHz low frequency (LF) and 13.56 MHz radio frequency (RF). The excitation dynamics and the plasma generation mechanism were studied by means of electrical characterization and phase resolved optical emission spectroscopy (PROES). The DF excitation results in a time-varying electric field which is determined by the total LF and RF gas voltage and the spatial ion distribution which only responds to the LF component. By tuning the amplitude ratio of the superimposed LF and RF signals, the effect of each frequency component on the DF discharge mechanism was analysed. The LF excitation results in a transient plasma with the formation of an electrode sheath and therefore a pronounced excitation near the substrate. The RF oscillation allows the electron trapping in the gas gap and helps to improve the plasma uniformity by contributing to the pre-ionization and by controlling the discharge development. The possibility of temporally modifying the electric field and thus the plasma generation mechanism in the DF discharge exhibits potential applications in plasma-assisted surface processing and plasma-assisted gas phase chemical conversion.
Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul
2011-01-01
A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I–V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device’s good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems. PMID:22164066
Mixed-signal 0.18μm CMOS and SiGe BiCMOS foundry technologies for ROIC applications
NASA Astrophysics Data System (ADS)
Kar-Roy, Arjun; Howard, David; Racanelli, Marco; Scott, Mike; Hurwitz, Paul; Zwingman, Robert; Chaudhry, Samir; Jordan, Scott
2010-10-01
Today's readout integrated-circuits (ROICs) require a high level of integration of high performance analog and low power digital logic. TowerJazz offers a commercial 0.18μm CMOS technology platform for mixed-signal, RF, and high performance analog applications which can be used for ROIC applications. The commercial CA18HD dual gate oxide 1.8V/3.3V and CA18HA dual gate oxide 1.8V/5V RF/mixed signal processes, consisting of six layers of metallization, have high density stacked linear MIM capacitors, high-value resistors, triple-well isolation and thick top aluminum metal. The CA18HA process also has scalable drain extended LDMOS devices, up to 40V Vds, for high-voltage sensor applications, and high-performance bipolars for low noise requirements in ROICs. Also discussed are the available features of the commercial SBC18 SiGe BiCMOS platform with SiGe NPNs operating up to 200/200GHz (fT/fMAX frequencies in manufacturing and demonstrated to 270 GHz fT, for reduced noise and integrated RF capabilities which could be used in ROICs. Implementation of these technologies in a thick film SOI process for integrated RF switch and power management and the availability of high fT vertical PNPs to enable complementary BiCMOS (CBiCMOS), for RF enabled ROICs, are also described in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yujie; Gong, Sha; Wang, Zhen
The thermodynamic and kinetic parameters of an RNA base pair were obtained through a long-time molecular dynamics simulation of the opening-closing switch process of the base pair near its melting temperature. The thermodynamic parameters were in good agreement with the nearest-neighbor model. The opening rates showed strong temperature dependence, however, the closing rates showed only weak temperature dependence. The transition path time was weakly temperature dependent and was insensitive to the energy barrier. The diffusion constant exhibited super-Arrhenius behavior. The free energy barrier of breaking a single base stack results from the enthalpy increase, ΔH, caused by the disruption ofmore » hydrogen bonding and base-stacking interactions. The free energy barrier of base pair closing comes from the unfavorable entropy loss, ΔS, caused by the restriction of torsional angles. These results suggest that a one-dimensional free energy surface is sufficient to accurately describe the dynamics of base pair opening and closing, and the dynamics are Brownian.« less
Thin film electronic devices with conductive and transparent gas and moisture permeation barriers
Simpson, Lin Jay
2013-12-17
A thin film stack (100, 200) is provided for use in electronic devices such as photovoltaic devices. The stack (100, 200) may be integrated with a substrate (110) such as a light transmitting/transmissive layer. A electrical conductor layer (120, 220) is formed on a surface of the substrate (110) or device layer such as a transparent conducting (TC) material layer (120,220) with pin holes or defects (224) caused by manufacturing. The stack (100) includes a thin film (130, 230) of metal that acts as a barrier for environmental contaminants (226, 228). The metal thin film (130,230) is deposited on the conductor layer (120, 220) and formed from a self-healing metal such as a metal that forms self-terminating oxides. A permeation plug or block (236) is formed in or adjacent to the thin film (130, 230) of metal at or proximate to the pin holes (224) to block further permeation of contaminants through the pin holes (224).
Lin, Kuan-Hung; Hong, Shu-Ting; Wang, Hsiang-Tsui; Lo, Yu-Li; Lin, Anya Maan-Yuh; Yang, James Chih-Hsin
2016-01-01
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI), such as gefitinib, have been demonstrated to effectively treat the patients of extracranial non-small cell lung cancer (NSCLC). However, these patients often develop brain metastasis (BM) during their disease course. The major obstacle to treat BM is the limited penetration of anticancer drugs across the blood–brain barrier (BBB). In the present study, we utilized gefitinib-loaded liposomes with different modifications to improve gefitinib delivery across the in vitro BBB model of bEnd.3 cells. Gefitinib was encapsulated in small unilamellar liposomes modified with glutathione (GSH) and Tween 80 (SUV-G+T; one ligand plus one surfactant) or RF (SUV-RF; one α-helical cell-penetrating peptide). GSH, Tween 80, and RF were tested by the sulforhodamine B (SRB) assay to find their non-cytotoxic concentrations on bEnd.3 cells. The enhancement on gefitinib across the BBB was evaluated by cytotoxicity assay on human lung adenocarcinoma PC9 cells under the bEnd.3 cells grown on the transwell inserts. Our findings showed that gefitinib incorporated in SUV-G+T or SUV-RF across the bEnd.3 cells significantly reduced the viability of PC9 cells more than that of free gefitinib. Furthermore, SUV-RF showed no cytotoxicity on bEnd.3 cells and did not affect the transendothelial electrical resistance (TEER) and transendothelial permeability of sodium fluorescein across the BBB model. Moreover, flow cytometry and confocal laser scanning microscopy were employed to evaluate the endocytosis pathways of SUV-RF. The results indicated that the uptake into bEnd.3 cells was mainly through adsorptive-mediated mechanism via electrostatic interaction and partially through clathrin-mediated endocytosis. In conclusion, cell penetrating peptide-conjugated SUV-RF shed light on improving drug transport across the BBB via modulating the transcytosis pathway(s). PMID:27916828
A new DFT functional based on spin-states and SN2 barriers
NASA Astrophysics Data System (ADS)
Swart, M.; Solà, M.; Bickelhaupt, F. M.
2012-12-01
We recently reported a study into what causes the dramatic differences between OPBE and PBE for reaction barriers, spin-state energies, hydrogen-bonding and π-π stacking energies.1 It was achieved by smoothly switching from OPBE to PBE at a predefined point P of the reduced density gradient s. By letting the point P run as function of the reduced density gradient s, with values from s=0.1 to s=10, we could determine which part of the exchange functional determines its behavior for the different interactions. Based on the thus obtained results, we created a new exchange functional that showed the good results of OPBE for reaction barriers and spin-state energies, and combined it with the good (H-bonds) and reasonable (π-stacking) results of PBE for weak interactions. In other words, it combined the best of OPBE with the best of PBE. Encouraged by these good results, we have further improved the new exchange functional and fine-tuned its parameters.2 Similar to the switched functional from ref. 1, our new SSB functional2 works well for SN2 barriers (see e.g. ref. 3), spin states and H-bonding interactions. Moreover, by including Grimme's dispersion corrections4,5 (to give our final SSB-D functional) it also works well for π-π stacking interactions.2 In summary, we have constructed a new GGA exchange functional that when combined with the sPBE correlation functional6 gives the correct spin ground-state of iron complexes, and small deviations for SN2 barriers (2.7 kcalṡmol-1), geometries (0.005 Å), Hbond distances (0.012 Å), weak interactions (S22 set, 0.5 kcalṡmol-1), and transition-metal ligand distances (0.008 Å).
NASA Astrophysics Data System (ADS)
Tong, Xiaodong; Li, Qian; An, Ning; Wang, Wenjie; Deng, Xiaodong; Zhang, Liang; Liu, Haitao; Zeng, Jianping; Li, Zhiqiang; Tang, Hailing; Xiong, Yong-Zhong
2015-11-01
A planar Schottky barrier diode with the designed Schottky contact area of approximately 3 μm2 is developed on gallium arsenide (GaAs) material. The measurements of the developed planar Schottky barrier diode indicate that the zero-biased junction capacitance Cj0 is 11.0 fF, the parasitic series resistance RS is 3.0 Ω, and the cut off frequency fT is 4.8 THz. A monolithically integrated fourth subharmonic mixer with this diode operating at the radio frequency (RF) signal frequency of 0.34 THz with the chip area of 0.6 mm2 is implemented. The intermediate frequency (IF) bandwidth is from DC to 40 GHz. The local oscillator (LO) bandwidth is 37 GHz from 60 to 97 GHz. The RF bandwidth is determined by the bandwidth of the on chip antenna, which is 28 GHz from 322 to 350 GHz. The measurements of the mixer demonstrated a conversion loss of approximately 51 dB.
Mechanism of Na accumulation at extended defects in Si from first-principles
NASA Astrophysics Data System (ADS)
Park, Ji-Sang; Chan, Maria K. Y.
2018-04-01
Sodium (Na) impurities in silicon solar cells are considered to play an important role in potential-induced degradation (PID), a significant cause of solar cell degradation and failure. Shorting due to Na accumulation at extended defects has been suggested as a culprit for PID. However, it is not clear how the extended defects are decorated by Na impurities. Using first-principles density functional theory calculations, we find that Na impurities segregate from the bulk into extended defects such as intrinsic stacking faults and Σ3 (111) grain boundaries. The energy barrier required for Na to escape from the extended defects is substantial and similar to the sum of the barrier energy in bulk Si (1.1-1.2 eV) and the segregation energy to the stacking fault (˜0.7 eV). Surprisingly, the migration barrier for Na diffusion within the extended defects is even higher than the energy barrier for escaping. The results suggest that the extended defects likely accumulate Na as the impurities segregate to the defects from the bulk, rather than because of migration through the extended defects.
NASA Astrophysics Data System (ADS)
Gyanathan, Ashvini; Yeo, Yee-Chia
2012-11-01
This work demonstrates a novel two-bit multi-level device structure comprising three phase change material (PCM) layers, separated by SiN thermal barrier layers. This triple PCM stack consisted of (from bottom to top), Ge2Sb2Te5 (GST), an ultrathin SiN barrier, nitrogen-doped GST, another ultrathin SiN barrier, and Ag0.5In0.5Sb3Te6. The PCM layers can selectively amorphize to form 4 different resistance levels ("00," "01," "10," and "11") using respective voltage pulses. Electrical characterization was extensively performed on these devices. Thermal analysis was also done to understand the physics behind the phase changing characteristics of the two-bit memory devices. The melting and crystallization temperatures of the PCMs play important roles in the power consumption of the multi-level devices. The electrical resistivities and thermal conductivities of the PCMs and the SiN thermal barrier are also crucial factors contributing to the phase changing behaviour of the PCMs in the two-bit multi-level PCRAM device.
RF-plasma vapor deposition of siloxane on paper. Part 1: Physical evolution of paper surface
NASA Astrophysics Data System (ADS)
Sahin, Halil Turgut
2013-01-01
An alternative, new approach to improve the hydrophobicity and barrier properties of paper was evaluated by radio-frequency (RF) plasma octamethylcyclotetrasiloxane (OMCTSO) vapor treatment. The interaction between OMCTSO and paper, causing the increased hydophobicity, is likely through covalent bonding. The deposited thin silicone-like polymeric layer from OMCTSO plasma treatment possessed desirable hydrophobic properties. The SEM micrographs showed uniformly distributed grainy particles with various shapes on the paper surface. Deposition of the silicone polymer-like layer with the plasma treatment affects the distribution of voids in the network structure and increases the barrier against water intake and air. The water absorptivity was reduced by 44% for the OMCTSO plasma treated sheet. The highest resistance to air flow was an approximately 41% lower air permeability than virgin paper.
Control of ITBs in Magnetically Confined Burning Plasmas
NASA Astrophysics Data System (ADS)
Panta, S. R.; Newman, D. E.; Terry, P. W.; Sanchez, R.
2017-10-01
In the magnetically confined burning plasma devices (in this case Tokamaks), internal transport barriers (ITBs) are those regimes in which the turbulence is suppressed by the E X B velocity shear, reducing the turbulent transport. This often occurs at a critical gradient in the profiles. The change in the transport then modifies the density and temperature profiles feeding back on the system. These transport barriers have to be controlled both to form them for improved confinement and remove them to both prevent global instabilities and to remove the ash and unnecessary impurities in the device. In this work we focus on pellet injection and modulated RF heating as a way to trigger and control the ITBs. These have an immediate consequence on density and temperature and hence pressure profiles acting as a control knob. For example, depending upon pellet size and its radial position of injection, it either helps to form or strengthen the barrier or to get rid of ITBs in the different transport channels of the burning plasmas. This transport model is then used to investigate the control and dynamics of the transport barriers in burning plasmas using pellets and RF addition to the NBI power and alpha power.
Effects of Geometric Azimuthal Asymmetries of the PPM Stack on Electron Beam Characteristics
NASA Technical Reports Server (NTRS)
Kory, Carol L.
2000-01-01
The effects of geometric azimuthally asymmetric properties of a periodic permanent magnet (PPM) focusing stack on electron beam characteristics obtained using a fully three dimensional (3D) particle-in-cell (PIC) code will be presented. The simulation model, using MAFIA (Solution of MAxwell's equations by the Finite-Integration-Algorithm), incorporates 3D behavior of the beam immersed in static fields calculated directly from the exact geometry and material properties of the 3D magnetic focusing structure. The Hughes 8916H, 18-40 GHz helical TWT for the millimeter-wave power module (MMPM) was used as a prototype. Firstly, the effects of C-magnets used at the input and output of the TWT to allow for coupling of the RF signal into and out of the tube are considered. The 8916H input and output C-magnets differ because coaxial couplers are used at the input and waveguide couplers are used at the output The repositioning of the beam from its central axis due to the inclusion of the output C-magnet was found to be most significant. The modeled output C-magnet and its orientation in the Cartesian coordinate system is shown, and a two-dimensional beam profile including the output C-magnet is also shown. A table presents the shift of the beam center off the central axis relative to the average radius of the beam at the longitudinal points A, B and C designated on an enclosed figure. Secondly, the addition of shunts, or rectangular iron pieces applied manually by a skilled technician in order to improve beam transmission, is considered. The shunts are applied to the top of the tube; thus, azimuthal symmetry of the focusing stack is interrupted. Although shunts are typically added during RF focusing, they are also typically added at the input section of the tube where RF forces are minimal, making an electron optics analysis meaningful. Because several shunts are usually applied to one pole piece, the simulations have been simplified by modeling a half washer with the same radius and longitudinal length as a shunt over the entire x, positive-y half of the transverse plane. A modeled pole piece and shunt as described are shown. Lastly, in order to study the effects of magnet misalignments, a magnet in the PPM stack was arbitrarily chosen and adjusted so that its central axis was shifted both 0.7 percent and 1.0 percent of the magnet outer diameter in the positive-y direction. In practice, positioning the magnets so that their central axis is accurately aligned with the central axis of the tube is challenging. Thus, it is a strong possibility that one or more magnets will be misaligned relative to the tube central axis.
A compact linear accelerator based on a scalable microelectromechanical-system RF-structure
Persaud, A.; Ji, Q.; Feinberg, E.; ...
2017-06-08
Here, a new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number ofmore » parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further red ucing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Finally, ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.« less
Wu, Xiaoping; Tian, Jinfeng; Schmitter, Sebastian; Vaughan, J Tommy; Uğurbil, Kâmil; Van de Moortele, Pierre-François
2016-06-01
We explore the advantages of using a double-ring radiofrequency (RF) array and slice orientation to design parallel transmission (pTx) multiband (MB) pulses for simultaneous multislice (SMS) imaging with whole-brain coverage at 7 Tesla (T). A double-ring head array with 16 elements split evenly in two rings stacked in the z-direction was modeled and compared with two single-ring arrays consisting of 8 or 16 elements. The array performance was evaluated by designing band-specific pTx MB pulses with local specific absorption rate (SAR) control. The impact of slice orientations was also investigated. The double-ring array consistently and significantly outperformed the other two single-ring arrays, with peak local SAR reduced by up to 40% at a fixed excitation error of 0.024. For all three arrays, exciting sagittal or coronal slices yielded better RF performance than exciting axial or oblique slices. A double-ring RF array can be used to drastically improve SAR versus excitation fidelity tradeoff for pTx MB pulse design for brain imaging at 7 T; therefore, it is preferable against single-ring RF array designs when pursuing various biomedical applications of pTx SMS imaging. In comparing the stripline arrays, coronal and sagittal slices are more advantageous than axial and oblique slices for pTx MB pulses. Magn Reson Med 75:2464-2472, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
A compact linear accelerator based on a scalable microelectromechanical-system RF-structure
NASA Astrophysics Data System (ADS)
Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.
2017-06-01
A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.
A compact linear accelerator based on a scalable microelectromechanical-system RF-structure.
Persaud, A; Ji, Q; Feinberg, E; Seidl, P A; Waldron, W L; Schenkel, T; Lal, A; Vinayakumar, K B; Ardanuc, S; Hammer, D A
2017-06-01
A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.
NASA Astrophysics Data System (ADS)
Majee, Subimal; Fátima Cerqueira, Maria; Tondelier, Denis; Geffroy, Bernard; Bonnassieux, Yvan; Alpuim, Pedro; Bourée, Jean Eric
2014-01-01
The reliability and stability are key issues for the commercial utilization of organic photovoltaic devices based on flexible polymer substrates. To increase the shelf-lifetime of these devices, transparent moisture barriers of silicon nitride (SiNx) films are deposited at low temperature by hot wire CVD (HW-CVD) process. Instead of the conventional route based on organic/inorganic hybrid structures, this work defines a new route consisting in depositing multilayer stacks of SiNx thin films, each single layer being treated by argon plasma. The plasma treatment allows creating smoother surface and surface atom rearrangement. We define a critical thickness of the single layer film and focus our attention on the effect of increasing the number of SiNx single-layers on the barrier properties. A water vapor transmission rate (WVTR) of 2 × 10-4 g/(m2·day) is reported for SiNx multilayer stack and a physical interpretation of the plasma treatment effect is given.
RadShield: semiautomated shielding design using a floor plan driven graphical user interface
Wu, Dee H.; Yang, Kai; Rutel, Isaac B.
2016-01-01
The purpose of this study was to introduce and describe the development of RadShield, a Java‐based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air‐kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry‐based approach and a manual approach. A series of geometry‐based equations were derived giving the maximum air‐kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)‐certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air‐kerma rate was compared against the geometry‐based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry‐based approach and RadShield's approach in finding the magnitude and location of the maximum air‐kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheterization labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air‐kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X‐ray exam distribution by a medical physicist may not be sufficient to accurately select the point of maximum air‐kerma rate or barrier thickness. PACS number(s): 87.55.N, 87.52.‐g, 87.59.Bh, 87.57.‐s PMID:27685128
RadShield: semiautomated shielding design using a floor plan driven graphical user interface.
DeLorenzo, Matthew C; Wu, Dee H; Yang, Kai; Rutel, Isaac B
2016-09-08
The purpose of this study was to introduce and describe the development of RadShield, a Java-based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air-kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry-based approach and a manual approach. A series of geometry-based equations were derived giv-ing the maximum air-kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)-certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air-kerma rate was compared against the geometry-based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry-based approach and RadShield's approach in finding the magnitude and location of the maximum air-kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheteriza-tion labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air-kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X-ray exam distribution by a medical physicist may not be sufficient to accurately select the point of maximum air-kerma rate or barrier thickness. © 2016 The Authors.
A novel multi-actuation CMOS RF MEMS switch
NASA Astrophysics Data System (ADS)
Lee, Chiung-I.; Ko, Chih-Hsiang; Huang, Tsun-Che
2008-12-01
This paper demonstrates a capacitive shunt type RF MEMS switch, which is actuated by electro-thermal actuator and electrostatic actuator at the same time, and than latching the switching status by electrostatic force only. Since thermal actuators need relative low voltage compare to electrostatic actuators, and electrostatic force needs almost no power to maintain the switching status, the benefits of the mechanism are very low actuation voltage and low power consumption. Moreover, the RF MEMS switch has considered issues for integrated circuit compatible in design phase. So the switch is fabricated by a standard 0.35um 2P4M CMOS process and uses wet etching and dry etching technologies for postprocess. This compatible ability is important because the RF characteristics are not only related to the device itself. If a packaged RF switch and a packaged IC wired together, the parasitic capacitance will cause the problem for optimization. The structure of the switch consists of a set of CPW transmission lines and a suspended membrane. The CPW lines and the membrane are in metal layers of CMOS process. Besides, the electro-thermal actuators are designed by polysilicon layer of the CMOS process. So the RF switch is only CMOS process layers needed for both electro-thermal and electrostatic actuations in switch. The thermal actuator is composed of a three-dimensional membrane and two heaters. The membrane is a stacked step structure including two metal layers in CMOS process, and heat is generated by poly silicon resistors near the anchors of membrane. Measured results show that the actuation voltage of the switch is under 7V for electro-thermal added electrostatic actuation.
Simulation of InGaAs subchannel DG-HEMTs for analogue/RF applications
NASA Astrophysics Data System (ADS)
Saravana Kumar, R.; Mohanbabu, A.; Mohankumar, N.; Godwin Raj, D.
2018-03-01
The paper reports on the influence of a barrier thickness and gate length on the various device parameters of double gate high electron mobility transistors (DG-HEMTs). The DC and RF performance of the device have been studied by varying the barrier thickness from 1 to 5 nm and gate length from 10 to 150 nm, respectively. As the gate length is reduced below 50 nm regime, the barrier thickness plays an important role in device performance. Scaling the gate length leads to higher transconductance and high frequency operations with the expense of poor short channel effects. The authors claim that the 30-nm gate length, mole fractions tuned In0.53Ga0.47As/In0.7Ga0.3As/In0.53Ga0.47As subchannel DG-HEMT with optimised device structure of 2 nm In0.48Al0.52As barrier layer show a peak gm of 3.09 mS/µm, VT of 0.29 V, ION/IOFF ratio of 2.24 × 105, subthreshold slope 73 mV/decade and drain induced barrier lowering 68 mV/V with fT and fmax of 776 and 905 GHz at Vds = 0.5 V is achieved. These superior performances are achieved by using double-gate architecture with reduced gate to channel distance.
Li, Hai-juan; Yang, Long-long; Tian, Wei; Liu, Jun-ju; Xie, Xue-jun; Guo, Guo-zhen
2012-03-01
To establish the inner blood-retinal barrier (BRB) model in vitro by co-culturing RF/6A cells and C6 cells and to investigate the effects of EMP (200 kV/m, 200 pulses) exposure on the permeability of the inner BRB model in vitro. RF/6A cells and C6 cells were co-cultured on transwell, and the characteristic of the inner BRB model was assessed by detecting transendothelial electrical resistance (TEER) and the permeability of horseradish peroxidase (HRP). The co-cultured model was exposed or sham exposed to the EMP (200 kV/m 200 pulses) for 0.5, 3, 6, 12, 24 h in vitro, then TEER and the permeability of HRP were measured for studying the effects of EMP on the permeability of inner BRB model in vitro. TEER value (145 Ωcm(2)) of the co-culturing inner BRB model significantly increased, as compared to that of RF/6A cells alone model (P < 0.05) on the 6th day after inoculation. There was significant difference of permeability of HRP between the co-culturing inner BRB model and RF/6A cells alone model (P < 0.05). The ability of inhibiting large molecular materials in the co-culturing inner BRB model enhanced. The TEER value decreased and the permeability of HRP increased as compared to the sham group at 0.5, 3, 6 h after the exposure. The inner BRB model by co-culturing RF/6A cells and C6 cells in vitro is efficient and suitable to study the alterations of the restricted permeability function of the inner BRB. EMP (200 kV/m for 200 pulses) could induce the enhanced permeability of the inner BRB model in vitro.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazinette, R.; SIAME, Université de Pau et des Pays de l'Adour, Pau; Paillol, J.
The aim of this paper is to better understand the transition from Townsend to radio-frequency homogeneous dielectric barrier discharge (DBD) at atmospheric pressure. The study is done in an Ar/NH{sub 3} Penning mixture for an electrode configuration adapted to roll-to-roll plasma surface treatment. The study was led in a frequency range running from 50 kHz up to 8.3 MHz leading to different DBD modes with a 1 mm gas gap: Glow (GDBD), Townsend (TDBD), and Radio-frequency (RF-DBD). In the frequency range between TDBD and RF-DBD, from 250 kHz to 2.3 MHz, additional discharges are observed outside the inter-electrode gas gap. Because each high voltagemore » electrode are inside a dielectric barrel, these additional discharges occur on the side of the barrel where the gap is larger. They disappear when the RF-DBD mode is attained in the 1 mm inter-electrode gas gap, i.e., for frequencies equal or higher than 3 MHz. Fast imaging and optical emission spectroscopy show that the additional discharges are radio-frequency DBDs while the inter-electrode discharge is a TDBD. The RF-DBD discharge mode is attained when electrons drift becomes low enough compared to the voltage oscillation frequency to limit electron loss at the anode. To check that the additional discharges are due to a larger gas gap and a lower voltage amplitude, the TDBD/RF-DBD transition is investigated as a function of the gas gap and the applied voltage frequency and amplitude. Results show that the increase in the frequency at constant gas gap or in the gas gap at constant frequency allows to obtain RF-DBD instead of TDBD. At low frequency and large gap, the increase in the applied voltage allows RF-DBD/TDBD transition. As a consequence, an electrode configuration allowing different gap values is a solution to successively have different discharge modes with the same applied voltage.« less
Development of Novel RF and Millimeter Wave Structures by Laser Direct-Write
2009-06-01
layers of patterned dielectric or conductor can be stacked or laminated to form multi-layer FSSs. A FSS is designed to perform at a specific frequency...in millimeters) a) b) c) a) b) Fig. 2 Schematic representations of a) a “traditional” FSS, b) a Fresnel zone plate, and c) a convolution of...cannot be predicted so easily. Even in cases where a “ convolution of models” allows one to pre- dict the performance of a “non-traditional” FSS, it
The Impact of GaN/Substrate Thermal Boundary Resistance on a HEMT Device
2011-11-01
stack between the GaN and Substrate layers. The University of Bristol recently reported that this TBR in commercial devices on Silicon Carbide ( SiC ...Circuit RF Radio Frequency PA Power Amplifier SiC Silicon Carbide FEA Finite Element Analysis heff Effective Heat transfer Coefficient (W/m 2 K...substrate material switched from sapphire to silicon , and by another factor of two from silicon to SiC . TABLE 1: SAMPLE RESULTS FROM DOUGLAS ET AL. FOR
Comparing Pixel- and Object-Based Approaches in Effectively Classifying Wetland-Dominated Landscapes
Berhane, Tedros M.; Lane, Charles R.; Wu, Qiusheng; Anenkhonov, Oleg A.; Chepinoga, Victor V.; Autrey, Bradley C.; Liu, Hongxing
2018-01-01
Wetland ecosystems straddle both terrestrial and aquatic habitats, performing many ecological functions directly and indirectly benefitting humans. However, global wetland losses are substantial. Satellite remote sensing and classification informs wise wetland management and monitoring. Both pixel- and object-based classification approaches using parametric and non-parametric algorithms may be effectively used in describing wetland structure and habitat, but which approach should one select? We conducted both pixel- and object-based image analyses (OBIA) using parametric (Iterative Self-Organizing Data Analysis Technique, ISODATA, and maximum likelihood, ML) and non-parametric (random forest, RF) approaches in the Barguzin Valley, a large wetland (~500 km2) in the Lake Baikal, Russia, drainage basin. Four Quickbird multispectral bands plus various spatial and spectral metrics (e.g., texture, Non-Differentiated Vegetation Index, slope, aspect, etc.) were analyzed using field-based regions of interest sampled to characterize an initial 18 ISODATA-based classes. Parsimoniously using a three-layer stack (Quickbird band 3, water ratio index (WRI), and mean texture) in the analyses resulted in the highest accuracy, 87.9% with pixel-based RF, followed by OBIA RF (segmentation scale 5, 84.6% overall accuracy), followed by pixel-based ML (83.9% overall accuracy). Increasing the predictors from three to five by adding Quickbird bands 2 and 4 decreased the pixel-based overall accuracy while increasing the OBIA RF accuracy to 90.4%. However, McNemar’s chi-square test confirmed no statistically significant difference in overall accuracy among the classifiers (pixel-based ML, RF, or object-based RF) for either the three- or five-layer analyses. Although potentially useful in some circumstances, the OBIA approach requires substantial resources and user input (such as segmentation scale selection—which was found to substantially affect overall accuracy). Hence, we conclude that pixel-based RF approaches are likely satisfactory for classifying wetland-dominated landscapes. PMID:29707381
Berhane, Tedros M; Lane, Charles R; Wu, Qiusheng; Anenkhonov, Oleg A; Chepinoga, Victor V; Autrey, Bradley C; Liu, Hongxing
2018-01-01
Wetland ecosystems straddle both terrestrial and aquatic habitats, performing many ecological functions directly and indirectly benefitting humans. However, global wetland losses are substantial. Satellite remote sensing and classification informs wise wetland management and monitoring. Both pixel- and object-based classification approaches using parametric and non-parametric algorithms may be effectively used in describing wetland structure and habitat, but which approach should one select? We conducted both pixel- and object-based image analyses (OBIA) using parametric (Iterative Self-Organizing Data Analysis Technique, ISODATA, and maximum likelihood, ML) and non-parametric (random forest, RF) approaches in the Barguzin Valley, a large wetland (~500 km 2 ) in the Lake Baikal, Russia, drainage basin. Four Quickbird multispectral bands plus various spatial and spectral metrics (e.g., texture, Non-Differentiated Vegetation Index, slope, aspect, etc.) were analyzed using field-based regions of interest sampled to characterize an initial 18 ISODATA-based classes. Parsimoniously using a three-layer stack (Quickbird band 3, water ratio index (WRI), and mean texture) in the analyses resulted in the highest accuracy, 87.9% with pixel-based RF, followed by OBIA RF (segmentation scale 5, 84.6% overall accuracy), followed by pixel-based ML (83.9% overall accuracy). Increasing the predictors from three to five by adding Quickbird bands 2 and 4 decreased the pixel-based overall accuracy while increasing the OBIA RF accuracy to 90.4%. However, McNemar's chi-square test confirmed no statistically significant difference in overall accuracy among the classifiers (pixel-based ML, RF, or object-based RF) for either the three- or five-layer analyses. Although potentially useful in some circumstances, the OBIA approach requires substantial resources and user input (such as segmentation scale selection-which was found to substantially affect overall accuracy). Hence, we conclude that pixel-based RF approaches are likely satisfactory for classifying wetland-dominated landscapes.
Homoepitaxial graphene tunnel barriers for spin transport (Presentation Recording)
NASA Astrophysics Data System (ADS)
Friedman, Adam L.
2015-09-01
Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate homoepitaxial tunnel barrier devices in which graphene serves as both the tunnel barrier and the high mobility transport channel. Beginning with multilayer graphene, we fluorinate or hydrogenate the top layer to decouple it from the bottom layer, so that it serves as a single monolayer tunnel barrier for both charge and spin injection into the lower graphene transport channel. We demonstrate successful tunneling by measuring non-linear IV curves, and a weakly temperature dependent zero bias resistance. We perform lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies (~200 ps). However, we also demonstrate the highest spin polarization efficiencies (~45%) yet measured in graphene-based spin devices [1]. [1] A.L. Friedman, et al., Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport, Nat. Comm. 5, 3161 (2014).
Microtechnology management considering test and cost aspects for stacked 3D ICs with MEMS
NASA Astrophysics Data System (ADS)
Hahn, K.; Wahl, M.; Busch, R.; Grünewald, A.; Brück, R.
2018-01-01
Innovative automotive systems require complex semiconductor devices currently only available in consumer grade quality. The European project TRACE will develop and demonstrate methods, processes, and tools to facilitate usage of Consumer Electronics (CE) components to be deployable more rapidly in the life-critical automotive domain. Consumer electronics increasingly use heterogeneous system integration methods and "More than Moore" technologies, which are capable to combine different circuit domains (Analog, Digital, RF, MEMS) and which are integrated within SiP or 3D stacks. Making these technologies or at least some of the process steps available under automotive electronics requirements is an important goal to keep pace with the growing demand for information processing within cars. The approach presented in this paper aims at a technology management and recommendation system that covers technology data, functional and non-functional constraints, and application scenarios, and that will comprehend test planning and cost consideration capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, VFG; Xie, HK
2014-07-01
This paper presents the fabrication and characterization of a high-density multilayer stacked metal-insulator-metal (MIM) capacitor based on a novel process of depositing the MIM multilayer on pillars followed by polishing and selective etching steps to form a stacked capacitor with merely three photolithography steps. In this paper, the pillars were made of glass to prevent substrate loss, whereas an oxide-nitride-oxide dielectric was employed for lower leakage, better voltage/frequency linearity, and better stress compensation. MIM capacitors with six dielectric layers were successfully fabricated, yielding capacitance density of 3.8 fF/mu m(2), maximum capacitance of 2.47 nF, and linear and quadratic voltage coefficientsmore » of capacitance below 21.2 ppm/V and 2.31 ppm/V-2. The impedance was measured from 40 Hz to 3 GHz, and characterized by an analytically derived equivalent circuit model to verify the radio frequency applicability. The multilayer stacking-induced plate resistance mismatch and its effect on the equivalent series resistance (ESR) and effective capacitance was also investigated, which can be counteracted by a corrected metal thickness design. A low ESR of 800 m Omega was achieved, whereas the self-resonance frequency was >760 MHz, successfully demonstrating the feasibility of this method to scale up capacitance densities for high-quality-factor, high-frequency, and large-value MIM capacitors.« less
High efficiency, oxidation resistant radio frequency susceptor
Besmann, Theodore M.; Klett, James W.
2004-10-26
An article and method of producing an article for converting energy from one form to another having a pitch-derived graphitic foam carbon foam substrate and a single layer coating applied to all exposed surfaces wherein the coating is either silicon carbide or carbides formed from a Group IVA metal. The article is used as fully coated carbon foam susceptors that more effectively absorb radio frequency (RF) band energy and more effectively convert the RF energy into thermal band energy or sensible heat. The essentially non-permeable coatings also serve as corrosion or oxidation resistant barriers.
Yi, Hai-Cheng; You, Zhu-Hong; Huang, De-Shuang; Li, Xiao; Jiang, Tong-Hai; Li, Li-Ping
2018-06-01
The interactions between non-coding RNAs (ncRNAs) and proteins play an important role in many biological processes, and their biological functions are primarily achieved by binding with a variety of proteins. High-throughput biological techniques are used to identify protein molecules bound with specific ncRNA, but they are usually expensive and time consuming. Deep learning provides a powerful solution to computationally predict RNA-protein interactions. In this work, we propose the RPI-SAN model by using the deep-learning stacked auto-encoder network to mine the hidden high-level features from RNA and protein sequences and feed them into a random forest (RF) model to predict ncRNA binding proteins. Stacked assembling is further used to improve the accuracy of the proposed method. Four benchmark datasets, including RPI2241, RPI488, RPI1807, and NPInter v2.0, were employed for the unbiased evaluation of five established prediction tools: RPI-Pred, IPMiner, RPISeq-RF, lncPro, and RPI-SAN. The experimental results show that our RPI-SAN model achieves much better performance than other methods, with accuracies of 90.77%, 89.7%, 96.1%, and 99.33%, respectively. It is anticipated that RPI-SAN can be used as an effective computational tool for future biomedical researches and can accurately predict the potential ncRNA-protein interacted pairs, which provides reliable guidance for biological research. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
GaN on Diamond with Ultra-Low Thermal Barrier Resistance
2016-03-31
GaN-on-Diamond with Ultra-Low Thermal Barrier Resistance Xing Gu1, Cathy Lee1, Jinqiao Xie1, Edward Beam1, Michael Becker2, Timothy A. Grotjohn2...Bristol BS8 1TL, UK Abstract: We investigated the effective thermal boundary resistance (TBReff) of GaN-on-Diamond interfaces for diamond growth... thermal boundary resistance; TBReff , interfacial layers; high density dielectric Introduction While GaN-based RF transistors, typically on SiC
NASA Astrophysics Data System (ADS)
Mešić, Biljana; Schroeder, Herbert
2011-09-01
The high permittivity perovskite oxides have been intensively investigated for their possible application as dielectric materials for stacked capacitors in dynamic random access memory circuits. For the integration of such oxide materials into the CMOS world, a conductive diffusion barrier is indispensable. An optimized stack p++-Si/Pt/Ta21Si57N21/Ir was developed and used as the bottom electrode for the oxide dielectric. The amorphous TaSiN film as oxygen diffusion barrier showed excellent conductive properties and a good thermal stability up to 700 °C in oxygen ambient. The additional protective iridium layer improved the surface roughness after annealing. A 100-nm-thick (Ba,Sr)TiO3 film was deposited using pulsed laser deposition at 550 °C, showing very promising properties for application; the maximum relative dielectric constant at zero field is κ ≈ 470, and the leakage current density is below 10-6 A/cm2 for fields lower then ± 200 kV/cm, corresponding to an applied voltage of ± 2 V.
Lapin, Norman A; Krzykawska-Serda, Martyna; Ware, Matthew J; Curley, Steven A; Corr, Stuart J
Poor biodistribution and accumulation of chemotherapeutics in tumors due to limitations on diffusive transport and high intra-tumoral pressures (Jain RK, Nat Med. 7(9):987-989, 2001) have prompted the investigation of adjunctive therapies to improve treatment outcomes. Hyperthermia has been widely applied in attempts to meet this need, but it is limited in its ability to reach tumors in deeply located body regions. High-intensity radiofrequency (RF) electric fields have the potential to overcome such barriers enhancing delivery and extravasation of chemotherapeutics. However, due to factors, including tumor heterogeneity and lack of kinetic information, there is insufficient understanding of time-resolved interaction between RF fields and tumor vasculature, drug molecules and nanoparticle (NP) vectors. Intravital microscopy (IVM) provides time-resolved high-definition images of specific tumor microenvironments, overcoming heterogeneity issues, and can be integrated with a portable RF device to enable detailed observation over time of the effects of the RF field on kinetics and biodistribution at the microvascular level. Herein, we provide a protocol describing the safe integration of IVM with a high-powered non-invasive RF field applied to 4T1 orthotopic breast tumors in live mice. Results show increased perfusion of NPs in microvasculature upon RF hyperthermia treatment and increased perfusion, release and spreading of injected reagents preferentially in irregular vessels during RF exposure.
NASA Astrophysics Data System (ADS)
Ainiwaer, A.; Gurrola, H.
2018-03-01
Common conversion point stacking or migration of receiver functions (RFs) and H-k (H is depth and k is Vp/Vs) stacking of RFs has become a common method to study the crust and upper mantle beneath broad-band three-component seismic stations. However, it can be difficult to interpret Pds RFs due to interference between the Pds, PPds and PSds phases, especially in the mantle portion of the lithosphere. We propose a phase separation method to isolate the prominent phases of the RFs and produce separate Pds, PPds and PSds `phase specific' receiver functions (referred to as PdsRFs, PPdsRFs and PSdsRFs, respectively) by deconvolution of the wavefield rather than single seismograms. One of the most important products of this deconvolution method is to produce Ps receiver functions (PdsRFs) that are free of crustal multiples. This is accomplished by using H-k analysis to identify specific phases in the wavefield from all seismograms recorded at a station which enables development of an iterative deconvolution procedure to produce the above-mentioned phase specific RFs. We refer to this method as wavefield iterative deconvolution (WID). The WID method differentiates and isolates different RF phases by exploiting their differences in moveout curves across the entire wave front. We tested the WID by applying it to synthetic seismograms produced using a modified version of the PREM velocity model. The WID effectively separates phases from each stacked RF in synthetic data. We also applied this technique to produce RFs from seismograms recorded at ARU (a broad-band station in Arti, Russia). The phase specific RFs produced using WID are easier to interpret than traditional RFs. The PdsRFs computed using WID are the most improved, owing to the distinct shape of its moveout curves as compared to the moveout curves for the PPds and PSds phases. The importance of this WID method is most significant in reducing interference between phases for depths of less than 300 km. Phases from deeper layers (i.e. P660s as compared to PP220s) are less likely to be misinterpreted because the large amount of moveout causes the appropriate phases to stack coherently if there is sufficient distribution in ray parameter. WID is most effective in producing clean PdsRFs that are relatively free of reverberations whereas PPdsRFs and PSdsRFs retain contamination from reverberations.
Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures.
Hu, Xiaohui; Kou, Liangzhi; Sun, Litao
2016-08-16
The direct band gap of monolayer semiconducting transition-metal dichalcogenides (STMDs) enables a host of new optical and electrical properties. However, bilayer STMDs are indirect band gap semiconductors, which limits its applicability for high-efficiency optoelectronic devices. Here, we report that the direct band gap can be achieved in bilayer MoSe2-WSe2 lateral heterostructures by alternating stacking orders. Specifically, when Se atoms from opposite layers are stacked directly on top of each other, AA and A'B stacked heterostructures show weaker interlayer coupling, larger interlayer distance and direct band gap. Whereas, when Se atoms from opposite layers are staggered, AA', AB and AB' stacked heterostructures exhibit stronger interlayer coupling, shorter interlayer distance and indirect band gap. Thus, the direct/indirect band gap can be controllable in bilayer MoSe2-WSe2 lateral heterostructures. In addition, the calculated sliding barriers indicate that the stacking orders of bilayer MoSe2-WSe2 lateral heterostructures can be easily formed by sliding one layer with respect to the other. The novel direct band gap in bilayer MoSe2-WSe2 lateral heterostructures provides possible application for high-efficiency optoelectronic devices. The results also show that the stacking order is an effective strategy to induce and tune the band gap of layered STMDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tengxing; Peng, Yujia; Jiang, Wei
Tunable radio frequency (RF) components are pivotal elements in frequency-agile and multifunctional systems. However, there is a technical barrier to achieve miniaturized fully electrically tunable RF components. This paper provides and demonstrates the efficacy of a first unique design methodology in developing fully electrically tunable RF components by integrating ferromagnetic (e.g., Permalloy) and ferroelectric (e.g., Lead Zirconate Titanate: PZT) thin films patterns. Permalloy thin film has been patterned in nanometer scale to improve its ferromagnetic resonance frequency (FMR) for RF applications. Tunable inductors are developed with the utilization of different thickness of Permalloy thin film, which show over 50% incrementmore » in inductance and over 4% in tunability with DC current. More tunability can be achieved with multiple layers of Permalloy thin film and optimized thickness. A fully electrically tunable slow wave RF transmission line with simultaneously variable inductance and capacitance density has been implemented and thoroughly investigated for the first time. Measured results show that a fixed phase shift of 90° can be achieved from 1.5 GHz to 1.85 GHz continuously by applying external DC current from 0 to 200 mA and external DC voltage from 0 to 15 Volts, respectively.« less
Wang, Tengxing; Peng, Yujia; Jiang, Wei; ...
2016-10-31
Tunable radio frequency (RF) components are pivotal elements in frequency-agile and multifunctional systems. However, there is a technical barrier to achieve miniaturized fully electrically tunable RF components. This paper provides and demonstrates the efficacy of a first unique design methodology in developing fully electrically tunable RF components by integrating ferromagnetic (e.g., Permalloy) and ferroelectric (e.g., Lead Zirconate Titanate: PZT) thin films patterns. Permalloy thin film has been patterned in nanometer scale to improve its ferromagnetic resonance frequency (FMR) for RF applications. Tunable inductors are developed with the utilization of different thickness of Permalloy thin film, which show over 50% incrementmore » in inductance and over 4% in tunability with DC current. More tunability can be achieved with multiple layers of Permalloy thin film and optimized thickness. A fully electrically tunable slow wave RF transmission line with simultaneously variable inductance and capacitance density has been implemented and thoroughly investigated for the first time. Measured results show that a fixed phase shift of 90° can be achieved from 1.5 GHz to 1.85 GHz continuously by applying external DC current from 0 to 200 mA and external DC voltage from 0 to 15 Volts, respectively.« less
NASA Astrophysics Data System (ADS)
Aslam, Mohd.; Sharma, Dheeraj; Yadav, Shivendra; Soni, Deepak; Bajaj, Varun
2018-04-01
This article presents a new device structure to suppress ambipolarity with enhanced electrostatic characteristics of charge plasma TFET (CP-TFET). Here, implantation of a metal angle (MA) of low workfunction inside the high-k dielectric (HfO2) layer near source/channel interface gives excellent improvement in DC and RF characteristics of the proposed device. Deposition of MA is advantageous to increase abruptness of source/channel junction for reducing the tunneling barrier. Along with MA placement, the metal electrode, which is placed over the silicon wafer for inducing N+ drain region, is divided into the two parts of low and high workfunctions. The workfunction of the part of metal electrode near the channel region is taken comparatively higher than the other part to restrict the tunneling of holes at drain/channel junction under negative bias (-V_gs) condition. Such concept induces asymmetrical concentration of charge carriers in the drain region, which widens the tunneling barrier at the drain/channel interface. Consequently, the proposed device shows better RF performance along with suppressed ambipolar conduction. Furthermore, reliability of conventional and proposed structures has been tested in terms of linearity. Simultaneously, the effect of workfunction and length variation of MA on the device characteristics is analyzed in optimization section of the article.
NASA Astrophysics Data System (ADS)
Kale, Sumit; Kondekar, Pravin N.
2018-01-01
This paper reports a novel device structure for charge plasma based Schottky Barrier (SB) MOSFET on ultrathin SOI to suppress the ambipolar leakage current and improvement of the radio frequency (RF) performance. In the proposed device, we employ dual material for the source and drain formation. Therefore, source/drain is divided into two parts as main source/drain and source/drain extension. Erbium silicide (ErSi1.7) is used as main source/drain material and Hafnium metal is used as source/drain extension material. The source extension induces the electron plasma in the ultrathin SOI body resulting reduction of SB width at the source side. Similarly, drain extension also induces the electron plasma at the drain side. This significantly increases the SB width due to increased depletion at the drain end. As a result, the ambipolar leakage current can be suppressed. In addition, drain extension also reduces the parasitic capacitances of the proposed device to improve the RF performance. The optimization of length and work function of metal used in the drain extension is performed to achieve improvement in device performance. Moreover, the proposed device makes fabrication simpler, requires low thermal budget and free from random dopant fluctuations.
New twinning route in face-centered cubic nanocrystalline metals.
Wang, Lihua; Guan, Pengfei; Teng, Jiao; Liu, Pan; Chen, Dengke; Xie, Weiyu; Kong, Deli; Zhang, Shengbai; Zhu, Ting; Zhang, Ze; Ma, Evan; Chen, Mingwei; Han, Xiaodong
2017-12-15
Twin nucleation in a face-centered cubic crystal is believed to be accomplished through the formation of twinning partial dislocations on consecutive atomic planes. Twinning should thus be highly unfavorable in face-centered cubic metals with high twin-fault energy barriers, such as Al, Ni, and Pt, but instead is often observed. Here, we report an in situ atomic-scale observation of twin nucleation in nanocrystalline Pt. Unlike the classical twinning route, deformation twinning initiated through the formation of two stacking faults separated by a single atomic layer, and proceeded with the emission of a partial dislocation in between these two stacking faults. Through this route, a three-layer twin was nucleated without a mandatory layer-by-layer twinning process. This route is facilitated by grain boundaries, abundant in nanocrystalline metals, that promote the nucleation of separated but closely spaced partial dislocations, thus enabling an effective bypassing of the high twin-fault energy barrier.
Effect of stacking order on device performance of bilayer black phosphorene-field-effect transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, A., E-mail: arnabm.electinstru@gmail.com; Banerjee, L.; Sengupta, A.
We investigate the effect of stacking order of bilayer black phosphorene on the device properties of p-MOSFET and n-MOSFET. Two layers of black phosphorus are stacked in three different orders and are used as channel material in both n-MOSFET and p-MOSFET devices. The effects of different stacking orders on electron and hole effective masses and output characteristics of MOSFETs, such as ON currents, ON/OFF ratio, and transconductance are analyzed. Our results show that about 1.37 times and 1.49 times increase in ON current is possible along armchair and zigzag directions, respectively, 55.11% variation in transconductance is possible along armchair direction,more » by changing stacking orders (AA, AB, and AC) and about 8 times increase in ON current is achievable by changing channel orientation (armchair or zigzag) in p-MOSFET. About 14.8 mV/V drain induced barrier lowering is observed for both p-MOSFET and n-MOSFET, which signifies good immunity to short channel effects.« less
Low-power DRAM-compatible Replacement Gate High-k/Metal Gate Stacks
NASA Astrophysics Data System (ADS)
Ritzenthaler, R.; Schram, T.; Bury, E.; Spessot, A.; Caillat, C.; Srividya, V.; Sebaai, F.; Mitard, J.; Ragnarsson, L.-Å.; Groeseneken, G.; Horiguchi, N.; Fazan, P.; Thean, A.
2013-06-01
In this work, the possibility of integration of High-k/Metal Gate (HKMG), Replacement Metal Gate (RMG) gate stacks for low power DRAM compatible transistors is studied. First, it is shown that RMG gate stacks used for Logic applications need to be seriously reconsidered, because of the additional anneal(s) needed in a DRAM process. New solutions are therefore developed. A PMOS stack HfO2/TiN with TiN deposited in three times combined with Work Function metal oxidations is demonstrated, featuring a very good Work Function of 4.95 eV. On the other hand, the NMOS side is shown to be a thornier problem to solve: a new solution based on the use of oxidized Ta as a diffusion barrier is proposed, and a HfO2/TiN/TaOX/TiAl/TiN/TiN gate stack featuring an aggressive Work Function of 4.35 eV (allowing a Work Function separation of 600 mV between NMOS and PMOS) is demonstrated. This work paves the way toward the integration of gate-last options for DRAM periphery transistors.
Superconductor Digital-RF Receiver Systems
NASA Astrophysics Data System (ADS)
Mukhanov, Oleg A.; Kirichenko, Dmitri; Vernik, Igor V.; Filippov, Timur V.; Kirichenko, Alexander; Webber, Robert; Dotsenko, Vladimir; Talalaevskii, Andrei; Tang, Jia Cao; Sahu, Anubhav; Shevchenko, Pavel; Miller, Robert; Kaplan, Steven B.; Sarwana, Saad; Gupta, Deepnarayan
Digital superconductor electronics has been experiencing rapid maturation with the emergence of smaller-scale, lower-cost communications applications which became the major technology drivers. These applications are primarily in the area of wireless communications, radar, and surveillance as well as in imaging and sensor systems. In these areas, the fundamental advantages of superconductivity translate into system benefits through novel Digital-RF architectures with direct digitization of wide band, high frequency radio frequency (RF) signals. At the same time the availability of relatively small 4K cryocoolers has lowered the foremost market barrier for cryogenically-cooled digital electronic systems. Recently, we have achieved a major breakthrough in the development, demonstration, and successful delivery of the cryocooled superconductor digital-RF receivers directly digitizing signals in a broad range from kilohertz to gigahertz. These essentially hybrid-technology systems combine a variety of superconductor and semiconductor technologies packaged with two-stage commercial cryocoolers: cryogenic Nb mixed-signal and digital circuits based on Rapid Single Flux Quantum (RSFQ) technology, room-temperature amplifiers, FPGA processing and control circuitry. The demonstrated cryocooled digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals in X-band and performing signal acquisition in HF to L-band at ˜30GHz clock frequencies.
Impact of device engineering on analog/RF performances of tunnel field effect transistors
NASA Astrophysics Data System (ADS)
Vijayvargiya, V.; Reniwal, B. S.; Singh, P.; Vishvakarma, S. K.
2017-06-01
The tunnel field effect transistor (TFET) and its analog/RF performance is being aggressively studied at device architecture level for low power SoC design. Therefore, in this paper we have investigated the influence of the gate-drain underlap (UL) and different dielectric materials for the spacer and gate oxide on DG-TFET (double gate TFET) and its analog/RF performance for low power applications. Here, it is found that the drive current behavior in DG-TFET with a UL feature while implementing dielectric material for the spacer is different in comparison to that of DG-FET. Further, hetero gate dielectric-based DG-TFET (HGDG-TFET) is more resistive against drain-induced barrier lowering (DIBL) as compared to DG-TFET with high-k (HK) gate dielectric. Along with that, as compared to DG-FET, this paper also analyses the attributes of UL and dielectric material on analog/RF performance of DG-TFET in terms of transconductance (gm ), transconductance generation factor (TGF), capacitance, intrinsic resistance (Rdcr), cut-off frequency (F T), and maximum oscillation frequency (F max). The LK spacer-based HGDG-TFET with a gate-drain UL has the potential to improve the RF performance of device.
NASA Astrophysics Data System (ADS)
Kumm, J.; Samadi, H.; Chacko, R. V.; Hartmann, P.; Wolf, A.
2016-07-01
An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al2O3 layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatory to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.
L10-Ordered Thin Films with High Perpendicular Magnetic Anisotropy for STT-MRAM Applications
NASA Astrophysics Data System (ADS)
Huang, Efrem Yuan-Fu
The objective of the research conducted herein was to develop L10-ordered materials and thin film stack structures with high perpendicular magnetic anisotropy (PMA) for spin-transfertorque magnetoresistive random access memory (STT-MRAM) applications. A systematic approach was taken in this dissertation, culminating in exchange coupled L1 0-FePt and L10- MnAl heterogeneous structures showing great promise for developing perpendicular magnetic tunnel junctions (pMTJs) with both high thermal stability and low critical switching current. First, using MgO underlayers on Si substrates, sputtered MnAl films were systematically optimized, ultimately producing a Si substrate/MgO (20 nm)/MnAl (30)/Ta (5) film stack with a high degree of ordering and large PMA. Next, noting the incompatibility of insulating MgO underlayers with industrial-scale CMOS processes, attention was turned to using conductive underlayers. TiN was found to excel at promoting growth of L10-MnAl, with optimized films showing improved magnetic properties over those fabricated on MgO underlayers. The use of different post-annealing processes was then studied as an alternative to in situ annealing. Rapid thermal annealing (RTA) was found to produce PMA in films at lower annealing temperatures than tube furnace annealing, but tube furnace annealing produced films with higher maximum PMA than RTA. While annealed samples had lower surface roughness than those ordered by high in situ deposition temperatures, relying solely on annealing to achieve L10-ordering resulted drastically reduced PMA. Finally, heterogeneous L10-ordered FePt/MgO/MnAl film stacks were explored for pMTJs. Film stacks with MgO barrier layers thinner than 2 nm showed significant interdiffusion between the FePt and MnAl, while film stacks with thicker MgO barrier layers exhibited good ordering and high PMA in both the FePt and MnAl films. It is believed that this limitation is caused by the roughness of the underlying FePt, which was thicker than 2 nm. Unfortunately, MgO barrier layers thinner than 2 nm are needed to make good MTJs. With further study, thin, continuous barriers may be achievable for high-PMA, L10- ordered materials with more materials exploration, deposition optimization, and more advanced thin film processing techniques and fabrication equipment. Use of appropriate underlayers, capping layers, dopant elements, and improved fabrication techniques may help reduce surface roughness while preserving PMA. If smooth electrodes can be developed, the heterogeneous structures discussed have great potential in taking advantage of exchange coupling for developing pMTJs with both high thermal stability and low critical switching current. (Abstract shortened by ProQuest.).
Sasikala, Wilbee D; Mukherjee, Arnab
2012-10-11
DNA intercalation, a biophysical process of enormous clinical significance, has surprisingly eluded molecular understanding for several decades. With appropriate configurational restraint (to prevent dissociation) in all-atom metadynamics simulations, we capture the free energy surface of direct intercalation from minor groove-bound state for the first time using an anticancer agent proflavine. Mechanism along the minimum free energy path reveals that intercalation happens through a minimum base stacking penalty pathway where nonstacking parameters (Twist→Slide/Shift) change first, followed by base stacking parameters (Buckle/Roll→Rise). This mechanism defies the natural fluctuation hypothesis and provides molecular evidence for the drug-induced cavity formation hypothesis. The thermodynamic origin of the barrier is found to be a combination of entropy and desolvation energy.
Stacking stability of MoS2 bilayer: An ab initio study
NASA Astrophysics Data System (ADS)
Tao, Peng; Guo, Huai-Hong; Yang, Teng; Zhang, Zhi-Dong
2014-10-01
The study of the stacking stability of bilayer MoS2 is essential since a bilayer has exhibited advantages over single layer MoS2 in many aspects for nanoelectronic applications. We explored the relative stability, optimal sliding path between different stacking orders of bilayer MoS2, and (especially) the effect of inter-layer stress, by combining first-principles density functional total energy calculations and the climbing-image nudge-elastic-band (CI-NEB) method. Among five typical stacking orders, which can be categorized into two kinds (I: AA, AB and II: AA', AB', A'B), we found that stacking orders with Mo and S superposing from both layers, such as AA' and AB, is more stable than the others. With smaller computational efforts than potential energy profile searching, we can study the effect of inter-layer stress on the stacking stability. Under isobaric condition, the sliding barrier increases by a few eV/(ucGPa) from AA' to AB', compared to 0.1 eV/(ucGPa) from AB to [AB]. Moreover, we found that interlayer compressive stress can help enhance the transport properties of AA'. This study can help understand why inter-layer stress by dielectric gating materials can be an effective means to improving MoS2 on nanoelectronic applications.
NASA Astrophysics Data System (ADS)
Lee, Jun S.; Shin, Kyung S.; Sahu, B. B.; Han, Jeon G.
2015-09-01
In this work, silicon nitride (SiNx) thin films were deposited on polyethylene terephthalate (PET) substrates as barrier layers by plasma enhanced chemical vapor deposition (PECVD) system. Utilizing a combination of very high-frequency (VHF 40.68 MHz) and radio-frequency (RF 13.56 MHz) plasmas it was possible to adopt PECVD deposition at low-temperature using the precursors: Hexamethyldisilazane (HMDSN) and nitrogen. To investigate relationship between film properties and plasma properties, plasma diagnostic using optical emission spectroscopy (OES) was performed along with the film analysis using Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). OES measurements show that there is dominance of the excited N2 and N2+ emissions with increase in N2 dilution, which has a significant impact on the film properties. It was seen that all the deposited films contains mainly silicon nitride with a small content of carbon and no signature of oxygen. Interestingly, upon air exposure, films have shown the formation of Si-O bonds in addition to the Si-N bonds. Measurements and analysis reveals that SiNx films deposited with high content of nitrogen with HMDSN plasma can have lower gas barrier properties as low as 7 . 3 ×10-3 g/m2/day. Also at Chiang Mai University.
NASA Astrophysics Data System (ADS)
Cui, Z.; Meltzer, A.; Fischer, K. M.; Stachnik, J. C.; Munkhuu, U.; Tsagaan, B.; Russo, R. M.
2017-12-01
The origin and preservation of high-elevation low-relief surfaces in continental interiors remains an open questions. Central Mongolia constitutes a major portion of the Mongolian Plateau and is an excellent place to link deep earth and surface processes. The lithosphere of Mongolia was constructed through accretionary orogenesis associated with the Central Asian Orogenic Belt (CAOB) from the late Paleozoic to the early Triassic. Alkaline volcanic basalt derived from sublithospheric sources has erupted sporadically in Mongolia since 30 Ma. Constraining the depth variation of lithospheric and upper mantle discontinuities is crucial for understanding the interaction between upper mantle structure and surface topography. We conducted receiver functions (RF) analyses suitable data recorded at112 seismic broadband stations in central Mongolia to image the LAB and mantle transition zone beneath Central Mongolia. A modified H-κ stacking was performed to determine crustal average thickness (H) and Vp/Vs ratio (κ). Central Mongolia is characterized by thick crust (43-57 km) enabling use of both P wave RF and to S wave RF to image the LAB. The PRF traces in the depth domain are stacked based on piercing point locations for the 410 and 660 discontinuities using 0.6 ° × 0.6 ° bins in a grid. From south to north, the average lithospheric thickness is 85km in Gobi Altai gradually thinning northeastward to 78km in the southern Hangay Dome, 72 km in the northern Hangay Dome then increases to 75km in Hovsgol area. While there is overall thinning of the lithosphere from SW to NE, beneath the Hangay, there is a slight increase beneath the highest topography. The thickness of the mantle transition zone (MTZ) beneath central Mongolia is similar to global averages. This evidence argues against the hypothesis that a mantle plume exists beneath Central Mongolia causing low velocity anomalies in the upper mantle. To the east of the Hovsgol area in northern Mongolia, the MTZ thickens 10-15 km mainly due to depression in the 660-km discontinuity, perhaps representing a relict of subducted plate during CAOB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumm, J.; Samadi, H.; Chacko, R. V.
An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al{sub 2}O{sub 3} layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatorymore » to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.« less
NASA Astrophysics Data System (ADS)
Ainiwaer, A.; Gurrola, H.
2017-12-01
In traditional Ps receiver functions (RFs) imaging, PPs and PSs phases from the shallow layers (near surface and crust) can be miss stacked as Ps phases or interfere with deeper Ps phases. To overcome interference between phases, we developed a method to produce phase specific Ps, PPs and PSs receiver functions (wavefield iterative deconvolution or WID). Rather than preforming a separate deconvolution of each seismogram recorded at a station, WID processes all the seismograms from a seismic station in a single run. Each iteration of WID identifies the most prominent phase remaining in the data set, based on the shape of its wavefield (or moveout curve), and then places this phase on the appropriate phase specific RF. As a result, we produce PsRFs that are free of PPs and PSs phase; and reverberations thereof. We also produce phase specific PPsRFs and PSsRFs but moveout curves for these phases and their higher order reverberations are not as distinct from one another. So the PPsRFs and the PSsRFs are not as clean as the PsRFs. These phase specific RFs can be stacked to image 2-D or 3-D Earth structure using common conversion point (CCP) stacking or migration. We applied WID to 524 Southern California seismic stations to construct 3-D PsRF image of lithosphere beneath southern California. These CCP images exhibit a Ps phases from the Moho and the lithosphere asthenosphere boundary (LAB) that are free of interference from the crustal reverberations. The Moho and LAB were found to be deepest beneath the Sierra Nevada, Tansverse Range and Peninsular Range. Shallow Moho and Lab is apparent beneath the Inner Borderland and Salton Trough. The LAB depth that we estimate is in close agreement to recent published results that used Sp imaging (Lekic et al., 2011). We also found complicated structure beneath Mojave Block where mid crustal features are apparent and anomalous Ps phases at 60 km depth are observed beneath Western Mojave dessert.
The report examines domestic refrigerator/freezer (R/F) design alternatives which may offer greater increase in thermal performance than is possible with panel/foam composites. (NOTE: Current efforts to design and build R/Fs with high performance insulation technology are directe...
Li, Y M; Chrambach, A
2001-11-01
Recombinant urchin syntaxin [Xa cut], electrophoresed at pH 9.0 (25 degrees C) or 10.2 (0 degrees C) in a discontinuous Tris-chloride-glycinate buffer system in the presence of 0.03% SDS in the catholyte, exhibits a multicomponent pattern in gels of a polyacrylamide concentration of 12% and 3% crosslinking. The position in the pattern of the syntaxin band was identified by reference to electropherograms of a previous study (P. Backlund, pers. comm.). The complexity of the protein composition of the preparation was reduced by selective stacking of proteins with mobilities greater than that of syntaxin. This provides a gel pattern consisting of two bands with mobilities close to that identified as syntaxin, as well as a minor, more slowly migrating, contaminant. The two major components are designated as S1 and S2, the latter being the larger species. In the absence of SDS, the preparation exhibits two pairs of protein components. Three of the proteins are charge isomers, i.e., of equal size, differing only in net charge, assumed to be forms of S1, while the fourth component is larger and is assumed to be S2. Aliquots of the preparation, containing 150 microg of protein were loaded on a cylindrical polyacrylamide gel of 18 mm diameter, and separated S1 and S2 were excised in a position defined by their characteristic values of relative mobility (Rf). Two or three gel slices, corresponding in Rf to S1 or S2, were pooled and loaded onto a Stacking Gel (5% polyacrylamide, 20% cross-linked) of 18 mm diameter, equipped with a collection chamber of 200 microL volume. The protein was electroeluted from the gel slices and concentrated into a stack by electrophoresis. The stack, marked by bromphenolblue, was allowed to migrate into the collection chamber, was collected and analyzed by protein assay and re-electrophoresis. Re-electrophoresis of S1 shows that it consists of at least three components. Recovered S1 constitutes 47% of the preparation, based on protein assay, S2 4%. S1, isolated from SDS-PAGE, exhibits an apparent Mr of 22.7 kDa, S2 one of 34.5 kDa, similar to the value of 32.6 kDa expected from the structure of syntaxin. The absence of S2 from the electroeluate re-electrophoresed at 0 degrees C and their molecular weight relationship suggest a proteolytic transformation of S2 to S1.
Injection method of barrier bucket supported by off-aligned electron cooling for CRing of HIAF
NASA Astrophysics Data System (ADS)
Shen, Guo-Dong; Yang, Jian-Cheng; Xia, Jia-Wen; Mao, Li-Jun; Yin, Da-Yu; Chai, Wei-Ping; Shi, Jian; Sheng, Li-Na; Smirnov, A.; Wu, Bo; Zhao, He
2016-08-01
A new accelerator complex, HIAF (the High Intensity Heavy Ion Accelerator Facility), has been approved in China. It is designed to provide intense primary and radioactive ion beams for research in high energy density physics, nuclear physics, atomic physics as well as other applications. In order to achieve a high intensity of up to 5×1011 ppp 238U34+, the Compression Ring (CRing) needs to stack more than 5 bunches transferred from the Booster Ring (BRing). However, the normal bucket to bucket injection scheme can only achieve an intensity gain of 2, so an injection method, fixed barrier bucket (BB) supported by electron cooling, is proposed. To suppress the severe space charge effect during the stacking process, off-alignment is adopted in the cooler to control the transverse emittance. In this paper, simulation and optimization with the BETACOOL program are presented. Supported by New Interdisciplinary and Advanced Pilot Fund of Chinese Academy of Sciences
Observation of New Spontaneous Fission Activities from Elements 100 TO 105.
NASA Astrophysics Data System (ADS)
Somerville, Lawrence Patrick
Several new Spontaneous Fission (SF) activities have been found. Their half-lives and production cross sections in several reactions have been measured by collecting and transporting recoils at known speed past mica track detectors. No definite identification could be made for any of the new SF activities; however, half-lives and possible assignments to element-104 isotopes consistent with several cross bombardments include ('257)Rf(3.8 s, 14% SF), ('258)Rf(13 ms), ('259)Rf((TURN)3 s, 8% SF), ('260)Rf((TURN)20 ms), and ('262)Rf((TURN)50ms). The 80-ms SF activity claimed by the Dubna group for the discovery of element 104 (('260)104) was not observed. A difficulty exists in the interpretation that ('260)Rf is a (TURN)20-ms SF activity: in order to be correct, for example, the SF activities with half-lives between 14 and 24 ms produced in the reactions 109- to 119-MeV ('18)O + ('248)Cm, 88- to 100-MeV ('15)N + ('249)Bk, and 96-MeV ('18)O + ('249)Cf must be other nuclides due to their large production cross sections, or the cross sections for production of ('260)Rf must be enhanced by unknown mechanisms. Based on calculated total production cross sections a possible (TURN)1% electron-capture branch in ('258)Lr(4.5 s) to the SF emitter ('258)No(1.2 ms) and an upper limit of 0.05% for SF branching in ('254)No(55 s) were determined. Other measured half-lives from unknown nuclides produced in respective reactions include (TURN)1.6 s (('18)O + ('248)Cm), indications of a (TURN)47-s SF activity (75-MeV ('12)C + ('249)Cf), and two or more SF activities with 3 s (LESSTHEQ) T(, 1/2) (LESSTHEQ) 60 s (('18)O + ('249)Bk). The most exciting conclusion of this work is that if the tentative assignments to even-even element -104 isotopes are correct, there would be a sudden change in the SF half-life systematics at element 104 which has been predicted theoretically by Randrup et al. and Baran et al. and attributed to the disappearance of the second hump of the double-humped fission barrier. This disappearance of the second barrier also explains the tentative low hindrance factors compared to lighter elements for SF of the odd -mass isotopes ('257)Rf((TURN)4 x 10('3)) and ('259)Rf((TURN)2 x 10('3)). On the basis of recent odd-mass alpha-decay energy data, the 152-neutron sub-shell effect is probably weaker for element 104 than for element 102, confirming predictions of Randrup et al., and not strong enough to significantly alter the SF half-life predictions. This weakening sub-shell effect is in contrast to the continuing strong effect assumed in the Ghiorso half-life systematics. The possibilities of enhanced stability against SF with 157 neutrons for ('261)RF(65 s) and theoretical arguments concerning the SF-mass distributions for element-104 nuclei are discussed.
JET (3He)-D scenarios relying on RF heating: survey of selected recent experiments
NASA Astrophysics Data System (ADS)
Van Eester, D.; Lerche, E.; Andrew, Y.; Biewer, T. M.; Casati, A.; Crombé, K.; de la Luna, E.; Ericsson, G.; Felton, R.; Giacomelli, L.; Giroud, C.; Hawkes, N.; Hellesen, C.; Hjalmarsson, A.; Joffrin, E.; Källne, J.; Kiptily, V.; Lomas, P.; Mantica, P.; Marinoni, A.; Mayoral, M.-L.; Ongena, J.; Puiatti, M.-E.; Santala, M.; Sharapov, S.; Valisa, M.; JET EFDA contributors
2009-04-01
Recent JET experiments have been devoted to the study of (3He)-D plasmas involving radio frequency (RF) heating. This paper starts by discussing the RF heating efficiency theoretically expected in such plasmas, covering both relevant aspects of wave and of particle dynamics. Then it gives a concise summary of the main conclusions drawn from recent experiments that were either focusing on studying RF heating physics aspects or that were adopting RF heating as a tool to study plasma behavior. Depending on the minority concentration chosen, different physical phenomena are observed. At very low concentration (X[3He] < 1%), energetic tails are formed which trigger MHD activity and result in loss of fast particles. Alfvén cascades were observed and gamma ray tomography indirectly shows the impact of sawtooth crashes on the fast particle orbits. Low concentration (X[3He] < 10%) favors minority heating while for X[3He] Gt 10% electron mode conversion damping becomes dominant. Evidence for the Fuchs et al standing wave effect (Fuchs et al 1995 Phys. Plasmas 2 1637-47) on the absorption is presented. RF induced deuterium tails were observed in mode conversion experiments with large X[3He] (≈18%). As tentative modeling shows, the formation of these tails can be explained as a consequence of wave power absorption by neutral beam particles that efficiently interact with the waves well away from the cold D cyclotron resonance position as a result of their substantial Doppler shift. As both ion and electron RF power deposition profiles in (3He)-D plasmas are fairly narrow—giving rise to localized heat sources—the RF heating method is an ideal tool for performing transport studies. Various of the experiments discussed here were done in plasmas with internal transport barriers (ITBs). ITBs are identified as regions with locally reduced diffusivity, where poloidal spinning up of the plasma is observed. The present know-how on the role of RF heating for impurity transport is also briefly summarized.
Low-level exposure to radiofrequency electromagnetic fields: health effects and research needs.
Repacholi, M H
1998-01-01
The World Health Organization (WHO), the International Commission on Non-Ionizing Radiation Protection (ICNIRP), and the German and Austrian Governments jointly sponsored an international seminar in November of 1996 on the biological effects of low-level radiofrequency (RF) electromagnetic fields. For purposes of this seminar, RF fields having frequencies only in the range of about 10 MHz to 300 GHz were considered. This is one of a series of scientific review seminars held under the International Electromagnetic Field (EMF) Project to identify any health hazards from EMF exposure. The scientific literature was reviewed during the seminar and expert working groups formed to provide a status report on possible health effects from exposure to low-level RF fields and identify gaps in knowledge requiring more research to improve health risk assessments. It was concluded that, although hazards from exposure to high-level (thermal) RF fields were established, no known health hazards were associated with exposure to RF sources emitting fields too low to cause a significant temperature rise in tissue. Biological effects from low-level RF exposure were identified needing replication and further study. These included in vitro studies of cell kinetics and proliferation effects, effects on genes, signal transduction effects and alterations in membrane structure and function, and biophysical and biochemical mechanisms for RF field effects. In vivo studies should focus on the potential for cancer promotion, co-promotion and progression, as well as possible synergistic, genotoxic, immunological, and carcinogenic effects associated with chronic low-level RF exposure. Research is needed to determine whether low-level RF exposure causes DNA damage or influences central nervous system function, melatonin synthesis, permeability of the blood brain barrier (BBB), or reaction to neurotropic drugs. Reported RF-induced changes to eye structure and function should also be investigated. Epidemiological studies should investigate: the use of mobile telephones with hand-held antennae and incidence of various cancers; reports of headache, sleep disturbance, and other subjective effects that may arise from proximity to RF emitters, and laboratory studies should be conducted on people reporting these effects; cohorts with high occupational RF exposure for changes in cancer incidence; adverse pregnancy outcomes in various highly RF exposed occupational groups; and ocular pathologies in mobile telephone users and in highly RF exposed occupational groups. Studies of populations with residential exposure from point sources, such as broadcasting transmitters or mobile telephone base stations have caused widespread health concerns among the public, even though RF exposures are very low. Recent studies that may indicate an increased incidence of cancer in exposed populations should be investigated further.
Control of ITBs in Fusion Self-Heated Plasmas
NASA Astrophysics Data System (ADS)
Panta, Soma; Newman, David; Terry, Paul; Sanchez, Raul
2015-11-01
Simple dynamical models have been able to capture a remarkable amount of the dynamics of the transport barriers found in many devices, including the often disconnected nature of the electron thermal transport channel sometimes observed in the presence of a standard (``ion channel'') barrier. By including in this rich though simple dynamic transport model an evolution equation for electron fluctuations we have previously investigated the interaction between the formation of the standard ion channel barrier and the somewhat less common electron channel barrier. The electron channel formation and evolution is even more sensitive to the alignment of the various gradients making up the sheared radial electric field then the ion barrier is. Because of this sensitivity and coupling of the barrier dynamics, the dynamic evolution of the fusion self-heating profile can have a significant impact on the barrier location and dynamics. To investigate this, self-heating has been added this model and the impact of the self-heating on the formation and controllability of the various barriers is explored. It has been found that the evolution of the heating profiles can suppress or collapse the electron channel barrier. NBI and RF schemes will be investigated for profile/barrier control.
Characterization of HIFU ablation using DNA fragmentation labeling as apoptosis stain
NASA Astrophysics Data System (ADS)
Anquez, Jeremie; Corréas, Jean-Michel; Pau, Bernard; Lacoste, François; Yon, Sylvain
2012-11-01
The goal of this work was to compare modalities to precisely quantify the extent of thermally induced lesions: gross pathology vs. histopathology vs. devascularization. Liver areas of 14 rabbits were targeted with HIFU and RF ablations in an acute study. Contrast enhanced computorized tomography (CE-CT) scan images were acquired two hours after HIFU and RF treatment to obtain the devascularized volumes of the livers. The animals were then euthanized and deep frozen. The livers were sliced and each slice was photographed and stacked yielding a volume of gross pathology. The volume VGP of the HIFU lesions were derived. The area AGP of the lesions were computed on a particular slice. The lesions were segmented as hypo intense (devascularized) regions on CE-CT images and their volumes VC were computed. The ratios VC/VGP were computed for all the HIFU lesions on all the 14 subjects with a mean value of 1.2. Histology was performed on the livers using Hematoxyline Eosine Staining (HES) and DNA Fragmentation labeling (TUNEL® technology) which characterizes apoptosis. Apoptotic regions of area AT were segmented on the images stained by TUNEL®. No necrosis was identified on the HES data. While TUNEL® did not mark the cores of the RF lesions as apoptotic, the periphery of HIFU and RF lesions was always recognized with TUNEL® as apoptotic. The ratio AGP/AT was computed. The mean value was 0.95 and 0.25 for HIFU and RF lesions respectively. These findings show that the devascularized territory seen on CE-CT scan coincide with the coagulated territories seen with gross pathology. Those actually correspond to cells in apoptosis. It is confirmed that HES stain does not show necrosis 2 hours after thermal ablation. TUNEL® technology for DNA fragmentation labeling appears as a useful marker for thermally induced acute lesions in the liver.
Interferometric imaging of crustal structure from wide-angle multicomponent OBS-airgun data
NASA Astrophysics Data System (ADS)
Shiraishi, K.; Fujie, G.; Sato, T.; Abe, S.; Asakawa, E.; Kodaira, S.
2015-12-01
In wide-angle seismic surveys with ocean bottom seismograph (OBS) and airgun, surface-related multiple reflections and upgoing P-to-S conversions are frequently observed. We applied two interferometric imaging methods to the multicomponent OBS data in order to highly utilize seismic signals for subsurface imaging.First, seismic interferometry (SI) is applied to vertical component in order to obtain reflection profile with multiple reflections. By correlating seismic traces on common receiver records, pseudo seismic data are generated with virtual sources and receivers located on all original shot positions. We adopt the deconvolution SI because source and receiver spectra can be canceled by spectral division. Consequently, gapless reflection images from just below the seafloor to the deeper are obtained.Second, receiver function (RF) imaging is applied to multicomponent OBS data in order to image P-to-S conversion boundary. Though RF is commonly applied to teleseismic data, our purpose is to extract upgoing PS converted waves from wide-angle OBS data. The RF traces are synthesized by deconvolution of radial and vertical components at same OBS location for each shot. Final section obtained by stacking RF traces shows the PS conversion boundaries beneath OBSs. Then, Vp/Vs ratio can be estimated by comparing one-way traveltime delay with two-way traveltime of P wave reflections.We applied these methods to field data sets; (a) 175 km survey in Nankai trough subduction zone using 71 OBSs with from 1 km to 10 km intervals and 878 shots with 200 m interval, and (b) 237 km survey in northwest pacific ocean with almost flat layers before subduction using 25 OBSs with 6km interval and 1188 shots with 200 m interval. In our study, SI imaging with multiple reflections is highly applicable to OBS data even in a complex geological setting, and PS conversion boundary is well imaged by RF imaging and Vp/Vs ratio distribution in sediment is estimated in case of simple structure.
Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders
NASA Astrophysics Data System (ADS)
Chenfan, YU; Xin, ZHOU; Dianzheng, WANG; Neuyen VAN, LINH; Wei, LIU
2018-01-01
Spherical powders with good flowability and high stacking density are mandatory for powder bed additive manufacturing. Nevertheless, the preparation of spherical refractory tungsten and tungsten alloy powders is a formidable task. In this paper, spherical refractory metal powders processed by high-energy stir ball milling and RF inductively coupled plasma were investigated. By utilizing the technical route, pure spherical tungsten powders were prepared successfully, the flowability increased from 10.7 s/50 g to 5.5 s/50 g and apparent density increased from 6.916 g cm-3 to 11.041 g cm-3. Alloying element tantalum can reduce the tendency to micro-crack during tungsten laser melting and rapid solidification process. Spherical W-6Ta (%wt) powders were prepared in this way, homogeneous dispersion of tantalum in a tungsten matrix occurred but a small amount of flake-like shape particles appeared after high-energy stir ball milling. The flake-like shape particles can hardly be spheroidized in subsequent RF inductively coupled plasma process, might result from the unique suspended state of flaky particles under complex electric and magnetic fields as well as plasma-particle heat exchange was different under various turbulence models. As a result, the flake-like shape particles cannot pass through the high-temperature area of thermal plasma torch and cannot be spheroidized properly.
NASA Astrophysics Data System (ADS)
Soni, Deepak; Sharma, Dheeraj; Aslam, Mohd.; Yadav, Shivendra
2018-04-01
This article presents a new device configuration to enhance current drivability and suppress negative conduction (ambipolar conduction) with improved RF characteristics of physically doped TFET. Here, we used a new approach to get excellent electrical characteristics of hetero-dielectric short gate source electrode TFET (HD-SG SE-TFET) by depositing a metal electrode of 5.93 eV work function over the heavily doped source (P+) region. Deposition of metal electrode induces the plasma (thin layer) of holes under the Si/HfO2 interface due to work function difference of metal and semiconductor. Plasma layer of holes is advantageous to increase abruptness as well as decrease the tunneling barrier at source/channel junction for attaining higher tunneling rate of charge carriers (i.e., electrons), which turns into 86.66 times higher ON-state current compared with the conventional physically doped TFET (C-TFET). Along with metal electrode deposition, gate electrode is under-lapped for inducing asymmetrical concentration of charge carriers in the channel region, which is helpful for widening the tunneling barrier width at the drain/channel interface. Consequently, HD-SG SE-TFET shows suppression of ambipolar behavior with reduction in gate-to-drain capacitance which is beneficial for improvement in RF performance. Furthermore, the effectiveness of hetero-gate dielectric concept has been used for improving the RF performance. Furthermore, reliability of C-TFET and proposed structures has been confirmed in term of linearity.
Design of barrier bucket kicker control system
NASA Astrophysics Data System (ADS)
Ni, Fa-Fu; Wang, Yan-Yu; Yin, Jun; Zhou, De-Tai; Shen, Guo-Dong; Zheng, Yang-De.; Zhang, Jian-Chuan; Yin, Jia; Bai, Xiao; Ma, Xiao-Li
2018-05-01
The Heavy-Ion Research Facility in Lanzhou (HIRFL) contains two synchrotrons: the main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe). Beams are extracted from CSRm, and injected into CSRe. To apply the Barrier Bucket (BB) method on the CSRe beam accumulation, a new BB technology based kicker control system was designed and implemented. The controller of the system is implemented using an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) chip and a field-programmable gate array (FPGA) chip. Within the architecture, ARM is responsible for data presetting and floating number arithmetic processing. The FPGA computes the RF phase point of the two rings and offers more accurate control of the time delay. An online preliminary experiment on HIRFL was also designed to verify the functionalities of the control system. The result shows that the reference trigger point of two different sinusoidal RF signals for an arbitrary phase point was acquired with a matched phase error below 1° (approximately 2.1 ns), and the step delay time better than 2 ns were realized.
NASA Astrophysics Data System (ADS)
Liu, Yaoge; Starostin, Serguei; Welzel, Stefan; van de Sanden, M. C. M.; de Vries, Hindrik; Fom Institute-Differ Team; Eindhoven University Of Technology Team; Fujifilm Manufacturing Europe B. v. Team
2016-09-01
A dual frequency (DF) diffuse discharge was obtained in an atmospheric-pressure dielectric barrier discharge reactor in air-like gas mixtures. By adding a radio frequency (RF) voltage to a low frequency (LF) voltage, we aim to increase the plasma power density. In this study, the discussion is mainly focused on the discharge characteristics and the thin film deposition. According to the spatio-temporal emission, the discharge shows a glow-like structure with both LF and DF voltages. By fitting the spectral lines of the second positive system of N2, the gas temperature was estimated which does not obviously increase with the extra RF signal. Moreover, SiO2-like film was deposited from TEOS using the DF power supply. Thin film properties such as surface morphology, microstructure and stoichiometry were analyzed by AFM, FTIR and XPS, respectively. Because of the higher plasma power density, the DF power supply can be an efficient approach to improve the properties and to increase the throughput of the thin film deposition.
Truesdale, M D; Goldstone, S E
2010-07-01
Human papillomavirus (HPV)-related anal cancer incidence is rising in men who have sex with men (MSM). Effective screening strategies exist, but many patients are lost to follow-up (LTF). We studied factors impacting screening compliance to recommended annual screening visits. Retrospective chart review identified MSM with anal dysplasia. MSM were grouped as regular screeners (regular to follow-up [RF]) (≥1 visit/year), lost to follow-up (LTF) (>1 year since previous screening) and LTF who then returned for screening (lost came back [LCB]). From June 2007 to March 2008, subjects completed a questionnaire in-person at the time of screening or via telephone (LTF). Questionnaires were completed after anal dysplasia diagnosis. One hundred and ninety-five MSM were enrolled (96 RF, 50 LTF and 49 LCB). RF were compliant for 4.8 years; LTF were lost for 2.3 years. LCB were previously lost for 5.6 years before returning. Mean knowledge score of screening procedures was larger in RF versus LTF (P < 0.001). MSM with more sexual partners in the past six months were more likely to be LCB versus LTF (P = 0.05). RF were more likely to describe their HPV diagnosis as 'upsetting' (P = 0.003). RF were more likely driven by physical symptoms versus LTF (P = 0.002). MSM with high-grade intraepithelial lesions (HSIL) were more likely to be RF versus those with low-grade intraepithelial lesions (P = 0.001. Positive predictors for screening compliance include an upsetting experience during the HPV diagnosis, physical symptoms driving the initial visit and HSIL. Engaging patients in a firm, salient approach may facilitate follow-up compliance.
Yan, Z. B.; Liu, J. -M.
2013-01-01
The Au/DyMnO3/Nb:SrTiO3/Au stack was demonstrated to be not only a high performance memristor but also a good memcapacitor. The switching time is below 10 ns, the retention is longer than 105 s, and the change ratio of resistance (or capacitance) is larger than 100 over the 108 switching cycles. Moreover, this stack has a broad range of intermediate states that are tunable by the operating voltages. It is indicated that the memory effects originate from the Nb:SrTiO3/Au junction where the barrier profile is electrically modulated. The serial connected Au/DyMnO3/Nb:SrTiO3 stack behaves as a high nonlinear resistor paralleling with a capacitor, which raises the capacitance change ratio and enhances the memory stability of the device. PMID:23963467
Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion
NASA Technical Reports Server (NTRS)
Nainiger, J. J.
1980-01-01
To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.
Excited state free energy calculations of Cy3 in different environments
NASA Astrophysics Data System (ADS)
Sawangsang, Pilailuk; Buranachai, Chittanon; Punwong, Chutintorn
2015-05-01
Cy3, a cyanine dye, is one of the most widely used dyes in investigating the structure and dynamics of biomolecules by means of fluorescence methods. However, Cy3 fluorescence emission is strongly competed by trans-cis isomerization, whose efficiency is dictated by the isomerization energy barrier and the environment of Cy3. The fluorescence quantum yield of Cy3 is very low when the dye is free in homogeneous solution but it is considerably enhanced in an environment that rigidifies the structure, e.g. when it is attached to a DNA strand. In this work, the barriers for isomerization on the excited state of free Cy3, and Cy3 attached to single- and double-stranded DNA in methanol, are presented. The free energy and subsequently the isomerization barrier calculations are performed using the umbrella sampling technique with the weighted histogram analysis method. The hybrid quantum mechanics/molecular mechanics (QM/MM) approach is employed to provide the potential energy surfaces for the excited state dynamics simulations in umbrella sampling. The semiempirical floating occupation molecular orbital configuration interaction method is used for electronic excited state calculations of the QM region (Cy3). From the free energy calculations, the barrier of Cy3 attached to the single-stranded DNA is highest, in agreement with previously reported experimental results. This is likely due to the stacking interaction between Cy3 and DNA. Such a stacking interaction is likely associated with steric hindrance that prevents the rotation around the conjugated bonds of Cy3. If Cy3 experiences high steric hindrance, it has a higher isomerization barrier and thus the efficiency of fluorescence emission increases.
Design of nucleic acid strands with long low-barrier folding pathways.
Condon, Anne; Kirkpatrick, Bonnie; Maňuch, Ján
2017-01-01
A major goal of natural computing is to design biomolecules, such as nucleic acid sequences, that can be used to perform computations. We design sequences of nucleic acids that are "guaranteed" to have long folding pathways relative to their length. This particular sequences with high probability follow low-barrier folding pathways that visit a large number of distinct structures. Long folding pathways are interesting, because they demonstrate that natural computing can potentially support long and complex computations. Formally, we provide the first scalable designs of molecules whose low-barrier folding pathways, with respect to a simple, stacked pair energy model, grow superlinearly with the molecule length, but for which all significantly shorter alternative folding pathways have an energy barrier that is [Formula: see text] times that of the low-barrier pathway for any [Formula: see text] and a sufficiently long sequence.
Franke, Helmut; Streckert, Joachim; Bitz, Andreas; Goeke, Johannes; Hansen, Volkert; Ringelstein, E Bernd; Nattkämper, Heiner; Galla, Hans-Joachim; Stögbauer, Florian
2005-09-01
The extensive use of mobile phone communication has raised public concerns about adverse health effects of radiofrequency (RF) electromagnetic fields (EMFs) in recent years. A central issue in this discussion is the question whether EMFs enhance the permeability of the blood-brain barrier (BBB). Here we report an investigation on the influence of a generic UMTS (Universal Mobile Telecommunications System) signal on barrier tightness, transport processes and the morphology of porcine brain microvascular endothelial cell cultures (PBEC) serving as an in vitro model of the BBB. An exposure device with integrated online monitoring system was developed for simultaneous exposure and measuring of transendothelial electrical resistance (TEER) to determine the tightness of the BBB. PBEC were exposed continuously for up to 84 h at an average electric-field strength of 3.4-34 V/m (maximum 1.8 W/kg) ensuring athermal conditions. We did not find any evidence of RF-field-induced disturbance of the function of the BBB. After and during exposure, the tightness of the BBB quantified by 14C-sucrose and serum albumin permeation as well as by TEER remained unchanged compared to sham-exposed cultures. Permeation of transporter substrates at the BBB as well as the localization and integrity of the tight-junction proteins occludin and ZO1 were not affected either.
Mertens, Jan E.J.; Roie, Martijn Van; Merckx, Jonas; Dekoninck, Wouter
2017-01-01
Abstract Digitization of specimen collections has become a key priority of many natural history museums. The camera systems built for this purpose are expensive, providing a barrier in institutes with limited funding, and therefore hampering progress. An assessment is made on whether a low cost compact camera with image stacking functionality can help expedite the digitization process in large museums or provide smaller institutes and amateur entomologists with the means to digitize their collections. Images of a professional setup were compared with the Olympus Stylus TG-4 Tough, a low-cost compact camera with internal focus stacking functions. Parameters considered include image quality, digitization speed, price, and ease-of-use. The compact camera’s image quality, although inferior to the professional setup, is exceptional considering its fourfold lower price point. Producing the image slices in the compact camera is a matter of seconds and when optimal image quality is less of a priority, the internal stacking function omits the need for dedicated stacking software altogether, further decreasing the cost and speeding up the process. In general, it is found that, aware of its limitations, this compact camera is capable of digitizing entomological collections with sufficient quality. As technology advances, more institutes and amateur entomologists will be able to easily and affordably catalogue their specimens. PMID:29134038
Davids, Mathias; Schad, Lothar R; Wald, Lawrence L; Guérin, Bastien
2016-10-01
To design short parallel transmission (pTx) pulses for excitation of arbitrary three-dimensional (3D) magnetization patterns. We propose a joint optimization of the pTx radiofrequency (RF) and gradient waveforms for excitation of arbitrary 3D magnetization patterns. Our optimization of the gradient waveforms is based on the parameterization of k-space trajectories (3D shells, stack-of-spirals, and cross) using a small number of shape parameters that are well-suited for optimization. The resulting trajectories are smooth and sample k-space efficiently with few turns while using the gradient system at maximum performance. Within each iteration of the k-space trajectory optimization, we solve a small tip angle least-squares RF pulse design problem. Our RF pulse optimization framework was evaluated both in Bloch simulations and experiments on a 7T scanner with eight transmit channels. Using an optimized 3D cross (shells) trajectory, we were able to excite a cube shape (brain shape) with 3.4% (6.2%) normalized root-mean-square error in less than 5 ms using eight pTx channels and a clinical gradient system (Gmax = 40 mT/m, Smax = 150 T/m/s). This compared with 4.7% (41.2%) error for the unoptimized 3D cross (shells) trajectory. Incorporation of B0 robustness in the pulse design significantly altered the k-space trajectory solutions. Our joint gradient and RF optimization approach yields excellent excitation of 3D cube and brain shapes in less than 5 ms, which can be used for reduced field of view imaging and fat suppression in spectroscopy by excitation of the brain only. Magn Reson Med 76:1170-1182, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottesfeld, S.
The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost,more » high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.« less
Current transmission and nonlinear effects in un-gated thermionic cathode RF guns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, J. P.; Harris, J. R.
Un-gated thermionic cathode RF guns are well known as a robust source of electrons for many accelerator applications. These sources are in principle scalable to high currents without degradation of the transverse emittance due to control grids but they are also known for being limited by back-bombardment. While back-bombardment presents a significant limitation, there is still a lack of general understanding on how emission over the whole RF period will affect the nature of the beams produced from these guns. In order to improve our understanding of how these guns can be used in general we develop analytical models thatmore » predict the transmission efficiency as a function of the design parameters, study how bunch compression and emission enhancement caused by Schottky barrier lowering affect the output current profile in the gun, and study the onset of space-charge limited effects and the resultant virtual cathode formation leading to a modulation in the output current distribution.« less
Comparison of Three Plasma Sources for Ambient Desorption/Ionization Mass Spectrometry
NASA Astrophysics Data System (ADS)
McKay, Kirsty; Salter, Tara L.; Bowfield, Andrew; Walsh, James L.; Gilmore, Ian S.; Bradley, James W.
2014-09-01
Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.
Comparison of three plasma sources for ambient desorption/ionization mass spectrometry.
McKay, Kirsty; Salter, Tara L; Bowfield, Andrew; Walsh, James L; Gilmore, Ian S; Bradley, James W
2014-09-01
Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.
Improved Drain Current Saturation and Voltage Gain in Graphene-on-Silicon Field Effect Transistors.
Song, Seung Min; Bong, Jae Hoon; Hwang, Wan Sik; Cho, Byung Jin
2016-05-04
Graphene devices for radio frequency (RF) applications are of great interest due to their excellent carrier mobility and saturation velocity. However, the insufficient current saturation in graphene field effect transistors (FETs) is a barrier preventing enhancements of the maximum oscillation frequency and voltage gain, both of which should be improved for RF transistors. Achieving a high output resistance is therefore a crucial step for graphene to be utilized in RF applications. In the present study, we report high output resistances and voltage gains in graphene-on-silicon (GoS) FETs. This is achieved by utilizing bare silicon as a supporting substrate without an insulating layer under the graphene. The GoSFETs exhibit a maximum output resistance of 2.5 MΩ∙μm, maximum intrinsic voltage gain of 28 dB, and maximum voltage gain of 9 dB. This method opens a new route to overcome the limitations of conventional graphene-on-insulator (GoI) FETs and subsequently brings graphene electronics closer to practical usage.
Time-Restricted Feeding Shifts the Skin Circadian Clock and Alters UVB-Induced DNA Damage.
Wang, Hong; van Spyk, Elyse; Liu, Qiang; Geyfman, Mikhail; Salmans, Michael L; Kumar, Vivek; Ihler, Alexander; Li, Ning; Takahashi, Joseph S; Andersen, Bogi
2017-08-01
The epidermis is a highly regenerative barrier protecting organisms from environmental insults, including UV radiation, the main cause of skin cancer and skin aging. Here, we show that time-restricted feeding (RF) shifts the phase and alters the amplitude of the skin circadian clock and affects the expression of approximately 10% of the skin transcriptome. Furthermore, a large number of skin-expressed genes are acutely regulated by food intake. Although the circadian clock is required for daily rhythms in DNA synthesis in epidermal progenitor cells, RF-induced shifts in clock phase do not alter the phase of DNA synthesis. However, RF alters both diurnal sensitivity to UVB-induced DNA damage and expression of the key DNA repair gene, Xpa. Together, our findings indicate regulation of skin function by time of feeding and emphasize a link between circadian rhythm, food intake, and skin health. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Analysis of high-k spacer on symmetric underlap DG-MOSFET with Gate Stack architecture
NASA Astrophysics Data System (ADS)
Das, Rahul; Chakraborty, Shramana; Dasgupta, Arpan; Dutta, Arka; Kundu, Atanu; Sarkar, Chandan K.
2016-09-01
This paper shows the systematic study of underlap double gate (U-DG) NMOSFETs with Gate Stack (GS) under the influence of high-k spacers. In highly scaled devices, underlap is used at the Source and Drain side so as to reduce the short channel effects (SCE's), however, it significantly reduces the on current due to the increased channel resistance. To overcome these drawbacks, the use of high-k spacers is projected as one of the remedies. In this paper, the analog performance of the devices is studied on the basis of parameters like transconductance (gm), transconductance generation factor (gm/Id) and intrinsic gain (gmro). The RF performance is analyzed on the merits of intrinsic capacitance (Cgd, Cgs), resistance (Rgd, Rgs), transport delay (τm), inductance (Lsd), cutoff frequency (fT), and the maximum frequency of oscillation (fmax). The circuit performance of the devices are studied by implementing the device as the driver MOSFET in a Single Stage Common Source Amplifier. The Gain Bandwidth Product (GBW) has been analyzed from the frequency response of the circuit.
An inductorless active mixer using stacked nMOS/pMOS configuration and LO shaping technique
NASA Astrophysics Data System (ADS)
Guo, Benqing; Chen, Jun; Wang, Xuebing; Chen, Hongpeng
2018-04-01
In this paper, a CMOS active down-conversion mixer is presented for wideband applications. Specifically, a LO generation chain is suggested to convert AC LO signal to shaped trapezoid burst, which reduces the sinusoidal LO power level requirement by the mixer. The current-reuse technique by stacked nMOS/pMOS architecture is used to save the power consumption of the circuit. Moreover, this complementary configuration is also employed to compensate second-order nonlinearity of the circuit. Implemented in a 0.18-μm CMOS process, post-simulations show that, driven by only ‑10 dBm sinusoidal LO signal, the proposed inductorless mixer provides a maximal conversion gain of 15.7 dB and a noise figure (NF) of 9.1-12 dB across RF input frequency range 0.5-1.6 GHz. The IIP3 and IP1dB of 3.5 dBm and ‑4.8 dBm are obtained, respectively. The mixer core only consumes 3.6 mW from a 1.8-V supply.
Fabrication and characterization of 8.87 THz schottky barrier mixer diodes for mixer
NASA Astrophysics Data System (ADS)
Wang, Wenjie; Li, Qian; An, Ning; Tong, Xiaodong; Zeng, Jianping
2018-04-01
In this paper we report on the fabrication and characterization of GaAs-based THz schottky barrier mixer diodes. Considering the analyzed results as well as fabrication cost and complexity, a group of trade-off parameters was determined. Electron-beam lithography and air-bridge technique have been used to obtain schottky diodes with a cut off frequency of 8.87 THz. Equivalent values of series resistance, ideal factor and junction capacitance of 10.2 (1) Ω, 1.14 (0.03) and 1.76(0.03) respectively have been measured for 0.7um diameter anode devices by DC and RF measurements. The schottky barrier diodes fabrication process is fully planar and very suitable for integration in THz frequency multiplier and mixer circuits. THz Schottky barrier diodes based on such technology with 2 μm diameter anodes have been tested at 1.6 THz in a sub-harmonic mixer.
Stories from the Stacks: Students Lost in the Labyrinth
ERIC Educational Resources Information Center
Schoonover, Dan; Kinsley, Kirsten M.
2014-01-01
Research shows that academic libraries can be difficult to navigate and that students are often frustrated with not being able to find the right materials. This current study attempts to identify access barriers in FSU's Strozier Library by assessing the effectiveness of signs and directories, as well as wayfinding patterns of both undergraduate…
Introzzi, Laura; Blomfeldt, Thomas O J; Trabattoni, Silvia; Tavazzi, Silvia; Santo, Nadia; Schiraldi, Alberto; Piergiovanni, Luciano; Farris, Stefano
2012-07-31
In this paper, the preparation and characterization of oxygen barrier pullulan sodium montmorillonite (Na(+)-MMT) nanocomposite coatings are presented for the first time. Full exfoliation of platelets during preparation of the coating water dispersions was mediated by ultrasonic treatment, which turned out to be a pivotal factor in the oxygen barrier performance of the final material even at high relative humidity (RH) conditions [oxygen permeability coefficients ~1.43 ± 0.39 and 258.05 ± 13.78 mL·μm·m(-2)·(24 h)(-1)·atm(-1) at 23 °C and 0% RH and 70% RH, respectively]. At the micro- and nanoscale, the reasons are discussed. The final morphology of the coatings revealed that clay lamellae were stacked on top of one another, probably due to the forced confinement of the platelets within the coating thickness after solvent evaporation. This was also confirmed by modeling the experimental oxygen permeability data with the well-known Nielsen and Cussler permeation theoretical models, which suggested a reasonable aspect ratio (α) of ~100. Electron microscopic analyses also disclosed a peculiar cell-like arrangement of the platelets. The stacking of the clay lamellae and the cell-like arrangement create the excellent oxygen barrier properties. Finally, we demonstrated that the slight haze increase in the bionanocomposite coating materials arising from the addition of the clays depends on the clay concentration but not so much on the sonication time, due to the balance of opposite effects after sonication (an increase in the number of scattering centers but a reduction in their size).
Planar doped barrier subharmonic mixers
NASA Technical Reports Server (NTRS)
Lee, T. H.; East, J. R.; Haddad, G. I.
1992-01-01
The Planar Doped Barrier (PDB) diode is a device consisting of a p(+) doping spike between two intrinsic layers and n(+) ohmic contacts. This device has the advantages of controllable barrier height, diode capacitance and forward to reverse current ratio. A symmetrically designed PDB has an anti-symmetric current vs. voltage characteristic and is ideal for use as millimeter wave subharmonic mixers. We have fabricated such devices with barrier heights of 0.3, 0.5 and 0.7 volts from GaAs and InGaAs using a multijunction honeycomb structure with junction diameters between one and ten microns. Initial RF measurements are encouraging. The 0.7 volt barrier height 4 micron GaAs devices were tested as subharmonic mixers at 202 GHz with an IF frequency of 1 GHz and had 18 dB of conversion loss. The estimated mismatch loss was 7 dB and was due to higher diode capacitance. The LO frequency was 100.5 GHz and the pump power was 8 mW.
Efficient barrier for charge injection in polyethylene by silver nanoparticles/plasma polymer stack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milliere, L.; Makasheva, K., E-mail: kremena.makasheva@laplace.univ-tlse.fr; Laurent, C.
2014-09-22
Charge injection from a metal/insulator contact is a process promoting the formation of space charge in polymeric insulation largely used in thick layers in high voltage equipment. The internal charge perturbs the field distribution and can lead to catastrophic failure either through its electrostatic effects or through energetic processes initiated under charge recombination and/or hot electrons effects. Injection is still ill-described in polymeric insulation due to the complexity of the contact between the polymer chains and the electrodes. Barrier heights derived from the metal work function and the polymer electronic affinity do not provide a good description of the measurementsmore » [Taleb et al., IEEE Trans. Dielectr. Electr. Insul. 20, 311–320 (2013)]. Considering the difficulty to describe the contact properties and the need to prevent charge injection in polymers for high voltage applications, we developed an alternative approach by tailoring the interface properties by the silver nanoparticles (AgNPs)/plasma polymer stack, deposited on the polymer film. Due to their small size, the AgNPs, covered by a very thin film of plasma polymer, act as deep traps for the injected charges thereby stabilizing the interface from the point of view of charge injection. After a quick description of the method for elaborating the nanostructured layer near the contact, it is demonstrated how the AgNPs/plasma polymer stack effectively prevents, in a spectacular way, the formation of bulk space charge.« less
NASA Astrophysics Data System (ADS)
Kim, Geun-Myeong; Oh, Young Jun; Chang, K. J.
2016-07-01
We perform first-principles density functional calculations to investigate the effects of Al incorporation on the p-type Schottky barrier height ≤ft({φ\\text{p}}\\right) and the effective work function for various high-k/metal gate stacks, such as TiN/HfO2 with interface Al impurities, Ti1-x Al x N/HfO2, and TiAl/TiN/HfO2. When Al atoms substitute for the interface Ti atoms at TiN/HfO2 interface, interface dipole fields become stronger, leading to the increase of {φ\\text{p}} and thereby the n-type shift of effective work function. In Ti1-x Al x N/HfO2 interface, {φ\\text{p}} linearly increases with the Al content, attributed to the presence of interface Al atoms. On the other hand, in TiAl/TiN/HfO2 interface, where Al is assumed not to segregate from TiAl to TiN, {φ\\text{p}} is nearly independent of the thickness of TiAl. Our results indicate that Al impurities at the metal/dielectric interface play an important role in controlling the effective work function, and provide a clue to understanding the n-type shift of the effective work function observed in TiAl/TiN/HfO2 gate stacks fabricated by using thegate-last process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao-Ying; Li, Chen-liang; Wu, Guo-Xun
The multi-scale simulation method is employed to investigate how defects affect the performances of Li-ion batteries (LIBs). The stable positions, binding energies and dynamics properties of Li impurity in Si with a 30° partial dislocation and stacking fault (SF) have been studied in comparison with the ideal crystal. It is found that the most table position is the tetrahedral (T{sub d}) site and the diffusion barrier is 0.63 eV in bulk Si. In the 30° partial dislocation core and SF region, the most stable positions are at the centers of the octagons (Oct-A and Oct-B) and pentahedron (site S), respectively. Inmore » addition, Li dopant may tend to congregate in these defects. The motion of Li along the dislocation core are carried out by the transport among the Oct-A (Oct-B) sites with the barrier of 1.93 eV (1.12 eV). In the SF region, the diffusion barrier of Li is 0.91 eV. These two types of defects may retard the fast migration of Li dopant that is finally trapped by them. Thus, the presence of the 30° partial dislocation and SF may deactivate the Li impurity and lead to low rate capability of LIB.« less
NASA Astrophysics Data System (ADS)
Mühlbacher, Marlene; Bochkarev, Anton S.; Mendez-Martin, Francisca; Sartory, Bernhard; Chitu, Livia; Popov, Maxim N.; Puschnig, Peter; Spitaler, Jürgen; Ding, Hong; Schalk, Nina; Lu, Jun; Hultman, Lars; Mitterer, Christian
2015-08-01
Dense single-crystal and polycrystalline TiN/Cu stacks were prepared by unbalanced DC magnetron sputter deposition at a substrate temperature of 700 °C and a pulsed bias potential of -100 V. The microstructural variation was achieved by using two different substrate materials, MgO(001) and thermally oxidized Si(001), respectively. Subsequently, the stacks were subjected to isothermal annealing treatments at 900 °C for 1 h in high vacuum to induce the diffusion of Cu into the TiN. The performance of the TiN diffusion barrier layers was evaluated by cross-sectional transmission electron microscopy in combination with energy-dispersive X-ray spectrometry mapping and atom probe tomography. No Cu penetration was evident in the single-crystal stack up to annealing temperatures of 900 °C, due to the low density of line and planar defects in single-crystal TiN. However, at higher annealing temperatures when diffusion becomes more prominent, density-functional theory calculations predict a stoichiometry-dependent atomic diffusion mechanism of Cu in bulk TiN, with Cu diffusing on the N sublattice for the experimental N/Ti ratio. In comparison, localized diffusion of Cu along grain boundaries in the columnar polycrystalline TiN barriers was detected after the annealing treatment. The maximum observed diffusion length was approximately 30 nm, yielding a grain boundary diffusion coefficient of the order of 10-16 cm2 s-1 at 900 °C. This is 10 to 100 times less than for comparable underdense polycrystalline TiN coatings deposited without external substrate heating or bias potential. The combined numerical and experimental approach presented in this paper enables the contrasting juxtaposition of diffusion phenomena and mechanisms in two TiN coatings, which differ from each other only in the presence of grain boundaries.
NASA Astrophysics Data System (ADS)
Banerjee, Pritha; Kumari, Tripty; Sarkar, Subir Kumar
2018-02-01
This paper presents the 2-D analytical modeling of a front high- K gate stack triple-material gate Schottky Barrier Silicon-On-Nothing MOSFET. Using the two-dimensional Poisson's equation and considering the popular parabolic potential approximation, expression for surface potential as well as the electric field has been considered. In addition, the response of the proposed device towards aggressive downscaling, that is, its extent of immunity towards the different short-channel effects, has also been considered in this work. The analytical results obtained have been validated using the simulated results obtained using ATLAS, a two-dimensional device simulator from SILVACO.
Performance enhancement in Sb doped Cu(InGa)Se2 thin film solar cell by e-beam evaporation
NASA Astrophysics Data System (ADS)
Chen, Jieyi; Shen, Honglie; Zhai, Zihao; Li, Yufang; Yi, Yunge
2018-03-01
To investigate the effects of Sb doping on the structural and electrical properties of Cu(InGa)Se2 (CIGS) thin films and solar cells, CIGS thin films, prepared by e-beam evaporation on soda-lime glass, were doped with lower and upper Sb layers in the precursor stacks respectively. Change of structure and introduction of stress were observed in the CIGS thin films with upper Sb layer in stack through XRD and Raman measurement. Both crystalline quality and compactness of CIGS thin films were improved by the doping of upper Sb layer in stack and the CIGS thin film showed an optimal structural property with 20 nm Sb layer. Movement of Fermi level of the surface of CIGS thin film after doping of upper Sb layer in stack and electrons transfer between Cu/Cu+ redox couple and CIGS thin films, which provided probability for the substitution of Sb for Cu sites at the surface of CIGS thin films, were proposed to explain the migration of Cu from the surface to the bulk of CIGS thin films. The larger barrier at the CIGS/CdS interface after doping of upper Sb layer in stack made contribution to the increase of VOC of CIGS solar cells. The efficiency of CIGS solar cell was improved from 3.3% to 7.2% after doping with 20 nm upper Sb. Compared to the CIGS solar cell with lower Sb layer in stack, in which an additional Cu2-xSe phase was found, the CIGS solar cell with upper Sb layer in stack possessed a higher efficiency.
Electronic Asymmetry by Compositionally Braking Inversion Symmetry
NASA Astrophysics Data System (ADS)
Warusawithana, Maitri
2005-03-01
By stacking molecular layers of 3 different perovskite titanate phases, BaTiO3, SrTiO3 and CaTiO3 with atomic layer control, we construct nanostructures where global inversion symmetry is broken. With the structures clamped to the substrate, the stacking order gives rise to asymmetric strain fields. The dielectric response show asymmetric field tuning consistent with the symmetry of the stacking order. By analyzing the temperature and frequency dependence of the complex dielectric constant, we show that the response comes from activated switching of dipoles between two asymmetric states separated by an energy barrier. We find the size of average dipole units from the temperature dependence of the linewidth of field tuning curves to be around 10 unit cells in all the different nanostructures we investigate. At low temperatures we observe a deviation from the kinetic response suggesting a further growth in correlations. Pyrocurrent measurements confirm this observation indicating a phase transition to a ferro-like state. We explain the high temperature dipoles as single unit cell cross sectional columns correlated via the strain fields in the stacking direction, with the height somewhat short of the film thickness possibly due to some form of weak disorder.
Electrically tunable g factors in quantum dot molecular spin states.
Doty, M F; Scheibner, M; Ponomarev, I V; Stinaff, E A; Bracker, A S; Korenev, V L; Reinecke, T L; Gammon, D
2006-11-10
We present a magnetophotoluminescence study of individual vertically stacked InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied electric field tunes the relative energies of the two dots, we observe a strong resonant increase or decrease in the g factors of different spin states that have molecular wave functions distributed over both quantum dots. We propose a phenomenological model for the change in g factor based on resonant changes in the amplitude of the wave function in the barrier due to the formation of bonding and antibonding orbitals.
Electrically Tunable g Factors in Quantum Dot Molecular Spin States
NASA Astrophysics Data System (ADS)
Doty, M. F.; Scheibner, M.; Ponomarev, I. V.; Stinaff, E. A.; Bracker, A. S.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.
2006-11-01
We present a magnetophotoluminescence study of individual vertically stacked InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied electric field tunes the relative energies of the two dots, we observe a strong resonant increase or decrease in the g factors of different spin states that have molecular wave functions distributed over both quantum dots. We propose a phenomenological model for the change in g factor based on resonant changes in the amplitude of the wave function in the barrier due to the formation of bonding and antibonding orbitals.
Silicon oxide permeation barrier coating of PET bottles and foils
NASA Astrophysics Data System (ADS)
Steves, Simon; Deilmann, Michael; Awakowicz, Peter
2009-10-01
Modern packaging materials such as polyethylene terephthalate (PET) have displaced established materials in many areas of food and beverage packaging. Plastic packing materials offer are various advantages concerning production and handling. PET bottles for instance are non-breakable and lightweight compared to glass and metal containers. However, PET offers poor barrier properties against gas permeation. Therefore, the shelf live of packaged food is reduced. Permeation of gases can be reduced by depositing transparent plasma polymerized silicon oxide (SiOx) barrier coatings. A microwave (2.45 GHz) driven low pressure plasma reactor is developed based on a modified Plasmaline antenna to treat PET foils or bottles. To increase the barrier properties of the coatings furthermore a RF substrate bias (13.56 MHz) is applied. The composition of the coatings is analyzed by means of Fourier transform infrared (FTIR) spectroscopy regarding carbon and hydrogen content. Influence of gas phase composition and substrate bias on chemical composition of the coatings is discussed. A strong relation between barrier properties and film composition is found: good oxygen barriers are observed as carbon content is reduced and films become quartz-like. Regarding oxygen permeation a barrier improvement factor (BIF) of 70 is achieved.
Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier
Forrest, Stephen R.; Wei, Guodan
2010-07-06
A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.
Clustering on Magnesium Surfaces - Formation and Diffusion Energies.
Chu, Haijian; Huang, Hanchen; Wang, Jian
2017-07-12
The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and [Formula: see text]. In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a [Formula: see text], clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface [Formula: see text] is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich-Schwoebel barriers converge as the step height is three atomic layers or thicker. Adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.
Generalized stacking fault energies of alloys.
Li, Wei; Lu, Song; Hu, Qing-Miao; Kwon, Se Kyun; Johansson, Börje; Vitos, Levente
2014-07-02
The generalized stacking fault energy (γ surface) provides fundamental physics for understanding the plastic deformation mechanisms. Using the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation, we calculate the γ surface for the disordered Cu-Al, Cu-Zn, Cu-Ga, Cu-Ni, Pd-Ag and Pd-Au alloys. Studying the effect of segregation of the solute to the stacking fault planes shows that only the local chemical composition affects the γ surface. The calculated alloying trends are discussed using the electronic band structure of the base and distorted alloys.Based on our γ surface results, we demonstrate that the previous revealed 'universal scaling law' between the intrinsic energy barriers (IEBs) is well obeyed in random solid solutions. This greatly simplifies the calculations of the twinning measure parameters or the critical twinning stress. Adopting two twinnability measure parameters derived from the IEBs, we find that in binary Cu alloys, Al, Zn and Ga increase the twinnability, while Ni decreases it. Aluminum and gallium yield similar effects on the twinnability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aihara, Taketo; Fukuyama, Atsuhiko; Ikari, Tetsuo
2015-02-28
Three non-destructive methodologies, namely, surface photovoltage (SPV), photoluminescence, and piezoelectric photothermal (PPT) spectroscopies, were adopted to detect the thermal carrier escape from quantum well (QW) and radiative and non-radiative carrier recombinations, respectively, in strain-balanced InGaAs/GaAsP multiple-quantum-well (MQW)-inserted GaAs p-i-n solar cell structure samples. Although the optical absorbance signal intensity was proportional to the number of QW stack, the signal intensities of the SPV and PPT methods decreased at high number of stack. To explain the temperature dependency of these signal intensities, we proposed a model that considers the three carrier dynamics: the thermal escape from the QW, and the non-radiativemore » and radiative carrier recombinations within the QW. From the fitting procedures, it was estimated that the activation energies of the thermal escape ΔE{sub barr} and non-radiative recombination ΔE{sub NR} were 68 and 29 meV, respectively, for a 30-stacked MQW sample. The estimated ΔE{sub barr} value agreed well with the difference between the first electron subband and the top of the potential barrier in the conduction band. We found that ΔE{sub barr} remained constant at approximately 70 meV even with increasing QW stack number. However, the ΔE{sub NR} value monotonically increased with the increase in the number of stack. Since this implies that non-radiative recombination becomes improbable as the number of stack increases, we found that the radiative recombination probability for electrons photoexcited within the QW increased at a large number of QW stack. Additional processes of escaping and recapturing of carriers at neighboring QW were discussed. As a result, the combination of the three non-destructive methodologies provided us new insights for optimizing the MQW components to further improve the cell performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, Praloy; Das, Debajyoti, E-mail: erdd@iacs.res.in
2016-05-23
Growth and optimization of the boron dopednanocrystalline silicon (nc-Si) films have been studied by varyingthe gaspressure applied to the hydrogendiluted silane plasma in RF (13.56 MHz) plasma-enhanced chemical vapor deposition (PECVD) system, using diborane (B{sub 2}H{sub 6}) as the dopant gas. High magnitudeof electrical conductivity (~10{sup 2} S cm{sup −1}) and<220>orientedcrystallographic lattice planes have been obtained with high crystalline volume fraction (~86 %) at an optimum pressure of 2.5 Torr. XRD and Raman studies reveal good crystallinity with preferred orientation, suitable for applications in stacked layer devices, particularly in nc–Si solar cells.
Overview of the High Performance Antiproton Trap (HiPAT) Experiment
NASA Technical Reports Server (NTRS)
Martin, James; Chakrabarti, Suman; Pearson, Boise; Sims, W. Herbert; Lewis, Raymond; Fant, Wallace; Rodgers, Stephen (Technical Monitor)
2002-01-01
A general overview of the High Performance Antiproton Trap (HiPAT) Experiment is presented. The topics include: 1) Why Antimatter? 2) HiPAT Applicability; 3) Approach-Goals; 4) HiPAT General Layout; 5) Sizing For Containment; 6) Laboratory Operations; 7) Vacuum System Cleaning; 8) Ion Production Via Electron Gun; 9) Particle Capture Via Ion Sources; 10) Ion Beam Steering/Focusing; 11) Ideal Ion Stacking Sequence; 12) Setup For Dynamic Capture; 13) Dynamic Capture of H(+) Ions; 14) Dynamic Capture; 15) Radio Frequency Particle Detection; 16) Radio Frequency Antenna Modeling; and 17) R.F. Stabilization-Low Frequencies. A short presentation of propulsion applications of Antimatter is also given. This paper is in viewgraph form.
Baggetto, Loic; Charvillat, Cedric; Thebault, Yannick; ...
2015-12-02
Ti/Al 2O 3 bilayer stacks are used as model systems to investigate the role of atomic layer deposition (ALD) and chemical vapor deposition (CVD) to prepare 30-180 nm thick amorphous alumina films as protective barriers for the medium temperature oxidation (500-600⁰C) of titanium, which is employed in aeronautic applications. X-ray diffraction (XRD), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), and X-ray photoelectron spectroscopy (XPS) results show that the films produced from the direct liquid injection (DLI) CVD of aluminum tri-isopropoxide (ATI) are poor oxygen barriers. The films processed using the ALD of trimethylaluminum (TMA) show good barriermore » properties but an extensive intermixing with Ti which subsequently oxidizes. In contrast, the films prepared from dimethyl aluminum isopropoxide (DMAI) by CVD are excellent oxygen barriers and show little intermixing with Ti. Overall, these measurements correlate the effect of the alumina coating thickness, morphology, and stoichiometry resulting from the preparation method to the oxidation barrier properties, and show that compact and stoichiometric amorphous alumina films offer superior barrier properties.« less
Two-dimensional layered semiconductor/graphene heterostructures for solar photovoltaic applications.
Shanmugam, Mariyappan; Jacobs-Gedrim, Robin; Song, Eui Sang; Yu, Bin
2014-11-07
Schottky barriers formed by graphene (monolayer, bilayer, and multilayer) on 2D layered semiconductor tungsten disulfide (WS2) nanosheets are explored for solar energy harvesting. The characteristics of the graphene-WS2 Schottky junction vary significantly with the number of graphene layers on WS2, resulting in differences in solar cell performance. Compared with monolayer or stacked bilayer graphene, multilayer graphene helps in achieving improved solar cell performance due to superior electrical conductivity. The all-layered-material Schottky barrier solar cell employing WS2 as a photoactive semiconductor exhibits efficient photon absorption in the visible spectral range, yielding 3.3% photoelectric conversion efficiency with multilayer graphene as the Schottky contact. Carrier transport at the graphene/WS2 interface and the interfacial recombination process in the Schottky barrier solar cells are examined.
NASA Astrophysics Data System (ADS)
Murugapandiyan, P.; Ravimaran, S.; William, J.
2017-08-01
The DC and RF performance of 30 nm gate length enhancement mode (E-mode) InAlN/AlN/GaN high electron mobility transistor (HEMT) on SiC substrate with heavily doped source and drain region have been investigated using the Synopsys TCAD tool. The proposed device has the features of a recessed T-gate structure, InGaN back barrier and Al2O3 passivated device surface. The proposed HEMT exhibits a maximum drain current density of 2.1 A/mm, transconductance {g}{{m}} of 1050 mS/mm, current gain cut-off frequency {f}{{t}} of 350 GHz and power gain cut-off frequency {f}\\max of 340 GHz. At room temperature the measured carrier mobility (μ), sheet charge carrier density ({n}{{s}}) and breakdown voltage are 1580 cm2/(V \\cdot s), 1.9× {10}13 {{cm}}-2, and 10.7 V respectively. The superlatives of the proposed HEMTs are bewitching competitor or future sub-millimeter wave high power RF VLSI circuit applications.
Effects of BOX engineering on analogue/RF and circuit performance of InGaAs-OI-Si MOSFET
NASA Astrophysics Data System (ADS)
Maity, Subir Kr.; Pandit, Soumya
2017-11-01
InGaAs is an attractive choice as alternate channel material in n-channel metal oxide semiconductor transistor for high-performance applications. However, electrostatic integrity of such device is poor. In this paper, we present a comprehensive technology computer-aided design simulation-based study of the effect of scaling the thickness of the buried oxide (BOX) region and varying the dielectric constant of BOX material on the electrostatic integrity, analogue/radio frequency (RF) performance and circuit performance of InGaAs-on-Insulator device. Device with thin BOX layer gives better drain-induced barrier lowering performance which enhances output resistance. The carrier mobility remains almost constant with thinning of BOX layer up to certain value. By lowering the dielectric constant of the BOX material, it is further possible to improve the analogue and RF performance. Effect of BOX thickness scaling and role of BOX dielectric material on gain-frequency response of common source amplifier is also studied. It is observed that frequency response of the amplifier improves for thin BOX and with low dielectric constant-based material.
Improved Drain Current Saturation and Voltage Gain in Graphene–on–Silicon Field Effect Transistors
Song, Seung Min; Bong, Jae Hoon; Hwang, Wan Sik; Cho, Byung Jin
2016-01-01
Graphene devices for radio frequency (RF) applications are of great interest due to their excellent carrier mobility and saturation velocity. However, the insufficient current saturation in graphene field effect transistors (FETs) is a barrier preventing enhancements of the maximum oscillation frequency and voltage gain, both of which should be improved for RF transistors. Achieving a high output resistance is therefore a crucial step for graphene to be utilized in RF applications. In the present study, we report high output resistances and voltage gains in graphene-on-silicon (GoS) FETs. This is achieved by utilizing bare silicon as a supporting substrate without an insulating layer under the graphene. The GoSFETs exhibit a maximum output resistance of 2.5 MΩ∙μm, maximum intrinsic voltage gain of 28 dB, and maximum voltage gain of 9 dB. This method opens a new route to overcome the limitations of conventional graphene-on-insulator (GoI) FETs and subsequently brings graphene electronics closer to practical usage. PMID:27142861
Chen, Kai-Huang; Tsai, Tsung-Ming; Cheng, Chien-Min; Huang, Shou-Jen; Chang, Kuan-Chang; Liang, Shu-Ping; Young, Tai-Fa
2017-01-01
In this study, the hopping conduction distance and bipolar switching properties of the Gd:SiOx thin film by (radio frequency, rf) rf sputtering technology for applications in RRAM devices were calculated and investigated. To discuss and verify the electrical switching mechanism in various different constant compliance currents, the typical current versus applied voltage (I-V) characteristics of gadolinium oxide RRAM devices was transferred and fitted. Finally, the transmission electrons’ switching behavior between the TiN bottom electrode and Pt top electrode in the initial metallic filament forming process of the gadolinium oxide thin film RRAM devices for low resistance state (LRS)/high resistance state (HRS) was described and explained in a simulated physical diagram model. PMID:29283368
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnabel, Manuel; Tamboli, Adele C; Warren, Emily L
Despite steady advancements in the efficiency of crystalline Silicon (c-Si) photovoltaics (PV) within the last decades, the theoretical efficiency limit of 29.4 percent depicts an insurmountable barrier for silicon-based single-junction solar cells. Combining the Si cell with a second absorber material on top in a dual junction tandem or triple junction solar cell is an attractive option to surpass this limit significantly. We demonstrate a mechanically stacked GaInP/Si dual-junction cell with an in-house measured efficiency of 31.5 percent and a GaInP/GaAs/Si triple-junction cell with a certified efficiency of 35.4 percent.
Ion-induced crystal damage during plasma-assisted MBE growth of GaN layers
NASA Astrophysics Data System (ADS)
Kirchner, V.; Heinke, H.; Birkle, U.; Einfeldt, S.; Hommel, D.; Selke, H.; Ryder, P. L.
1998-12-01
Gallium nitride layers were grown by plasma-assisted molecular-beam epitaxy on (0001)-oriented sapphire substrates using an electron cyclotron resonance (ECR) and a radio frequency (rf) plasma source. An applied substrate bias was varied from -200 to +250 V, resulting in a change of the density and energy of nitrogen ions impinging the growth surface. The layers were investigated by high-resolution x-ray diffractometry and high-resolution transmission electron microscopy (HRTEM). Applying a negative bias during growth has a marked detrimental effect on the crystal perfection of the layers grown with an ECR plasma source. This is indicated by a change in shape and width of (0002) and (202¯5) reciprocal lattice points as monitored by triple axis x-ray measurements. In HRTEM images, isolated basal plane stacking faults were found, which probably result from precipitation of interstitial atoms. The crystal damage in layers grown with a highly negative substrate bias is comparable to that observed for ion implantation processes at orders of magnitude larger ion energies. This is attributed to the impact of ions on the growing surface. None of the described phenomena was observed for the samples grown with the rf plasma source.
Peterka, Tom; Kooima, Robert L; Sandin, Daniel J; Johnson, Andrew; Leigh, Jason; DeFanti, Thomas A
2008-01-01
A solid-state dynamic parallax barrier autostereoscopic display mitigates some of the restrictions present in static barrier systems, such as fixed view-distance range, slow response to head movements, and fixed stereo operating mode. By dynamically varying barrier parameters in real time, viewers may move closer to the display and move faster laterally than with a static barrier system, and the display can switch between 3D and 2D modes by disabling the barrier on a per-pixel basis. Moreover, Dynallax can output four independent eye channels when two viewers are present, and both head-tracked viewers receive an independent pair of left-eye and right-eye perspective views based on their position in 3D space. The display device is constructed by using a dual-stacked LCD monitor where a dynamic barrier is rendered on the front display and a modulated virtual environment composed of two or four channels is rendered on the rear display. Dynallax was recently demonstrated in a small-scale head-tracked prototype system. This paper summarizes the concepts presented earlier, extends the discussion of various topics, and presents recent improvements to the system.
NASA Astrophysics Data System (ADS)
Kim, Tae Kyoung; Yoon, Yeo Jin; Oh, Seung Kyu; Lee, Yu Lim; Cha, Yu-Jung; Kwak, Joon Seop
2018-02-01
The dependence of the electrical and optical properties of radio frequency (RF) superimposed direct current (DC) sputtered-indium tin oxide (ITO) on the tin oxide (Sn2O3) content of the ITO is investigated, in order to elucidate an ohmic contact mechanism for the sputtered-ITO transparent electrodes on p-type gallium nitride (p-GaN). Contact resistivity of the RF superimposed DC sputtered-ITO on p-GaN in LEDs decreased when Sn2O3 content was increased from 3 wt% to 7 wt% because of the reduced sheet resistance of the sputtered-ITO with the increasing Sn2O3 content. Further increases in Sn2O3 content from 7 wt% to 15 wt% resulted in deterioration of the contact resistivity, which can be attributed to reduction of the work function of the ITO with increasing Sn2O3 content, followed by increasing Schottky barrier height at the sputtered ITO/p-GaN interface. Temperature-dependent contact resistivity of the sputtered-ITO on p-GaN also revealed that the ITO contacts with 7 wt% Sn2O3 yielded the lowest effective barrier height of 0.039 eV. Based on these results, we devised sputtered-ITO transparent p-electrodes having dual compositions of Sn2O3 content (7/10 wt%). The radiant intensity of LEDs having sputtered-ITO transparent p-electrodes with the dual compositions (7/10 wt%) was enhanced by 13% compared to LEDs having ITO with Sn2O3 content of 7 wt% only.
NASA Astrophysics Data System (ADS)
Mitschker, F.; Wißing, J.; Hoppe, Ch; de los Arcos, T.; Grundmeier, G.; Awakowicz, P.
2018-04-01
The respective effect of average incorporated ion energy and impinging atomic oxygen flux on the deposition of silicon oxide (SiO x ) barrier coatings for polymers is studied in a microwave driven low pressure discharge with additional variable RF bias. Under consideration of plasma parameters, bias voltage, film density, chemical composition and particle fluxes, both are determined relative to the effective flux of Si atoms contributing to film growth. Subsequently, a correlation with barrier performance and chemical structure is achieved by measuring the oxygen transmission rate (OTR) and by performing x-ray photoelectron spectroscopy. It is observed that an increase in incorporated energy to 160 eV per deposited Si atom result in an enhanced cross-linking of the SiO x network and, therefore, an improved barrier performance by almost two orders of magnitude. Furthermore, independently increasing the number of oxygen atoms to 10 500 per deposited Si atom also lead to a comparable barrier improvement by an enhanced cross-linking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafari Salim, A., E-mail: ajafaris@uwaterloo.ca; Eftekharian, A.; University of Waterloo, Waterloo, Ontario N2L 3G1
In this paper, we theoretically show that a multi-layer superconducting nanowire single-photon detector (SNSPD) is capable of approaching characteristics of an ideal SNSPD in terms of the quantum efficiency, dark count, and band-width. A multi-layer structure improves the performance in two ways. First, the potential barrier for thermally activated vortex crossing, which is the major source of dark counts and the reduction of the critical current in SNSPDs is elevated. In a multi-layer SNSPD, a vortex is made of 2D-pancake vortices that form a stack. It will be shown that the stack of pancake vortices effectively experiences a larger potentialmore » barrier compared to a vortex in a single-layer SNSPD. This leads to an increase in the experimental critical current as well as significant decrease in the dark count rate. In consequence, an increase in the quantum efficiency for photons of the same energy or an increase in the sensitivity to photons of lower energy is achieved. Second, a multi-layer structure improves the efficiency of single-photon absorption by increasing the effective optical thickness without compromising the single-photon sensitivity.« less
Mousa, Walaa K; Shearer, Charles; Limay-Rios, Victor; Ettinger, Cassie L; Eisen, Jonathan A; Raizada, Manish N
2016-09-26
The ancient African crop, finger millet, has broad resistance to pathogens including the toxigenic fungus Fusarium graminearum. Here, we report the discovery of a novel plant defence mechanism resulting from an unusual symbiosis between finger millet and a root-inhabiting bacterial endophyte, M6 (Enterobacter sp.). Seed-coated M6 swarms towards root-invading Fusarium and is associated with the growth of root hairs, which then bend parallel to the root axis, subsequently forming biofilm-mediated microcolonies, resulting in a remarkable, multilayer root-hair endophyte stack (RHESt). The RHESt results in a physical barrier that prevents entry and/or traps F. graminearum, which is then killed. M6 thus creates its own specialized killing microhabitat. Tn5-mutagenesis shows that M6 killing requires c-di-GMP-dependent signalling, diverse fungicides and resistance to a Fusarium-derived antibiotic. Further molecular evidence suggests long-term host-endophyte-pathogen co-evolution. The end result of this remarkable symbiosis is reduced deoxynivalenol mycotoxin, potentially benefiting millions of subsistence farmers and livestock. Further results suggest that the anti-Fusarium activity of M6 may be transferable to maize and wheat. RHESt demonstrates the value of exploring ancient, orphan crop microbiomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capriotti, M., E-mail: mattia.capriotti@tuwien.ac.at; Alexewicz, A.; Fleury, C.
2014-03-17
Using a generalized extraction method, the fixed charge density N{sub int} at the interface between in situ deposited SiN and 5 nm thick AlGaN barrier is evaluated by measurements of threshold voltage V{sub th} of an AlGaN/GaN metal insulator semiconductor high electron mobility transistor as a function of SiN thickness. The thickness of the originally deposited 50 nm thick SiN layer is reduced by dry etching. The extracted N{sub int} is in the order of the AlGaN polarization charge density. The total removal of the in situ SiN cap leads to a complete depletion of the channel region resulting in V{sub th} = +1 V.more » Fabrication of a gate stack with Al{sub 2}O{sub 3} as a second cap layer, deposited on top of the in situ SiN, is not introducing additional fixed charges at the SiN/Al{sub 2}O{sub 3} interface.« less
From underplating to delamination-retreat in the northern Apennines
NASA Astrophysics Data System (ADS)
Chiarabba, C.; Giacomuzzi, G.; Bianchi, I.; Agostinetti, N. P.; Park, J.
2014-10-01
Recordings of teleseismic earthquakes from a dense set of temporary and permanent broadband seismic stations reveal the lithospheric structure of the northern Apennines and support the scenario of a retreating detachment within the mid-crust. Lithospheric delamination appears crucial to the formation and evolution of the Apennines orogen. Receiver-function (RF) stacks outline a continuous west-dipping Ps converted phase from a positive velocity jump that we interpret as the top of the lower crust and mantle of the Adria continental lithosphere, which is descending into the shallow mantle. The correlation of seismicity with two RF profiles across the northern Apennines suggests distinct stages of lithospheric delamination. Active penetration of the detachment into the Adria lithosphere seems evident in the south/east, with induced shallow-mantle flow facilitated by slab dehydration. Penetration of the detachment in the north/west seems to have arrested, and is possibly marked by crustal underplating. This layer atop the Apennines slab is visible only down to 80 km depth and suspends above an oppositely-dipping paired positive/negative Ps converted phase in stacked receiver functions. The break in the west-dipping Adria lithosphere conflicts with a westward-subduction scenario continuous from the Oligocene. Lateral changes of deep structure and seismicity along the northern Apennines suggest that underplating of crustal material and delamination-retreat are distinct mechanisms active today in the western and eastern sectors, respectively, of the northern Apennines. Negative Ps-pulses at 100-120 km depth help to define a seismic lithosphere-asthenosphere boundary (LAB), but cross-cut a volume of high-velocity mantle rock, as inferred from tomographic models. We hypothesize that this seismic LAB is a rheological discontinuity that affects the frequency band of seismic body waves, but not the long-term viscous response that governs the evolution and eventual detachment of the continental slab.
Practical Considerations of Moisture in Baled Biomass Feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
William A. Smith; Ian J. Bonner; Kevin L. Kenney
2013-01-01
Agricultural residues make up a large portion of the immediately available biomass feedstock for renewable energy markets. Current collection and storage methods rely on existing feed and forage practices designed to preserve nutrients and properties of digestibility. Low-cost collection and storage practices that preserve carbohydrates across a range of inbound moisture contents are needed to assure the economic and technical success of the emerging biomass industry. This study examines the movement of moisture in storage and identifies patterns of migration resulting from several on-farm storage systems and their impacts on moisture measurement and dry matter recovery. Baled corn stover andmore » energy sorghum were stored outdoors in uncovered, tarp-covered, or wrapped stacks and sampled periodically to measure moisture and dry matter losses. Interpolation between discrete sampling locations in the stack improved bulk moisture content estimates and showed clear patterns of accumulation and re-deposition. Atmospheric exposure, orientation, and contact with barriers (i.e., soil, tarp, and wrap surfaces) were found to cause the greatest amount of moisture heterogeneity within stacks. Although the bulk moisture content of many stacks remained in the range suitable for aerobic stability, regions of high moisture were sufficient to support microbial activity, thus support dry matter loss. Stack configuration, orientation, and coverage methods are discussed relative to impact on moisture management and dry matter preservation. Additionally, sample collection and data analysis are discussed relative to assessment at the biorefinery as it pertains to stability in storage, queuing, and moisture carried into processing.« less
Method and tool to reverse the charges in anti-reflection films used for solar cell applications
Sharma, Vivek; Tracy, Clarence
2017-01-31
A method is provided for making a solar cell. The method includes providing a stack including a substrate, a barrier layer disposed on the substrate, and an anti-reflective layer disposed on the barrier layer, where the anti-reflective layer has charge centers. The method also includes generating a corona with a charging tool and contacting the anti-reflective layer with the corona thereby injecting charge into at least some of the charge centers in the anti-reflective layer. Ultra-violet illumination and temperature-based annealing may be used to modify the charge of the anti-reflective layer.
Summary of Uranium Solubility Studies in Concrete Waste Forms and Vadose Zone Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovich, Elizabeth C.; Wellman, Dawn M.; Serne, R. Jeffrey
2011-09-30
One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to havemore » a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. This report presents the results of investigations elucidating the uranium mineral phases controlling the long-term fate of uranium within concrete waste forms and the solubility of these phases in concrete pore waters and alkaline, circum-neutral vadose zone environments.« less
NASA Astrophysics Data System (ADS)
Menzler, Norbert H.; Sebold, Doris; Guillon, Olivier
2018-01-01
A four-layer solid oxide fuel cell stack with planar anode-supported cells was operated galvanostatically at 700 °C and 0.5Acm-2 for nearly 35,000 h. One of the four planes started to degrade more rapidly after ∼28,000 h and finally more progressively after ∼33,000 h. The stack was then shut down and a post-test analysis was carefully performed. The cell was characterized with respect to cathodic impurities and clarification of the reason(s) for failure. Wet chemical analysis revealed very low chromium incorporation into the cathode. However, SEM and TEM observations on polished and fractured surfaces showed catastrophic failure in the degraded layer. The cathode-barrier-electrolyte cell layer system delaminated from the entire cell over large areas. The source of delamination was the formation of a porous, sponge-like secondary phase consisting of zirconia, yttria and manganese (oxide). Large secondary phase islands grew from the electrolyte-anode interface towards the anode and cracked the bonding between both layers. The manganese originated from the contact or protection layers used on the air side. This stack result shows that volatile species - in this case manganese - should be avoided, especially when long-term applications are envisaged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutic, S; Low, D; Chmielewski, T
Purpose: To describe the design and characteristics of a novel linac-based MRI guided radiation therapy system that addresses RF and magnetic field interference and that can be housed in conventional radiotherapy vaults. Methods: The MR-IGRT system will provide simultaneous MR imaging combined with both simple (3D) and complex (IMRT, SBRT, SRS) techniques. The system is a combination of a) double-donut split solenoidal superconducting 0.345T MRI; and b) a 90 cm isocenter ring-gantry mounted 6MV, flattening filter-free linac coupled with a stacked doubly-focused multileaf collimator with 4 mm resolution. A novel RF shielding and absorption technology was developed to isolate themore » beam generating RF emissions from the MR, while a novel magnetic shielding sleeve system was developed to place the magnetic field-sensitive components in low-magnetic field regions. The system design produces high spatial resolution radiation beams with state-of-the art radiation dose characteristics and simultaneous MR imaging. Results: Prototype testing with a spectrum analyzer has demonstrated complete elimination of linac RF inside the treatment room. The magnetic field inside of the magnetic shielding was well below the specification, allowing the linear accelerator to operate normally. A novel on-gantry shimming system maintained < 25 ppm magnetic field homogeneity over a 45 cm spherical field of view for all gantry angles. Conclusion: The system design demonstrates the feasibility coupling a state-of-the art linac system with a 0.345T MRI, enabling highly conformal radiation therapy with simultaneous MR image guidance. S. Mutic’s employer (Washington University) has grant with ViewRay; D. Low is former ViewRay scientific advisory board member (ended October 2015); T. Chmielewski, G. Fought, M. Hernandez, I. Kawrakow, A. Sharma, S. Shvartsman, J. Dempsey are employees of ViewRay with stock options (Dempsey has leadership role and Dempsey/Kawrakow have stock).« less
Gold-based thin multilayers for ohmic contacts in RF-MEMS switches
NASA Astrophysics Data System (ADS)
Mulloni, V.; Iannacci, J.; Bartali, R.; Micheli, V.; Colpo, S.; Laidani, N.; Margesin, B.
2011-06-01
In RF-MEMS switches many reliability issues are related to the metal contacts in the switching area. The characteristics of this contact influence not only contact resistance and insertion loss, but also the most relevant switch failure mechanisms that are wear of ohmic contact, adhesion and stiction. Gold is widely used for this purpose because of its good conductivity and chemical inertness, but is a soft metal, and the development of hard contact materials with low resistivity is of great interest for RF-MEMS switch reliability. It is possible to increase the contact hardness preserving the convenient gold properties alternating gold layers with thin layers of different metals. The material becomes harder not only by simple alloying but also by the presence of interfaces which act as barriers for mechanical dislocation migration. A detailed study of mechanical, electrical and morphological properties of gold-chromium, gold-platinum and gold-palladium multilayers is presented and discussed. It is found that the annealing treatments are important for tuning hardness values, and a careful choice of the alloying metal is essential when the material is inserted in a real switch fabrication cycle, because hardness improvements can vanish during oxygen plasma treatments usually involved in RF-switches fabrication. Platinum is the only metal tested that is unaffected by oxidation, and also modifies the chromium adhesion layer diffusion on the contact surface.
Quantitative rotating frame relaxometry methods in MRI.
Gilani, Irtiza Ali; Sepponen, Raimo
2016-06-01
Macromolecular degeneration and biochemical changes in tissue can be quantified using rotating frame relaxometry in MRI. It has been shown in several studies that the rotating frame longitudinal relaxation rate constant (R1ρ ) and the rotating frame transverse relaxation rate constant (R2ρ ) are sensitive biomarkers of phenomena at the cellular level. In this comprehensive review, existing MRI methods for probing the biophysical mechanisms that affect the rotating frame relaxation rates of the tissue (i.e. R1ρ and R2ρ ) are presented. Long acquisition times and high radiofrequency (RF) energy deposition into tissue during the process of spin-locking in rotating frame relaxometry are the major barriers to the establishment of these relaxation contrasts at high magnetic fields. Therefore, clinical applications of R1ρ and R2ρ MRI using on- or off-resonance RF excitation methods remain challenging. Accordingly, this review describes the theoretical and experimental approaches to the design of hard RF pulse cluster- and adiabatic RF pulse-based excitation schemes for accurate and precise measurements of R1ρ and R2ρ . The merits and drawbacks of different MRI acquisition strategies for quantitative relaxation rate measurement in the rotating frame regime are reviewed. In addition, this review summarizes current clinical applications of rotating frame MRI sequences. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Experimental and simulational result multipactors in 112 MHz QWR injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, T.; Ben-Zvi, I.; Belomestnykh, S.
2015-05-03
The first RF commissioning of 112 MHz QWR superconducting electron gun was done in late 2014. The coaxial Fundamental Power Coupler (FPC) and Cathode Stalk (stalk) were installed and tested for the first time. During this experiment, we observed several multipacting barriers at different gun voltage levels. The simulation work was done within the same range. The comparison between the experimental observation and the simulation results are presented in this paper. The observations during the test are consisted with the simulation predictions. We were able to overcome most of the multipacting barriers and reach 1.8 MV gun voltage under pulsedmore » mode after several round of conditioning processes.« less
2005 6th Annual Science and Engineering Technology Conference
2005-04-21
BioFAC VBAIDS Hybrid: PCR/Immuno Fast PCR Fast Immunoassay Mass Spec (Pyrolysis) SIBS UV -LIF IR Fluorochrome Charge Detect. BioCADS Trigger Advanced...Weights Beam forming Signal Processing mapped to GPU architecture Vector Processor STAP (STAP-BOY) GaN High Frequency Transistor (WBG-RF) UV Laser...Service anti- counterfeiting • Embedded security strips Technology Limitations and Barriers • Training and cost (training intensive) Land Borders North Land
Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.
2007-03-06
A method of measuring a parameter of a landfill including a cap, without passing wires through the cap, includes burying a sensor apparatus in the landfill prior to closing the landfill with the cap; providing a reader capable of communicating with the sensor apparatus via radio frequency (RF); placing an antenna above the barrier, spaced apart from the sensor apparatus; coupling the antenna to the reader either before or after placing the antenna above the barrier; providing power to the sensor apparatus, via the antenna, by generating a field using the reader; accumulating and storing power in the sensor apparatus; sensing a parameter of the landfill using the sensor apparatus while using power; and transmitting the sensed parameter to the reader via a wireless response signal. A system for measuring a parameter of a landfill is also provided.
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor)
2012-01-01
An apparatus and associated method are provided. A first silicon layer having at least one of an associated passivation layer and barrier is included. Also included is a composite anti-reflection layer including a stack of layers each with a different thickness and refractive index. Such composite anti-reflection layer is disposed adjacent to the first silicon layer.
A first principles study of commonly observed planar defects in Ti/TiB system
Nandwana, Peeyush; Gupta, Niraj; Srinivasan, Srivilliputhur G.; ...
2018-04-20
Here, TiB exhibits a hexagonal cross-section with growth faults on (1 0 0) planes and contains B27-B f bicrystals. The hexagonal cross-section is presently explained by surface free energy minimization principle. We show that interfacial energy calculations explain the longer (1 0 0) facet compared to (1 0 1) type facets whereas free surface energy arguments do not provide the true picture. No quantitative explanation of stacking faults and B27-B f interfaces in TiB exists. We show that the low formation energy of stacking faults and B27-B f interfaces explain their abundance. The low energy barrier for B f formationmore » is shown to be responsible for their presence in TiB.« less
A first principles study of commonly observed planar defects in Ti/TiB system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandwana, Peeyush; Gupta, Niraj; Srinivasan, Srivilliputhur G.
Here, TiB exhibits a hexagonal cross-section with growth faults on (1 0 0) planes and contains B27-B f bicrystals. The hexagonal cross-section is presently explained by surface free energy minimization principle. We show that interfacial energy calculations explain the longer (1 0 0) facet compared to (1 0 1) type facets whereas free surface energy arguments do not provide the true picture. No quantitative explanation of stacking faults and B27-B f interfaces in TiB exists. We show that the low formation energy of stacking faults and B27-B f interfaces explain their abundance. The low energy barrier for B f formationmore » is shown to be responsible for their presence in TiB.« less
Clustering on Magnesium Surfaces – Formation and Diffusion Energies
Chu, Haijian; Huang, Hanchen; Wang, Jian
2017-07-12
The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less
Clustering on Magnesium Surfaces – Formation and Diffusion Energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Haijian; Huang, Hanchen; Wang, Jian
The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less
NASA Astrophysics Data System (ADS)
Qi, Jianwei; Chen, Zhangbo; Han, Wenjun; He, Danfeng; Yang, Yiming; Wang, Qingliang
2017-09-01
Functionally graded HA/Ti coatings were deposited on silicon and Ti6Al4V substrate by radio-frequency (RF) magnetron sputtering. The effect of RF-power, negative bias and heat-treatment on the microstructure, mechanical and electrochemical properties of the coatings were characterized by SEM, XRD, FTIR, AFM Nanoindentation and electrochemical workstation. The obtained results showed that the as-deposited HA/Ti coatings were characteristic of amorphous structure, which transformed into a crystal structure after heat-treatment, and reformed O-H peak. The content of crystallization was increasing with the increase of negative bias. A dense, homogenous, smooth and featured surface, and columnar cross-section structure was observed in SEM observation. AFM results showed that the surface roughness became higher after heat-treatment, and increased with increasing RF-power. The mechanical test indicated that the coating had a higher nanohardness (9.1 GPa) in the case of -100 V and 250 W than that of Ti6Al4V substrate, and a critical load as high as 17 ± 3.5 N. The electrochemical test confirmed the HA/Ti coating served as a stable protecting barrier in improving the corrosion resistance, which the corrosion current density was 1.3% of Ti6Al4V, but it was significantly influenced by RF-power and negative bias. The contact angle test demonstrated that all the coatings exhibited favorable hydrophilic properties, and it decreased by 20-25% compared to that untreated samples. Thus all results indicated that magnetron sputtering is a promising way for fabricating a better biocompatible ceramic coating by adjusting deposition parameters and post-deposition heat treatments.
NASA Astrophysics Data System (ADS)
Chien, Diana; Li, Xiang; Wong, Kin; Zurbuchen, Mark A.; Robbennolt, Shauna; Yu, Guoqiang; Tolbert, Sarah; Kioussis, Nicholas; Khalili Amiri, Pedram; Wang, Kang L.; Chang, Jane P.
2016-03-01
Compared with current-controlled magnetization switching in a perpendicular magnetic tunnel junction (MTJ), electric field- or voltage-induced magnetization switching reduces the writing energy of the memory cell, which also results in increased memory density. In this work, an ultra-thin PZT film with high dielectric constant was integrated into the tunneling oxide layer to enhance the voltage-controlled magnetic anisotropy (VCMA) effect. The growth of MTJ stacks with an MgO/PZT/MgO tunnel barrier was performed using a combination of sputtering and atomic layer deposition techniques. The fabricated MTJs with the MgO/PZT/MgO barrier demonstrate a VCMA coefficient, which is ˜40% higher (19.8 ± 1.3 fJ/V m) than the control sample MTJs with an MgO barrier (14.3 ± 2.7 fJ/V m). The MTJs with the MgO/PZT/MgO barrier also possess a sizeable tunneling magnetoresistance (TMR) of more than 50% at room temperature, comparable to the control MTJs with an MgO barrier. The TMR and enhanced VCMA effect demonstrated simultaneously in this work make the MgO/PZT/MgO barrier-based MTJs potential candidates for future voltage-controlled, ultralow-power, and high-density magnetic random access memory devices.
Definition and test of the electromagnetic immunity of UAS for first responders
NASA Astrophysics Data System (ADS)
Adami, C.; Chmel, S.; Jöster, M.; Pusch, T.; Suhrke, M.
2015-11-01
Recent technological developments considerably lowered the barrier for unmanned aerial systems (UAS) to be employed in a variety of usage scenarios, comprising live video transmission from otherwise inaccessible vantage points. As an example, in the French-German ANCHORS project several UAS guided by swarm intelligence provide aerial views and environmental data of a disaster site while deploying an ad-hoc communication network for first responders. Since being able to operate in harsh environmental conditions is a key feature, the immunity of the UAS against radio frequency (RF) exposure has been studied. Conventional Electromagnetic Compatibility (EMC) applied to commercial and industrial electronics is not sufficient since UAS are airborne and can as such move beyond the bounds within which RF exposure is usually limited by regulatory measures. Therefore, the EMC requirements have been complemented by a set of specific RF test frequencies and parameters where strong sources are expected to interfere in the example project test case of an inland port environment. While no essential malfunctions could be observed up to field strengths of 30 V m-1, a sophisticated, more exhaustive approach for testing against potential sources of interference in key scenarios of UAS usage should be derived from our present findings.
Gate Drain Underlapped-PNIN-GAA-TFET for Comprehensively Upgraded Analog/RF Performance
NASA Astrophysics Data System (ADS)
Madan, Jaya; Chaujar, Rishu
2017-02-01
This work integrates the merits of gate-drain underlapping (GDU) and N+ source pocket on cylindrical gate all around tunnel FET (GAA-TFET) to form GDU-PNIN-GAA-TFET. It is analysed that the source pocket located at the source-channel junction narrows the tunneling barrier width at the tunneling junction and thereby enhances the ON-state current of GAA-TFET. Further, it is obtained that the GDU resists the extension of carrier density (built-up under the gated region) towards the drain side (under the underlapped length), thereby suppressing the ambipolar current and reducing the parasitic capacitances of GAA-TFET. Consequently, the amalgamated merits of both engineering schemes are obtained in GDU-PNIN-GAA-TFET that thus conquers the greatest challenges faced by TFET. Thus, GDU-PNIN-GAA-TFET results in an up-gradation in the overall performance of GAA-TFET. Moreover, it is realised that the RF figure of merits FOMs such as cut-off frequency (fT) and maximum oscillation frequency (fMAX) are also considerably improved with integration of source pocket on GAA-TFET. Thus, the improved analog and RF performance of GDU-PNIN-GAA-TFET makes it ideal for low power and high-speed applications.
Method of fabricating composite superconducting wire
Strauss, Bruce P.; Reardon, Paul J.; Remsbottom, Robert H.
1977-01-01
An improvement in the method for preparing composite rods of superconducting alloy and normal metal from which multifilament composite superconducting wire is fabricated by bending longitudinally a strip of normal metal around a rod of superconductor alloy and welding the edges to form the composite rod. After the rods have preferably been provided with a hexagonal cross-sectional shape, a plurality of the rods are stacked into a normal metal extrusion can, sealed and worked to reduce the cross-sectional size and form multifilament wire. Diffusion barriers and high-electrical resistance barriers can easily be introduced into the wire by plating or otherwise coating the faces of the normal metal strip with appropriate materials.
Thin CVD-diamond RF Pill-Box vacuum windows for LHCD systems
NASA Astrophysics Data System (ADS)
Ravera, G. L.; Ceccuzzi, S.; Cardinali, A.; Cesario, R.; Mirizzi, F.; Schettini, G.; Tuccillo, A. A.
2014-02-01
The preliminary assessment of a Lower Hybrid Current Drive (LHCD) system for the DEMOnstration power plant (DEMO) is mainly focused on the R&D needs of the less conventional RF components of the Main Transmission Line (MTL) and of the launcher. 500 kW, CW klystrons will be used to deliver the RF power to independent Passive Active Multijunction (PAM) launcher modules at 5 GHz. This paper describes the criteria followed to investigate the optimum solution for the RF window used as vacuum barrier between the MTL and the launcher, an open issue in the LHCD system for ITER too. The best candidate, capable of withstanding a power level of, or above, 0.5 MW in CW operation and to satisfy the electrical and thermonuclear requirements, is a Pill-Box assembly, based on a thin single disk of CVD-diamond as dielectric, water cooled at the edge. A thickness of 3 mm, much shorter than half a wavelength of the TE°11 mode in the dielectric as in the conventional window (unfeasible and too expensive with CVD-diamond at these frequencies), is sufficient to limit the exerted stress at the edge under the fracture stress for a maximum pressure applied of 0.9 MPa. In this paper the simulation results of conventional and thin CVD-diamond vacuum windows are presented comparing S-parameters, losses and electric fields in both matching condition and with VSWR = 2, using WR284 and WR229 as input/output rectangular waveguide.
Steep-slope hysteresis-free negative capacitance MoS2 transistors
NASA Astrophysics Data System (ADS)
Si, Mengwei; Su, Chun-Jung; Jiang, Chunsheng; Conrad, Nathan J.; Zhou, Hong; Maize, Kerry D.; Qiu, Gang; Wu, Chien-Ting; Shakouri, Ali; Alam, Muhammad A.; Ye, Peide D.
2018-01-01
The so-called Boltzmann tyranny defines the fundamental thermionic limit of the subthreshold slope of a metal-oxide-semiconductor field-effect transistor (MOSFET) at 60 mV dec-1 at room temperature and therefore precludes lowering of the supply voltage and overall power consumption1,2. Adding a ferroelectric negative capacitor to the gate stack of a MOSFET may offer a promising solution to bypassing this fundamental barrier3. Meanwhile, two-dimensional semiconductors such as atomically thin transition-metal dichalcogenides, due to their low dielectric constant and ease of integration into a junctionless transistor topology, offer enhanced electrostatic control of the channel4-12. Here, we combine these two advantages and demonstrate a molybdenum disulfide (MoS2) two-dimensional steep-slope transistor with a ferroelectric hafnium zirconium oxide layer in the gate dielectric stack. This device exhibits excellent performance in both on and off states, with a maximum drain current of 510 μA μm-1 and a sub-thermionic subthreshold slope, and is essentially hysteresis-free. Negative differential resistance was observed at room temperature in the MoS2 negative-capacitance FETs as the result of negative capacitance due to the negative drain-induced barrier lowering. A high on-current-induced self-heating effect was also observed and studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodeux, Romain; Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac; Michau, Dominique, E-mail: dominique.michau@icmcb.cnrs.fr
2016-09-15
Highlights: • Synthesis of Ba{sub 2}NdFeNb{sub 4}O{sub 15}/BaFe{sub 12}O{sub 19} (BaM) heterostructures by RF magnetron sputtering. • Growth of TTB layer were retained regardless of the underlayer (Pt bottom electrode or BaM). • Dielectric and magnetic properties were obtained from the Pt/TTB/BaM/Pt stacks. - Abstract: Ba{sub 2}NdFeNb{sub 4}O{sub 15} tetragonal tungsten bronze (TTB)/BaFe{sub 12}O{sub 19} (BaM) hexaferrite bilayers have been grown by RF magnetron sputtering on Pt/TiO{sub 2}/SiO{sub 2}/Si (PtS) substrates. The BaM layer is textured along (0 0 1) while the TTB layer is multioriented regardless of the PtS or BaM/PtS substrate. Dielectric properties of TTB films are similarmore » to those of bulk, i.e., ε ∼ 150 and a magnetic hysteresis loop is obtained from TTB/BaM bilayers, thanks to the BaM component. This demonstrates the possibility of transferring to 2 dimensional structures the composite multiferroic system TTB/BaM previously identified in 3 dimensional bulk ceramics.« less
Zsolnai, A; Orbán, L; Chrambach, A
1993-03-01
Using a horizontal slab apparatus with a buffer in the reservoirs at the level of the gel ("sea-level electrophoresis"), the retrograde discontinuous buffer system reported by Wiltfang et al. for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of proteins was applied to DNA electrophoresis. This application yielded the advantages of an increased displacement rate of the moving boundary front and a decrease in the concentration of the counterion base in the resolving phase, which yielded reduced relative mobility values at equivalent gel concentrations and practicable low buffer concentrations. The change of relative mobilities (Rf) with a variation of field strength is decreased compared to that of the migration rate in the continuous Tris-boric-acid-EDTA (TBE) buffer and thus the robustness of the system is improved, as well as the efficiency of separation. The system of Wiltfang et al. has in common with previously described discontinuous DNA system, that it is able to stack DNA from dilute samples and is insensitive to sample components with lower net mobilities than DNA, such as acetate. However, the variance of Rf at constant current density in the discontinuous buffer system is not improved over that of the migration rate at constant field strength in the continuous TBE buffer.
NASA Astrophysics Data System (ADS)
Panda, D. K.; Lenka, T. R.
2017-06-01
An enhancement mode p-GaN gate AlGaN/GaN HEMT is proposed and a physics based virtual source charge model with Landauer approach for electron transport has been developed using Verilog-A and simulated using Cadence Spectre, in order to predict device characteristics such as threshold voltage, drain current and gate capacitance. The drain current model incorporates important physical effects such as velocity saturation, short channel effects like DIBL (drain induced barrier lowering), channel length modulation (CLM), and mobility degradation due to self-heating. The predicted I d-V ds, I d-V gs, and C-V characteristics show an excellent agreement with the experimental data for both drain current and capacitance which validate the model. The developed model was then utilized to design and simulate a single-pole single-throw (SPST) RF switch.
NASA Astrophysics Data System (ADS)
Papaioannou, George
The present work attempts to provide a better insight on the dielectric charging in RF-MEMS capacitive switches that constitutes a key issue limiting parameter of their commercialization. The dependence of the charging process on the nature of dielectric materials widely used in these devices, such as SiO2, Si3N4, AlN, Al2O3, Ta2O5, HfO2, which consist of covalent or ionic bonds and may exhibit piezoelectric properties is discussed taking into account the effect of deposition conditions and resulting material stoichiometry. Another key issue parameter that accelerates the charging and discharging processes by providing enough energy to trapped charges to be released and to dipoles to overcome potential barriers and randomize their orientation is the temperature will be investigated too. Finally, the effect of device structure will be also taken into account.
Exploring Capabilities of SENTINEL-2 for Vegetation Mapping Using Random Forest
NASA Astrophysics Data System (ADS)
Saini, R.; Ghosh, S. K.
2018-04-01
Accurate vegetation mapping is essential for monitoring crop and sustainable agricultural practice. This study aims to explore the capabilities of Sentinel-2 data over Landsat-8 Operational Land Imager (OLI) data for vegetation mapping. Two combination of Sentinel-2 dataset have been considered, first combination is 4-band dataset at 10m resolution which consists of NIR, R, G and B bands, while second combination is generated by stacking 4 bands having 10 m resolution along with other six sharpened bands using Gram-Schmidt algorithm. For Landsat-8 OLI dataset, six multispectral bands have been pan-sharpened to have a spatial resolution of 15 m using Gram-Schmidt algorithm. Random Forest (RF) and Maximum Likelihood classifier (MLC) have been selected for classification of images. It is found that, overall accuracy achieved by RF for 4-band, 10-band dataset of Sentinel-2 and Landsat-8 OLI are 88.38 %, 90.05 % and 86.68 % respectively. While, MLC give an overall accuracy of 85.12 %, 87.14 % and 83.56 % for 4-band, 10-band Sentinel and Landsat-8 OLI respectively. Results shown that 10-band Sentinel-2 dataset gives highest accuracy and shows a rise of 3.37 % for RF and 3.58 % for MLC compared to Landsat-8 OLI. However, all the classes show significant improvement in accuracy but a major rise in accuracy is observed for Sugarcane, Wheat and Fodder for Sentinel 10-band imagery. This study substantiates the fact that Sentinel-2 data can be utilized for mapping of vegetation with a good degree of accuracy when compared to Landsat-8 OLI specifically when objective is to map a sub class of vegetation.
Low driving voltage simplified tandem organic light-emitting devices by using exciplex-forming hosts
NASA Astrophysics Data System (ADS)
Zhou, Dong-Ying; Cui, Lin-Song; Zhang, Ying-Jie; Liao, Liang-Sheng; Aziz, Hany
2014-10-01
Tandem organic light-emitting devices (OLEDs), i.e., OLEDs containing multiple electroluminescence (EL) units that are vertically stacked, are attracting significant interest because of their ability to realize high current efficiency and long operational lifetime. However, stacking multiple EL units in tandem OLEDs increases driving voltage and complicates fabrication process relative to their standard single unit counterparts. In this paper, we demonstrate low driving voltage tandem OLEDs via utilizing exciplex-forming hosts in the EL units instead of conventional host materials. The use of exciplex-forming hosts reduces the charge injection barriers and the trapping of charges on guest molecules, resulting in the lower driving voltage. The use of exciplex-forming hosts also allows using fewer layers, hence simpler EL configuration which is beneficial for reducing the fabrication complexity of tandem OLEDs.
Discrete breathers dynamic in a model for DNA chain with a finite stacking enthalpy
NASA Astrophysics Data System (ADS)
Gninzanlong, Carlos Lawrence; Ndjomatchoua, Frank Thomas; Tchawoua, Clément
2018-04-01
The nonlinear dynamics of a homogeneous DNA chain based on site-dependent finite stacking and pairing enthalpies is studied. A new variant of extended discrete nonlinear Schrödinger equation describing the dynamics of modulated wave is derived. The regions of discrete modulational instability of plane carrier waves are studied, and it appears that these zones depend strongly on the phonon frequency of Fourier's mode. The staggered/unstaggered discrete breather (SDB/USDB) is obtained straightforwardly without the staggering transformation, and it is demonstrated that SDBs are less unstable than USDB. The instability of discrete multi-humped SDB/USDB solution does not depend on the number of peaks of the discrete breather (DB). By using the concept of Peierls-Nabarro energy barrier, it appears that the low-frequency DBs are more mobile.
W-band GaAs camel-cathode Gunn devices produced by MBE
NASA Astrophysics Data System (ADS)
Beall, R. B.; Battersby, S. J.; Grecian, P. J.; Jones, S.; Smith, G.
1989-06-01
The dc and microwave performance of a novel second-harmonic W-band GaAs Gunn device incorporating a camel barrier are reported. Comparison with conventional Gunn devices shows significant improvement in power output and dc to RF conversion efficiency for the new structure. The frequency at which the maximum power is produced is lower for the camel cathode Gunn device, an observation attributed to a reduction in the length of the acceleration zone.
NASA Astrophysics Data System (ADS)
Tancret, N.; Obbade, S.; Bettahar, N.; Abraham, F.
1996-07-01
The mixed-valence PbPt2O4compound was synthesized both by solid state reaction between stoichiometric amounts of PbO and Pt heated at 650-750°C for 1 week and by chemical attack of Pb2PtO4. It decomposes to PbO and Pt at 750°C. The crystal structure was completely solved from direct methods and difference Fourier maps from powder X-ray diffraction data. The unit cell is triclinic (space groupP1,Z= 2) witha= 6.1161(2) Å,b= 6.6504(2) Å,c= 5.5502(2) Å, α = 97.178(2)°, β = 108.803(2)°, and γ = 115.241(2)°. The structural model was refined using the Rietveld profile technique and led to the reliability factorsRwp= 0.118,Rp= 0.086,RBragg= 0.029,RF= 0.018, and χ2= 1.51. The structure of PbPt2O4appears to be a unique one involving both Pt4+in octahedral coordination and Pt2+or partially oxidized platinum in square-planar coordination. The PbPt2O4structure consists of columnar-stacked PtO4groups extending along thecaxis of the unit cell. These columnar stacks are held by other planar PtO4groups to constitute Pt3O8sheets. These sheets are linked together by PtO6octahedra to form a three-dimensional framework. Lead atoms are surrounded by six oxygens forming a distorted octahedron. Metallic conductivity in PbPt2O4is consistent with short Pt-Pt bonds in the columnar stacks of PtO4groups along thecaxis direction (dPt-Pt= 2.78 Å).
Stable isotope insights into the weathering processes of a phosphogypsum disposal area.
Papaslioti, Evgenia-Maria; Pérez-López, Rafael; Parviainen, Annika; Macías, Francisco; Delgado-Huertas, Antonio; Garrido, Carlos J; Marchesi, Claudio; Nieto, José M
2018-04-28
Highly acidic phosphogypsum wastes with elevated potential for contaminant leaching are stack-piled near coastal areas worldwide, threatening the adjacent environment. Huge phosphogypsum stacks were disposed directly on the marshes of the Estuary of Huelva (SW Spain) without any impermeable barrier to prevent leaching and thus, contributing to the total contamination of the estuarine environment. According to the previous weathering model, the process water ponded on the surface of the stack, initially used to carry the waste, was thought to be the main washing agent through its infiltration and subsequently the main component of the leachates emerging as the edge outflows. Preliminary restorations have been applied to the site and similar ones are planned for the future considering process water as the only pollution agent. Further investigation to validate the pollution pathway was necessary, thus an evaluation of the relationship between leachates and weathering agents of the stack was carried out using stable isotopes (δ 18 O, δ 2 H, and δ 34 S) as geochemical tracers. Quantification of the contribution of all possible end-members to the phosphogypsum leachates was also conducted using ternary mixing via the stable isotopic tracers. The results ruled out ponded process water as main vector of edge outflow pollution and unveiled a continuous infiltration of estuarine waters to the stack implying that is subjected to an open weathering system. The isotopic tracers revealed a progressive contribution downstream from fluvial to marine signatures in the composition of the edge outflows, depending on the location of each disposal zone within the different estuarine morphodynamic domains. Thus, the current study suggests that the access of intertidal water inside the phosphogypsum stack, for instance through secondary tidal channels, is the main responsible for the weathering of the waste in depth, underlying the necessity for new, more effective restorations plans. Copyright © 2018 Elsevier Ltd. All rights reserved.
Li, Mengya; Westover, Andrew S; Carter, Rachel; Oakes, Landon; Muralidharan, Nitin; Boire, Timothy C; Sung, Hak-Joon; Pint, Cary L
2016-08-03
A key parameter in the operation of an electrochemical double-layer capacitor is the voltage window, which dictates the device energy density and power density. Here we demonstrate experimental evidence that π-π stacking at a carbon-ionic liquid interface can modify the operation voltage of a supercapacitor device by up to 30%, and this can be recovered by steric hindrance at the electrode-electrolyte interface introduced by poly(ethylene oxide) polymer electrolyte additives. This observation is supported by Raman spectroscopy, electrochemical impedance spectroscopy, and differential scanning calorimetry that each independently elucidates the signature of π-π stacking between imidazole groups in the ionic liquid and the carbon surface and the role this plays to lower the energy barrier for charge transfer at the electrode-electrolyte interface. This effect is further observed universally across two separate ionic liquid electrolyte systems and is validated by control experiments showing an invariant electrochemical window in the absence of a carbon-ionic liquid electrode-electrolyte interface. As interfacial or noncovalent interactions are usually neglected in the mechanistic picture of double-layer capacitors, this work highlights the importance of understanding chemical properties at supercapacitor interfaces to engineer voltage and energy capability.
NASA Astrophysics Data System (ADS)
Gassmann, Jürgen; Brötz, Joachim; Klein, Andreas
2012-02-01
The interface chemistry and the energy band alignment at the interface formed during sputter deposition of transparent conducting indium tin oxide (ITO) onto the organic semiconductor zinc phtalocyanine (ZnPc), which is important for inverted, transparent, and stacked organic light emitting diodes, is studied by in situ photoelectron spectroscopy (XPS and UPS). ITO was sputtered at room temperature and a low power density with a face to face arrangement of the target and substrate. With these deposition conditions, no chemical reaction and a low barrier height for charge injection at this interface are observed. The barrier height is comparable to those observed for the reverse deposition sequence, which also confirms the absence of sputter damage.
Thin film electronic devices with conductive and transparent gas and moisture permeation barriers
Simpson, Lin Jay
2015-07-28
Thin film electronic devices (or stacks integrated with a substrate) that include a permeation barrier formed of a thin layer of metal that provides a light transmitting and electrically conductive layer, wherein the electrical conductive layer is formed on a surface of the substrate or device layer such as a transparent conducting material layer with pin holes or defects caused by manufacturing and the thin layer of metal is deposited on the conductive layer and formed from a self-healing metal that forms self-terminating oxides. A permeation plug or block is formed in or adjacent to the thin film of metal at or proximate to the pin holes to block further permeation of contaminants through the pin holes.
Gas-turbine critical research and advanced technology support project
NASA Technical Reports Server (NTRS)
Clark, J. S.; Hodge, P. E.; Lowell, C. E.; Anderson, D. N.; Schultz, D. F.
1981-01-01
A technology data base for utility gas turbine systems capable of burning coal derived fuels was developed. The following areas are investigated: combustion; materials; and system studies. A two stage test rig is designed to study the conversion of fuel bound nitrogen to NOx. The feasibility of using heavy fuels in catalytic combustors is evaluated. A statistically designed series of hot corrosion burner rig tests was conducted to measure the corrosion rates of typical gas turbine alloys with several fuel contaminants. Fuel additives and several advanced thermal barrier coatings are tested. Thermal barrier coatings used in conjunction with low critical alloys and those used in a combined cycle system in which the stack temperature was maintained above the acid corrosion temperature are also studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tkach, N. V., E-mail: ktf@chnu.edu.ua; Seti, Ju. A.; Grynyshyn, Yu. B.
2015-04-15
The theory of electron tunneling through an open nanostructure as an active element of a quantum cascade detector is developed, which takes into account the interaction of electrons with confined and interface phonons. Using the method of finite-temperature Green’s functions and the electron-phonon Hamiltonian in the representation of second quantization over all system variables, the temperature shifts and electron-level widths are calculated and the contributions of different electron-phonon-interaction mechanisms to renormalization of the spectral parameters are analyzed depending on the geometrical configuration of the nanosystem. Due to weak electron-phonon coupling in a GaAs/Al{sub 0.34}Ga{sub 0.66}As-based resonant tunneling nanostructure, the temperaturemore » shift and rf field absorption peak width are not very sensitive to the electron-phonon interaction and result from a decrease in potential barrier heights caused by a difference in the temperature dependences of the well and barrier band gaps.« less
Anbaraki, Afrooz; Khoshaman, Kazem; Ghasemi, Younes; Yousefi, Reza
2016-10-01
The main components of sunlight reaching the eye lens are UVA and visible light exerting their photo-damaging effects indirectly by the aid of endogenous photosensitizer molecules such as riboflavin (RF). In this study, lens proteins solutions were incubated with RF and exposed to the sunlight. Then, gel mobility shift analysis and different spectroscopic assessments were applied to examine the structural damaging effects of solar radiation on these proteins. Exposure of lens proteins to direct sunlight, in the presence of RF, leads to marked structural crosslinking, oligomerization and proteolytic instability. These structural damages were also accompanied with reduction in the emission fluorescence of Trp and Tyr and appearance of a new absorption peak between 300 and 400nm which can be related to formation of new chromophores. Also, photo-oxidation of lens crystallins increases their oligomeric size distribution as examined by dynamic light scattering analysis. The above mentioned structural insults, as potential sources of sunlight-induced senile cataract and blindness, were significantly attenuated in the presence of ascorbic acid and glutathione which are two important components of lens antioxidant defense system. Therefore, the powerful antioxidant defense mechanism of eye lens is an important barrier against molecular photo-damaging effects of solar radiations during the life span. Copyright © 2016 Elsevier B.V. All rights reserved.
López-Larrubia, Pilar; Cauli, Omar
2011-03-15
Diffusion-weighted imaging (DWI) allows the assessment of the water apparent diffusion coefficient (ADC), a measure of tissue water diffusivity which is altered during different pathological conditions such as cerebral oedema. By means of DWI, we repeatedly measured in the same rats apparent diffusion coefficient ADC in different brain areas (motor cortex (MCx), somato-sensory cortex (SCx), caudate-putamen (CPu), hippocampus (Hip), mesencephalic reticular formation (RF), corpus callosum (CC) and cerebellum (Cb)) after 1 week, 4 and 12 weeks of lead acetate exposure via drinking water (50 or 500 ppm). After 12 weeks of lead exposure rats received albumin-Evans blue complex administration and were sacrificed 1h later. Blood-brain barrier permeability and water tissue content were determined in order to evaluate their relationship with ADC changes. Chronic exposure to lead acetate (500 ppm) for 4 weeks increased ADC values in Hip, RF and Cb but no in other brain areas. After 12 weeks of lead acetate exposure at 500 ppm ADC is significantly increased also in CPu and CC. Brain areas displaying high ADC values after lead exposure showed also an increased water content and increased BBB permeability to Evans blue-albumin complex. Exposure to 50 ppm for 12 weeks increased ADC values and BBB permeability in the RF and Cb. In summary, chronic lead exposure induces cerebral oedema in the adult brain depending on the brain area and the dose of exposure. RF and Cb appeared the most sensitive brain areas whereas cerebral cortex appears resistant to lead-induced cerebral oedema. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Porus electrode comprising a bonded stack of pieces of corrugated metal foil
NASA Technical Reports Server (NTRS)
Mccallum, J. (Inventor)
1973-01-01
An electrode suitable for use in an electrochemical cell is described. The electrode is composed of a porous conductive support with a bonded stack of pieces of thin corrugated nickel foil where the corrugations are oriented approximately perpendicular to the sides of the electrode and form an array of passages through the electrode. Active material such as cadmium hydroxide or nickel hydroxide is uniformly distributed within the passages. The support may comprise also a piece of thin flat nickel foil between adjacent pieces of the corrugated foil, forming a barrier between the passages formed on each side of it. Typically the corrugations in the odd corrugated layers are oriented at a small angle from the perpendicular in one direction and the corrugations in the even corrugated layers are oriented at a small angle from the perpendicular in the opposite direction.
Elimination of trench defects and V-pits from InGaN/GaN structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smalc-Koziorowska, Julita; Grzanka, Ewa; Czernecki, Robert
2015-03-09
The microstructural evolution of InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor phase epitaxy was studied as a function of the growth temperature of the GaN quantum barriers (QBs). We observed the formation of basal stacking faults (BSFs) in GaN QBs grown at low temperature. The presence of BSFs terminated by stacking mismatch boundaries (SMBs) leads to the opening of the structure at the surface into a V-shaped trench loop. This trench may form above an SMB, thereby terminating the BSF, or above a junction between the SMB and a subsequent BSF. Fewer BSFs and thus fewer trench defectsmore » were observed in GaN QBs grown at temperatures higher than 830 °C. Further increase in the growth temperature of the GaN QBs led to the suppression of the threading dislocation opening into V-pits.« less
Transmission electron microscopy of AlGaAs/GaAs quantum cascade laser structures.
Walther, T; Krysa, A B
2017-12-01
Quantum cascade lasers can be efficient infrared radiation sources and consist of several hundreds of very thin layers arranged in stacks that are repeated periodically. Both the thicknesses of the individual layers as well as the period lengths need to be monitored to high precision. Different transmission electron microscopy methods have been combined to analyse AlGaAs/GaAs quantum cascade laser structures in cross-section. We found a small parabolic variation of the growth rate during deposition, affecting the stack periodicity and a reduced aluminium content of the AlGaAs barriers, whereas their widths as well as those of the GaAs quantum wells agreed with the nominal values within one atomic layer. Growth on an offcut substrate led to facets and steps at the interfaces. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Fabrication of Josephson Tunnel Junctions by Reactive Ion Milling.
1980-07-21
the existence of numerous oxide phases. in addition to Vb2 05 , which is the desired tunneling barrier, NbO2 , NbO, and various suboxides can form, as...interface between Nb and Vb2 0 5 in therally grown oxide films consists of RHO and RHO 2 , and poor Junction quality has been attrib- uted to such...are believed to be important in rf plasma oxidation (3), but they are not extracted by the grids of the ion mill. Beats of formation of posLtive
Heterojunction-Internal-Photoemission Infrared Detectors
NASA Technical Reports Server (NTRS)
Maserjian, Joseph
1991-01-01
New type of photodetector adds options for design of imaging devices. Heterojunction-internal-photoemission (HIP) infrared photodetectors proposed for incorporation into planar arrays in imaging devices required to function well at wavelengths from 8 to 17 micrometers and at temperatures above 65 K. Photoexcited electrons cross energy barrier at heterojunction and swept toward collection layer. Array of such detectors made by etching mesa structures. HIP layers stacked to increase quantum efficiency. Also built into integrated circuits including silicon multiplexer/readout circuits.
Au-free ohmic Ti/Al/TiN contacts to UID n-GaN fabricated by sputter deposition
NASA Astrophysics Data System (ADS)
Garbe, V.; Weise, J.; Motylenko, M.; Münchgesang, W.; Schmid, A.; Rafaja, D.; Abendroth, B.; Meyer, D. C.
2017-02-01
The fabrication and characterization of an Au-free Ti/Al/TiN (20/100/100 nm) contact stack to unintentionally doped n-GaN with TiN serving as the diffusion barrier is presented. Sputter deposition and lift-off in combination with post deposition annealing at 850 °C are used for contact formation. After annealing, contact shows ohmic behavior to n-GaN and a specific contact resistivity of 1.60 × 10-3 Ω cm2. To understand the contact formation on the microscopic scale, the contact was characterized by current-voltage measurements, linear transmission line method, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results show the formation of Ti-N bonds at the GaN/Ti interface in the as-deposited stack. Annealing leads to diffusion of Ti, Al, Ga, and N, and the remaining metallic Ti is fully consumed by the formation of the intermetallic tetragonal Al3Ti phase. Native oxide from the GaN surface is trapped during annealing and accumulated in the Al interlayer. The TiN capping layer, however, was chemically stable during annealing. It prevented oxidation of the Ti/Al contact bilayer successfully and thus proved to be a well suitable diffusion barrier with ideal compatibility to the Ti/Al contact metallization.
NASA Astrophysics Data System (ADS)
Zhang, P.; Yao, H.; Chen, L.; WANG, X.; Fang, L.
2017-12-01
The North China Craton (NCC), one of the oldest cratons in the world, has attracted wide attention in Earth Science for decades because of the unusual Mesozoic destruction of its cratonic lithosphere. Understanding the deep processes and mechanism of this craton destruction demands detailed knowledge about the deep structure of this region. In this study, we calculate P-wave receiver functions (RFs) with two-year teleseismic records from the North China Seismic Array ( 200 stations) deployed in the northeastern NCC. We observe both diffused and concentered PpPs signals from the Moho in RF waveforms, which indicates heterogeneous Moho sharpness variations in the study region. Synthetic Ps phases generated from broad positive velocity gradients at the depth of the Moho (referred as Pms) show a clear frequency dependence nature, which in turn is required to constrain the sharpness of the velocity gradient. Practically, characterizing such a frequency dependence feature in real data is challenging, because of low signal-to-noise ratio, contaminations by multiples generated from shallow structure, distorted signal stacking especially in double-peak Pms signals, etc. We attempt to address these issues by, firstly, utilizing a high-resolution Moho depth model of this region to predict theoretical delay times of Pms that facilitate more accurate Pms identifications. The Moho depth model is derived by wave-equation based poststack depth migration on both Ps phase and surface-reflected multiples in RFs in our previous study (Zhang et al., submitted to JGR). Second, we select data from a major back azimuth range of 100° - 220° that includes 70% teleseismic events due to the uneven data coverage and to avoid azimuthal influence as well. Finally, we apply an adaptive cross-correlation stacking of Pms signals in RFs for each station within different frequency bands. High-quality Pms signals at different frequencies will be selected after careful visual inspection and adaptive cross-correlation stacking. At last, we will model the stacked Pms signals within different frequency bands to obtain the final sharpness of crust-mantle boundary, which may shed new lights on understanding the mechanism of cratonic reactivation and destruction in the NCC.
NASA Astrophysics Data System (ADS)
Mahoney, Leonard Joseph
A planar radio-frequency (rf) inductively-coupled plasma (ICP) source is used to produce fluorocarbon discharges (CF_4/Ar) to fluorinate the surface of high-density polyethylene (HDPE). Using this system, concurrent studies of discharge characteristics, permeation properties of treated polymers and polymer surface characteristics are conducted to advance the use of plasma-fluorinated polymer surfaces as a barrier layer for automotive applications. Langmuir probes are used to determine spatial distribution of charged-particle and space-potential characteristics in Ar and CF_4/Ar discharges and to show the influence of the spatial distribution of the heating regions and the reactor boundaries on the discharge uniformity. Langmuir probes are also used to identify rf anisotropic drift motion of electrons in the heating regions of the source and transient high-energy electron features in pulsed discharges. These latter features allow pulsed ICP sources to be operated at low time-averaged powers that are necessary to treat thermally sensitive polymers. Fourier Transform Infrared (FITR) spectroscopy is used to measure the dissociation of fluorocarbon gases and to explore differences between pulsed- and continuous -power operation. Dissociation levels of CF_4 (50-85%) using pulsed-power operation are as high as that for continuous operation, even though the net time -averaged power is far less with pulsed operation. The result suggests that pulsed fluorocarbon discharges possess high concentrations of chemically-active species needed for rapid surface fluorination. A gravimetric permeation cup method is used to measure the permeation rate of test fuels through HDPE membranes, and electron spectroscopy for chemical analysis (ESCA) studies are performed to determine the stoichiometry and thickness of the barrier layer. From these studies we find that a 50-70 A thick, polar, fluoro-hydrocarbon over layer reduces the permeation of isooctane/toluene/methanol mixtures by a factor of 4. To increase the permeation resistance for automotive applications, this result points towards the deposition of a 1000 A thick fluoro-hydrocarbon barrier coating with stoichiometry and bond structures similar to the CF_4/Ar treated HDPE.
NASA Astrophysics Data System (ADS)
Singh, Satyendra Kumar; Hazra, Purnima
2017-04-01
In this article, temperature-dependent current-voltage characteristics of n-ZnO/p-Si nanoparticle thin film heterojunction diode grown by RF sputtering technique are analyzed in the temperature range of 300-433 k to investigate the performance of the device in high temperature environment. The microstructural, morphological, optical and temptrature dependent electrical properties of as-grown nanoparticle thin film were characterized by X-ray diffractometer (XRD), atomic force microscopy (AFM), field emmision scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), variable angle ellipsometer and semiconductor device analyzer. XRD spectra of as-grown ZnO films are exhibited that highly c-axis oriented ZnO nanostructures are grown on p- Si〈100〉 substrate whereas AFM and FESEM images confirm the homogeneous deposition of ZnO nanoparticles on surface of Si substratewith minimum roughness.The optical propertiesof as-grown ZnO nanoparticles have been measured in the spectral range of 300-800 nm using variable angle ellipsometer.To measure electrical parameters of the device prototype in the temperature range of room temperature (300 K) to 433 K, large area ohmic contacts were fabricated on both side of the ZnO/Si heterostructure. From the current-voltage charcteristics of ZnO/Si heterojunction device, it is observed that the device exhibits rectifing nature at room temperature. However, with increase in temperature, reverse saturation current and barrier height are found to increase, whereas ideality factor is started decreasing. This phenomenon confirms that barrier inhomogeneities are present at the interface of ZnO/Si heterojunction, as a result of lattice constant and thermal coefficient mismatch between Si and ZnO. Therefore, a modified value of Richardson constant [33.06 Acm-2K-2] has been extracted from the temperature-dependent electrical characteristics after assuming the Gaussian distribution of special barrier height inhomogeneities across the Si/ZnO interface which is close to its theoretical value [32 Acm-2K-2]. This result indicates that regardless of presence of barrier height inmogeneities, ZnO/Si heterojunction diode still hasability to perform well in high temperature environment.
NASA Astrophysics Data System (ADS)
Jamison, Laura
In recent years the push for green energy sources has intensified, and as part of that effort accident tolerant and more efficient nuclear reactors have been designed. These reactors demand exceptional material performance, as they call for higher temperatures and doses. Silicon carbide (SiC) is a strong candidate material for many of these designs due to its low neutron cross-section, chemical stability, and high temperature resistance. The possibility of improving the radiation resistance of SiC by reducing the grain size (thus increasing the sink density) is explored in this work. In-situ electron irradiation and Kr ion irradiation was utilized to explore the radiation resistance of nanocrystalline SiC (nc-SiC), SiC nanopowders, and microcrystalline SiC. Electron irradiation simplifies the experimental results, as only isolated Frenkel pairs are produced so any observed differences are simply due to point defect interactions with the original microstructure. Kr ion irradiation simulates neutron damage, as large radiation cascades with a high concentration of point defects are produced. Kr irradiation studies found that radiation resistance decreased with particle size reduction and grain refinement (comparing nc-SiC and microcrystalline SiC). This suggests that an interface-dependent amorphization mechanism is active in SiC, suggested to be interstitial starvation. However, under electron irradiation it was found that nc-SiC had improved radiation resistance compared to single crystal SiC. This was found to be due to several factors including increased sink density and strength and the presence of stacking faults. The stacking faults were found to improve radiation response by lowering critical energy barriers. The change in radiation response between the electron and Kr ion irradiations is hypothesized to be due to either the change in ion type (potential change in amorphization mechanism) or a change in temperature (at the higher temperatures of the Kr ion irradiation, critical energy barriers can be overcome without the assistance of stacking faults). The dependence of the radiation response of SiC on grain size is not as straight forward as initially presumed. The stacking faults present in many nc-SiC materials boost radiation resistance, but an increased number of interfaces may lead to a reduction in radiation response.
Unraveling the Semiconducting/Metallic Discrepancy in Ni 3(HITP) 2
Foster, Michael E.; Sohlberg, Karl; Allendorf, Mark D.; ...
2018-01-10
Here, Ni 3(2,3,6,7,10,11-hexaiminotriphenylene) 2 is a π-stacked layered metal–organic framework material with extended π-conjugation that is analogous to graphene. Published experimental results indicate that the material is semiconducting, but all theoretical studies to date predict the bulk material to be metallic. Given that previous experimental work was carried out on specimens containing complex nanocrystalline microstructures and the tendency for internal interfaces to introduce transport barriers, we apply DFT to investigate the influence of internal interface defects on the electronic structure of Ni 3(HITP) 2. The results show that interface defects can introduce a transport barrier by breaking the π-conjugation and/ormore » decreasing the dispersion of the electronic bands near the Fermi level. We demonstrate that the presence of defects can open a small gap, in the range of 15–200 meV, which is consistent with the experimentally inferred hopping barrier.« less
Low resistance tunnel junctions with remote plasma underoxidized thick barriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira, R.; Freitas, P.P.; MacKenzie, M.
2005-05-15
Low resistance tunnel junctions suitable for >200 Gb/inch{sup 2} read heads require RxA<1 {omega}{mu}m{sup 2} and TMR>10%, usually achieved by natural oxidation with tAl<0.7 nm barriers. This paper shows that as-deposited junctions with competitive electrical and magnetic properties can be produced starting from 0.9 nm Al barriers and remote plasma oxidation in ion beam-deposited stacks using Co{sub 73.8}Fe{sub 16.2}B{sub 10} electrodes. TMR{approx}20% for RxA{approx}2-15 {omega}{mu}m{sup 2} is obtained, while in the RxA{approx}40-140 {omega}{mu}m{sup 2} range TMR can reach 40%-45%, in as-deposited samples. A limited number of junctions exhibits considerably lower RxA values with respect to the average while keeping similarmore » MR (down to 0.44 {omega}{mu}m{sup 2} with 20% and down to 2.2 {omega}{mu}m{sup 2} with 51%)« less
NASA Astrophysics Data System (ADS)
Guo, Yaguang; Wang, Fancy Qian; Wang, Qian
2017-08-01
The non-zero band gap together with other unique properties endows penta-graphene with potential for device applications. Here, we study the performance of penta-graphene as the channel material contacting with graphene to form a van der Waals heterostructure. Based on first-principles calculations, we show that the intrinsic properties of penta-graphene are preserved in the heterojunction, which is different from the conventional contact with metal surfaces. The stacked system forms an n-type Schottky barrier (Φe) at the vertical interface, while a negative band bending occurs at the lateral interface in a current-in-plane model. From the device point of view, we further demonstrate that a low-Φe or an Ohmic contact can be realized by applying an external electric field or doping graphene with nitrogen atoms. This allows the control of the Schottky barrier height, which is essential in fabricating penta-graphene-based nanotransistors.
NASA Astrophysics Data System (ADS)
Millet, F.; Bodin, T.; Rondenay, S.
2017-12-01
The teleseismic scattered seismic wavefield contains valuable information about heterogeneities and discontinuities inside the Earth. By using fast Receiver Function (RF) migration techniques such as classic Common Conversion Point (CCP) stacks, one can easily interpret structural features down to a few hundred kilometers in the mantle. However, strong simplifying 1D assumptions limit the scope of these methods to structures that are relatively planar and sub-horizontal at local-to-regional scales, such as the Lithosphere-Asthenosphere Boundary and the Mantle Transition Zone discontinuities. Other more robust 2D and 2.5D methods rely on fewer assumptions but require considerable, sometime prohibitive, computation time. Following the ideas of Cheng (2017), we have implemented a simple fully 3D Prestack Kirchhoff RF migration scheme which uses the FM3D fast Eikonal solver to compute travel times and scattering angles. The method accounts for 3D elastic point scattering and includes free surface multiples, resulting in enhanced images of laterally varying dipping structures, such as subducted slabs. The method is tested for subduction structures using 2.5D synthetics generated with Raysum and 3D synthetics generated with specfem3D. Results show that dip angles, depths and lateral variations can be recovered almost perfectly. The approach is ideally suited for applications to dense regional datasets, including those collected across the Cascadia and Alaska subduction zones by USArray.
Simson, Päivo; Jepihhina, Natalja; Laasmaa, Martin; Peterson, Pearu; Birkedal, Rikke; Vendelin, Marko
2016-08-01
Adequate intracellular energy transfer is crucial for proper cardiac function. In energy starved failing hearts, partial restoration of energy transfer can rescue mechanical performance. There are two types of diffusion obstacles that interfere with energy transfer from mitochondria to ATPases: mitochondrial outer membrane (MOM) with voltage-dependent anion channel (VDAC) permeable to small hydrophilic molecules and cytoplasmatic diffusion barriers grouping ATP-producers and -consumers. So far, there is no method developed to clearly distinguish the contributions of cytoplasmatic barriers and MOM to the overall diffusion restriction. Furthermore, the number of open VDACs in vivo remains unknown. The aim of this work was to establish the partitioning of intracellular diffusion obstacles in cardiomyocytes. We studied the response of mitochondrial oxidative phosphorylation of permeabilized rat cardiomyocytes to changes in extracellular ADP by recording 3D image stacks of NADH autofluorescence. Using cell-specific mathematical models, we determined the permeability of MOM and cytoplasmatic barriers. We found that only ~2% of VDACs are accessible to cytosolic ADP and cytoplasmatic diffusion barriers reduce the apparent diffusion coefficient by 6-10×. In cardiomyocytes, diffusion barriers in the cytoplasm and by the MOM restrict ADP/ATP diffusion to similar extents suggesting a major role of both barriers in energy transfer and other intracellular processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
High duty factor plasma generator for CERN's Superconducting Proton Linac.
Lettry, J; Kronberger, M; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, J-M; Küchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D
2010-02-01
CERN's Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN's PS-Booster. Its ion source is a noncesiated rf driven H(-) volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H(-) during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the Large Hadron Collider. It consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H(-) during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H(-) plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the required heat dissipation and maintains the original functionality. Materials with higher thermal conductivity are selected and, wherever possible, thermal barriers resulting from low pressure contacts are removed by brazing metals on insulators. The AlN plasma chamber cooling circuit is inspired from the approach chosen for the cesiated high duty factor rf H(-) source operating at SNS.
Controlling the ambipolarity and improvement of RF performance using Gaussian Drain Doped TFET
NASA Astrophysics Data System (ADS)
Nigam, Kaushal; Gupta, Sarthak; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj
2018-05-01
Ambipolar conduction in tunnel field-effect transistors (TFETs) has been occurred as an inherent issue due to drain-channel tunneling. It makes TFET less efficient and restricts its application in complementary digital circuits. Therefore, this manuscript reports the application of Gaussian doping profile on nanometer regime silicon channel TFETs to completely eliminate the ambipolarity. For this, Gaussian doping is used in the drain region of conventional gate-drain overlap TFET to control the tunneling of electrons from the valence band of channel to the conduction band of drain. As a result, barrier width at the drain/channel junction increases significantly leading to the suppression of an ambipolar current even when higher doping concentration (1 ? 10 ? cm ?) is considered in the drain region. However, significant improvement in terms of RF figure-of-merits such as cut-off frequency (f ?), gain bandwidth product (GBW), and gate-to-drain capacitance (C ?) is achieved with Gaussian doped gate on drain overlap TFET as compared to its counterpart TFET.
NASA Astrophysics Data System (ADS)
Yeon, Seongjin; Seo, Kwangseok
2008-04-01
We fabricated 50 nm InAlAs/InGaAs metamorphic high electron mobility transistors (HEMTs) with a very thin barrier. Through the reduction of the gate-channel distance (dGC) in the epitaxial structure, a channel aspect ratio (ARC) of over three was achieved when Lg was 50 nm. We inserted a thin InGaAs layer as a protective layer, and tested various gate structures to reduce surface problems induced by barrier shrinkage and to optimize the device characteristics. Through the optimization of the gate structure with the thin InGaAs layer, the fabricated 50 nm metamorphic HEMT exhibited high DC and RF characteristics, Gm of 1.5 S/mm, and fT of 490 GHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanan, Narayanan; Lee, Bongmook; Misra, Veena, E-mail: vmisra@ncsu.edu
2015-06-15
Many dielectrics have been proposed for the gate stack or passivation of AlGaN/GaN based metal oxide semiconductor heterojunction field effect transistors, to reduce gate leakage and current collapse, both for power and RF applications. Atomic Layer Deposition (ALD) is preferred for dielectric deposition as it provides uniform, conformal, and high quality films with precise monolayer control of film thickness. Identification of the optimum ALD dielectric for the gate stack or passivation requires a critical investigation of traps created at the dielectric/AlGaN interface. In this work, a pulsed-IV traps characterization method has been used for accurate characterization of interface traps withmore » a variety of ALD dielectrics. High-k dielectrics (HfO{sub 2}, HfAlO, and Al{sub 2}O{sub 3}) are found to host a high density of interface traps with AlGaN. In contrast, ALD SiO{sub 2} shows the lowest interface trap density (<2 × 10{sup 12 }cm{sup −2}) after annealing above 600 °C in N{sub 2} for 60 s. The trend in observed trap densities is subsequently explained with bonding constraint theory, which predicts a high density of interface traps due to a higher coordination state and bond strain in high-k dielectrics.« less
Formation and anisotropic magnetoresistance of Co/Pt nano-contacts through aluminum oxide barrier
NASA Astrophysics Data System (ADS)
Al-Mahdawi, Muftah; Sahashi, Masashi
2014-01-01
We report on the observation of anisotropic magnetoresistance (AMR) in vertical asymmetric nano-contacts (NCs) made through AlOx nano-oxide layer (NOL) formed by ion-assisted oxidation method in the film stack of Co/AlOx-NOL/Pt. Analysis of NC formation was based on in situ conductive atomic force microscopy and transmission electron microscopy. Depending on the purity of NCs from Al contamination, we observed up to 29% AMR ratio at room temperature.
Wan, William; Bian, Wen; McDonald, Michele; ...
2013-08-28
The fungal prion-forming domain HET-s(218–289) forms infectious amyloid fibrils at physiological pH that were shown by solid-state NMR to be assemblies of a two-rung β-solenoid structure. Under acidic conditions, HET-s(218–289) has been shown to form amyloid fibrils that have very low infectivity in vivo, but structural information about these fibrils has been very limited. In this paper, we show by x-ray fiber diffraction that the HET-s(218–289) fibrils formed under acidic conditions have a stacked β-sheet architecture commonly found in short amyloidogenic peptides and denatured protein aggregates. At physiological pH, stacked β-sheet fibrils nucleate the formation of the infectious β-solenoid prionsmore » in a process of heterogeneous seeding, but do so with kinetic profiles distinct from those of spontaneous or homogeneous (seeded with infectious β-solenoid fibrils) fibrillization. Several serial passages of stacked β-sheet-seeded solutions lead to fibrillization kinetics similar to homogeneously seeded solutions. Finally, our results directly show that structural mutation can occur between substantially different amyloid architectures, lending credence to the suggestion that the processes of strain adaptation and crossing species barriers are facilitated by structural mutation.« less
A review of polymer electrolyte membrane fuel cell durability test protocols
NASA Astrophysics Data System (ADS)
Yuan, Xiao-Zi; Li, Hui; Zhang, Shengsheng; Martin, Jonathan; Wang, Haijiang
Durability is one of the major barriers to polymer electrolyte membrane fuel cells (PEMFCs) being accepted as a commercially viable product. It is therefore important to understand their degradation phenomena and analyze degradation mechanisms from the component level to the cell and stack level so that novel component materials can be developed and novel designs for cells/stacks can be achieved to mitigate insufficient fuel cell durability. It is generally impractical and costly to operate a fuel cell under its normal conditions for several thousand hours, so accelerated test methods are preferred to facilitate rapid learning about key durability issues. Based on the US Department of Energy (DOE) and US Fuel Cell Council (USFCC) accelerated test protocols, as well as degradation tests performed by researchers and published in the literature, we review degradation test protocols at both component and cell/stack levels (driving cycles), aiming to gather the available information on accelerated test methods and degradation test protocols for PEMFCs, and thereby provide practitioners with a useful toolbox to study durability issues. These protocols help prevent the prolonged test periods and high costs associated with real lifetime tests, assess the performance and durability of PEMFC components, and ensure that the generated data can be compared.
Superconductor Digital Electronics: -- Current Status, Future Prospects
NASA Astrophysics Data System (ADS)
Mukhanov, Oleg
2011-03-01
Two major applications of superconductor electronics: communications and supercomputing will be presented. These areas hold a significant promise of a large impact on electronics state-of-the-art for the defense and commercial markets stemming from the fundamental advantages of superconductivity: simultaneous high speed and low power, lossless interconnect, natural quantization, and high sensitivity. The availability of relatively small cryocoolers lowered the foremost market barrier for cryogenically-cooled superconductor electronic systems. These fundamental advantages enabled a novel Digital-RF architecture - a disruptive technological approach changing wireless communications, radar, and surveillance system architectures dramatically. Practical results were achieved for Digital-RF systems in which wide-band, multi-band radio frequency signals are directly digitized and digital domain is expanded throughout the entire system. Digital-RF systems combine digital and mixed signal integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology, superconductor analog filter circuits, and semiconductor post-processing circuits. The demonstrated cryocooled Digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals, enabling multi-net data links, and performing signal acquisition from HF to L-band with 30 GHz clock frequencies. In supercomputing, superconductivity leads to the highest energy efficiencies per operation. Superconductor technology based on manipulation and ballistic transfer of magnetic flux quanta provides a superior low-power alternative to CMOS and other charge-transfer based device technologies. The fundamental energy consumption in SFQ circuits defined by flux quanta energy 2 x 10-19 J. Recently, a novel energy-efficient zero-static-power SFQ technology, eSFQ/ERSFQ was invented, which retains all advantages of standard RSFQ circuits: high-speed, dc power, internal memory. The voltage bias regulation, determined by SFQ clock, enables the zero-power at zero-activity regimes, indispensable for sensor and quantum bit readout.
Reducing the Schottky barrier between few-layer MoTe2 and gold
NASA Astrophysics Data System (ADS)
Qi, Dianyu; Wang, Qixing; Han, Cheng; Jiang, Jizhou; Zheng, Yujie; Chen, Wei; Zhang, Wenjing; Thye Shen Wee, Andrew
2017-12-01
Schottky barriers greatly influence the performance of optoelectronic devices. Schottky barriers can be reduced by harnessing the polymorphism of 2D metal transition dichalcogenides, since both semiconducting and metallic phases exist. However, high energy, high temperature or chemicals are normally required for phase transformation, or the processes are complex. In this work, stable low-resistance contacts between few layer MoTe2 flakes and gold electrodes are achieved by a simple thermal annealing treatment at low temperature (200-400 °C). The resulting Schottky barrier height of the annealed MoTe2/Au interface is low (~23 meV). A new Raman A g mode of the 1T‧ metallic phase of MoTe2 on gold electrode is observed, indicating that the low-resistance contact is due to the phase transition of 2H-MoTe2. The gold substrate plays an important role in the transformation, and a higher gold surface roughness increases the transformation rate. With this method, the mobility and ON-state current of the MoTe2 transistor increase by ~3-4 orders of magnitude, the photocurrent of vertically stacked graphene/MoTe2/Au device increases ~300%, and the response time decreases by ~20%.
The potential radiological impact from a Brazilian phosphate facility.
Glória dos Reis, Rócio; da Costa Lauria, Dejanira
2014-10-01
In the semiarid region of Brazil, a facility for the production of phosphoric acid for fertilizer is in the last stages of the planning phase. The raw feedstock of Santa Quiteria has a very high level of uranium associated with the phosphate in form of apatite. The reaction by which phosphoric acid is produced generates phosphogypsum (PG) as a by-product. The ratio of phosphogypsum to phosphoric acid is approximately 5 to 1. After all of the phosphate has been extracted and processed, it is expected that some 37 million tons of phosphogypsum will be produced, containing 13 Bq/g of (226)Ra and 11 Bq/g of (210)Pb. To assess the potential impact of this PG stack on the surrounding inhabitants, a generic impact assessment was performed using a modeling approach. We estimated the amount and shape of the residue stack and used computational codes for assessing the radiological impact in a prospective risk assessment. A hypothetical farmer scenario was used to calculate two potential doses, one near the site boundary and another directly over the stack piles after the project is shut down. Using a conservative approach, the potential public dose was estimated to be 2.8 mSv/y. This study identified the rainfall erosion index, dissolution rate of PG, radionuclide distribution coefficients and fish consumption rate as parameters where improved information could enhance the quality of the dose assessment. The disposal and shape of the stack is of major concern, since the PG erosion might be the main pathway for the environmental contamination; therefore, studies should be carried out to determine a suitable shape and disposal of the stack. Furthermore, containment barriers should be evaluated for their potential to reduce or avoid environmental contamination by runoff. In addition, the onsite public dose underscores the importance of a planning for remediation of the area after the plant is shut down to assure that neither the public nor the environmental health will be affected by the presence of the PG stack. Copyright © 2014 Elsevier Ltd. All rights reserved.
Advancing RF pulse design using an open-competition format: Report from the 2015 ISMRM challenge.
Grissom, William A; Setsompop, Kawin; Hurley, Samuel A; Tsao, Jeffrey; Velikina, Julia V; Samsonov, Alexey A
2017-10-01
To advance the best solutions to two important RF pulse design problems with an open head-to-head competition. Two sub-challenges were formulated in which contestants competed to design the shortest simultaneous multislice (SMS) refocusing pulses and slice-selective parallel transmission (pTx) excitation pulses, subject to realistic hardware and safety constraints. Short refocusing pulses are needed for spin echo SMS imaging at high multiband factors, and short slice-selective pTx pulses are needed for multislice imaging in ultra-high field MRI. Each sub-challenge comprised two phases, in which the first phase posed problems with a low barrier of entry, and the second phase encouraged solutions that performed well in general. The Challenge ran from October 2015 to May 2016. The pTx Challenge winners developed a spokes pulse design method that combined variable-rate selective excitation with an efficient method to enforce SAR constraints, which achieved 10.6 times shorter pulse durations than conventional approaches. The SMS Challenge winners developed a time-optimal control multiband pulse design algorithm that achieved 5.1 times shorter pulse durations than conventional approaches. The Challenge led to rapid step improvements in solutions to significant problems in RF excitation for SMS imaging and ultra-high field MRI. Magn Reson Med 78:1352-1361, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Lv, Wenping; Wu, Ren'an
2013-03-01
A computational investigation was carried out to understand the aggregation of nanoscale graphene with two typical pathways of stacking assembly and sliding assembly in water. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene in both stacking and sliding assembly pathways was reported for the first time. By means of potential mean forces (PMFs) calculation, no energy barrier was observed during the sliding assembly of two graphene nanosheets, while the PMF profiles could be impacted by the contact forms of nanographene and the MWF within the interplate of two graphene nanosheets. To explore the potential physical basis of the ``hindering role'' of self-organized interfacial water, the dynamical and structural properties as well as the status of hydrogen bonds (H-bonds) for interfacial water were investigated. We found that the compact, ordered structure and abundant H-bonds of the MWF could be taken as the fundamental aspects of the ``hindering role'' of interfacial water for the hydrophobic assembly of nanographene. These findings are displaying a potential to further understand the hydrophobic assembly which mostly dominate the behaviors of nanomaterials, proteins etc. in aqueous solutions.A computational investigation was carried out to understand the aggregation of nanoscale graphene with two typical pathways of stacking assembly and sliding assembly in water. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene in both stacking and sliding assembly pathways was reported for the first time. By means of potential mean forces (PMFs) calculation, no energy barrier was observed during the sliding assembly of two graphene nanosheets, while the PMF profiles could be impacted by the contact forms of nanographene and the MWF within the interplate of two graphene nanosheets. To explore the potential physical basis of the ``hindering role'' of self-organized interfacial water, the dynamical and structural properties as well as the status of hydrogen bonds (H-bonds) for interfacial water were investigated. We found that the compact, ordered structure and abundant H-bonds of the MWF could be taken as the fundamental aspects of the ``hindering role'' of interfacial water for the hydrophobic assembly of nanographene. These findings are displaying a potential to further understand the hydrophobic assembly which mostly dominate the behaviors of nanomaterials, proteins etc. in aqueous solutions. Electronic supplementary information (ESI) available: The evolution of interaction energy for two graphene nanosheets assembly in stacking (a) and sliding (b) pathway was plotted in Fig. S1. The time evolution of three dimension distance for stacking assembly of two graphene nanosheets with the edge-edge orientation of 45° was plotted in Fig. S2. The initial orientations of graphene nanosheets in three simulations (edge-edge distance in x-direction (dx) was 0.3 nm, but in z-direction (dz) was 0.0 nm, 0.4 nm and 0.7 nm, respectively) were shown in Fig. S3. The snapshots of the evolution of hydration shells during the sliding assembly of nanographene were shown in Fig. S4, with the separation of two graphene nanosheets in z-direction is (a) 0 nm and (b) 0.7 nm, respectively. The process of two graphene nanosheets assembly in stacking pathway was shown in Movie S1 as video. The process of two graphene nanosheets (with a separation of 0.7 nm in normal direction) assembly in sliding pathway was shown in Movie S2 as video. The dynamical evolution of interfacial water during the sliding assembly of nanographene was shown in Movie S3 as video. The process of extruding the monolayer water film (MWF) out of the interplate of two graphene nanosheets was shown in Movie S4 as video. Movie S5 displays that the graphene-water-graphene sandwiched structure was successfully maintained during a 10 ns MD simulation. See DOI: 10.1039/c3nr33447c
Wu, Xiaoping; Zhang, Xiaotong; Tian, Jinfeng; Schmitter, Sebastian; Hanna, Brian; Strupp, John; Pfeuffer, Josef; Hamm, Michael; Wang, Dingxin; Nistler, Juergen; He, Bin; Vaughan, J. Thomas; Ugurbil, Kamil; Van de Moortele, Pierre-Francois
2015-01-01
The performance of multichannel transmit coil layouts and parallel transmission (pTx) radiofrequency (RF) pulse design was evaluated with respect to transmit B1 (B1+) homogeneity and Specific Absorption Rate (SAR) at 3 Tesla for a whole body coil. Five specific coils were modeled and compared: a 32-rung birdcage body coil (driven either in a fixed quadrature mode or a two-channel transmit mode), two single-ring stripline arrays (with either 8 or 16 elements), and two multi-ring stripline arrays (with 2 or 3 identical rings, stacked in the z-axis and each comprising eight azimuthally distributed elements). Three anatomical targets were considered, each defined by a 3D volume representative of a meaningful region of interest (ROI) in routine clinical applications. For a given anatomical target, global or local SAR controlled pTx pulses were designed to homogenize RF excitation within the ROI. At the B1+ homogeneity achieved by the quadrature driven birdcage design, pTx pulses with multichannel transmit coils achieved up to ~8 fold reduction in local and global SAR. When used for imaging head and cervical spine or imaging thoracic spine, the double-ring array outperformed all coils including the single-ring arrays. While the advantage of the double-ring array became much less pronounced for pelvic imaging with a substantially larger ROI, the pTx approach still provided significant gains over the quadrature birdcage coil. For all design scenarios, using the 3-ring array did not necessarily improve the RF performance. Our results suggest that pTx pulses with multichannel transmit coils can reduce local and global SAR substantially for body coils while attaining improved B1+ homogeneity, particularly for a “z-stacked” double-ring design with coil elements arranged on two transaxial rings. PMID:26332290
Schottky barrier SOI-MOSFETs with high-k La2O3/ZrO2 gate dielectrics
Henkel, C.; Abermann, S.; Bethge, O.; Pozzovivo, G.; Klang, P.; Stöger-Pollach, M.; Bertagnolli, E.
2011-01-01
Schottky barrier SOI-MOSFETs incorporating a La2O3/ZrO2 high-k dielectric stack deposited by atomic layer deposition are investigated. As the La precursor tris(N,N′-diisopropylformamidinato) lanthanum is used. As a mid-gap metal gate electrode TiN capped with W is applied. Processing parameters are optimized to issue a minimal overall thermal budget and an improved device performance. As a result, the overall thermal load was kept as low as 350, 400 or 500 °C. Excellent drive current properties, low interface trap densities of 1.9 × 1011 eV−1 cm−2, a low subthreshold slope of 70-80 mV/decade, and an ION/IOFF current ratio greater than 2 × 106 are obtained. PMID:21461054
A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology
Huang, Che-Wei; Huang, Yu-Jie; Lu, Shey-Shi; Lin, Chih-Ting
2012-01-01
A fully integrated humidity sensor chip was designed, implemented, and tested. Utilizing the micro-stamping technology, the pseudo-3D sensor system-on-chip (SSoC) architecture can be implemented by stacking sensing materials directly on the top of a CMOS-fabricated chip. The fabricated sensor system-on-chip (2.28 mm × 2.48 mm) integrated a humidity sensor, an interface circuit, a digital controller, and an On-Off Keying (OOK) wireless transceiver. With low power consumption, i.e., 750 μW without RF operation, the sensitivity of developed sensor chip was experimentally verified in the relative humidity (RH) range from 32% to 60%. The response time of the chip was also experimentally verified to be within 5 seconds from RH 36% to RH 64%. As a consequence, the implemented humidity SSoC paves the way toward the an ultra-small sensor system for various applications.
3-D System-on-System (SoS) Biomedical-Imaging Architecture for Health-Care Applications.
Sang-Jin Lee; Kavehei, O; Yoon-Ki Hong; Tae Won Cho; Younggap You; Kyoungrok Cho; Eshraghian, K
2010-12-01
This paper presents the implementation of a 3-D architecture for a biomedical-imaging system based on a multilayered system-on-system structure. The architecture consists of a complementary metal-oxide semiconductor image sensor layer, memory, 3-D discrete wavelet transform (3D-DWT), 3-D Advanced Encryption Standard (3D-AES), and an RF transmitter as an add-on layer. Multilayer silicon (Si) stacking permits fabrication and optimization of individual layers by different processing technology to achieve optimal performance. Utilization of through silicon via scheme can address required low-power operation as well as high-speed performance. Potential benefits of 3-D vertical integration include an improved form factor as well as a reduction in the total wiring length, multifunctionality, power efficiency, and flexible heterogeneous integration. The proposed imaging architecture was simulated by using Cadence Spectre and Synopsys HSPICE while implementation was carried out by Cadence Virtuoso and Mentor Graphic Calibre.
Padhi, Siladitya; Priyakumar, U Deva
2016-10-11
Urea transporters are membrane proteins that selectively allow urea molecules to pass through. It is not clear how these transporters allow rapid conduction of urea, a polar molecule, in spite of the presence of a hydrophobic constriction lined by aromatic rings. The current study elucidates the mechanism that is responsible for this rapid conduction by performing free energy calculations on the transporter dvUT with a cumulative sampling time of about 1.3 μs. A parallel arrangement of aromatic rings in the pore enables stacking of urea with these rings, which, in turn, lowers the energy barrier for urea transport. Such interaction of the rings with urea is proposed to be a conserved mechanism across all urea-conducting proteins. The free energy landscape for the permeation of multiple urea molecules reveals an interplay between interurea interaction and the solvation state of the urea molecules. This is for the first time that multiple molecule permeation through any small molecule transporter has been modeled.
Submonolayer Quantum Dot Infrared Photodetector
NASA Technical Reports Server (NTRS)
Ting, David Z.; Bandara, Sumith V.; Gunapala, Sarath D.; Chang, Yia-Chang
2010-01-01
A method has been developed for inserting submonolayer (SML) quantum dots (QDs) or SML QD stacks, instead of conventional Stranski-Krastanov (S-K) QDs, into the active region of intersubband photodetectors. A typical configuration would be InAs SML QDs embedded in thin layers of GaAs, surrounded by AlGaAs barriers. Here, the GaAs and the AlGaAs have nearly the same lattice constant, while InAs has a larger lattice constant. In QD infrared photodetector, the important quantization directions are in the plane perpendicular to the normal incidence radiation. In-plane quantization is what enables the absorption of normal incidence radiation. The height of the S-K QD controls the positions of the quantized energy levels, but is not critically important to the desired normal incidence absorption properties. The SML QD or SML QD stack configurations give more control of the structure grown, retains normal incidence absorption properties, and decreases the strain build-up to allow thicker active layers for higher quantum efficiency.
The 20 GHz solid state transmitter design, impatt diode development and reliability assessment
NASA Technical Reports Server (NTRS)
Picone, S.; Cho, Y.; Asmus, J. R.
1984-01-01
A single drift gallium arsenide (GaAs) Schottky barrier IMPATT diode and related components were developed. The IMPATT diode reliability was assessed. A proof of concept solid state transmitter design and a technology assessment study were performed. The transmitter design utilizes technology which, upon implementation, will demonstrate readiness for development of a POC model within the 1982 time frame and will provide an information base for flight hardware capable of deployment in a 1985 to 1990 demonstrational 30/20 GHz satellite communication system. Life test data for Schottky barrier GaAs diodes and grown junction GaAs diodes are described. The results demonstrate the viability of GaAs IMPATTs as high performance, reliable RF power sources which, based on the recommendation made herein, will surpass device reliability requirements consistent with a ten year spaceborne solid state power amplifier mission.
A double-layer based model of ion confinement in electron cyclotron resonance ion source.
Mascali, D; Neri, L; Celona, L; Castro, G; Torrisi, G; Gammino, S; Sorbello, G; Ciavola, G
2014-02-01
The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this "barrier" confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.
Review of Graphene as a Solid State Diffusion Barrier.
Morrow, Wayne K; Pearton, Stephen J; Ren, Fan
2016-01-06
Conventional thin-film diffusion barriers consist of 3D bulk films with high chemical and thermal stability. The purpose of the barrier material is to prevent intermixing or penetration from the two materials that encase it. Adhesion to both top and bottom materials is critical to the success of the barrier. Here, the effectiveness of a single atomic layer of graphene as a solid-state diffusion barrier for common metal schemes used in microelectronics is reviewed, and specific examples are discussed. Initial studies of electrical contacts to graphene show a distinct separation in behavior between metallic groups that strongly or weakly bond to it. The two basic classes of metal reactions with graphene are either physisorbed metals, which bond weakly with graphene, or chemisorbed metals, which bond strongly to graphene. For graphene diffusion barrier testing on Si substrates, an effective barrier can be achieved through the formation of a carbide layer with metals that are chemisorbed. For physisorbed metals, the barrier failure mechanism is loss of adhesion at the metal–graphene interface. A graphene layer encased between two metal layers, in certain cases, can increase the binding energy of both films with graphene, however, certain combinations of metal films are detrimental to the bonding with graphene. While the prospects for graphene's future as a solid-state diffusion barrier are positive, there are open questions, and areas for future research are discussed. A better understanding of the mechanisms which influence graphene's ability to be an effective diffusion barrier in microelectronic applications is required, and additional experiments are needed on a broader range of metals, as well as common metal stack contact structures used in microelectronic applications. The role of defects in the graphene is also a key area, since they will probably influence the barrier properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
RF dynamic and noise performance of Metallic Source/Drain SOI n-MOSFETs
NASA Astrophysics Data System (ADS)
Martin, Maria J.; Pascual, Elena; Rengel, Raúl
2012-07-01
This paper presents a detailed study of the RF and noise performance of n-type Schottky barrier (SB) MOSFETs with a particular focus on the influence of the Schottky barrier height (SBH) on the main dynamic and noise figures of merit. With this aim, a 2D Monte Carlo simulator including tunnelling transport across Schottky interfaces has been developed, with special care to consider quantum transmission coefficients and the influence of image charge effects at the Schottky junctions. Particular attention is paid to the microscopic transport features, including carrier mean free paths or number of scattering events along the channel for investigating the optimization of the device topology and the strategic concepts related to the noise performance of this new architecture. A more effective control of the gate electrode over drain current for low SBH (discussed in terms of internal physical quantities) is translated into an enhanced transconductance gm, cut-off frequency fT, and non-quasistatic dynamic parameters. The drain and gate intrinsic noise sources show a noteworthy degradation with the SBH reduction due to the increased current, influence of hot carriers and reduced number of phonon scatterings. However, the results evidence that this effect is counterbalanced by the extremely improved dynamic performance in terms of gm and fT. Therefore, the deterioration of the intrinsic noise performance of the SB-MOSFET has no significant impact on high-frequency noise FoMs as NFmin, Rn and Gass for low SBH and large gate overdrive conditions. The role of the SBH on Γopt, optimum noise reactance and susceptance has been also analyzed.
Back-Up/ Peak Shaving Fuel Cell System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staudt, Rhonda L.
2008-05-28
This Final Report covers the work executed by Plug Power from 8/11/03 – 10/31/07 statement of work for Topic 2: advancing the state of the art of fuel cell technology with the development of a new generation of commercially viable, stationary, Back-up/Peak-Shaving fuel cell systems, the GenCore II. The Program cost was $7.2 M with the Department of Energy share being $3.6M and Plug Power’s share being $3.6 M. The Program started in August of 2003 and was scheduled to end in January of 2006. The actual program end date was October of 2007. A no cost extension was grated.more » The Department of Energy barriers addressed as part of this program are: Technical Barriers for Distributed Generation Systems: o Durability o Power Electronics o Start up time Technical Barriers for Fuel Cell Components: o Stack Material and Manufacturing Cost o Durability o Thermal and water management Background The next generation GenCore backup fuel cell system to be designed, developed and tested by Plug Power under the program is the first, mass-manufacturable design implementation of Plug Power’s GenCore architected platform targeted for battery and small generator replacement applications in the telecommunications, broadband and UPS markets. The next generation GenCore will be a standalone, H2 in-DC-out system. In designing the next generation GenCore specifically for the telecommunications market, Plug Power is teaming with BellSouth Telecommunications, Inc., a leading industry end user. The final next generation GenCore system is expected to represent a market-entry, mass-manufacturable and economically viable design. The technology will incorporate: • A cost-reduced, polymer electrolyte membrane (PEM) fuel cell stack tailored to hydrogen fuel use • An advanced electrical energy storage system • A modular, scalable power conditioning system tailored to market requirements • A scaled-down, cost-reduced balance of plant (BOP) • Network Equipment Building Standards (NEBS), UL and CE certifications.« less
Blocking germanium diffusion inside silicon dioxide using a co-implanted silicon barrier
NASA Astrophysics Data System (ADS)
Barba, D.; Wang, C.; Nélis, A.; Terwagne, G.; Rosei, F.
2018-04-01
We investigate the effect of co-implanting a silicon sublayer on the thermal diffusion of germanium ions implanted into SiO2 and the growth of Ge nanocrystals (Ge-ncs). High-resolution imaging obtained by transmission electron microscopy and energy dispersive spectroscopy measurements supported by Monte-Carlo calculations shows that the Si-enriched region acts as a diffusion barrier for Ge atoms. This barrier prevents Ge outgassing during thermal annealing at 1100 °C. Both the localization and the reduced size of Ge-ncs formed within the sample region co-implanted with Si are observed, as well as the nucleation of mixed Ge/Si nanocrystals containing structural point defects and stacking faults. Although it was found that the Si co-implantation affects the crystallinity of the formed Ge-ncs, this technique can be implemented to produce size-selective and depth-ordered nanostructured systems by controlling the spatial distribution of diffusing Ge. We illustrate this feature for Ge-ncs embedded within a single SiO2 monolayer, whose diameters were gradually increased from 1 nm to 5 nm over a depth of 100 nm.
Ultrathin Cr added Ru film as a seedless Cu diffusion barrier for advanced Cu interconnects
NASA Astrophysics Data System (ADS)
Hsu, Kuo-Chung; Perng, Dung-Ching; Yeh, Jia-Bin; Wang, Yi-Chun
2012-07-01
A 5 nm thick Cr added Ru film has been extensively investigated as a seedless Cu diffusion barrier. High-resolution transmission electron microscopy micrograph, X-ray diffraction (XRD) pattern and Fourier transform-electron diffraction pattern reveal that a Cr contained Ru (RuCr) film has a glassy microstructure and is an amorphous-like film. XRD patterns and sheet resistance data show that the RuCr film is stable up to 650 °C, which is approximately a 200 °C improvement in thermal stability as compared to that of the pure Ru film. X-ray photoelectron spectroscopy depth profiles show that the RuCr film can successfully block Cu diffusion, even after a 30-min 650 °C annealing. The leakage current of the Cu/5 nm RuCr/porous SiOCH/Si stacked structure is about two orders of magnitude lower than that of a pristine Ru sample for electric field below 1 MV/cm. The RuCr film can be a promising Cu diffusion barrier for advanced Cu metallization.
Tasking and control of a squad of robotic vehicles
NASA Astrophysics Data System (ADS)
Lewis, Christopher L.; Feddema, John T.; Klarer, Paul
2001-09-01
Sandia National Laboratories have developed a squad of robotic vehicles as a test-bed for investigating cooperative control strategies. The squad consists of eight RATLER vehicles and a command station. The RATLERs are medium-sized all-electric vehicles containing a PC104 stack for computation, control, and sensing. Three separate RF channels are used for communications; one for video, one for command and control, and one for differential GPS corrections. Using DGPS and IR proximity sensors, the vehicles are capable of autonomously traversing fairly rough terrain. The control station is a PC running Windows NT. A GUI has been developed that allows a single operator to task and monitor all eight vehicles. To date, the following mission capabilities have been demonstrated: 1. Way-Point Navigation, 2. Formation Following, 3. Perimeter Surveillance, 4. Surround and Diversion, and 5. DGPS Leap Frog. This paper describes the system and briefly outlines each mission capability. The DGPS Leap Frog capability is discussed in more detail. This capability is unique in that it demonstrates how cooperation allows the vehicles to accurately navigate beyond the RF communication range. One vehicle stops and uses its corrected GPS position to re-initialize its receiver to become the DGPS correction station for the other vehicles. Error in position accumulates each time a new vehicle takes over the DGPS duties. The accumulation in error is accurately modeled as a random walk phenomenon. This paper demonstrates how useful accuracy can be maintained beyond the vehicle's range.
Simplified efficient phosphorescent organic light-emitting diodes by organic vapor phase deposition
NASA Astrophysics Data System (ADS)
Pfeiffer, P.; Beckmann, C.; Stümmler, D.; Sanders, S.; Simkus, G.; Heuken, M.; Vescan, A.; Kalisch, H.
2017-12-01
The most efficient phosphorescent organic light-emitting diodes (OLEDs) are comprised of complex stacks with numerous organic layers. State-of-the-art phosphorescent OLEDs make use of blocking layers to confine charge carriers and excitons. On the other hand, simplified OLEDs consisting of only three organic materials have shown unexpectedly high efficiency when first introduced. This was attributed to superior energy level matching and suppressed external quantum efficiency (EQE) roll-off. In this work, we study simplified OLED stacks, manufactured by organic vapor phase deposition, with a focus on charge balance, turn-on voltage (Von), and efficiency. To prevent electrons from leaking through the device, we implemented a compositionally graded emission layer. By grading the emitter with the hole transport material, charge confinement is enabled without additional blocking layers. Our best performing organic stack is composed of only three organic materials in two layers including the emitter Ir(ppy)3 and yields a Von of 2.5 V (>1 cd/m2) and an EQE of 13% at 3000 cd/m2 without the use of any additional light extraction techniques. Changes in the charge balance, due to barrier tuning or adjustments in the grading parameters and layer thicknesses, are clearly visible in the current density-voltage-luminance (J-V-L) measurements. As charge injection at the electrodes and organic interfaces is of great interest but difficult to investigate in complex device structures, we believe that our simplified organic stack is not only a potent alternative to complex state-of-the-art OLEDs but also a well suited test vehicle for experimental studies focusing on the modification of the electrode-organic semiconductor interface.
Remenyik, Carl J.; Woychik, Richard P.; Patek, David R.; Hawk, James A.; Turner, John C.
1999-01-01
An electromechanical device for driving the tip of a microinjection cannula, or needle, through the outer barrier of a blastocyst, cell, or cell nucleus for the injection of cells or other bioactive materials. Either a flexible frame or a ram moving within a base member is employed. Cannula motion is achieved by means of a piezoelectric stack and spring return system. The thrust motion over a predetermined microscopic distance is achieved without cannula setback prior to the thrust movement. Instead of specially prepared beveled and tipped needles, standard unimproved cannulas or needles can be used.
Remenyik, C.J.; Woychik, R.P.; Patek, D.R.; Hawk, J.A.; Turner, J.C.
1999-03-02
An electromechanical device is disclosed for driving the tip of a microinjection cannula, or needle, through the outer barrier of a blastocyst, cell, or cell nucleus for the injection of cells or other bioactive materials. Either a flexible frame or a ram moving within a base member is employed. Cannula motion is achieved by means of a piezoelectric stack and spring return system. The thrust motion over a predetermined microscopic distance is achieved without cannula setback prior to the thrust movement. Instead of specially prepared beveled and tipped needles, standard unimproved cannulas or needles can be used. 6 figs.
Magnetic-Field Control Of Tunnel-Coupling In Strongly Confined One-Dimensional Electron Systems
NASA Astrophysics Data System (ADS)
Fischer, S. F.; Apetrii, G.; Kunze, U.; Schuh, D.; Abstreiter, G.
2007-04-01
One-dimensional (1D) ballistic electron transport is studied through stacked 1D quantum conductors separated by a thin tunneling barrier. The 1D electron systems of large 1D subband spacings (more than 10 meV) allow single mode operation. Degeneracies of 1D subbands of equal lateral mode index are lifted by the formation of symmetric and antisymmetric states and are depicted by anti-crossings of transconductance maxima. We observe a mode-dependent turnover from level anti-crossings to crossings in longitudinal magnetic fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freytag, Stefan, E-mail: stefan.freytag@ovgu.de; Feneberg, Martin; Berger, Christoph
2016-07-07
In{sub x}Ga{sub 1–x}N/GaN single and multi quantum well (MQW) structures with x ≈ 0.13 were investigated optically by photoreflectance, photoluminescence excitation spectroscopy, and luminescence. Clear evidence of unintentional indium incorporation into the nominal GaN barrier layers is found. The unintentional In content is found to be around 3%. Inhomogeneous distribution of In atoms occurs within the distinct quantum well (QW) layers, which is commonly described as statistical alloy fluctuation and leads to the characteristic S-shape temperature shift of emission energy. Furthermore, differences in emission energy between the first and the other QWs of a MQW stack are found experimentally. Thismore » effect is discussed with the help of model calculations and is assigned to differences in the confining potential due to unwanted indium incorporation for the upper QWs.« less
Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles.
Wang, Xuelong; Xiao, Ruijuan; Li, Hong; Chen, Liquan
2017-05-12
Through first-principles calculations and crystal structure prediction techniques, we identify a new layered oxysulfide LiAlSO in orthorhombic structure as a novel lithium superionic conductor. Two kinds of stacking sequences of layers of AlS_{2}O_{2} are found in different temperature ranges. Phonon and molecular dynamics simulations verify their dynamic stabilities, and wide band gaps up to 5.6 eV are found by electronic structure calculations. The lithium migration energy barrier simulations reveal the collective interstitial-host ion "kick-off" hopping mode with barriers lower than 50 meV as the dominating conduction mechanism for LiAlSO, indicating it to be a promising solid-state electrolyte in lithium secondary batteries with fast ionic conductivity and a wide electrochemical window. This is a first attempt in which the lithium superionic conductors are designed by the crystal structure prediction method and may help explore other mixed-anion battery materials.
Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles
NASA Astrophysics Data System (ADS)
Wang, Xuelong; Xiao, Ruijuan; Li, Hong; Chen, Liquan
2017-05-01
Through first-principles calculations and crystal structure prediction techniques, we identify a new layered oxysulfide LiAlSO in orthorhombic structure as a novel lithium superionic conductor. Two kinds of stacking sequences of layers of AlS2O2 are found in different temperature ranges. Phonon and molecular dynamics simulations verify their dynamic stabilities, and wide band gaps up to 5.6 eV are found by electronic structure calculations. The lithium migration energy barrier simulations reveal the collective interstitial-host ion "kick-off" hopping mode with barriers lower than 50 meV as the dominating conduction mechanism for LiAlSO, indicating it to be a promising solid-state electrolyte in lithium secondary batteries with fast ionic conductivity and a wide electrochemical window. This is a first attempt in which the lithium superionic conductors are designed by the crystal structure prediction method and may help explore other mixed-anion battery materials.
Kushwaha, Manvir S
2011-09-28
We report on the theoretical investigation of the elementary electronic excitations in a quantum wire made up of vertically stacked self-assembled InAs/GaAs quantum dots. The length scales (of a few nanometers) involved in the experimental setups prompt us to consider an infinitely periodic system of two-dimensionally confined (InAs) quantum dot layers separated by GaAs spacers. The resultant quantum wire is characterized by a two-dimensional harmonic confining potential in the x-y plane and a periodic (Kronig-Penney) potential along the z (or the growth) direction within the tight-binding approximation. Since the wells and barriers are formed from two different materials, we employ the Bastard's boundary conditions in order to determine the eigenfunctions along the z direction. These wave functions are then used to generate the Wannier functions, which, in turn, constitute the legitimate Bloch functions that govern the electron dynamics along the direction of periodicity. Thus, the Bloch functions and the Hermite functions together characterize the whole system. We then make use of the Bohm-Pines' (full) random-phase approximation in order to derive a general nonlocal, dynamic dielectric function. Thus, developed theoretical framework is then specified to work within a (lowest miniband and) two-subband model that enables us to scrutinize the single-particle as well as collective responses of the system. We compute and discuss the behavior of the eigenfunctions, band-widths, density of states, Fermi energy, single-particle and collective excitations, and finally size up the importance of studying the inverse dielectric function in relation with the quantum transport phenomena. It is remarkable to notice how the variation in the barrier- and well-widths can allow us to tailor the excitation spectrum in the desired energy range. Given the advantage of the vertically stacked quantum dots over the planar ones and the foreseen applications in the single-electron devices and in the quantum computation, it is quite interesting and important to explore the electronic, optical, and transport phenomena in such systems. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Strand, Kari
2005-04-01
The 2300-2600 m thick Palaeoproterozoic East Puolanka Group within the central Fennoscandian Shield records four major transgressions on the cratonic margin within the approximate time period 2.25-2.10 Ga. Stacking of siliciclastic facies in parasequences and parasequence sets provides data to evaluate oscillation of relative sea-level and subsidence on different temporal scales. The lowermost part of the passive margin prism is characterized by alluvial plain to shallow marine sediments deposited in incised valleys. The succeeding highstand period is recorded by ca. 250 m of progradational parasequence sets of predominantly rippled and horizontally laminated sandstones, representing stacked wave-dominated shoreline units in sequence 1, capped by a hiatus or, in some places, by a subaerial lava. As relative sea-level rose again, sand-rich barrier-beach complexes developed with microtidal lagoons and inlets, corresponding to a retrogradational parasequence set. This was followed by a highstand period, with aggradation and progradation of alluvial plain and coastal sediments grading up into wave-tide influenced shoreline deposits in sequence 2. In sequence 3, the succeeding mudstones represent tidal flat deposits in a back-barrier region. With continued transgression, the parasequences stacked retrogradationally, each flooding episode being recorded by increasingly deeper water deposits above low-angle cross-bedded sandstones of the swash zones. The succeeding highstand progradation is represented by alluvial plain deposits. The next transgressive systems tract, overlying an inferred erosional ravinement surface, is recorded by a retrogradational parasequence set dominated by low-angle cross-stratified swash zone deposits in sequence 4. The large-scale trough cross-bed sets in these parasequences represent sand shoals and sheets of the inner shelf system. The overall major transgression recorded in the lowermost part of the Palaeoproterozoic cratonic margin succession was related to first- to second-order sea-level changes, probably due to increasing regional thermal subsidence of the lithosphere following partial continental breakup. The stratigraphic evolution can be related to changes of relative sea-level with a frequency of ca. 25 million years, probably propagated by episodic thermal subsidence. The parasequences identified here are related to high-frequency cycles of relative sea-level change due to low-magnitude eustatic oscillations.
NASA Astrophysics Data System (ADS)
Boisvert, J.-S.; Sadeghi, N.; Margot, J.; Massines, F.
2017-01-01
Diffuse dielectric barrier discharges in atmospheric-pressure helium can be sustained over a wide range of excitation frequencies (from, but not restricted, 25 kHz to 15 MHz). The aim of the present paper is to identify the specific characteristics of the discharge modes that can be sustained in this frequency range, namely, the atmospheric-pressure Townsend-like discharge (APTD-L) mode, the atmospheric-pressure glow discharge (APGD) mode, the Ω mode, the hybrid mode, and the RF-α mode. This is achieved experimentally, by measuring the density of helium metastable atoms, which are known to play a driving role on the discharge kinetics. This density is measured by means of two absorption spectroscopy methods, one using a spectral lamp and the other one using a diode laser as a light source. The first one provides the time-averaged atom densities in the singlet He(21S) and triplet He(23S) metastable states, while with the second one we access the time-resolved density of He(23S) atoms. Time-averaged measurements indicate that the He(23S) density is relatively low in the APTD-L, the Ω and the RF-α modes ( <4 ×1016 m-3 ) slightly higher in the APGD mode ( 2 -7 ×1016 m-3 ), and still higher ( >1 ×1017 m-3 ) in the hybrid mode. The hybrid mode is exclusively observed for frequencies from 0.2 to 3 MHz. However, time-resolved density measurement shows that at 1 MHz and below, the hybrid mode is not continuously sustained. Instead, the discharge oscillates between the Ω and the hybrid mode with a switching frequency about the kilohertz. This explains the significantly lower power required to sustain the plasma as compared to above 1 MHz.
Building a Billion Spatio-Temporal Object Search and Visualization Platform
NASA Astrophysics Data System (ADS)
Kakkar, D.; Lewis, B.
2017-10-01
With funding from the Sloan Foundation and Harvard Dataverse, the Harvard Center for Geographic Analysis (CGA) has developed a prototype spatio-temporal visualization platform called the Billion Object Platform or BOP. The goal of the project is to lower barriers for scholars who wish to access large, streaming, spatio-temporal datasets. The BOP is now loaded with the latest billion geo-tweets, and is fed a real-time stream of about 1 million tweets per day. The geo-tweets are enriched with sentiment and census/admin boundary codes when they enter the system. The system is open source and is currently hosted on Massachusetts Open Cloud (MOC), an OpenStack environment with all components deployed in Docker orchestrated by Kontena. This paper will provide an overview of the BOP architecture, which is built on an open source stack consisting of Apache Lucene, Solr, Kafka, Zookeeper, Swagger, scikit-learn, OpenLayers, and AngularJS. The paper will further discuss the approach used for harvesting, enriching, streaming, storing, indexing, visualizing and querying a billion streaming geo-tweets.
Ti-Doped GaOx Resistive Switching Memory with Self-Rectifying Behavior by Using NbOx/Pt Bilayers.
Park, Ju Hyun; Jeon, Dong Su; Kim, Tae Geun
2017-12-13
Crossbar arrays (CBAs) with resistive random access memory (ReRAM) constitute an established architecture for high-density memory. However, sneak paths via unselected cells increase the total power consumption of these devices and limit the array size. To eliminate such sneak-path problems, we propose a Ti/GaO x /NbO x /Pt structure with a self-rectifying resistive-switching (RS) behavior. In this structure, to reduce the operating voltage, we used a Ti/GaO x stack to increase the number of trap sites in the RS GaO x layer through interfacial reactions between the Ti and GaO x layers. This increase enables easier carrier transport with reduced electric fields. We then adopted a NbO x /Pt stack to add rectifying behavior to the RS GaO x layer. This behavior is a result of the large Schottky barrier height between the NbO x and Pt layers. Finally, both the Ti/GaO x and NbO x /Pt stacks were combined to realize a self-rectifying ReRAM device, which exhibited excellent performance. Characteristics of the device include a low operating voltage range (-2.8 to 2.5 V), high on/off ratios (∼20), high selectivity (∼10 4 ), high operating speeds (200-500 ns), a very low forming voltage (∼3 V), stable operation, and excellent uniformity for high-density CBA-based ReRAM applications.
Wang, Jer-Chyi; Chan, Ya-Ting; Chen, Wei-Fan; Wu, Ming-Chung; Lai, Chao-Sung
2017-10-25
Bernal- and rhombohedral-stacked trilayer graphene (B- and r-TLG) on nickel (Ni) and iridium (Ir) films acting as bottom electrodes (BEs) of silver electrochemical metallization cells (Ag-EMCs) have been investigated in this study. Prior to the fabrication of the EMC devices, Raman mapping and atomic force microscopy are applied to identify the B- and r-TLG sheets, with the latter revealing a significant D peak and a rough surface for the Ir film. The Ag-EMCs with the stacked BE of r-TLG on the Ir film show a conductive mechanism of Schottky emission at the positive top electrode bias for both high- and low-resistance states that can be examined by the resistance change with the device area and are modulated by pulse bias operation. Thus, an effective electron barrier height of 0.262 eV at the r-TLG and Ir interface is obtained because of the conspicuous energy gap of r-TLG on the Ir film and the van der Waals (vdW) gap between the r-TLG and Ir contact metal. With the use of Ni instead of Ir contact metal, the Ag-EMCs with TLG BE demonstrate +0.3 V/-0.75 V operation voltages, more than 10 4 s data retention at 115 °C and 250 times endurance testing, making the TLG sheets suitable for low-power nonvolatile memory applications on flexible substrates.
NASA Astrophysics Data System (ADS)
Jiao, Guohua; Liu, Bo; Li, Qiran
2015-08-01
Ultrathin RuMoC amorphous films prepared by magnetron co-sputtering with Ru and MoC targets in a sandwiched scheme Si/ p-SiOC:H/RuMoC/Cu were investigated as barrier in copper metallization. The evolution of final microstructure of RuMoC alloy films show sensitive correlation with the content of doped Mo and C elements and can be easily controlled by adjusting the sputtering power of the MoC target. There was no signal of interdiffusion between the Cu and SiOC:H layer in the sample of Cu/RuMoC/ p-SiOC:H/Si, even annealing up to 500 °C. Very weak signal of oxygen have been confirmed in the RuMoC barrier layer both as-deposited and after being annealed, and a good performance on preventing oxygen diffusion has been proved. Leakage current and resistivity evaluations also reveal the excellent thermal reliability of this Si/ p-SiOC:H/RuMoC/Cu film stack at the temperatures up to 500 °C, indicating its potential application in the advanced barrierless Cu metallization.
NASA Astrophysics Data System (ADS)
Martins, L.; Ventura, J.; Ferreira, R.; Freitas, P. P.
2017-12-01
Due to their high tunnel magnetoresistance (TMR) ratios at room temperature, magnetic tunnel junctions (MTJs) with a crystalline MgO insulating barrier and CoFeB ferromagnetic (FM) layers are the best candidates for novel magnetic memory applications. To overcome impedance matching problems in electronic circuits, the MgO barrier must have an ultra-low thickness (∼1 nm). Therefore, it is mandatory to optimize the MTJ fabrication process, in order to prevent relevant defects in the MgO barrier that could affect the magnetic and electrical MTJ properties. Here, a smoothing process aiming to decrease the roughness of the buffer surface before the deposition of the full MTJ stack is proposed. An ion beam milling process was used to etch the surface of an MTJ buffer structure with a Ru top layer. The morphologic results prove an effective decrease of the Ru surface roughness with the etching time. The electrical and magnetic results obtained for MTJs with smoothed buffer structures show a direct influence of the buffer roughness and coupling field on the improvement of the TMR ratio.
NASA Astrophysics Data System (ADS)
Hamzah, Afiq; Ezaila Alias, N.; Ismail, Razali
2018-06-01
The aim of this study is to investigate the memory performances of gate-all-around floating gate (GAA-FG) memory cell implementing engineered tunnel barrier concept of variable oxide thickness (VARIOT) of low-k/high-k for several high-k (i.e., Si3N4, Al2O3, HfO2, and ZrO2) with low-k SiO2 using three-dimensional (3D) simulator Silvaco ATLAS. The simulation work is conducted by initially determining the optimized thickness of low-k/high-k barrier-stacked and extracting their Fowler–Nordheim (FN) coefficients. Based on the optimized parameters the device performances of GAA-FG for fast program operation and data retention are assessed using benchmark set by 6 and 8 nm SiO2 tunnel layer respectively. The programming speed has been improved and wide memory window with 30% increment from conventional SiO2 has been obtained using SiO2/Al2O3 tunnel layer due to its thin low-k dielectric thickness. Furthermore, given its high band edges only 1% of charge-loss is expected after 10 years of ‑3.6/3.6 V gate stress.
Lee, Jun Suk; Sahu, Bibhuti Bhusan; Han, Jeon Geon
2016-11-30
Due to the problem of degradation by moisture or oxygen, there is growing interest in efficient gas diffusion barriers for organic optoelectronic devices. Additionally, for the continuous and long-term operation of a device, dedicated flexible thin film encapsulation is required, which is the foremost challenge. Many efforts are being undertaken in the plasma assisted deposition process control for the optimization of film properties. Control of the plasma density along with the energy of the principal plasma species is critical to inducing alteration of the plasma reactivity, chemistry, and film properties. Here, we have used the radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) technique to deposit amorphous silicon nitride (SiN x ) barrier films onto a plastic substrate at different pressures. A large part of our efforts is devoted to a detailed study of the process parameters controlling the plasma treatment. Numerous plasma diagnostic techniques combined with various characterization tools are purposefully used to characterize and investigate the plasma environment and the associated film properties. This contribution also reports a study of the correlations between the plasma chemistry and the chemical, mechanical, barrier, and optical properties of the deposited films. The data reveal that the film possesses a very low stress for the condition where the net energy imparted on the substrate is at a minimum. Simultaneously, a relatively high ion flux and high energy of the ions impinging on the film growth surfaces are crucial for controlling the film stress and the resulting barrier properties.
Very high-current-density Nb/AlN/Nb tunnel junctions for low-noise submillimeter mixers
NASA Astrophysics Data System (ADS)
Kawamura, Jonathan; Miller, David; Chen, Jian; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.
2000-04-01
We have fabricated and tested submillimeter-wave superconductor-insulator-superconductor (SIS) mixers using very high-current-density Nb/AlN/Nb tunnel junctions (Jc≈30 kA cm-2). The junctions have low-resistance-area products (RNA≈5.6 Ω μm2), good subgap-to-normal resistance ratios Rsg/RN≈10, and good run-to-run reproducibility. From Fourier transform spectrometer measurements, we infer that ωRNC=1 at 270 GHz. This is a factor of 2.5 improvement over what is generally available with Nb/AlOx/Nb junctions suitable for low-noise mixers. The AlN-barrier junctions are indeed capable of low-noise operation: we measure an uncorrected double-sideband receiver noise temperature of TRX=110 K at 533 GHz for an unoptimized device. In addition to providing wider bandwidth operation at lower frequencies, the AlN-barrier junctions will considerably improve the performance of THz SIS mixers by reducing rf loss in the tuning circuits.
NASA Astrophysics Data System (ADS)
Hou, Bin; Ma, Xiaohua; Yang, Ling; Zhu, Jiejie; Zhu, Qing; Chen, Lixiang; Mi, Minhan; Zhang, Hengshuang; Zhang, Meng; Zhang, Peng; Zhou, Xiaowei; Hao, Yue
2017-07-01
In this paper, a normally-off AlGaN/GaN high-electron-mobility transistors (HEMT) fabricated using inductively coupled plasma (ICP) CF4 plasma recessing and an implantation technique is reported. A gate-to-channel distance of ˜10 nm and an equivalent negative fluorine sheet charge density of -1.21 × 1013 cm-2 extracted using a simple threshold voltage (V th) analytical model result in a high V th of 1.5 V, a peak transconductance of 356 mS/mm, and a subthreshold slope of 133 mV/decade. A small degradation of channel mobility leads to a high RF performance with f T/f max of 41/125 GHz, resulting in a record high f T × L g product of 10.66 GHz·µm among Schottky barrier AlGaN/GaN normally-off HEMTs with V th exceeding 1 V, to the best of our knowledge.
NASA Astrophysics Data System (ADS)
Packeer, F.; Mohamad Isa, M.; Mat Jubadi, W.; Ian, K. W.; Missous, M.
2013-07-01
This study focuses on the area of the epitaxial design, fabrication and characterization of a 1 µm gate-length InP-based pseudomorphic high electron mobility transistor (pHEMT) using InGaAs-InAlAs material systems. The advanced epitaxial layer design incorporates a highly strained aluminum-rich Schottky contact barrier, an indium-rich channel and a double delta-doped structure, which significantly improves upon the conventional low-noise pHEMT which suffers from high gate current leakage and low breakdown voltage. The outstanding achievements of the new design approach are 99% less gate current leakage and a 73% increase in breakdown voltage, compared with the conventional design. Furthermore, no degradation in RF performance is observed in terms of the cut-off frequency in this new highly tensile strained design. The remarkable performance of this advanced pHEMT design facilitates the implementation of outstanding low-noise devices.
NASA Astrophysics Data System (ADS)
Perotti, Jose M.; Lucena, Angel R.; Mullenix, Pamela A.; Mata, Carlos T.
2006-05-01
Current and future requirements of aerospace sensors and transducers demand the design and development of a new family of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors and transducers will possess a certain degree of intelligence in order to provide the end user with critical data in a more efficient manner. Communication between networks of traditional or next-generation sensors can be accomplished by a Wireless Sensor Network (WSN) developed by NASA's Instrumentation Branch and ASRC Aerospace Corporation at Kennedy Space Center (KSC), consisting of at least one central station and several remote stations and their associated software. The central station is application-dependent and can be implemented on different computer hardware, including industrial, handheld, or PC-104 single-board computers, on a variety of operating systems: embedded Windows, Linux, VxWorks, etc. The central stations and remote stations share a similar radio frequency (RF) core module hardware that is modular in design. The main components of the remote stations are an RF core module, a sensor interface module, batteries, and a power management module. These modules are stackable, and a common bus provides the flexibility to stack other modules for additional memory, increased processing, etc. WSN can automatically reconfigure to an alternate frequency if interference is encountered during operation. In addition, the base station will autonomously search for a remote station that was perceived to be lost, using relay stations and alternate frequencies. Several wireless remote-station types were developed and tested in the laboratory to support different sensing technologies, such as resistive temperature devices, silicon diodes, strain gauges, pressure transducers, and hydrogen leak detectors.
Rahmani, Meisam; Ahmadi, Mohammad Taghi; Abadi, Hediyeh Karimi Feiz; Saeidmanesh, Mehdi; Akbari, Elnaz; Ismail, Razali
2013-01-30
Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current-voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption.
NASA Astrophysics Data System (ADS)
Mondal, Praloy; Das, Debajyoti
2017-07-01
Technologically appropriate device friendly ZnO:Ga films have been prepared at a low growth temperature (100 °C) by changing the RF power (P) applied to the magnetron plasma. Structurally preferred c-axis orientation of the ZnO:Ga network has been attained with I〈002〉/I〈103〉 > 5. The c-axis oriented grains of wurtzite ZnO:Ga grows geometrically and settles in tangentially, providing favorable conduction path for stacked layer devices. Nano-sheet like structures produced at the surface are interconnected and provide conducting path across the surface; however, those accommodate a lot of pores in between that help better light trapping and reduce the reflection loss. The optimized ZnO:Ga thin film prepared at RF power of 200 W has 〈002〉 oriented grains of average size ∼10 nm and exhibits a very high conductivity ∼200 S cm-1 and elevated transmission (∼93% at 500 nm) in the visible range. The optimized ZnO:Ga film has been used as the transparent conducting oxide (TCO) window layer of RF-PECVD grown silicon thin film solar cells in glass/TCO/p-i-n-Si/Al configuration. The characteristics of identically prepared p-i-n-Si solar cells are compared by replacing presently developed ZnO:Ga TCO with the best quality U-type SnO2 coated Asahi glass substrates. The ZnO:Ga coated glass substrate offers a higher open circuit voltage (VOC) and the higher fill factor (FF). The ZnO:Ga film being more stable in hydrogen plasma than its SnO2 counterpart, maintains a high transparency to the solar radiation and improves the VOC, while reduced diffusion of Zn across the p-layer creates less defects at the p-i interface in Si:H cells and thereby, increases the FF. Nearly identical conversion efficiency is preserved for both TCO substrates. Excellent c-axis orientation even at low growth temperature promises improved device performance by extended parametric optimization.
NASA Astrophysics Data System (ADS)
Abusnina, Mohamed; Moutinho, Helio; Al-Jassim, Mowafak; DeHart, Clay; Matin, Mohammed
2014-09-01
In this work, Cu2ZnSnS4 (CZTS) thin films were prepared by the sulfurization of metal precursors deposited sequentially via radio frequency magnetron sputtering on Mo-coated soda-lime glass. The stack order of the precursors was Mo/Zn/Sn/Cu. Sputtered precursors were annealed in sulfur atmosphere with nine different conditions to study the impact of sulfurization time and substrate temperature on the structural, morphological, and optical properties of the final CZTS films. X-ray fluorescence was used to determine the elemental composition ratio of the metal precursors. Final CZTS films were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). XRD and EDS were combined to investigate the films' structure and to identify the presence of secondary phases. XRD analysis indicated an improvement in film crystallinity with an increase of the substrate temperature and annealing times. Also indicated was the minimization and/or elimination of secondary phases when the films experienced longer annealing time. EDS revealed slight Sn loss in films sulfurized at 550°C; however, an increase of the sulfurization temperature to 600°C did not confirm these results. SEM study showed that films treated with higher temperatures exhibited dense morphology, indicating the completion of the sulfurization process. The estimated absorption coefficient was on the order of 104 cm-1 for all CZTS films, and the values obtained for the optical bandgap energy of the films were between 1.33 eV and 1.52 eV.
NASA Astrophysics Data System (ADS)
Zhou, Xiaoyu; Liu, Xinwei; Chiang, Spencer; Cao, Wenbo; Li, Ming; Ouyang, Zheng
2018-05-01
Ion trap is an excellent platform to perform tandem mass spectrometry (MS/MS), but has an intrinsic drawback in resolving power. Using ion resonant ejection as an example, the resolution degradation can be largely attributed to the broadening of the resonant frequency band (RFB) between ion motion and driving alternative-current (AC). To solve this problem, stimulated motion suppression (STMS) was developed. The key idea of STMS is the use of two suppression alternative-current (SAC) signals, which both have reversed initial phases to the main AC. The SACs can block the unexpected sideband ion resonances (or ejections), therefore playing a key role in sharpening the RFB. The proof-of-concept has been demonstrated through ion trajectory simulations and validated experimentally. STMS provides a new and versatile means for the improvement of the ion trap resolution, which for a long time has reached the bottleneck through conventional methods, e.g., increasing the radio-frequency (RF) voltage and decreasing the mass scan rate. At the end, it is worth noting that the idea of STMS is very general and principally can be applied in any RF device for the purposes of high-resolution mass analysis and ion isolation.
Li, Quansong; Giussani, Angelo; Segarra‐Martí, Javier; Nenov, Artur; Rivalta, Ivan; Voityuk, Alexander A.; Mukamel, Shaul; Roca‐Sanjuán, Daniel
2016-01-01
Abstract The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D‐UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine 1La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine 1Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter‐base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long‐lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the 1Lb, S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D‐UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm−1 in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D‐UV spectroscopy to disentangle the photophysics of multichromophoric systems. PMID:27113273
Li, Quansong; Giussani, Angelo; Segarra-Martí, Javier; Nenov, Artur; Rivalta, Ivan; Voityuk, Alexander A; Mukamel, Shaul; Roca-Sanjuán, Daniel; Garavelli, Marco; Blancafort, Lluís
2016-05-23
The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D-UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine (1) La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine (1) Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter-base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long-lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the (1) Lb , S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D-UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm(-1) in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D-UV spectroscopy to disentangle the photophysics of multichromophoric systems. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Multiple conversion between the genes encoding bacterial class-I release factors
Ishikawa, Sohta A.; Kamikawa, Ryoma; Inagaki, Yuji
2015-01-01
Bacteria require two class-I release factors, RF1 and RF2, that recognize stop codons and promote peptide release from the ribosome. RF1 and RF2 were most likely established through gene duplication followed by altering their stop codon specificities in the common ancestor of extant bacteria. This scenario expects that the two RF gene families have taken independent evolutionary trajectories after the ancestral gene duplication event. However, we here report two independent cases of conversion between RF1 and RF2 genes (RF1-RF2 gene conversion), which were severely examined by procedures incorporating the maximum-likelihood phylogenetic method. In both cases, RF1-RF2 gene conversion was predicted to occur in the region encoding nearly entire domain 3, of which functions are common between RF paralogues. Nevertheless, the ‘direction’ of gene conversion appeared to be opposite from one another—from RF2 gene to RF1 gene in one case, while from RF1 gene to RF2 gene in the other. The two cases of RF1-RF2 gene conversion prompt us to propose two novel aspects in the evolution of bacterial class-I release factors: (i) domain 3 is interchangeable between RF paralogues, and (ii) RF1-RF2 gene conversion have occurred frequently in bacterial genome evolution. PMID:26257102
NASA Astrophysics Data System (ADS)
Kuntze, Thomas; Wollmann, Philipp; Klotzbach, Udo; Fledderus, Henri
2017-03-01
The proper long term operation of organic electronic devices like organic photovoltaics OPV depends on their resistance to environmental influences such as permeation of water vapor. Major efforts are spent to encapsulate OPV. State of the art is sandwich-like encapsulation between two ultra-barrier foils. Sandwich encapsulation faces two major disadvantages: high costs ( 1/3 of total costs) and parasitic intrinsic water (sponge effects of the substrate foil). To fight these drawbacks, a promising approach is to use the OPV substrate itself as barrier by integration of an ultra-barrier coating, followed by alternating deposition and structuring of OPV functional layers. In effect, more functionality will be integrated into less material, and production steps are reduced in number. All processing steps must not influence the underneath barrier functionality, while all electrical functionalities must be maintained. As most reasonable structuring tool, short and ultrashort pulsed lasers USP are used. Laser machining applies to three layers: bottom electrode made of transparent conductive materials (P1), organic photovoltaic operative stack (P2) and top electrode (P3). In this paper, the machining of functional 110…250 nm layers of flexible OPV by USP laser systems is presented. Main focus is on structuring without damaging the underneath ultra-barrier layer. The close-to-process machining quality characterization is performed with the analysis tool "hyperspectral imaging" (HSI), which is checked crosswise with the "gold standard" Ca-test. It is shown, that both laser machining and quality controlling, are well suitable for R2R production of OPV.
Potential barrier heights at metal on oxygen-terminated diamond interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muret, P., E-mail: pierre.muret@neel.cnrs.fr; Traoré, A.; Maréchal, A.
2015-11-28
Electrical properties of metal-semiconductor (M/SC) and metal/oxide/SC structures built with Zr or ZrO{sub 2} deposited on oxygen-terminated surfaces of (001)-oriented diamond films, comprised of a stack of lightly p-doped diamond on a heavily doped layer itself homoepitaxially grown on an Ib substrate, are investigated experimentally and compared to different models. In Schottky barrier diodes, the interfacial oxide layer evidenced by high resolution transmission electron microscopy and electron energy losses spectroscopy before and after annealing, and barrier height inhomogeneities accounts for the measured electrical characteristics until flat bands are reached, in accordance with a model which generalizes that by Tung [Phys.more » Rev. B 45, 13509 (1992)] and permits to extract physically meaningful parameters of the three kinds of interface: (a) unannealed ones, (b) annealed at 350 °C, (c) annealed at 450 °C with the characteristic barrier heights of 2.2–2.5 V in case (a) while as low as 0.96 V in case (c). Possible models of potential barriers for several metals deposited on well defined oxygen-terminated diamond surfaces are discussed and compared to experimental data. It is concluded that interface dipoles of several kinds present at these compound interfaces and their chemical evolution due to annealing are the suitable ingredients that are able to account for the Mott-Schottky behavior when the effect of the metal work function is ignored, and to justify the reverted slope observed regarding metal work function, in contrast to the trend always reported for all other metal-semiconductor interfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyunjung; Park, Jingyu; Jeon, Heeyoung
Diffusion barrier characteristics of tungsten–nitride–carbide (WN{sub x}C{sub y}) thin films interposed between Cu and SiO{sub 2} layers were studied. The WN{sub x}C{sub y} films were deposited by remote plasma atomic layer deposition (RPALD) using a metal organic source, ({sup Me}Cp)W(CO){sub 2}(NO), and ammonia. Auger electron spectroscopy analysis indicated the WN{sub x}C{sub y} films consisted of tungsten, nitrogen, carbon, and oxygen. X-ray diffraction (XRD) analysis showed that the film deposited at 350 °C was nanocrystalline. The resistivity of WN{sub x}C{sub y} film deposited by RPALD was very low compared to that in previous research because of the lower nitrogen content and differentmore » crystal structures of the WN{sub x}C{sub y}. To verify the diffusion barrier characteristics of the WN{sub x}C{sub y} film, Cu films were deposited by physical vapor deposition after WN{sub x}C{sub y} film was formed by RPALD on Si substrate. The Cu/WN{sub x}C{sub y}/Si film stack was annealed in a vacuum by rapid thermal annealing at 500 °C. Cu diffusion through the barrier layer was verified by XRD. Stable film properties were observed up to 500 °C, confirming that WN{sub x}C{sub y} film is suitable as a Cu diffusion barrier in microelectronic circuits.« less
Photovoltaic driven multiple quantum well optical modulator
NASA Technical Reports Server (NTRS)
Maserjian, Joseph (Inventor)
1990-01-01
Multiple quantum well (MQW) structures (12) are utilized to provide real-time, reliable, high-performance, optically-addressed spatial-light modulators (SLM) (10). The optically-addressed SLM comprises a vertical stack of quantum well layers (12a) within the penetration depth of an optical write signal 18, a plurality of space charge barriers (12b) having predetermined tunneling times by control of doping and thickness. The material comprising the quantum well layers has a lower bandgap than that of the space charge barrier layers. The write signal modulates a read signal (20). The modulation sensitivity of the device is high and no external voltage source is required. In a preferred embodiment, the SLM having interleaved doped semiconductor layers for driving the MQW photovoltaically is characterized by the use of a shift analogous to the Moss-Burnstein shift caused by the filling of two-dimensional states in the multiple quantum wells, thus allowing high modulation sensitivity in very narrow wells. Arrays (30) may be formed with a plurality of the modulators.
Tunable Schottky barrier and electronic properties in borophene/g-C2N van der Waals heterostructures
NASA Astrophysics Data System (ADS)
Jiang, J. W.; Wang, X. C.; Song, Y.; Mi, W. B.
2018-05-01
By stacking different layers of two dimensional (2D) monolayer materials, the electronic properties of the 2D van der Waals (vdW) heterostructures can be tailored. However, the Schottky barrier formed between 2D semiconductor and metallic electrode has greatly limited the application of 2D semiconductor in nanoelectronic and optoelectronic devices. Herewith, we investigate the electronic properties of borophene/g-C2N vdW heterostructures by first-principles calculations. The results indicate that electronic structures of borophene and g-C2N are preserved in borophene/g-C2N vdW heterostructures. Meanwhile, upon the external electric field, a transition from the n-type Schottky contact to Ohmic contact is induced, and the carrier concentration between the borophene and g-C2N interfaces can be tuned. These results are expected to provide useful insight in the nanoelectronic and optoelectronic devices based on the borophene/g-C2N vdW heterostructures.
Resonant tunnelling and negative differential conductance in graphene transistors
Britnell, L.; Gorbachev, R. V.; Geim, A. K.; Ponomarenko, L. A.; Mishchenko, A.; Greenaway, M. T.; Fromhold, T. M.; Novoselov, K. S.; Eaves, L.
2013-01-01
The chemical stability of graphene and other free-standing two-dimensional crystals means that they can be stacked in different combinations to produce a new class of functional materials, designed for specific device applications. Here we report resonant tunnelling of Dirac fermions through a boron nitride barrier, a few atomic layers thick, sandwiched between two graphene electrodes. The resonance occurs when the electronic spectra of the two electrodes are aligned. The resulting negative differential conductance in the device characteristics persists up to room temperature and is gate voltage-tuneable due to graphene’s unique Dirac-like spectrum. Although conventional resonant tunnelling devices comprising a quantum well sandwiched between two tunnel barriers are tens of nanometres thick, the tunnelling carriers in our devices cross only a few atomic layers, offering the prospect of ultra-fast transit times. This feature, combined with the multi-valued form of the device characteristics, has potential for applications in high-frequency and logic devices. PMID:23653206
Khrapunov, Sergei; Brenowitz, Michael
2011-01-01
MfpA from Mycobacterium tuberculosis is a founding member of the pentapeptide repeat class of proteins (PRP) that is believed to confer bacterial resistance to the drug fluoroquinolone by mimicking the size, shape and surface charge of duplex DNA. We show that phenylalanine side chain stacking stabilizes the N-terminus of MfpA’s pentapeptide thus extending the DNA mimicry analogy. The Lumry-Eyring model was applied to multiple spectral measures of MfpA denaturation revealing that the MfpA dimer dissociates to monomers which undergo a structural transition that leads to aggregation. MfpA retains high secondary and tertiary structure content under denaturing conditions. Dimerization stabilizes MfpA’s pentapeptide repeat fold. The high Arrhenius activation energy of the barrier to aggregate formation rationalizes its stability. The mechanism of MfpA denaturation and refolding is a ‘double funnel’ energy landscape where the ‘native’ and ‘aggregate’ funnels are separated by the high barrier that is not overcome during in vitro refolding. PMID:21605934
NASA Astrophysics Data System (ADS)
Li, Xiangguo; Wang, Yun-Peng; Zhang, X.-G.; Cheng, Hai-Ping
A prototype field-effect transistor (FET) with fascinating properties can be made by assembling graphene and two-dimensional insulating crystals into three-dimensional stacks with atomic layer precision. Transition metal dichalcogenides (TMDCs) such as WS2, MoS2 are good candidates for the atomically thin barrier between two layers of graphene in the vertical FET due to their sizable bandgaps. We investigate the electronic properties of the Graphene/TMDCs/Graphene sandwich structure using first-principles method. We find that the effective tunnel barrier height of the TMDC layers in contact with the graphene electrodes has a layer dependence and can be modulated by a gate voltage. Consequently a very high ON/OFF ratio can be achieved with appropriate number of TMDC layers and a suitable range of the gate voltage. The spin-orbit coupling in TMDC layers is also layer dependent but unaffected by the gate voltage. These properties can be important in future nanoelectronic device designs. DOE/BES-DE-FG02-02ER45995; NERSC.
Structural insights into eRF3 and stop codon recognition by eRF1
Cheng, Zhihong; Saito, Kazuki; Pisarev, Andrey V.; Wada, Miki; Pisareva, Vera P.; Pestova, Tatyana V.; Gajda, Michal; Round, Adam; Kong, Chunguang; Lim, Mengkiat; Nakamura, Yoshikazu; Svergun, Dmitri I.; Ito, Koichi; Song, Haiwei
2009-01-01
Eukaryotic translation termination is mediated by two interacting release factors, eRF1 and eRF3, which act cooperatively to ensure efficient stop codon recognition and fast polypeptide release. The crystal structures of human and Schizosaccharomyces pombe full-length eRF1 in complex with eRF3 lacking the GTPase domain revealed details of the interaction between these two factors and marked conformational changes in eRF1 that occur upon binding to eRF3, leading eRF1 to resemble a tRNA molecule. Small-angle X-ray scattering analysis of the eRF1/eRF3/GTP complex suggested that eRF1's M domain contacts eRF3's GTPase domain. Consistently, mutation of Arg192, which is predicted to come in close contact with the switch regions of eRF3, revealed its important role for eRF1's stimulatory effect on eRF3's GTPase activity. An ATP molecule used as a crystallization additive was bound in eRF1's putative decoding area. Mutational analysis of the ATP-binding site shed light on the mechanism of stop codon recognition by eRF1. PMID:19417105
Ion source with external RF antenna
Leung, Ka-Ngo; Ji, Qing; Wilde, Stephen
2005-12-13
A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source.
Radiofrequency Thermal Ablation: Increase in Lesion Diameter with Continuous Acetic Acid Infusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubienski, Andreas; Duex, Markus; Lubienski, Katrin
Purpose. To evaluate the influence of continuous infusion of acetic acid 50% during radiofrequency ablation (RFA) on the size of the thermal lesion produced. Methods. Radiofrequency (RF) was applied to excised bovine liver by using an expandable needle electrode with 10 retractable tines (LeVeen Needle Electrode, RadioTherapeutics, Sunnyvale, CA) connected to a commercially available RF generator (RF 2000, RadioTherapeutics, Sunnyvale, CA). Experiments were performed using three different treatment modalities: RF only (n = 15), RF with continuous saline 0.9% infusion (n = 15), and RF with continuous acetic acid 50% infusion (n = 15). RF duration, power output, tissue impedance,more » and time to a rapid rise in impedance were recorded. The ablated lesions were evaluated both macroscopically and histologically. Results. The ablated lesions appeared as spherical or ellipsoid, well-demarcated pale areas with a surrounding brown rim with both RF only and RF plus saline 0.9% infusion. In contrast, thermolesions generated with RF in combination with acetic acid 50% infusion were irregular in shape and the central portion was jelly-like. Mean diameter of the coagulation necrosis was 22.3 {+-} 2.1 mm (RF only), 29.2 {+-} 4.8 mm (RF + saline 0.9%) and 30.7 {+-} 5.7 mm (RF + acetic acid 50%), with a significant increase in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Time to a rapid rise in impedance was significantly prolonged in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Conclusions. A combination of RF plus acetic acid 50% infusion is able to generate larger thermolesions than RF only or RF combined with saline 0.9% infusion.« less
NASA Astrophysics Data System (ADS)
Hourdakis, E.; Koutsoureli, M.; Papaioannou, G.; Nassiopoulou, A. G.
2018-06-01
Barrier-type anodic alumina thin films are interesting for use in high capacitance density metal-insulator-metal capacitors due to their excellent dielectric properties at small thickness. This thickness is easily controlled by the anodization voltage. In previous papers we studied the main parameters of interest of the Al/barrier-type anodic alumina/Al structure for use in RF applications and showed the great potential of barrier-type anodic alumina in this respect. In this paper, we investigated in detail charging/discharging processes and leakage current of the above dielectric material. Two different sets of metal-insulator-metal capacitors were studied, namely, with the top Al electrode being either e-gun deposited or sputtered. The dielectric constant of the barrier-type anodic alumina was found at 9.3. Low leakage current was observed in all samples studied. Furthermore, depending on the film thickness, field emission following the Fowler-Nordheim mechanism was observed above an applied electric field. Charging of the anodic dielectric was observed, occurring in the bulk of the anodic layer. The stored charge was of the order of few μC/cm2 and the calculated trap density ˜2 × 1018 states/cm3, the most probable origin of charge traps being, in our opinion, positive electrolyte ions trapped in the dielectric during anodization. We do not think that oxygen vacancies play an important role, since their existence would have a more important impact on the leakage current characteristics, such as resistive memory effects or significant changes during annealing, which were not observed. Finally, discharging characteristic times as high as 5 × 109 s were measured.
Flores, Romeo M.; Myers, Mark D.; Houseknecht, David W.; Stricker, Gary D.; Brizzolara, Donald W.; Ryherd, Timothy J.; Takahashi, Kenneth I.
2007-01-01
Stratigraphic and sedimentologic studies of facies of the Upper Cretaceous rocks along the Colville River Bluffs in the west-central North Slope of Alaska identified barrier shoreface deposits consisting of vertically stacked, coarsening-upward parasequences in the Schrader Bluff Formation. This vertical stack of parasequence deposits represents progradational sequences that were affected by shoaling and deepening cycles caused by fluctuations of sea level. Further, the vertical stack may have served to stabilize accumulation of voluminous coal deposits in the Prince Creek Formation, which formed braided, high-sinuosity meandering, anastomosed, and low-sinuosity meandering fluvial channels and related flood plain deposits. The erosional contact at the top of the uppermost coarsening-upward sequence, however, suggests a significant drop of base level (relative sea level) that permitted a semiregional subaerial unconformity to develop at the contact between the Schrader Bluff and Prince Creek Formations. This drop of relative sea level may have been followed by a relative sea-level rise to accommodate coal deposition directly above the unconformity. This rise was followed by a second drop of relative sea level, with formation of incised valley topography as much as 75 ft deep and an equivalent surface of a major marine erosion or mass wasting, or both, either of which can be traced from the Colville River Bluffs basinward to the subsurface in the west-central North Slope. The Prince Creek fluvial deposits represent late Campanian to late Maastrichtian depositional environments that were affected by these base level changes influenced by tectonism, basin subsidence, and sea-level fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, Yoshifumi; Kumagai, Naomichi; Hosoda, Nao
2014-03-14
Highlights: • So far, eRF3 has been thought to function exclusively in the cytoplasm. • eRF3 is a nucleo-cutoplasmic shuttling protein. • eRF3 has a leptomycin-sensitive nuclear export signal (NES). • Removal of NES by proteolytic cleavage allows eRF3 to translocate to the nucleus. • The processed eRF3 (p-eRF3) interacts with a nuclear tumor suppressor ARF. - Abstract: The eukaryotic releasing factor eRF3 is a multifunctional protein that plays pivotal roles in translation termination as well as the initiation of mRNA decay. eRF3 also functions in the regulation of apoptosis; eRF3 is cleaved at Ala73 by an as yet unidentifiedmore » protease into processed isoform of eRF3 (p-eRF3), which interacts with the inhibitors of apoptosis proteins (IAPs). The binding of p-eRF3 with IAPs leads to the release of active caspases from IAPs, which promotes apoptosis. Although full-length eRF3 is localized exclusively in the cytoplasm, p-eRF3 localizes in the nucleus as well as the cytoplasm. We here focused on the role of p-eRF3 in the nucleus. We identified leptomycin-sensitive nuclear export signal (NES) at amino acid residues 61–71 immediately upstream of the cleavage site Ala73. Thus, the proteolytic cleavage of eRF3 into p-eRF3 leads to release an amino-terminal fragment containing NES to allow the relocalization of eRF3 into the nucleus. Consistent with this, p-eRF3 more strongly interacted with the nuclear ARF tumor suppressor than full-length eRF3. These results suggest that while p-eRF3 interacts with IAPs to promote apoptosis in the cytoplasm, p-eRF3 also has some roles in regulating cell death in the nucleus.« less
Negative ion source with external RF antenna
Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.
2007-02-13
A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.
NASA Astrophysics Data System (ADS)
Kibey, Sandeep A.
We present a hierarchical approach that spans multiple length scales to describe defect formation---in particular, formation of stacking faults (SFs) and deformation twins---in fcc crystals. We link the energy pathways (calculated here via ab initio density functional theory, DFT) associated with formation of stacking faults and twins to corresponding heterogeneous defect nucleation models (described through mesoscale dislocation mechanics). Through the generalized Peieirls-Nabarro model, we first correlate the width of intrinsic SFs in fcc alloy systems to their nucleation pathways called generalized stacking fault energies (GSFE). We then establish a qualitative dependence of twinning tendency in fee metals and alloys---specifically, in pure Cu and dilute Cu-xAl (x= 5.0 and 8.3 at.%)---on their twin-energy pathways called the generalized planar fault energies (GPFE). We also link the twinning behavior of Cu-Al alloys to their electronic structure by determining the effect of solute Al on the valence charge density redistribution at the SF through ab initio DFT. Further, while several efforts have been undertaken to incorporate twinning for predicting stress-strain response of fcc materials, a fundamental law for critical twinning stress has not yet emerged. We resolve this long-standing issue by linking quantitatively the twin-energy pathways (GPFE) obtained via ab initio DFT to heterogeneous, dislocation-based twin nucleation models. We establish an analytical expression that quantitatively predicts the critical twinning stress in fcc metals in agreement with experiments without requiring any empiricism at any length scale. Our theory connects twinning stress to twin-energy pathways and predicts a monotonic relation between stress and unstable twin stacking fault energy revealing the physics of twinning. We further demonstrate that the theory holds for fcc alloys as well. Our theory inherently accounts for directional nature of twinning which available qualitative models do not necessarily account for. Finally, we extend the present work to martensitic transformations and determine the energy pathway for B2→B19 transformation in NiTi. Based on our ab initio DFT calculations, we propose a combined distortion-shuffle pathway for B2→B19 transformation in NiTi. Our results indicate that in NiTi, a barrier of 0.48 mRyd/atom (relative to B2 phase) must be overcome to transform the parent B2 into orthorhombic B19 phase.
Update the following IRIS chemical dose-response assessments: Barium (cancer, RfC), o-Cresol (RfD, cancer), carbon disulfied (RfD, RfC), 1,1-Dichloroethane (cancer), 2,4-Dimethylphenol (RfD), 1,4-Dibromobenzene (RfD), 1-chloro-1,1-difluroelfane (RfC, Acetyl chloride (cancer),2,4...
Nakagawa, Yasuharu; Nakazawa, Hiromitsu; Kato, Satoru
2016-07-12
We investigated the effect of dielectric properties of the aqueous medium on the novel type of hydrogel composed of a crude lecithin mixture (PC70) and hexadecanol (HD), in which charged sheet-like bilayers are kept far apart due to interbilayer repulsive interaction. We used dipropylene glycol (DPG) as a modifier of the dielectric properties and examined its effect on the hydrogel by synchrotron X-ray diffraction, differential scanning calorimetry (DSC), polarized optical microscopy, and freeze-fracture electron microscopy. We found that at a DPG weight fraction in the aqueous medium WDPG ≈ 0.4, the bilayer organization is transformed into unusually large flat bilayer stacks with a regular lamellar spacing of 6.25 nm and consequently disintegration of the hydrogel takes place. Semiquantitative calculation of the interbilayer interaction energy based on the Deyaguin-Landau-Verwey-Overbeek (DLVO) theory suggested that the reduction of the aqueous medium dielectric constant ε by DPG may lower the energy barrier preventing flat bilayers from coming closer together. We inferred that the size of the bilayer sheet increases because the reduction of ε promotes protonation of acidic lipids that work as edge-capping molecules.
Yamamoto, Kaichi; Kanematsu, Yusuke; Nagashima, Umpei; Ueda, Akira; Mori, Hatsumi; Tachikawa, Masanori
2016-11-02
κ-H 3 (Cat-EDT-TTF) 2 (H-TTF) is a hydrogen-bonded π-electron system which was found to reveal C2/c symmetry at 50-293 K, while its isotopologue, κ-D 3 (Cat-EDT-TTF) 2 (D-TTF), showed the phase transition at 185 K from C2/c to P1[combining macron]. To elucidate the origin of such a difference, we calculated the potential energy curves (PECs) for the hydrogen transfer along the H-bonds in these conductors. We found that both the π-stacking and the hydrogen nuclear quantum effect drastically affected the hydrogen transfer energy. By taking account of both effects, we obtained a symmetric single-well effective PEC for H-TTF, which indicated that the hydrogen was always located at the center of the H-bond. By contrast, the effective PEC of D-TTF was a low-barrier double-well, indicating that the position of the H-bonded deuterium would change according to the temperature. We concluded that the π-stacking and the nuclear quantum effect were the key factors for the appearance of phase transition only in D-TTF.
Miao, Jinshui; Hu, Weida; Guo, Nan; Lu, Zhenyu; Liu, Xingqiang; Liao, Lei; Chen, Pingping; Jiang, Tao; Wu, Shiwei; Ho, Johnny C; Wang, Lin; Chen, Xiaoshuang; Lu, Wei
2015-02-25
Graphene is a promising candidate material for high-speed and ultra-broadband photodetectors. However, graphene-based photodetectors suffer from low photoreponsivity and I(light)/I(dark) ratios due to their negligible-gap nature and small optical absorption. Here, a new type of graphene/InAs nanowire (NW) vertically stacked heterojunction infrared photodetector is reported, with a large photoresponsivity of 0.5 AW(-1) and I(light)/I(dark) ratio of 5 × 10(2), while the photoresponsivity and I(light)/I(dark) ratio of graphene infrared photodetectors are 0.1 mAW(-1) and 1, respectively. The Fermi level (E(F)) of graphene can be widely tuned by the gate voltage owing to its 2D nature. As a result, the back-gated bias can modulate the Schottky barrier (SB) height at the interface between graphene and InAs NWs. Simulations further demonstrate the rectification behavior of graphene/InAs NW heterojunctions and the tunable SB controls charge transport across the vertically stacked heterostructure. The results address key challenges for graphene-based infrared detectors, and are promising for the development of graphene electronic and optoelectronic applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schottky diode model for non-parabolic dispersion in narrow-gap semiconductor and few-layer graphene
NASA Astrophysics Data System (ADS)
Ang, Yee Sin; Ang, L. K.; Zubair, M.
Despite the fact that the energy dispersions are highly non-parabolic in many Schottky interfaces made up of 2D material, experimental results are often interpreted using the conventional Schottky diode equation which, contradictorily, assumes a parabolic energy dispersion. In this work, the Schottky diode equation is derived for narrow-gap semiconductor and few-layer graphene where the energy dispersions are highly non-parabolic. Based on Kane's non-parabolic band model, we obtained a more general Kane-Schottky scaling relation of J (T2 + γkBT3) which connects the contrasting J T2 in the conventional Schottky interface and the J T3 scaling in graphene-based Schottky interface via a non-parabolicity parameter, γ. For N-layer graphene of ABC -stacking and of ABA -stacking, the scaling relation follows J T 2 / N + 1 and J T3 respectively. Intriguingly, the Richardson constant extracted from the experimental data using an incorrect scaling can differ with the actual value by more than two orders of magnitude. Our results highlights the importance of using the correct scaling relation in order to accurately extract important physical properties, such as the Richardson constant and the Schottky barrier's height.
Rf Feedback free electron laser
Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.
1981-01-01
A free electron laser system and electron beam system for a free electron laser which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.
Airborne characterization of smoke marker ratios from prescribed burning
NASA Astrophysics Data System (ADS)
Sullivan, A. P.; May, A. A.; Lee, T.; McMeeking, G. R.; Kreidenweis, S. M.; Akagi, S. K.; Yokelson, R. J.; Urbanski, S. P.; Collett, J. L., Jr.
2014-05-01
A Particle-into-Liquid Sampler - Total Organic Carbon and fraction collector system was flown aboard aTwin Otter aircraft sampling prescribed burning emissions in South Carolina in November2011 to obtain smoke marker measurements. The fraction collector provided 2 min time-integrated off-line samples for carbohydrate (i.e., smoke markers levoglucosan, mannosan, galactosan) analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Each fire location appeared to have aunique Δ levoglucosan / Δ water-soluble organic carbon (WSOC) ratio (RF01/RF02/RF03/RF05 = 0.163 ± 0.007 μg C μg C-1, RF08 = 0.115 ± 0.011 μg C μg C-1, RF09A = 0.072 ± 0.028 μg C μg C-1, RF09B = 0.042 ± 0.008 μg C μg C-1). These ratios were comparable to those obtained from controlled laboratory burns and suggested that the emissions sampled during RF01/RF02/RF03/RF05 were dominated by the burning of grasses, RF08 by leaves, RF09A by needles, and RF09B by marsh grasses. These findings were further supported by the Δ galactosan / Δ levoglucosan ratios (RF01/RF02/RF03/RF05 = 0.067 ± 0.004 μg μg-1, RF08 = 0.085 ± 0.009 μg μg-1, RF09A = 0.101 ± 0.029 μg μg-1) obtained as well as by the ground-based fuel and filter sample analyses during RF01/RF02/RF03/RF05. Differences between Δ potassium / Δ levoglucosan ratios obtained for these prescribed fires vs. laboratory-scale measurements suggest that some laboratory burns may not accurately represent potassium emissions from prescribed burns. The Δ levoglucosan / Δ WSOC ratio had no clear dependence on smoke age or fire dynamics suggesting that this ratio is more dependent on the type of fuel being burned. Levoglucosan was stable over a timescale of at least 1.5 h and could be useful to help estimate the air quality impacts of biomass burning.
An edge-readout, multilayer detector for positron emission tomography.
Li, Xin; Ruiz-Gonzalez, Maria; Furenlid, Lars R
2018-06-01
We present a novel gamma-ray-detector design based on total internal reflection (TIR) of scintillation photons within a crystal that addresses many limitations of traditional PET detectors. Our approach has appealing features, including submillimeter lateral resolution, DOI positioning from layer thickness, and excellent energy resolution. The design places light sensors on the edges of a stack of scintillator slabs separated by small air gaps and exploits the phenomenon that more than 80% of scintillation light emitted during a gamma-ray event reaches the edges of a thin crystal with polished faces due to TIR. Gamma-ray stopping power is achieved by stacking multiple layers, and DOI is determined by which layer the gamma ray interacts in. The concept of edge readouts of a thin slab was verified by Monte Carlo simulation of scintillation light transport. An LYSO crystal of dimensions 50.8 mm × 50.8 mm × 3.0 mm was modeled with five rectangular SiPMs placed along each edge face. The mean-detector-response functions (MDRFs) were calculated by simulating signals from 511 keV gamma-ray interactions in a grid of locations. Simulations were carried out to study the influence of choice of scintillator material and dimensions, gamma-ray photon energies, introduction of laser or mechanically induced optical barriers (LIOBs, MIOBs), and refractive indices of optical-coupling media and SiPM windows. We also analyzed timing performance including influence of gamma-ray interaction position and presence of optical barriers. We also modeled and built a prototype detector, a 27.4 mm × 27.4 mm × 3.0 mm CsI(Tl) crystal with 4 SiPMs per edge to experimentally validate the results predicted by the simulations. The prototype detector used CsI(Tl) crystals from Proteus outfitted with 16 Hamamatsu model S13360-6050PE MPPCs read out by an AiT-16-channel readout. The MDRFs were measured by scanning the detector with a collimated beam of 662-keV photons from a 137 Cs source. The spatial resolution was experimentally determined by imaging a tungsten slit that created a beam of 0.44 mm (FWHM) width normal to the detector surface. The energy resolution was evaluated by analyzing list-mode data from flood illumination by the 137 Cs source. We find that in a block-detector-sized LYSO layer read out by five SiPMs per edge, illuminated by 511-keV photons, the average resolution is 1.49 mm (FWHM). With the introduction of optical barriers, average spatial resolution improves to 0.56 mm (FWHM). The DOI resolution is the layer thickness of 3.0 mm. We also find that optical-coupling media and SiPM-window materials have an impact on spatial resolution. The timing simulation with LYSO crystal yields a coincidence resolving time (CRT) of 200-400 ps, which is slightly position dependent. And the introduction of optical barriers has minimum influence. The prototype CsI(Tl) detector, with a smaller area and fewer SiPMs, was measured to have central-area spatial resolutions of 0.70 and 0.39 mm without and with optical barriers, respectively. These results match well with our simulations. An energy resolution of 6.4% was achieved at 662 keV. A detector design based on a stack of monolithic scintillator layers that uses edge readouts offers several advantages over current block detectors for PET. For example, there is no tradeoff between spatial resolution and detection sensitivity since no reflector material displaces scintillator crystal, and submillimeter resolution can be achieved. DOI information is readily available, and excellent timing and energy resolutions are possible. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Rf feedback free electron laser
Brau, C.A.; Swenson, D.A.; Boyd, T.J. Jr.
1979-11-02
A free electron laser system and electron beam system for a free electron laser are provided which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.
Phase stable RF transport system
Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.
1992-01-01
An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.
Very High Current Density Nb/AlN/Nb Tunnel Junctions for Low-Noise Submillimeter Mixers
NASA Technical Reports Server (NTRS)
Kawamura, Jonathan; Miller, David; Chen, Jian; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.
2000-01-01
We have fabricated and tested submillimeter-wave superconductor-insulator-superconductor (SIS) mixers using very high current density Nb/AlN/Nb tunnel junctions (J(sub c) approximately equal 30 kA/sq cm) . The junctions have low resistance-area products (R(sub N)A approximately 5.6 Omega.sq micron), good subgap to normal resistance ratios R(sub sg)/R(sub N) approximately equal 10, and good run-to-run reproducibility. From Fourier transform spectrometer measurements, we infer that omega.R(sub N)C = 1 at 270 GHz. This is a factor of 2.5 improvement over what is generally available with Nb/AlO(x)/Nb junctions suitable for low-noise mixers. The AlN-barrier junctions are indeed capable of low-noise operation: we measure an uncorrected receiver noise temperature of T(sub RX) = 110 K (DSB) at 533 GHz for an unoptimized device. In addition to providing wider bandwidth operation at lower frequencies, the AlN-barrier junctions will considerably improve the performance of THz SIS mixers by reducing RF loss in the tuning circuits.
Magnetic targeting of nanoparticles across the intact blood–brain barrier
Kong, Seong Deok; Lee, Jisook; Ramachandran, Srinivasan; Eliceiri, Brian P.; Shubayev, Veronica I.; Lal, Ratnesh; Jin, Sungho
2015-01-01
Delivery of therapeutic or diagnostic agents across an intact blood–brain barrier (BBB) remains a major challenge. Here we demonstrate in a mouse model that magnetic nanoparticles (MNPs) can cross the normal BBB when subjected to an external magnetic field. Following a systemic administration, an applied external magnetic field mediates the ability of MNPs to permeate the BBB and accumulate in a perivascular zone of the brain parenchyma. Direct tracking and localization inside endothelial cells and in the perivascular extracellular matrix in vivo was established using fluorescent MNPs. These MNPs were inert and associated with low toxicity, using a non-invasive reporter for astrogliosis, biochemical and histological studies. Atomic force microscopy demonstrated that MNPs were internalized by endothelial cells, suggesting that trans-cellular trafficking may be a mechanism for the MNP crossing of the BBB observed. The silica-coated magnetic nanocapsules (SiMNCs) allow on-demand drug release via remote radio frequency (RF) magnetic field. Together, these results establish an effective strategy for regulating the biodistribution of MNPs in the brain through the application of an external magnetic field. PMID:23063548
Airborne characterization of smoke marker ratios from prescribed burning
NASA Astrophysics Data System (ADS)
Sullivan, A. P.; May, A. A.; Lee, T.; McMeeking, G. R.; Kreidenweis, S. M.; Akagi, S. K.; Yokelson, R. J.; Urbanski, S. P.; Collett, J. L., Jr.
2014-10-01
A Particle-Into-Liquid Sampler - Total Organic Carbon (PILS-TOC) and fraction collector system was flown aboard a Twin Otter aircraft sampling prescribed burning emissions in South Carolina in November 2011 to obtain smoke marker measurements. The fraction collector provided 2 min time-integrated offline samples for carbohydrate (i.e., smoke markers levoglucosan, mannosan, and galactosan) analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Each fire location appeared to have a unique Δlevoglucosan/Δwater-soluble organic carbon (WSOC) ratio (RF01/RF02/RF03/RF05 = 0.163 ± 0.007 μg C μg-1 C, RF08 = 0.115 ± 0.011 μg C μg-1 C, RF09A = 0.072 ± 0.028 μg C μg-1 C, and RF09B = 0.042 ± 0.008 μg C μg-1 C, where RF means research flight). These ratios were comparable to those obtained from controlled laboratory burns and suggested that the emissions sampled during RF01/F02/RF03/RF05 were dominated by the burning of grasses, RF08 by leaves, RF09A by needles, and RF09B by marsh grasses. These findings were further supported by the Δgalactosan/Δlevoglucosan ratios (RF01/RF02/RF03/RF05 = 0.067 ± 0.004 μg μg-1, RF08 = 0.085 ± 0.009 μg μg-1, and RF09A = 0.101 ± 0.029 μg μg-1) obtained as well as by the ground-based fuel and filter sample analyses during RF01/RF02/RF03/RF05. Differences between Δpotassium/Δlevoglucosan ratios obtained for these prescribed fires vs. laboratory-scale measurements suggest that some laboratory burns may not accurately represent potassium emissions from prescribed burns. The Δlevoglucosan/ΔWSOC ratio had no clear dependence on smoke age or fire dynamics suggesting that this ratio is more dependent on the type of fuel being burned. Levoglucosan was stable over a timescale of at least 1.5 h and could be useful to help estimate the air quality impacts of biomass burning.
NASA Technical Reports Server (NTRS)
Wagner, Raymond S.; Barton, Richard J.
2011-01-01
Wireless Sensor Networks (WSNs) can provide a substantial benefit in spacecraft systems, reducing launch weight and providing unprecedented flexibility by allowing instrumentation capabilities to grow and change over time. Achieving data transport reliability on par with that of wired systems, however, can prove extremely challenging in practice. Fortunately, much progress has been made in developing standard WSN radio protocols for applications from non-critical home automation to mission-critical industrial process control. The relative performances of candidate protocols must be compared in representative aerospace environments, however, to determine their suitability for spaceflight applications. In this paper, we will present the results of a rigorous laboratory analysis of the performance of two standards-based, low power, low data rate WSN protocols: ZigBee Pro and ISA100.11a. Both are based on IEEE 802.15.4 and augment that standard's specifications to build complete, multi-hop networking stacks. ZigBee Pro targets primarily the home and office automation markets, providing an ad-hoc protocol that is computationally lightweight and easy to implement in inexpensive system-on-a-chip components. As a result of this simplicity, however, ZigBee Pro can be susceptible to radio frequency (RF) interference. ISA100.11a, on the other hand, targets the industrial process control market, providing a robust, centrally-managed protocol capable of tolerating a significant amount of RF interference. To achieve these gains, a coordinated channel hopping mechanism is employed, which entails a greater computational complexity than ZigBee and requires more sophisticated and costly hardware. To guide future aerospace deployments, we must understand how well these standards relatively perform in analog environments under expected operating conditions. Specifically, we are interested in evaluating goodput -- application level throughput -- in a representative crewed environment in the presence of varying levels of 802.11g Wi-Fi traffic. To do so, we use the NASA Johnson Space Center Wireless Habitat Testbed (WHT), a metallic, habitation-sized module designed for co-existence testing of wireless systems. In its quiescent state, the sealed WHT provides an RF-quiet environment to which we can selectively add interfering systems; it also provides a realistic level of multi-path self-interference for systems under investigation. In our test, we deploy two representative five node networks, configured in a star topology with all nodes reporting directly to a WSN gateway. Each ZigBee network WSN node is built using a Texas Instruments (TI) CC2530 system-on-a-chip radio running TI's ZigBee Pro Z-stack. Each ISA100.11a network node is built using a Nivis VersaNode 210 system-on-a-chip radio. In both cases, radios interface with TI MSP430-F5438 microcontroller implementing a common test application. Interference is provided by a D-link 802.11g Wi-Fi router transporting traffic generated using the Iperf network testing tool. For the single-channel ZigBee network, effects of both direct and indirect Wi-Fi interference are evaluated. For the channel-hopping ISA100.11a network, effects of interference from multiple Wi-Fi routers configured in non-overlapping 802.11g channels are evaluated. Our results show that, in general, the more lightweight ZigBee network performs well at low interference levels, but performance degrades as interference increases. Conversely, the more complex and costly ISA100.11a network continues to perform well as Wi-Fi interference levels increase.
Single electron beam rf feedback free electron laser
Brau, C.A.; Stein, W.E.; Rockwood, S.D.
1981-02-11
A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.
NASA Astrophysics Data System (ADS)
Singh, Satyendra Kumar; Hazra, Purnima
2018-05-01
This work reports fabrication and characterization of p-Si/ MgxZn1-xO thin film heterojunction diodes grown by RF magnetron sputtering technique. In this work, ZnO powder was mixed with MgO powder at per their weight percentage from 0 to 10% to prepare MgxZn1-xO target. The microstructural, surface morphological and optical properties of as-deposited p-Si/MgxZn1-xO heterostructure thin films have been studied using X-ray Diffraction, atomic force microscopy and variable angle ellipsometer. XRD spectra exhibit that undoped ZnO thin films has preferred crystal orientation in (002) plane. However, with increase in Mg-doping, ZnO (101) crystal plane is enhanced progressively due to phase segregation, even though preferred growth orientation of ZnO crystals is still towards (002) plane. The electrical characteristics of Si/ MgxZn1-xO heterojunction diodes with large area Al/Ti ohmic contacts are evaluated using semiconductor parameter analyzer. With rectification ratio of 27894, reverse saturation current of 20.5 nA and barrier height of 0.724 eV, Si/Mg0.5Zn0.95O thin film heterojunction diode is believed to have potential to be used in wider bandgap nanoelectronic device applications.
NASA Technical Reports Server (NTRS)
Bishop, W.; Mattauch, R. J.
1990-01-01
The following accomplishments were made towards the goal of an optimized whiskerless diode chip for submillimeter wavelength applications. (1) Surface channel whiskerless diode structure was developed which offers excellent DC and RF characteristics, reduced shunt capacitance and simplified fabrication compared to mesa and proton isolated structures. (2) Reliable fabrication technology was developed for the surface channel structure. The new anode plating technology is a major improvement. (3) DC and RF characterization of the surface channel diode was compared with whisker contacted diodes. This data indicates electrical performance as good as the best reported for similar whisker contacted devices. (4) Additional batches of surface channel diodes were fabricated with excellent I-V and reduced shunt capacitance. (5) Large scale capacitance modelinng was done for the planar diode structure. This work revealed the importance of removing the substrate gallium arsenide for absolute minimum pad capacitance. (6) A surface channel diode was developed on quartz substrate and this substrate was completely removed after diode mounting for minimum parasitic capacitance. This work continues with the goal of producing excellent quality submillimeter wavelength planar diodes which satisfy the requirements of easy handling and robustness. These devices will allow the routine implementation of Schottky receivers into space-based applications at frequencies as high as 1 THz, and, in the future, beyond.
NASA Astrophysics Data System (ADS)
Freedsman, J. J.; Watanabe, A.; Urayama, Y.; Egawa, T.
2015-09-01
The authors report on Al2O3/Al0.85In0.15N/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor (MOS-HEMT) on Si fabricated by using atomic layer deposited Al2O3 as gate insulator and passivation layer. The MOS-HEMT with the gate length of 2 μm exhibits excellent direct-current (dc) characteristics with a drain current maximum of 1270 mA/mm at a gate bias of 3 V and an off-state breakdown voltage of 180 V for a gate-drain spacing of 4 μm. Also, the 1 μm-gate MOS-HEMT shows good radio-frequency (rf) response such as current gain and maximum oscillation cut-off frequencies of 10 and 34 GHz, respectively. The capacitance-voltage characteristics at 1 MHz revealed significant increase in two-dimensional electron gas (2DEG) density for the MOS-HEMT compared to conventional Schottky barrier HEMTs. Analyses using drain-source conductivity measurements showed improvements in 2DEG transport characteristics for the MOS-HEMT. The enhancements in dc and rf performances of the Al2O3/Al0.85In0.15N/GaN MOS-HEMT are attributed to the improvements in 2DEG characteristics.
Birchall, James; Coulman, Sion; Anstey, Alexander; Gateley, Chris; Sweetland, Helen; Gershonowitz, Amikam; Neville, Lewis; Levin, Galit
2006-04-07
The skin is a valuable organ for the development and exploitation of gene medicines. Delivering genes to skin is restricted however by the physico-chemical properties of DNA and the stratum corneum (SC) barrier. In this study, we demonstrate the utility of an innovative technology that creates transient microconduits in human skin, allowing DNA delivery and resultant gene expression within the epidermis and dermis layers. The radio frequency (RF)-generated microchannels were of sufficient morphology and depth to permit the epidermal delivery of 100 nm diameter nanoparticles. Model fluorescent nanoparticles were used to confirm the capacity of the channels for augmenting diffusion of macromolecules through the SC. An ex vivo human organ culture model was used to establish the gene expression efficiency of a beta-galactosidase reporter plasmid DNA applied to ViaDerm treated skin. Skin treated with ViaDerm using 50 microm electrode arrays promoted intense levels of gene expression in the viable epidermis. The intensity and extent of gene expression was superior when ViaDerm was used following a prior surface application of the DNA formulation. In conclusion, the RF-microchannel generator (ViaDerm) creates microchannels amenable for delivery of nanoparticles and gene therapy vectors to the viable region of skin.
An extensive investigation of work function modulated trapezoidal recessed channel MOSFET
NASA Astrophysics Data System (ADS)
Lenka, Annada Shankar; Mishra, Sikha; Mishra, Satyaranjan; Bhanja, Urmila; Mishra, Guru Prasad
2017-11-01
The concept of silicon on insulator (SOI) and grooved gate help to lessen the short channel effects (SCEs). Again the work function modulation along the metal gate gives a better drain current due to the uniform electric field along the channel. So all these concepts are combined and used in the proposed MOSFET structure for more improved performance. In this work, trapezoidal recessed channel silicon on insulator (TRC-SOI) MOSFET and work function modulated trapezoidal recessed channel silicon on insulator (WFM-TRC-SOI) MOSFET are compared with DC and RF parameters and later linearity of both the devices is tested. An analytical model is formulated by using a 2-D Poisson's equation and develops a compact equation for threshold voltage using minimum surface potential. In this work we analyze the effect of negative junction depth and the corner angle on various device parameters such as minimum surface potential, sub-threshold slope (SS), drain induced barrier lowering (DIBL) and threshold voltage. The analysis interprets that the switching performance of WFM-TRC-SOI MOSFET surpasses TRC-SOI MOSFET in terms of high Ion/Ioff ratio and also the proposed structure can minimize the short channel effects (SCEs) in RF application. The validity of proposed model has been verified with simulation result performed on Sentaurus TCAD device simulator.
NASA Astrophysics Data System (ADS)
Yan, B. X.; Luo, S. Y.; Mao, X. G.; Shen, J.; Zhou, Q. F.
2013-01-01
Mo-doped TiO2 multilayer thin films were prepared by RF magnetron co-sputtering. Microstructures, crystallite parameters and the absorption band were investigated with atomic force microscopy, X-ray diffraction and ultraviolet-visible spectroscopy. Internal carrier transport characteristics and the photoelectric property of different layer-assemble modes were examined on an electrochemical workstation under visible light. The result indicates that the double-layer structure with an undoped surface layer demonstrated a red-shifted absorption edge and a much stronger photocurrent compared to the uniformly doped sample, signifying that the electric field implanted at the interface between particles in different layers accelerated internal charge transfer effectively. However, a heavily doped layer implanted at the bottom of the three-layer film merely brought about negative effects on the photoelectric property, mainly because of the Schottky junction existing above the substrate. Nevertheless, this obstacle was successfully eliminated by raising the Mo concentration to 1020 cm-3, where the thickness of the depletion layer fell into the order of angstroms and the tunneling coefficient manifested a dramatic increase. Under this circumstance, the Schottky junction disappeared and the strongest photocurrent was observed in the three-layer film.
Design and Implementation of an Operations Module for the ARGOS paperless Ship System
1989-06-01
A. OPERATIONS STACK SCRIPTS SCRIPTS FOR STACK: operations * BACKGROUND #1: Operations * on openStack hide message box show menuBar pass openStack end... openStack ** CARD #1, BUTTON #1: Up ***** on mouseUp visual effect zoom out go to card id 10931 of stack argos end mouseUp ** CARD #1, BUTTON #2...STACK SCRIPTS SCRIPTS FOR STACK: Reports ** BACKGROUND #1: Operations * on openStack hie message box show menuBar pass openStack end openStack ** CARD #1
Akhmaloka; Susilowati, Prima Endang; Subandi; Madayanti, Fida
2008-01-01
Termination translation in Saccharomyces cerevisiae is controlled by two interacting polypeptide chain release factors, eRF1 and eRF3. Two regions in human eRF1, position at 281-305 and position at 411-415, were proposed to be involved on the interaction to eRF3. In this study we have constructed and characterized yeast eRF1 mutant at position 410 (correspond to 415 human eRF1) from tyrosine to serine residue resulting eRF1(Y410S). The mutations did not affect the viability and temperature sensitivity of the cell. The stop codons suppression of the mutant was analyzed in vivo using PGK-stop codon-LACZ gene fusion and showed that the suppression of the mutant was significantly increased in all of codon terminations. The suppression on UAG codon was the highest increased among the stop codons by comparing the suppression of the wild type respectively. In vitro interaction between eRF1 (mutant and wild type) to eRF3 were carried out using eRF1-(His)6 and eRF1(Y410S)-(His)6 expressed in Escherichia coli and indigenous Saccharomyces cerevisiae eRF3. The results showed that the binding affinity of eRF1(Y410S) to eRF3 was decreased up to 20% of the wild type binding affinity. Computer modeling analysis using Swiss-Prot and Amber version 9.0 programs revealed that the overall structure of eRF1(Y410S) has no significant different with the wild type. However, substitution of tyrosine to serine triggered the structural change on the other motif of C-terminal domain of eRF1. The data suggested that increasing stop codon suppression and decreasing of the binding affinity of eRF1(Y410S) were probably due to the slight modification on the structure of the C-terminal domain. PMID:18463713
Shen, H; Zhao, S H; Cao, J H; Li, X Y; Fan, B
2011-11-01
Muscle specific RING finger protein2 (MuRF2) and Muscle specific RING finger protein3(MuRF3) are two important members of the muscle specific RING finger protein family, which are especially expressed in cardiac and skeletal muscle tissues and play critical roles during the myocyte differentiation, development and morphogenesis. In this study, the molecular characteristics of porcine MuRF2 and MuRF3 gene were reported, and furthermore two variants of MuRF2 were identified. The tissue distribution pattern analyses revealed that MuRF2-b and MuRF3 mRNA was exclusively expressed in striated muscle tissues while MuRF2-a had a low-level expression in liver tissue. Real-time quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) results displayed MuRF2 mRNA expression levels were significantly varied at three stages of fetal skeletal muscle in Landrace pigs, and the expression of MuRF2-a was lower than that of MuRF2-b in all stages. An essencial region of -396 to -22 for transcription was identified at the 5'UTR of porcine MuRF2 gene, while no active regulatory fragment found in the 5'UTR of mouse MuRF2. A single nucleotide polymorphism (SNP), c.915G > A was identified in MuRF2 exon 5. A HinfI PCR-RFLP was developed for SNP genotyping in two different pig populations. Association of the genotypes with growth and carcass traits showed that different genotypes of MuRF2 were significantly (P < 0.05) associated with average daily gain on test, carcass weight and carcass length. The study suggested that the porcine MuRF2 and MuRF3 genes are involved in the muscle growth and development, and can be considered as potential candidate genes affecting muscle production traits in the pig.
Nonlocal and local magnetization dynamics excited by an RF magnetic field in magnetic multilayers
NASA Astrophysics Data System (ADS)
Moriyama, Takahiro
A microwave study in spintronic devices has been actively pursued in the past several years due to the fertile physics and potential applications. On one hand, a passive use of microwave can be very helpful to analyze and understand the magnetization dynamics in spintronic devices. Examples include ferromagnetic resonance (FMR) measurements, and various microwave spectrum analyses in ferromagnetic materials. The most important chrematistic parameter for the phenomenological analysis on the magnetization dynamics is, so called, the Gilbert damping constant. In this work, a relatively new measurement technique, a flip-chip FMR measurement, to conduct the ferromagnetic resonance measurements has been developed. The measurement technique is equally comparable to a conventional FMR measurement. The Gilbert damping constants were extracted for single ferromagnetic layer, spin vale structures, and magnetic tunnel junctions (MTJs). On the other hand, an active use of microwave yields a great potential for interesting phenomena which give new functionalities into spintronic devices. For instance, a spin wave excitation by an rf field can be used to reduce the switching field of a ferromagnet, i.e. microwave assisted magnetization reversal, which could be a potential application in advanced recording media. More interestingly, a precessing magnetization driven by an rf field can generate a pure spin current into a neighboring layer, i.e. spin pumping effect, which is one of the candidates for generating a pure spin current. A ferromagnetic tunnel junction (MTJ) is one of the important devices in spintronics, which is also the key device to investigate the local and nonlocal magnetization dynamics in this work. Therefore, it is also important to develop high quality MTJs. My work starts from the development of MTJ with AlOx and MgO tunnel barriers where it was found it is crucial to find the proper condition for forming a few nanometers thick tunnel barrier. After obtaining quality MTJs, we proceeded to the study on magnetization dynamics using the MTJs. First interesting phenomenon found in this work is the microwave assisted magnetization reversal (MAMR). It is found that magnetization reversal can be achieved efficiently by an appropriate power and frequency microwave. Moreover, there is a mutual relationship between microwave power and frequency for achieving a maximum switching field reduction. This effect can be very useful in magnetic data storage device which essentially needs to reduce the "effective" coercivity field. In the study of nonlocal magnetization dynamics, we tried to detect the spin accumulation induced by spin pumping effect in FM/NM/I/FM, FM/I/NM and FM/I/FM structures with a microwave excitation (FM: ferromagnetic material, NM: nonmagnetic material, and I: tunnel barrier). Interestingly, in the FM/I/NM and FM/I/FM structures, we observed ˜muV dc voltage due to the precessing magnetizations. It is found that the dc voltage we observed is much larger than the current the spin pumping theory predicts. Therefore we speculated a new mechanism to explain the results. Although we discussed only a portion of the magnetization dynamics involving nonlinear and nonequilibrium phenomena, it reveals that there is still a fertile physics which has not yet been investigated or explained.
Landler, Lukas; Painter, Michael S.; Youmans, Paul W.; Hopkins, William A.; Phillips, John B.
2015-01-01
We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF (‘RF off → RF off’), but were disoriented when subsequently exposed to RF (‘RF off → RF on’). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF (‘RF on → RF off’), but aligned towards magnetic south when tested with RF (‘RF on → RF on’). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space. PMID:25978736
Landler, Lukas; Painter, Michael S; Youmans, Paul W; Hopkins, William A; Phillips, John B
2015-01-01
We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF ('RF off → RF off'), but were disoriented when subsequently exposed to RF ('RF off → RF on'). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF ('RF on → RF off'), but aligned towards magnetic south when tested with RF ('RF on → RF on'). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space.
Lin, Shi-Ming; Lin, Chen-Chun; Chen, Wei-Ting; Chen, Yi-Chen; Hsu, Chao-Wei
2007-09-01
To compare the effectiveness of ablation techniques for hepatocellular carcinoma (HCC) with the use of four radiofrequency (RF) devices. One hundred patients with 133 HCC lesions no larger than 4 cm were treated with one of four RF devices: RF 2000 (maximum power, 100 W) and RF 3000 generators (maximum power, 200 W) with LeVeen expandable electrodes with a maximum dimension of 3.5 cm or 4 cm, internally cooled single electrode with a thermal dimension of 3 cm, and a RITA RF generator with expandable electrodes with a maximum dimension of 5 cm. Numbers of RF sessions needed per HCC to achieve complete necrosis were 1.4 +/- 0.5 with the RF 2000 device and greater than 1.1 +/- 0.3 with the other three devices (P < .05). The RF 2000 device required a more interactive algorithm than the RF 3000 device. Session times per patient were 31.7 minutes +/- 13.2 in the RF 2000 group and longer than 16.6 minutes +/- 7.5 in the RF 3000 group, 28.3 minutes +/- 12 in the RITA device group, and 27.1 minutes +/- 12 with the internally cooled electrode device (P < .005 for RF 2000 vs other devices and for RF 3000 vs RITA or internally cooled electrode device). Complete necrosis and local tumor progression rates at 2 years in the RF 2000, RF 3000, RITA, and internally cooled electrode device groups were 91.1%, 97.1%, 96.7%, and 96.8% and 12%, 8%, 8.2%, and 8.3%, respectively (P = .37). Ablation with the RF 3000 device required a shorter time than the other three devices and required a less interactive algorithm than the RF 2000 device. However, complete necrosis and local tumor progression rates were similar among devices.
Removal of GaAs growth substrates from II-VI semiconductor heterostructures
NASA Astrophysics Data System (ADS)
Bieker, S.; Hartmann, P. R.; Kießling, T.; Rüth, M.; Schumacher, C.; Gould, C.; Ossau, W.; Molenkamp, L. W.
2014-04-01
We report on a process that enables the removal of II-VI semiconductor epilayers from their GaAs growth substrate and their subsequent transfer to arbitrary host environments. The technique combines mechanical lapping and layer selective chemical wet etching and is generally applicable to any II-VI layer stack. We demonstrate the non-invasiveness of the method by transferring an all-II-VI magnetic resonant tunneling diode. High resolution x-ray diffraction proves that the crystal integrity of the heterostructure is preserved. Transport characterization confirms that the functionality of the device is maintained and even improved, which is ascribed to completely elastic strain relaxation of the tunnel barrier layer.
Advanced Laser Technologies for High-brightness Photocathode Electron Gun
NASA Astrophysics Data System (ADS)
Tomizawa, Hiromitsu
A laser-excited photocathode RF gun is one of the most reliable high-brightness electron beam sources for XFELs. Several 3D laser shaping methods have been developed as ideal photocathode illumination sources at SPring-8 since 2001. To suppress the emittance growth caused by nonlinear space-charge forces, the 3D cylindrical UV-pulse was optimized spatially as a flattop and temporally as squarely stacked chirped pulses. This shaping system is a serial combination of a deformable mirror that adaptively shapes the spatial profile with a genetic algorithm and a UV-pulse stacker that consists of four birefringent α-BBO crystal rods for temporal shaping. Using this 3D-shaped pulse, a normalized emittance of 1.4 π mm mrad was obtained in 2006. Utilizing laser's Z-polarization, Schottky-effect-gated photocathode gun was proposed in 2006. The cathode work functions are reduced by a laser-induced Schottky effect. As a result of focusing a radially polarized laser pulse with a hollow lens in vacuum, the Z-field (Z-polarization) is generated at the cathode.
Lee, Jae-Kyu; Choi, Duck-Kyun
2012-07-01
Low temperature processing for fabrication of transistor backplane is a cost effective solution while fabrication on a flexible substrate offers a new opportunity in display business. Combination of both merits is evaluated in this investigation. In this study, the ZnO thin film transistor on a flexible Polyethersulphone (PES) substrate is fabricated using RF magnetron sputtering. Since the selection and design of compatible gate insulator is another important issue to improve the electrical properties of ZnO TFT, we have evaluated three gate insulator candidates; SiO2, SiNx and SiO2/SiNx. The SiO2 passivation on both sides of PES substrate prior to the deposition of ZnO layer was effective to enhance the mechanical and thermal stability. Among the fabricated devices, ZnO TFT employing SiNx/SiO2 stacked gate exhibited the best performance. The device parameters of interest are extracted and the on/off current ratio, field effect mobility, threshold voltage and subthreshold swing are 10(7), 22 cm2/Vs, 1.7 V and 0.4 V/decade, respectively.
Multifunctional graded dielectrics fabricated using dry powder printing
NASA Astrophysics Data System (ADS)
Good, Austin J.; Roper, David; Good, Brandon; Yarlagadda, Shridhar; Mirotznik, Mark S.
2017-09-01
The ability to fabricate multifunctional devices that combine good structural properties with embedded electromagnetic functionality has many practical applications, including antireflective surfaces for structural radomes, load bearing conformal antennas, integrated RF transmission lines and passive beam forming networks. We describe here a custom made 3D printer that can print high dielectric constant ceramic powders within a low-loss structural composite substrate to produce mechanically robust parts with integrated graded dielectric properties. We fabricated a number of these parts and evaluated their anisotropic dielectric properties by determining the complete permittivity tensor of the printed samples as a function of local powder weight. This data was then experimentally validated using two practical examples: a Chebyshev antireflective stack and a 2D passive beamsteering network. The results of both electromagnetic systems displayed acceptable agreement between the simulated and measured results. This agreement shows that powder printing is a potential approach for fabricating spatially graded dielectric electromagnetic systems. This paper was submitted for review on 15 February 2017. The project is funded by the Office of Naval Research, Code 331.
Kim, Yoon-Jun; Tao, Runzhe; Klie, Robert F; Seidman, David N
2013-01-22
Imaging the three-dimensional atomic-scale structure of complex interfaces has been the goal of many recent studies, due to its importance to technologically relevant areas. Combining atom-probe tomography and aberration-corrected scanning transmission electron microscopy (STEM), we present an atomic-scale study of ultrathin (~5 nm) native oxide layers on niobium (Nb) and the formation of ordered niobium hydride phases near the oxide/Nb interface. Nb, an elemental type-II superconductor with the highest critical temperature (T(c) = 9.2 K), is the preferred material for superconducting radio frequency (SRF) cavities in next-generation particle accelerators. Nb exhibits high solubilities for oxygen and hydrogen, especially within the RF-field penetration depth, which is believed to result in SRF quality factor losses. STEM imaging and electron energy-loss spectroscopy followed by ultraviolet laser-assisted local-electrode atom-probe tomography on the same needle-like sample reveals the NbO(2), Nb(2)O(5), NbO, Nb stacking sequence; annular bright-field imaging is used to visualize directly hydrogen atoms in bulk β-NbH.
SiGe BiCMOS manufacturing platform for mmWave applications
NASA Astrophysics Data System (ADS)
Kar-Roy, Arjun; Howard, David; Preisler, Edward; Racanelli, Marco; Chaudhry, Samir; Blaschke, Volker
2010-10-01
TowerJazz offers high volume manufacturable commercial SiGe BiCMOS technology platforms to address the mmWave market. In this paper, first, the SiGe BiCMOS process technology platforms such as SBC18 and SBC13 are described. These manufacturing platforms integrate 200 GHz fT/fMAX SiGe NPN with deep trench isolation into 0.18μm and 0.13μm node CMOS processes along with high density 5.6fF/μm2 stacked MIM capacitors, high value polysilicon resistors, high-Q metal resistors, lateral PNP transistors, and triple well isolation using deep n-well for mixed-signal integration, and, multiple varactors and compact high-Q inductors for RF needs. Second, design enablement tools that maximize performance and lowers costs and time to market such as scalable PSP and HICUM models, statistical and Xsigma models, reliability modeling tools, process control model tools, inductor toolbox and transmission line models are described. Finally, demonstrations in silicon for mmWave applications in the areas of optical networking, mobile broadband, phased array radar, collision avoidance radar and W-band imaging are listed.
NASA Astrophysics Data System (ADS)
Kayani, A.; Wickey, K. J.; Nandasiri, M. I.; Moore, A.; Garratt, E.; AlFaify, S.; Gao, X.; Smith, R. J.; Buchanan, T. L.; Priyantha, W.; Kopczyk, M.; Gannon, P. E.; Gorokhovsky, V. I.
2009-03-01
The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800° C. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.
NASA Astrophysics Data System (ADS)
Bozkurt, Alican; Kose, Kivanc; Fox, Christi A.; Dy, Jennifer; Brooks, Dana H.; Rajadhyaksha, Milind
2016-02-01
Study of the stratum corneum (SC) in human skin is important for research in barrier structure and function, drug delivery, and water permeability of skin. The optical sectioning and high resolution of reflectance confocal microscopy (RCM) allows visual examination of SC non-invasively. Here, we present an unsupervised segmentation algorithm that can automatically delineate thickness of the SC in RCM images of human skin in-vivo. We mimic clinicians visual process by applying complex wavelet transform over non-overlapping local regions of size 16 x 16 μm called tiles, and analyze the textural changes in between consecutive tiles in axial (depth) direction. We use dual-tree complex wavelet transform to represent textural structures in each tile. This transform is almost shift-invariant, and directionally selective, which makes it highly efficient in texture representation. Using DT-CWT, we decompose each tile into 6 directional sub-bands with orientations in +/-15, 45, and 75 degrees and a low-pass band, which is the decimated version of the input. We apply 3 scales of decomposition by recursively transforming the low-pass bands and obtain 18 bands of different directionality at different scales. We then calculate mean and variance of each band resulting in a feature vector of 36 entries. Feature vectors obtained for each stack of tiles in axial direction are then clustered using spectral clustering in order to detect the textural changes in depth direction. Testing on a set of 15 RCM stacks produced a mean error of 5.45+/-1.32 μm, compared to the "ground truth" segmentation provided by a clinical expert reader.
Why is there evidence for flowing ice at mid-latitudes on Mars but not at the poles?
NASA Astrophysics Data System (ADS)
Smith, I. B.
2017-12-01
Ice has been detected on Mars in many places, from the polar caps, to mid-latitudes. In many locations there exists evidence for glacial flow. This raises the possibility of flow for the polar layered deposits (PLD). Since the >2000 m thick ice deposits were first observed, speculation about their flow status have persisted. Several stratigraphic predictions regarding flow have been made (Figure 1), but these predictions are not supported with observational data (Smith and Holt 2015) The disagreement between model and observations has led to a general consensus that the polar ice flows more slowly than other processes acting on the PLD, but the reasoning is not understood. Here I posit that the polar layered deposits do not act as a single, generic ice sheet. Instead, they act as a stack of thin ice sheets, where each layer is separated by a boundary of dust, and all layers flow individually. The layers act as barriers to vertical flow, so the viscosity of the cold ice can only be expressed through lateral expansion. I plan to present a simple experiment demonstrating the multi-layer, stacked flow hypothesis. I will demonstrate that the layers themselves flow but do not deform the entire ice sheet, as previously predicted. This allows for the PLD to retain their steep slopes and prevents many of the predicted flow features to form. The major component of this hypothesis is that the dust layers hinder flow. Thus, constraining the friction coefficient, viscosity, tensile strength and compressibility of the dust layers becomes an important next step for testing the stacked, multi-layer flow scenario. Acknowledgements: Thanks to Eric Larour and David Goldsby for helpful comments.
Large scale 2D/3D hybrids based on gallium nitride and transition metal dichalcogenides.
Zhang, Kehao; Jariwala, Bhakti; Li, Jun; Briggs, Natalie C; Wang, Baoming; Ruzmetov, Dmitry; Burke, Robert A; Lerach, Jordan O; Ivanov, Tony G; Haque, Md; Feenstra, Randall M; Robinson, Joshua A
2017-12-21
Two and three-dimensional (2D/3D) hybrid materials have the potential to advance communication and sensing technologies by enabling new or improved device functionality. To date, most 2D/3D hybrid devices utilize mechanical exfoliation or post-synthesis transfer, which can be fundamentally different from directly synthesized layers that are compatible with large scale industrial needs. Therefore, understanding the process/property relationship of synthetic heterostructures is priority for industrially relevant material architectures. Here we demonstrate the scalable synthesis of molybdenum disulfide (MoS 2 ) and tungsten diselenide (WSe 2 ) via metal organic chemical vapor deposition (MOCVD) on gallium nitride (GaN), and elucidate the structure, chemistry, and vertical transport properties of the 2D/3D hybrid. We find that the 2D layer thickness and transition metal dichalcogenide (TMD) choice plays an important role in the transport properties of the hybrid structure, where monolayer TMDs exhibit direct tunneling through the layer, while transport in few layer TMDs on GaN is dominated by p-n diode behavior and varies with the 2D/3D hybrid structure. Kelvin probe force microscopy (KPFM), low energy electron microscopy (LEEM) and X-ray photoelectron spectroscopy (XPS) reveal a strong intrinsic dipole and charge transfer between n-MoS 2 and p-GaN, leading to a degraded interface and high p-type leakage current. Finally, we demonstrate integration of heterogeneous 2D layer stacks of MoS 2 /WSe 2 on GaN with atomically sharp interface. Monolayer MoS 2 /WSe 2 /n-GaN stacks lead to near Ohmic transport due to the tunneling and non-degenerated doping, while few layer stacking is Schottky barrier dominated.
Qiu, Bensheng; El-Sharkawy, Abdel-Monem; Paliwal, Vaishali; Karmarkar, Parag; Gao, Fabao; Atalar, Ergin; Yang, Xiaoming
2005-07-01
Previous studies have confirmed the possibility of using an intravascular MR imaging guidewire (MRIG) as a heating source to enhance vascular gene transfection/expression. This motivated us to develop a new intravascular system that can perform MR imaging, radiofrequncy (RF) heating, and MR temperature monitoring simultaneously in an MR scanner. To validate this concept, a series of mathematical simulations of RF power loss along a 0.032-inch MRIG and RF energy spatial distribution were performed to determine the optimum RF heating frequency. Then, an RF generator/amplifier and a filter box were built. The possibility for simultaneous RF heating and MR thermal mapping of the system was confirmed in vitro using a phantom, and the obtained thermal mapping profile was compared with the simulated RF power distribution. Subsequently, the feasibility of simultaneous RF heating and temperature monitoring was successfully validated in vivo in the aorta of living rabbits. This MR imaging/RF heating system offers a potential tool for intravascular MR-mediated, RF-enhanced vascular gene therapy.
Measured performance of the GTA rf systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denney, P.M.; Jachim, S.P.
1993-06-01
This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation.
Measured performance of the GTA rf systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denney, P.M.; Jachim, S.P.
1993-01-01
This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation.
NASA Astrophysics Data System (ADS)
Otsuka, Shintaro; Mori, Takahiro; Morita, Yukinori; Uchida, Noriyuki; Liu, Yongxun; O'uchi, Shin-ichi; Fuketa, Hiroshi; Migita, Shinji; Masahara, Meishoku; Matsukawa, Takashi
2017-04-01
We structurally and electrically characterize sub-10-nm-thick heteroepitaxial Ge films on Si(001), formed by heated sputtering and subsequent rapid thermal annealing (RTA). After RTA treatment at 720 °C, we find the heteroepitaxial Ge films to have smooth surfaces with a roughness root mean square value of 0.54 nm. Raman measurement reveals that the 720 °C RTA improves the crystallinity of Ge films while maintaining abrupt Ge/Si interfaces. Cross-sectional transmission electron microscopy confirms that the 720 °C RTA step effectively reduces stacking faults and dislocations in the Ge films. The Richardson plot of the TaN/Ge/n-Si diode indicates a Schottky barrier height (SBH) of 0.33 V, which is close to the height of 0.37 V measured from the capacitance-voltage measurement. These values are reasonable compared with the reported SBH of the TaN/bulk Ge Schottky barrier diode, indicating that the method involving heated sputtering and subsequent RTA provides adequate thin Ge films for Ge/Si heterostructures.
NASA Astrophysics Data System (ADS)
Huebner, Torsten; Martens, Ulrike; Walowski, Jakob; Münzenberg, Markus; Thomas, Andy; Reiss, Günter; Kuschel, Timo
2018-06-01
In general, it is difficult to access the thermal conductivity of thin insulating films experimentally by electrical means. Here, we present a new approach utilizing the tunnel magneto-Seebeck effect (TMS) in combination with finite-element modeling (FEM). We detect the laser-induced TMS and the absolute thermovoltage of laser-heated magnetic tunnel junctions with 2.6 nm thin barriers of MgAl2O4 (MAO) and MgO, respectively. A second measurement of the absolute thermovoltage after a dielectric breakdown of the barrier grants insight into the remaining thermovoltage of the stack. Thus, the pure TMS without any parasitic Nernst contributions from the leads can be identified. In combination with FEM via COMSOL, we are able to extract values for the thermal conductivity of MAO (0.7 W (K · m)‑1) and MgO (5.8 W (K · m)‑1), which are in very good agreement with theoretical predictions. Our method provides a new promising way to extract the experimentally challenging parameter of the thermal conductivity of thin insulating films.
Experience of on-site disposal of production uranium-graphite nuclear reactor.
Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G
2018-04-01
The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Auxiliary coil controls temperature of RF induction heater
NASA Technical Reports Server (NTRS)
1966-01-01
Auxiliary coil controls the temperature of an RF induction furnace that is powered by a relatively unstable RF generator. Manual or servoed adjustments of the relative position of the auxiliary coil, which is placed in close proximity to the RF coil, changes the looseness of the RF coil and hence the corresponding heating effect of its RF field.
NASA Astrophysics Data System (ADS)
Wantha, Channarong
2018-02-01
This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.
Hiwa, Ryosuke; Ikari, Katsunori; Ohmura, Koichiro; Nakabo, Shuichiro; Matsuo, Keitaro; Saji, Hiroh; Yurugi, Kimiko; Miura, Yasuo; Maekawa, Taira; Taniguchi, Atsuo; Yamanaka, Hisashi; Matsuda, Fumihiko; Mimori, Tsuneyo; Terao, Chikashi
2018-04-01
HLA-DRB1 is the most important locus associated with rheumatoid arthritis (RA) and anticitrullinated protein antibodies (ACPA). However, fluctuations of rheumatoid factor (RF) over the disease course have made it difficult to define fine subgroups according to consistent RF positivity for the analyses of genetic background and the levels of RF. A total of 2873 patients with RA and 2008 healthy controls were recruited. We genotyped HLA-DRB1 alleles for the participants and collected consecutive data of RF in the case subjects. In addition to RF+ and RF- subsets, we classified the RF+ subjects into group 1 (constant RF+) and group 2 (seroconversion). We compared HLA-DRB1 alleles between the RA subsets and controls and performed linear regression analysis to identify HLA-DRB1 alleles associated with maximal RF levels. Omnibus tests were conducted to assess important amino acid positions. RF positivity was 88%, and 1372 and 970 RF+ subjects were classified into groups 1 and 2, respectively. RF+ and RF- showed similar genetic associations to ACPA+ and ACPA- RA, respectively. We found that shared epitope (SE) was more enriched in group 2 than 1, p = 2.0 × 10 -5 , and that amino acid position 11 showed a significant association between 1 and 2, p = 2.7 × 10 -5 . These associations were independent of ACPA positivity. SE showed a tendency to be negatively correlated with RF titer (p = 0.012). HLA-DRB1*09:01, which reduces ACPA titer, was not associated with RF levels (p = 0.70). The seroconversion group was shown to have distinct genetic characteristics. The genetic architecture of RF levels is different from that of ACPA.
Perroud, Nader; Badoud, Deborah; Weibel, Sébastien; Nicastro, Rosetta; Hasler, Roland; Küng, Anne-Lise; Luyten, Patrick; Fonagy, Peter; Dayer, Alexandre; Aubry, Jean-Michel; Prada, Paco; Debbané, Martin
2017-10-01
Emotion dysregulation and interpersonal hardships constitute core features of borderline personality disorder (BPD). Research has established the link between these core dysregulations and fluctuations in the capacity to appreciate the mental states that underlie behavior (mentalizing, operationalized as reflective functioning (RF)). As emotion dysregulation and interpersonal hardships also characterize adults with attention deficit hyperactivity disorder (ADHD), this study sought to examine the potential RF impairments affecting this population. 101 adults with ADHD, 108 with BPD and 236 controls were assessed using the RF questionnaire (RFQ), evaluating how individuals employ information about mental states to better understand their own and others' behaviors. The RFQ comprises two dimensions, certainty (RF_c) and uncertainty (RF_u) about mental states. RF scores helped distinguish ADHD from controls, but also from BPD (F = 48.1 (2/441) ; p < 0.0001 for RF_c and F = 92.5 (2/441) ; p < 0.0001 for RF_u). The ADHD group showed intermediary RF scores compared to the controls (b = -0.70; p < 0.0001 and b = 0.89; p < 0.0001 for RF_c and RF_u) and BPD group (b = 0.44; p = 0.001 and b = -0.56; p = 0.001 for RF_c and RF_u). Lower RF scores correlated with poor anger control and high levels of impulsivity. Higher severity of ADHD (more attentional and hyperactive/impulsive symptoms) was correlated with RF impairments. In conclusion, RF may constitute an important process underlying attentional, hyperactive/impulsive as well as emotional symptoms in ADHD; it should therefore be considered in the assessment of these patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Study of RF breakdown and multipacting in accelerator components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pande, Manjiri; Singh, P., E-mail: manjiri@barc.gov.in, E-mail: psingh@barc.gov.in
2014-07-01
Radio frequency (RF) structures that are part of accelerators and energy sources, operate with sinusoidally varying electromagnetic fields under high RF energy. Here, RF breakdown and multipacting take place in RF structures and limit their performance. Electron field emission processes in a RF structure are precursors for breakdown processes. RF breakdown is a major phenomena affecting and causing the irreversible damage to RF structures. Breakdown rate and the damage induced by the breakdowns are its important properties. The damage is related to power absorbed during breakdown, while the breakdown rate is determined by the amplitudes of surface electric and magneticmore » fields, geometry, metal surface preparation and conditioning history. It limits working power and produces irreversible surface damage. The breakdown limit depends on the RF circuit, structure geometry, RF frequency, input RF power, pulse width, materials used, surface processing technique and surface electric and magnetic fields. Multipactor (MP) is a low power, electron multiplication based resonance breakdown phenomenon in vacuum and is often observed in RF structures. A multipactor discharge is undesirable, as it can create a reactive component that detunes the resonant cavities and components, generates noise in communication system and induces gas desorption from the conductor surfaces. In RF structures, certain conditions are required to generate multipacting. (author)« less
Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf
2016-01-01
The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.
Johannessen, Torill Vik; Bratbak, Gunnar; Larsen, Aud; Ogata, Hiroyuki; Egge, Elianne S; Edvardsen, Bente; Eikrem, Wenche; Sandaa, Ruth-Anne
2015-02-01
We have isolated three novel lytic dsDNA-viruses from Raunefjorden (Norway) that are putative members of the Mimiviridae family, namely Haptolina ericina virus RF02 (HeV RF02), Prymnesium kappa virus RF01 (PkV RF01), and Prymnesium kappa virus RF02 (PkV RF02). Each of the novel haptophyte viruses challenges the common conceptions of algal viruses with respect to host range, phylogenetic affiliation and size. PkV RF01 has a capsid of ~310 nm and is the largest algal virus particle ever reported while PkV RF01 and HeV RF02 were able to infect different species, even belonging to different genera. Moreover, PkV RF01 and HeV RF02 infected the same hosts, but phylogenetic analysis placed them in different groups. Our results reveal large variation among viruses infecting closely related microalgae, and challenge the common conception that algal viruses have narrow host range, and phylogeny reflecting their host affiliation. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimpi, Tushar M., E-mail: mechanical.tushar@gmail.com; Kephart, Jason M.; Swanson, Drew E.
Single phase Cd{sub 0.6}Zn{sub 0.4}Te (CdZnTe) films of 1 μm thickness were deposited by radio frequency planar magnetron sputter deposition on commercial soda lime glass samples coated with fluorine-doped tin oxide and cadmium sulphide (CdS). The stack was then treated with cadmium chloride (CdCl{sub 2}) at different temperatures using a constant treatment time. The effect of the CdCl{sub 2} treatment was studied using optical, materials, and electrical characterization of the samples and compared with the as-deposited CdZnTe film with the same stack configuration. The band gap deduced from Tauc plots on the as-deposited CdZnTe thin film was 1.72 eV. The depositedmore » film had good crystalline quality with a preferred orientation along the {111} plane. After the CdCl{sub 2} treatment, the absorption edge shifted toward longer wavelength region and new peaks corresponding to cadmium telluride (CdTe) emerged in the x-ray diffraction pattern. This suggested loss of zinc after the CdCl{sub 2} treatment. The cross sectional transmission electron microscope images of the sample treated at 400 °C and the energy dispersive elemental maps revealed the absence of chlorine along the grain boundaries of CdZnTe and residual CdTe. The presence of chlorine in the CdTe devices plays a vital role in drastically improving the device performance which was not observed in CdZnTe samples treated with CdCl{sub 2}. The loss of zinc from the surface and incomplete recrystallization of the grains together with the presence of high densities of stacking faults were observed. The surface images using scanning electron microscopy showed that the morphology of the grains changed from small spherical shape to large grains formed due to the fusion of small grains with distinct grain boundaries visible at the higher CdCl{sub 2} treatment temperatures. The absence of chlorine along the grain boundaries, incomplete recrystallization and distinct grain boundaries is understood to cause the poor performance of the fabricated devices.« less
Ultra-high vacuum photoelectron linear accelerator
Yu, David U.L.; Luo, Yan
2013-07-16
An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.
Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf
2016-01-01
Introduction The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Methods Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Results Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Conclusion Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants. PMID:27598923
UV detector based on InAlN/GaN-on-Si HEMT stack with photo-to-dark current ratio > 107
NASA Astrophysics Data System (ADS)
kumar, Sandeep; Pratiyush, Anamika Singh; Dolmanan, Surani B.; Tripathy, Sudhiranjan; Muralidharan, Rangarajan; Nath, Digbijoy N.
2017-12-01
We demonstrate an InAlN/GaN-on-Si high electron mobility transistor based UV detector with a photo-to-dark current ratio of >107. The Ti/Al/Ni/Au metal stack was evaporated and thermal annealed rapidly for Ohmic contacts to the 2D electron gas (2DEG) at the InAlN/GaN interface, while the channel + barrier was recess etched to a depth of 20 nm to pinch-off the 2DEG between Source-Drain pads. A spectral responsivity (SR) of 32.9 A/W at 367 nm was measured at 5 V. A very high photo-to-dark current ratio of >107 was measured at a bias of 20 V. The photo-to-dark current ratio at a fixed bias was found to be decreasing with an increase in the recess length of photodetectors. The fabricated devices were found to exhibit a UV-to-visible rejection ratio of >103 with a low dark current of < 32 pA at 5 V. Transient measurements showed rise and fall times in the range of 3-4 ms. The gain mechanism was investigated, and carrier lifetimes were estimated which matched well with those reported elsewhere.
Design and Calibration of an RF Actuator for Low-Level RF Systems
NASA Astrophysics Data System (ADS)
Geng, Zheqiao; Hong, Bo
2016-02-01
X-ray free electron laser (FEL) machines like the Linac Coherent Light Source (LCLS) at SLAC require high-quality electron beams to generate X-ray lasers for various experiments. Digital low-level RF (LLRF) systems are widely used to control the high-power RF klystrons to provide a highly stable RF field in accelerator structures for beam acceleration. Feedback and feedforward controllers are implemented in LLRF systems to stabilize or adjust the phase and amplitude of the RF field. To achieve the RF stability and the accuracy of the phase and amplitude adjustment, low-noise and highly linear RF actuators are required. Aiming for the upgrade of the S-band Linac at SLAC, an RF actuator is designed with an I/Qmodulator driven by two digital-to-analog converters (DAC) for the digital LLRF systems. A direct upconversion scheme is selected for RF actuation, and an on-line calibration algorithm is developed to compensate the RF reference leakage and the imbalance errors in the I/Q modulator, which may cause significant phase and amplitude actuation errors. This paper presents the requirements on the RF actuator, the design of the hardware, the calibration algorithm, and the implementation in firmware and software and the test results at LCLS.
Safavi-Naeini, Payam; Zafar-Awan, Dreema; Zhu, Hongjian; Zablah, Gerardo; Ganapathy, Anand V; Rasekh, Abdi; Saeed, Mohammad; Razavi, Joanna Esther Molina; Razavi, Mehdi
2017-01-01
Current methods for measuring voltage during radiofrequency (RF) ablation (RFA) necessitate turning off the ablation catheter. If voltage could be accurately read without signal attenuation during RFA, turning off the catheter would be unnecessary, allowing continuous ablation. We evaluated the accuracy of the Thermocool SMARTTOUCH catheter for measuring voltage while RF traverses the catheter. We studied 26 patients undergoing RFA for arrhythmias. A 7.5F SMARTTOUCH catheter was used for sensing voltage and performing RFA. Data were collected from the Carto-3 3-dimensional mapping system. Voltages were measured during ablation (RF-ON) and immediately before or after ablation (RF-OFF). In evaluating the accuracy of RF-ON measurements, we utilized the RF-OFF measure as the gold standard. We measured 465 voltage signals. The median values were 0.2900 and 0.3100 for RF-ON and RF-OFF, respectively. Wilcoxon signed rank testing showed no significant difference in these values (P = 0.608). The intraclass correlation coefficient (ICC) was 0.96, indicating that voltage measurements were similarly accurate during RF-OFF versus RF-ON. Five patients had baseline atrial fibrillation (AF), for whom 82 ablation points were measured; 383 additional ablation points were measured for the remaining patients. The voltages measured during RF-ON versus RF-OFF were similar in the presence of AF (P = 0.800) versus non-AF rhythm (P = 0.456) (ICC, 0.96 for both). Voltage signal measurement was similarly accurate during RF-ON versus RF-OFF independent of baseline rhythm. Physicians should consider not turning off the SMARTTOUCH ablation catheter when measuring voltage during RFA. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gnapareddy, Bramaramba; Dugasani, Sreekantha Reddy; Son, Junyoung; Park, Sung Ha
2018-02-01
DNA is considered as a useful building bio-material, and it serves as an efficient template to align functionalized nanomaterials. Riboflavin (RF)-doped synthetic double-crossover DNA (DX-DNA) lattices and natural salmon DNA (SDNA) thin films were constructed using substrate-assisted growth and drop-casting methods, respectively, and their topological, chemical and electro-optical characteristics were evaluated. The critical doping concentrations of RF ([RF]C, approx. 5 mM) at given concentrations of DX-DNA and SDNA were obtained by observing the phase transition (from crystalline to amorphous structures) of DX-DNA and precipitation of SDNA in solution above [RF]C. [RF]C are verified by analysing the atomic force microscopy images for DX-DNA and current, absorbance and photoluminescence (PL) for SDNA. We study the physical characteristics of RF-embedded SDNA thin films, using the Fourier transform infrared spectrum to understand the interaction between the RF and DNA molecules, current to evaluate the conductance, absorption to understand the RF binding to the DNA and PL to analyse the energy transfer between the RF and DNA. The current and UV absorption band of SDNA thin films decrease up to [RF]C followed by an increase above [RF]C. By contrast, the PL intensity illustrates the reverse trend, as compared to the current and UV absorption behaviour as a function of the varying [RF]. Owing to the intense PL characteristic of RF, the DNA lattices and thin films with RF might offer immense potential to develop efficient bio-sensors and useful bio-photonic devices.
Gnapareddy, Bramaramba; Son, Junyoung
2018-01-01
DNA is considered as a useful building bio-material, and it serves as an efficient template to align functionalized nanomaterials. Riboflavin (RF)-doped synthetic double-crossover DNA (DX-DNA) lattices and natural salmon DNA (SDNA) thin films were constructed using substrate-assisted growth and drop-casting methods, respectively, and their topological, chemical and electro-optical characteristics were evaluated. The critical doping concentrations of RF ([RF]C, approx. 5 mM) at given concentrations of DX-DNA and SDNA were obtained by observing the phase transition (from crystalline to amorphous structures) of DX-DNA and precipitation of SDNA in solution above [RF]C. [RF]C are verified by analysing the atomic force microscopy images for DX-DNA and current, absorbance and photoluminescence (PL) for SDNA. We study the physical characteristics of RF-embedded SDNA thin films, using the Fourier transform infrared spectrum to understand the interaction between the RF and DNA molecules, current to evaluate the conductance, absorption to understand the RF binding to the DNA and PL to analyse the energy transfer between the RF and DNA. The current and UV absorption band of SDNA thin films decrease up to [RF]C followed by an increase above [RF]C. By contrast, the PL intensity illustrates the reverse trend, as compared to the current and UV absorption behaviour as a function of the varying [RF]. Owing to the intense PL characteristic of RF, the DNA lattices and thin films with RF might offer immense potential to develop efficient bio-sensors and useful bio-photonic devices. PMID:29515837
TESTING FOR CPT VIOLATION IN B0s SEMILEPTONIC DECAYS
NASA Astrophysics Data System (ADS)
Kooten, R. Van
2014-01-01
A DØ analysis measuring the charge asymmetry Absl of like-sign dimuon events due to semileptonic b-hadron decays at the Fermilab Tevatron Collider has shown indications of possible anomalous CP violation in the mixing of neutral B mesons. This result has been used to extract the first senstivity to CPT violation in the B0s system. An analysis to explore further this anomaly by specifically measuring the semileptonic charge asymmetry, assl, in B0s decays is described, as well as how a variant of this analysis can be used to explore a larger set of CPT-violating parameters in the B0s system for the first time.
RF/optical shared aperture for high availability wideband communication RF/FSO links
Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul
2014-04-29
An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.
RF/optical shared aperture for high availability wideband communication RF/FSO links
Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul
2015-03-24
An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.
Synthesis of ultrafine Si3N4 powder in RF-RF plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Michitaka; Nishio, Hiroaki
1991-10-01
A newly designed plasma-CVD apparatus mounted with the RF-RF type plasma torch was introduced to synthesize ultrafine powders of silicon nitride (Si3N4). The RF-RF plasma system (the combination of a main (lower) and controlling (upper) RF plasma) improved the stability of simple RF plasma and solved the impurity problem of dc-RF hybrid plasma. The reaction of SiCl4 and NH3, which were radially injected into the tail flames of the upper and lower plasmas, respectively, yielded near-stoichiometric amorphous powders of Si3N4. The nitrogen content in the products largely depended on the flow rate of the quenching gas, a mixture of NH3more » (reactant) and H2. The oxygen content and metal impurities are 2-3 wt pct and less than 200 ppm, respectively. The powder particles had an average diameter of about 15 nm with a narrow size distribution, and showed extreme air sensitivity. Conspicuous crystallazation and particle growth occurred when heated at temperatures above 1400 C. These results suggested that the RF-RF system was a potential reactor for the synthesis of ultrafine powders with excellent sinterability at relatively low temperatures. 9 refs.« less
Lubner, Meghan G; Hinshaw, J Louis; Andreano, Anita; Sampson, Lisa; Lee, Fred T; Brace, Christopher L
2012-03-01
To evaluate the performance of a gas-cooled, high-powered microwave system. Investigators performed 54 ablations in ex vivo bovine livers using three devices-a single 17-gauge cooled radiofrequency(RF) electrode; a cluster RF electrode; and a single 17-gauge, gas-cooled microwave (MW) antenna-at three time points (n = 6 at 4 minutes, 12 minutes, and 16 minutes). RF power was applied using impedance-based pulsing with maximum 200 W generator output. MW power of 135 W at 2.45 GHz was delivered continuously. An approved in vivo study was performed using 13 domestic pigs. Hepatic ablations were performed using single applicators and the above-mentioned MW and RF generator systems at treatment times of 2 minutes (n = 7 MW, n = 6 RF), 5 minutes (n = 23 MW, n = 8 RF), 7 minutes (n = 11 MW, n = 6 RF), and 10 minutes (n = 7 MW, n = 9 RF). Mean transverse diameter and length of the ablation zones were compared using analysis of variance (ANOVA) with post-hoc t tests and Wilcoxon rank-sum tests. Single ex vivo MW ablations were larger than single RF ablations at all time points (MW mean diameter range 3.5-4.8 cm 4-16 minutes; RF mean diameter range 2.6-3.1 cm 4-16 minutes) (P < .05). There was no difference in mean diameter between cluster RF and MW ablations (RF 3.3-4.4 cm 4-16 minutes; P = .4-.9). In vivo lesion diameters for MW (and RF) were as follows: 2.6 cm ± 0.72 (RF 1.5 cm ± 0.14), 3.6 cm ± 0.89 (RF 2.0 cm ± 0.4), 3.4 cm ± 0.87 (RF 1.8 cm ± 0.23), and 3.8 cm ± 0.74 (RF 2.1 cm ± 0.3) at 2 minutes, 5 minutes, 7 minutes, and 10 minutes (P < .05 all time points). Gas-cooled, high-powered MW ablation allows the generation of large ablation zones in short times. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.
Katchamart, Wanruchada; Koolvisoot, Ajchara; Aromdee, Emvalee; Chiowchanwesawakit, Praveena; Muengchan, Chayawee
2015-10-01
The objective of this study was to investigate the association of rheumatoid factor (RF) and anti-citrullinated peptide antibodies (ACPA) status with disease progression and treatment outcomes in patients with rheumatoid arthritis (RA). A total of 276 adult patients who fulfilled the American College of Rheumatology 1987 classification criteria for RA were recruited from the Rheumatology clinic, Siriraj Hospital, from January 2011 to December 2012. Demographic, clinical, and laboratory data were collected at baseline and every 3 months up to 1 year of follow-up. RF and ACPA were measured at baseline. Radiography of the hands and feet was performed at baseline and 1 year. Patients with RF+/ACPA+ had significantly more severe disease activity and impaired functional status than those who had RF-/ACPA-. Although they received more aggressive treatment with methotrexate and combination of non-biologic, disease-modifying antirheumatic drug than other groups, fewer patients in this group achieved remission at 1 year of follow-up, especially when compared to RF-/ACPA- group (12 vs. 18 %). For radiographic erosion, patients with the presence of either RF or ACPA had a higher proportion of hand erosion than seronegative patients at baseline (77, 73, 83, and 32 %, p < 0.001 for RF+/ACPA+, RF+/ACPA-, RF-/ACPA+, and RF-/ACPA-, respectively). After 1 year of follow-up, patients who developed new erosion at the hands were more prevalent in RF+/ACPA+ (32 %) and RF+/ACPA- (33 %) groups. However, "newly developed" feet erosion was most common in RF+/ACPA- group (40 %) than in other groups. Patients with positive either RF or ACPA or both have more severe and aggressive disease that requires intensive treatment to improve outcomes.
Mora, Liliana; Heurgué-Hamard, Valérie; de Zamaroczy, Miklos; Kervestin, Stephanie; Buckingham, Richard H
2007-12-07
Bacterial release factors RF1 and RF2 are methylated on the Gln residue of a universally conserved tripeptide motif GGQ, which interacts with the peptidyl transferase center of the large ribosomal subunit, triggering hydrolysis of the ester bond in peptidyl-tRNA and releasing the newly synthesized polypeptide from the ribosome. In vitro experiments have shown that the activity of RF2 is stimulated by Gln methylation. The viability of Escherichia coli K12 strains depends on the integrity of the release factor methyltransferase PrmC, because K12 strains are partially deficient in RF2 activity due to the presence of a Thr residue at position 246 instead of Ala. Here, we study in vivo RF1 and RF2 activity at termination codons in competition with programmed frameshifting and the effect of the Ala-246 --> Thr mutation. PrmC inactivation reduces the specific termination activity of RF1 and RF2(Ala-246) by approximately 3- to 4-fold. The mutation Ala-246 --> Thr in RF2 reduces the termination activity in cells approximately 5-fold. After correction for the decrease in level of RF2 due to the autocontrol of RF2 synthesis, the mutation Ala-246 --> Thr reduced RF2 termination activity by approximately 10-fold at UGA codons and UAA codons. PrmC inactivation had no effect on cell growth in rich media but reduced growth considerably on poor carbon sources. This suggests that the expression of some genes needed for optimal growth under such conditions can become growth limiting as a result of inefficient translation termination.
Kothmann, Richard E.; Somers, Edward V.
1982-01-01
Arrangements of stacks of fuel cells and ducts, for fuel cells operating with separate fuel, oxidant and coolant streams. An even number of stacks are arranged generally end-to-end in a loop. Ducts located at the juncture of consecutive stacks of the loop feed oxidant or fuel to or from the two consecutive stacks, each individual duct communicating with two stacks. A coolant fluid flows from outside the loop, into and through cooling channels of the stack, and is discharged into an enclosure duct formed within the loop by the stacks and seals at the junctures at the stacks.
Airborne RF Measurement System and Analysis of Representative Flight RF Environment
NASA Technical Reports Server (NTRS)
Koppen, Sandra V.; Ely, Jay J.; Smith, Laura J.; Jones, Richard A.; Fleck, Vincent J.; Salud, Maria Theresa; Mielnik, John
2007-01-01
Environmental radio frequency (RF) data over a broad band of frequencies were needed to evaluate the airspace around several airports. An RF signal measurement system was designed using a spectrum analyzer connected to an aircraft VHF/UHF navigation antenna installed on a small aircraft. This paper presents an overview of the RF measurement system and provides analysis of a sample of RF signal measurement data over a frequency range of 30 MHz to 1000 MHz.
Chen, Chunhai; Ma, Qinlong; Liu, Chuan; Deng, Ping; Zhu, Gang; Zhang, Lei; He, Mindi; Lu, Yonghui; Duan, Weixia; Pei, Liping; Li, Min; Yu, Zhengping; Zhou, Zhou
2014-05-29
A radiofrequency electromagnetic field (RF-EMF) of 1800 MHz is widely used in mobile communications. However, the effects of RF-EMFs on cell biology are unclear. Embryonic neural stem cells (eNSCs) play a critical role in brain development. Thus, detecting the effects of RF-EMF on eNSCs is important for exploring the effects of RF-EMF on brain development. Here, we exposed eNSCs to 1800 MHz RF-EMF at specific absorption rate (SAR) values of 1, 2, and 4 W/kg for 1, 2, and 3 days. We found that 1800 MHz RF-EMF exposure did not influence eNSC apoptosis, proliferation, cell cycle or the mRNA expressions of related genes. RF-EMF exposure also did not alter the ratio of eNSC differentiated neurons and astrocytes. However, neurite outgrowth of eNSC differentiated neurons was inhibited after 4 W/kg RF-EMF exposure for 3 days. Additionally, the mRNA and protein expression of the proneural genes Ngn1 and NeuroD, which are crucial for neurite outgrowth, were decreased after RF-EMF exposure. The expression of their inhibitor Hes1 was upregulated by RF-EMF exposure. These results together suggested that 1800 MHz RF-EMF exposure impairs neurite outgrowth of eNSCs. More attention should be given to the potential adverse effects of RF-EMF exposure on brain development.
Electromechanically Actuated Multifunctional Wireless Auxetic Device for Wound Management.
Mir, Mariam; Ansari, Umar; Ali, Murtaza Najabat; Iftikhar, Muhammad Hassan Ul; Qayyum, Faisal
2017-01-01
The design and fabrication of a wound healing device for chronic wounds, with multiple functions for controlled drug delivery and exudate removal, has been described in this paper. The structural features have been machined and modified through laser cutting in a biocompatible polymer cast. Miniaturized versions of electronically actuated (lead-screw and pulley) mechanisms are used for the specific purpose of controlled drug delivery. These mechanisms have been studied and tested, being controlled through a microcontroller setup. An auxetic polymeric barrier membrane has been used for restricting the drug quantities administered. Drug delivery mechanisms are powered wirelessly, through an external, active RF component; this communicates with a passive component that is buried inside the wound healing device. The exudate removal efficiency of the device has been assessed through several simple tests using simulated wound exudate. It has been found that reasonably precise quantities of drug dosages to be administered to the wound site can be controlled through both drug delivery mechanisms; however, the lead-screw mechanism provides a better control of auxetic barrier membrane actuation and hence controlled drug delivery. We propose that this device can have potential clinical significance in controlled drug delivery and exudate removal in the management of chronic wounds.
NASA Astrophysics Data System (ADS)
Tengeler, Sven; Kaiser, Bernhard; Chaussende, Didier; Jaegermann, Wolfram
2017-04-01
The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni2Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.
Gate oxide thickness dependence of the leakage current mechanism in Ru/Ta2O5/SiON/Si structures
NASA Astrophysics Data System (ADS)
Ťapajna, M.; Paskaleva, A.; Atanassova, E.; Dobročka, E.; Hušeková, K.; Fröhlich, K.
2010-07-01
Leakage conduction mechanisms in Ru/Ta2O5/SiON/Si structures with rf-sputtered Ta2O5 with thicknesses ranging from 13.5 to 1.8 nm were systematically studied. Notable reaction at the Ru/Ta2O5 interface was revealed by capacitance-voltage measurements. Temperature-dependent current-voltage characteristics suggest the bulk-limited conduction mechanism in all metal-oxide-semiconductor structures. Under gate injection, Poole-Frenkel emission was identified as a dominant mechanism for 13.5 nm thick Ta2O5. With an oxide thickness decreasing down to 3.5 nm, the conduction mechanism transforms to thermionic trap-assisted tunnelling through the triangular barrier. Under substrate injection, the dominant mechanism gradually changes with decreasing thickness from thermionic trap-assisted tunnelling to trap-assisted tunnelling through the triangular barrier; Poole-Frenkel emission was not observed at all. A 0.7 eV deep defect level distributed over Ta2O5 is assumed to be responsible for bulk-limited conduction mechanisms and is attributed to H-related defects or oxygen vacancies in Ta2O5.
NASA Astrophysics Data System (ADS)
Boisvert, J.-S.; Stafford, L.; Naudé, N.; Margot, J.; Massines, F.
2018-03-01
Diffuse dielectric barrier discharges are generated over a very wide range of frequencies. According to the targeted frequency, the glow, Townsend-like, hybrid, Ω and RF-α modes are sustained. In this paper, the electrical characterization of the discharge cell together with an electrical model are used to estimate the electron density from current and voltage measurements for excitation frequencies ranging from 50 kHz to 15 MHz. The electron density is found to vary from 1014 to 1017 m-3 over this frequency range. In addition, a collisional-radiative model coupled with optical emission spectroscopy is used to evaluate the electron temperature (assuming Maxwellian electron energy distribution function) in the same conditions. The time and space-averaged electron temperature is found to be about 0.3 eV in both the low-frequency and high-frequency ranges. However, in the medium-frequency range, it reaches almost twice this value as the discharge is in the hybrid mode. The hybrid mode is similar to the atmospheric-pressure glow discharge usually observed in helium DBDs at low frequency with the major difference being that the plasma is continuously sustained and is characterized by a higher power density.
RF Conditioning of the Photo-Cathode RF Gun at the Advanced Photon Source - NWA RF Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, T. L.; DiMonte, N.; Nassiri, A.
A new S-band Photo-cathode (PC) gun was recently installed and RF conditioned at the Advanced Photon Source (APS) Injector Test-stand (ITS) at Argonne National Lab (ANL). The APS PC gun is a LCLS type gun fabricated at SLAC [1]. The PC gun was delivered to the APS in October 2013 and installed in the APS ITS in December 2013. At ANL, we developed a new method of fast detection and mitigation of the guns internal arcs during the RF conditioning process to protect the gun from arc damage and to RF condition more efficiently. Here, we report the results ofmore » RF measurements for the PC gun and an Auto-Restart method for high power RF conditioning.« less
A paper-based microbial fuel cell: instant battery for disposable diagnostic devices.
Fraiwan, Arwa; Mukherjee, Sayantika; Sundermier, Steven; Lee, Hyung-Sool; Choi, Seokheun
2013-11-15
We present a microfabricated paper-based microbial fuel cell (MFC) generating a maximum power of 5.5 μW/cm(2). The MFC features (1) a paper-based proton exchange membrane by infiltrating sulfonated sodium polystyrene sulfonate and (2) micro-fabricated paper chambers by patterning hydrophobic barriers of photoresist. Once inoculum and catholyte were added to the MFC, a current of 74 μA was generated immediately. This paper-based MFC has the advantages of ease of use, low production cost, and high portability. The voltage produced was increased by 1.9 × when two MFC devices were stacked in series, while operating lifetime was significantly enhanced in parallel. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chien-Chih; Hsu, Pei-Lun; Lin, Li
A particular edge-dependent inversion current behavior of metal-oxide-semiconductor (MOS) tunneling diodes was investigated utilizing square and comb-shaped electrodes. The inversion tunneling current exhibits the strong dependence on the tooth size of comb-shaped electrodes and oxide thickness. Detailed illustrations of current conduction mechanism are developed by simulation and experimental measurement results. It is found that the electron diffusion current and Schottky barrier height lowering for hole tunneling current both contribute on inversion current conduction. In MOS tunneling photodiode applications, the photoresponse can be improved by decreasing SiO{sub 2} thickness and using comb-shaped electrodes with smaller tooth spacing. Meantime, the high andmore » steady photosensitivity can also be approached by introducing HfO{sub 2} into dielectric stacks.« less
Stronger multilayer acrylic dielectric elastomer actuators with silicone gel coatings
NASA Astrophysics Data System (ADS)
Lau, Gih-Keong; La, Thanh-Giang; Sheng-Wei Foong, Ervin; Shrestha, Milan
2016-12-01
Multilayer dielectric elastomer actuators (DEA) perform worst off than single-layer DEAs due to higher susceptibility to electro-thermal breakdown. This paper presents a hot-spot model to predict the electro-thermal breakdown field of DEAs and its dependence on thermal insulation. To inhibit the electrothermal breakdown, silicone gel coating was applied as barrier coating to multilayer acrylic DEA. The gel coating helps suppress the electro-thermally induced puncturing of DEA membrane at the hot spot. As a result, the gel-coated DEAs, in either a single layer or a multilayer stack, can produce 30% more isometric stress change as compared to those none-coated. These gel-coated acrylic DEAs show great potential to make stronger artificial muscles.
Observations of the ratio of low-energy cosmic-ray positrons and electrons during solar quiet times
NASA Technical Reports Server (NTRS)
Hurford, G. J.; Mewaldt, R. A.; Stone, E. C.; Vogt, R. E.
1974-01-01
Simultaneous observations of the quiet-time interplanetary positron and electron spectra between 0.16 and 1.6 MeV are reported. The measurements were made in selected time intervals between October 1, 1972 and February 1, 1973 with the Caltech Electron/Isotope Spectrometer on the IMP-7 satellite. The detector system consists of a stack of 11 silicon surface-barrier detectors surrounded by a plastic scintillator anti-coincidence cup. The method of e+ identification and possible background effects are discussed and upper limits to the 0.16 to 1.6 MeV quiet-time positron flux are reported. During this period positrons amounted to less than 20% of the total 0.16 to 1.6 MeV electron flux.
Hwang, Wang-Taek; Min, Misook; Jeong, Hyunhak; Kim, Dongku; Jang, Jingon; Yoo, Daekyung; Jang, Yeonsik; Kim, Jun-Woo; Yoon, Jiyoung; Chung, Seungjun; Yi, Gyu-Chul; Lee, Hyoyoung; Wang, Gunuk; Lee, Takhee
2016-11-25
We investigated the electrical characteristics and the charge transport mechanism of pentacene vertical hetero-structures with graphene electrodes. The devices are composed of vertical stacks of silicon, silicon dioxide, graphene, pentacene, and gold. These vertical heterojunctions exhibited distinct transport characteristics depending on the applied bias direction, which originates from different electrode contacts (graphene and gold contacts) to the pentacene layer. These asymmetric contacts cause a current rectification and current modulation induced by the gate field-dependent bias direction. We observed a change in the charge injection barrier during variable-temperature current-voltage characterization, and we also observed that two distinct charge transport channels (thermionic emission and Poole-Frenkel effect) worked in the junctions, which was dependent on the bias magnitude.
Ratajczak, J; Łaszcz, A; Czerwinski, A; Katcki, J; Phillipp, F; Van Aken, P A; Reckinger, N; Dubois, E
2010-03-01
In this paper, we present results of transmission electron microscopy studies on erbium silicide structures fabricated under various thermal conditions. A titanium cap has been used as a protective layer against oxidation during rapid thermal annealing of an erbium layer in a temperature range of 300-700 degrees C. Both layers (200 nm Ti and 25 nm Er) were deposited by electron-beam sputtering. The investigations have shown that the transformation of the 25-nm-thick erbium into erbium silicide is completed after annealing at 500 degrees C. At higher temperatures, the formation of a titanium silicide layer above erbium silicide is observed. The lowest Schottky barrier has been measured in the sample annealed at 700 degrees C.
NASA Astrophysics Data System (ADS)
Pussak, Marcin; Bauer, Klaus; Stiller, Manfred; Bujakowski, Wieslaw
2014-04-01
Within a seismic reflection processing work flow, the common-reflection-surface (CRS) stack can be applied as an alternative for the conventional normal moveout (NMO) or the dip moveout (DMO) stack. The advantages of the CRS stack include (1) data-driven automatic determination of stacking operator parameters, (2) imaging of arbitrarily curved geological boundaries, and (3) significant increase in signal-to-noise (S/N) ratio by stacking far more traces than used in a conventional stack. In this paper we applied both NMO and CRS stackings to process a sparse 3D seismic data set acquired within a geothermal exploration study in the Polish Basin. The stacked images show clear enhancements in quality achieved by the CRS stack in comparison with the conventional stack. While this was expected from previous studies, we also found remarkable improvements in the quality of seismic attributes when the CRS stack was applied instead of the conventional stack. For the major geothermal target reservoir (Lower Jurassic horizon Ja1), we present a comparison between both stacking methods for a number of common attributes, including root-mean-square (RMS) amplitudes, instantaneous frequencies, coherency, and spectral decomposition attributes derived from the continuous wavelet transform. The attribute maps appear noisy and highly fluctuating after the conventional stack, and are clearly structured after the CRS stack. A seismic facies analysis was finally carried out for the Ja1 horizon using the attributes derived from the CRS stack by using self-organizing map clustering techniques. A corridor parallel to a fault system was identified, which is characterized by decreased RMS amplitudes and decreased instantaneous frequencies. In our interpretation, this region represents a fractured, fluid-bearing compartment within the sandstone reservoir, which indicates favorable conditions for geothermal exploitation.
Martín, Ferran; Bonache, Jordi
2014-01-01
In this review paper, several strategies for the implementation of reconfigurable split ring resonators (SRRs) based on RF-MEMS switches are presented. Essentially three types of RF-MEMS combined with split rings are considered: (i) bridge-type RF-MEMS on top of complementary split ring resonators CSRRs; (ii) cantilever-type RF-MEMS on top of SRRs; and (iii) cantilever-type RF-MEMS integrated with SRRs (or RF-MEMS SRRs). Advantages and limitations of these different configurations from the point of view of their potential applications for reconfigurable stopband filter design are discussed, and several prototype devices are presented. PMID:25474378
Airborne RF Measurement System (ARMS) and Analysis of Representative Flight RF Environment
NASA Technical Reports Server (NTRS)
Koppen, Sandra V.; Ely, Jay J.; Smith, Laura J.; Jones, Richard A.; Fleck, Vincent J.; Salud, Maria Theresa; Mielnik, John J.
2007-01-01
Environmental radio frequency (RF) data over a broad band of frequencies (30 MHz to 1000 MHz) were obtained to evaluate the electromagnetic environment in airspace around several airports. An RF signal measurement system was designed utilizing a spectrum analyzer connected to the NASA Lancair Columbia 300 aircraft's VHF/UHF navigation antenna. This paper presents an overview of the RF measurement system and provides analysis of sample RF signal measurement data. This aircraft installation package and measurement system can be quickly returned to service if needed by future projects requiring measurement of an RF signal environment or exploration of suspected interference situations.
Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R
2014-01-01
Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient's body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices.
Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R
2014-01-01
Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient’s body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices. PMID:25378957
Tarescavage, Anthony M; Alosco, Michael L; Ben-Porath, Yossef S; Wood, Arcangela; Luna-Jones, Lynn
2015-04-01
We investigated the internal structure comparability of Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) scores derived from the MMPI-2 and MMPI-2-RF booklets in a sample of 320 criminal defendants (229 males and 54 females). After exclusion of invalid protocols, the final sample consisted of 96 defendants who were administered the MMPI-2-RF booklet and 83 who completed the MMPI-2. No statistically significant differences in MMPI-2-RF invalidity rates were observed between the two forms. Individuals in the final sample who completed the MMPI-2-RF did not statistically differ on demographics or referral question from those who were administered the MMPI-2 booklet. Independent t tests showed no statistically significant differences between MMPI-2-RF scores generated with the MMPI-2 and MMPI-2-RF booklets on the test's substantive scales. Statistically significant small differences were observed on the revised Variable Response Inconsistency (VRIN-r) and True Response Inconsistency (TRIN-r) scales. Cronbach's alpha and standard errors of measurement were approximately equal between the booklets for all MMPI-2-RF scales. Finally, MMPI-2-RF intercorrelations produced from the two forms yielded mostly small and a few medium differences, indicating that discriminant validity and test structure are maintained. Overall, our findings reflect the internal structure comparability of MMPI-2-RF scale scores generated from MMPI-2 and MMPI-2-RF booklets. Implications of these results and limitations of these findings are discussed. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Yadav, Dharmendra Singh; Verma, Abhishek; Sharma, Dheeraj; Tirkey, Sukeshni; Raad, Bhagwan Ram
2017-11-01
Tunnel-field-effect-transistor (TFET) has emerged as one of the most prominent devices to replace conventional MOSFET due to its ability to provide sub-threshold slope below 60 mV/decade (SS ≤ 60 mV/decade) and low leakage current. Despite this, TFETs suffer from ambipolar behavior, lower ON-state current, and poor RF performance. To address these issues, we have introduced drain and gate work function engineering with hetero gate dielectric for the first time in charge plasma based doping-less TFET (DL TFET). In this, the usage of dual work functionality over the drain region significantly reduces the ambipolar behavior of the device by varying the energy barrier at drain/channel interface. Whereas, the presence of dual work function at the gate terminal increases the ON-state current (ION). The combined effect of dual work function at the gate and drain electrode results in the increment of ON-state current (ION) and decrement of ambipolar conduction (Iambi) respectively. Furthermore, the incorporation of hetero gate dielectric along with dual work functionality at the drain and gate electrode provides an overall improvement in the performance of the device in terms of reduction in ambipolarity, threshold voltage and sub-threshold slope along with improved ON-state current and high frequency figures of merit.
High Efficiency Stacked Organic Light-Emitting Diodes Employing Li2O as a Connecting Layer
NASA Astrophysics Data System (ADS)
Kanno, Hiroshi; Hamada, Yuji; Nishimura, Kazuki; Okumoto, Kenji; Saito, Nobuo; Ishida, Hiroki; Takahashi, Hisakazu; Shibata, Kenichi; Mameno, Kazunobu
2006-12-01
We demonstrate the high-efficiency stacked organic light-emitting diodes (OLEDs) introducing new connecting layers. In the green stacked OLEDs, the external efficiencies increase proportionally to the number of the stacked units without suffering the decrease in power efficiency. The current, power and external efficiencies at 0.5 mA/cm2 of the stacked OLED with six stacked units (6-stacked OLED) have reached 235 cd/A, 46.6 lm/W, and 65.8%, respectively. Furthermore, we have applied the connecting layers to a white stacked OLED and fabricated an active-matrix full-color display with a low temperature polysilicon thin film transistor backplane. In the device, the current efficiency of the white 2-stacked OLED is enhanced by a factor of 2.2. The initial luminance drop is significantly suppressed for the white 2-stacked OLED compared to 1-stacked OLED. The proposed white stacked OLED technology can be applied to a full-color display for a practical use.
DeBruler, Danielle M; Blackstone, Britani N; Baumann, Molly E; McFarland, Kevin L; Wulff, Brian C; Wilgus, Traci A; Bailey, J Kevin; Supp, Dorothy M; Powell, Heather M
2017-09-01
Fractional CO 2 laser therapy has been used to improve scar pliability and appearance; however, a variety of treatment protocols have been utilized with varied outcomes. Understanding the relationship between laser power and extent of initial tissue ablation and time frame for remodeling could help determine an optimum power and frequency for laser treatment. The characteristics of initial injury caused by fractional CO 2 laser treatment, the rates of dermal remodeling and re-epithelialization, and the extent of inflammation as a function of laser stacking were assessed in this study in a porcine scar model. Full-thickness burn wounds were created on female Red Duroc pigs followed by immediate excision of the eschar and split-thickness autografting. Three months after injury, the resultant scars were treated with a fractional CO 2 laser with 70 mJ of energy delivered as either a single pulse or stacked for three consecutive pulses. Immediately prior to laser treatment and at 1, 24, 96, and 168 hours post-laser treatment, transepidermal water loss (TEWL), erythema, and microscopic characteristics of laser injury were measured. In addition, markers for inflammatory cytokines, extracellular matrix proteins, and re-epithelialization were quantified at all time points using qRT-PCR. Both treatments produced erythema in the scar that peaked 24 hours after treatment then decreased to basal levels by 168 hours. TEWL increased after laser treatment and returned to normal levels between 24 and 96 hours later. Stacking of the pulses did not significantly increase the depth of ablated wells or extend the presence of erythema. Interleukin 6 and monocyte chemoattractant protein-1 were found to increase significantly 1 hour after treatment but returned to baseline by 24 hours post laser. In contrast, expression of transforming growth factor β1 and transforming growth factor β3 increased slowly after treatment with a more modest increase than interleukin 6 and monocyte chemoattractant protein-1. In the current study, the properties of the ablative zones were not directly proportional to the total amount of energy applied to the porcine scars with the use of triple stacking, resulting in only minor increases to microthermal zone (MTZ) depth and width versus a single pulse. Re-epithelialization and re-establishment of epidermal barrier function were observed in laser treated scars by 48 hours post therapy. Finally, many of the inflammatory genes up-regulated by the laser ablation returned to baseline within 1 week. As a whole, these results suggest that microthermal zones created by FXCO 2 treatment re-epithelialize rapidly with the inflammatory response to the laser induced injury largely resolved within 1 week post treatment. Further study is needed to understand the relationship between laser stacking and MTZ properties in human scars in order to evaluate the clinical applicability of the stacking technique. Lasers Surg. Med. 49:675-685, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Guanine base stacking in G-quadruplex nucleic acids
Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân
2013-01-01
G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444
The Direct FuelCell™ stack engineering
NASA Astrophysics Data System (ADS)
Doyon, J.; Farooque, M.; Maru, H.
FuelCell Energy (FCE) has developed power plants in the size range of 300 kW to 3 MW for distributed power generation. Field-testing of the sub-megawatt plants is underway. The FCE power plants are based on its Direct FuelCell™ (DFC) technology. This is so named because of its ability to generate electricity directly from a hydrocarbon fuel, such as natural gas, by reforming it inside the fuel cell stack itself. All FCE products use identical 8000 cm 2 cell design, approximately 350-400 cells per stack, external gas manifolds, and similar stack compression systems. The difference lies in the packaging of the stacks inside the stack module. The sub-megawatt system stack module contains a single horizontal stack whereas the MW-class stack module houses four identical vertical stacks. The commonality of the design, internal reforming features, and atmospheric operation simplify the system design, reduce cost, improve efficiency, increase reliability and maintainability. The product building-block stack design has been advanced through three full-size stack operations at company's headquarters in Danbury, CT. The initial proof-of-concept of the full-size stack design was verified in 1999, followed by a 1.5 year of endurance verification in 2000-2001, and currently a value-engineered stack version is in operation. This paper discusses the design features, important engineering solutions implemented, and test results of FCE's full-size DFC stacks.
Reflective Functioning in Parents of School-Aged Children
Borelli, Jessica L.; St. John, H. Kate; Cho, Evelyn; Suchman, Nancy E.
2016-01-01
Parental reflective functioning (RF) has garnered tremendous support as a predictor of secure attachment in infancy, though little work has examined RF among parents of older children. In this study, we used a high-risk community sample of parent–child dyads (N = 117) to explore whether parental RF comprises self- and child-focused factors, whether parental RF is associated with parent and child attachment security, and whether parental RF mediates the association between parent and child attachment security. Results suggested that parental RF can be characterized as having both self- and child-focused components, and that child-focused parental RF is associated with child but not parent attachment security. Further, child-focused parental RF indirectly mediates the association between parent attachment avoidance and child attachment security. These findings extend previous work on parental RF to parents of school-age children and, in so doing, inform developmental models of attachment relationships in middle childhood. Discussion focuses on the importance of these findings in informing theory, prevention, clinical practice, and policy. PMID:26618938
Selective RF pulses in NMR and their effect on coupled and uncoupled spin systems
NASA Astrophysics Data System (ADS)
Slotboom, J.
1993-10-01
This thesis describes various aspects of the usage of shaped RF-pulses for volume selection and spectral editing. Contents: Introduction--The History of Magnetic Resonance in a Nutshell, and The Usage of RF Pulses in Contemporary MRS and MRI; Theoretical and Practical Aspects of Localized NMR Spectroscopy; The Effects of RF Pulse Shape Discretization on the Spatially Selective Performance; Design of Frequency-Selective RF Pulses by Optimizing a Small Number of Pulse Parameters; A Single-Shot Localization Pulse Sequence Suited for Coils with Inhomogeneous RF Fields Using Adiabatic Slice-Selective RF Pulses; The Bloch Equations for an AB System and the Design of Spin State Selective RF Pulses for Coupled Spin Systems; The Effects of Frequency Selective RF Pulses on J Coupled Spin-1/2 Systems; A Quantitative (1)H MRS in vivo Study of the Effects of L-Ornithine-L-Aspartate on the Development of Mild Encephalopathy Using a Single Shot Localization Technique Based on SAR Reduced Adiabatic 2(pi) Pulses.
Cai, Siwei; Yang, Qianhui; Hou, Mengzhu; Han, Qian; Zhang, Hanyu; Wang, Jiantao; Qi, Chen; Bo, Qiyu; Ru, Yusha; Yang, Wei; Gu, Zhongxiu; Wei, Ruihua; Cao, Yunshan; Li, Xiaorong; Zhang, Yan
2018-01-01
Blood-retinal barrier (BRB) breakdown and vascular leakage is the leading cause of blindness of diabetic retinopathy (DR). Hyperglycemia-induced oxidative stress and inflammation are primary pathogenic factors of this severe DR complication. An effective interventional modality against the pathogenic factors during early DR is needed to curb BRB breakdown and vascular leakage. This study sought to examine the protective effects of α-Melanocyte-stimulating hormone (α-MSH) on early diabetic retina against vascular hyperpermeability, electrophysiological dysfunction, and morphological deterioration in a rat model of diabetes and probe the mechanisms underlying the α-MSH's anti-hyperpermeability in both rodent retinas and simian retinal vascular endothelial cells (RF6A). Sprague Dawley rats were injected through tail vein with streptozotocin to induce diabetes. The rats were intravitreally injected with α-MSH or saline at Week 1 and 3 after hyperglycemia. In another 2 weeks, Evans blue assay, transmission electron microscopy, electroretinogram (ERG), and hematoxylin and eosin (H&E) staining were performed to examine the protective effects of α-MSH in diabetic retinas. The expression of pro-inflammatory factors and tight junction at mRNA and protein levels in retinas was analyzed. Finally, the α-MSH's anti-hyperpermeability was confirmed in a high glucose (HG)-treated RF6A cell monolayer transwell culture by transendothelial electrical resistance (TEER) measurement and a fluorescein isothiocyanate-Dextran assay. Universal or specific melanocortin receptor (MCR) blockers were also employed to elucidate the MCR subtype mediating α-MSH's protection. Evans blue assay showed that BRB breakdown and vascular leakage was detected, and rescued by α-MSH both qualitatively and quantitatively in early diabetic retinas; electron microscopy revealed substantially improved retinal and choroidal vessel ultrastructures in α-MSH-treated diabetic retinas; scotopic ERG suggested partial rescue of functional defects by α-MSH in diabetic retinas; and H&E staining revealed significantly increased thickness of all layers in α-MSH-treated diabetic retinas. Mechanistically, α-MSH corrected aberrant transcript and protein expression of pro-inflammatory factor and tight junction genes in the diseased retinas; moreover, it prevented abnormal changes in TEER and permeability in HG-stimulated RF6A cells, and this anti-hyperpermeability was abolished by a universal MCR blocker or an antagonist specific to MC4R. This study showed previously undescribed protective effects of α-MSH on inhibiting BRB breakdown and vascular leakage, improving electrophysiological functions and morphology in early diabetic retinas, which may be due to its down-regulating pro-inflammatory factors and augmenting tight junctions. α-MSH acts predominantly on MC4R to antagonize hyperpermeability in retinal microvessel endothelial cells. © 2018 The Author(s). Published by S. Karger AG, Basel.
rf power system for thrust measurements of a helicon plasma source.
Kieckhafer, Alexander W; Walker, Mitchell L R
2010-07-01
A rf power system has been developed, which allows the use of rf plasma devices in an electric propulsion test facility without excessive noise pollution in thruster diagnostics. Of particular importance are thrust stand measurements, which were previously impossible due to noise. Three major changes were made to the rf power system: first, the cable connection was changed from a balanced transmission line to an unbalanced coaxial line. Second, the rf power cabinet was placed remotely in order to reduce vibration-induced noise in the thrust stand. Finally, a relationship between transmission line length and rf was developed, which allows good transmission of rf power from the matching network to the helicon antenna. The modified system was tested on a thrust measurement stand and showed that rf power has no statistically significant contribution to the thrust stand measurement.
Chen, Chunhai; Ma, Qinlong; Liu, Chuan; Deng, Ping; Zhu, Gang; Zhang, Lei; He, Mindi; Lu, Yonghui; Duan, Weixia; Pei, Liping; Li, Min; Yu, Zhengping; Zhou, Zhou
2014-01-01
A radiofrequency electromagnetic field (RF-EMF) of 1800 MHz is widely used in mobile communications. However, the effects of RF-EMFs on cell biology are unclear. Embryonic neural stem cells (eNSCs) play a critical role in brain development. Thus, detecting the effects of RF-EMF on eNSCs is important for exploring the effects of RF-EMF on brain development. Here, we exposed eNSCs to 1800 MHz RF-EMF at specific absorption rate (SAR) values of 1, 2, and 4 W/kg for 1, 2, and 3 days. We found that 1800 MHz RF-EMF exposure did not influence eNSC apoptosis, proliferation, cell cycle or the mRNA expressions of related genes. RF-EMF exposure also did not alter the ratio of eNSC differentiated neurons and astrocytes. However, neurite outgrowth of eNSC differentiated neurons was inhibited after 4 W/kg RF-EMF exposure for 3 days. Additionally, the mRNA and protein expression of the proneural genes Ngn1 and NeuroD, which are crucial for neurite outgrowth, were decreased after RF-EMF exposure. The expression of their inhibitor Hes1 was upregulated by RF-EMF exposure. These results together suggested that 1800 MHz RF-EMF exposure impairs neurite outgrowth of eNSCs. More attention should be given to the potential adverse effects of RF-EMF exposure on brain development. PMID:24869783
Radiofrequency fields in MAS solid state NMR probes
NASA Astrophysics Data System (ADS)
Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O.; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J.; Reif, Bernd
2017-11-01
We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design.
De-repression of RaRF-mediated RAR repression by adenovirus E1A in the nucleolus.
Um, Soo-Jong; Youn, Hye Sook; Kim, Eun-Joo
2014-02-21
Transcriptional activity of the retinoic acid receptor (RAR) is regulated by diverse binding partners, including classical corepressors and coactivators, in response to its ligand retinoic acid (RA). Recently, we identified a novel corepressor of RAR called the retinoic acid resistance factor (RaRF) (manuscript submitted). Here, we report how adenovirus E1A stimulates RAR activity by associating with RaRF. Based on immunoprecipitation (IP) assays, E1A interacts with RaRF through the conserved region 2 (CR2), which is also responsible for pRb binding. The first coiled-coil domain of RaRF was sufficient for this interaction. An in vitro glutathione-S-transferase (GST) pull-down assay was used to confirm the direct interaction between E1A and RaRF. Further fluorescence microscopy indicated that E1A and RaRF were located in the nucleoplasm and nucleolus, respectively. However, RaRF overexpression promoted nucleolar translocation of E1A from the nucleoplasm. Both the RA-dependent interaction of RAR with RaRF and RAR translocation to the nucleolus were disrupted by E1A. RaRF-mediated RAR repression was impaired by wild-type E1A, but not by the RaRF binding-defective E1A mutant. Taken together, our data suggest that E1A is sequestered to the nucleolus by RaRF through a specific interaction, thereby leaving RAR in the nucleoplasm for transcriptional activation. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Busch, R.
1978-01-01
Thermal barrier coatings of yttria stabilized zirconia and zirconia-ceria mixtures were deposited by RF reactive sputtering. Coatings were 1-2 mils thick, and were deposited on copper cylinders intended to simulate the inner wall of a regeneratively cooled thrust chamber. Coating stoichiometry and adherence were investigated as functions of deposition parameters. Modest deposition rates (approximately 0.15 mil/hr) and subambient sustrate temperatures (-80 C) resulted in nearly stoichiometric coatings which remained adherent through thermal cycles between -196 and 400 C. Coatings deposited at higher rates or substrates temperatures exhibited greater oxygen deficiences, while coatings deposited at lower temperatures were not adherent. Substrate bias resulted in structural changes in the coating and high krypton contents; no clear effect on stoichiometry was observed.
GaN Nanowire MOSFET with Near-Ideal Subthreshold Slope.
Li, Wenjun; Brubaker, Matt D; Spann, Bryan T; Bertness, Kris A; Fay, Patrick
2018-02-01
Wrap-around gate GaN nanowire MOSFETs using Al 2 O 3 as gate oxide have been experimentally demonstrated. The fabricated devices exhibit a minimum subthreshold slope of 60 mV/dec, an average subthreshold slope of 68 mV/dec over three decades of drain current, drain-induced barrier lowering of 27 mV/V, an on-current of 42 μA/μm (normalized by nanowire circumference), on/off ratio over 10 8 , an intrinsic transconductance of 27.8 μS/μm, for a switching efficiency figure of merit, Q=g m /SS of 0.41 μS/μm-dec/mV. These performance metrics make GaN nanowire MOSFETs a promising candidate for emerging low-power applications such as sensors and RF for the internet of things.
Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series
NASA Astrophysics Data System (ADS)
Yu, Rong; Guan, Wanbing; Zhou, Xiao-Dong
2017-02-01
Probing temperature inside a solid oxide fuel cell (SOFC) stack lies at the heart of the development of high-performance and stable SOFC systems. In this article, we report our recent work on the direct measurements of the temperature in three types of SOFC systems: a 5-cell short stack, a 30-cell stack module, and a stack series consisting of two 30-cell stack modules. The dependence of temperature on the gas flow rate and current density was studied under a current sweep or steady-state operation. During the current sweep, the temperature inside the 5-cell stack decreased with increasing current, while it increased significantly at the bottom and top of the 30-cell stack. During a steady-state operation, the temperature of the 5-cell stack was stable while it was increased in the 30-cell stack. In the stack series, the maximum temperature gradient reached 190°C when the gas was not preheated. If the gas was preheated and the temperature gradient was reduced to 23°C in the stack series with the presence of a preheating gas and segmented temperature control, this resulted in a low degradation rate.
Using antennas separated in flight direction to avoid effect of emitter clock drift in geolocation
Ormesher, Richard C.; Bickel, Douglas L
2012-10-23
The location of a land-based radio frequency (RF) emitter is determined from an airborne platform. RF signaling is received from the RF emitter via first and second antennas. In response to the received RF signaling, signal samples for both antennas are produced and processed to determine the location of the RF emitter.
NASA Astrophysics Data System (ADS)
Zenick, Raymond; Kohlhepp, Kimberly; Partch, Russell
2004-09-01
AeroAstro's patented RF Probe is a system designed to address the needs of spacecraft developers and operators interested in measuring and analyzing near-field RF emissions emanating from a nearby spacecraft of interest. The RF Probe consists of an intelligent spectrum analyzer with digital signal processing capabilities combined with a calibrated, wide-bandwidth antenna and RF front end that covers the 50 kHz to 18 GHz spectrum. It is capable of acquiring signal level and signal vector information, classifying signals, assessing the quality of a satellite"s transponders, and characterizing near-field electromagnetic emissions. The RF Probe is intended for either incorporation as part of a suite of spacecraft sensors, or as a stand-alone sensor on spacecraft or other platforms such as Unmanned Aerial Vehicles (UAVs). The RF Probe was initially conceived as a tool to detect and aid in diagnosis of malfunctions in a spacecraft of interest. However, the utility of the RF Probe goes far beyond this initial concept, spanning a wide range of military applications. Most importantly, the RF Probe can provide space situational awareness for critical on-orbit assets by detecting externally induced RF fields, aiding in protection against potentially devastating attacks.
van Smeden, Jeroen; Bouwstra, Joke A
2016-01-01
Human skin acts as a primary barrier between the body and its environment. Crucial for this skin barrier function is the lipid matrix in the outermost layer of the skin, the stratum corneum (SC). Two of its functions are (1) to prevent excessive water loss through the epidermis and (2) to avoid that compounds from the environment permeate into the viable epidermal and dermal layers and thereby provoke an immune response. The composition of the SC lipid matrix is dominated by three lipid classes: cholesterol, free fatty acids and ceramides. These lipids adopt a highly ordered, 3-dimensional structure of stacked densely packed lipid layers (lipid lamellae): the lateral and lamellar lipid organization. The way in which these lipids are ordered depends on the composition of the lipids. One very common skin disease in which the SC lipid barrier is affected is atopic dermatitis (AD). This review addresses the SC lipid composition and organization in healthy skin, and elaborates on how these parameters are changed in lesional and nonlesional skin of AD patients. Concerning the lipid composition, the changes in the three main lipid classes and the importance of the carbon chain lengths of the lipids are discussed. In addition, this review addresses how these changes in lipid composition induce changes in lipid organization and subsequently correlate with an impaired skin barrier function in both lesional and nonlesional skin of these patients. Furthermore, the effect of filaggrin and mutations in the filaggrin gene on the SC lipid composition is critically discussed. Also, the breakdown products of filaggrin, the natural moisturizing factor molecules and its relation to SC-pH is described. Finally, the paper discusses some major changes in epidermal lipid biosynthesis in patients with AD and other related skin diseases, and how inflammation has a deteriorating effect on the SC lipids and SC biosynthesis. The review ends with perspectives on future studies in relation to other skin diseases. © 2016 S. Karger AG, Basel.
Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator
NASA Astrophysics Data System (ADS)
Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad
2016-04-01
The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.
Julià, Antonio; Blanco, Francisco; Fernández-Gutierrez, Benjamín; González, Antonio; Cañete, Juan D; Maymó, Joan; Alperi-López, Mercedes; Olivè, Alex; Corominas, Héctor; Martínez-Taboada, Víctor; González-Álvaro, Isidoro; Fernandez-Nebro, Antonio; Erra, Alba; Sánchez-Fernández, Simón; Alonso, Arnald; López-Lasanta, María; Tortosa, Raül; Codó, Laia; Lluis Gelpi, Josep; García-Montero, Andrés C; Bertranpetit, Jaume; Absher, Devin; Myers, Richard M; Tornero, Jesús; Marsal, Sara
2016-06-01
Rheumatoid factor (RF) is a well-established diagnostic and prognostic biomarker in rheumatoid arthritis (RA). However, ∼20% of RA patients are negative for this anti-IgG antibody. To date, only variation at the HLA-DRB1 gene has been associated with the presence of RF. This study was undertaken to identify additional genetic variants associated with RF positivity. A genome-wide association study (GWAS) for RF positivity was performed using an Illumina Quad610 genotyping platform. A total of 937 RF-positive and 323 RF-negative RA patients were genotyped for >550,000 single-nucleotide polymorphisms (SNPs). Association testing was performed using an allelic chi-square test implemented in Plink software. An independent cohort of 472 RF-positive and 190 RF-negative RA patients was used to validate the most significant findings. In the discovery stage, a SNP in the IRX1 locus on chromosome 5p15.3 (SNP rs1502644) showed a genome-wide significant association with RF positivity (P = 4.13 × 10(-8) , odds ratio [OR] 0.37 [95% confidence interval (95% CI) 0.26-0.53]). In the validation stage, the association of IRX1 with RF was replicated in an independent group of RA patients (P = 0.034, OR 0.58 [95% CI 0.35-0.97] and combined P = 1.14 × 10(-8) , OR 0.43 [95% CI 0.32-0.58]). To our knowledge, this is the first GWAS of RF positivity in RA. Variation at the IRX1 locus on chromosome 5p15.3 is associated with the presence of RF. Our findings indicate that IRX1 and HLA-DRB1 are the strongest genetic factors for RF production in RA. © 2016, American College of Rheumatology.
Review of the Reference Dose and Reference Concentration Processes Document
Summarizes the review and deliberations of the Risk Assessment Forum’s RfD/RfC Technical Panel and its recommendations for improvements in oral referencedose/inhalation reference concentration (RfD/RfC) process.
Fuel cell manifold sealing system
Grevstad, Paul E.; Johnson, Carl K.; Mientek, Anthony P.
1980-01-01
A manifold-to-stack seal and sealing method for fuel cell stacks. This seal system solves the problem of maintaining a low leak rate manifold seal as the fuel cell stack undergoes compressive creep. The seal system eliminates the problem of the manifold-to-stack seal sliding against the rough stack surface as the stack becomes shorter because of cell creep, which relative motion destroys the seal. The seal system described herein utilizes a polymer seal frame firmly clamped between the manifold and the stack such that the seal frame moves with the stack. Thus, as the stack creeps, the seal frame creeps with it, and there is no sliding at the rough, tough to seal, stack-to-seal frame interface. Here the sliding is on a smooth easy to seal location between the seal frame and the manifold.
Method for producing a fuel cell manifold seal
Grevstad, Paul E.; Johnson, Carl K.; Mientek, Anthony P.
1982-01-01
A manifold-to-stack seal and sealing method for fuel cell stacks. This seal system solves the problem of maintaining a low leak rate manifold seal as the fuel cell stack undergoes compressive creep. The seal system eliminates the problem of the manifold-to-stack seal sliding against the rough stack surface as the stack becomes shorter because of cell creep, which relative motion destroys the seal. The seal system described herein utilizes a polymer seal frame firmly clamped between the manifold and the stack such that the seal frame moves with the stack. Thus, as the stack creeps, the seal frame creeps with it, and there is no sliding at the rough, tough to seal, stack-to-seal frame interface. Here the sliding is on a smooth easy to seal location between the seal frame and the manifold.
Development of new S-band RF window for stable high-power operation in linear accelerator RF system
NASA Astrophysics Data System (ADS)
Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan
2017-09-01
For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.
Prevalence and Clinical Characteristics of Refractory Hypertension.
Armario, Pedro; Calhoun, David A; Oliveras, Anna; Blanch, Pedro; Vinyoles, Ernest; Banegas, Jose R; Gorostidi, Manuel; Segura, Julián; Ruilope, Luis M; Dudenbostel, Tanja; de la Sierra, Alejandro
2017-12-07
We aimed to estimate the prevalence of refractory hypertension (RfH) and to determine the clinical differences between these patients and resistant hypertensives (RH). Secondly, we assessed the prevalence of white-coat RfH and clinical differences between true- and white-coat RfH patients. The present analysis was conducted on the Spanish Ambulatory Blood Pressure Monitoring Registry database containing 70 997 treated hypertensive patients. RH and RfH were defined by the presence of elevated office blood pressure (≥140 and/or 90 mm Hg) in patients treated with at least 3 (RH) and 5 (RfH) antihypertensive drugs. White-coat RfH was defined by RfH with normal (<130/80 mm Hg) 24-hour blood pressure. A total of 11.972 (16.9%) patients fulfilled the standard criteria of RH, and 955 (1.4%) were considered as having RfH. Compared with RH patients, those with RfH were younger, more frequently male, and after adjusting for age and sex, had increased prevalence of target organ damage, and previous cardiovascular disease. The prevalence of white coat RfH was lower than white-coat RH (26.7% versus 37.1%, P <0.001). White-coat RfH, in comparison with those with true RfH, showed a lower prevalence of both left ventricular hypertrophy (22% versus 29.7%; P =0.018) and microalbuminuria (28.3% versus 42.9%; P =0.047). The prevalence of RfH was low and these patients had a greater cardiovascular risk profile compared with RH. One out of 4 patients with RfH have normal 24-hour blood pressure and less target organ damage, thus indicating the important role of ambulatory blood pressure monitoring in guiding antihypertensive therapy in difficult-to-treat patients. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Esmekaya, Meric Arda; Aytekin, Ebru; Ozgur, Elcin; Güler, Göknur; Ergun, Mehmet Ali; Omeroğlu, Suna; Seyhan, Nesrin
2011-12-01
The mutagenic and morphologic effects of 1.8GHz Global System for Mobile Communications (GSM) modulated RF (radiofrequency) radiation alone and in combination with Ginkgo biloba (EGb 761) pre-treatment in human peripheral blood lymphocytes (hPBLs) were investigated in this study using Sister Chromatid Exchange (SCE) and electron microscopy. Cell viability was assessed with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction assay. The lymphocyte cultures were exposed to GSM modulated RF radiation at 1.8GHz for 6, 8, 24 and 48h with and without EGb 761. We observed morphological changes in pulse-modulated RF radiated lymphocytes. Longer exposure periods led to destruction of organelle and nucleus structures. Chromatin change and the loss of mitochondrial crista occurred in cells exposed to RF for 8h and 24h and were more pronounced in cells exposed for 48h. Cytoplasmic lysis and destruction of membrane integrity of cells and nuclei were also seen in 48h RF exposed cells. There was a significant increase (p<0.05) in SCE frequency in RF exposed lymphocytes compared to sham controls. EGb 761 pre-treatment significantly decreased SCE from RF radiation. RF radiation also inhibited cell viability in a time dependent manner. The inhibitory effects of RF radiation on the growth of lymphoctes were marked in longer exposure periods. EGb 761 pre-treatment significantly increased cell viability in RF+EGb 761 treated groups at 8 and 24h when compared to RF exposed groups alone. The results of our study showed that RF radiation affects cell morphology, increases SCE and inhibits cell proliferation. However, EGb 761 has a protective role against RF induced mutagenity. We concluded that RF radiation induces chromosomal damage in hPBLs but this damage may be reduced by EGb 761 pre-treatment. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Das, Aniruddha
2017-11-01
5-amino-1-(phenyl/p-halophenyl)imidazole-4-carboxamides (N-phenyl AICA) (2a-e) and 5-amino-1-(phenyl/p-halophenyl)imidazole-4-carbonitriles (N-phenyl AICN) (3a-e) had been synthesized. X-ray crystallographic studies of 2a-e and 3a-e had been performed to identify any distinct change in stacking patterns in their crystal lattice. Single crystal X-ray diffraction studies of 2a-e revealed π-π stack formations with both imidazole and phenyl/p-halophenyl units in anti and syn parallel-displaced (PD)-type dispositions. No π-π stacking of imidazole occurred when the halogen substituent is bromo or iodo; π-π stacking in these cases occurred involving phenyl rings only. The presence of an additional T-stacking had been observed in crystal lattices of 3a-e. Vertical π-π stacking distances in anti-parallel PD-type arrangements as well as T-stacking distances had shown stacking distances short enough to impart stabilization whereas syn-parallel stacking arrangements had got much larger π-π stacking distances to belie any syn-parallel stacking stabilization. DFT studies had been pursued for quantifying the π-π stacking and T-stacking stabilization. The plotted curves for anti-parallel and T-stacked moieties had similarities to the 'Morse potential energy curve for diatomic molecule'. The minima of the curves corresponded to the most stable stacking distances and related energy values indicated stacking stabilization. Similar DFT studies on syn-parallel systems of 2b corresponded to no π-π stacking stabilization at all. Halogen-halogen interactions had also been observed to stabilize the compounds 2d, 2e and 3d. Nano-structural behaviour of the series of compounds 2a-e and 3a-e were thoroughly investigated.
RF study and 3-D simulations of a side-coupling thermionic RF-gun
NASA Astrophysics Data System (ADS)
Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.
2014-02-01
A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.
rf power system for thrust measurements of a helicon plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kieckhafer, Alexander W.; Walker, Mitchell L. R.
2010-07-15
A rf power system has been developed, which allows the use of rf plasma devices in an electric propulsion test facility without excessive noise pollution in thruster diagnostics. Of particular importance are thrust stand measurements, which were previously impossible due to noise. Three major changes were made to the rf power system: first, the cable connection was changed from a balanced transmission line to an unbalanced coaxial line. Second, the rf power cabinet was placed remotely in order to reduce vibration-induced noise in the thrust stand. Finally, a relationship between transmission line length and rf was developed, which allows goodmore » transmission of rf power from the matching network to the helicon antenna. The modified system was tested on a thrust measurement stand and showed that rf power has no statistically significant contribution to the thrust stand measurement.« less
Transient analysis of a solid oxide fuel cell stack with crossflow configuration
NASA Astrophysics Data System (ADS)
Yuan, P.; Liu, S. F.
2018-05-01
This study investigates the transient response of the cell temperature and current density of a solid oxide fuel cell having 6 stacks with crossflow configuration. A commercial software repeatedly solves the governing equations of each stack, and get the convergent results of the whole SOFC stack. The preliminary results indicate that the average current density of each stack is similar to others, so the power output between different stacks are uniform. Moreover, the average cell temperature among stacks is different, and the central stacks have higher temperature due to its harder heat dissipation. For the operating control, the cell temperature difference among stacks is worth to concern because the temperature difference will be over 10 °C in the analysis case. The increasing of the inlet flow rate of the fuel and air will short the transient state, increase the average current density, and drop the cell temperature difference among the stacks. Therefore, the inlet flow rate is an important factor for transient performance of a SOFC stack.
Bipolar radiofrequency ablation of the kidney: comparison with monopolar radiofrequency ablation.
Nakada, Stephen Y; Jerde, Travis J; Warner, Thomas F; Wright, Andrew S; Haemmerich, Dieter; Mahvi, David M; Lee, Fred T
2003-12-01
We report initial ex vivo and in vivo studies using bipolar radiofrequency (RF) ablation of porcine kidneys. An internal ground electrode is positioned in the kidney opposite the RF electrode, resulting in ablation of all the intervening renal tissue. Ex vivo preparations of 10 porcine kidneys were perfused continuously with Ringer's solution and treated with either standard external grounded RF (N = 3) or bipolar RF ablation with 1 (N = 2), 2 (N = 3), or 3 (N = 2) cm of separation between the ground probe and the RF probe using a Model 30 RITA generator (RITA, Mountain View, CA). Target temperatures were 90 degrees C for 8 minutes. Gross and histologic assessments were made acutely. Four domestic pigs were treated with monopolar RF ablation of the lower pole of one kidney and bipolar RF with a 12-mm separation between the probes of the contralateral lower pole. Animals were harvested 48 hours later to maximize tissue damage for gross measurements and histologic evaluation. Ex vivo studies revealed grossly monopolar lesions 1.5 cm in maximum diameter and 1.75 cm(3) in volume. In comparison, bipolar lesions were 2.8 cm in maximum diameter and 10.3 cm(3) in volume using 3 cm of electrode separation. There was histologic evidence of cell death in all specimens. In vivo studies showed two distinct gross lesions with RF: one blanched and one hemorrhagic. Using bipolar RF, larger blanched lesions were achievable than with monopolar RF (2.80 cm(3) v 1.63 cm(3)). Overall, the combinations of blanched and hemorrhagic lesions were similar with monopolar and bipolar RF (5.01 v 5.31 cm(3)). Histologic evaluation verified cell death in the blanched lesions and rare areas of normal tissue in the hemorrhagic lesions. As shown by ex vivo data, bipolar RF can create larger lesions than does monopolar RF. In vivo, at 48 hours, both blanched and hemorrhagic gross lesions were seen using RF. In this model, blanched lesions predominated when performing bipolar RF.
Radiofrequency fields in MAS solid state NMR probes.
Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J; Reif, Bernd
2017-11-01
We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B 0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design. Copyright © 2017 Elsevier Inc. All rights reserved.
Psychodynamic profile and reflective functioning in patients with bulimia nervosa.
Mathiesen, Birgit Bork; Pedersen, Signe Holm; Sandros, Charlotte; Katznelson, Hannah; Wilczek, Alexander; Poulsen, Stig; Lunn, Susanne
2015-10-01
The aim of this study was to examine the general psychological functioning of patients suffering from bulimia nervosa (BN) using the Karolinska Psychodynamic Profile (KAPP). Furthermore, KAPP data and data from the Reflective Functioning scale (RF), measuring the ability to mentalize, were combined in order to examine differences in alexithymia, impulse control and affect regulation in patients with high or low RF. Seventy patients with BN were interviewed with both the KAPP and the Adult Attachment Interview (AAI) from which RF is coded. Differences in KAPP scores of patients with high or low RF were analyzed. Most of the patients with BN were found to have a personality structure within the normal or neurotic range (n=50 of 70). BN patients with a high RF had significantly lower scores on KAPP's alexithymia scale than patients with a low RF score, demonstrating that poor mentalizing is related to alexithymia. Concurrently, patients with high RF showed problems with impulse control and coping with aggressive affects according to KAPP scores. Although BN patients with high RF showed good capacities for describing their mental states, they still had difficulties regulating the emotions and impulses related to these states. Among patients suffering from BN, patients with high RF were significantly less alexithymic than low RF patients. The findings of this study are limited by the relatively small numbers of participants especially in the RF subgroups, posing a danger of not finding as significant existing differences in character pathology between high and low RF groups. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, G. S.; Chen, S. T.
2000-06-01
Tantalum-related thin films containing different amounts of nitrogen are sputter deposited at different argon-to-nitrogen flow rate ratios on (100) silicon substrates. Using x-ray diffractometry, transmission electron microscopy, composition and resistivity analyses, and bending-beam stress measurement technique, this work examines the impact of varying the nitrogen flow rate, particularly on the crystal structure, composition, resistivity, and residual intrinsic stress of the deposited Ta2N thin films. With an adequate amount of controlled, reactive nitrogen in the sputtering gas, thin films of the tantalum nitride of nominal formula Ta2N are predominantly amorphous and can exist over a range of nitrogen concentrations slightly deviated from stoichiometry. The single-layered quasi-amorphous Ta2N (a-Ta2N) thin films yield intrinsic compressive stresses in the range 3-5 GPa. In addition, the use of the 40-nm-thick a-Ta2N thin films with different nitrogen atomic concentrations (33% and 36%) and layering designs as diffusion barriers between silicon and copper are also evaluated. When subjected to high-temperature annealing, the single-layered a-Ta2N barrier layers degrade primarily by an amorphous-to-crystalline transition of the barrier layers. Crystallization of the single-layered stoichiometric a-Ta2N (Ta67N33) diffusion barriers occurs at temperatures as low as 450 °C. Doing so allows copper to preferentially penetrate through the grain boundaries or thermal-induced microcracks of the crystallized barriers and react with silicon, sequentially forming {111}-facetted pyramidal Cu3Si precipitates and TaSi2 Overdoping nitrogen into the amorphous matrix can dramatically increase the crystallization temperature to 600 °C. This temperature increase slows down the inward diffusion of copper and delays the formation of both silicides. The nitrogen overdoped Ta2N (Ta64N36) diffusion barriers can thus be significantly enhanced so as to yield a failure temperature 100 °C greater than that of the Ta67N33 diffusion barriers. Moreover, multilayered films, formed by alternately stacking the Ta67N33 and Ta64N36 layers with an optimized bilayer thickness (λ) of 10 nm, can dramatically reduce the intrinsic compressive stress to only 0.7 GPa and undergo high-temperature annealing without crystallization. Therefore, the Ta67N33/Ta64N36 multilayered films exhibit a much better barrier performance than the highly crystallization-resistant Ta64N36 single-layered films.
NASA Astrophysics Data System (ADS)
Lian, Jianyu
In this work, modification of the cosine current distribution rf coil, PCOS, has been introduced and tested. The coil produces a very homogeneous rf magnetic field, and it is inexpensive to build and easy to tune for multiple resonance frequency. The geometrical parameters of the coil are optimized to produce the most homogeneous rf field over a large volume. To avoid rf field distortion when the coil length is comparable to a quarter wavelength, a parallel PCOS coil is proposed and discussed. For testing rf coils and correcting B _1 in NMR experiments, a simple, rugged and accurate NMR rf field mapping technique has been developed. The method has been tested and used in 1D, 2D, 3D and in vivo rf mapping experiments. The method has been proven to be very useful in the design of rf coils. To preserve the linear relation between rf output applied on an rf coil and modulating input for an rf modulating -amplifying system of NMR imaging spectrometer, a quadrature feedback loop is employed in an rf modulator with two orthogonal rf channels to correct the amplitude and phase non-linearities caused by the rf components in the rf system. The modulator is very linear over a large range and it can generate an arbitrary rf shape. A diffusion imaging sequence has been developed for measuring and imaging diffusion in the presence of background gradients. Cross terms between the diffusion sensitizing gradients and background gradients or imaging gradients can complicate diffusion measurement and make the interpretation of NMR diffusion data ambiguous, but these have been eliminated in this method. Further, the background gradients has been measured and imaged. A dipole random distribution model has been established to study background magnetic fields Delta B and background magnetic gradients G_0 produced by small particles in a sample when it is in a B_0 field. From this model, the minimum distance that a spin can approach a particle can be determined by measuring
Heart Rate Detection During Sleep Using a Flexible RF Resonator and Injection-Locked PLL Sensor.
Kim, Sung Woo; Choi, Soo Beom; An, Yong-Jun; Kim, Byung-Hyun; Kim, Deok Won; Yook, Jong-Gwan
2015-11-01
Novel nonintrusive technologies for wrist pulse detection have been developed and proposed as systems for sleep monitoring using three types of radio frequency (RF) sensors. The three types of RF sensors for heart rate measurement on wrist are a flexible RF single resonator, array resonators, and an injection-locked PLL resonator sensor. To verify the performance of the new RF systems, we compared heart rates between presleep time and postsleep onset time. Heart rates of ten subjects were measured using the RF systems during sleep. All three RF devices detected heart rates at 0.2 to 1 mm distance from the skin of the wrist over clothes made of cotton fabric. The wrist pulse signals of a flexible RF single resonator were consistent with the signals obtained by a portable piezoelectric transducer as a reference. Then, we confirmed that the heart rate after sleep onset time significantly decreased compared to before sleep. In conclusion, the RF system can be utilized as a noncontact nonintrusive method for measuring heart rates during sleep.
RF low-level control for the Linac4 H{sup −} source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butterworth, A., E-mail: andrew.butterworth@cern.ch; Grudiev, A.; Lettry, J.
2015-04-08
The H{sup −} source for the Linac4 accelerator at CERN uses an RF driven plasma for the production of H{sup −}. The RF is supplied by a 2 MHz RF tube amplifier with a maximum power output of 100 kW and a pulse duration of up to 2 ms. The low-level RF signal generation and measurement system has been developed using standard CERN controls electronics in the VME form factor. The RF frequency and amplitude reference signals are generated using separate arbitrary waveform generator channels. The frequency and amplitude are both freely programmable over the duration of the RF pulse, which allowsmore » fine-tuning of the excitation. Measurements of the forward and reverse RF power signals are performed via directional couplers using high-speed digitizers, and permit the estimation of the plasma impedance and deposited power via an equivalent circuit model. The low-level RF hardware and software implementations are described, and experimental results obtained with the Linac4 ion sources in the test stand are presented.« less
C6, C7, and C8 perfluoroalkyl-substituted phosphinic acids.
Singh, R P; Shreeve, J M
2000-04-17
Reaction of red phosphorus with RfI in a 1:2 molar ratio at 230 degrees C led to the formation of a mixture of (Rf)2PI and (Rf)PI2 (Rf = C6F13, C7F15, C8F17) in about a 70:30 ratio, respectively. These mixtures were separated by vacuum distillation. (Rf)2PI (Rf = C6F13, C7F15) are yellow liquids whereas (C8F17)2PI is a yellow solid. Oxidation of (Rf)2PI with excess NO2 led to (Rf)2P(O)OH (Rf = C6F13, C7F15, C8F17) in > 90% isolated yields after aqueous hydrolysis of the anhydride intermediates. These highly fluorinated phosphinic acids are white solids with sharp melting points and are highly soluble in methyl sulfoxide (DMSO) and 1,1,2-trichlorotrifluoroethane. However, solubility in chloroform and methylene dichloride is low. These perfluoroalkylphosphinic acids were characterized by IR, NMR (1H, 19F, and 31P), and mass spectra and elemental analysis.
NASA Astrophysics Data System (ADS)
Kim, Cheolhwan; Kim, Kyu-Jung; Ha, Man Yeong
To investigate the possibility of the portable application of a direct borohydride fuel cell (DBFC), weight reduction of the stack and high stacking of the cells are investigated for practical running conditions. For weight reduction, carbon graphite is adopted as the bipolar plate material even though it has disadvantages in tight stacking, which results in stacking loss from insufficient material strength. For high stacking, it is essential to have a uniform fuel distribution among cells and channels to maintain equal electric load on each cell. In particular, the design of the anode channel is important because active hydrogen generation causes non-uniformity in the fuel flow-field of the cells and channels. To reduce the disadvantages of stacking force margin and fuel maldistribution, an O-ring type-sealing system with an internal manifold and a parallel anode channel design is adopted, and the characteristics of a single and a five-cell fuel cell stack are analyzed. By adopting carbon graphite, the stack weight can be reduced by 4.2 times with 12% of performance degradation from the insufficient stacking force. When cells are stacked, the performance exceeds the single-cell performance because of the stack temperature increase from the reduction of the radiation area from the narrow stacking of cells.
Pressurized electrolysis stack with thermal expansion capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourgeois, Richard Scott
The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, themore » electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.« less
Model of biological quantum logic in DNA.
Mihelic, F Matthew
2013-08-02
The DNA molecule has properties that allow it to act as a quantum logic processor. It has been demonstrated that there is coherent conduction of electrons longitudinally along the DNA molecule through pi stacking interactions of the aromatic nucleotide bases, and it has also been demonstrated that electrons moving longitudinally along the DNA molecule are subject to a very efficient electron spin filtering effect as the helicity of the DNA molecule interacts with the spin of the electron. This means that, in DNA, electrons are coherently conducted along a very efficient spin filter. Coherent electron spin is held in a logically and thermodynamically reversible chiral symmetry between the C2-endo and C3-endo enantiomers of the deoxyribose moiety in each nucleotide, which enables each nucleotide to function as a quantum gate. The symmetry break that provides for quantum decision in the system is determined by the spin direction of an electron that has an orbital angular momentum that is sufficient to overcome the energy barrier of the double well potential separating the C2-endo and C3-endo enantiomers, and that enantiomeric energy barrier is appropriate to the Landauer limit of the energy necessary to randomize one bit of information.
Rf2a and rf2b transcription factors
Beachy, Roger N.; Petruccelli, Silvana; Dai, Shunhong
2007-10-02
A method of activating the rice tungro bacilliform virus (RTBV) promoter in vivo is disclosed. The RTBV promoter is activated by exposure to at least one protein selected from the group consisting of Rf2a and Rf2b.
Characterization of superconducting radiofrequency breakdown by two-mode excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremeev, Grigory V.; Palczewski, Ari D.
2014-01-14
We show that thermal and magnetic contributions to the breakdown of superconductivity in radiofrequency (RF) fields can be separated by applying two RF modes simultaneously to a superconducting surface. We develop a simple model that illustrates how mode-mixing RF data can be related to properties of the superconductor. Within our model the data can be described by a single parameter, which can be derived either from RF or thermometry data. Our RF and thermometry data are in good agreement with the model. We propose to use mode-mixing technique to decouple thermal and magnetic effects on RF breakdown of superconductors.
Oliver, Jane; Baker, Michael G; Pierse, Nevil; Carapetis, Jonathan
2015-11-01
Rheumatic fever (RF) prevention, control and surveillance are increasingly important priorities in New Zealand (NZ) and Australia. We compared RF surveillance across Organisation for Economic Co-operation and Development (OECD) member countries to assist in benchmarking and identifying useful approaches. A structured literature review was completed using Medline and PubMed databases, investigating RF incidence rates. Surveillance methods were noted. Health department websites were searched to assess whether addressing RF was a Government priority. Of 32 OECD member countries, nine reported RF incidence rates after 1999. Highest rates were seen in indigenous Australians, and NZ Māori and Pacific peoples. NZ and Australian surveillance systems are highly developed, with notification and register data compiled regularly. Only these two Governments appeared to prioritise RF surveillance and control. Other countries relied mainly on hospitalisation data. There is a lack of standardisation across incidence rate calculations. Israel and Italy may have relatively high RF rates among developed countries. RF lingers in specific populations in OECD member countries. At a minimum, RF registers are needed in higher incidence countries. Countries with low RF incidences should periodically review surveillance information to ensure rates are not increasing. © 2015 The Authors. Journal of Paediatrics and Child Health © 2015 Paediatrics and Child Health Division (Royal Australasian College of Physicians).
[Percutaneous ablation of malignant kidney tumors in rabbits by low frequency radio energy].
Moskovitz, B; Nativ, O; Sabo, E; Barbara, Y; Mordohovich, D; Kaftori, Y; Shalhav, A; Goldwasser, B
1998-01-01
Radio-frequency (RF) current has been used successfully to ablate normal human tissue. To investigate further the clinical application of this modality in tumors, we studied the potential of using RF percutaneously to destroy experimental kidney tumors. 35 outbred albino rabbits underwent direct-implantation of renal VX2 tumor during open surgery. After 21 days, ultrasonography was performed to show tumor presence and size. A shielded RF needle was designed to be inserted percutaneously through an introduction needle. An electrical insulation shield covering the RF needle was retractable, controlling the length of exposure of the RF needle inside the tissue. 22 days after tumor implantation, RF was applied via this special needle using a ZoMed International RF generator. In one group of rabbits the procedure was performed under direct vision during open surgery, while in another group treatment was percutaneous, the needle guided by palpation of the tumor. Rabbits were killed 3 days later and revealed 4-25 mm intra-tumoral RF-induced lesions. A direct relation was found between lesion size and the power and duration of RF applied (at 7.5 W, R = 0.48, and P = 0.32). Based on our preliminary results we can conclude that RF may have clinical applications in the near future for percutaneous local tumor control in parenchymal organs.
NASA Astrophysics Data System (ADS)
Bassa, Zaakirah; Bob, Urmilla; Szantoi, Zoltan; Ismail, Riyad
2016-01-01
In recent years, the popularity of tree-based ensemble methods for land cover classification has increased significantly. Using WorldView-2 image data, we evaluate the potential of the oblique random forest algorithm (oRF) to classify a highly heterogeneous protected area. In contrast to the random forest (RF) algorithm, the oRF algorithm builds multivariate trees by learning the optimal split using a supervised model. The oRF binary algorithm is adapted to a multiclass land cover and land use application using both the "one-against-one" and "one-against-all" combination approaches. Results show that the oRF algorithms are capable of achieving high classification accuracies (>80%). However, there was no statistical difference in classification accuracies obtained by the oRF algorithms and the more popular RF algorithm. For all the algorithms, user accuracies (UAs) and producer accuracies (PAs) >80% were recorded for most of the classes. Both the RF and oRF algorithms poorly classified the indigenous forest class as indicated by the low UAs and PAs. Finally, the results from this study advocate and support the utility of the oRF algorithm for land cover and land use mapping of protected areas using WorldView-2 image data.
Pregnant Women Models Analyzed for RF Exposure and Temperature Increase in 3T RF Shimmed Birdcages
Murbach, Manuel; Neufeld, Esra; Samaras, Theodoros; Córcoles, Juan; Robb, Fraser J.; Kainz, Wolfgang; Kuster, Niels
2017-01-01
Purpose MRI is increasingly used to scan pregnant patients. We investigated the effect of 3 Tesla (T) two-port radiofrequency (RF) shimming in anatomical pregnant women models. Theory and Methods RF shimming improves B1+ uniformity, but may at the same time significantly alter the induced current distribution and result in large changes in both the level and location of the absorbed RF energy. In this study, we evaluated the electrothermal exposure of pregnant women in the third, seventh, and ninth month of gestation at various imaging landmarks in RF body coils, including modes with RF shimming. Results Although RF shimmed configurations may lower the local RF exposure for the mother, they can increase the thermal load on the fetus. In worst-case configurations, whole-body exposure and local peak temperatures—up to 40.8°C—are equal in fetus and mother. Conclusions Two-port RF shimming can significantly increase the fetal exposure in pregnant women, requiring further research to derive a very robust safety management. For the time being, restriction to the CP mode, which reduces fetal SAR exposure compared with linear-horizontal polarization modes, may be advisable. Results from this study do not support scanning pregnant patients above the normal operating mode. PMID:27174499
A novel nanoscaled Schottky barrier based transmission gate and its digital circuit applications
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Loan, Sajad A.; Alamoud, Abdulrahman M.
2017-04-01
In this work we propose and simulate a compact nanoscaled transmission gate (TG) employing a single Schottky barrier based transistor in the transmission path and a single transistor based Sajad-Sunil-Schottky (SSS) device as an inverter. Therefore, just two transistors are employed to realize a complete transmission gate which normally consumes four transistors in the conventional technology. The transistors used to realize the transmission path and the SSS inverter in the proposed TG are the double gate Schottky barrier devices, employing stacks of two metal silicides, platinum silicide (PtSi) and erbium silicide (ErSi). It has been observed that the realization of the TG gate by the proposed technology has resulted into a compact structure, with reduced component count, junctions, interconnections and regions in comparison to the conventional technology. The further focus of this work is on the application part of the proposed technology. So for the first time, the proposed technology has been used to realize various combinational circuits, like a two input AND gate, a 2:1 multiplexer and a two input XOR circuits. It has been observed that the transistor count has got reduced by half in a TG, two input AND gate, 2:1 multiplexer and in a two input XOR gate. Therefore, a significant reduction in transistor count and area requirement can be achieved by using the proposed technology. The proposed technology can be also used to perform the compact realization of other combinational and sequential circuitry in future.
NASA Astrophysics Data System (ADS)
Ahamad Mohiddon, Md.; Lakshun Naidu, K.; Ghanashyam Krishna, M.; Dalba, G.; Ahmed, S. I.; Rocca, F.
2014-01-01
The interaction at the interface between chromium and amorphous Silicon (a-Si) films in the presence of a sandwich layer of chromium oxide is investigated using X-ray absorption fine structure (XAFS) spectroscopy. The oxidized interface was created, in situ, prior to the deposition of a 400 nm tick a-Si layer over a 50 nm tick Cr layer. The entire stack of substrate/metallic Cr/Cr2O3/a-Si was then annealed at temperatures from 300 up to 700 °C. Analysis of the near edge and extended regions of each XAFS spectrum shows that only a small fraction of Cr is able to diffuse through the oxide layer up to 500 °C, while the remaining fraction is buried under the oxide layer in the form of metallic Cr. At higher temperatures, diffusion through the oxide layer is enhanced and the diffused metallic Cr reacts with a-Si to form CrSi2. At 700 °C, the film contains Cr2O3 and CrSi2 without evidence of unreacted metallic Cr. The activation energy and diffusion coefficient of Cr are quantitatively determined in the two temperature regions, one where the oxide acts as diffusion barrier and another where it is transparent to Cr diffusion. It is thus demonstrated that chromium oxide can be used as a diffusion barrier to prevent metal diffusion into a-Si.
Lightweight Stacks of Direct Methanol Fuel Cells
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram; Valdez, Thomas
2004-01-01
An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.
Anode reactive bleed and injector shift control strategy
Cai, Jun [Rochester, NY; Chowdhury, Akbar [Pittsford, NY; Lerner, Seth E [Honeoye Falls, NY; Marley, William S [Rush, NY; Savage, David R [Rochester, NY; Leary, James K [Rochester, NY
2012-01-03
A system and method for correcting a large fuel cell voltage spread for a split sub-stack fuel cell system. The system includes a hydrogen source that provides hydrogen to each split sub-stack and bleed valves for bleeding the anode side of the sub-stacks. The system also includes a voltage measuring device for measuring the voltage of each cell in the split sub-stacks. The system provides two levels for correcting a large stack voltage spread problem. The first level includes sending fresh hydrogen to the weak sub-stack well before a normal reactive bleed would occur, and the second level includes sending fresh hydrogen to the weak sub-stack and opening the bleed valve of the other sub-stack when the cell voltage spread is close to stack failure.
Plated lamination structures for integrated magnetic devices
Webb, Bucknell C.
2014-06-17
Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.
Setsompop, Kawin; Alagappan, Vijayanand; Gagoski, Borjan; Witzel, Thomas; Polimeni, Jonathan; Potthast, Andreas; Hebrank, Franz; Fontius, Ulrich; Schmitt, Franz; Wald, Lawrence L; Adalsteinsson, Elfar
2008-12-01
Slice-selective RF waveforms that mitigate severe B1+ inhomogeneity at 7 Tesla using parallel excitation were designed and validated in a water phantom and human studies on six subjects using a 16-element degenerate stripline array coil driven with a butler matrix to utilize the eight most favorable birdcage modes. The parallel RF waveform design applied magnitude least-squares (MLS) criteria with an optimized k-space excitation trajectory to significantly improve profile uniformity compared to conventional least-squares (LS) designs. Parallel excitation RF pulses designed to excite a uniform in-plane flip angle (FA) with slice selection in the z-direction were demonstrated and compared with conventional sinc-pulse excitation and RF shimming. In all cases, the parallel RF excitation significantly mitigated the effects of inhomogeneous B1+ on the excitation FA. The optimized parallel RF pulses for human B1+ mitigation were only 67% longer than a conventional sinc-based excitation, but significantly outperformed RF shimming. For example the standard deviations (SDs) of the in-plane FA (averaged over six human studies) were 16.7% for conventional sinc excitation, 13.3% for RF shimming, and 7.6% for parallel excitation. This work demonstrates that excitations with parallel RF systems can provide slice selection with spatially uniform FAs at high field strengths with only a small pulse-duration penalty. (c) 2008 Wiley-Liss, Inc.
Non-Equilibrium Plasma MHD Electrical Power Generation at Tokyo Tech
NASA Astrophysics Data System (ADS)
Murakami, T.; Okuno, Y.; Yamasaki, H.
2008-02-01
This paper reviews the recent activities on radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic (MHD) power generation experiments at the Tokyo Institute of Technology. An inductively coupled rf field (13.56 MHz) is continuously supplied to the disk-shaped Hall-type MHD generator. The first part of this paper describes a method of obtaining increased power output from a pure Argon plasma MHD power generator by incorporating an rf power source to preionize and heat the plasma. The rf heating enhances ionization of the Argon and raises the temperature of the free electron population above the nominally low 4500 K temperatures obtained without rf heating. This in turn enhances the plasma conductivity making MHD power generation feasible. We demonstrate an enhanced power output when rf heating is on approximately 5 times larger than the input power of the rf generator. The second part of this paper is a demonstration of a physical phenomenon of the rf-stabilization of the ionization instability, that had been conjectured for some time, but had not been seen experimentally. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.
Valberg, Peter A; van Deventer, T Emilie; Repacholi, Michael H
2007-03-01
Radiofrequency (RF) waves have long been used for different types of information exchange via the air waves--wireless Morse code, radio, television, and wireless telephone (i.e., construction and operation of telephones or telephone systems). Increasingly larger numbers of people rely on mobile telephone technology, and health concerns about the associated RF exposure have been raised, particularly because the mobile phone handset operates in close proximity to the human body, and also because large numbers of base station antennas are required to provide widespread availability of service to large populations. The World Health Organization convened an expert workshop to discuss the current state of cellular-telephone health issues, and this article brings together several of the key points that were addressed. The possibility of RF health effects has been investigated in epidemiology studies of cellular telephone users and workers in RF occupations, in experiments with animals exposed to cell-phone RF, and via biophysical consideration of cell-phone RF electric-field intensity and the effect of RF modulation schemes. As summarized here, these separate avenues of scientific investigation provide little support for adverse health effects arising from RF exposure at levels below current international standards. Moreover, radio and television broadcast waves have exposed populations to RF for > 50 years with little evidence of deleterious health consequences. Despite unavoidable uncertainty, current scientific data are consistent with the conclusion that public exposures to permissible RF levels from mobile telephone and base stations are not likely to adversely affect human health.
Valberg, Peter A.; van Deventer, T. Emilie; Repacholi, Michael H.
2007-01-01
Radiofrequency (RF) waves have long been used for different types of information exchange via the airwaves—wireless Morse code, radio, television, and wireless telephony (i.e., construction and operation of telephones or telephonic systems). Increasingly larger numbers of people rely on mobile telephone technology, and health concerns about the associated RF exposure have been raised, particularly because the mobile phone handset operates in close proximity to the human body, and also because large numbers of base station antennas are required to provide widespread availability of service to large populations. The World Health Organization convened an expert workshop to discuss the current state of cellular-telephone health issues, and this article brings together several of the key points that were addressed. The possibility of RF health effects has been investigated in epidemiology studies of cellular telephone users and workers in RF occupations, in experiments with animals exposed to cell-phone RF, and via biophysical consideration of cell-phone RF electric-field intensity and the effect of RF modulation schemes. As summarized here, these separate avenues of scientific investigation provide little support for adverse health effects arising from RF exposure at levels below current international standards. Moreover, radio and television broadcast waves have exposed populations to RF for > 50 years with little evidence of deleterious health consequences. Despite unavoidable uncertainty, current scientific data are consistent with the conclusion that public exposures to permissible RF levels from mobile telephony and base stations are not likely to adversely affect human health. PMID:17431492
Simulation of RF power and multi-cusp magnetic field requirement for H- ion sources
NASA Astrophysics Data System (ADS)
Pathak, Manish; Senecha, V. K.; Kumar, Rajnish; Ghodke, Dharmraj. V.
2016-12-01
A computer simulation study for multi-cusp RF based H- ion source has been carried out using energy and particle balance equation for inductively coupled uniformly dense plasma considering sheath formation near the boundary wall of the plasma chamber for RF ion source used as high current injector for 1 Gev H- Linac project for SNS applications. The average reaction rates for different reactions responsible for H- ion production and destruction have been considered in the simulation model. The RF power requirement for the caesium free H- ion source for a maximum possible H- ion beam current has been derived by evaluating the required current and RF voltage fed to the coil antenna using transformer model for Inductively Coupled Plasma (ICP). Different parameters of RF based H- ion source like excited hydrogen molecular density, H- ion density, RF voltage and current of RF antenna have been calculated through simulations in the presence and absence of multicusp magnetic field to distinctly observe the effect of multicusp field. The RF power evaluated for different H- ion current values have been compared with the experimental reported results showing reasonably good agreement considering the fact that some RF power will be reflected from the plasma medium. The results obtained have helped in understanding the optimum field strength and field free regions suitable for volume emission based H- ion sources. The compact RF ion source exhibits nearly 6 times better efficiency compare to large diameter ion source.
Study of Sn and Mg doping effects on TiO2/Ge stack structure by combinatorial synthesis
NASA Astrophysics Data System (ADS)
Nagata, Takahiro; Suzuki, Yoshihisa; Yamashita, Yoshiyuki; Ogura, Atsushi; Chikyow, Toyohiro
2018-04-01
The effects of Sn and Mg doping of a TiO2 film on a Ge substrate were investigated to improve leakage current properties and Ge diffusion into the TiO2 film. For systematic analysis, dopant-composition-spread TiO2 samples with dopant concentrations of up to 20.0 at. % were fabricated by RF sputtering and a combinatorial method. X-ray photoelectron spectroscopy revealed that the instability of Mg doping of TiO2 at dopant concentrations above 10.5 at. %. Both Sn and Mg dopants reduced Ge diffusion into TiO2. Sn doping enhanced the crystallization of the rutile phase, which is a high-dielectric-constant phase, although the Mg-doped TiO2 film indicated an amorphous structure. Sn-doping indicated systematic leakage current reduction with increasing dopant concentration. Doping at Sn concentrations higher than 16.8 at. % improved the leakage properties (˜10-7 A/cm2 at -3.0 V) and capacitance-voltage properties of metal-insulator-semiconductor (MIS) operation. The Sn doping of TiO2 may be useful for interface control and as a dielectric material for Ge-based MIS capacitors.
NASA Astrophysics Data System (ADS)
Bayliss, D. L.; Walsh, J. L.; Shama, G.; Iza, F.; Kong, M. G.
2009-11-01
Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.
NASA Astrophysics Data System (ADS)
Garratt, E.; Wickey, K. J.; Nandasiri, M. I.; Moore, A.; AlFaify, S.; Gao, X.; Kayani, A.; Smith, R. J.; Buchanan, T. L.; Priyantha, W.; Kopczyk, M.; Gannon, P. E.
2009-11-01
The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800 oC. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). Surface characterization was carried out using Atomic Force Microscopy (AFM) and surfaces of the coatings were found smooth on submicron scale. From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.
Alecci, Marcello; Jezzard, Peter
2002-08-01
Radiofrequency (RF) shields that surround MRI transmit/receive coils should provide effective RF screening, without introducing unwanted eddy currents induced by gradient switching. Results are presented from a detailed examination of an effective RF shield design for a prototype transverse electromagnetic (TEM) resonator suitable for use at 3 Tesla. It was found that effective RF shielding and low eddy current sensitivity could be achieved by axial segmentation (gap width = 2.4 mm) of a relatively thick (35 microm) copper shield, etched on a kapton polyimide substrate. This design has two main advantages: first, it makes the TEM less sensitive to the external environment and RF interference; and second, it makes the RF shield mechanically robust and easy to handle and assemble. Copyright 2002 Wiley-Liss, Inc.
Thermal and dynamic range characterization of a photonics-based RF amplifier
NASA Astrophysics Data System (ADS)
Noque, D. F.; Borges, R. M.; Muniz, A. L. M.; Bogoni, A.; Cerqueira S., Arismar, Jr.
2018-05-01
This work reports a thermal and dynamic range characterization of an ultra-wideband photonics-based RF amplifier for microwave and mm-waves future 5G optical-wireless networks. The proposed technology applies the four-wave mixing nonlinear effect to provide RF amplification in analog and digital radio-over-fiber systems. The experimental analysis from 300 kHz to 50 GHz takes into account different figures of merit, such as RF gain, spurious-free dynamic range and RF output power stability as a function of temperature. The thermal characterization from -10 to +70 °C demonstrates a 27 dB flat photonics-assisted RF gain over the entire frequency range under real operational conditions of a base station for illustrating the feasibility of the photonics-assisted RF amplifier for 5G networks.
NASA Astrophysics Data System (ADS)
Razzak, M. Abdur; Takamura, Shuichi; Uesugi, Yoshihiko; Ohno, Noriyasu
A radio frequency (rf) inductive discharge in atmospheric pressure range requires high voltage in the initial startup phase and high power during the steady state sustainment phase. It is, therefore, necessary to inject high rf power into the plasma ensuring the maximum use of the power source, especially where the rf power is limited. In order to inject the maximum possible rf power into the plasma with a moderate rf power source of few kilowatts range, we employ the immittance conversion topology by converting a constant voltage source into a constant current source to generate efficient rf discharge by inductively coupled plasma (ICP) technique at a gas pressure with up to one atmosphere in argon. A novel T-LCL immittance circuit is designed for constant-current high-power operation, which is practically very important in the high-frequency range, to provide high effective rf power to the plasma. The immittance conversion system combines the static induction transistor (SIT)-based radio frequency (rf) high-power inverter circuit and the immittance conversion elements including the rf induction coil. The basic properties of the immittance circuit are studied by numerical analysis and verified the results by experimental measurements with the inductive plasma as a load at a relatively high rf power of about 4 kW. The performances of the immittance circuit are also evaluated and compared with that of the conventional series resonance circuit in high-pressure induction plasma generation. The experimental results reveal that the immittance conversion circuit confirms injecting higher effective rf power into the plasma as much as three times than that of the series resonance circuit under the same operating conditions and same dc supply voltage to the inverter, thereby enhancing the plasma heating efficiency to generate efficient rf inductive discharges.
Radiofrequency Cauterization with Biopsy Introducer Needle
Pritchard, William F.; Wray-Cahen, Diane; Karanian, John W.; Hilbert, Stephen; Wood, Bradford J.
2014-01-01
PURPOSE The principal risks of needle biopsy are hemorrhage and implantation of tumor cells in the needle tract. This study compared hemorrhage after liver and kidney biopsy with and without radiofrequency (RF) ablation of the needle tract. MATERIALS AND METHODS Biopsies of liver and kidney were performed in swine through introducer needles modified to allow RF ablation with the distal 2 cm of the needle. After each biopsy, randomization determined whether the site was to undergo RF ablation during withdrawal of the introducer needle. Temperature was measured with a thermistor stylet near the needle tip, with a target temperature of 70°C–100°C with RF ablation. Blood loss was measured as grams of blood absorbed in gauze at the puncture site for 2 minutes after needle withdrawal. Selected specimens were cut for gross examination. RESULTS RF ablation reduced bleeding compared with absence of RF ablation in liver and kidney (P < .01), with mean blood loss reduced 63% and 97%, respectively. Mean amounts of blood loss (±SD) in the liver in the RF and no-RF groups were 2.03 g ± 4.03 (CI, 0.53–3.54 g) and 5.50 g ± 5.58 (CI, 3.33–7.66 g), respectively. Mean amounts of blood loss in the kidney in the RF and no-RF groups were 0.26 g ± 0.32 (CI, −0.01 to 0.53 g) and 8.79 g ± 7.72 (CI, 2.34–15.24 g), respectively. With RF ablation, thermal coagulation of the tissue surrounding the needle tract was observed. CONCLUSION RF ablation of needle biopsy tracts reduced hemorrhage after biopsy in the liver and kidney and may reduce complications of hemorrhage as well as implantation of tumor cells in the tract. PMID:14963187
Determination of Algorithm Parallelism in NP Complete Problems for Distributed Architectures
1990-03-05
12 structure STACK declare OpenStack (S-.NODE **TopPtr) -+TopPtrI FlushStack(S.-NODE **TopPtr) -*TopPtr PushOnStack(S-.NODE **TopPtr, ITEM *NewltemPtr...OfCoveringSets, CoveringSets, L, Best CoverTime, Vertex, Set3end SCND ADT B.26 structure STACKI declare OpenStack (S-NODE **TopPtr) -+TopPtr FlushStack(S
NASA Astrophysics Data System (ADS)
Ray, Sibdas; Das, Aniruddha
2015-06-01
Reaction of 2-ethoxymethyleneamino-2-cyanoacetamide with primary alkyl amines in acetonitrile solvent affords 1-substituted-5-aminoimidazole-4-carboxamides. Single crystal X-ray diffraction studies of these imidazole compounds show that there are both anti-parallel and syn-parallel π-π stackings between two imidazole units in parallel-displaced (PD) conformations and the distance between two π-π stacked imidazole units depends mainly on the anti/ syn-parallel nature and to some extent on the alkyl group attached to N-1 of imidazole; molecules with anti-parallel PD-stacking arrangements of the imidazole units have got vertical π-π stacking distance short enough to impart stabilization whereas the imidazole unit having syn-parallel stacking arrangement have got much larger π-π stacking distances. DFT studies on a pair of anti-parallel imidazole units of such an AICA lead to curves for 'π-π stacking stabilization energy vs. π-π stacking distance' which have got similarity with the 'Morse potential energy diagram for a diatomic molecule' and this affords to find out a minimum π-π stacking distance corresponding to the maximum stacking stabilization energy between the pair of imidazole units. On the other hand, a DFT calculation based curve for 'π-π stacking stabilization energy vs. π-π stacking distance' of a pair of syn-parallel imidazole units is shown to have an exponential nature.
Modular fuel-cell stack assembly
Patel, Pinakin [Danbury, CT; Urko, Willam [West Granby, CT
2008-01-29
A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.
1950 MHz Electromagnetic Fields Ameliorate Aβ Pathology in Alzheimer’s Disease Mice
Jeong, Ye Ji; Kang, Ga-Young; Kwon, Jong Hwa; Choi, Hyung-Do; Pack, Jeong-Ki; Kim, Nam; Lee, Yun-Sil; Lee, Hae-June
2015-01-01
The involvement of radiofrequency electromagnetic fields (RF-EMF) in the neurodegenerative disease, especially Alzheimer’s disease (AD), has received wide consideration, however, outcomes from several researches have not shown consistency. In this study, we determined whether RF-EMF influenced AD pathology in vivo using Tg-5xFAD mice as a model of AD-like amyloid β (Aβ) pathology. The transgenic (Tg)-5xFAD and wild type (WT) mice were chronically exposed to RF-EMF for 8 months (1950 MHz, SAR 5W/kg, 2 hrs/day, 5 days/week). Notably, chronic RF-EMF exposure significantly reduced not only Aβ plaques, APP, and APP carboxyl-terminal fragments (CTFs) in whole brain including hippocampus and entorhinal cortex but also the ratio of Aβ42 and Aβ40 peptide in the hippocampus of Tg-5xFAD mice. We also found that parenchymal expression of β-amyloid precursor protein cleaving enzyme 1(BACE1) and neuroinflammation were inhibited by RF-EMF exposure in Tg-5xFAD. In addition, RF-EMF was shown to rescue memory impairment in Tg-5xFAD. Moreover, gene profiling from microarray data using hippocampus of WT and Tg-5xFAD following RF-EMF exposure revealed that 5 genes (Tshz2, Gm12695, St3gal1, Isx and Tll1), which are involved in Aβ, are significantly altered inTg-5xFAD mice, exhibiting different responses to RF-EMF in WT or Tg-5xFAD mice; RF-EMF exposure in WT mice showed similar patterns to control Tg-5xFAD mice, however, RF-EMF exposure in Tg-5xFAD mice showed opposite expression patterns. These findings indicate that chronic RF-EMF exposure directly affects Aβ pathology in AD but not in normal brain. Therefore, RF-EMF has preventive effects against AD-like pathology in advanced AD mice with a high expression of Aβ, which suggests that RF-EMF can have a beneficial influence on AD. PMID:26017559
Shrinkable sleeve eliminates shielding gap in RF cable
NASA Technical Reports Server (NTRS)
1965-01-01
RF shielding gap between an RF cable and a multipin connector is eliminated by a sleeve assembly installed between the connector and the terminated portion of the shielding. The assembly is enclosed in a heat-shrinkable plastic sleeve which completes the continuous RF shield.
RF sheaths for arbitrary B field angles
NASA Astrophysics Data System (ADS)
D'Ippolito, Daniel; Myra, James
2014-10-01
RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries and accelerate electrons out of the plasma. Sheath effects reduce the efficiency of ICRF heating, cause RF-specific impurity influxes from the edge plasma, and increase the plasma-facing component damage. The rf sheath potential is sensitive to the angle between the B field and the wall, the ion mobility and the ion magnetization. Here, we obtain a numerical solution of the non-neutral rf sheath and magnetic pre-sheath equations (for arbitrary values of these parameters) and attempt to infer the parametric dependences of the Child-Langmuir law. This extends previous work on the magnetized, immobile ion regime. An important question is how the rf sheath voltage distributes itself between sheath and pre-sheath for various B field angles. This will show how generally previous estimates of the rf sheath voltage and capacitance were reasonable, and to improve the RF sheath BC. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-11-01
The report includes information and material from a technical review workshop organized by the U.S. Environmental Protection Agency`s (EPA`s) Risk Assessment Forum for EPA`s Reference Dose/Reference Concentration (RfD/RfC) Work Group. The meeting was held in Washington, DC, at the Barcelo Washington Hotel on May 24-25, 1994. The subject of the technical review was the Integrated Risk Information System (IRIS) RfD entry for Aroclor 1016, a polychlorinated biphenyl (PCB). The expert technical review panel was convened to independently evaluate whether the RfD for Aroclor 1016 is based on a scientifically responsible analysis that represents full consideration of the available data andmore » clean articulation of that analysis in the IRIS RfD entry. EPA also requested panel members to consider four broad options for the Aroclor 1016 RfD as potential recommendations to the RfD/RfC Work Group.« less
Noninvasive radio frequency for skin tightening and body contouring.
Weiss, Robert A
2013-03-01
The medical use of radio frequency (RF) is based on an oscillating electrical current forcing collisions between charged molecules and ions, which are then transformed into heat. RF heating occurs irrespective of chromophore or skin type and is not dependent on selective photothermolysis. RF can be delivered using monopolar, bipolar, and unipolar devices, and each method has theoretical limits of depth penetration. A variant of bipolar delivery is fractional RF delivery. In monopolar configurations, RF will penetrate deeply and return via a grounding electrode. Multiple devices are available and are detailed later in the text. RF thermal stimulation is believed to result in a microinflammatory process that promotes new collagen. By manipulating skin cooling, RF can also be used for heating and reduction of fat. Currently, the most common uses of RF-based devices are to noninvasively manage and treat skin tightening of lax skin (including sagging jowls, abdomen, thighs, and arms), as well as wrinkle reduction, cellulite improvement, and body contouring.
Bioengineered riboflavin in nanotechnology.
Beztsinna, N; Solé, M; Taib, N; Bestel, I
2016-02-01
Riboflavin (RF) is an essential water-soluble vitamin with unique biological and physicochemical properties such as transporterspecific cell internalization, implication in redox reactions, fluorescence and photosensitizing. Due to these features RF attracted researchers in various fields from targeted drug delivery and tissue engineering to optoelectronics and biosensors. In this review we will give a brief reminder of RF chemistry, its optical, photosensitizing properties, RF transporter systems and its role in pathologies. We will point a special attention on the recent findings concerning RF applications in nanotechnologies such as RF functionalized nanoparticles, polymers, biomolecules, carbon nanotubes, hydrogels and implants for tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.
ACCELERATORS: RF system design and measurement of HIRF-CSRe
NASA Astrophysics Data System (ADS)
Xu, Zhe; Zhao, Hong-Wei; Wang, Chun-Xiao; Xia, Jia-Wen; Zhan, Wen-Long; Bian, Zhi-Bin
2009-05-01
An RF system for the CSRe (cooling storage experimental ring) is designed and manufactured domestically. The present paper mainly describes the RF system design in five main sections: ferrite ring, RF cavity, RF generator, low level system and cavity cooling. The cavity is based on a type of coaxial resonator which is shorted at the end with one gap and loaded with domestic ferrite rings. The RF generator is designed in the push-pull mode and the low level control system is based on a DSP+FGPA+DDS+USB interface and has three feedback loops. Finally we give the results of the measurement on our system.
KAHVE Laboratory RF circulator and transmission line project
NASA Astrophysics Data System (ADS)
Cetinkaya, Hakan; ćaǧlar, Aslıhan; ćiçek, Cihan; Özbey, Aydın; Sunar, Ezgi; Türemen, Görkem; Yıldız, Hüseyin; Yüncü, Alperen; Özcan, Erkcan; Ünel, Gökhan; Yaman, Fatih
2018-02-01
An 800 MHz RF circulator and transmission line project has recently started at the newly commissioned Kandilli Detector, Accelerator and Instrumentation (KAHVE) Laboratory at the Boğaziçi University. The aims are to design, build and construct an RF circulator and transmission line in Turkey for high power and high frequency applications. The project consists of 8 transmission line elements: 800 MHz RF generator with 60 kW power (klystron), klystron to waveguide converter, waveguides, E and H bends, 3-port circulator and waveguide to coaxial converter to transmit RF power to a pillbox RF cavity. Design studies and details of the ongoing project will be presented.
Radiofrequency Heating Pathways for Gold Nanoparticles
Collins, C. B.; McCoy, R. S.; Ackerson, B. J.; Collins, G. J.
2015-01-01
This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry and physics, including the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell may all strongly influence to what extent a nanoparticle heats in an RF field. Aspects of RF include: power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields, and also influence the extent to which a gold nanoparticle heats in RF. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620
Zhao, Yujuan; Zhao, Tiejun; Raval, Shailesh B; Krishnamurthy, Narayanan; Zheng, Hai; Harris, Chad T; Handler, William B; Chronik, Blaine A; Ibrahim, Tamer S
2015-11-01
To optimize the design of radiofrequency (RF) shielding of transmit coils at 7T and reduce eddy currents generated on the RF shielding when imaging with rapid gradient waveforms. One set of a four-element, 2 × 2 Tic-Tac-Toe head coil structure was selected and constructed to study eddy currents on the RF coil shielding. The generated eddy currents were quantitatively studied in the time and frequency domains. The RF characteristics were studied using the finite difference time domain method. Five different kinds of RF shielding were tested on a 7T MRI scanner with phantoms and in vivo human subjects. The eddy current simulation method was verified by the measurement results. Eddy currents induced by solid/intact and simple-structured slotted RF shielding significantly distorted the gradient fields. Echo-planar images, B1+ maps, and S matrix measurements verified that the proposed slot pattern suppressed the eddy currents while maintaining the RF characteristics of the transmit coil. The presented dual-optimization method could be used to design RF shielding and reduce the gradient field-induced eddy currents while maintaining the RF characteristics of the transmit coil. © 2014 Wiley Periodicals, Inc.
FPGA-based RF interference reduction techniques for simultaneous PET–MRI
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-01-01
Abstract The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion IID PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector. PMID:27049898
FPGA-based RF interference reduction techniques for simultaneous PET-MRI.
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-05-07
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
FPGA-based RF interference reduction techniques for simultaneous PET-MRI
NASA Astrophysics Data System (ADS)
Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.
2016-05-01
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
47 CFR 80.227 - Special requirements for protection from RF radiation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... radiation. 80.227 Section 80.227 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... requirements for protection from RF radiation. As part of the information provided with transmitters for ship... help prevent human exposure to radiofrequency (RF) radiation in excess of the RF exposure guidelines...
47 CFR 80.227 - Special requirements for protection from RF radiation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... radiation. 80.227 Section 80.227 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... requirements for protection from RF radiation. As part of the information provided with transmitters for ship... help prevent human exposure to radiofrequency (RF) radiation in excess of the RF exposure guidelines...
47 CFR 80.227 - Special requirements for protection from RF radiation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... radiation. 80.227 Section 80.227 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... requirements for protection from RF radiation. As part of the information provided with transmitters for ship... help prevent human exposure to radiofrequency (RF) radiation in excess of the RF exposure guidelines...
47 CFR 80.227 - Special requirements for protection from RF radiation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... radiation. 80.227 Section 80.227 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... requirements for protection from RF radiation. As part of the information provided with transmitters for ship... help prevent human exposure to radiofrequency (RF) radiation in excess of the RF exposure guidelines...
47 CFR 80.227 - Special requirements for protection from RF radiation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Special requirements for protection from RF radiation. 80.227 Section 80.227 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... help prevent human exposure to radiofrequency (RF) radiation in excess of the RF exposure guidelines...
RF Phase Stability and Electron Beam Characterization for the PLEIADES Thomson X-Ray Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W J; Hartemann, F V; Tremaine, A M
2002-10-16
We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. To produce picosecond, high brightness x-ray pulses, picosecond timing, terahertz bandwidth diagnostics, and RF phase control are required. Planned optical, RF, x-ray and electron beam measurements to characterize the dependence of electron beam parameters and synchronization on RF phase stability are presented.
Pregnant women models analyzed for RF exposure and temperature increase in 3T RF shimmed birdcages.
Murbach, Manuel; Neufeld, Esra; Samaras, Theodoros; Córcoles, Juan; Robb, Fraser J; Kainz, Wolfgang; Kuster, Niels
2017-05-01
MRI is increasingly used to scan pregnant patients. We investigated the effect of 3 Tesla (T) two-port radiofrequency (RF) shimming in anatomical pregnant women models. RF shimming improves B 1 + uniformity, but may at the same time significantly alter the induced current distribution and result in large changes in both the level and location of the absorbed RF energy. In this study, we evaluated the electrothermal exposure of pregnant women in the third, seventh, and ninth month of gestation at various imaging landmarks in RF body coils, including modes with RF shimming. Although RF shimmed configurations may lower the local RF exposure for the mother, they can increase the thermal load on the fetus. In worst-case configurations, whole-body exposure and local peak temperatures-up to 40.8°C-are equal in fetus and mother. Two-port RF shimming can significantly increase the fetal exposure in pregnant women, requiring further research to derive a very robust safety management. For the time being, restriction to the CP mode, which reduces fetal SAR exposure compared with linear-horizontal polarization modes, may be advisable. Results from this study do not support scanning pregnant patients above the normal operating mode. Magn Reson Med 77:2048-2056, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Active high-power RF switch and pulse compression system
Tantawi, Sami G.; Ruth, Ronald D.; Zolotorev, Max
1998-01-01
A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.
Percutaneous ablation of malignant liver tumor in rabbits using low radio frequency energy.
Nativ, O; Moskovitz, B; Sabo, E; Shalhav, A; Kaftori, J; Barbara, Y; Mordohovich, D; Goldwasser, B
1996-09-01
Radio frequency (RF) current has been used successfully to ablate normal human tissue. To further investigate the clinical application of this modality in tumors we studied the potential of using RF percutaneously to destroy experimental liver tumors. Thirty five outbred albino rabbits underwent liver VX2 tumor direct-implantation during open surgery. After 21 days ultrasonography was performed revealing tumor presence and size. A shielded RF needle was designed so that it could be inserted percutaneously through an introducing needle, and an electrical insulation shield covering the RF needle could be retracted to control the length of the exposed RF needle inside the tissue. Twenty two days after tumor implantation RF was applied via the aforementioned needle using a ZoMed International RF generator. In one group of rabbits the procedure was performed under direct vision during open surgery and on the other group treatment was applied percutaneously, guiding the needle by tumor palpation. Rabbits were killed 3 days later and pathology revealed 4 to 25 mm intratumoral RF induced lesions. A direct relation was found between lesion size, power and duration of RF application (At 7.5 W, r = 0.48, p = 0.032). Based on our preliminary results we may conclude that RF may have clinical application in the near future for percutaneous local tumor control in parenchymal organs.
10 GHz dual loop opto-electronic oscillator without RF-amplifiers
NASA Astrophysics Data System (ADS)
Zhou, Weimin; Okusaga, Olukayode; Nelson, Craig; Howe, David; Carter, Gary
2008-02-01
We report the first demonstration of a 10 GHz dual-fiber-loop Opto-Electronic Oscillator (OEO) without RF-amplifiers. Using a recently developed highly efficient RF-Photonic link with RF-to-RF gain facilitated by a high power laser, highly efficient optical modulator and high power phototectectors, we have built an amplifier-less OEO that eliminates the phase noise produced by the electronic amplifier. The dual-loop approach can provide additional gain and reduce unwanted multi-mode spurs. However, we have observed RF phase noise produced by the high power laser include relative intensity noise (RIN) and noise related to the laser's electronic control system. In addition, stimulated Brillouin scattering limits the fiber loop's length to ~2km at the 40mW laser power needed to provide the RF gain which limits the system's quality factor, Q. We have investigated several different methods for solving these problems. One promising technique is the use of a multi-longitudinal-mode laser to carry the RF signal, maintaining the total optical power but reducing the optical power of each mode to eliminate the Brillouin scattering in a longer fiber thereby reducing the phase noise of the RF signal produced by the OEO. This work shows that improvement in photonic components increases the potential for more RF system applications such as an OEO's with higher performance and new capabilities.
A survey of techniques for architecting and managing GPU register file
Mittal, Sparsh
2016-04-07
To support their massively-multithreaded architecture, GPUs use very large register file (RF) which has a capacity higher than even L1 and L2 caches. In total contrast, traditional CPUs use tiny RF and much larger caches to optimize latency. Due to these differences, along with the crucial impact of RF in determining GPU performance, novel and intelligent techniques are required for managing GPU RF. In this paper, we survey the techniques for designing and managing GPU RF. We discuss techniques related to performance, energy and reliability aspects of RF. To emphasize the similarities and differences between the techniques, we classify themmore » along several parameters. Lastly, the aim of this paper is to synthesize the state-of-art developments in RF management and also stimulate further research in this area.« less
NASA Astrophysics Data System (ADS)
Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo
2007-01-01
Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.
A survey of techniques for architecting and managing GPU register file
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh
To support their massively-multithreaded architecture, GPUs use very large register file (RF) which has a capacity higher than even L1 and L2 caches. In total contrast, traditional CPUs use tiny RF and much larger caches to optimize latency. Due to these differences, along with the crucial impact of RF in determining GPU performance, novel and intelligent techniques are required for managing GPU RF. In this paper, we survey the techniques for designing and managing GPU RF. We discuss techniques related to performance, energy and reliability aspects of RF. To emphasize the similarities and differences between the techniques, we classify themmore » along several parameters. Lastly, the aim of this paper is to synthesize the state-of-art developments in RF management and also stimulate further research in this area.« less
The Escherichia coli O157:H7 bovine rumen fluid proteome reflects adaptive bacterial responses.
Kudva, Indira T; Stanton, Thaddeus B; Lippolis, John D
2014-02-21
To obtain insights into Escherichia coli O157:H7 (O157) survival mechanisms in the bovine rumen, we defined the growth characteristics and proteome of O157 cultured in rumen fluid (RF; pH 6.0-7.2 and low volatile fatty acid content) obtained from rumen-fistulated cattle fed low protein content "maintenance diet" under diverse in vitro conditions. Bottom-up proteomics (LC-MS/MS) of whole cell-lysates of O157 cultured under anaerobic conditions in filter-sterilized RF (fRF; devoid of normal ruminal microbiota) and nutrient-depleted and filtered RF (dRF) resulted in an anaerobic O157 fRF-and dRF-proteome comprising 35 proteins functionally associated with cell structure, motility, transport, metabolism and regulation, but interestingly, not with O157 virulence. Shotgun proteomics-based analysis using isobaric tags for relative and absolute quantitation used to further study differential protein expression in unfiltered RF (uRF; RF containing normal rumen microbial flora) complemented these results. Our results indicate that in the rumen, the first anatomical compartment encountered by this human pathogen within the cattle gastrointestinal tract (GIT), O157 initiates a program of specific gene expression that enables it to adapt to the in vivo environment, and successfully transit to its colonization sites in the bovine GIT. Further experiments in vitro using uRF from animals fed different diets and with additional O157 strains, and in vivo using rumen-fistulated cattle will provide a comprehensive understanding of the adaptive mechanisms involved, and help direct evolution of novel modalities for blocking O157 infection of cattle.
NASA Astrophysics Data System (ADS)
Kumar, Naveen; Dubey, Ashish; Bahrami, Behzad; Venkatesan, S.; Qiao, Qiquan; Kumar, Mukesh
2018-04-01
In this work, the energy and flux of high energetic ions were controlled by RF superimposed DC sputtering process to increase the grain size and suppress grain boundary potential with minimum residual stress in Al doped ZnO (AZO) thin film. AZO thin films were deposited at different RF/(RF + DC) ratios by keeping total power same and were investigated for their electrical, optical, structural and nanoscale grain boundaries potential. All AZO thin film showed high crystallinity and orientation along (002) with peak shift as RF/(RF + DC) ratio increased from 0.0, pure DC, to 1.0, pure RF. This peak shift was correlated with high residual stress in as-grown thin film. AZO thin film grown at mixed RF/(RF + DC) of 0.75 showed high electron mobility, low residual stress and large crystallite size in comparison to other AZO thin films. The nanoscale grain boundary potential was mapped using Kelvin Probe Force Microscopy in all AZO thin film and it was observed that carrier mobility is controlled not only by grains size but also by grain boundary potential. The XPS analysis confirms the variation in oxygen vacancies and zinc interstitials which explain the origin of low grain boundaries potential and high carrier mobility in AZO thin film deposited at 0.75 RF/(RF + DC) ratio. This study proposes a new way to control the grain size and grain boundary potential to further tune the optoelectronic-mechanical properties of AZO thin films for next generation flexible and optoelectronic devices.
IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR TETRACHLOROETHYLENE
The known toxic effects of perchloroethylene will be summarized, with citations from current scientific literature. The critical effects will be identified, and from this the RfD and RfC and cancer unit risk factors will be derived. The RfD and RfC are reference doses and air c...
Kellie, Jennifer L; Navarro-Whyte, Lex; Carvey, Matthew T; Wetmore, Stacey D
2012-03-01
M06-2X/6-31+G(d,p) is used to study the simultaneous effects of π-π stacking interactions with phenylalanine (modeled as benzene) and hydrogen bonding with small molecules (HF, H(2)O, and NH(3)) on the N1 acidity of uracil and the hydrolytic deglycosylation of 2'-deoxyuridine (dU) (facilitated by fully (OH(-)) or partially (HCOO(-)···H(2)O) activated water). When phenylalanine is complexed with isolated uracil, the proton affinity of all acceptor sites significantly increases (by up to 28 kJ mol(-1)), while the N1 acidity slightly decreases (by ~6 kJ mol(-1)). When small molecules are hydrogen bound to uracil, addition of the phenylalanine ring can increase or decrease the acidity of uracil depending on the number and nature (acidity) of the molecules bound. Furthermore, a strong correlation between the effects of π-π stacking on the acidity of U and the dU deglycosylation reaction energetics is found, where the hydrolysis barrier can increase or decrease depending on the nature and number of small molecules bound, the nucleophile considered (which dictates the negative charge on U in the transition state), and the polarity of the (bulk) environment. These findings emphasize that the catalytic (or anticatalytic) role of the active-site aromatic amino acid residues is highly dependent on the situation under consideration. In the case of uracil-DNA glycosylase (UNG), which catalyzes the hydrolytic excision of uracil from DNA, the type of discrete hydrogen-bonding interactions with U, the nature of the nucleophile, and the anticipated weak, nonpolar environment in the active site suggest that phenylalanine will be slightly anticatalytic in the chemical step, and therefore experimentally observed contributions to catalysis may entirely result from associated structural changes that occur prior to deglycosylation.
NASA Astrophysics Data System (ADS)
Agrawal, M.; Pulliam, J.; Sen, M. K.
2013-12-01
The seismic structure beneath Texas Gulf Coast Plain (GCP) is determined via velocity analysis of stacked common conversion point (CCP) Ps and Sp receiver functions and surface wave dispersion. The GCP is a portion of a ocean-continental transition zone, or 'passive margin', where seismic imaging of lithospheric Earth structure via passive seismic techniques has been rare. Seismic data from a temporary array of 22 broadband stations, spaced 16-20 km apart, on a ~380-km-long profile from Matagorda Island, a barrier island in the Gulf of Mexico, to Johnson City, Texas were employed to construct a coherent image of the crust and uppermost mantle. CCP stacking was applied to data from teleseismic earthquakes to enhance the signal-to-noise ratios of converted phases, such as Ps phases. An inaccurate velocity model, used for time-to-depth conversion in CCP stacking, may produce higher errors, especially in a region of substantial lateral velocity variations. An accurate velocity model is therefore essential to constructing high quality depth-domain images. To find accurate velocity P- and S-wave models, we applied a joint modeling approach that searches for best-fitting models via simulated annealing. This joint inversion approach, which we call 'multi objective optimization in seismology' (MOOS), simultaneously models Ps receiver functions, Sp receiver functions and group velocity surface wave dispersion curves after assigning relative weights for each objective function. Weights are computed from the standard deviations of the data. Statistical tools such as the posterior parameter correlation matrix and posterior probability density (PPD) function are used to evaluate the constraints that each data type places on model parameters. They allow us to identify portions of the model that are well or poorly constrained.