Baryon Spectroscopy and Resonances
Robert Edwards
2011-12-01
A short review of current efforts to determine the highly excited state spectrum of QCD, and in particular baryons, using lattice QCD techniques is presented. The determination of the highly excited spectrum of QCD is a major theoretical and experimental challenge. The experimental investigation of the excited baryon spectrum has been a long-standing element of the hadronic-physics program, an important component of which is the search for so-called 'missing resonances', baryonic states predicted by the quark model based on three constituent quarks but which have not yet been observed experimentally. Should such states not be found, it may indicate that the baryon spectrum can be modeled with fewer effective degrees of freedom, such as in quark-diquark models. In the past decade, there has been an extensive program to collect data on electromagnetic production of one and two mesons at Jefferson Lab, MIT-Bates, LEGS, MAMI, ELSA, and GRAAL. To analyze these data, and thereby refine our knowledge of the baryon spectrum, a variety of physics analysis models have been developed at Bonn, George Washington University, Jefferson Laboratory and Mainz. To provide a theoretical determination and interpretation of the spectrum, ab initio computations within lattice QCD have been used. Historically, the calculation of the masses of the lowest-lying states, for both baryons and mesons, has been a benchmark calculation of this discretized, finite-volume computational approach, where the aim is well-understood control over the various systematic errors that enter into a calculation; for a recent review. However, there is now increasing effort aimed at calculating the excited states of the theory, with several groups presenting investigations of the low-lying excited baryon spectrum, using a variety of discretizations, numbers of quark flavors, interpolating operators, and fitting methodologies. Some aspects of these calculations remain unresolved and are the subject of intense
Progress towards understanding baryon resonances
Crede, Volker; Roberts, Winston
2013-07-01
The composite nature of baryons manifests itself in the existence of a rich spectrum of excited states, in particular in the important mass region 1?2 GeV for the light-flavoured baryons. The properties of these resonances can be identified by systematic investigations using electromagnetic and strong probes, primarily with beams of electrons, photons, and pions. After decades of research, the fundamental degrees of freedom underlying the baryon excitation spectrum are still poorly understood. The search for hitherto undiscovered but predicted resonances continues at many laboratories around the world. Recent results from photo- and electroproduction experiments provide intriguing indications for new states and shed light on the structure of some of the known nucleon excitations. The continuing study of available data sets with consideration of new observables and improved analysis tools have also called into question some of the earlier findings in baryon spectroscopy. Other breakthrough measurements have been performed in the heavy-baryon sector, which has seen a fruitful period in recent years, in particular at the B factories and the Tevatron. First results from the large hadron collider indicate rapid progress in the field of bottom baryons. In this review, we discuss the recent experimental progress and give an overview of theoretical approaches.
A Review of Baryon Resonance Analysis and Comparisons with Meson Resonance Analyses
NASA Astrophysics Data System (ADS)
Dytman, Steven A.
2002-06-01
It is interesting that the fields of meson and baryon spectroscopy have taken divergent paths in the last decade. It is time the fields were more aware of the similarities and this author hopes the fields will benefit from each other's accomplishments. This note will point out the similarities and the differences. Sometimes, the differences are in nomenclature. However, there are also practical reasons for the divergences. The typical meson experiment has a more complicated final state than baryon experiments and the most complete theoretical treatments limit the number of final state particles to three. There are also important differences in sociology.
The Experimental Status of Baryon Resonances
NASA Astrophysics Data System (ADS)
Crede, Volker
2010-11-01
Nucleons are complex systems of confined quarks and exhibit characteristic spectra of excited states. Highly excited nucleon states are sensitive to details of quark confinement which is poorly understood within Quantum Chromodynamics (QCD), the fundamental theory of strong interactions. Thus, measurements of excited nucleon states and the corresponding determination of their properties are needed to come to a better understanding of how confinement works in nucleons. However, the excited states of the nucleon cannot simply be inferred from cleanly separated spectral lines. Quite the contrary, a spectral analysis in nucleon resonance physics is challenging because of the fact that these resonances are broadly overlapping states which decay into a multitude of final states involving mesons and baryons. To provide a consistent and complete picture of an individual nucleon resonance, the various possible production and decay channels must eventually be treated in a multi-channel framework that permits separating resonance from background contributions. A long-standing question in hadron physics is whether the large number of so-called missing baryon resonances really exists, i.e. experimentally not established baryon states which are predicted by quark models based on three constituent quark effective degrees of freedom. It is important to emphasize that nearly all existing data on non-strange production of baryon resonances result from πN scattering experiments. However, quark models predict strong couplings of these missing states to γp rendering the study of these resonances in photo-induced reactions a very promising approach. Several new states have in fact been proposed in recent experiments. Current and upcoming experiments at Jefferson Laboratory will determine polarization (or spin) observables for photoproduction processes involving baryon resonances. Differences between the predictions for these observables can be large, and so conversely they provide
Hiroyuki Kamano
2012-04-01
We present an alternative interpretation for the dynamical origin of the P{sub 11} nucleon resonances, which results from the dynamical coupled-channels analysis at Excited Baryon Analysis Center of Jefferson Lab. The results indicate the crucial role of the multichannel reaction dynamics in determining the N* spectrum. An understanding of the spectrum and structure of the excited nucleon (N*) states is a fundamental challenge in the hadron physics. The N* states, however, couple strongly to the meson-baryon continuum states and appear only as resonance states in the {gamma}N and {pi}N reactions. One can expect from such strong couplings that the (multichannel) reaction dynamics will affect significantly the N* states and cannot be neglected in extracting the N* parameters from the data and giving physical interpretations. It is thus well recognized nowadays that a comprehensive study of all relevant meson production reactions with {pi}N,{eta}N,{pi}{pi}N,KY, {hor_ellipsis} final states is necessary for a reliable extraction of the N* parameters. To address this challenging issue, the Excited Baryon Analysis Center (EBAC) of Jefferson Lab has been conducting the comprehensive analysis of the world data of {gamma}N,{pi}N {yields} {pi}N,{eta}N,{pi}{pi}N,KY, {hor_ellipsis} reactions systematically, covering the wide energy and kinematic regions. The analysis is pursued with a dynamical coupled-channels (DCC) model, the EBAC-DCC model, within which the unitarity among relevant meson-baryon channels, including the three-body {pi}{pi}N channel, is fully taken into account.
Missing baryonic resonances in the Hagedorn spectrum
NASA Astrophysics Data System (ADS)
Man Lo, Pok; Marczenko, Michał; Redlich, Krzysztof; Sasaki, Chihiro
2016-08-01
The hadronic medium of QCD is modeled as a gas of point-like hadrons, with its composition determined by the Hagedorn mass spectrum. The spectrum consists of a discrete and a continuous part. The former is determined by the experimentally confirmed resonances tabulated by the Particle Data Group (PDG), while the latter can be extracted from the existing lattice data. This formulation of the hadron resonance gas (HRG) provides a transparent framework to relate the fluctuation of conserved charges as calculated in the lattice QCD approach to the particle content of the medium. A comparison of the two approaches shows that the equation of state is well described by the standard HRG model, which includes only a discrete spectrum of known hadrons. The corresponding description in the strange sector, however, shows clear discrepancies, thus a continuous spectrum is added to incorporate the effect of missing resonances. We propose a method to extract the strange-baryon spectrum from the lattice data. The result is consistent with the trend set by the unconfirmed strange baryons resonances listed by the PDG, suggesting that most of the missing interaction strength for the strange baryons reside in the | S| = 1 sector. This scenario is also supported by recent lattice calculations, and might be important in the energy region covered by the NICA accelerator in Dubna, where in the heavy-ion collisions, baryons are the dominating degrees of freedom in the final state.
Photoproduction of exotic baryon resonances
NASA Astrophysics Data System (ADS)
Karliner, Marek; Rosner, Jonathan L.
2016-01-01
We point out that the new exotic resonances recently reported by LHCb in the J / ψ p channel are excellent candidates for photoproduction off a proton target. This test is crucial to confirming the resonant nature of such states, as opposed to their being kinematical effects. We specialize to an interpretation of the heavier narrow state as a molecule composed of Σc and Dbar*, and estimate its production cross section using vector dominance. The relevant photon energies and fluxes are well within the capabilities of the GlueX and CLAS12 detectors at Thomas Jefferson National Accelerator Facility (JLAB). A corresponding calculation is also performed for photoproduction of an analogous resonance which is predicted to exist in the ϒp channel.
Measurement of ep {yields} e{prime}p{pi}{sup +}{pi}{sup -} and Baryon Resonance Analysis
Marco Ripani; et. Al.
2003-07-01
The cross section for the reaction ep {yields} e{prime}p{pi}{sup +}{pi}{sup -} was measured in the resonance region for 1.4 < W < 2.1 GeV and 0.5 < Q{sup 2} < 1.5 GeV{sup 2}/c{sup 2} using the CLAS detector at Jefferson Laboratory. The data shows resonant structures not visible in previous experiments. The comparison of our data to a phenomenological prediction using available information on N* and {Delta} states shows an evident discrepancy. A better description of the data is obtained either by a sizeable change of the properties of the P{sub 13}(1720) resonance or by introducing a new baryon state, not reported in published analyses.
Covariant calculation of strange decays of baryon resonances
Sengl, B.; Melde, T.; Plessas, W.
2007-09-01
We present results for kaon decay widths of baryon resonances from a relativistic study with constituent quark models. The calculations are done in the point form of Poincare-invariant quantum mechanics with a spectator-model decay operator. We obtain covariant predictions of the Goldstone-boson-exchange and a variant of the one-gluon-exchange constituent quark models for all kaon decay widths of established baryon resonances. They are generally characterized by underestimating the available experimental data. In particular, the widths of kaon decays with decreasing strangeness in the baryon turn out to be extremely small. We also consider the nonrelativistic limit, leading to the familiar elementary emission model, and demonstrate the importance of relativistic effects. It is found that the nonrelativistic approach evidently misses sensible influences from Lorentz boosts and some essential spin-coupling terms.
Relativistic Quark-Model Results for Baryon Ground and Resonant States
Plessas, W.; Melde, T.
2008-10-13
Latest results from a study of baryon ground and resonant states within relativistic constituent quark models are reported. After recalling some typical spectral properties, the description of ground states, especially with regard to the nucleon and hyperon electromagnetic structures, is addressed. In the following, recent covariant predictions for pion, eta, and kaon partial decay widths of light and strange baryon resonances below 2 GeV are summarized. These results exhibit a characteristic pattern that is distinct from nonrelativistic or relativized decay studies performed so far. Together with a detailed analysis of the spin, flavor, and spatial structures of the wave functions, it supports a new and extended classification scheme of baryon ground and resonant states into SU(3) flavor multiplets.
The status of the Excited Baryon Analysis Center
B. Julia-Diaz
2010-08-01
The Excited Baryon Analysis Center (EBAC), which is associated with the Theory Group at Jefferson Laboratory, was initiated in 2006. Its main goal is to extract and interpret properties of nucleon resonances (N*) from the world data of meson production reactions induced by pions, photons and electrons. We review the main accomplishments of the center since then and sketch its near future perspectives.
NASA Astrophysics Data System (ADS)
Yao, De-Liang; Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Krebs, H.; Meißner, Ulf-G.
2016-05-01
We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P -partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.
NASA Astrophysics Data System (ADS)
Garzon, E. J.; Oset, E.
2015-02-01
We study the meson-baryon interaction with JP=1 /2- using the hidden-gauge Lagrangians and mixing pseudoscalar meson-baryon with the vector meson-baryon states in a coupled channels scheme with π N ,η N ,K Λ ,K Σ ,ρ N , and π Δ (d wave). We fit the subtraction constants of each channel to the S11 partial wave amplitude of the π N scattering data extracted from the partial wave analysis of the George Washington group. We find two poles that we associate to the N*(1535 ) and the N*(1650 ) resonances, with negative subtraction constants of natural size, and compare the results with empirical determinations of these pole positions. We calculate the branching ratios for the different channels of each resonance and we find a good agreement with the experimental data. The cross section for the π-p →η n scattering is also evaluated and compared with experiment.
Meson photoproduction and baryon resonances at MAMBO experiment
NASA Astrophysics Data System (ADS)
Romaniuk, Mariia
2013-03-01
Photoproduction of mesons within the framework of the MAMBO experiment (BGO-OD at Bonn plus MAMI at Mainz) was studied. The results on the operative work of the cryogenic H2/D2 target system during the last commissioning beam times at the March and June 2012 are shown. Investigation of the single charged pion photoproduction was provided using a polarized 3He target at the tagged photon facility of the MAMI accelerator. Unpolarized and helicity dependent cross sections are presented for channels γN → π±X in the Δ(1232) baryon resonance region.
Observation of two new Ξ(b)(-) baryon resonances.
Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casanova Mohr, R C M; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Domenico, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gastaldi, U; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Hess, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lowdon, P; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Orlandea, M; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Sterpka, F; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viana Barbosa, J V V B; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wiedner, D; Wilkinson, G; Wilkinson, M; Williams, M P; Williams, M; Wilschut, H W; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L
2015-02-13
Two structures are observed close to the kinematic threshold in the Ξ(b)(0)π(-) mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb(-1), recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bds are expected in this mass region: the spin-parity J(P)=(1/2)(+) and J(P)=(3/2)(+) states, denoted Ξ(b)('-) and Ξ(b)(*-). Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξ(b)('-))-m(Ξ(b)(0))-m(π(-))=3.653±0.018±0.006 MeV/c(2), m(Ξ(b)(*-))-m(Ξ(b)(0))-m(π(-))=23.96±0.12±0.06 MeV/c(2), Γ(Ξ(b)(*-))=1.65±0.31±0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξ(b)('-))<0.08 MeV at 95% confidence level. Relative production rates of these states are also reported. PMID:25723210
Observation of two new Ξ(b)(-) baryon resonances.
Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casanova Mohr, R C M; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Domenico, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gastaldi, U; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Hess, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lowdon, P; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Orlandea, M; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Sterpka, F; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viana Barbosa, J V V B; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wiedner, D; Wilkinson, G; Wilkinson, M; Williams, M P; Williams, M; Wilschut, H W; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L
2015-02-13
Two structures are observed close to the kinematic threshold in the Ξ(b)(0)π(-) mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb(-1), recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bds are expected in this mass region: the spin-parity J(P)=(1/2)(+) and J(P)=(3/2)(+) states, denoted Ξ(b)('-) and Ξ(b)(*-). Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξ(b)('-))-m(Ξ(b)(0))-m(π(-))=3.653±0.018±0.006 MeV/c(2), m(Ξ(b)(*-))-m(Ξ(b)(0))-m(π(-))=23.96±0.12±0.06 MeV/c(2), Γ(Ξ(b)(*-))=1.65±0.31±0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξ(b)('-))<0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.
Hendrick, R.E.
1981-01-10
This report details progress toward completion of a long-term pion-nucleon partial wave analysis, summarizing results and conclusions to date. The report also discussed progress in using partial wave and resonance parameter results to test dynamical models of the baryon and in better understanding interquark forces within baryons.
Study of a possible S = + 1 dynamically generated baryonic resonance
NASA Astrophysics Data System (ADS)
Sarkar, Sourav; Oset, E.; Vicente Vacas, M. J.
2005-05-01
Starting from the lowest-order chiral Lagrangian for the interaction of the baryon decuplet with the octet of pseudoscalar mesons we find an attractive interaction in the ΔK channel with L = 0 and I = 1, while the interaction is repulsive for I = 2. The attractive interaction leads to a pole in the second Riemann sheet of the complex plane and manifests itself in a large strength of the ΔK scattering amplitude close to the ΔK threshold, which is not the case for I = 2. However, we also make a study of uncertainties in the model and conclude that the existence of this pole depends sensitively upon the input used and can disappear within reasonable variations of the input parameters. We take advantage to study the stability of the other poles obtained for the {{3}/{2}}- dynamically generated resonances of the model and conclude that they are stable and not contingent to reasonable changes in the input of the theory.
NASA Astrophysics Data System (ADS)
Rönchen, Deborah
The Jülich-Bonn model, a dynamical coupled-channel approach that preserves unitarity and analyticity, has been applied to determine the spectrum of N* and Δ* resonances in a simultaneous study of several pion-induced reactions together with pion and eta photoproduction off the proton. Selected results of this analysis of more than 35,000 data points are presented. The influence of new double-polarization measurements in the reaction γp → ηp on the extracted resonance parameters is discussed.
Baryon spin-flavor structure from an analysis of lattice QCD results of the baryon spectrum
Fernando, I. P.; Goity, J. L.
2015-02-01
The excited baryon masses are analyzed in the framework of the 1/Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU(6) x O(3), where the [56,l^{P}=0⁺] ground state and excited baryons, and the [56,2^{+}] and [70}},1^{-}] excited states are analyzed. The analyses are carried out to order O(1/N_{c}) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. The main conclusion of the analysis is that qualitatively the dominant physical effects are similar for the physical and the lattice QCD baryons.
Baryon spin-flavor structure from an analysis of lattice QCD results of the baryon spectrum
Fernando, I. P.; Goity, J. L.
2015-02-01
The excited baryon masses are analyzed in the framework of the 1/Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU(6) x O(3), where the [56,lP=0⁺] ground state and excited baryons, and the [56,2+] and [70}},1-] excited states are analyzed. The analyses are carried out to order O(1/Nc) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations,more » as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. The main conclusion of the analysis is that qualitatively the dominant physical effects are similar for the physical and the lattice QCD baryons.« less
The Need for Polarization for Extracting Baryon Resonances and the NSTAR Program at CLAS
P.L. Cole
2007-10-01
We report on the NSTAR program in Hall B of JLab on using polarization observables to extract parameters of baryon resonances. The scientific purpose of the program is to improve the understanding of the underlying quark degrees of freedom, especially in the higher resonance regions, where we expect to uncover many of missing baryon resonances that mainly decay through multi-meson channels. With the high-quality beam of circularly- and linearly-polarized photons onto unpolarized and polarized proton and deteurium targets, and coupled with the nearly complete solid angle coverage of CLAS, we will extract the differential cross sections and associated polarization observables obtained by the photoproduction of vector mesons and kaons at center of mass energies of 1.7 to 2.2 GeV. The paper will primarily present the photon beam aspects of the excited baryon program.
The Need for Polarization for Extracting Baryon Resonances and the NSTAR Program at CLAS
Cole, Philip L.
2007-10-26
We report on the NSTAR program in Hall B of JLab on using polarization observables to extract parameters of baryon resonances. The scientific purpose of the program is to improve the understanding of the underlying quark degrees of freedom, especially in the higher resonance regions, where we expect to uncover many of missing baryon resonances that mainly decay through multi-meson channels. With the high-quality beam of circularly- and linearly-polarized photons onto unpolarized and polarized proton and deteurium targets, and coupled with the nearly complete solid angle coverage of CLAS, we will extract the differential cross sections and associated polarization observables obtained by the photoproduction of vector mesons and kaons at center of mass energies of 1.7 to 2.2 GeV. The paper will primarily present the photon beam aspects of the excited baryon program.
Study of decuplet baryon resonances from lattice QCD
NASA Astrophysics Data System (ADS)
Alexandrou, C.; Negele, J. W.; Petschlies, M.; Pochinsky, A. V.; Syritsyn, S. N.
2016-06-01
A lattice QCD study of the strong decay width and coupling constant of decuplet baryons to an octet baryon-pion state is presented. The transfer matrix method is used to obtain the overlap of lattice states with decuplet baryon quantum numbers on the one hand and octet baryon-pion quantum numbers on the other as an approximation of the matrix element of the corresponding transition. By making use of leading-order effective field theory, the coupling constants as well as the widths for the various decay channels are determined. The transitions studied are Δ →π N , Σ*→Λ π , Σ*→Σ π and Ξ*→Ξ π . We obtain results for two ensembles of Nf=2 +1 dynamical fermion configurations: one using domain wall valence quarks on a staggered sea at a pion mass of 350 MeV and a box size of 3.4 fm and a second one using domain wall sea and valence quarks at pion mass 180 MeV and box size 4.5 fm.
Including the {delta}(1232) resonance in baryon chiral perturbation theory
Hacker, C.; Wies, N.; Scherer, S.; Gegelia, J.
2005-11-01
Baryon chiral perturbation theory with explicit {delta}(1232) degrees of freedom is considered. The most general interactions of pions, nucleons, and {delta} consistent with all underlying symmetries as well as with the constraint structure of higher-spin fields are constructed. By use of the extended on-mass-shell renormalization scheme, a manifestly Lorentz-invariant effective-field theory with a systematic power counting is obtained. As applications, we discuss the mass of the nucleon, the pion-nucleon {sigma} term, and the pole of the {delta} propagator.
Baryon Spectrum Analysis using Covariant Constraint Dynamics
NASA Astrophysics Data System (ADS)
Whitney, Joshua; Crater, Horace
2012-03-01
The energy spectrum of the baryons is determined by treating each of them as a three-body system with the interacting forces coming from a set of two-body potentials that depend on both the distance between the quarks and the spin and orbital angular momentum coupling terms. The Two Body Dirac equations of constraint dynamics derived by Crater and Van Alstine, matched with the quasipotential formalism of Todorov as the underlying two-body formalism are used, as well as the three-body constraint formalism of Sazdjian to integrate the three two-body equations into a single relativistically covariant three body equation for the bound state energies. The results are analyzed and compared to experiment using a best fit method and several different algorithms, including a gradient approach, and Monte Carlo method. Results for all well-known baryons are presented and compared to experiment, with good accuracy.
New Exotic Meson and Baryon Resonances from Doubly Heavy Hadronic Molecules.
Karliner, Marek; Rosner, Jonathan L
2015-09-18
We predict several new exotic doubly heavy hadronic resonances, inferring from the observed exotic bottomoniumlike and charmoniumlike narrow states X(3872), Z_{b}(10610), Z_{b}(10650), Z_{c}(3900), and Z_{c}(4020/4025). We interpret the binding mechanism as mostly molecularlike isospin-exchange attraction between two heavy-light mesons in a relative S-wave state. We then generalize it to other systems containing two heavy hadrons which can couple through isospin exchange. The new predicted states include resonances in meson-meson, meson-baryon, baryon-baryon, and baryon-antibaryon channels. These include those giving rise to final states involving a heavy quark Q=c,b and antiquark Q[over ¯]^{'}=c[over ¯],b[over ¯], namely, DD[over ¯]^{*}, D^{*}D[over ¯]^{*}, D^{*}B^{*}, B[over ¯]B^{*}, B[over ¯]^{*}B^{*}, Σ_{c}D[over ¯]^{*}, Σ_{c}B^{*}, Σ_{b}D[over ¯]^{*}, Σ_{b}B^{*}, Σ_{c}Σ[over ¯]_{c}, Σ_{c}Λ[over ¯]_{c}, Σ_{c}Λ[over ¯]_{b}, Σ_{b}Σ[over ¯]_{b}, Σ_{b}Λ[over ¯]_{b}, and Σ_{b}Λ[over ¯]_{c}, as well as corresponding S-wave states giving rise to QQ^{'} or Q[over ¯]Q[over ¯]^{'}. PMID:26430989
Study of the baryon resonances structure via η photoproduction
NASA Astrophysics Data System (ADS)
Li, Zhenping; Saghai, Bijan
1998-12-01
Within a quark model the process γp-->ηp, for Eγlab < 1.2 GeV, is investigated. We find that the recent data from GRAAL on the polarized beam asymmetry require significant contributions from the resonances D13(1520), F15(1680), and to a lesser extent from P13(1720) in addition to those from the dominant S11(1535) resonance, implied by the Mainz differential cross-section data. The contributions from the resonances S11(1650), D13(1700) and D15(1675) are found consistently small but sensitive to the polarized target asymmetry measured recently at ELSA. These results are shown to be consistent with the quark model predictions.
The width of the Roper resonance in baryon chiral perturbation theory
NASA Astrophysics Data System (ADS)
Gegelia, Jambul; Meißner, Ulf-G.; Yao, De-Liang
2016-09-01
We calculate the width of the Roper resonance at next-to-leading order in a systematic expansion of baryon chiral perturbation theory with pions, nucleons, and the delta and Roper resonances as dynamical degrees of freedom. Three unknown low-energy constants contribute up to the given order. One of them can be fixed by reproducing the empirical value for the width of the Roper decay into a pion and a nucleon. Assuming that the remaining two couplings of the Roper interaction take values equal to those of the nucleon, the result for the width of the Roper decaying into a nucleon and two pions is consistent with the experimental value.
Hyperon AND Hyperon Resonance Properties From Charm Baryon Decays At BaBar
Ziegler, Veronique; /Iowa U.
2007-07-03
This report describes studies of hyperons and hyperon resonances produced in charm baryon decays at BABAR. Using two-body decays of the {Xi}{sub c}{sup 0} and {Omega}{sub c}{sup 0}, it is shown, for the first time, that the spin of the {omega}{sup -} is 3/2. The {Omega}{sup -} analysis procedures are extended to three-body final states and properties of the {Xi}(1690){sup 0} are extracted from a detailed isobar model analysis of the {Lambda}{sub c}{sup +} {yields} {Lambda}{bar K}{sup 0}K{sup +} Dalitz plot. The mass and width values of the {Xi}(1690){sup 0} are measured with much greater precision than attained previously. The hypothesis that the spin of the {Xi}(1690) resonance is 1/2 yields an excellent description of the data, while spin values 3/2 and 5/2 are disfavored. The {Lambda}a{sub 0}(980){sup +} decay mode of the {Lambda}{sub c}{sup +} is observed for the first time. Similar techniques are then used to study {Xi}(1530){sup 0} production in {Lambda}{sub c}{sup +} decay. The spin of the {Xi}(1530) is established for the first time to be 3/2. The existence of an S-wave amplitude in the {Xi}{sup -}{pi}{sup +} system is shown, and its interference with the {Xi}(1530){sup 0} amplitude provides the first clear demonstration of the Breit-Wigner phase motion expected for the {Xi}(1530). The {Xi}{sup -}{pi}{sup +} mass distribution in the vicinity of the {Xi}(1690){sup 0} exhibits interesting structure which may be interpreted as indicating that the {Xi}(1690) has negative parity.
Observation of a narrow baryon resonance with positive strangeness formed in K+Xe collisions
NASA Astrophysics Data System (ADS)
Barmin, V. V.; Asratyan, A. E.; Borisov, V. S.; Curceanu, C.; Davidenko, G. V.; Dolgolenko, A. G.; Guaraldo, C.; Kubantsev, M. A.; Larin, I. F.; Matveev, V. A.; Shebanov, V. A.; Shishov, N. N.; Sokolov, L. I.; Tarasov, V. V.; Tumanov, G. K.; Verebryusov, V. S.; Diana Collaboration
2014-04-01
The charge-exchange reaction K+Xe→K0pXe' is investigated using the data of the DIANA experiment. The distribution of the pK0 effective mass shows a prominent enhancement near 1538 MeV formed by nearly 80 events above the background, whose width is consistent with being entirely due to the experimental resolution. Under the selections based on a simulation of K+Xe collisions, the statistical significance of the signal reaches 5.5σ. We interpret this observation as strong evidence for formation of a pentaquark baryon with positive strangeness, Θ+(uudds¯), in the charge-exchange reaction K+n→K0p on a bound neutron. The mass of the Θ+ baryon is measured as m (Θ+)=1538±2 MeV. Using the ratio between the numbers of resonant and nonresonant charge-exchange events in the peak region, the intrinsic width of this baryon resonance is determined as Γ (Θ+)=0.34±0.10 MeV.
The ep --> e'pn Reaction at and above the S11(1535) Baryon Resonance
R. Thompson; et.Al.
2001-02-01
New cross sections for the reaction e p -> ep eta are reported for total center of mass energy W = 1.5--1.86 GeV and invariant momentum transfer Q{sup 2} = 0.25--1.5 GeV{sup 2}. This large kinematic range allows extraction of important new information about response functions, photocouplings, and eta N coupling strengths of baryon resonances. Expanded W coverage shows sharp structure at W {approx} 1.7 GeV; this is shown to come from interference between S and P waves and can be interpreted in terms of known resonances. Improved values are derived for the photon coupling amplitude for the S11(1535) resonance.
Formation of a narrow baryon resonance with positive strangeness in K + collisions with Xe nuclei
NASA Astrophysics Data System (ADS)
Barmin, V. V.; Asratyan, A. E.; Borisov, V. S.; Curceanu, C.; Davidenko, G. V.; Dolgolenko, A. G.; Guaraldo, C.; Kubantsev, M. A.; Larin, I. F.; Matveev, V. A.; Shebanov, V. A.; Shishov, N. N.; Sokolov, L. I.; Tumanov, G. K.; Verebryusov, V. S.
2010-07-01
The data on the charge-exchange reaction K +Xe → K 0 pXe', obtained with the bubble chamber DIANA, are reanalyzed using increased statistics and updated selections. Our previous evidence for formation of a narrow pK 0 resonance with mass near 1538 MeV is confirmed. The statistical significance of the signal reaches some 8 (6) standard deviations when estimated as {S {sqrt B ( {{S {/ {sqrt {B + S} }}} )}} . The mass and intrinsic width of the Θ+ baryon are measured as m = 1538 ± 2 MeV and Γ = 0.39 ± 0.10 MeV.
High statistics analysis using anisotropic clover lattices: (III) Baryon-baryon interactions
Beane, S; Detmold, W; Lin, H; Luu, T; Orginos, K; Savage, M; Torok, A; Walker-Loud, A
2010-01-19
Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m{sub {pi}} {approx} 390 MeV, a spatial volume of L{sup 3} {approx} (2.5 fm){sup 3}, and a spatial lattice spacing of b {approx} 0.123 fm. Luescher's method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The isospin-3/2 N{Sigma} interactions are found to be highly spin-dependent, and the interaction in the {sup 3}S{sub 1} channel is found to be strong. In contrast, the N{Lambda} interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is {Lambda}{Lambda}, indicating that the {Lambda}{Lambda} interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting is explored. In particular, focus is placed on the window of time slices for which the signal-to-noise ratio does not degrade exponentially, as this provides the opportunity to extract quantitative information about multi-baryon systems.
High Statistics Analysis using Anisotropic Clover Lattices: (III) Baryon-Baryon Interactions
Silas Beane; Detmold, William; Lin, Huey-Wen; Luu, Thomas C.; Orginos, Kostas; Savage, Martin; Torok, Aaron M.; Walker-Loud, Andre
2010-03-01
Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m_pi ~ 390 MeV, a spatial volume of L^3 ~ (2.5 fm)^3, and a spatial lattice spacing of b ~ 0.123 fm. Luscher’s method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The N-Sigma interactions are found to be highly spin-dependent, and the interaction in the ^3 S _1 channel is found to be strong. In contrast, the N-Lambda interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is Lambda-Lambda, indicating that the Lambda-Lambda interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of the NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting
High statistics analysis using anisotropic clover lattices: III. Baryon-baryon interactions
Beane, Silas R.; Detmold, William; Orginos, Kostas; Lin, Huey-Wen; Savage, Martin J.; Luu, Thomas C.; Torok, Aaron; Walker-Loud, Andre
2010-03-01
Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic-clover gauge-field configurations at a pion mass of m{sub {pi}{approx}3}90 MeV, a spatial volume of L{sup 3{approx}}(2.5 fm){sup 3}, and a spatial lattice spacing of b{approx}0.123 fm. Luescher's method is used to extract nucleon-nucleon, hyperon-nucleon, and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The isospin-3/2 N{Sigma} interactions are found to be highly spin dependent, and the interaction in the {sup 3}S{sub 1} channel is found to be strong. In contrast, the N{Lambda} interactions are found to be spin independent, within the uncertainties of the calculation, consistent with the absence of one-pion exchange. The only channel for which a negative energy shift is found is {Lambda}{Lambda}, indicating that the {Lambda}{Lambda} interaction is attractive, as anticipated from model-dependent discussions regarding the H dibaryon. The nucleon-nucleon (NN) scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN sector at this pion mass. This is consistent with our previous lattice QCD calculation of NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting is explored. In particular, focus is placed on the window of time slices for which the signal-to-noise ratio does not degrade exponentially, as this provides the opportunity to extract quantitative information about multibaryon systems.
Klempt, Eberhard; Richard, Jean-Marc
2010-04-15
About 120 baryons and baryon resonances are known, from the abundant nucleon with u and d light-quark constituents up to the {Xi}{sub b}{sup -}=(bsd), which contains one quark of each generation and to the recently discovered {Omega}{sub b}{sup -}=(bss). In spite of this impressively large number of states, the underlying mechanisms leading to the excitation spectrum are not yet understood. Heavy-quark baryons suffer from a lack of known spin parities. In the light-quark sector, quark-model calculations have met with considerable success in explaining the low-mass excitations spectrum but some important aspects such as the mass degeneracy of positive-parity and negative-parity baryon excitations remain unclear. At high masses, above 1.8 GeV, quark models predict a very high density of resonances per mass interval which is not yet observed. In this review, issues are identified discriminating between different views of the resonance spectrum; prospects are discussed on how open questions in baryon spectroscopy may find answers from photoproduction and electroproduction experiments which are presently carried out in various laboratories.
Analysis of 56-plet Positive Parity Baryon Decays in the 1/Nc Expansion
Jose Goity, Norberto Scoccola, Chandana Jayalath
2009-10-01
The partial decay widths of positive parity baryons belonging to 56-plets of SU(6) are analyzed in the framework of the 1/Nc expansion. The channels considered are those with emission of a single pion, K or K-bar mesons, and the analysis is carried out to subleading order in 1/Nc and to first order in SU(3) symmetry breaking. The results for the multiplet [56,0+], to which the Roper resonance belongs, indicate a poor description at leading order, requiring large next to leading order corrections. For the multiplet [56,2+], the P-wave decays in the non-strange sector are well described at leading order and important SU(3) breaking corrections are necessary to describe transitions involving strangeness, on the other hand, the F-wave decays require the next to leading order corrections, which turn out to be however of natural magnitude.
Application of Wavelet Packet Analysis to the Measurement of the Baryon Acoustic Oscillation
NASA Astrophysics Data System (ADS)
Kadowaki, Kevin; Garcia, Noel; Ford, Taurean; Pando, Jesus; SDSS-FAST Collaboration
2016-03-01
We develop a method of wavelet packet analysis to measure the Baryon Acoustic Oscillation (BAO) peak and apply this method to the CMASS galaxy catalog from the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) collaboration. We compare our results to a fiducial ?CDM flat cosmological model and detect a BAO signature in the power spectrum comparable to the previous consensus results of the BOSS collaboration. We find DA = 1365rd /rd , fid at z = . 54 . Member ID Forthcoming.
Evidence for an exotic S= -2, Q= -2 baryon resonance in proton-proton collisions at the CERN SPS.
Alt, C; Anticic, T; Baatar, B; Barna, D; Bartke, J; Betev, L; Białkowska, H; Billmeier, A; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Brun, R; Buncić, P; Cerny, V; Christakoglou, P; Chvala, O; Cramer, J G; Csató, P; Darmenov, N; Dimitrov, A; Dinkelaker, P; Eckardt, V; Farantatos, G; Filip, P; Flierl, D; Fodor, Z; Foka, P; Freund, P; Friese, V; Gál, J; Gaździcki, M; Georgopoulos, G; Gładysz, E; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kniege, S; Kolesnikov, V I; Kollegger, T; Korus, R; Kowalski, M; Kraus, I; Kreps, M; van Leeuwen, M; Lévai, P; Litov, L; Makariev, M; Malakhov, A I; Markert, C; Mateev, M; Mayes, B W; Melkumov, G L; Meurer, C; Mischke, A; Mitrovski, M; Molnár, J; Mrówczyński, St; Pálla, G; Panagiotou, A D; Panayotov, D; Perl, K; Petridis, A; Pikna, M; Pinsky, L; Pühlhofer, F; Reid, J G; Renfordt, R; Retyk, W; Roland, C; Roland, G; Rybczyński, M; Rybicki, A; Sandoval, A; Sann, H; Schmitz, N; Seyboth, P; Siklér, F; Sitar, B; Skrzypczak, E; Stefanek, G; Stock, R; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Trainor, T A; Varga, D; Vassiliou, M; Veres, G I; Vesztergombi, G; Vranić, D; Wetzler, A; Włodarczyk, Z; Yoo, I K; Zaranek, J; Zimányi, J
2004-01-30
Results of resonance searches in the Xi(-)pi(-), Xi(-)pi(+), Xi;(+)pi(-), and Xi;(+)pi(+) invariant mass spectra in proton-proton collisions at sqrt[s]=17.2 GeV are presented. Evidence is shown for the existence of a narrow Xi(-)pi(-) baryon resonance with mass of 1.862+/-0.002 GeV/c(2) and width below the detector resolution of about 0.018 GeV/c(2). The significance is estimated to be above 4.2sigma. This state is a candidate for the hypothetical exotic Xi(--)(3/2) baryon with S=-2, I=3 / 2, and a quark content of (dsdsū). At the same mass, a peak is observed in the Xi(-)pi(+) spectrum which is a candidate for the Xi(0)(3/2) member of this isospin quartet with a quark content of (dsus[-]d). The corresponding antibaryon spectra also show enhancements at the same invariant mass.
Analyses of Transverse Momentum Spectra of Baryon Resonances in C+C Collisions at 4.2 A GeV/c
Picuric, Ivana
2010-01-21
The production of Delta baryon resonances in heavy ion C+C collisions, using a 2-m propane bubble chamber exposed to beams of light relativistic nuclei from the Dubna synchrophasotron, has been investigated. The transverse momentum spectra of Delta baryon resonances have been measured and analyzed within a simple thermodynamical collective flow model and a boundary model. The goal was to find a simple, but realistic parameterization of the freeze-out stage in these collisions. As typical freeze-out parameters temperature T and beta have been obtained from the collective flow and temperature T from the boundary model.
The Nc dependencies of baryon masses: Analysis with Lattice QCD and Effective Theory
Calle Cordon, Alvaro C.; DeGrand, Thomas A.; Goity, Jose L.
2014-07-01
Baryon masses at varying values of Nc and light quark masses are studied with Lattice QCD and the results are analyzed in a low energy effective theory based on a combined framework of the 1/Nc and Heavy Baryon Chiral Perturbation Theory expansions. Lattice QCD results for Nc=3, 5 and 7 obtained in quenched calculations, as well as results for unquenched calculations for Nc=3, are used for the analysis. The results are consistent with a previous analysis of Nc=3 LQCD results, and in addition permit the determination of sub-leading in 1/Nc effects in the spin-flavor singlet component of the baryon masses as well as in the hyperfine splittings.
Barmin, V. V.; Asratyan, A. E.; Borisov, V. S.; Curceanu, C.; Davidenko, G. V.; Dolgolenko, A. G.; Guaraldo, C.; Kubantsev, M. A.; Larin, I. F.; Matveev, V. A.; Shebanov, V. A.; Shishov, N. N.; Sokolov, L. I.; Tumanov, G. K.; Verebryusov, V. S.
2010-07-15
The data on the charge-exchange reaction K{sup +}Xe {sup {yields}}K{sup 0}pXe', obtained with the bubble chamber DIANA, are reanalyzed using increased statistics and updated selections. Our previous evidence for formation of a narrow pK{sup 0} resonance with mass near 1538 MeV is confirmed. The statistical significance of the signal reaches some 8{sigma} (6{sigma}) standard deviations when estimated as S/{radical}B (S/{radical}B + S. The mass and intrinsic width of the {Theta}{sup +} baryon are measured as m = 1538 {+-} 2 MeV and {Gamma} = 0.39 {+-} 0.10 MeV.
Evidence for a bottom baryon resonance Λb*0 in CDF data
NASA Astrophysics Data System (ADS)
Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Guimaraes da Costa, J.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Shreyber-Tecker, I.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.
2013-10-01
Using data from proton-antiproton collisions at s=1.96TeV recorded by the CDF II detector at the Fermilab Tevatron, evidence for the excited resonance state Λb*0 is presented in its Λb0π-π+ decay followed by the Λb0→Λc+π- and Λc+→pK-π+ decays. The analysis is based on a data sample corresponding to an integrated luminosity of 9.6fb-1 collected by an online event selection based on charged-particle tracks displaced from the proton-antiproton interaction point. The significance of the observed signal is 3.5σ. The mass of the observed state is found to be 5919.22±0.76MeV/c2 in agreement with similar findings in proton-proton collision experiments.
NASA Astrophysics Data System (ADS)
Crede, Volker
2009-11-01
Nucleons are complex systems of confined quarks and exhibit characteristic spectra of excited states. Highly excited nucleon states are sensitive to details of quark confinement which is poorly understood within Quantum Chromodynamics (QCD), the fundamental theory of strong interactions. Thus, measurements of excited nucleon states and the corresponding determination of their properties are needed to come to a better understanding of how confinement works in nucleons. However, the excited states of the nucleon cannot simply be inferred from cleanly separated spectral lines. Quite the contrary, a spectral analysis in nucleon resonance physics is challenging because of the fact that these resonances are broadly overlapping states which decay into a multitude of final states involving mesons and baryons. To provide a consistent and complete picture of an individual nucleon resonance, the various possible production and decay channels must eventually be treated in a multi-channel framework that permits separating resonance from background contributions. A long-standing question in hadron physics is whether the large number of so-called missing baryon resonances really exists, i.e. experimentally not established baryon states which are predicted by all quark models based on three constituent quark effective degrees of freedom. It is important to emphasize that nearly all existing data on non-strange production of baryon resonances result from Nπ scattering experiments. However, quark models predict strong couplings of these missing states to γp rendering the study of these resonances in photo-induced reactions a very promising approach. Several new states have in fact been proposed in recent experiments. Current and upcoming experiments at Jefferson Laboratory will determine polarization (or spin) observables for photoproduction processes involving baryon resonances. Differences between the predictions for these observables can be large, and so conversely they provide
Wavelet analysis of baryon acoustic structures in the galaxy distribution
NASA Astrophysics Data System (ADS)
Arnalte-Mur, P.; Labatie, A.; Clerc, N.; Martínez, V. J.; Starck, J.-L.; Lachièze-Rey, M.; Saar, E.; Paredes, S.
2012-06-01
Context. Baryon acoustic oscillations (BAO) are imprinted in the density field by acoustic waves travelling in the plasma of the early universe. Their fixed scale can be used as a standard ruler to study the geometry of the universe. Aims: The BAO have been previously detected using correlation functions and power spectra of the galaxy distribution. We present a new method to detect the real-space structures associated with BAO. These baryon acoustic structures are spherical shells of relatively small density contrast, surrounding high density central regions. Methods: We design a specific wavelet adapted to search for shells, and exploit the physics of the process by making use of two different mass tracers, introducing a specific statistic to detect the BAO features. We show the effect of the BAO signal in this new statistic when applied to the Λ - cold dark matter (ΛCDM) model, using an analytical approximation to the transfer function. We confirm the reliability and stability of our method by using cosmological N-body simulations from the MareNostrum Institut de Ciències de l'Espai (MICE). Results: We apply our method to the detection of BAO in a galaxy sample drawn from the Sloan Digital Sky Survey (SDSS). We use the "main" catalogue to trace the shells, and the luminous red galaxies (LRG) as tracers of the high density central regions. Using this new method, we detect, with a high significance, that the LRG in our sample are preferentially located close to the centres of shell-like structures in the density field, with characteristics similar to those expected from BAO. We show that stacking selected shells, we can find their characteristic density profile. Conclusions: We delineate a new feature of the cosmic web, the BAO shells. As these are real spatial structures, the BAO phenomenon can be studied in detail by examining those shells. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc
Baryon spectrum analysis using Dirac's covariant constraint dynamics
NASA Astrophysics Data System (ADS)
Whitney, Joshua F.; Crater, Horace W.
2014-01-01
We present a relativistic quark model for the baryons that combines three related relativistic formalisms. The three-body constraint formalism of Sazdjian is used to recast three relativistic two-body equations for the three pairs of interacting quarks into a single relativistically covariant three-body equation for the bound state energies, having a Schrodinger-like structure. The two-body equations are the two-body Dirac equations of constraint dynamics derived by Crater and Van Alstine for combined world vector and scalar interactions providing the necessary spin dependent and spin independent interaction terms. The minimal quasipotential formalism of Todorov is used to provide an invariant framework for the vector and scalar dynamics used in the two-body Dirac equations into which is inserted a local simplified version of the Richardson potential. The spectral results are analyzed and compared to experiment using a best fit method and several different algorithms, including a gradient approach, and a Monte Carlo method.
NASA Astrophysics Data System (ADS)
Barmin, V. V.; Asratyan, A. E.; Borisov, V. S.; Curceanu, C.; Davidenko, G. V.; Dolgolenko, A. G.; Guaraldo, C.; Kubantsev, M. A.; Larin, I. F.; Matveev, V. A.; Shebanov, V. A.; Shishov, N. N.; Sokolov, L. I.; Tumanov, G. K.
2007-01-01
We have continued our investigation of the charge-exchange reaction K +Xe → K 0 pXe’ in the bubble chamber DIANA. In agreement with our previous results based on part of the present statistics, formation of a narrow pK 0 resonance with mass of 1537 ± 2 MeV/c 2 is observed in the elementary transition K + n → K 0 p on a neutron bound in the xenon nucleus. The visible width of the peak is consistent with being entirely due to instrumental resolution and allows one to place an upper limit on its intrinsic width: Γ < 9 MeV/c 2. A more precise estimate of the resonance intrinsic width, Γ = 0.36 ± 0.11 MeV/c 2, is obtained from the ratio between the numbers of resonant and nonresonant charge-exchange events. The signal is observed in a restricted interval of incident K + momentum that is consistent with smearing of a narrow pK 0 resonance by Fermi motion of the target neutron. The statistical significance of the signal is some 7.3, 5.3, and 4.3 standard deviations for the estimators S/sqrt B ,S/sqrt {S + B} and S/sqrt {S + 2B} , respectively. This observation confirms and reinforces our earlier results, and offers strong evidence for formation of a pentaquark baryon with positive strangeness in the charge-exchange reaction K + n → K 0 p on a bound neutron.
Analysis of negative parity baryon photoproduction helicity amplitudes in the 1/Nc expansion
Jose Goity; Nicolas Matagne; Norberto Scoccola
2007-11-26
We study the photoproduction helicity amplitudes of negative parity baryons in the context of the 1/Nc expansion of QCD. A complete analysis to next-to-leading order is carried out. The results show sub-leading effects to be within the magnitude expected from the $1/N_c$ power counting. They also show significant deviations from the quark model, in particular the need for 2-body effects.
A Relativistic Model for the Electromagnetic Structure of Baryons from the 3rd Resonance Region
NASA Astrophysics Data System (ADS)
Ramalho, G.
2016-09-01
We present some predictions for the γ ^*N → N^* transition amplitudes, where N is the nucleon, and N^* is a nucleon excitation from the third resonance region. First we estimate the transition amplitudes associated with the second radial excitation of the nucleon, interpreted as the N(1710) state, using the covariant spectator quark model. After that, we combine some results from the covariant spectator quark model with the framework of the single quark transition model, to make predictions for the γ ^*N → N^* transition amplitudes, where N^* is a member of the SU(6)-multiplet [70,1^-] . The results for the γ ^*N → N(1520) and γ ^*N → N(1535) transition amplitudes are used as input to the calculation of the amplitudes A_{1/2} , A_{3/2} , associated with the γ ^*N → N(1650) , γ ^*N → N(1700) , γ ^*N → Δ (1620) , and γ ^*N → Δ (1700) transitions. Our estimates are compared with the available data. In order to facilitate the comparison with future experimental data at high Q^2 , we derived also simple parametrizations for the amplitudes, compatible with the expected falloff at high Q^2.
Study of heavy-baryon transitions
NASA Astrophysics Data System (ADS)
Hassanabadi, H.; Rahmani, S.; Zarrinkamar, S.
2014-10-01
We solve the hyper-radial Schrödinger equation with Cornell interaction to find the baryonic wave function. Thereby, we investigate the baryonic Isgur-Wise function in hyperspherical coordinates. Using the obtained Isgur-Wise function, we find the decay width of heavy-baryon transitions. An analysis of masses of baryons and the differential decay width for some heavy baryons is also presented. Comparison with other model calculations is motivating.
NASA Astrophysics Data System (ADS)
Bailey, Jon Andrew
The strong force binds protons and neutrons within nuclei and quarks within mesons and baryons. Calculations of the masses of the light-quark baryons from the theory of the strong force, quantum chromodynamics (QCD), require numerical methods in which continuous Minkowski spacetime is replaced by a discrete Euclidean spacetime lattice. Finite computational resources and theoretical constraints impose significant limitations on lattice calculations. The price of perhaps the fastest formulation of lattice QCD, rooted staggered QCD, includes quark degrees of freedom called tastes, associated discretization effects called taste violations, and the rooting conjecture for eliminating the tastes in the continuum limit. Empirically successful rooted staggered QCD calculations of the baryon spectrum would constitute numerical evidence for the rooting conjecture and further vindication of QCD as the theory of the strong force. With such calculations as the goal, I discuss expected features of the staggered baryon spectrum, examine the spectra of interpolating operators transforming irreducibly under the staggered lattice symmetry group, construct such a set of baryon operators, and show how they could allow for particularly clean calculations of the masses of the nucleon, Delta, Sigma*, Ξ*, and O-. To quantify taste violations in baryonic quantities, I develop staggered chiral perturbation theory for light-quark baryons by mapping the Symanzik action into heavy baryon chiral perturbation theory, calculate the masses of flavor-symmetric nucleons to third order in partially quenched and fully dynamical staggered chiral perturbation theory, and discuss in detail the pattern of taste symmetry breaking and the resulting baryon degeneracies and mixings. The resulting chiral forms could be used with interpolating operators already in use to study the restoration of taste symmetry in the continuum limit.
Baryon spectroscopy and the omega minus
Samios, N.P.
1994-12-31
In this report, I will mainly discuss baryon resonances with emphasis on the discovery of the {Omega}{sup {minus}}. However, for completeness, I will also present some data on the meson resonances which together with the baryons led to the uncovering of the SU(3) symmetry of particles and ultimately to the concept of quarks.
NASA Astrophysics Data System (ADS)
Komarov, V.; Tsirkov, D.; Azaryan, T.; Bagdasarian, Z.; Dymov, S.; Gebel, R.; Gou, B.; Kacharava, A.; Khoukaz, A.; Kulikov, A.; Kurbatov, V.; Lorentz, B.; Macharashvili, G.; Mchedlishvili, D.; Merzliakov, S.; Mikirtytchiants, S.; Ohm, H.; Papenbrock, M.; Rathmann, F.; Serdyuk, V.; Shmakova, V.; Ströher, H.; Trusov, S.; Uzikov, Yu.; Valdau, Yu.
2016-06-01
We report on measurements of the differential cross section d σ /d Ω and the first measurement of the analyzing power Ay in the Δ (1232 ) excitation energy region of the reaction p p →{pp } sπ0 where {pp } s is a S10 proton pair. The experiment has been performed with the ANKE spectrometer at COSY-Jülich. The data reveal a peak in the energy dependence of the forward {pp } s differential cross section, a minimum at zero degrees of its angular distribution, and a large analyzing power. The results present a direct manifestation of two two-baryon resonance-like states with JP=2- and 0- and an invariant mass of 2.2 GeV /c2.
Takeuchi, Sachiko; Shimizu, Kiyotaka
2007-09-15
To describe {lambda}(1405) as a resonance in baryon-meson scattering, we have investigated the q{sup 3}-qq scattering system with the flavor-singlet q{sup 3}(0s){sup 2}(0p) state (the {lambda}{sup 1} pole). The scattering is treated by the quark cluster model (QCM). The {lambda}{sup 1} pole is treated as a bound state embedded in the continuum. We have found that a peak appears below the NK threshold in the spin-(1/2), isospin-0 channel even if the mass of the {lambda}{sup 1} pole is above the threshold. This peak disappears when the coupling to the {lambda}{sup 1} pole is switched off. Using the observed hadron mass in the kinetic part of QCM is also found to be important in reproducing a peak just below the NK threshold.
Hadronic molecules in the heavy baryon spectrum
NASA Astrophysics Data System (ADS)
Entem, D. R.; Ortega, P. G.; Fernández, F.
2016-01-01
We study possible baryon molecules in the non-strange heavy baryon spectrum. We include configurations with a heavy-meson and a light baryon. We find several structures, in particular we can understand the Λc(2940) as a D*N molecule with JP = 3/2- quantum numbers. We also find D(*)Δ candidates for the recently discovered Xc(3250) resonance.
Evidence for a Second F35 Pion-Nucleon Resonance near 2000 MeV
NASA Astrophysics Data System (ADS)
Manley, D. Mark
1984-06-01
A recent isobar-model, partial-wave analysis of πN-->ππN finds strong indications of the F35 pion-nucleon resonance belonging to the (70,L=2+) baryon multiplet. This conclusion is drawn from recent predictions of baryon decays obtained with baryon compositions determined by the Isgur-Karl quark model. The highly inelastic F35 resonance is observed through its dominant p-wave decay to ρN.
David Richards
2004-10-01
This talk describes progress at understanding the properties of the nucleon and its excitations from lattice QCD. I begin with a review of recent lattice results for the lowest-lying states of the excited baryon spectrum. The need to approach physical values of the light quark masses is emphasized, enabling the effects of the pion cloud to be revealed. I then outline the development of techniques that will enable the extraction of the masses of the higher resonances, and describe how such calculations provide insight into the structure of the hadrons. Finally, I discuss direct probes of the quark and gluon structure of baryons through the lattice measurement of the moments of quark distributions and of Generalized Parton Distributions.
Analysis of heavy spin-3/2 baryon-heavy spin-1/2 baryon-light vector meson vertices in QCD
Aliev, T. M.; Savci, M.; Azizi, K; Zamiralov, V. S.
2011-05-01
The heavy spin-3/2 baryon-heavy spin-1/2 baryon vertices with light vector mesons are studied within the light cone QCD sum rules method. These vertices are parametrized in terms of three coupling constants. These couplings are calculated for all possible transitions. It is shown that correlation functions for these transitions are described by only one invariant function for every Lorenz structure. The obtained relations between the correlation functions of the different transitions are structure independent while explicit expressions of invariant functions depend on the Lorenz structure.
Correlation Analysis between Spin, Velocity Shear, and Vorticity of Baryonic and Dark Matter Halos
NASA Astrophysics Data System (ADS)
Liu, L. L.
2016-05-01
Using cosmological hydrodynamic simulations, we investigate the alignments between velocity shear, vorticity, and the spin of dark matter halos, and study the correlation between baryonic and dark matter. We find that (1) mis-alignment between vorticity of baryonic and dark matter would develop on scales < 0.2h-1 Mpc; (2) the vorticity of baryonic matter exhibits stronger alignment/anti-alignment with the eigenvectors of velocity shear than that of dark matter; (3) small/massive halos spinning parallel/perpendicular to the host filaments are sensitive to the identification of cosmic web, simulation box size, and resolution. These factors might complicate the connection between the spins of dark matter halos and galaxies, and affect the correlation signal of the alignments of galaxy spin with nearby large-scale structures.
Mukhopadhyay, N.C.
1986-01-01
The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)
SELEX: Recent Progress in the Analysis of Charm-Strange and Double-Charm Baryons
Engelfried, Jurgen
2007-02-01
SELEX (Fermilab Experiment 781) [1] employs beams of {Sigma}{sup -}, {pi}{sup -}, and protons at around 600 GeV/c to study production and decay properties of charmed baryons. It took data in the 1996/7 fixed target run and is currently analyzing those data. Here they focus on recently obtained results concerning the {Omega}{sub c}{sup 0} lifetime and the doubly-charmed baryons {Xi}{sub cc}{sup +} and {Xi}{sub cc}{sup ++}.
NASA Astrophysics Data System (ADS)
Yang, Ghil-Seok; Kim, Hyun-Chul
2013-01-01
We reexamine the properties of the baryon antidecuplet Θ+ and N*, and the πN sigma term within the framework of a chiral soliton model, focusing on their dependence on the Θ+ mass. It turns out that the measured value of the N* mass, MN* = 1686 MeV, is consistent with that of the Θ+ mass MΘ+ = 1524 MeV by the LEPS collaboration [T. Nakano et al. [LEPS Collaboration], Phys. Rev. C 79, 025210 (2009)]. The N*→Nγ magnetic transition moments are almost independent of the Θ+ mass. The ratio of the radiative decay width Γnn* to Γpp* turns out to be around 5. The decay width for Θ+→NK is studied in the context of the LEPS and DIANA experiments. When the LEPS value of the Θ+ mass is employed, we obtain ΓΘNK = (0.5 ± 0.1) MeV. The πN sigma term is found to be almost independent of the Θ+ mass. In addition, we derive a new expression for the πN sigma term in terms of the isospin mass splittings of the hyperon octet as well as that of the antidecuplet N*.
Analysis of the [53, l=2] Baryon Masses in the 1/N{sub c} Expansion
J.L. Goity; C.L. Schat; N.N. Scoccola
2003-03-01
The mass spectrum of the [56,{ell}=2] baryons is studied in the 1/N{sub c} expansion up to and including {Omicron}(1/N{sub c}) effects with SU(3) symmetry breaking implemented to first order. A total of eighteen mass relations result, several of which are tested with the available data.
Aznauryan, Inna G.; Burkert, Volker D.
2015-07-01
We report on the determination of the electrocouplings for the transition from the proton to the N (1675)^{-5}/_{2} resonance state using recent differential cross section data on ep → eπ^{+}n by the CLAS collaboration at 1.8 ≤ Q² < 4.5GeV². The data have been analyzed using two different approaches, the unitary isobar model and fixed-t dispersion relations. The extracted γ*p → N (1675)^{-5}/_{2} helicity amplitudes show considerable coupling through the A^{P}_{1/2} amplitude, that is significantly larger than predicted three-quark contribution to this amplitude. The amplitude A^{P}_{3/2} is much smaller. Both results are consistent with the predicted sizes of the meson-baryon contributions at Q² ≥ 1.8 GeV² from the dynamical coupled-channel model.
High Statistics Analysis using Anisotropic Clover Lattices: (II) Three-Baryon Systems
Beane, S; Detmold, W; Luu, T; Orginos, K; Parreno, A; Savage, M; Torok, A; Walker-Loud, A
2009-05-05
We present the results of an exploratory Lattice QCD calculation of three-baryon systems through a high-statistics study of one ensemble of anisotropic clover gauge-field configurations with a pion mass of m{sub {pi}} {approx} 390 MeV. Because of the computational cost of the necessary contractions, we focus on correlation functions generated by interpolating-operators with the quantum numbers of the {Xi}{sup 0}{Xi}{sup 0}n system, one of the least demanding three baryon systems in terms of the number of contractions. We find that the ground state of this system has an energy of E{sub {Xi}{sup 0}{Xi}{sup 0}n} = 3877.9 {+-} 6.9 {+-} 9.2 {+-} 3.3 MeV corresponding to an energy-shift due to interactions of {delta}E{sub {Xi}{sup 0}{Xi}{sup 0}n} = E{sub {Xi}{sup 0}{Xi}{sup 0}n} - 2M{sub {Xi}{sup 0}} - M{sub n} = 4.6 {+-} 5.0 {+-} 7.9 {+-} 4.2 MeV. There are a significant number of time-slices in the three-baryon correlation function for which the signal-to-noise ratio is only slowly degrading with time. This is in contrast to the exponential degradation of the signal-to-noise ratio that is observed at larger times, and is due to the suppressed overlap of the source and sink interpolating-operators that are associated with the variance of the three-baryon correlation function onto the lightest eigenstates in the lattice volume (mesonic systems). As one of the motivations for this area of exploration is the calculation of the structure and reactions of light nuclei, we also present initial results for a system with the quantum numbers of the triton (pnn). This present work establishes a path to multi-baryon systems, and shows that Lattice QCD calculations of the properties and interactions of systems containing four and five baryons are now within sight.
High Statistics Analysis using Anisotropic Clover Lattices: (II) Three-Baryon Systems
Andre Walker-Loud, Will Detmold, William Detmold, Aaron Torok, Konstantinos Orginos, Silas Beane, Tom Luu, Martin Savage, Assumpta Parreno
2009-10-01
We present the results of an exploratory Lattice QCD calculation of three-baryon systems through a high-statistics study of one ensemble of anisotropic clover gauge-field configurations with a pion mass of m_\\pi ~ 390 MeV. Because of the computational cost of the necessary contractions, we focus on correlation functions generated by interpolating-operators with the quantum numbers of the $\\Xi^0\\Xi^0 n$ system, one of the least demanding three baryon systems in terms of the number of contractions. We find that the ground state of this system has an energy of E_{\\Xi^0\\Xi^0n}= 3877.9\\pm 6.9\\pm 9.2\\pm3.3 MeV corresponding to an energy-shift due to interactions of \\delta E_{\\Xi^0\\Xi^0n}=E_{\\Xi^0\\Xi^0n}-2M_{\\Xi^0} -M_n=4.6\\pm 5.0\\pm 7.9\\pm 4.2 MeV. There are a significant number of time-slices in the three-baryon correlation function for which the signal-to-noise ratio is only slowly degrading with time. This is in contrast to the exponential degradation of the signal-to-noise ratio that is observed at larger times, and is due to the suppressed overlap of the source and sink interpolating-operators that are associated with the variance of the three-baryon correlation function onto the lightest eigenstates in the lattice volume (mesonic systems). As one of the motivations for this area of exploration is the calculation of the structure and reactions of light nuclei, we also present initial results for a system with the quantum numbers of the triton (pnn). This present work establishes a path to multi-baryon systems, and shows that Lattice QCD calculations of the properties and interactions of systems containing four and five baryons are now within sight.
Analysis of instability of systems composed by dark and baryonic matter
NASA Astrophysics Data System (ADS)
Kremer, Gilberto M.; André, Raíla
2016-10-01
In this work, the dynamics of self-gravitating systems composed by dark and baryonic matter is analyzed. Searching for a description of this dynamics, a system of collisionless Boltzmann equations for the two constituents and the Poisson equation for the gravitational field are employed. Through the solution of these equations, the collapse criterion is determined from a dispersion relation. The collapse occurs in an unstable region where the solutions grow exponentially with time. It is shown that the unstable region becomes larger if the dispersion velocity of dark matter becomes larger than the one of the baryonic matter. The results obtained are also compared with the case where only the dark matter is present. The model of the present work has a higher limit of instability and therefore exhibited an advantage in the structure formation.
New Heavy-Baryons and Hyperfine Mass-Splittings: Analysis from QCD Rum Rules
Albuquerque, R. M.; Nielsen, M.; Narison, S.
2010-11-12
We extract directly the charmed and bottom heavy-baryons (spin 1/2 and 3/2) masssplittings due to SU(3) breaking using double ratios of QCD spectral sum rules (QSSR) in full QCD. We deduce M{sub {Omega}{sub b}} = 6078.5(27.4) MeV which agrees with the recent CDF data but disagrees by 2.4{sigma} with the one from D0. Predictions of the {Xi}{sub Q}' and of the spectra of spin 3/2 baryons containing one or two strange quark are given in Table 1. Predictions of the hyperfine splittings {Omega}{sub Q}*-{Omega}{sub Q} and {Xi}{sub Q}*-{Xi}{sub Q} are also given in Table 2.
Excitations of strange bottom baryons
NASA Astrophysics Data System (ADS)
Woloshyn, R. M.
2016-09-01
The ground-state and first-excited-state masses of Ωb and Ω_{bb} baryons are calculated in lattice QCD using dynamical 2 + 1 flavour gauge fields. A set of baryon operators employing different combinations of smeared quark fields was used in the framework of the variational method. Results for radial excitation energies were confirmed by carrying out a supplementary multiexponential fitting analysis. Comparison is made with quark model calculations.
Strange baryon resonance production in sqrt s NN=200 GeV p+p and Au+Au collisions.
Abelev, B I; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Burton, T P; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; DePhillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Gaudichet, L; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Gupta, N; Gutierrez, T D; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; LaPointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Poljak, N; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ray, R L; Razin, S V; Reinnarth, J; Relyea, D; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Sumbera, M; Sun, Z; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Buren, G Van; van der Kolk, N; van Leeuwen, M; Molen, A M Vander; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X
2006-09-29
We report the measurements of Sigma(1385) and Lambda(1520) production in p+p and Au+Au collisions at sqrt[s{NN}]=200 GeV from the STAR Collaboration. The yields and the p(T) spectra are presented and discussed in terms of chemical and thermal freeze-out conditions and compared to model predictions. Thermal and microscopic models do not adequately describe the yields of all the resonances produced in central Au+Au collisions. Our results indicate that there may be a time span between chemical and thermal freeze-out during which elastic hadronic interactions occur. PMID:17026027
High statistics analysis using anisotropic clover lattices. II. Three-baryon systems
Beane, Silas R.; Torok, Aaron; Detmold, William; Orginos, Kostas; Luu, Thomas C.; Parreno, Assumpta; Savage, Martin J.; Walker-Loud, Andre
2009-10-01
We present the results of an exploratory lattice QCD calculation of three-baryon systems through a high statistics study of one ensemble of anisotropic clover gauge-field configurations with a pion mass of m{sub {pi}}{approx}390 MeV. Because of the computational cost of the necessary contractions, we focus on correlation functions generated by interpolating operators with the quantum numbers of the {xi}{sup 0}{xi}{sup 0}n system, one of the least demanding three-baryon systems in terms of the number of contractions. We find that the ground state of this system has an energy of E{sub {xi}{sup 0}}{sub {xi}{sup 0}}{sub n}=3877.9{+-}6.9{+-}9.2{+-}3.3 MeV corresponding to an energy shift due to interactions of {delta}E{sub {xi}{sup 0}}{sub {xi}{sup 0}}{sub n}=E{sub {xi}{sup 0}}{sub {xi}{sup 0}}{sub n}-2M{sub {xi}{sup 0}}-M{sub n}=4.6{+-}5.0{+-}7.9{+-}4.2 MeV. There are a significant number of time slices in the three-baryon correlation function for which the signal-to-noise ratio is only slowly degrading with time. This is in contrast to the exponential degradation of the signal-to-noise ratio that is observed at larger times, and is due to the suppressed overlap of the source and sink interpolating operators that are associated with the variance of the three-baryon correlation function onto the lightest eigenstates in the lattice volume (mesonic systems). As one of the motivations for this area of exploration is the calculation of the structure and reactions of light nuclei, we also present initial results for a system with the quantum numbers of the triton (pnn). This present work establishes a path to multibaryon systems, and shows that lattice QCD calculations of the properties and interactions of systems containing four and five baryons are now within sight.
NASA Astrophysics Data System (ADS)
Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob
2012-11-01
In the large N c limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a series of "popcorn" transitions upon increasing the density. Through these transitions normal (3D) lattices expand into the transverse dimension, eventually becoming a higher dimensional (4D) multi-layer lattice at large densities. We consider 3D lattices of zero size instantons as well as 1D periodic chains of finite size instantons, which serve as toy models of the full holographic systems. In particular, for the finite-size case we determine solutions of the corresponding ADHM equations for both a straight chain and for a 2D zigzag configuration where instantons pop up into the holographic dimension. At low density the system takes the form of an "abelian anti- ferromagnetic" straight periodic chain. Above a critical density there is a second order phase transition into a zigzag structure. An even higher density yields a rich phase space characterized by the formation of multi-layer zigzag structures. The finite size of the lattices in the transverse dimension is a signal of an emerging Fermi sea of quarks. We thus propose that the popcorn transitions indicate the onset of the "quarkyonic" phase of the cold dense nuclear matter.
Extracting meson-baryon contributions to the electroexcitation of the N (1675)-5/2 nucleon resonance
Aznauryan, Inna G.; Burkert, Volker D.
2015-07-01
We report on the determination of the electrocouplings for the transition from the proton to the N (1675)-5/2 resonance state using recent differential cross section data on ep → eπ+n by the CLAS collaboration at 1.8 ≤ Q² < 4.5GeV². The data have been analyzed using two different approaches, the unitary isobar model and fixed-t dispersion relations. The extracted γ*p → N (1675)-5/2 helicity amplitudes show considerable coupling through the AP1/2 amplitude, that is significantly larger than predicted three-quark contribution to this amplitude. The amplitude AP3/2 is much smaller. Both results are consistent with the predicted sizes of the meson-baryonmore » contributions at Q² ≥ 1.8 GeV² from the dynamical coupled-channel model.« less
Theory Support for the Excited Baryon Analysis Program at the JLAB 12 GeV Upgrade
Burkert, Volker; Lee, Tsung-Shung; Mokeev, Viktor; Aznauryan, Inna; Braun, Vladimir; Capstick, Simon; Cloet, Ian; Edwards, Robert; Gianinni, M.; Lin, Huey-Wen; Roberts, C.D.; Stoler, Paul; Zhao, Qiang; Zou, Bing-Song
2009-01-01
This document summarizes the contributions of the Electromagnetic $\\gamma_vNN^*$ Transition Form Factors workshop participants that provide theoretical support of the excited baryon program at the 12 GeV energy upgrade at JLab. The main objectives of the workshop were (a) review the status of the $\\gamma_vNN^*$ transition form factors extracted from the meson electroproduction data, (b) call for the theoretical interpretations of the extracted $N$-$N^*$ transition form factors, that enable access to the mechanisms responsible for the N* formation and to their emergence from QCD.
Baryon asymmetry, inflation and squeezed states
Bambah, Bindu A. . E-mail: bbsp@uohyd.ernet.in; Chaitanya, K.V.S. Shiv; Mukku, C.
2007-04-15
We use the general formalism of squeezed rotated states to calculate baryon asymmetry in the wake of inflation through parametric amplification. We base our analysis on a B and CP violating Lagrangian in an isotropically expanding universe. The B and CP violating terms originate from the coupling of complex fields with non-zero baryon number to a complex background inflaton field. We show that a differential amplification of particle and antiparticle modes gives rise to baryon asymmetry.
Integral data analysis for resonance parameters determination
Larson, N.M.; Leal, L.C.; Derrien, H.
1997-09-01
Neutron time-of-flight experiments have long been used to determine resonance parameters. Those resonance parameters have then been used in calculations of integral quantities such as Maxwellian averages or resonance integrals, and results of those calculations in turn have been used as a criterion for acceptability of the resonance analysis. However, the calculations were inadequate because covariances on the parameter values were not included in the calculations. In this report an effort to correct for that deficiency is documented: (1) the R-matrix analysis code SAMMY has been modified to include integral quantities of importance, (2) directly within the resonance parameter analysis, and (3) to determine the best fit to both differential (microscopic) and integral (macroscopic) data simultaneously. This modification was implemented because it is expected to have an impact on the intermediate-energy range that is important for criticality safety applications.
Matrix methods for bare resonator eigenvalue analysis.
Latham, W P; Dente, G C
1980-05-15
Bare resonator eigenvalues have traditionally been calculated using Fox and Li iterative techniques or the Prony method presented by Siegman and Miller. A theoretical framework for bare resonator eigenvalue analysis is presented. Several new methods are given and compared with the Prony method.
Strong decays of excited baryons in Large Nc QCD
Goity, J. L.; Scoccola, N. N.
2007-02-12
We present the analysis of the strong decays widths of excited baryons in the framework of the 1/Nc expansion of QCD. These studies are performed up to order 1/Nc and include both positive and negative parity excited baryons.
Strong decays of excited baryons in Large Nc QCD
Goity, Jose; Scoccola, Norberto
2007-02-01
We present the analysis of the strong decays widths of excited baryons in the framework of the 1/Nc expansion of QCD. These studies are performed up to order 1/Nc and include both positive and negative parity excited baryons.
Electromagnetic properties of baryons
Ledwig, T.; Pascalutsa, V.; Vanderhaeghen, M.; Martin-Camalich, J.
2011-10-21
We discuss the chiral behavior of the nucleon and {Delta}(1232) electromagnetic properties within the framework of a SU(2) covariant baryon chiral perturbation theory. Our one-loop calculation is complete to the order p{sup 3} and p{sup 4}/{Delta} with {Delta} as the {Delta}(1232)-nucleon energy gap. We show that the magnetic moment of a resonance can be defined by the linear energy shift only when an additional relation between the involved masses and the applied magnetic field strength is fulfilled. Singularities and cusps in the pion mass dependence of the {Delta}(1232) electromagnetic moments reflect a non-fulfillment. We show results for the pion mass dependence of the nucleon iso-vector electromagnetic quantities and present preliminary results for finite volume effects on the iso-vector anomalous magnetic moment.
Global Analysis Of The Negative Parity Non-Strange Baryons In The 1/N{sub c} Expansion
Goity, Jose L.; Gonzalez de Urreta, Emiliano Jose; Scoccola, Norberto N.
2014-02-01
A global study of the negative parity non-strange baryon observables is performed in the framework of the 1/N{sub c} expansion. Masses, partial decay widths and photo-couplings are simultaneously analyzed. A main objective is to determine the composition of the spin 1/2 and 3/2 nucleon states, which come in pairs and involve two mixing angles which can be determined and tested for consistency by the mentioned observables. The issue of the assignment of those nucleon states to the broken SU(4) X O(3) mixed-symmetry multiplet is studied in detail, with the conclusion that the assignment made in the old studies based on the non-relativistic quark model is the preferred one. In addition, the analysis involves an update of the input data with respect to previous works.
Spectroscopy of charmed baryons
Solovieva, E. I.
2015-12-15
Apresent-day classification of charmed baryons is presented, a quark model for ground states is briefly described, and the energy levels of excited states are analyzed. In addition, a survey of experimentally observed states of charmed baryons is given.
The CLAS Excited Baryon Program at JLab
Crede, Volker
2007-10-26
Nucleons are complex systems of confined quarks and exhibit characteristic spectra of excited states. Highly excited nucleon states are sensitive to details of quark confinement which is poorly understood within Quantum Chromodynamics (QCD), the fundamental theory of strong interactions. Thus, measurements of excited states and the corresponding determination of their properties are needed to come to a better understanding of how confinement works in nucleons. However, the excited states of the nucleon cannot simply be inferred from cleanly separated spectral lines. Quite the contrary, a spectral analysis in nucleon resonance physics is challenging because of the fact that the resonances are broadly overlapping states which decay into a multitude of final states involving mesons and baryons. To provide a consistent and complete picture of an individual nucleon resonance, the various possible production and decay channels must be treated in a multichannel framework that permits separating resonance from background contributions. Very often, resonances reveal themselves more clearly through interference with dominant amplitudes. These interference terms can be isolated via polarization observables. The current CLAS effort is to utilize highly-polarized hydrogen and deuterium targets as well as polarized photon beams toward a complete measurement of a large number of reaction channels.
The CLAS Excited Baryon Program at Jlab
Volker Crede
2007-10-01
Nucleons are complex systems of confined quarks and exhibit characteristic spectra of excited states. Highly excited nucleon states are sensitive to details of quark confinement which is poorly understood within Quantum Chromodynamics (QCD), the fundamental theory of strong interactions. Thus, measurements of excited states and the corresponding determination of their properties are needed to come to a better understanding of how confinement works in nucleons. However, the excited states of the nucleon cannot simply be inferred from cleanly separated spectral lines. Quite the contrary, a spectral analysis in nucleon resonance physics is challenging because of the fact that the resonances are broadly overlapping states which decay into a multitude of final states involving mesons and baryons. To provide a consistent and complete picture of an individual nucleon resonance, the various possible production and decay channels must be treated in a multichannel framework that permits separating resonance from background contributions. Very often, resonances reveal themselves more clearly through interference with dominant amplitudes. These interference terms can be isolated via polarization observables. The current CLAS effort is to utilize highly-polarized hydrogen and deuterium targets as well as polarized photon beams toward a complete measurement of a large number of reaction channels.
Resonant voice: spectral and nasendoscopic analysis.
Smith, Cara G; Finnegan, Eileen M; Karnell, Michael P
2005-12-01
Although resonant voice therapy is a widely used therapeutic approach, little is known about what characterizes resonant voice and how it is physiologically produced. The purpose of this study was to test the hypothesis that resonant voice is produced by narrowing the laryngeal vestibule and is characterized by first formant tuning and more ample harmonics. Videonasendoscopic recordings of the laryngeal vestibule were made during nonresonant and resonant productions of /i/ in six subjects. Spectrums of the two voice types were also obtained. Spectral analysis showed that first formant tuning was exhibited during resonant voice productions and that the degree of harmonic enhancement in the range of 2.0 to 3.5 kHz was related to voice quality: nonresonant voice had the least amount of energy in this range, whereas a resonant-relaxed voice had more energy, and a resonant-bright voice had the greatest amount of energy. Visual-perceptual judgments of the videoendoscopic data indicated that laryngeal vestibule constriction was not consistently associated with resonant voice production. PMID:16301106
Physical processes effecting the baryonic matter content of the Universe
NASA Astrophysics Data System (ADS)
Panayotova, Mariana
2015-01-01
We have discussed physical processes effecting the generation of the matter content of the Universe. First we have studied the processes effecting Big Bang Nucleosynthesis during which the chemical content of the baryonic component of the Universe was produced. We have provided detail numerical analysis of the BBN production of ^4He, Y_p, in the presence of ν_e ← ν_s neutrino oscillations, effective after electron neutrino decoupling. We have accounted for all known effects of neutrino oscillations on cosmological nucleosyntesis. We have obtained cosmological bounds corresponding to δ Y_p/Y_p= 5.2 % in correspondance with the recently found higher uncertainty in ^4He. Iso-helium contours for δ Y_p/Y_p > 5% and population of the ν_s state δ N_s = 0; 0.5; 0.7; 0.9, both for resonant and non-resonant oscillations have been calculated. Next we have studied the processes effecting the formation of the baryon content of the Universe. We have investigated a baryogenesis model based on Affleck and Dine baryogenesis scenario, Scalar Field Condensate (SFC) baryogenesis model. We have provided precise numerical analysis of the SFC baryogenesis model numerically accounting for the particle creation processes by the time varying scalar field. We have numerically obtained the dependence of the field and baryon charge evolution and their final values on the model's parameters, namely: the gauge coupling constant α, the Hubble constant during inflation H_I, the mass of the field m and the self coupling constants λ_i. We have found the range of the model parameters for which a baryon asymmetry value close to the observed one can be generated.
Excited Baryons in Holographic QCD
de Teramond, Guy F.; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2011-11-08
The light-front holographic QCD approach is used to describe baryon spectroscopy and the systematics of nucleon transition form factors. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. The transition from the hard-scattering perturbative domain to the non-perturbative region is sensitive to the detailed dynamics of confined quarks and gluons. Computations of such phenomena from first principles in QCD are clearly very challenging. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time; however, dynamical observables in Minkowski space-time, such as the time-like hadronic form factors are not amenable to Euclidean numerical lattice computations.
Constraining anisotropic baryon oscillations
NASA Astrophysics Data System (ADS)
Padmanabhan, Nikhil; White, Martin
2008-06-01
We present an analysis of anisotropic baryon acoustic oscillations and elucidate how a mis-estimation of the cosmology, which leads to incorrect values of the angular diameter distance, dA, and Hubble parameter, H, manifest themselves in changes to the monopole and quadrupole power spectrum of biased tracers of the density field. Previous work has focused on the monopole power spectrum, and shown that the isotropic dilation combination dA2H-1 is robustly constrained by an overall shift in the scale of the baryon feature. We extend this by demonstrating that the quadrupole power spectrum is sensitive to an anisotropic warping mode dAH, allowing one to break the degeneracy between dA and H. We describe a method for measuring this warping, explicitly marginalizing over the form of redshift-space distortions. We verify this method on N-body simulations and estimate that dAH can be measured with a fractional accuracy of ˜(3/V)% where the survey volume is estimated in h-3Gpc3.
Light-Quark Baryon Spectroscopy within ANL-Osaka Dynamical Coupled-Channels Approach
NASA Astrophysics Data System (ADS)
Kamano, Hiroyuki
2016-10-01
Recent results on the study of light-quark baryons with the ANL-Osaka dynamical coupled-channels (DCC) approach are presented, which contain the N^* and Δ ^* spectroscopy via the analysis of π N and γ N reactions and the Λ ^* and Σ ^* spectroscopy via the analysis of K^- p reactions. A recent application of our DCC approach to neutrino-nucleon reactions in the resonance region is also presented.
Baryons in multicolor chromodynamics
NASA Astrophysics Data System (ADS)
Ioffe, B. L.; Shifman, M. A.
1982-07-01
Spin- {1}/{2} baryons built from massless quarks are considered in the limit of a large number of colors, N → ∞. We obtain a formula expressing the baryon mass mB in terms of the quark condensate <0∣ overlineqq∣0> . As was anticipated, mB ˜ N. We discuss also the behavior of the coupling constants gπNN and gA and some properties of baryonic and mesonic spectra.
NASA Astrophysics Data System (ADS)
Shekoyan, V.; Dehipawala, S.; Liu, Ernest; Tulsee, Vivek; Armendariz, R.; Tremberger, G.; Holden, T.; Marchese, P.; Cheung, T.
2012-10-01
Digital solar image data is available to users with access to standard, mass-market software. Many scientific projects utilize the Flexible Image Transport System (FITS) format, which requires specialized software typically used in astrophysical research. Data in the FITS format includes photometric and spatial calibration information, which may not be useful to researchers working with self-calibrated, comparative approaches. This project examines the advantages of using mass-market software with readily downloadable image data from the Solar Dynamics Observatory for comparative analysis over with the use of specialized software capable of reading data in the FITS format. Comparative analyses of brightness statistics that describe the solar disk in the study of magnetic energy using algorithms included in mass-market software have been shown to give results similar to analyses using FITS data. The entanglement of magnetic energy associated with solar eruptions, as well as the development of such eruptions, has been characterized successfully using mass-market software. The proposed algorithm would help to establish a publicly accessible, computing network that could assist in exploratory studies of all FITS data. The advances in computer, cell phone and tablet technology could incorporate such an approach readily for the enhancement of high school and first-year college space weather education on a global scale. Application to ground based data such as that contained in the Baryon Oscillation Spectroscopic Survey is discussed.
Sterile neutrinos as the origin of dark and baryonic matter.
Canetti, Laurent; Drewes, Marco; Shaposhnikov, Mikhail
2013-02-01
We demonstrate for the first time that three sterile neutrinos alone can simultaneously explain neutrino oscillations, the observed dark matter, and the baryon asymmetry of the Universe without new physics above the Fermi scale. The key new point of our analysis is leptogenesis after sphaleron freeze-out, which leads to resonant dark matter production, evading thus the constraints on sterile neutrino dark matter from structure formation and x-ray searches. We identify the range of sterile neutrino properties that is consistent with all known constraints. We find a domain of parameters where the new particles can be found with present day experimental techniques, using upgrades to existing experimental facilities.
Extraction of Nucleon Resonances From Global Analysis of Meson Production Reactions at EBAC
Hiroyuki Kamano
2011-10-01
We report the current status of exploring the dynamical aspect of the excited nucleon states through the comprehensive coupled-channels analysis of meson production reactions at the Excited Baryon Analysis Center of Jefferson Lab.
Tuan, S.F. )
1992-11-01
The recent tantalizing experimental support for an {eta}-baryon {ital J}{sup {ital P}}=1/2{sup {minus}} unmixed octet challenges conventional model wisdom. The establishment of the {Xi}(1868) member of the {eta} octet will give strong affirmation that the negative-parity baryon mass spectrum could be mixing-free.
Dudek, Jozef J.; Edwards, Robert G.
2012-03-21
In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbers $N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$ and $\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $J^{P}=1^{+}$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.
Explosives detection with quadrupole resonance analysis
NASA Astrophysics Data System (ADS)
Rayner, Timothy J.; Thorson, Benjamin D.; Beevor, Simon; West, Rebecca; Krauss, Ronald A.
1997-02-01
The increase in international terrorist activity over the past decade has necessitated the exploration of new technologies for the detection of plastic explosives. Quadrupole resonance analysis (QRA) has proven effective as a technique for detecting the presence of plastic, sheet, and military explosive compounds in small quantities, and can also be used to identify narcotics such as heroin and cocaine base. QRA is similar to the widely used magnetic resonance (MR) and magnetic resonance imaging (MRI) techniques, but has the considerable advantage that the item being inspected does not need to be immersed in a steady, homogeneous magnetic field. The target compounds are conclusively identified by their unique quadrupole resonance frequencies. Quantum magnetics has develop and introduced a product line of explosives and narcotics detection devices based upon QRA technology. The work presented here concerns a multi-compound QRA detection system designed to screen checked baggage, cargo, and sacks of mail at airports and other high-security facilities. The design philosophy and performance are discussed and supported by test results from field trials conducted in the United States and the United Kingdom. This detection system represents the current state of QRA technology for field use in both commercial and government sectors.
Quantitative signal analysis in pulsed resonant photoacoustics
NASA Astrophysics Data System (ADS)
Schäfer, Stefan; Miklós, András; Hess, Peter
1997-05-01
The pulsed excitation of acoustic resonances was studied by means of a high- Q photoacoustic resonator with different types of microphone. The signal strength of the first radial mode was calculated by the basic theory as well as by a modeling program, which takes into account the acoustic impedances of the resonator, the acoustic filter system, and the influence of the microphone coupling on the photoacoustic cavity. When the calculated signal strength is used, the high- Q system can be calibrated for trace-gas analysis without a certified gas mixture. The theoretical results were compared with measurements and show good agreement for different microphone configurations. From the measured pressure signal (in pascals per joule), the absorption coefficient of ethylene was calculated; it agreed within 10 with literature values. In addition, a Helmholtz configuration with a highly sensitive 1-in. (2.54-cm) microphone was realized. Although the Q factor was reduced, the sensitivity could be increased by the Helmholtz resonator in the case of pulsed experiments. A maximum sensitivity of the coupled system of 341 mV Pa was achieved.
Dynamic analysis of optical microfiber coil resonators.
Kowsari, A; Ahmadi, V; Darvish, G; Moravvej-Farshi, M K
2016-08-20
We present transient time analysis of a two-turn optical microfiber coil resonator (MCR). Our dynamic model is based on two sets of equations, coupled mode and nonlinear Schrödinger equations. The pulse response of this device is obtained by numerically solving the modified sets of equations in a dynamic regime. The results show that if the input pulse of the MCR is set at an off-resonance wavelength, this resonator operates as an all-pass filter with neither loss nor time delay. But in the case of resonance, the output pulse may have loss and a relatively long time delay, according to the continuous rotation of light between the first and the second turns of the MCR. Tunable time delays up to t_{d}=320 ps are obtained by choosing different values of the coupling coefficients. Furthermore, the material and structural dispersions of the MCR are studied, and it is shown that strong dispersive effects can occur even in this millimeter dimensions photonic device. Pulse broadening and distortion effects of the MCR are studied in the dynamic regime. The results show that, for high bit rate applications, the dispersion effects of the MCR should be carefully considered. Finally, fundamental soliton solution and its conditions in the MCR are investigated. PMID:27556989
Baryon spectroscopy - Recent results from the CBELSA/TAPS experiment
NASA Astrophysics Data System (ADS)
Hartmann, Jan
2016-05-01
One of the remaining challenges within the standard model is to gain a good understanding of QCD in the non-perturbative regime. One key step toward this aim is baryon spectroscopy, investigating the spectrum and the properties of baryon resonances. To get access to resonances with small πN partial width, photoproduction experiments provide essential information. In order to extract the contributing resonances, partial wave analyses need to be performed. Here, a complete experiment is required to unambiguously determine the contributing amplitudes. This involves the measurement of carefully chosen single and double polarization observables. The CBELSA/TAPS experiment with a longitudinally or transversely polarized target and an energy tagged, linearly or circularly polarized photon beam allows the measurement of a large set of polarization observables. Due to its good energy resolution, high detection effciency for photons, and the nearly complete solid angle coverage, it is ideally suited for the measurement of photoproduction of neutral mesons decaying into photons. Recent results for various double polarization observables in π0 and η photoproduction and their impact on the partial wave analysis are discussed.
Neutron-Resonance Capture Analysis of Materials
Postma, H.; Bode, P.; Blaauw, M.; Corvi, F.
1999-11-14
Epithermal neutron activation analysis is a well-established approach to improve the sensitivity for certain elements by suppressing the activation of interfering elements. If epithermal neutrons of a given energy could be selected, the signal-to-noise ratio might be further improved by taking advantage of resonance capture. This reaction occurs mainly by intermediate and heavy nuclei. Moreover, most of these reactions take place with epithermal or fast neutrons. Intense epithermal neutrons are available as ''white'' beams at accelerator-driven neutron sources. Neutron resonance capture offers interesting analytical opportunities. Low-Z elements have little capture of epithermal neutrons and are thus virtually absent in the time-of-flight spectrum. Relatively large objects can be placed in the neutron beam and analyzed nondestructively. The induced radioactivity is relatively low. If an element has several stable isotopes, each of these isotopes can be recognized by its specific resonances. This would allow for multitracer studies with several isotopically labeled compounds. Different from mass spectrometry, the sample remains intact and can be used for further studies after analysis. Applications may be in the field of archaeology, metallurgy, and certification of reference materials.
Page, P. R.
2002-01-01
The authors review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modeled by both the bag and flux tube models. The low lying hybrid baryon is N 1/2{sup +} with a mass of 1.5 - 1.8 GeV. Hybrid baryons can be produced in the glue rich processes of diffractive {gamma}N and {pi}N production, {Psi} decays and p{bar p} annihilation. We review the current status of research on three quarks with a gluonic excitation, called a hybrid baryon. The excitation is not an orbital or radial excitation between the quarks. Hybrid baryons have also been reviewed elsewhere. The Mercedes-Benz logl in Figure 1 indicates two possible views of the confining interaction of three quarks, an essential issue in the study of hybrid baryons. In the logo the three points where the Y shape meets the boundary circle should be identified with the three quarks. There are two possibilities fo rthe interaction of the quarks: (1) a pairwise interaction of the quarks represented by the circle, or (2) a Y shaped interaction between the quarks, represented by the Y-shape in the logo.
Baryonic matter perturbations in decaying vacuum cosmology
Marttens, R.F. vom; Zimdahl, W.; Hipólito-Ricaldi, W.S. E-mail: wiliam.ricaldi@ufes.br
2014-08-01
We consider the perturbation dynamics for the cosmic baryon fluid and determine the corresponding power spectrum for a Λ(t)CDM model in which a cosmological term decays into dark matter linearly with the Hubble rate. The model is tested by a joint analysis of data from supernovae of type Ia (SNIa) (Constitution and Union 2.1), baryonic acoustic oscillations (BAO), the position of the first peak of the anisotropy spectrum of the cosmic microwave background (CMB) and large-scale-structure (LSS) data (SDSS DR7). While the homogeneous and isotropic background dynamics is only marginally influenced by the baryons, there are modifications on the perturbative level if a separately conserved baryon fluid is included. Considering the present baryon fraction as a free parameter, we reproduce the observed abundance of the order of 5% independently of the dark-matter abundance which is of the order of 32% for this model. Generally, the concordance between background and perturbation dynamics is improved if baryons are explicitly taken into account.
Strangeness in the baryon ground states
NASA Astrophysics Data System (ADS)
Semke, A.; Lutz, M. F. M.
2012-10-01
We compute the strangeness content of the baryon octet and decuplet states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-Nc sum rule estimates of the counter terms relevant for the baryon masses at N3LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. From a global fit we determine the axial coupling constants F ≃ 0.45 and D ≃ 0.80 in agreement with their values extracted from semi-leptonic decays of the baryons. Moreover, various flavor symmetric limits of baron octet and decuplet masses as obtained by the QCDSF-UKQCD group are recovered. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.
Analysis of bond quality by resonant ultrasound
Visscher, W.M.; Migliori, A.; Dixon, R.D.
1990-01-01
Analysis of the response of small samples of materials to mechanical excitations at ultrasonic frequencies (resonant ultrasound spectroscopy, or RUS) can yield much information about the sample, including its geometry, density (densities, if composite), and elastic constants. In this paper, we sketch the experimental technique, the method by which the data can be analyzed, and extend the analysis to samples which comprise two different materials bonded together. In the latter case the technique can give information about the composition of the sample and bond integrity (i.e. whether or not displacements and stresses are continuous across the interface). Comparison of calculated with measured frequencies for a bonded sample will be made. 7 refs., 5 figs.
Resonance parameter measurements and analysis of gadolinium
Leinweber, G.; Barry, D. P.; Trbovich, M. J.; Burke, J. A.; Drindak, N. J.; Knox, H. D.; Ballad, R. V.; Block, R. C.; Danon, Y.; Severnyak, L. I.
2006-07-01
The purpose of the present work is to measure the neutron cross sections of gadolinium accurately. Gd has the highest thermal absorption cross section of any natural element. Therefore it is an important element for thermal reactor applications Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic Inst. (RPI) LINAC facility using metallic and liquid Gd samples. The liquid samples were isotopically-enriched in either {sup 155}Gd or {sup 157}Gd. The capture measurements were made at the 25-m flight station with a sodium iodide detector, and the transmission measurements were performed at 15- and 25-m flight stations with {sup 6}Li glass scintillation detectors. The multilevel R-matrix Bayesian code SAMMY was used to extract resonance parameters. The results of the thermal region analysis are significant. Resonance parameters for the low energy doublet, at 0.025 and 0.032 eV, are presented. The thermal (2200 m/s) capture cross section of {sup 157}Gd has been measured to be 11% smaller than that calculated from ENDF/B-VI updated through release 8. Thermal capture cross sections and capture resonance integrals for each isotope as well as elemental gadolinium are presented. In the epithermal region, natural metal samples were measured in capture and transmission. Neutron interaction data up to 300 eV have been analyzed. Substantial improvement to the understanding of gadolinium cross sections is presented, particularly above 180 eV where the ENDF resolved region for {sup 155}Gd ends. (authors)
Decays of excited baryons in the large Nc expansion of QCD
Jose Goity; Norberto Scoccola
2006-05-06
We present the analysis of the decay widths of excited baryons in the framework of the 1/Nc expansion of QCD. These studies are performed up to order 1/Nc and include both positive and negative parity excited baryons.
Dudek, Jozef J.; Edwards, Robert G.
2012-03-21
In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less
NASA Astrophysics Data System (ADS)
Palni, Prabhakar
To discover and probe the properties of new particles, we need to collide highly energetic particles. The Tevatron at Fermilab has collided protons and anti-protons at very high energies. These collisions produce short lived and stable particles, some known and some previously unknown. The CDF detector is used to study the products of such collisions and discover new elementary particles. To study the interaction between high energy charged particles and the detector materials often requires development of new instruments. Thus this dissertation involves a measurement at a contemporary experiment and development of technologies for related future experiments that will build on the contemporary one. Using data from proton-antiproton collisions at sqrt(s) = 1.96TeV recorded by the CDF II detector at the Fermilab Tevatron, evidence for the excited resonance state Lambda_b. *0 is presented in its Lambda_b. 0 pi. + pi. - decay,followed by the Lambda_b. 0 -> Lambda_c. + pi. - and Lambda_c. + -> p K. - pi. +decays. The analysis is based on a data sample corresponding to an integrated luminosity of 9.6 fb. -1 collected by an online event selection process basedon charged particle tracks displaced from the proton-antiproton interaction point. The significance of the observed signal is 3.5sigma The mass of the observed state is found to be 5919.22 +/- 0.76 MeV/c 2 in agreement with similar findings in proton-proton collision experiments. To predict the radiation damage to the components of new particle tracking detectors, prototype devices are irradiated at test beam facilities that reproduce the radiation conditions expected. The profile of the test beam and the fluence applied per unit time must be known. We have developed a technique to monitor in real time the beam profile and fluence using an array of pin semiconductor diodes whose forward voltage is linear with fluence over the fluence regime relevant to, for example, silicon tracking detectors in the LHC upgrade era
Consistent analysis of the [70,1{sup -}] baryon properties in the 1/N{sub c} expansion
Gonzalez de Urreta, E. J.; Scoccola, Norberto N.
2011-05-23
We report on the application of the 1/N{sub c} expansion of QCD to the description of the properties of non-strange excited baryons belonging to the [70,1{sup -}]-plet. In particular, we present the results of an improved determination of the corresponding mixing angles obtained by performing a simultaneous fit of masses, strong decay widths and e.m. helicity amplitudes. We find {theta}{sub 1} = 0.40(8) and {theta}{sub 3} = 2.81(10). These values are compatible with those determined in previous non-global analyses but have smaller uncertainties.
Charmed Bottom Baryon Spectroscopy
Brown, Zachary S; Detmold, William; Meinel, Stefan; Orginos, Kostas
2014-11-01
The spectrum of doubly and triply heavy baryons remains experimentally unexplored to a large extent. Although the detection of such heavy particle states may lie beyond the reach of exper- iments for some time, it is interesting compute this spectrum from QCD and compare results between lattice calculations and continuum theoretical models. Several lattice calculations ex- ist for both doubly and triply charmed as well as doubly and triply bottom baryons. Here, we present preliminary results from the first lattice calculation of doubly and triply heavy baryons including both charm and bottom quarks. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. We present preliminary results for the ground state spectrum.
Study of nucleon resonances at EBAC@Jlab
Hiroyuki Kamano
2010-05-01
We present the dynamical origin of the P11 nucleon resonances resulting from a dynamical coupled-channels (DCC) analysis of meson production reactions off a nucleon target, which is conducted in Excited Baryon Analysis Center (EBAC) at Jefferson Lab. Two resonance poles are found in the energy region where the Roper resonance P11(1440) is supposed to be observed. Furthermore, the two resonance poles and the next higher resonance pole corresponding to P11(1710) are found to originate from a single bare state.
Modeling and analysis of a resonant nanosystem
NASA Astrophysics Data System (ADS)
Calvert, Scott L.
The majority of investigations into nanoelectromechanical resonators focus on a single area of the resonator's function. This focus varies from the development of a model for a beam's vibration, to the modeling of electrostatic forces, to a qualitative explanation of experimentally-obtained currents. Despite these efforts, there remains a gap between these works, and the level of sophistication needed to truly design nanoresonant systems for efficient commercial use. Towards this end, a comprehensive system model for both a nanobeam resonator and its related experimental setup is proposed. Furthermore, a simulation arrangement is suggested as a method for facilitating the study of the system-level behavior of these devices in a variety of cases that could not be easily obtained experimentally or analytically. The dynamics driving the nanoresonator's motion, as well as the electrical interactions influencing the forcing and output of the system, are modeled, experimentally validated, and studied. The model seeks to develop both a simple circuit representation of the nanoresonator, and to create a mathematical system that can be used to predict and interpret the observed behavior. Due to the assumptions used to simplify the model to a point of reasonable comprehension, the model is most accurate for small beam deflections near the first eigenmode of the beam. The process and results of an experimental investigation are documented, and compared with a circuit simulation modeling the full test system. The comparison qualitatively proves the functionality of the model, while a numerical analysis serves to validate the functionality and setup of the circuit simulation. The use of the simulation enables a much broader investigation of both the electrical behavior and the physical device's dynamics. It is used to complement an assessment of the tuning behavior of the system's linear natural frequency by demonstrating the tuning behavior of the full nonlinear response. The
Analysis of an integrated optic micro racetrack resonator based biosensor
NASA Astrophysics Data System (ADS)
Malathi, S.; Hegde, Gopalkrishna; Srinivas, T.; Roy, Ugra M.
2014-06-01
Silicon-On- Insulator (SOI) technology has huge potential in fabricating compact devices for various applications such as integrated optic waveguides, directional couplers, resonators etc. In this work, we present the analysis of a biosensor based on an integrated optic racetrack resonator, interrogated by a bus waveguide. The biomaterial is applied as a cladding layer. Here we analyze the coupling between the resonator and the bus waveguide, and its dependence on the bio layer. In traditional analysis, the effective refractive index and resonator total path length are the factors influencing the resonant wavelength. Our analysis shows that all parametric values decrease with increase in waveguide width and spacing. The inclusion of waveguide mode overlap and perturbation in coupled mode equation results in enhanced resonator sensitivity of an order of magnitude
Nathan Isgur
1997-03-01
The author presents an idiosyncratic view of baryons which calls for a marriage between quark-based and hadronic models of QCD. He advocates a treatment based on valence quark plus glue dominance of hadron structure, with the sea of q pairs (in the form of virtual hadron pairs) as important corrections.
Problems in baryon spectroscopy
Capstick, S.
1994-04-01
Current issues and problems in the physics of ground- and excited-state baryons are considered, and are classified into those which should be resolved by CEBAF in its present form, and those which may require CEBAF to undergo an energy upgrade to 8 GeV or more. Recent theoretical developments designed to address these problems are outlined.
NASA Astrophysics Data System (ADS)
Rajeev, Sarada Gangadharan
In this dissertation we study the soliton models of baryons originally proposed by Skyrme. Baryons are interpreted in the naive quark model as bound states of three quarks. Here, we interpret them as solitonic bound states of mesons. This is natural in Quantum Chromodynamics, the theory of strong interactions. The low energy properties of chromodynamics are well accounted for by the chiral model. The Wess-Zumino anomaly plays a crucial role in this model. A derivation within the canonical formulation of the Wess-Zumino is given. It is shown that the anomaly leads to a modification of the current algebra. An operator that creates solitonic states out of the vacuum is constructed. It is shown that this operator is fermionic if the number of colors is odd. The Wess -Zumino anomaly is shown to be responsible for this fact. The anomaly is studied in detail in the simpler context of a two dimensional theory. The operator creating solitons is constructed and its equations of motion are found. This model has an infinite number of conserved charges satisfying a Kac-Moody algebra. A derivation of the Wess-Zumino anomaly starting from Quantum Chromodynamics is given. Further the Skyrme constant is calculated, within certain approximations. This enables us to calculate the mass of the soliton and it agrees with the baryon mass to 20%. The constants D and F that couple the baryons to mesons are also computed. They also agree to about 20%. Thus the identification of baryons as solitons of the chiral model is established.
Ray-transfer-matrix approach to unstable resonator analysis.
Ewanizky, T F
1979-03-01
A parametric analysis of unstable resonators is described. The resonator is mathematically represented by an appropriate ray-transfer-matrix, and changes in Gaussian beam parameters are calculated after propagation through the optical structure. The results highlight an inherent selective property that presents an effective loss mechanism for divergent radiation. This selective property is shown to be dependent on the resonator parameters of optical magnification and confocal length error. The analysis concludes that the initially backward-propagating radiation during the prelasing period is important in establishing low threshold and good beam quality in confocal unstable-resonator lasers. PMID:20208805
Characterization of nuclear material by Neutron Resonance Transmission Analysis
NASA Astrophysics Data System (ADS)
Paradela, C.; Alaerts, G.; Becker, B.; Heyse, J.; Kopecky, S.; Moens, A.; Mondelaers, W.; Schillebeeckx, P.; Wynants, R.; Harada, H.; Kitatani, F.; Koizumi, M.; Tsuchiya, H.
2016-11-01
The use of Neutron Resonance Transmission Analysis for the characterization of nuclear materials is discussed. The method, which relies on resonance structures in neutron-induced reaction cross sections, can be applied as a non-destructive method to characterise complex nuclear materials such as melted fuel resulting from a severe nuclear accident. Results of a demonstration experiment at the GELINA facility reveal that accurate data can be obtained at a compact facility even in the case of strong overlapping resonances.
Effective Degrees of Freedom in Baryon Spectroscopy
NASA Astrophysics Data System (ADS)
Santopinto, E.; Ferretti, J.
2016-10-01
Three quark and quark-diquark models are characterized by several missing resonances, even if in the latter case the state space is a reduced one. Moreover, even quark-diquark models show some differences in their predictions for missing states. After several years of discussion, we still do not know whether baryons can be completely described in terms of three quark models or if diquark correlations have to be taken into account; another possibility, suggested in Santopinto (Phys Rev C 72:022201, 2005), Ferretti et al. (Phys Rev C 83:065204, 2011) and Galatà and Santopinto (Phys Rev C 86:045202, 2012), is that the previous pictures (three-quark and quark-diquark) represent the dominant descriptions of baryons at different energy scales. New experiments may be planned at Jlab (JLab12), Bes, Belle and LHCb in order to answer this fundamental open question.
Scattering-theory analysis of waveguide-resonator coupling
Xu; Li; Lee; Yariv
2000-11-01
Using a formalism similar to the quantum scattering theory, we analyze the problem of coupling between optical waveguides and high Q resonators. We give the optical transmission and reflection coefficients as functions of the waveguide-resonator coupling, cavity loss (gain), and cavity resonant frequency. Based on these results, the recently proposed concept of "critical coupling" is discussed. Using a matrix formalism based on the scattering analysis, we find the dispersion relation of indirectly coupled resonator optical waveguides. The coupling between waveguides and multiple cavities is investigated and the reflection and transmission coefficients are derived.
Analysis of resonance-driving imperfections in the AGS Booster
Gardner, C.; Shoji, Y.; Danby, G.; Glenn, J.W.; Jackson, G.J.; Soukas, A.; van Asselt, W.; Whalen, C.
1994-08-01
At the design intensity of 1.5 {times} 10{sup 13} ppp, the space charge tune shift in the AGS Booster at injection has been estimated to be about 0.35. The beam tunes are therefore spread over many lower order resonance lines and the associated stopbands must be corrected in order to minimize the amplitude growth due to resonance excitation. This requires proper compensation of the resonance-driving harmonics which result from random magnetic field errors. The observation and correction of second and third order resonance stopbands in the AGS Booster is reviewed, and an analysis of magnetic field imperfections based on the required corrections is given.
Charmed Bottom Baryon Spectroscopy
Zachary Brown, William Detmold, Stefan Meinel, Konstantinos Orginos
2012-09-01
The arena of doubly and triply heavy baryons remains experimentally unexplored to a large extent. This has led to a great deal of theoretical effort being put forth in the calculation of mass spectra in this sector. Although the detection of such heavy particle states may lie beyond the reach of experiments for some time, it is interesting to compare results between lattice QCD computations and continuum theoretical models. Several recent lattice QCD calculations exist for both doubly and triply charmed as well as doubly and triply bottom baryons. In this work we present preliminary results from the first lattice calculation of the mass spectrum of doubly and triply heavy baryons including both charm and bottom quarks. The wide range of quark masses in these systems require that the various flavors of quarks be treated with different lattice actions. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. The calculation of the ground state spectrum is presented and compared to recent models.
NASA Astrophysics Data System (ADS)
Sereno, M.; Lubini, M.; Jetzer, Ph.
2010-07-01
Context. Strong lensing studies can provide detailed mass maps of the inner regions even in dynamically active galaxy clusters. Aims: We illustrate the important role of a proper modelling of the intracluster medium, i.e., the main baryonic component. We demonstrate that the addition of a new contribution accounting for the gas can increase the statistical significance of the lensing model. Methods: We propose a parametric method for strong lensing analyses that exploits multiwavelength observations. The mass model accounts for cluster-sized dark matter halos, galaxies (whose stellar mass can be obtained from optical analyses), and the intracluster medium. The gas distribution is fitted to lensing data exploiting prior knowledge from X-ray observations. This gives an unbiased insight into each matter component and allows us to study the dynamical status of a cluster. The method was applied to AC 114, an irregular X-ray cluster. Results: We find positive evidence of dynamical activity, the dark matter distribution being shifted and rotated with respect to the gas. On the other hand, the dark matter follows the galaxy density in terms of both shape and orientation, illustrating the collisionless nature of dark matter. The inner region (≲250 kpc) is underluminous in optical bands, whereas the gas fraction (~20 ± 5%) slightly exceeds typical values. Evidence of lensing and X-ray suggests that the cluster develops in the plane of the sky and is not affected by the lensing over-concentration bias. Despite the dynamical activity, the matter distribution seems to agree with predictions of N-body simulations. An universal cusped profile provides a good description of either the overall or the dark matter distribution, whereas theoretical scaling relations seem to be accurately fitted.
Neutron Resonance Spectroscopy for the Analysis of Materials and Objects
Borella, A.; Lampoudis, C.; Schillebeeckx, P.; Kopecky, S.; Postma, H.; Moxon, M.
2009-12-02
The presence of resonances in neutron induced reaction cross sections is the basis of the Neutron Resonance Capture (NRCA) and Transmission (NRTA) Analysis techniques. Since resonances can be observed at neutron energies which are specific for each nuclide, they can be used as fingerprints to identify and quantify elements in materials and objects. Both NRCA and NRTA are fully non-destructive methods which determine the bulk elemental composition, do not require any sample preparation and result in a negligible residual activation. In this text we review the technique and present an analysis procedures including one based on a more methodological approach which relies on a full Resonance Shape Analysis (RSA) and accounts directly for the neutron self-shielding, multiple scattering, Doppler broadening and instrumental resolution.
Partial Decay Widths of Negative Parity Baryons in the 1/N{sub c} Expansion
Gonzalez de Urreta, Emiliano; Scoccola, Norberto; Jayalath, Chandala; Goity, Jose
2013-04-01
The partial decay widths of lowest lying negative parity baryons belonging to the 70-plet of SU(6) are analyzed in the framework of the 1/N{sub c} expansion. The channels considered are those with single pseudoscalar meson emission. The analysis is carried out to sub-leading order in 1/N{sub c} and to first order in SU(3) symmetry breaking. Conclusions about the magnitude of SU(3) breaking effects along with predictions for some unknown or poorly determined partial decay widths of known resonances are given.
Partial decay widths of negative parity baryons in the 1/N{sub c} expansion
Gonzalez de Urreta, E. J.; Scoccola, N. N.; Jayalath, C. P.; Goity, J. L.
2013-03-25
The partial decay widths of lowest lying negative parity baryons belonging to the 70-plet of SU(6) are analyzed in the framework of the 1/N{sub c} expansion. The channels considered are those with single pseudoscalar meson emission. The analysis is carried out to sub-leading order in 1/N{sub c} and to first order in SU(3) symmetry breaking. Conclusions about the magnitude of SU(3) breaking effects along with predictions for some unknown or poorly determined partial decay widths of known resonances are given.
Negative parity baryon decays in the 1/N{sub c} expansion
Jayalath, C.; Goity, J. L.; Gonzalez de Urreta, E.; Scoccola, N. N.
2011-10-01
The partial decay widths of lowest lying negative parity baryons belonging to the 70-plet of SU(6) are analyzed in the framework of the 1/N{sub c} expansion. The channels considered are those with single pseudoscalar meson emission. The analysis is carried out to sub-leading order in 1/N{sub c} and to first order in SU(3) symmetry breaking. Conclusions about the magnitude of SU(3) breaking effects along with predictions for some unknown or poorly determined partial decay widths of known resonances are obtained.
Baryons, neutrinos, feedback and weak gravitational lensing
NASA Astrophysics Data System (ADS)
Harnois-Déraps, Joachim; van Waerbeke, Ludovic; Viola, Massimo; Heymans, Catherine
2015-06-01
The effect of baryonic feedback on the dark matter mass distribution is generally considered to be a nuisance to weak gravitational lensing. Measurements of cosmological parameters are affected as feedback alters the cosmic shear signal on angular scales smaller than a few arcminutes. Recent progress on the numerical modelling of baryon physics has shown that this effect could be so large that, rather than being a nuisance, the effect can be constrained with current weak lensing surveys, hence providing an alternative astrophysical insight on one of the most challenging questions of galaxy formation. In order to perform our analysis, we construct an analytic fitting formula that describes the effect of the baryons on the mass power spectrum. This fitting formula is based on three scenarios of the OverWhelmingly Large hydrodynamical simulations. It is specifically calibrated for z < 1.5, where it models the simulations to an accuracy that is better than 2 per cent for scales k < 10 h Mpc-1 and better than 5 per cent for 10 < k < 100 h Mpc-1. Equipped with this precise tool, this paper presents the first constraint on baryonic feedback models using gravitational lensing data, from the Canada France Hawaii Telescope Lensing Survey (CFHTLenS). In this analysis, we show that the effect of neutrino mass on the mass power spectrum is degenerate with the baryonic feedback at small angular scales and cannot be ignored. Assuming a cosmology precision fixed by WMAP9, we find that a universe with massless neutrinos is rejected by the CFHTLenS lensing data with 85-98 per cent confidence, depending on the baryon feedback model. Some combinations of feedback and non-zero neutrino masses are also disfavoured by the data, although it is not yet possible to isolate a unique neutrino mass and feedback model. Our study shows that ongoing weak gravitational lensing surveys (KiDS, HSC and DES) will offer a unique opportunity to probe the physics of baryons at galactic scales, in
Baryon Properties from Continuum-QCD
Cloet, I. C.; Roberts, C. D.; Wilson, D. J.
2011-10-21
We provide an inkling of recent progress in hadron physics made using QCD's Dyson-Schwinger equations, reviewing: the notion of in-hadron condensates and a putative solution of a gross problem with the cosmological constant; a symmetry-preserving computation that simultaneously correlates the masses of meson and baryon ground- and excited-states, and contributes to a resolution of the conundrum of the Roper resonance; and a prediction for the Q{sup 2}-dependence of u-and d-quark Dirac and Pauli form factors in the proton, which exposes the critical role played by diquark correlations within the nucleon.
Plasmon resonance microsensor for droplet analysis.
Chaigneau, M; Balaa, K; Minea, T; Louarn, G
2007-08-15
Microscale fiber tip sensors based on the plasmon resonance are reported. The fabrication process derived from our previous approach for manufacturing near-field scanning optical microscopy probes has been optimized for sensing applications. A typical tip sensor is a tapered fiber 400 microm in length, coated with a nanoporous thin silver film. The miniaturized geometry of the sensor allows detection in a single droplet of liquid solution (approximately 20 microl). The tip sensor is sensitive for refractive indices between 1.33 and 1.40 with a sensitivity of at least 3 x 10(-4) refractive index unit (RIU)/nm. The Raman scattering enhancement through these microsensors demonstrates the important role played by the localized plasmon resonance. The sensors' linear response covers a large region, interesting for biosensing in aqueous environments such as biomedical applications. PMID:17700810
Baryon and chiral symmetry breaking
Gorsky, A.; Krikun, A.
2014-07-23
We briefly review the generalized Skyrmion model for the baryon recently suggested by us. It takes into account the tower of vector and axial mesons as well as the chiral symmetry breaking. The generalized Skyrmion model provides the qualitative explanation of the Ioffe’s formula for the baryon mass.
Baryon stopping probes deconfinement
NASA Astrophysics Data System (ADS)
Wolschin, Georg
2016-08-01
Stopping and baryon transport in central relativistic Pb + Pb and Au + Au collisions are reconsidered with the aim to find indications for the transition from hadronic to partonic processes. At energies reached at the CERN Super Proton Synchrotron ( √{s_{NN}} = 6.3-17.3 GeV) and at RHIC (62.4 GeV) the fragmentation-peak positions as obtained from the data depend linearly on the beam rapidity and are in agreement with earlier results from a QCD-based approach that accounts for gluon saturation. No discontinuities in the net-proton fragmentation peak positions occur in the expected transition region from partons to hadrons at 6-10GeV. In contrast, the mean rapidity loss is predicted to depend linearly on the beam rapidity only at high energies beyond the RHIC scale. The combination of both results offers a clue for the transition from hard partonic to soft hadronic processes in baryon stopping. NICA results could corroborate these findings.
nd Scattering Observables Derived from the Quark-Model Baryon-Baryon Interaction
Fujiwara, Y.; Fukukawa, K.
2010-05-12
We solve the nd scattering in the Faddeev formalism, employing the NN sector of the quark-model baryon-baryon interaction fss2. The energy-dependence of the NN interaction, inherent to the (3q)-(3q) resonating-group formulation, is eliminated by the standard off-shell transformation utilizing the 1/sq root(N) factor, where N is the normalization kernel for the (3q)-(3q) system. This procedure yields an extra nonlocality, whose effect is very important to reproduce all the scattering observables below E{sub n}<=65 MeV. The different off-shell properties from the standard meson-exchange potentials, related to the non-locality of the quark-exchange kernel, yields appreciable effects to the differential cross sections and polarization observables of the nd elastic scattering, which are usually attributed to the specific properties of three-body forces.
Baryonic condensates on the conifold
NASA Astrophysics Data System (ADS)
Benna, Marcus K.; Dymarsky, Anatoly; Klebanov, Igor R.
2007-08-01
We provide new evidence for the gauge/string duality between the baryonic branch of the cascading SU(k(M+1)) × SU(kM) gauge theory and a family of type IIB flux backgrounds based on warped products of the deformed conifold and Bbb R3,1. We show that a Euclidean D5-brane wrapping all six deformed conifold directions can be used to measure the baryon expectation values, and present arguments based on κ-symmetry and the equations of motion that identify the gauge bundles required to ensure worldvolume supersymmetry of this object. Furthermore, we investigate its coupling to the pseudoscalar and scalar modes associated with the phase and magnitude, respectively, of the baryon expectation value. We find that these massless modes perturb the Dirac-Born-Infeld and Chern-Simons terms of the D5-brane action in a way consistent with our identification of the baryonic condensates. We match the scaling dimension of the baryon operators computed from the D5-brane action with that found in the cascading gauge theory. We also derive and numerically evaluate an expression that describes the variation of the baryon expectation values along the supergravity dual of the baryonic branch.
Measurement of b-Baryons with the CDF II detector
Heuser, Joachim; /Karlsruhe U., EKP
2007-10-01
We report the observation of new bottom baryon states. The most recent result is the observation of the baryon {Xi}{sub b}{sup -} through the decay {Xi}{sub b}{sup -} {yields} J/{psi}{Xi}{sup -}. The significance of the signal corresponds to 7.7{sigma} and the {Xi}{sub b}{sup -} mass is measured to be 5792.9{+-}2.5(stat.){+-}1.7(syst.) MeV/c{sup 2}. In addition we observe four resonances in the {Lambda}{sub b}{sup 0}{pi}{sup {+-}} spectra, consistent with the bottom baryons {Sigma}{sub b}{sup (*){+-}}. All observations are in agreement with theoretical expectations.
How sensitive are di-leptons from {rho} mesons to the high baryon density region?
Vogel, S.; Schmidt, K.; Santini, E.; Sturm, C.; Bleicher, M.; Petersen, H.; Aichelin, J.
2008-10-15
We show that the measurement of dileptons might provide only a restricted view into the most dense stages of heavy-ion reactions. Thus, possible studies of meson and baryon properties at high baryon densities, as, e.g., done at the GSI High Acceptance DiElectron Spectrometer (HADES) and envisioned for the Facility for Antiproton and Ion Research (FAIR) compressed baryonic matter experiments, might observe weaker effects than currently expected in certain approaches. We argue that the strong absorption of resonances in the high-baryon-density region of the heavy-ion collision masks information from the early hot and dense phase due to a strong increase of the total decay width because of collisional broadening. To obtain additional information, we also compare the currently used approaches to extract dileptons from transport simulations, i.e., shining, only vector mesons from final baryon resonance decays and instant emission of dileptons and find a strong sensitivity on the method employed in particular at FAIR and the CERN Super Proton Synchrotron energies. It is shown explicitly that a restriction to {rho} meson (and therefore dilepton) production only in final-state baryon resonance decays provide a strong bias toward rather low baryon densities. The results presented are obtained from ultrarelativistic quantum molecular dynamics v2.3 calculations using the standard setup.
Cascade ({xi}) Physics: a New Approach to Baryon Spectroscopy
Nefkens, B. M. K.
2006-11-17
Cascade hyperons have two special characteristics, which are particularly valuable as experimental and theoretical tools: cascades have strangeness minus two and their widths are quite narrow compared to the N* and {delta}+ resonances. The narrow width allows the detection by the missing mass or invariant mass techniques. The makeup of the cascade states is two ''massive'' strange and one light quark, this makes them much more amendable to Lattice Gauge calculations. Using the well established Flavor Symmetry of QCD we can use a comparison of the Cascades with the N* and {delta}* resonances to make a conclusive search for the 'Unseen Resonances' of the quark model, for Hybrid Baryons, Meson-Baryon Bound States and other Exotica. We can investigate the flavor dependence of confinement: is the string tension between two strange quarks the same as between two down quarks?.
Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments
Trbovich, M J; Barry, D P; Slovacek, R E; Danon, Y; Block, R C; Francis, N C; Lubert, M; Burke, J A; Drindak, N J; Lienweber, G; Ballad, R
2007-02-06
The focus of this work is to determine the resonance parameters for stable hafnium isotopes in the 0.005 - 200 eV region, with special emphasis on the overlapping {sup 176}Hf and {sup 178}Hf resonances near 8 eV. Accurate hafnium cross sections and resonance parameters are needed in order to quantify the effects of hafnium found in zirconium, a metal commonly used in reactors. The accuracy of the cross sections and the corresponding resonance parameters used in current nuclear analysis tools are rapidly becoming the limiting factor in reducing the overall uncertainty on reactor physics calculations. Experiments measuring neutron capture and transmission are routinely performed at the Rensselaer Polytechnic Institute (RPI) LINAC using the time-of flight technique. {sup 6}Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m, respectively. Capture experiments were performed using a sixteen section NaI multiplicity detector at a flight path length of 25 m. These experiments utilized several thicknesses of metallic and isotope-enriched liquid Hf samples. The liquid Hf samples were designed to provide information on the {sup 176}Hf and {sup 178}Hf contributions to the 8 eV doublet without saturation. Data analyses were performed using the R-matrix Bayesian code SAMMY. A combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005 - 200 eV. Additionally, resonance integrals were calculated, along with errors for each hafnium isotope, using the NJOY and INTER codes. The isotopic resonance integrals calculated were significantly different than previous values. The {sup 176}Hf resonance integral, based on this work, is approximately 73% higher than the ENDF/B-VI value. This is due primarily to the changes to resonance parameters in the 8 eV resonance, the neutron width presented in this work is more than twice that of the previous value. The calculated elemental
Decays of J/psi (3100) to baryon final states
Eaton, M.W.
1982-05-01
We present results for the decays of psi(3100) into baryon and hyperon final states. The sample studied here consists of 1.3 million produced psi decays. The decays into nonstrange baryons agree well with currently established results, but with better statistics. In addition, significant resonance formation in multibody final states is observed. The decay psi ..-->.. anti pp..gamma.., the first direct photon decay of the psi involving baryons in the final state, is presented and the theoretical implications of the decays are briefly explored. Several new decays of the psi involving strange baryons are explored, including the first observations of three body final states involving hyperons. The I-spin symmetry of the strong decay psi ..-->.. baryons has clearly been observed. The reduced matrix elements for psi ..-->.. B anti B are presented for final states of different SU(3) content. The B/sub 8/ anti B/sub 8/ results are in excellent agreement with the psi being an SU(3) singlet as are the results for psi ..-->.. B/sub 10/ anti B/sub 10/. We present the first evidence for the SU(3) violating decays of the type psi ..-->.. B/sub 8/ anti B/sub 10/ + c.c.. Angular distributions for psi ..-->.. B/sub 8/ anti B/sub 8/ are presented and compared with theoretical predictions. Statistics are limited, but the data tends to prefer other than a 1 + Cos/sup 2/theta distribution.
Chemometric Analysis of Nuclear Magnetic Resonance Spectroscopy Data
ALAM,TODD M.; ALAM,M. KATHLEEN
2000-07-20
Chemometric analysis of nuclear magnetic resonance (NMR) spectroscopy has increased dramatically in recent years. A variety of different chemometric techniques have been applied to a wide range of problems in food, agricultural, medical, process and industrial systems. This article gives a brief review of chemometric analysis of NMR spectral data, including a summary of the types of mixtures and experiments analyzed with chemometric techniques. Common experimental problems encountered during the chemometric analysis of NMR data are also discussed.
Resonant-cavity apparatus for cytometry or particle analysis
Gourley, P.L.
1998-08-11
A resonant-cavity apparatus for cytometry or particle analysis is described. The apparatus comprises a resonant optical cavity having an analysis region within the cavity for containing one or more biological cells or dielectric particles to be analyzed. In the presence of a cell or particle, a light beam in the form of spontaneous emission or lasing is generated within the resonant optical cavity and is encoded with information about the cell or particle. An analysis means including a spectrometer and/or a pulse-height analyzer is provided within the apparatus for recovery of the information from the light beam to determine a size, shape, identification or other characteristics about the cells or particles being analyzed. The recovered information can be grouped in a multi-dimensional coordinate space for identification of particular types of cells or particles. In some embodiments of the apparatus, the resonant optical cavity can be formed, at least in part, from a vertical-cavity surface-emitting laser. The apparatus and method are particularly suited to the analysis of biological cells, including blood cells, and can further include processing means for manipulating, sorting, or eradicating cells after analysis. 35 figs.
Resonant-cavity apparatus for cytometry or particle analysis
Gourley, Paul L.
1998-01-01
A resonant-cavity apparatus for cytometry or particle analysis. The apparatus comprises a resonant optical cavity having an analysis region within the cavity for containing one or more biological cells or dielectric particles to be analyzed. In the presence of a cell or particle, a light beam in the form of spontaneous emission or lasing is generated within the resonant optical cavity and is encoded with information about the cell or particle. An analysis means including a spectrometer and/or a pulse-height analyzer is provided within the apparatus for recovery of the information from the light beam to determine a size, shape, identification or other characteristics about the cells or particles being analyzed. The recovered information can be grouped in a multi-dimensional coordinate space for identification of particular types of cells or particles. In some embodiments of the apparatus, the resonant optical cavity can be formed, at least in part, from a vertical-cavity surface-emitting laser. The apparatus and method are particularly suited to the analysis of biological cells, including blood cells, and can further include processing means for manipulating, sorting, or eradicating cells after analysis thereof.
Compressed baryonic matter at FAIR: JINR participation
NASA Astrophysics Data System (ADS)
Kurilkin, P.; Ladygin, V.; Malakhov, A.; Senger, P.
2015-11-01
The scientific mission of the Compressed Baryonic Matter(CBM) experiment is the study of the nuclear matter properties at the high baryon densities in heavy ion collisions at the Facility of Antiproton and Ion Research (FAIR) in Darmstadt. We present the results on JINR participation in the CBM experiment. JINR teams are responsible on the design, the coordination of superconducting(SC) magnet manufacture, its testing and installation in CBM cave. Together with Silicon Tracker System it will provide the momentum resolution better 1% for different configuration of CBM setup. The characteristics and technical aspects of the magnet are discussed. JINR plays also a significant role in the manufacture of two straw tracker station for the muon detection system. JINR team takes part in the development of new method for simulation, processing and analysis experimental data for different basic detectors of CBM.
Resonances, and mechanisms of Theta-production
Ya.I. Azimov; I.I. Strakovsky
2004-09-01
After explaining necessity of exotic hadrons, we discuss mechanisms which could determine production of the exotic Theta-baryon. A possible important role of resonances (producing the Theta in real or virtual decays) is emphasized for various processes. Several experimental directions for studies of such resonances, and the Theta itself, are suggested. We briefly discuss also recent negative results on the Theta-baryon.
Properties of hadron matter. II - Dense baryon matter and neutron stars.
NASA Technical Reports Server (NTRS)
Leung, Y. C.; Wang, C. G.
1971-01-01
In this article we have provided certain details of a nuclear-matter computation, based on the Brueckner-Bethe-Goldstone theory of nuclear reaction, which leads to an equation of state for matter in the density region of 10 to 500 trillion g/cu cm. We also explore the possibilities that at very high baryon densities or for very short baryon separations, the net baryon-baryon interaction may be negligible so that the results of dynamical models, like the statistical bootstrap model and the dual-resonance model, may be applicable to the study of dense baryon matter. Several plausible equations of state are constructed, and their effect on the limiting mass of the neutron star is examined.
Baryon-Baryon Interactions ---Nijmegen Extended-Soft-Core Models---
NASA Astrophysics Data System (ADS)
Rijken, T. A.; Nagels, M. M.; Yamamoto, Y.
pseudo-scalar-, vector-, scalar-, and axial-mesons, (ii) diffractive (i.e. multiple-gluon) exchanges, (iii) two pseudo-scalar exchange (PS-PS), and (iv) meson-pair-exchange (MPE). The OBE- and pair-vertices are regulated by gaussian form factors producing potentials with a soft behavior near the origin. The assignment of the cutoff masses for the BBM-vertices is dependent on the SU(3)-classification of the exchanged mesons for OBE, and a similar scheme for MPE. The ESC-models ESC04 and ESC08 describe the nucleon-nucleon (NN), hyperon-nucleon (YN), and hyperon-hyperon (YY) interactions in a unified way using broken SU(3)-symmetry. Novel ingredients in the OBE-sector in the ESC-models are the inclusion of (i) the axial-vector meson potentials, (ii) a zero in the scalar- and axial-vector meson form factors. These innovations made it possible for the first time to keep the meson coupling parameters of the model qualitatively in accordance with the predictions of the (3P_0) quark-antiquark creation (QPC) model. This is also the case for the F/(F+D)-ratios. Furthermore, the introduction of the zero helped to avoid the occurrence of unwanted bound states in Lambda N. Broken SU(3)-symmetry serves to connect the NN and the YN channels, which leaves after fitting NN only a few free parameters for the determination of the YN-interactions. In particular, the meson-baryon coupling constants are calculated via SU(3) using the coupling constants of the NN oplus YN-analysis as input. In ESC04 medium strong flavor-symmetry-breaking (FSB) of the coupling constants was investigated, using the (3}P_{0) -model with a Gell-Mann-Okubo hypercharge breaking for the BBM-coupling. In ESC08 the couplings are kept SU(3)-symmetric. The charge-symmetry-breaking (CSB) in the Lambda p and Lambda n channels, which is an SU(2) isospin breaking, is included in the OBE-, TME-, and MPE-potentials. In ESC04 and ESC08 simultaneous fits to the NN- and the YN- scattering data have been achieved, using different
Baryonic Operators for Lattice Simulations
R. Edwards; R. Fiebig; G. Fleming; U.M. Heller; C. Morningstar; D. Richards; I. Sato; S. Wallace
2004-03-01
The construction of baryonic operators for determining the N* excitation spectrum is discussed. The operators are designed with one eye towards maximizing overlaps with the low-lying states of interest, and the other eye towards minimizing the number of sources needed in computing the required quark propagators. Issues related to spin identification are outlined. Although we focus on tri-quark baryon operators, the construction method is applicable to both mesons and penta-quark operators.
Anomalous dimensions of conformal baryons
NASA Astrophysics Data System (ADS)
Pica, Claudio; Sannino, Francesco
2016-10-01
We determine the anomalous dimensions of baryon operators for the three-color theory as functions of the number of massless flavors within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within the δ expansion, for a wide range of number of flavors. We also find that this is always smaller than the anomalous dimension of the fermion mass operator. These findings challenge the partial compositeness paradigm.
The Nucleon Resonance Program at Jlab
Ralf W. Gothe
2006-02-01
The status of the program to study baryon resonances at Jefferson Lab will be exemplified by the latest results on resonance parameters and transition form factors in single and double-pion production as well as kaon-hyperon decays.
The Molecular Baryon Cycle of M82
NASA Astrophysics Data System (ADS)
Chisholm, John; Matsushita, Satoki
2016-10-01
Baryons cycle into galaxies from the intergalactic medium and are converted into stars; a fraction of the baryons are ejected out of galaxies by stellar feedback. Here we present new high-resolution (3.″9 68 pc) 12CO(2–1) and 12CO(3–2) images that probe these three stages of the baryon cycle in the nearby starburst M82. We combine these new observations with previous 12CO(1–0) and [Fe ii] images to study the physical conditions within the molecular gas. Using a Bayesian analysis and the radiative transfer code RADEX, we model temperatures and densities of molecular hydrogen, as well as column densities of CO. Besides the disk, we concentrate on two regions within the galaxy: an expanding super-bubble and the base of a molecular streamer. Shock diagnostics, kinematics, and optical extinction suggest that the streamer is an inflowing filament, with a mass inflow rate of molecular gas of 3.5 {M}ȯ yr‑1. We measure the mass outflow rate of molecular gas of the expanding super-bubble to be 17 {M}ȯ yr‑1, five times higher than the inferred inflow rate and 1.3 times the star formation rate of the galaxy. The high mass outflow rate and large star formation rate will deplete the galaxy of molecular gas within eight million years, unless there are additional sources of molecular gas.
Charmed bottom baryon spectroscopy from lattice QCD
Brown, Zachary S.; Detmold, William; Meinel, Stefan; Orginos, Kostas
2014-11-19
In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with JP = 1/2+ and JP = 3/2+. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physicalmore » pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/mQ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.« less
Charmed bottom baryon spectroscopy from lattice QCD
Brown, Zachary S.; Detmold, William; Meinel, Stefan; Orginos, Kostas
2014-11-19
In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with J^{P} = 1/2^{+} and J^{P} = 3/2^{+}. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physical pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/m_{Q} and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.
Hafnium Resonance Parameter Analysis using Neutron Capture and Transmission Experiments
Trbovich, Michael J.; Barry, Devin P.; Burke, John A.; Drindak, Noel J.; Leinweber, Greg; Ballad, Robert V.; Slovacek, Rudy E.; Danon, Yaron; Block, Robert C.
2005-05-24
The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping 176Hf and 178Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions.Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. 6Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen-section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically enriched liquid samples. The liquid samples were designed to provide information on the 176Hf and 178Hf contributions to the 8-eV doublet without saturation.Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY and INTER codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little.
THE BARYON CONTENT OF COSMIC STRUCTURES
McGaugh, Stacy S.; Schombert, James M.; De Blok, W. J. G.; Zagursky, Matthew J. E-mail: jschombe@uoregon.edu E-mail: mzagursk@ifa.hawaii.edu
2010-01-01
We make an inventory of the baryonic and gravitating mass in structures ranging from the smallest galaxies to rich clusters of galaxies. We find that the fraction of baryons converted to stars reaches a maximum between M {sub 500} = 10{sup 12} and 10{sup 13} M {sub sun}, suggesting that star formation is most efficient in bright galaxies in groups. The fraction of baryons detected in all forms deviates monotonically from the cosmic baryon fraction as a function of mass. On the largest scales of clusters, most of the expected baryons are detected, while in the smallest dwarf galaxies, fewer than 1% are detected. Where these missing baryons reside is unclear.
DETECTING BARYON ACOUSTIC OSCILLATIONS
Labatie, A.; Starck, J. L.
2012-02-20
Baryon acoustic oscillations (BAOs) are a feature imprinted in the galaxy distribution by acoustic waves traveling in the plasma of the early universe. Their detection at the expected scale in large-scale structures strongly supports current cosmological models with a nearly linear evolution from redshift z Almost-Equal-To 1000 and the existence of dark energy. In addition, BAOs provide a standard ruler for studying cosmic expansion. In this paper, we focus on methods for BAO detection using the correlation function measurement {xi}-hat. For each method, we want to understand the tested hypothesis (the hypothesis H{sub 0} to be rejected) and the underlying assumptions. We first present wavelet methods which are mildly model-dependent and mostly sensitive to the BAO feature. Then we turn to fully model-dependent methods. We present the method used most often based on the {chi}{sup 2} statistic, but we find that it has limitations. In general the assumptions of the {chi}{sup 2} method are not verified, and it only gives a rough estimate of the significance. The estimate can become very wrong when considering more realistic hypotheses, where the covariance matrix of {xi}-hat depends on cosmological parameters. Instead, we propose to use the {Delta}l method based on two modifications: we modify the procedure for computing the significance and make it rigorous, and we modify the statistic to obtain better results in the case of varying covariance matrix. We verify with simulations that correct significances are different from the ones obtained using the classical {chi}{sup 2} procedure. We also test a simple example of varying covariance matrix. In this case we find that our modified statistic outperforms the classical {chi}{sup 2} statistic when both significances are correctly computed. Finally, we find that taking into account variations of the covariance matrix can change both BAO detection levels and cosmological parameter constraints.
NASA Astrophysics Data System (ADS)
Guo, Lei
The reaction gammap → pi+ k-k+ n has been investigated at Jefferson Lab using a tagged photon beam with an energy range of 3--5.47 GeV. A narrow baryon state with strangeness S = +1 and mass m = 1555 +/- 7 +/- 10 MeV/c 2 was observed in the nk+ invariant mass spectrum. The width of peak is consistent with the CLAS resolution (FWHM = 26 MeV/c2), and its statistical significance is 7.8 +/- 1.0 sigma. A baryon with positive strangeness has necessarily exotic structure and cannot be described in the framework of the naive constituent quark model. The signal is consistent with that predicted by a chiral soliton model for a 5-quark baryon state. Partial Wave Analysis was performed for the three-body mesonic background with the energy range of 4.8--5.47 GeV. The analysis demonstrates that the observed signal is unlikely to arise from meson production in the same final state. Interesting features were also observed in the 2-, 1- and 1 + partial wave intensity distributions. Due to the low statistics, the resonant nature of these meson waves is not determined.
Effect of three-pion unitarity on resonance poles from heavy meson decays
Satoshi X. Nakamura
2011-10-01
We study the final state interaction in 3-pion decay of meson resonances at the Excited Baryon Analysis Center (EBAC) of JLab. We apply the dynamical coupled-channels formulation which has been extensively used by EBAC to extract N* information. The formulation satisfies the 3-pion unitarity condition which has been missed in the existing works with the isobar models. We report the effect of the 3-pion unitarity on the meson resonance pole positions and Dalitz plot.
Excited state baryon spectroscopy from lattice QCD
Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; Wallace, Stephen J.
2011-10-31
Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting ofmore » levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.« less
Excited state baryon spectroscopy from lattice QCD
Edwards, Robert G.; Richards, David G.; Dudek, Jozef J.; Wallace, Stephen J.
2011-10-01
We present a calculation of the Nucleon and Delta excited state spectra on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including J=(7/2), of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of SU(6) x O(3) representations and a counting of levels that is consistent with the nonrelativistic qqq constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the 'missing resonance problem' and shows no signs of parity doubling of states.
Excited state baryon spectroscopy from lattice QCD
Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; Wallace, Stephen J.
2011-10-31
Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting of levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.
Ladygin, V. P. Azhgirey, L. S.; Afanasiev, S. V.; Arkhipov, V. V.; Bondarev, V. K.; Borzounov, Yu. T.; Filipov, G.; Golovanov, L. B.; Isupov, A. Yu.; Ivanov, V. I.; Kartamyshev, A. A.; Kashirin, V. A.; Khrenov, A. N.; Kolesnikov, V. I.; Kuznetsov, V. A.; Ladygina, N. B.; Litvinenko, A. G.; Reznikov, S. G.; Rukoyatkin, P. A.; Semenov, A. Yu.
2006-05-15
The angular dependence of the tensor A{sub yy} and vector A{sub y} analyzing powers in the inelastic scattering of deuterons with a momentum of 9.0 GeV/c on hydrogen and carbon has been measured. The range of measurements corresponds to the baryonic resonance excitation with masses of {approx}2.2-2.6 GeV/c{sup 2}. The A{sub yy} data, being in good agreement with the previous results, demonstrate an approximate t scaling up to -1.5 (GeV/c){sup 2}. The large values of A{sub y} show a significant role of the spin-dependent part of the elementary amplitude of the NN {sup {yields}} NN* reaction. The results of the experiment are compared with model predictions of the plane-wave impulse approximation.
Hyperon-hyperon interaction based on quark-model baryon-baryon interactions
NASA Astrophysics Data System (ADS)
Fukukawa, Kenji
2014-04-01
Energy-independent nonlocal Gaussian potential based on the quark-model baryon-baryon interaction is derived by using the Gauss-Legendre quadrature and the Bargmann algebra. The reliability of this potential is examined with respect to the NN, YN and YY phase shifts. This potential reproduces the phase shifts predicted by quark-model baryon-baryon interaction fss2.
Donati, S.; /Pisa U. /INFN, Pisa
2009-01-01
In this paper we review the most recent results concerning B Baryons at CDF, including the study of the {Omega}{sub b}{sup -}, {Xi}{sub b}{sup -} and {Sigma}{sub b}{sup {+-}(*)} observation and properties, and a new measurement of the {Lambda}{sub b}{sup 0} lifetime and the observation of new {Lambda}{sub b}{sup 0} decay modes. The {Omega}{sub b}{sup -} bayron is observed through the decay chain {Omega}{sub b}{sup -} {yields} J/{Psi}{Omega}{sup -}, where J/{Psi} {yields} {mu}{sup +}{mu}{sup -}, {Omega}{sup -} {yields} {Lambda}K{sup -}, and {Lambda} {yields} pK{sup -}, using 4.2 fb{sup -1} of data. The {Omega}{sub b}{sup -} mass is measured to be 6054.4 {+-} 6.8(stat.) {+-} 0.9(syst.) MeV/c{sup 2}, and the lifetime 1.13{sub -0.40}{sup _0.53}(stat.) {+-} 0.02(syst.) ps. For the {Xi}{sub b}{sup -} the mass is measured 5790.9 {+-} 2.6(stat.) {+-} 0.8(syst.) MeV/c{sup 2} and the lifetime 1.56{sub -0.25}{sup +0.27}(stat.) {+-} 0.02(syst.) ps. The four new states {Sigma}{sub b}{sup +}, {Sigma}{sub b}{sup -}, {Sigma}*{sub b}{sup +}, and {Sigma}*{sub b}{sup -} have been observed in 1.1 fb{sup -1} of data, and the masses have been determined, m({Sigma}{sub b}{sup +}) = 5807.8{sub -2.2}{sup +2.0}(stat.) {+-} 1.7(syst.), m({Sigma}{sub b}{sup -}) = 5815.2 {+-} 1.0(stat.) {+-} 1.7(syst.), m({Sigma}*{sub b}{sup +}) = 5829.0{sub -1.8-1.8}{sup +1.6+1.7}, and m{Sigma}*{sub b}{sup -} = 5836.4 {+-} 2.0(stat.){sub -1.7}{sup +1.8}(syst.). CDF has performed a new measurement of the {Lambda}{sub b}{sup 0} lifetime using 1.1 fb{sup -1} of data collected by the displaced vertex trigger 1.401 {+-} 0.046(stat.) {+-} 0.035(syst.), where the main systematic error is due to the uncertainty on the trigger model.
Dilatons in Dense Baryonic Matter
NASA Astrophysics Data System (ADS)
Lee, Hyun Kyu; Rho, Mannque
We discuss the role of dilaton, which is supposed to be representing a special feature of scale symmetry of QCD, trace anomaly, in dense baryonic matter. The idea that the scale symmetry breaking of QCD is responsible for the spontaneous breaking of chiral symmetry is presented along the similar spirit of Freund-Nambu model. The incorporation of dilaton field in the hidden local symmetric parity doublet model is briefly sketched with the possible role of dilaton at high density baryonic matter, the emergence of linear sigma model in dilaton limit.
Charmed baryon spectroscopy from CLEO at CESR
Alam, M. Sajjad
1999-02-17
Charmed baryon spectroscopy has been unfolding since the discovery of the first charmed baryon in 1975. The Cornell Electron Storage Ring (CESR) has now established itself as a charmed particle factory. In this report, we present results on charmed baryon production at CESR using the CLEO detector.
Staggered baryon operators with flavor SU(3) quantum numbers
Bailey, Jon A.
2007-06-01
The construction of the first baryon operators for staggered lattice QCD exploited the taste symmetry to emulate physical quark flavor; contemporary 2+1 flavor simulations explicitly include three physical quark flavors and necessitate interpreting a valence sector with 12 quarks. After discussing expected features of the resulting baryon spectrum, I consider the spectra of operators transforming irreducibly under SU(3){sub F}xGTS, the direct product of flavor SU(3){sub F} and the geometrical time-slice group of the 1-flavor staggered theory. I then describe the construction of a set of maximally local baryon operators transforming irreducibly under SU(3){sub F}xGTS and enumerate this set. In principle, the operators listed here could be used to extract the masses of all the lightest spin-(1/2) and spin-(3/2) baryon resonances of staggered QCD. Using appropriate operators from this set in partially quenched simulations should allow for particularly clean 2+1 flavor calculations of the masses of the nucleon, {delta}, {sigma}*, {xi}*, and {omega}{sup -}.
Search for Popcorn Mesons in Events with Two Charmed Baryons
Hartfiel, Brandon; /SLAC
2006-07-07
The physics of this note is divided into two parts. The first part measures the {Lambda}{sub c} {yields} {pi}kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c. The data sample consists of 15,400 {Lambda}{sub c} baryons from 9.46 fb{sup -1} of integrated luminosity. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the {Lambda}{sub c} {yields} K{sup 0}p mode, and look for events with a {Lambda}{sub c}{sup +} and a {bar {Lambda}}{sub c}{sup -} in order to look for ''popcorn'' mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb{sup -1}. We find 619 events after background subtraction. After a subtraction of 1.06 {+-} .09 charged pions coming from decays of known resonances to {Lambda}{sub c} + {eta}{pi}, we are left with 2.63 {+-} .21 additional charged pions in each of these events. This is significantly higher than the .5 popcorn mesons per baryon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.
Cosmological baryon diffusion and nucleosynthesis
NASA Astrophysics Data System (ADS)
Applegate, James H.; Hogan, Craig J.; Scherrer, Robert J.
1987-02-01
The diffusion rate of baryons through the big-bang plasma is calculated. Fluctuations in baryon density in the early Universe lead to inhomogeneities in the neutron-proton ratio, due to the differential diffusion of these particles through the radiation plasma. For certain types of nonlinear fluctuations, some nucleosynthesis would occur in very neutron-rich regions. Nuclear products of homogeneous neutron-enriched regions are evaluated numerically using a standard reaction network and these results are used to estimate final abundances in an inhomogeneous universe. Net deuterium and lithium abundances tend to increase and the net helium abundance tends to decrease compared to an unperturbed standard model. It is suggested that pronounced nonlinear baryon-density fluctuations produced in QCD- or electroweak-epoch phase transitions could alter abundances sufficiently to make a closed baryonic universe consistent with current observations of these elements. In such a model the abundance of heavier elements (C,N,O, etc.) increases significantly and approaches observable levels. Abundances can be used to place constraints on extreme scenarios for phase transitions at these epochs.
Finite volume effects in the chiral extrapolation of baryon masses
NASA Astrophysics Data System (ADS)
Lutz, M. F. M.; Bavontaweepanya, R.; Kobdaj, C.; Schwarz, K.
2014-09-01
We perform an analysis of the QCD lattice data on the baryon octet and decuplet masses based on the relativistic chiral Lagrangian. The baryon self-energies are computed in a finite volume at next-to-next-to-next-to-leading order (N3LO), where the dependence on the physical meson and baryon masses is kept. The number of free parameters is reduced significantly down to 12 by relying on large-Nc sum rules. Altogether we describe accurately more than 220 data points from six different lattice groups, BMW, PACS-CS, HSC, LHPC, QCDSF-UKQCD and NPLQCD. Values for all counterterms relevant at N3LO are predicted. In particular we extract a pion-nucleon sigma term of 39-1+2 MeV and a strangeness sigma term of the nucleon of σsN=84-4+28 MeV. The flavor SU(3) chiral limit of the baryon octet and decuplet masses is determined with (802±4) and (1103±6) MeV. Detailed predictions for the baryon masses as currently evaluated by the ETM lattice QCD group are made.
Study of ψ(3770) decaying to baryon anti-baryon pairs
NASA Astrophysics Data System (ADS)
Xia, Li-Gang
2016-05-01
To study the decays of ψ (3770) going to baryon anti-baryon pairs (B B bar), all available experiments of measuring the cross sections of e+e- → B B bar at center-of-mass energy ranging from 3.0 GeV to 3.9 GeV are combined. To relate the baryon octets, a model based on the SU(3) flavor symmetry is used and the SU(3) breaking effects are also considered. Assuming the electric and magnetic form factors are equal (|GE | = |GM |), a global fit including the interference between the QED process and the resonant process is performed. The branching fraction of ψ (3770) → B B bar is determined to be (2.4 ± 0.8 ± 0.3) ×10-5, (1.7 ± 0.6 ± 0.1) ×10-5, (4.5 ± 0.9 ± 0.1) ×10-5, (4.5 ± 0.9 ± 0.1) ×10-5, (2.0 ± 0.7 ± 0.1) ×10-5, and (2.0 ± 0.7 ± 0.1) ×10-5 for B = p , Λ ,Σ+ ,Σ0 ,Ξ- and Ξ0, respectively, where the first uncertainty is from the global fit and the second uncertainty is the systematic uncertainty due to the assumption |GE | = |GM |. They are at least one order of magnitude larger than a simple scaling of the branching fraction of J / ψ / ψ (3686) → B B bar .
Ground resonance analysis using a substructure modeling approach
NASA Technical Reports Server (NTRS)
Chen, S. Y.; Austin, E. E.; Berman, A.
1985-01-01
A convenient and versatile procedure for modeling and analyzing ground resonance phenomena is described and illustrated. A computer program is used which dynamically couples differential equations with nonlinear and time dependent coefficients. Each set of differential equations may represent a component such as a rotor, fuselage, landing gear, or a failed damper. Arbitrary combinations of such components may be formulated into a model of a system. When the coupled equations are formed, a procedure is executed which uses a Floquet analysis to determine the stability of the system. Illustrations of the use of the procedures along with the numerical examples are presented.
Net baryon fluctuations from a crossover equation of state
NASA Astrophysics Data System (ADS)
Kapusta, J.; Albright, M.; Young, C.
2016-08-01
We have constructed an equation of state which smoothly interpolates between an excluded-volume hadron resonance gas at low energy density to a plasma of quarks and gluons at high energy density. This crossover equation of state agrees very well with lattice calculations at both zero and nonzero baryon chemical potential. We use it to compute the variance, skewness, and kurtosis of fluctuations of baryon number, and compare to measurements of proton number fluctuations in central Au-Au collisions as measured by the STAR Collaboration in a beam energy scan at the Relativistic Heavy-Ion Collider. The crossover equation of state can reproduce the data if the fluctuations are frozen out at temperatures well below than the average chemical freeze-out.
Observation of the Heavy Baryons Sigma b and Sigma b*.
Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S
2007-11-16
We report an observation of new bottom baryons produced in pp collisions at the Tevatron. Using 1.1 fb(-1) of data collected by the CDF II detector, we observe four Lambda b 0 pi+/- resonances in the fully reconstructed decay mode Lambda b 0-->Lambda c + pi-, where Lambda c+-->pK* pi+. We interpret these states as the Sigma b(*)+/- baryons and measure the following masses: m Sigma b+=5807.8 -2.2 +2.0(stat.)+/-1.7(syst.) MeV/c2, m Sigma b- =5815.2+/-1.0(stat.)+/-1.7(syst.) MeV/c2, and m(Sigma b*)-m(Sigma b)=21.2-1.9 +2.0(stat.)-0.3+0.4(syst.) MeV/c2.
CP violation in multibody decays of beauty baryons
NASA Astrophysics Data System (ADS)
Durieux, Gauthier
2016-10-01
Beauty baryons are being observed in large numbers in the LHCb detector. The rich kinematic distributions of their multibody decays are therefore becoming accessible and provide us with new opportunities to search for CP violation. We analyse the angular distributions of some three- and four-body decays of spin-1/2 baryons using the Jacob-Wick helicity formalism. The asymmetries that provide access to small differences of CP-odd phases between decay amplitudes of identical CP-even phases are notably discussed. The understanding gained on processes featuring specific resonant intermediate states allows us to establish which asymmetries are relevant for what purpose. It is for instance shown that some CP-odd angular asymmetries measured by the LHCb collaboration in the Λ b → Λ φ → p π K + K - decay are expected to vanish identically.
Magnetic resonance imaging in laboratory petrophysical core analysis
NASA Astrophysics Data System (ADS)
Mitchell, J.; Chandrasekera, T. C.; Holland, D. J.; Gladden, L. F.; Fordham, E. J.
2013-05-01
Magnetic resonance imaging (MRI) is a well-known technique in medical diagnosis and materials science. In the more specialized arena of laboratory-scale petrophysical rock core analysis, the role of MRI has undergone a substantial change in focus over the last three decades. Initially, alongside the continual drive to exploit higher magnetic field strengths in MRI applications for medicine and chemistry, the same trend was followed in core analysis. However, the spatial resolution achievable in heterogeneous porous media is inherently limited due to the magnetic susceptibility contrast between solid and fluid. As a result, imaging resolution at the length-scale of typical pore diameters is not practical and so MRI of core-plugs has often been viewed as an inappropriate use of expensive magnetic resonance facilities. Recently, there has been a paradigm shift in the use of MRI in laboratory-scale core analysis. The focus is now on acquiring data in the laboratory that are directly comparable to data obtained from magnetic resonance well-logging tools (i.e., a common physics of measurement). To maintain consistency with well-logging instrumentation, it is desirable to measure distributions of transverse (T2) relaxation time-the industry-standard metric in well-logging-at the laboratory-scale. These T2 distributions can be spatially resolved over the length of a core-plug. The use of low-field magnets in the laboratory environment is optimal for core analysis not only because the magnetic field strength is closer to that of well-logging tools, but also because the magnetic susceptibility contrast is minimized, allowing the acquisition of quantitative image voxel (or pixel) intensities that are directly scalable to liquid volume. Beyond simple determination of macroscopic rock heterogeneity, it is possible to utilize the spatial resolution for monitoring forced displacement of oil by water or chemical agents, determining capillary pressure curves, and estimating
The status of pentaquark baryons
V.D. Burkert
2006-06-01
The status of the search for peritaquark baryon states is reviewed in light of new results from the first two dedicated experiments from CLAS at Jefferson Lab and of new analyses from several labs on the Theta^+(1540). Evidence for and against the heavier pentaquark states, the Xi(1862) and the Theta^0_c(3100) observed at CERN and at HERA, respectively, are also discussed. I conclude that the evidence against the latter two heavier pentaquark baryons is rapidly increasing making their existence highly questionable. I also conclude that the evidence for the Theta^+ state has significantly eroded with the recent CLAS results, and just leaves room for a possible state with an intrinsic width of Gamma < 0.5 MeV. Preliminary new evidence from various experiments will be discussed as well.
Fujiwara, Y.; Suzuki, Y.; Kohno, M.; Miyagawa, K.
2008-02-15
Previously we calculated the binding energies of the triton and hypertriton, using an SU{sub 6} quark-model interaction obtained by a resonating-group method of two baryon clusters. In contrast to the previous calculations employing the energy-dependent interaction kernel, we present new results using a renormalized interaction that is energy-independent and still preserves all the two-baryon data. The new binding energies are slightly smaller than the previous values. In particular the triton binding energy turns out to be 8.14 MeV with a charge-dependence correction of the two-nucleon force, 190 keV, being included. This indicates that the energy to be accounted for by three-body forces is about 350 keV.
Triton and hypertriton binding energies with SU{sub 6} quark-model baryon-baryon interactions
Fujiwara, Y.; Suzuki, Y.; Kohno, M.; Miyagawa, K.
2008-04-29
Previously we calculated the binding energies of the triton and hypertriton, using an SU{sub 6} quark-model interaction which is obtained by a resonating-group method for two baryon clusters. In contrast to the previous calculations employing the energy-dependent interaction kernel, we present new results using a renormalized interaction which is energy-independent and still preserves all the two-baryon data. The new binding energies are slightly smaller than the previous values. In particular the triton binding energy turns out to be 8.14 MeV with a charge-dependence correction of the two-nucleon force, 190 keV, being included. This indicates that the energy to be accounted for by three-body forces is about 350 keV.
Baryon Interactions from Lattice QCD
Aoki, Sinya
2010-05-12
We report on new attempt to investigate baryon interactions in lattice QCD. From the Bethe-Salpeter (BS) wave function, we have successfully extracted the nucleon-nucleon (NN) potentials in quenched QCD simulations, which reproduce qualitative features of modern NN potentials. The method has been extended to obtain the tensor potential as well as the central potential and also applied to the hyperon-nucleon (YN) interactions, in both quenched and full QCD.
Search for popcorn mesons in events with two charmed baryons
NASA Astrophysics Data System (ADS)
Hartfiel, Brandon
The physics of this dissertation is divided into two parts. The first part measures the Λc → pi kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c, which is just below the Υ(4s) resonance. The data sample consists of 15,400 Λc baryons from 9.46 fb-1 of integrated luminosity collected with the BaBar detector at the PEP-II asymmetric B factory at the Stanford Linear Accelerator Center. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the Λc → K0p mode, and look for events with a Λc+ and a Λ c- in order to look for "popcorn" mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb-1. We find 619 events after background subtraction. After a subtraction of 1.06+/-.09 charged pions coming from decays of known resonances to Λc + npi, we are left with 2.63+/-.21 additional charged pious in each of these events. This is significantly higher than the .5 popcorn mesons per bayon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.
Transport coefficients of heavy baryons
NASA Astrophysics Data System (ADS)
Tolos, Laura; Torres-Rincon, Juan M.; Das, Santosh K.
2016-08-01
We compute the transport coefficients (drag and momentum diffusion) of the low-lying heavy baryons Λc and Λb in a medium of light mesons formed at the later stages of high-energy heavy-ion collisions. We employ the Fokker-Planck approach to obtain the transport coefficients from unitarized baryon-meson interactions based on effective field theories that respect chiral and heavy-quark symmetries. We provide the transport coefficients as a function of temperature and heavy-baryon momentum, and analyze the applicability of certain nonrelativistic estimates. Moreover we compare our outcome for the spatial diffusion coefficient to the one coming from the solution of the Boltzmann-Uehling-Uhlenbeck transport equation, and we find a very good agreement between both calculations. The transport coefficients for Λc and Λb in a thermal bath will be used in a subsequent publication as input in a Langevin evolution code for the generation and propagation of heavy particles in heavy-ion collisions at LHC and RHIC energies.
Resonant leptogenesis in the minimal B-L extended standard model at TeV
Iso, Satoshi; Orikasa, Yuta; Okada, Nobuchika
2011-05-01
We investigate the resonant leptogenesis scenario in the minimal B-L extended standard model with the B-L symmetry breaking at the TeV scale. Through detailed analysis of the Boltzmann equations, we show how much the resultant baryon asymmetry via leptogenesis is enhanced or suppressed, depending on the model parameters, in particular, the neutrino Dirac-Yukawa couplings and the TeV scale Majorana masses of heavy degenerate neutrinos. In order to consider a realistic case, we impose a simple ansatz for the model parameters and analyze the neutrino oscillation parameters and the baryon asymmetry via leptogenesis as a function of only a single CP phase. We find that for a fixed CP phase all neutrino oscillation data and the observed baryon asymmetry of the present Universe can be simultaneously reproduced.
Analysis of series resonant converter with series-parallel connection
NASA Astrophysics Data System (ADS)
Lin, Bor-Ren; Huang, Chien-Lan
2011-02-01
In this study, a parallel inductor-inductor-capacitor (LLC) resonant converter series-connected on the primary side and parallel-connected on the secondary side is presented for server power supply systems. Based on series resonant behaviour, the power metal-oxide-semiconductor field-effect transistors are turned on at zero voltage switching and the rectifier diodes are turned off at zero current switching. Thus, the switching losses on the power semiconductors are reduced. In the proposed converter, the primary windings of the two LLC converters are connected in series. Thus, the two converters have the same primary currents to ensure that they can supply the balance load current. On the output side, two LLC converters are connected in parallel to share the load current and to reduce the current stress on the secondary windings and the rectifier diodes. In this article, the principle of operation, steady-state analysis and design considerations of the proposed converter are provided and discussed. Experiments with a laboratory prototype with a 24 V/21 A output for server power supply were performed to verify the effectiveness of the proposed converter.
Vibrometry analysis of electrooptical coupling near piezoelectric resonance
NASA Astrophysics Data System (ADS)
McIntosh, Robert; Bhalla, Amar S.; Guo, Ruyan
2014-09-01
The electrooptic response of crystals becomes attenuated in the megahertz or higher frequencies where it is of the most use for communication systems. This research explores new possibilities of improved electrooptic interaction at high frequencies, discovered as a result of coupled electrooptic effects near selected piezoelectric resonances. Results suggest that for electrooptics the key to a large interaction at high frequencies is the gradient of the strain in a modulated crystal and the acceleration of the accompanying lattice waves. While strains tend to be damped, acceleration of the lattice wave retains its amplitude at high frequencies. This interaction is studied by a high frequency Laser Doppler Vibrometer and by numerical finite element analysis modeling using COMSOL. PMN-PT crystal was the primary material studied due to its large piezoelectric coupling and electrooptic coefficients. The dynamic displacement of the samples was measured over a broad range of frequencies, including the fundamental resonant modes and higher order harmonics where the mode structure becomes complex and not well described by existing analytical models.
Decay properties of double heavy baryons
Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery; Ivanov, Mikhail A.; Koerner, Juergen G.
2010-08-05
We study the semileptonic decays of double heavy baryons using a manifestly Lorentz covariant constituent three-quark model. We present complete results on transition form factors between double-heavy baryons for finite values of the heavy quark/baryon masses and in the heavy quark symmetry limit which is valid at and close to zero recoil. Decay rates are calculated and compared to each other in the full theory, keeping masses finite, and also in the heavy quark limit.
Searching for the missing baryons in clusters
Rasheed, Bilhuda; Bahcall, Neta; Bode, Paul
2011-01-01
Observations of clusters of galaxies suggest that they contain fewer baryons (gas plus stars) than the cosmic baryon fraction. This “missing baryon” puzzle is especially surprising for the most massive clusters, which are expected to be representative of the cosmic matter content of the universe (baryons and dark matter). Here we show that the baryons may not actually be missing from clusters, but rather are extended to larger radii than typically observed. The baryon deficiency is typically observed in the central regions of clusters (∼0.5 the virial radius). However, the observed gas-density profile is significantly shallower than the mass-density profile, implying that the gas is more extended than the mass and that the gas fraction increases with radius. We use the observed density profiles of gas and mass in clusters to extrapolate the measured baryon fraction as a function of radius and as a function of cluster mass. We find that the baryon fraction reaches the cosmic value near the virial radius for all groups and clusters above . This suggests that the baryons are not missing, they are simply located in cluster outskirts. Heating processes (such as shock-heating of the intracluster gas, supernovae, and Active Galactic Nuclei feedback) likely contribute to this expanded distribution. Upcoming observations should be able to detect these baryons. PMID:21321229
Nijmegen Baryon-Baryon Interactions for S = -1, -2 Systems
NASA Astrophysics Data System (ADS)
Rijken, Th. A.; Nagels, M. M.; Yamamoto, Y.
We present and discuss the most recent version of the extended-soft-core (ESC) interactions. The ESC-model describes the nucleon-nucleon (NN), hyperon-nucleon (YN), and hyperon-hyperon (YY), in terms of meson-exchanges using (broken) SUF(3)-symmetry. In this approach to baryon-baryon (BB) the dynamics is derived from (i) one-boson-exchanges (OBE), (ii) two-meson-exchanges (TME), and (iii) meson-pair-exchanges (MPE), (iv) gluon-exchanges, and (v) quark-core effects. In the OBE-sector, a special feature is the importance of the axial-vector meson potentials, and the inclusion of a zero in the scalar- and axial- meson form-factors. Novelties are the inclusion of (a) odderon-exchange, and (b) special pronounced effects of the appearance of forbidden six-quark configurations. With these ingredients, a rather flexible dynamical framework is constructed. Namely, it appeared feasible to keep the parameters of the model in reasonable accordance with the predictions of the 3P0 quark-pair-creation model (QPC). This is the case for the meson- and meson-pair-baryon coupling constants and the F/(F + D)-ratio's as well. The NN, YN, and YY results for this model are rather promising. In particular, we improved the ΛN spin-orbit interaction greatly by the inclusion of (a) the Brown, Downs, and Iddings anti-symmetric spin-orbit potentials, and (b) new corrections to the MPE-potentials. Also, the special quark-core effects provide ample repulsion in the Σ+p(3S1,T = 3/2)- and ΣN(1S0,T = 1/2)-channels. The new version of the ESC-model reported here will be referred to as ESC07 henceforth.
Nijmegen Baryon-Baryon Interactions for S = -1, -2 Systems
NASA Astrophysics Data System (ADS)
Rijken, Th. A.; Nagels, M. M.; Yamamoto, Y.
2010-10-01
We present and discuss the most recent version of the extended-soft-core (ESC) interactions. The ESC-model describes the nucleon-nucleon (NN), hyperon-nucleon (YN), and hyperon-hyperon (YY), in terms of meson-exchanges using (broken) SUF(3)-symmetry. In this approach to baryon-baryon (BB) the dynamics is derived from (i) one-boson-exchanges (OBE), (ii) two-meson-exchanges (TME), and (iii) meson-pair-exchanges (MPE), (iv) gluon-exchanges, and (v) quark-core effects. In the OBE-sector, a special feature is the importance of the axial-vector meson potentials, and the inclusion of a zero in the scalar- and axial- meson form-factors. Novelties are the inclusion of (a) odderon-exchange, and (b) special pronounced effects of the appearance of forbidden six-quark configurations. With these ingredients, a rather flexible dynamical framework is constructed. Namely, it appeared feasible to keep the parameters of the model in reasonable accordance with the predictions of the 3P0 quark-pair-creation model (QPC). This is the case for the meson- and meson-pair-baryon coupling constants and the F/(F + D)-ratio's as well. The NN, YN, and YY results for this model are rather promising. In particular, we improved the ΛN spin-orbit interaction greatly by the inclusion of (a) the Brown, Downs, and Iddings anti-symmetric spin-orbit potentials, and (b) new corrections to the MPE-potentials. Also, the special quark-core effects provide ample repulsion in the Σ+p(3S1, T = 3/2)- and ΣN(1S0,T = l/2)-channels. The new version of the ESC-model reported here will be referred to as ESC07 henceforth.
Undersampled dynamic magnetic resonance imaging using kernel principal component analysis.
Wang, Yanhua; Ying, Leslie
2014-01-01
Compressed sensing (CS) is a promising approach to accelerate dynamic magnetic resonance imaging (MRI). Most existing CS methods employ linear sparsifying transforms. The recent developments in non-linear or kernel-based sparse representations have been shown to outperform the linear transforms. In this paper, we present an iterative non-linear CS dynamic MRI reconstruction framework that uses the kernel principal component analysis (KPCA) to exploit the sparseness of the dynamic image sequence in the feature space. Specifically, we apply KPCA to represent the temporal profiles of each spatial location and reconstruct the images through a modified pre-image problem. The underlying optimization algorithm is based on variable splitting and fixed-point iteration method. Simulation results show that the proposed method outperforms conventional CS method in terms of aliasing artifact reduction and kinetic information preservation. PMID:25570262
Methods for magnetic resonance analysis using magic angle technique
Hu, Jian Zhi; Wind, Robert A.; Minard, Kevin R.; Majors, Paul D.
2011-11-22
Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.
Non-Resonant Response Using Statistical Energy Analysis
NASA Astrophysics Data System (ADS)
RENJI, K.; NAIR, P. S.; NARAYANAN, S.
2001-03-01
When excited acoustically, the response of a panel consists of resonant and non-resonant waves. The non-resonant response is negligible for limp panels. However, it can become significant in the case of thin light structural panels. SEA modelling does not predict the non-resonant response of the structure. This paper discusses the above limitation of SEA and presents a modified SEA formulation by which the non-resonant response can also be estimated. The resonant and the non-resonant contributions to the response are assumed to be arising out of two separate subsystems. In the present formulation, modelling for non-resonant response is similar to the conventional SEA modelling for resonant response but uses different expressions for the coupling loss factors. The classical problem of two reverberant rooms separated by a panel is considered as an example. It is shown that by using this procedure the non-resonant response of the structure can be estimated. Also, the non-resonant sound transmission is obtained exactly. Results of a numerical example are presented to compare the conventional and the modified SEA modelling results.
BRYNTRN: A baryon transport model
NASA Technical Reports Server (NTRS)
Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Chun, Sang Y.; Hong, B. S.; Buck, Warren W.; Lamkin, S. L.; Ganapol, Barry D.; Khan, Ferdous; Cucinotta, Francis A.
1989-01-01
The development of an interaction data base and a numerical solution to the transport of baryons through an arbitrary shield material based on a straight ahead approximation of the Boltzmann equation are described. The code is most accurate for continuous energy boundary values, but gives reasonable results for discrete spectra at the boundary using even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O). The resulting computer code is self-contained, efficient and ready to use. The code requires only a very small fraction of the computer resources required for Monte Carlo codes.
Isocurvature modes and Baryon Acoustic Oscillations
Mangilli, Anna; Verde, Licia; Beltran, Maria E-mail: licia.verde@icc.ub.edu
2010-10-01
The measurement of Baryonic Acoustic Oscillations from galaxy surveys is well known to be a robust and powerful tool to constrain dark energy. This method relies on the knowledge of the size of the acoustic horizon at radiation drag derived from Cosmic Microwave Background Anisotropy measurements. In this paper we quantify the effect of non-standard initial conditions in the form of an isocurvature component on the determination of dark energy parameters from future BAO surveys. In particular, if there is an isocurvature component (at a level still allowed by present data) but it is ignored in the CMB analysis, the sound horizon and cosmological parameters determination is biased, and, as a consequence, future surveys may incorrectly suggest deviations from a cosmological constant. In order to recover an unbiased determination of the sound horizon and dark energy parameters, a component of isocurvature perturbations must be included in the model when analyzing CMB data. Fortunately, doing so does not increase parameter errors significantly.
Analysis and modeling of Fano resonances using equivalent circuit elements
NASA Astrophysics Data System (ADS)
Lv, Bo; Li, Rujiang; Fu, Jiahui; Wu, Qun; Zhang, Kuang; Chen, Wan; Wang, Zhefei; Ma, Ruyu
2016-08-01
Fano resonance presents an asymmetric line shape formed by an interference of a continuum coupled with a discrete autoionized state. In this paper, we show several simple circuits for Fano resonances from the stable-input impedance mechanism, where the elements consisting of inductors and capacitors are formulated for various resonant modes, and the resistor represents the damping of the oscillators. By tuning the pole-zero of the input impedance, a simple circuit with only three passive components e.g. two inductors and one capacitor, can exhibit asymmetric resonance with arbitrary Q-factors flexiblely. Meanwhile, four passive components can exhibit various resonances including the Lorentz-like and reversely electromagnetically induced transparency (EIT) formations. Our work not only provides an intuitive understanding of Fano resonances, but also pave the way to realize Fano resonaces using simple circuit elements.
Analysis and modeling of Fano resonances using equivalent circuit elements
Lv, Bo; Li, Rujiang; Fu, Jiahui; Wu, Qun; Zhang, Kuang; Chen, Wan; Wang, Zhefei; Ma, Ruyu
2016-01-01
Fano resonance presents an asymmetric line shape formed by an interference of a continuum coupled with a discrete autoionized state. In this paper, we show several simple circuits for Fano resonances from the stable-input impedance mechanism, where the elements consisting of inductors and capacitors are formulated for various resonant modes, and the resistor represents the damping of the oscillators. By tuning the pole-zero of the input impedance, a simple circuit with only three passive components e.g. two inductors and one capacitor, can exhibit asymmetric resonance with arbitrary Q-factors flexiblely. Meanwhile, four passive components can exhibit various resonances including the Lorentz-like and reversely electromagnetically induced transparency (EIT) formations. Our work not only provides an intuitive understanding of Fano resonances, but also pave the way to realize Fano resonaces using simple circuit elements. PMID:27545610
Analysis of plasmon resonances on a metal particle
NASA Astrophysics Data System (ADS)
Bakhti, Saïd; Destouches, Nathalie; Tishchenko, Alexandre V.
2014-10-01
An analytical representation of plasmon resonance modes of a metal particle is developed in the basis of the null-field method and its modal expansion of the particle optical response. This representation allows for the characterization of plasmon modes properties, as their spectral position, bandwidth, amplitude and local field enhancement. Moreover, the derivation of a phenomenological equation governing such resonances relates them to open resonator behavior. The resonance bandwidth corresponds to the plasmon life-time, whereas its amplitude is related to the coupling coefficient with the incident excitation. An efficient algorithm is used to compute and characterize the resonance parameters of silver spheroids as function of the particle geometry. The normal modes present on spheres are split into different azimuthal resonant modes in the case of spheroids, with amplitude depending on the incident polarization and position dependent on the particle aspect ratio.
Analysis and modeling of Fano resonances using equivalent circuit elements.
Lv, Bo; Li, Rujiang; Fu, Jiahui; Wu, Qun; Zhang, Kuang; Chen, Wan; Wang, Zhefei; Ma, Ruyu
2016-08-22
Fano resonance presents an asymmetric line shape formed by an interference of a continuum coupled with a discrete autoionized state. In this paper, we show several simple circuits for Fano resonances from the stable-input impedance mechanism, where the elements consisting of inductors and capacitors are formulated for various resonant modes, and the resistor represents the damping of the oscillators. By tuning the pole-zero of the input impedance, a simple circuit with only three passive components e.g. two inductors and one capacitor, can exhibit asymmetric resonance with arbitrary Q-factors flexiblely. Meanwhile, four passive components can exhibit various resonances including the Lorentz-like and reversely electromagnetically induced transparency (EIT) formations. Our work not only provides an intuitive understanding of Fano resonances, but also pave the way to realize Fano resonaces using simple circuit elements.
Analysis and modeling of Fano resonances using equivalent circuit elements.
Lv, Bo; Li, Rujiang; Fu, Jiahui; Wu, Qun; Zhang, Kuang; Chen, Wan; Wang, Zhefei; Ma, Ruyu
2016-01-01
Fano resonance presents an asymmetric line shape formed by an interference of a continuum coupled with a discrete autoionized state. In this paper, we show several simple circuits for Fano resonances from the stable-input impedance mechanism, where the elements consisting of inductors and capacitors are formulated for various resonant modes, and the resistor represents the damping of the oscillators. By tuning the pole-zero of the input impedance, a simple circuit with only three passive components e.g. two inductors and one capacitor, can exhibit asymmetric resonance with arbitrary Q-factors flexiblely. Meanwhile, four passive components can exhibit various resonances including the Lorentz-like and reversely electromagnetically induced transparency (EIT) formations. Our work not only provides an intuitive understanding of Fano resonances, but also pave the way to realize Fano resonaces using simple circuit elements. PMID:27545610
Isospin Splittings of Doubly Heavy Baryons
Brodsky, Stanley J.; Guo, Feng-Kun; Hanhart, Christoph; Meissner, Ulf-G.; /Julich, Forschungszentrum /JCHP, Julich /IAS, Julich /Bonn U., HISKP /Bonn U.
2011-08-18
The SELEX Collaboration has reported a very large isospin splitting of doubly charmed baryons. We show that this effect would imply that the doubly charmed baryons are very compact. One intriguing possibility is that such baryons have a linear geometry Q-q-Q where the light quark q oscillates between the two heavy quarks Q, analogous to a linear molecule such as carbon dioxide. However, using conventional arguments, the size of a heavy-light hadron is expected to be around 0.5 fm, much larger than the size needed to explain the observed large isospin splitting. Assuming the distance between two heavy quarks is much smaller than that between the light quark and a heavy one, the doubly heavy baryons are related to the heavy mesons via heavy quark-diquark symmetry. Based on this symmetry, we predict the isospin splittings for doubly heavy baryons including {Xi}{sub cc}, {Xi}{sub bb} and {Xi}{sub bc}. The prediction for the {Xi}{sub cc} is much smaller than the SELEX value. On the other hand, the {Xi}{sub bb} baryons are predicted to have an isospin splitting as large as (6.3 {+-} 1.7) MeV. An experimental study of doubly bottomed baryons is therefore very important to better understand the structure of baryons with heavy quarks.
Results and Frontiers in Lattice Baryon Spectroscopy
John Bulava; Robert Edwards; George Fleming; K.Jimmy Juge; Adam C. Lichtl; Nilmani Mathur; Colin Morningstar; David Richards; Stephen J. Wallace
2007-06-16
The Lattice Hadron Physics Collaboration (LHPC) baryon spectroscopy effort is reviewed. To date the LHPC has performed exploratory Lattice QCD calculations of the low-lying spectrum of Nucleon and Delta baryons. These calculations demonstrate the effectiveness of our method by obtaining the masses of an unprecedented number of excited states with definite quantum numbers. Future work of the project is outlined.
Results and Frontiers in Lattice Baryon Spectroscopy
Bulava, John; Morningstar, Colin; Edwards, Robert; Richards, David; Fleming, George; Juge, K. Jimmy; Lichtl, Adam C.; Mathur, Nilmani; Wallace, Stephen J.
2007-10-26
The Lattice Hadron Physics Collaboration (LHPC) baryon spectroscopy effort is reviewed. To date the LHPC has performed exploratory Lattice QCD calculations of the low-lying spectrum of Nucleon and Delta baryons. These calculations demonstrate the effectiveness of our method by obtaining the masses of an unprecedented number of excited states with definite quantum numbers. Future work of the project is outlined.
Exploring the simplest purely baryonic decay processes
NASA Astrophysics Data System (ADS)
Geng, C. Q.; Hsiao, Y. K.; Rodrigues, Eduardo
2016-07-01
Though not considered in general, purely baryonic decays could shed light on the puzzle of the baryon number asymmetry in the universe by means of a better understanding of the baryonic nature of our matter world. As such, they constitute a yet unexplored class of decay processes worth investigating. We propose to search for purely baryonic decay processes at the LHCb experiment. No such type of decay has ever been observed. In particular, we concentrate on the decay Λb0→p p ¯n , which is the simplest purely baryonic decay mode, with solely spin-1 /2 baryons involved. We predict its decay branching ratio to be B (Λb0→p p ¯ n )=(2. 0-0.2+0.3)×10-6 , which is sufficiently large to make the decay mode accessible to LHCb. Our study can be extended to other purely baryonic decays such as Λb0→p p ¯ Λ , Λb0→Λ p ¯ Λ , and Λb0→Λ Λ ¯Λ , as well as to similar decays of antitriplet b baryons such as Ξb0 ,-.
Analysis of resonance mechanism and conditions of train bridge system
NASA Astrophysics Data System (ADS)
Xia, H.; Zhang, N.; Guo, W. W.
2006-11-01
In this paper, the resonance mechanism and conditions of train-bridge system are investigated through theoretical derivations, numerical simulations and experimental data analyses. The resonant responses of the bridge induced by moving trains are classified into three types according to different resonance mechanisms: the first is related to the periodical actions of moving load series of the vertical weights, lateral centrifugal and wind forces of vehicles; the second is induced by the loading rate of moving load series of vehicles; the third is owing to the periodically loading of the swing forces of the train vehicles excited by track irregularities and wheel hunting movements. The vehicle resonance is induced by the periodical action of regular arrangement of bridge spans and their deflections. The resonant conditions are proposed and the corresponding resonant train speeds are determined. The application scopes of resonance conditions are discussed. The resonance of the train-bridge system is affected by the span, total length, lateral and vertical stiffness of the bridge, the compositions of the train, and the axle arrangements and natural frequencies of the vehicles. The resonant train speeds for some bridges are estimated and are compared with the critical train speeds obtained from the dynamic simulation of train-bridge interaction model or from the field measurements.
jSIPRO - analysis tool for magnetic resonance spectroscopic imaging.
Jiru, Filip; Skoch, Antonin; Wagnerova, Dita; Dezortova, Monika; Hajek, Milan
2013-10-01
Magnetic resonance spectroscopic imaging (MRSI) involves a huge number of spectra to be processed and analyzed. Several tools enabling MRSI data processing have been developed and widely used. However, the processing programs primarily focus on sophisticated spectra processing and offer limited support for the analysis of the calculated spectroscopic maps. In this paper the jSIPRO (java Spectroscopic Imaging PROcessing) program is presented, which is a java-based graphical interface enabling post-processing, viewing, analysis and result reporting of MRSI data. Interactive graphical processing as well as protocol controlled batch processing are available in jSIPRO. jSIPRO does not contain a built-in fitting program. Instead, it makes use of fitting programs from third parties and manages the data flows. Currently, automatic spectra processing using LCModel, TARQUIN and jMRUI programs are supported. Concentration and error values, fitted spectra, metabolite images and various parametric maps can be viewed for each calculated dataset. Metabolite images can be exported in the DICOM format either for archiving purposes or for the use in neurosurgery navigation systems. PMID:23870172
Resonances in extreme mass-ratio inspirals: Asymptotic and hyperasymptotic analysis
NASA Astrophysics Data System (ADS)
Gair, Jonathan; Yunes, Nicolás; Bender, Carl M.
2012-03-01
An expected source of gravitational waves for future detectors in space is the inspirals of small compact objects into much more massive black holes. These sources have the potential to provide a wealth of information about astronomy and fundamental physics. On short time scales the orbit of the small object is approximately geodesic. Generic geodesics for a Kerr black hole spacetime have a complete set of integrals and can be characterized by three frequencies of the motion. Over the course of an inspiral, a typical system will pass through resonances where two of these frequencies become commensurate. The effect of the resonance will be to alter significantly the rate of inspiral for the duration of the resonance. Understanding the impact of these resonances on gravitational wave phasing is important for the detection of these signals and for the exploitation of the observations for astrophysics and fundamental physics. Two differential equations that might describe the passage of an inspiral through such a resonance are investigated. These differences depending on whether it is the phase or the frequency components of a Fourier expansion of the motion that are taken to be continuous through the resonance. Asymptotic and hyperasymptotic analysis are used to find the late-time analytic behavior of the solution for a system that has passed through a resonance. Linearly growing (weak resonances) or linearly decaying (strong resonances) solutions are found depending on the strength of the resonance. In the weak-resonance case, frequency resonances leave an imprint (a resonant memory) on the gravitational wave frequency evolution. For frequency resonances, the transition between weak and strong resonances is characterized by a square-root-branch-cut singularity. On the strong resonance side of this singularity, solutions starting with different initial conditions bunch up into groups exponentially in the independent variable (time) and we show how this behavior can be
Baryon symmetric big bang cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
Baryon destruction by asymmetric dark matter
Davoudiasl, Hooman; Morrissey, David E.; Tulin, Sean; Sigurdson, Kris
2011-11-01
We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10{sup 29}-10{sup 32} yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.
Baryon destruction by asymmetric dark matter
Davoudiasl H.; Morrissey, D.; Sigurdson, K.; Tulin, S.
2011-11-10
We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10{sup 29}-10{sup 32} yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.
Systematic study of baryons in a three-body quark model
NASA Astrophysics Data System (ADS)
Aslanzadeh, M.; Rajabi, A. A.
2016-09-01
We investigated the structure of baryons within a three-body quark model based on hypercentral approach. We considered an SU(6)-invariant potential consisting of the well-known "Coulomb-plus-linear" potential plus some multipole interactions as V ( x) ∝ x - n with n > 2. Then, through an analytical solution, we obtained the energy eigenvalues and eigenfunctions of the three-body problem and evaluated some observables such as the mass spectrum of light baryons and both the electromagnetic elastic form factors, and the charge radii of nucleons. We compared our results with the experimental data and showed that the present model provides a good description of the observed resonances.
Design and analysis of coupled-resonator reconfigurable antenna
NASA Astrophysics Data System (ADS)
Hossain, M. I.; Faruque, M. R. I.; Islam, M. T.; Ali, M. T.
2016-01-01
In this paper, a coupled resonator with the microstrip patch antenna is proposed as a frequency reconfigurable antenna. The ground plane of the proposed microstrip patch antenna is modified with the proposed resonator structure to obtain reconfigurable characteristics. The resonator structure consists of two square split rings. The incorporation of proposed resonator structure with antenna makes it single-band antenna. The characteristics of proposed resonator structure can effectively deactivate by closing the splits of rings using switches, and hence, the dual-band characteristics of the antenna are recovered. The finite integration technique of computer simulation technology microwave studio is used throughout the investigation. The measurement of antenna performances is taken in an anechoic chamber. The measured and simulated performances of proposed reconfigurable antenna show very good agreement.
Spherical tensor analysis of nuclear magnetic resonance signals.
van Beek, Jacco D; Carravetta, Marina; Antonioli, Gian Carlo; Levitt, Malcolm H
2005-06-22
In a nuclear magnetic-resonance (NMR) experiment, the spin density operator may be regarded as a superposition of irreducible spherical tensor operators. Each of these spin operators evolves during the NMR experiment and may give rise to an NMR signal at a later time. The NMR signal at the end of a pulse sequence may, therefore, be regarded as a superposition of spherical components, each derived from a different spherical tensor operator. We describe an experimental method, called spherical tensor analysis (STA), which allows the complete resolution of the NMR signal into its individual spherical components. The method is demonstrated on a powder of a (13)C-labeled amino acid, exposed to a pulse sequence generating a double-quantum effective Hamiltonian. The propagation of spin order through the space of spherical tensor operators is revealed by the STA procedure, both in static and rotating solids. Possible applications of STA to the NMR of liquids, liquid crystals, and solids are discussed. PMID:16035785
Electron spin resonance spectral analysis of irradiated royal jelly.
Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi
2014-01-15
The analysis of unpaired electron components in royal jelly was carried out using electron spin resonance (ESR) with the aim to develop a detection method for irradiated royal jelly. The ESR spectrum of royal jelly had natural signals derived from transition metals, including Fe(3+) and Cu(2+), and a signal line near g=2.00. After irradiation, a new splitting asymmetric spectrum with overall spectrum width ca. 10mT at g=2.004 was observed. The intensities of the signals at g=2.004 increased in proportion to the absorbed dose in samples under different storage conditions: fresh frozen royal jelly and dried royal jelly powder at room temperature. The signal intensity of the fresh frozen sample was stable after irradiation. One year after 10kGy irradiation of dried powder, the signal intensity was sevenfold greater than before irradiation, although the intensity continued to steadily decrease with time. This stable radiation-induced radical component was derived from the poorly soluble constituent of royal jelly.
Neutral Pion Electroproduction in the Δ Resonance Region
Villano, Anthony
2007-11-01
The electroproduction of baryon resonances at high Q^{2} is examined. Analysis focuses on the Δ(1232) resonance via exclusive pseudoscalar meson production of π^{0} particles. Differential cross sections are extracted for exclusive π^{0} electroproduction. In the central invariant mass (W) region the cross sections are used to extract resonant multipole amplitudes. In particular, the ratio of the electric quadrupole to magnetic dipole amplitudes (E2/M1) will be discussed for the Δ(1232) resonance. The transition to pQCD is discussed in terms of E2/M1 and other multipoles. The helicity amplitude A_{3/2} can be used as a baryon helicity conservation meter in this context and will be discussed. The fast shrinking of the resonant contribution in the Δ region is observed at this high momentum transfer. Apart from the observables related to pQCD scaling, the transition form factor G$*\\atop{M}$ is extracted along with the scalar to magnetic dipole ratio C2/M1.
Baryons in O(4) and the vibron model
NASA Astrophysics Data System (ADS)
Kirchbach, M.; Moshinsky, M.; Smirnov, Yu. F.
2001-12-01
The structure of the reported excitation spectra of light unflavored baryons is described in terms of multispin valued Lorentz group representations of the so called Rarita-Schwinger (RS) type (K/2,K/2)⊗[(12,0)⊕(0,12)] with K=1,3, and 5. We first motivate the legitimacy of such a pattern as fundamental fields as they emerge in the decomposition of triple fermion constructs into Lorentz representations. We then study the baryon realization of RS fields as composite systems by means of the quark version of the U(4) symmetric diatomic rovibron model. In using the U(4)⊃O(4)⊃O(3)⊃O(2) reduction chain, we are able to reproduce the quantum numbers and mass splittings of the above resonance assemblies. We present essentials of the four dimensional angular momentum algebra, and construct electromagnetic tensor operators. The predictive power of the model is illustrated by ratios of reduced probabilities concerning electric de-excitations of various resonances to the nucleon.
Analysis of a Precambrian resonance-stabilized day length
NASA Astrophysics Data System (ADS)
Bartlett, Benjamin C.; Stevenson, David J.
2016-06-01
During the Precambrian era, Earth's decelerating rotation would have passed a 21 h period that would have been resonant with the semidiurnal atmospheric thermal tide. Near this point, the atmospheric torque would have been maximized, being comparable in magnitude but opposite in direction to the lunar torque, halting Earth's rotational deceleration, maintaining a constant day length, as detailed by Zahnle and Walker (1987). We develop a computational model to determine necessary conditions for formation and breakage of this resonant effect. Our simulations show the resonance to be resilient to atmospheric thermal noise but suggest a sudden atmospheric temperature increase like the deglaciation period following a possible "snowball Earth" near the end of the Precambrian would break this resonance; the Marinoan and Sturtian glaciations seem the most likely candidates for this event. Our model provides a simulated day length over time that resembles existing paleorotational data, though further data are needed to verify this hypothesis.
Analysis of the optical force in the Micro Ring Resonator.
Einat, Avigdor; Levy, Uriel
2011-10-10
We study the optical force in a micro ring resonator coupled to a bus waveguide, using the coupled mode theory and a numerical Finite Element Method. We show that the resonance enhancement of the force is diminished by the opposing contributions of the attractive and the repulsive forces related to the symmetric and the anti symmetric modes in the coupling region. We show that this limiting factor can be removed by adding asymmetry to the system, e.g. by modifying one of the waveguides. Furthermore, we study for the first time a combined system in which the micro ring resonator is coupled to a one dimensional photonic crystal waveguide. This modified geometry allows further enhancement of the optical force via the combination of optical resonances and slow light effect.
Analysis of the optical force in the Micro Ring Resonator.
Einat, Avigdor; Levy, Uriel
2011-10-10
We study the optical force in a micro ring resonator coupled to a bus waveguide, using the coupled mode theory and a numerical Finite Element Method. We show that the resonance enhancement of the force is diminished by the opposing contributions of the attractive and the repulsive forces related to the symmetric and the anti symmetric modes in the coupling region. We show that this limiting factor can be removed by adding asymmetry to the system, e.g. by modifying one of the waveguides. Furthermore, we study for the first time a combined system in which the micro ring resonator is coupled to a one dimensional photonic crystal waveguide. This modified geometry allows further enhancement of the optical force via the combination of optical resonances and slow light effect. PMID:21997050
Analysis and approximations for crossing two nearby spin resonances
Ranjbar, V. H.
2014-01-07
Solutions to the T-BMT spin equation have to date been confined to the single resonance crossing. However, in reality most cases of interest concern the overlapping of several resonances. To date there has been several serious studies of this problem; however, a good analytical solution or even approximation has eluded the community. We show that the T-BMT equation can be transformed into a Hill’s like equation. In this representation it can be shown that, while the single resonance crossing represents the solution to the Parabolic Cylinder equation, the overlapping case becomes a parametric type of resonance. We present possible approximations for both the non-accelerating case and accelerating case.
Study of b-baryons at D0 in Run II of the Tevatron
De La Crus Burelo, Eduard; /Michigan U.
2008-04-01
The study of b-baryons is a unique opportunity at the Tevatron collider, which is the only running accelerator where these particles are expected to be produced. At the beginning of RunII of the Tevatron and after almost 30 years of the discovery of the b quark at Fermilab, the lack of statistics had restricted our knowledge on b-baryons to the observation of the lightest b-baryon, the {Lambda}{sub b}, and to its lifetime measured in decays which did not allow a fully reconstruction of this particle. I present results of the search for b-baryons in the D0 experiment. As part of this program, a precise measurement of the {Lambda}{sub b} lifetime was performed, and the discovery of the {Xi}{sub b}{sup -} resulted from an analysis of 1.3 fb{sup -1} of data collected with the D0 detector during 2002-2006.
Latest Lattice Results for Baryon Spectroscopy
Richards, David
2010-09-01
Theoretical and computational advances have enabled not only the masses of the ground states, but also some of the low-lying excited states to be calculated using Lattice Gauge Theory. In this talk, I look at recent progress aimed at understanding the spectrum of baryon excited states, including both baryons composed of the light $u$ and $d$ quarks, and of the heavier quarks. I then describe recent work aimed at understanding the radiative transitions between baryons, and in particular the $N-{\\rm Roper}$ transition. I conclude with the prospects for future calculations.
Resonance Frequency Analysis for Surface-Coupled AFM Cantilever in Liquids
Mirman, B; Kalinin, Sergei V
2008-01-01
Shifts in the resonance frequencies of surface-coupled atomic force microscope (AFM) probes are used as the basis for the detection mechanisms in a number of scanning probe microscopy techniques including atomic force acoustic microscopy (AFAM), force modulation microscopy, and resonance enhanced piezoresponse force microscopy (PFM). Here, we analyze resonance characteristics for AFM cantilever coupled to surface in liquid environment, and derive approximate expressions for resonant frequencies as a function of vertical and lateral spring constant of the tip-surface junction. This analysis provides a simplified framework for the interpretation of AFAM and PFM data in ambient, liquid, and vacuum environments.
Theoretical analysis of surface-plasmon-polariton resonators in free space and close to an interface
NASA Astrophysics Data System (ADS)
Jung, Jesper; Søndergaard, Thomas
2008-04-01
Surface-plasmon-polariton (SPP) resonators consisting of metal strips in free space, and gap plasmon polariton resonators consisting of a metal strip close to either a block of metal or a metal surface, are studied as optical resonators. The analysis is performed using the Green's function surface integral equation method. For strips in free space, we show how the scattering resonances can be understood, by thinking of the strips as optical resonators for short-range SPPs. The two gap resonator configurations, strip-block and strip-surface, have different structure terminations as the width of the strip and the block are identical whereas the surface is infinite. In the strip-surface configuration, the scattering resonances are broader and red-shifted, compared to the strip-block configuration. This is explained as a consequence of the effective length of the resonator being larger in the strip-surface configuration. By varying the gap size, we study the transition from a SPP resonator to a gap plasmon polariton resonator. In the strip-surface configuration, light can be scattered into both out-of-plane propagating waves and into SPPs that propagate along the surface. For small gaps of a few tens of nanometers, a large enhancement in the scattering cross section is seen due to strong scattering into SPPs.
Insertion torque, resonance frequency, and removal torque analysis of microimplants.
Tseng, Yu-Chuan; Ting, Chun-Chan; Du, Je-Kang; Chen, Chun-Ming; Wu, Ju-Hui; Chen, Hong-Sen
2016-09-01
This study aimed to compare the insertion torque (IT), resonance frequency (RF), and removal torque (RT) among three microimplant brands. Thirty microimplants of the three brands were used as follows: Type A (titanium alloy, 1.5-mm × 8-mm), Type B (stainless steel, 1.5-mm × 8-mm), and Type C (titanium alloy, 1.5-mm × 9-mm). A synthetic bone with a 2-mm cortical bone and bone marrow was used. Each microimplant was inserted into the synthetic bone, without predrilling, to a 7 mm depth. The IT, RF, and RT were measured in both vertical and horizontal directions. One-way analysis of variance and Spearman's rank correlation coefficient tests were used for intergroup and intragroup comparisons, respectively. In the vertical test, the ITs of Type C (7.8 Ncm) and Type B (7.5 Ncm) were significantly higher than that of Type A (4.4 Ncm). The RFs of Type C (11.5 kHz) and Type A (10.2 kHz) were significantly higher than that of Type B (7.5 kHz). Type C (7.4 Ncm) and Type B (7.3 Ncm) had significantly higher RTs than did Type A (4.1 Ncm). In the horizontal test, both the ITs and RTs were significantly higher for Type C, compared with Type A. No significant differences were found among the groups, and the study hypothesis was accepted. Type A had the lowest inner/outer diameter ratio and widest apical facing angle, engendering the lowest IT and highest RF values. However, no significant correlations in the IT, RF, and RT were observed among the three groups.
Insertion torque, resonance frequency, and removal torque analysis of microimplants.
Tseng, Yu-Chuan; Ting, Chun-Chan; Du, Je-Kang; Chen, Chun-Ming; Wu, Ju-Hui; Chen, Hong-Sen
2016-09-01
This study aimed to compare the insertion torque (IT), resonance frequency (RF), and removal torque (RT) among three microimplant brands. Thirty microimplants of the three brands were used as follows: Type A (titanium alloy, 1.5-mm × 8-mm), Type B (stainless steel, 1.5-mm × 8-mm), and Type C (titanium alloy, 1.5-mm × 9-mm). A synthetic bone with a 2-mm cortical bone and bone marrow was used. Each microimplant was inserted into the synthetic bone, without predrilling, to a 7 mm depth. The IT, RF, and RT were measured in both vertical and horizontal directions. One-way analysis of variance and Spearman's rank correlation coefficient tests were used for intergroup and intragroup comparisons, respectively. In the vertical test, the ITs of Type C (7.8 Ncm) and Type B (7.5 Ncm) were significantly higher than that of Type A (4.4 Ncm). The RFs of Type C (11.5 kHz) and Type A (10.2 kHz) were significantly higher than that of Type B (7.5 kHz). Type C (7.4 Ncm) and Type B (7.3 Ncm) had significantly higher RTs than did Type A (4.1 Ncm). In the horizontal test, both the ITs and RTs were significantly higher for Type C, compared with Type A. No significant differences were found among the groups, and the study hypothesis was accepted. Type A had the lowest inner/outer diameter ratio and widest apical facing angle, engendering the lowest IT and highest RF values. However, no significant correlations in the IT, RF, and RT were observed among the three groups. PMID:27638407
Suppression of Baryon Diffusion and Transport in a Baryon Rich Strongly Coupled Quark-Gluon Plasma.
Rougemont, Romulo; Noronha, Jorge; Noronha-Hostler, Jacquelyn
2015-11-13
Five dimensional black hole solutions that describe the QCD crossover transition seen in (2+1)-flavor lattice QCD calculations at zero and nonzero baryon densities are used to obtain predictions for the baryon susceptibility, baryon conductivity, baryon diffusion constant, and thermal conductivity of the strongly coupled quark-gluon plasma in the range of temperatures 130 MeV≤T≤300 MeV and baryon chemical potentials 0≤μ(B)≤400 MeV. Diffusive transport is predicted to be suppressed in this region of the QCD phase diagram, which is consistent with the existence of a critical end point at larger baryon densities. We also calculate the fourth-order baryon susceptibility at zero baryon chemical potential and find quantitative agreement with recent lattice results. The baryon transport coefficients computed in this Letter can be readily implemented in state-of-the-art hydrodynamic codes used to investigate the dense QGP currently produced at RHIC's low energy beam scan.
Suppression of Baryon Diffusion and Transport in a Baryon Rich Strongly Coupled Quark-Gluon Plasma.
Rougemont, Romulo; Noronha, Jorge; Noronha-Hostler, Jacquelyn
2015-11-13
Five dimensional black hole solutions that describe the QCD crossover transition seen in (2+1)-flavor lattice QCD calculations at zero and nonzero baryon densities are used to obtain predictions for the baryon susceptibility, baryon conductivity, baryon diffusion constant, and thermal conductivity of the strongly coupled quark-gluon plasma in the range of temperatures 130 MeV≤T≤300 MeV and baryon chemical potentials 0≤μ(B)≤400 MeV. Diffusive transport is predicted to be suppressed in this region of the QCD phase diagram, which is consistent with the existence of a critical end point at larger baryon densities. We also calculate the fourth-order baryon susceptibility at zero baryon chemical potential and find quantitative agreement with recent lattice results. The baryon transport coefficients computed in this Letter can be readily implemented in state-of-the-art hydrodynamic codes used to investigate the dense QGP currently produced at RHIC's low energy beam scan. PMID:26613433
Relativistic quark-diquark model of baryons
Ferretti, J.; Vassallo, A.; Santopinto, E.
2011-06-15
A relativistic quark-diquark mass operator with direct and exchange interaction has been constructed in the framework of point form dynamics. The nonstrange baryon spectrum has been calculated and compared with experimental data.
Disentangling the Dynamical Origin of P11 Nucleon Resonances
Nobuhiko Suzuki, Bruno Julia Diaz, Hiroyuki Kamano, Tsung-Shung Lee, Akihiko Matsuyama, Toru Sato
2010-01-01
The dynamical origins of the two poles associated with the Roper resonance are examined. Both of them together with the next higher resonance in the P11 partial wave are found to have the same originating bare state, indicating that the coupling to the meson-baryon continuum induces multiple observed resonances from the same bare state. Concerning other partial waves, the resonance poles extracted within the same multi-channels multi-resonances model of pi N reactions are compared to those listed by the Particle Data Group (PDG). Within our reaction model, all the identified resonances consist of a core state and meson-baryon components.
Baryonic torii: Toroidal baryons in a generalized Skyrme model
NASA Astrophysics Data System (ADS)
Gudnason, Sven Bjarke; Nitta, Muneto
2015-02-01
We study a Skyrme-type model with a potential term motivated by Bose-Einstein condensates (BECs), which we call the BEC Skyrme model. We consider two flavors of the model: the first is the Skyrme model, and the second has a sixth-order derivative term instead of the Skyrme term, both with the added BEC-motivated potential. The model contains toroidally shaped Skyrmions, and they are characterized by two integers P and Q , representing the winding numbers of two complex scalar fields along the toroidal and poloidal cycles of the torus, respectively. The baryon number is B =P Q . We find stable Skyrmion solutions for P =1 ,2 ,3 ,4 ,5 with Q =1 , while for P =6 and Q =1 , it is only metastable. We further find that configurations with higher Q >1 are all unstable and split into Q configurations with Q =1 . Finally we discover a phase transition, possibly of first order, in the mass parameter of the potential under study.
Observation of semileptonic decays of charmed baryons
Vella, E.; Trilling, G.H.; Abrams, G.S.; Alam, M.S.; Blocker, C.A.; Blondel, A.; Boyarski, A.M.; Breidenbach, M.; Burke, D.L.; Carithers, W.C.; Chinowsky, W.; Coles, M.W.; Cooper, S.; Dieterle, W.E.; Dillon, J.B.; Dorenbosch, J.; Dorfan, J.M.; Eaton, M.W.; Feldman, G.J.; Franklin, M.E.B.; Gidal, G.; Goldhaber, G.; Hanson, G.; Hayes, K.G.; Himel, T.; Hitlin, D.G.; Hollebeek, R.J.; Innes, W.R.; Jaros, J.A.; Jenni, P.; Johnson, A.D.; Kadyk, J.A.; Lankford, A.J.; Larsen, R.R.; Lueth, V.; Millikan, R.E.; Nelson, M.E.; Pang, C.Y.; Patrick, J.F.; Perl, M.L.; Richter, B.; Roussarie, A.; Scharre, D.L.; Schindler, R.H.; Schwitters, R.F.; Siegrist, J.L.; Strait, J.; Taureg, H.; Tonutti, M.; Vidal, R.A.; Videau, I.; Weiss, J.M.; Zaccone, H.
1982-05-31
Direct electrons are observed in baryon events produced in e/sup +/e/sup -/ annihilation at center-of-mass energies above the ..lambda../sub c/Lambda-bar/sub c/ threshold. These events are attributed to charmed baryon pair production and subsequent ..lambda../sub c/ semileptonic decay. Various semileptonic branching ratios of the ..lambda../sub c/ are determined, including BR(..lambda../sub c/..-->..e/sup +/X) = (4.5 +- 1.7)%.
String junction as a baryonic constituent
NASA Astrophysics Data System (ADS)
Kalashnikova, Yu. S.; Nefediev, A. V.
1996-02-01
We extend the model for QCD string with quarks to consider the Mercedes Benz string configuration describing the three-quark baryon. Under the assumption of adiabatic separation of quark and string junction motion we formulate and solve the classical equation of motion for the junction. We dare to quantize the motion of the junction, and discuss the impact of these modes on the baryon spectra.
Meson and baryon spectroscopy on the lattice
David Richards
2010-12-01
Recent progress at understanding the excited state spectrum of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum, and the program of anisotropic clover lattice generation designed for hadron spectroscopy. I present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.
Baryons in the Field Correlator Method
Kezerashvili, R. Ya.; Narodetskii, I. M.; Veselov, A. I.
2009-12-17
The ground and P-wave excited states of nnn, nns and ssn baryons are studied in the framework of the field correlator method using the running strong coupling constant in the Coulomb-like part of the three-quark potential. The string correction for the confinement potential of the orbitally excited baryons, which is the leading contribution of the proper inertia of the rotating strings, is estimated.
Harmonic-Resonance Analysis in a Maglev Feeding System
NASA Astrophysics Data System (ADS)
Shigeeda, Hidenori; Okui, Akinobu; Akagi, Hirofumi
A feeding circuit for a superconducting magnetic levitation train system, or the so-called “maglev” consists of feeder cables and armature coils which show characteristics of a distributed-parameter line. Electric power is supplied to the cables and coils by PWM inverters whose output voltage contains a large amount of harmonics. As a result, a harmonic resonance may occur in the feeding circuit. Besides the above characteristics, the connecting point of sections (groups of armature coils) or the feeder cables length changes according to the movement of a maglev train, thus causing changes in the harmonic-resonance characteristics of the feeding circuit. This paper describes analytical results of the harmonic resonance in the feeding circuit for the maglev, with the focus on changes in the connecting point of sections and the feeder cables length.
Dielectric loss analysis using linear resonators with different impedances
NASA Astrophysics Data System (ADS)
Sarabi, Bahman; Khalil, M. S.; Khasawneh, M. A.; Stoutimore, M. J. A.; Gladchenko, Sergiy; Wellstood, F. C.; Lobb, C. J.; Osborn, K. D.
2012-02-01
It is known that amorphous dielectrics are a major source of decoherence in superconducting qubits due to energy absorption by two-level systems coupled to the electric fields. Linear resonators have been applied extensively to study loss in different dielectrics used in qubit circuits due to their versatility and relative simplicity in design, fabrication and measurement. We have designed linear resonators with multi-turn inductors and parallel-plate capacitors with resonance frequencies of 4.8-6.4 GHz. We achieve substantially different L/C values and capacitor volumes by varying the number of inductance turns and the area of the capacitors. We will present results of continuous wave measurements with SiNx capacitors and show how loss tangent and phase noise are related to impedance and capacitor volume.
Analysis of whispering-gallery superconducting dielectric resonator modes
Zhou Shiping; Jabbar, A. )
1991-06-01
The whispering-gallery (WG) modes of a superconducting dielectric resonator (SDR) based on a sapphire cylindrical dielectric resonator and a YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} shielding cylinder were studied. A method for the determination of the resonant frequencies and the maximum quality factor of such modes is presented. Calculations have shown that most of the mode energy could be confined between the caustic surface of the WG modes provided the dimensions of the SDR are properly selected, and a magnitude of 10{sup 9} for Q of the SDR could be estimated. A phenomenal explanation is given to account for such outstanding microwave behavior.
How resonance assists hydrogen bonding interactions: an energy decomposition analysis.
Beck, John Frederick; Mo, Yirong
2007-01-15
Block-localized wave function (BLW) method, which is a variant of the ab initio valence bond (VB) theory, was employed to explore the nature of resonance-assisted hydrogen bonds (RAHBs) and to investigate the mechanism of synergistic interplay between pi delocalization and hydrogen-bonding interactions. We examined the dimers of formic acid, formamide, 4-pyrimidinone, 2-pyridinone, 2-hydroxpyridine, and 2-hydroxycyclopenta-2,4-dien-1-one. In addition, we studied the interactions in beta-diketone enols with a simplified model, namely the hydrogen bonds of 3-hydroxypropenal with both ethenol and formaldehyde. The intermolecular interaction energies, either with or without the involvement of pi resonance, were decomposed into the Hitler-London energy (DeltaEHL), polarization energy (DeltaEpol), charge transfer energy (DeltaECT), and electron correlation energy (DeltaEcor) terms. This allows for the examination of the character of hydrogen bonds and the impact of pi conjugation on hydrogen bonding interactions. Although it has been proposed that resonance-assisted hydrogen bonds are accompanied with an increasing of covalency character, our analyses showed that the enhanced interactions mostly originate from the classical dipole-dipole (i.e., electrostatic) attraction, as resonance redistributes the electron density and increases the dipole moments in monomers. The covalency of hydrogen bonds, however, changes very little. This disputes the belief that RAHB is primarily covalent in nature. Accordingly, we recommend the term "resonance-assisted binding (RAB)" instead of "resonance-assisted hydrogen bonding (RHAB)" to highlight the electrostatic, which is a long-range effect, rather than the electron transfer nature of the enhanced stabilization in RAHBs. PMID:17143867
Magnetic resonance imaging as a tool for extravehicular activity analysis
NASA Technical Reports Server (NTRS)
Dickenson, R.; Lorenz, C.; Peterson, S.; Strauss, A.; Main, J.
1992-01-01
The purpose of this research is to examine the value of magnetic resonance imaging (MRI) as a means of conducting kinematic studies of the hand for the purpose of EVA capability enhancement. After imaging the subject hand using a magnetic resonance scanner, the resulting 2D slices were reconstructed into a 3D model of the proximal phalanx of the left hand. Using the coordinates of several landmark positions, one is then able to decompose the motion of the rigid body. MRI offers highly accurate measurements due to its tomographic nature without the problems associated with other imaging modalities for in vivo studies.
Precombination Cloud Collapse and Baryonic Dark Matter
NASA Technical Reports Server (NTRS)
Hogan, Craig J.
1993-01-01
A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.
Spin-flavor composition of excited baryons
NASA Astrophysics Data System (ADS)
Fernando, Ishara; Goity, Jose
2015-10-01
The excited baryon masses are analyzed in the framework of the 1 /Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU (6) × O (3) , where the [ 56 ,lP =0+ ] ground state and excited baryons, and the [ 56 ,2+ ] and [ 70 ,1- ] excited states are analyzed. The analyses are carried out to O 1 /Nc and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. Predictions for physically unknown states for each multiplet are obtained. From the quark-mass dependence of the coefficients in the baryon mass formulas an increasingly simpler picture of the spin-flavor composition of the baryons is observed with increasing pion mass (equivalently, increasing mu , d masses), as measured by the number of significant mass operators. This work was supported in part by DOE Contract No. DE-AC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility (J. L. G.), and by the NSF (USA) through Grant PHY-0855789 and PHY-1307413 (I. P. F and J. L. G).
The baryonic mass function of galaxies.
Read, J I; Trentham, Neil
2005-12-15
In the Big Bang about 5% of the mass that was created was in the form of normal baryonic matter (neutrons and protons). Of this about 10% ended up in galaxies in the form of stars or of gas (that can be in molecules, can be atomic, or can be ionized). In this work, we measure the baryonic mass function of galaxies, which describes how the baryonic mass is distributed within galaxies of different types (e.g. spiral or elliptical) and of different sizes. This can provide useful constraints on our current cosmology, convolved with our understanding of how galaxies form. This work relies on various large astronomical surveys, e.g. the optical Sloan Digital Sky Survey (to observe stars) and the HIPASS radio survey (to observe atomic gas). We then perform an integral over our mass function to determine the cosmological density of baryons in galaxies: Omega(b,gal)=0.0035. Most of these baryons are in stars: Omega(*)=0.0028. Only about 20% are in gas. The error on the quantities, as determined from the range obtained between different methods, is ca 10%; systematic errors may be much larger. Most (ca 90%) of the baryons in the Universe are not in galaxies. They probably exist in a warm/hot intergalactic medium. Searching for direct observational evidence and deeper theoretical understanding for this will form one of the major challenges for astronomy in the next decade. PMID:16286285
The baryon content of the Cosmic Web
Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline
2015-01-01
Big-Bang nucleosynthesis indicates that baryons account for 5% of the Universe’s total energy content[1]. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two[2,3]. Cosmological simulations indicate that the missing baryons have not yet condensed into virialised halos, but reside throughout the filaments of the cosmic web: a low-density plasma at temperature 105–107 K known as the warm-hot intergalactic medium (WHIM)[3,4,5,6]. There have been previous claims of the detection of warm baryons along the line of sight to distant blazars[7,8,9,10] and hot gas between interacting clusters[11,12,13,14]. These observations were however unable to trace the large-scale filamentary structure, or to estimate the total amount of warm baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of ten-million-degree gas associated with the galaxy cluster Abell 2744. Previous observations of this cluster[15] were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we reveal hot gas structures that are coherent over 8 Mpc scales. The filaments coincide with over-densities of galaxies and dark matter, with 5-10% of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. PMID:26632589
Simultaneous magnetic resonance imaging and pharmacokinetic analysis of intramuscular depots.
Probst, Mareike; Kühn, Jens-Peter; Scheuch, Eberhard; Seidlitz, Anne; Hadlich, Stefan; Evert, Katja; Oswald, Stefan; Siegmund, Werner; Weitschies, Werner
2016-04-10
The present pilot study introduces a method that might give novel insights in drug absorption processes from intramuscularly administered depots. An oily suspension or an aqueous solution of paracetamol (6 mg/kg body mass), prednisolone or its hemisuccinate sodium salt for the aqueous solutions (10mg/kg body mass) or diclofenac (10mg/kg body mass) was injected into the muscle tissue of the hind leg of female Lewis-rats (n=47). For the oily suspensions the micronized particles were suspended in medium-chain triglycerides. The aqueous solutions were buffered to a pH of 7.4 ± 0.5. Polyethylene glycol was added as a cosolvent in the formulations containing paracetamol (acetaminophen) and diclofenac and sodium chloride was added to the aqueous solutions of prednisolone hemisuccinate sodium to achieve nearly isotonic formulations. The formed depot was visualized by magnetic resonance imaging (MRI) and characterized with regard to volume and surface area. A 7 T-small animal scanner was used and T1-weighted and T2-weighted sequences including a fat saturation were performed. Simultaneously blood samples were taken and the drugs were quantitatively analyzed. The water based solvent and the oily dispersion agent were visible in the MRI images without the use of contrast agents. Since a free hand injection mostly led to an application directly into the fascia, resulting in a fast removal of the depot, MRI-guided injection was conducted. Comparing pharmacokinetic data with MRI data it was observed that maximal blood levels occurred before the solvent and the dispersion agent were removed from the muscle tissue. Thus, the drug is not absorbed together with the depot. Furthermore, no correlation was found between the shape of the depot and the rate of absorption. Consequently, a higher surface area or volume of the depot did not result in a faster release or absorption of the drugs from the tested formulations. In contrast to the paracetamol and prednisolone formulations the
Analysis of Continuous Microseismic Recordings: Resonance Frequencies and Unconventional Events
NASA Astrophysics Data System (ADS)
Tary, J.; van der Baan, M.
2012-12-01
Hydrofracture experiments, where fluids and proppant are injected into reservoirs to create fractures and enhance oil recovery, are often monitored using microseismic recordings. The total stimulated volume is then estimated by the size of the cloud of induced micro-earthquakes. This implies that only brittle failure should occur inside reservoirs during the fracturing. Yet, this assumption may not be correct, as the total energy injected into the system is orders of magnitude larger than the total energy associated with brittle failure. Instead of using only triggered events, it has been shown recently that the frequency content of continuous recordings may also provide information on the deformations occurring inside reservoirs. Here, we use different kinds of time-frequency transforms to track the presence of resonance frequencies. We analyze different data sets using regular, long-period and broadband geophones. The resonance frequencies observed are mainly included in the frequency band of 5-60 Hz. We systematically examine first the possible causes of resonance frequencies, dividing them into source, path and receiver effects. We then conclude that some of the observed frequency bands likely result from source effects. The resonance frequencies could be produced by either interconnected fluid-filled fractures in the order of tens of meters, or by small repetitive events occurring at a characteristic periodicity. Still, other mechanisms may occur or be predominant during reservoir fracturing, depending on the lithology as well as the pressure and temperature conditions at depth. During one experiment, both regular micro-earthquakes, long-period long-duration events (LPLD) and resonance frequencies are observed. The lower part of the frequency band of these resonance frequencies (5-30 Hz) overlaps with the anticipated frequencies of observed LPLDs in other experiments (<50 Hz). The exact origin of both resonance frequencies and LPLDs is still under debate
Locating the "Missing" Baryons with Extragalactic Dispersion Measure Estimates
NASA Astrophysics Data System (ADS)
McQuinn, Matthew
2014-01-01
Recently, Thornton and coworkers confirmed a class of millisecond radio bursts likely of extragalactic origin that is well-suited for estimating dispersion measures (DMs). We calculate the probability distribution of DM(z) in different models for how the cosmic baryons are distributed (both analytically and with cosmological simulations). We show that the distribution of DM is quite sensitive to whether the "missing" baryons lie around the virial radius of 1011-1013 M ⊙ halos or further out, which is not easily constrained with other observational techniques. The intrinsic contribution to DM from each source could complicate studies of the extragalactic contribution. This difficulty is avoided by stacking based on the impact parameter to foreground galaxies. We show that a stacking analysis using a sample of ~100 DM measurements from arcminute-localized, z >~ 0.5 sources would place interesting constraints at 0.2-2 halo virial radii on the baryonic mass profile surrounding different galaxy types. Conveniently for intergalactic studies, sightlines that intersect intervening galactic disks should be easily identified owing to scattering. A detectable level of scattering may also result from turbulence in the circumgalactic medium.
Study of B-Meson Decays to Final States with a Single Charm Baryon
Majewski, Stephanie A.
2007-08-01
A study of B-meson decays to final states with a single charm baryon is presented based on data recorded by the BABAR detector at the Stanford Linear Accelerator Center. Although the B meson is the lightest bottom-flavored meson, it is heavy enough to decay to a baryon made of three quarks and an antibaryon made of three antiquarks. By studying the baryonic weak decays of the B meson, we can investigate baryon production mechanisms in heavy meson decays. In particular, we measure the rates of the decays B^{-} → Λ^{+}_{c}$\\bar{p}$π^{-} and $\\bar{B}$^{0} → Λ^{+}_{c}$\\bar{p}$. Comparing these rates, we confirm an observed trend in baryonic B decays that the decay with the lower energy release, B^{-} → Λ^{+}_{c}$\\bar{p}$π^{-}, is favored over $\\bar{B}$^{0} → Λ^{+}_{c}$\\bar{p}$. The dynamics of the baryon-antibaryon (Λ^{+}_{c}$\\bar{p}$) system in the three-body decay also provide insight into baryon-antibaryon production mechanisms. The B^{-} → Λ^{+}_{c}$\\bar{p}$π^{-} system is a laboratory for searches for excited #c baryon states; we observe the resonant decays B^{-} → Σc(2455) ^{0}$\\bar{p}$ and B^{-} → Σ_{c}(2800) ^{0}$\\bar{p}$. This is the first observation of the decay B^{-} → Σ_{c}(2800) ^{0}$\\bar{p}$; however, the mass of the observed #c(2800)0 state is inconsistent with previous measurements. Finally, we examine the angular distribution of the B^{-} → Σ_{c}(2455) ^{0}$\\bar{p}$ decays and measure the spin of the B^{-} → Σ_{c}(2455) ^{0}$\\bar{p}$ baryon to be J = 1/2, as predicted by the quark model.
UV resonance Raman analysis of trishomocubane and diamondoid dimers
Meinke, Reinhard Thomsen, Christian; Maultzsch, Janina; Richter, Robert; Merli, Andrea; Fokin, Andrey A.; Koso, Tetyana V.; Schreiner, Peter R.; Rodionov, Vladimir N.
2014-01-21
We present resonance Raman measurements of crystalline trishomocubane and diamantane dimers containing a C=C double bond. Raman spectra were recorded with excitation energies between 2.33 eV and 5.42 eV. The strongest enhancement is observed for the C=C stretch vibration and a bending mode involving the two carbon atoms of the C=C bond, corresponding to the B{sub 2g} wagging mode of ethylene. This is associated with the localization of the π-HOMO and LUMO and the elongation of the C=C bond length and a pyramidalization of the two sp{sup 2}-hybridized carbon atoms at the optical excitation. The observed Raman resonance energies of the trishomocubane and diamantane dimers are significantly lower than the HOMO-LUMO gaps of the corresponding unmodified diamondoids.
Analysis of a Non-resonant Ultrasonic Levitation Device
NASA Astrophysics Data System (ADS)
Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.
In this study, a non-resonant configuration of ultrasonic levitation device is presented, which is formed by a small diameter ultrasonic transducer and a concave reflector. The influence of different levitator parameters on the levitation performance is investigated by using a numerical model that combines the Gor'kov theory with a matrix method based on the Rayleigh integral. In contrast with traditional acoustic levitators, the non-resonant ultrasonic levitation device allows the separation distance between the transducer and the reflector to be adjusted continually, without requiring the separation distance to be set to a multiple of half-wavelength. It is also demonstrated, both numerically and experimentally, that the levitating particle can be manipulated by maintaining the transducer in a fixed position in space and moving the reflector in respect to the transducer.
Magnetic resonance elastography (MRE) in cancer: Technique, analysis, and applications
Pepin, Kay M.; Ehman, Richard L.; McGee, Kiaran P.
2015-01-01
Tissue mechanical properties are significantly altered with the development of cancer. Magnetic resonance elastography (MRE) is a noninvasive technique capable of quantifying tissue mechanical properties in vivo. This review describes the basic principles of MRE and introduces some of the many promising MRE methods that have been developed for the detection and characterization of cancer, evaluation of response to therapy, and investigation of the underlying mechanical mechanisms associated with malignancy. PMID:26592944
Magnetic resonance elastography (MRE) in cancer: Technique, analysis, and applications.
Pepin, Kay M; Ehman, Richard L; McGee, Kiaran P
2015-11-01
Tissue mechanical properties are significantly altered with the development of cancer. Magnetic resonance elastography (MRE) is a noninvasive technique capable of quantifying tissue mechanical properties in vivo. This review describes the basic principles of MRE and introduces some of the many promising MRE methods that have been developed for the detection and characterization of cancer, evaluation of response to therapy, and investigation of the underlying mechanical mechanisms associated with malignancy. PMID:26592944
Vibration analysis of carbon nanotube-based resonator using nonlocal elasticity theory
NASA Astrophysics Data System (ADS)
Natsuki, Toshiaki; Matsuyama, Nobuhiro; Ni, Qing-Qing
2015-09-01
Carbon nanotubes (CNTs) are nanomaterials with extremely favorable mass sensor properties. In this paper, we propose that CNTs under clamped boundary condition and an axial tensile load are considered as CNT-based resonators. Moreover, the resonant frequencies and frequency shifts of the CNTs with attached nanomass are investigated based on vibration analysis, which used the nonlocal Euler-Bernoulli beam model. Using the present methods, we analyze and discuss the effects of the aspect ratio, the concentrated mass and the axial force on the resonant frequency of the CNTs. The results indicate that the CNT beam under the axial tensile loads could provide higher sensitivity as nanomechanical mass sensor.
Efficient and robust analysis of complex scattering data under noise in microwave resonators
Probst, S.; Song, F. B.; Bushev, P. A.; Ustinov, A. V.; Weides, M.
2015-02-15
Superconducting microwave resonators are reliable circuits widely used for detection and as test devices for material research. A reliable determination of their external and internal quality factors is crucial for many modern applications, which either require fast measurements or operate in the single photon regime with small signal to noise ratios. Here, we use the circle fit technique with diameter correction and provide a step by step guide for implementing an algorithm for robust fitting and calibration of complex resonator scattering data in the presence of noise. The speedup and robustness of the analysis are achieved by employing an algebraic rather than an iterative fit technique for the resonance circle.
Friedrich, Matthias G; Larose, Eric; Patton, David; Dick, Alexander; Merchant, Naeem; Paterson, Ian
2013-03-01
Cardiovascular magnetic resonance (CMR) imaging is a rapidly developing technology that is becoming increasingly important in the diagnostic assessment of heart disease. Recognizing the need for recommendations to optimize the use of this technique, the Canadian Society for Cardiovascular Magnetic Resonance developed a task force to generate recommendations on the clinical use of parameters acquired by CMR imaging and how they should be reported. This article is the consensus report generated by the task force. The online material of this report provides such parameters for all relevant clinical settings, including pediatric and congenital applications. It considers the current clinical role of CMR, general requirements for CMR imaging, components of CMR studies, quantitative CMR image analysis, and appropriate contents of CMR reports. The recommendations are based on previously published recommendations on analysis and reporting and are the first of their kind. It is hoped that the use of these recommendations to guide daily clinical routine will help institutions offering CMR to adhere to high standards of quality according to the present state of the art.
Nuclear quadrupole resonance studies project. [spectrometer design and spectrum analysis
NASA Technical Reports Server (NTRS)
Murty, A. N.
1978-01-01
The participation of undergraduates in nuclear quadrupole resonance research at Grambling University was made possible by NASA grants. Expanded laboratory capabilities include (1) facilities for high and low temperature generation and measurement; (2) facilities for radio frequency generation and measurement with the modern spectrum analyzers, precision frequency counters and standard signal generators; (3) vacuum and glass blowing facilities; and (4) miscellaneous electronic and machine shop facilities. Experiments carried out over a five year period are described and their results analyzed. Theoretical studies on solid state crystalline electrostatic fields, field gradients, and antishielding factors are included.
Baryon Spectroscopy and Operator Construction in Lattice QCD
S. Basak; I. Sato; S. Wallace; R. Edwards; D. Richards; R. Fiebig; G. Fleming; U. Heller; C. Morningstar
2004-07-01
This talk describes progress at understanding the properties of the nucleon and its excitations from lattice QCD. I begin with a review of recent lattice results for the lowest-lying states of the excited baryon spectrum. The need to approach physical values of the light quark masses is emphasized, enabling the effects of the pion cloud to be revealed. I then outline the development of techniques that will enable the extraction of the masses of the higher resonances. I will describe how such calculations provide insight into the structure of the hadrons, and enable comparison both with experiment, and with QCD-inspired pictures of hadron structure, such as calculations in the limit of large N{sub c}.
Resonance analysis and evaluation of the sup 235 U neutron induced cross sections
Leal, L.C.
1990-06-01
Neutron cross sections of fissile nuclei are of considerable interest for the understanding of parameters such as resonance absorption, resonance escape probability, resonance self-shielding,and the dependence of the reactivity on temperature. In the present study, new techniques for the evaluation of the {sup 235}U neutron cross sections are described. The Reich-Moore formalism of the Bayesian computer code SAMMY was used to perform consistent R-matrix multilevel analyses of the selected neutron cross-section data. The {Delta}{sub 3}-statistics of Dyson and Mehta, along with high-resolution data and the spin-separated fission cross-section data, have provided the possibility of developing a new methodology for the analysis and evaluation of neutron-nucleus cross sections. The results of the analysis consists of a set of resonance parameters which describe the {sup 235}U neutron cross sections up to 500 eV. The set of resonance parameters obtained through a R-matrix analysis are expected to satisfy statistical properties which lead to information on the nuclear structure. The resonance parameters were tested and showed good agreement with the theory. It is expected that the parametrization of the {sub 235}U neutron cross sections obtained in this dissertation represents the current state of art in data as well as in theory and, therefore, can be of direct use in reactor calculations. 44 refs., 21 figs., 8 tabs.
Spectroscopy of charmed baryons from lattice QCD
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael
2015-01-01
We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) x O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.
Dark matter assimilation into the baryon asymmetry
D'Eramo, Francesco; Fei, Lin; Thaler, Jesse E-mail: lfei@mit.edu
2012-03-01
Pure singlets are typically disfavored as dark matter candidates, since they generically have a thermal relic abundance larger than the observed value. In this paper, we propose a new dark matter mechanism called {sup a}ssimilation{sup ,} which takes advantage of the baryon asymmetry of the universe to generate the correct relic abundance of singlet dark matter. Through assimilation, dark matter itself is efficiently destroyed, but dark matter number is stored in new quasi-stable heavy states which carry the baryon asymmetry. The subsequent annihilation and late-time decay of these heavy states yields (symmetric) dark matter as well as (asymmetric) standard model baryons. We study in detail the case of pure bino dark matter by augmenting the minimal supersymmetric standard model with vector-like chiral multiplets. In the parameter range where this mechanism is effective, the LHC can discover long-lived charged particles which were responsible for assimilating dark matter.
Production and decay of charmed baryons
NASA Astrophysics Data System (ADS)
Hosaka, Atsushi; Hiyama, Emiko; Kim, SangHo; Kim, Hyun-Chul; Nagahiro, Hideko; Noumi, Hiroyuki; Oka, Makoto; Shirotori, Kotaro; Yoshida, Tetsuya; Yasui, Shigehiro
2016-10-01
In this paper, we discuss reactions involving charmed baryons to explore their unique features. A well known phenomenon, the separation of the two internal motions of the ρ and λ types of a three-quark system is revisited. First we discuss the mass spectrum of low lying excitations as function of the heavy quark mass, smoothly connecting the SU (3) and heavy quark limits. The properties of these modes can be tested in the production and decay reactions of the baryons. For production, we consider a one step process which excites dominantly λ modes. We find abundant production rates for some of the excited states. For decay, we study a pion emission process which provides a clean tool to test the structure of heavy quark systems due to the well controlled low energy dynamics of pions and quarks. Both production and decay of charmed baryons are issues for future experiments at J-PARC.
Heavy Baryons in a Quark Model
Winston Roberts; Muslema Pervin
2007-11-14
A quark model is applied to the spectrum of baryons containing heavy quarks. The model gives masses for the known heavy baryons that are in agreement with experiment, but for the doubly-charmed baryon $\\Xi_{cc}$, the model prediction is too heavy. Mixing between the $\\Xi_Q$ and $\\Xi_Q^\\prime$ states is examined and is found to be small for the lowest lying states. In contrast with this, mixing between the $\\Xi_{bc}$ and $\\Xi_{bc}^\\prime$ states is found to be large, and the implication of this mixing for properties of these states is briefly discussed. We also examine heavy-quark spin-symmetry multiplets, and find that many states in the model can be placed in such multiplets.
NASA Astrophysics Data System (ADS)
Plaschke, F.; Glassmeier, K.-H.; Constantinescu, O. D.; Mann, I. R.; Milling, D. K.; Motschmann, U.; Rae, I. J.
2008-11-01
In this paper we introduce the field line resonance detector (FLRD), a wave telescope technique which has been specially adapted to estimate the spectral energy density of field line resonance (FLR) phase structures in a superposed wave field. The field line resonance detector is able to detect and correctly characterize several superposed FLR structures of a wave field and therefore constitutes a new and powerful tool in ULF pulsation studies. In our work we derive the technique from the classical wave telescope beamformer and present a statistical analysis of one year of ground based magnetometer data from the Canadian magnetometer network CANOPUS, now known as CARISMA. The statistical analysis shows that the FLRD is capable of detecting and characterizing superposed or hidden FLR structures in most of the detected ULF pulsation events; the one year statistical database is therefore extraordinarily comprehensive. The results of this analysis confirm the results of previous FLR characterizations and furthermore allow a detailed generalized dispersion analysis of FLRs.
Analysis of Chaotic Resonance in Izhikevich Neuron Model.
Nobukawa, Sou; Nishimura, Haruhiko; Yamanishi, Teruya; Liu, Jian-Qin
2015-01-01
In stochastic resonance (SR), the presence of noise helps a nonlinear system amplify a weak (sub-threshold) signal. Chaotic resonance (CR) is a phenomenon similar to SR but without stochastic noise, which has been observed in neural systems. However, no study to date has investigated and compared the characteristics and performance of the signal responses of a spiking neural system in some chaotic states in CR. In this paper, we focus on the Izhikevich neuron model, which can reproduce major spike patterns that have been experimentally observed. We examine and classify the chaotic characteristics of this model by using Lyapunov exponents with a saltation matrix and Poincaré section methods in order to address the measurement challenge posed by the state-dependent jump in the resetting process. We found the existence of two distinctive states, a chaotic state involving primarily turbulent movement and an intermittent chaotic state. In order to assess the signal responses of CR in these classified states, we introduced an extended Izhikevich neuron model by considering weak periodic signals, and defined the cycle histogram of neuron spikes as well as the corresponding mutual correlation and information. Through computer simulations, we confirmed that both chaotic states in CR can sensitively respond to weak signals. Moreover, we found that the intermittent chaotic state exhibited a prompter response than the chaotic state with primarily turbulent movement.
Exciting Baryons: now and in the future
Michael Pennington
2012-04-01
This is the final talk of NSTAR2011 conference. It is not a summary talk, but rather a looking forward to what still needs to be done in excited baryon physics. In particular, we need to hone our tools connecting experimental inputs with QCD. At present we rely on models that often have doubtful connections with the underlying theory, and this needs to be dramatically improved, if we are to reach definitive conclusions about the relevant degrees of freedom of excited baryons. Conclusions that we want to have by NSTAR2021.
Observational tests of Baryon symmetric cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1982-01-01
Observational evidence for Baryon symmetric (matter/antimatter) cosmology and future observational tests are reviewed. The most significant consequences of Baryon symmetric cosmology lie in the prediction of an observable cosmic background of gamma radiation from the decay of pi(0)-mesons produced in nucleon-antinucleon annihilations. Equations for the prediction of the amma ray background spectrum for the case of high redshifts are presented. The theoretical and observational plots of the background spectrum are shown to be in good agreement. Measurement of cosmic ray antiprotons and the use of high energy neutrino astronomy to look for antimatter elsewhere in the universe are also addressed.
Baryon spectroscopy results at the Tevatron
Van Kooten, R.; /Indiana U.
2010-01-01
The Tevatron at Fermilab continues to collect data at high luminosity resulting in datasets in excess of 6 fb{sup -1} of integrated luminosity. The high collision energies allow for the observation of new heavy quark baryon states not currently accessible at any other facility. In addition to the ground state {Lambda}{sub b}, the spectroscopy and properties of the new heavy baryon states {Omega}{sub b}, {Xi}{sub b}, and {Sigma}{sub b}{sup (*)} as measured by the CDF and D0 Collaborations are presented.
Decuplet baryons in a hot medium
NASA Astrophysics Data System (ADS)
Azizi, K.; Bozkır, G.
2016-10-01
The thermal properties of the light decuplet baryons are investigated in the framework of the thermal QCD sum rules. In particular, the behavior of the mass and residue of the Δ , Σ ^{*}, Ξ ^{*}, and Ω baryons with respect to temperature are analyzed taking into account the additional operators appearing in the Wilson expansion at finite temperature. It is found that the mass and residue of these particles remain overall unaffected up to T≃ 150 MeV but, beyond this point, they start to diminish considerably.
Exciting baryons: Now and in the future
NASA Astrophysics Data System (ADS)
Pennington, M. R.
2012-04-01
This is the final talk of NSTAR2011 conference. It is not a summary talk, but rather a looking forward to what still needs to be done in excited baryon physics. In particular, we need to hone our tools connecting experimental inputs with QCD. At present we rely on models that often have doubtful connections with the underlying theory, and this needs to be dramatically improved, if we are to reach definitive conclusions about the relevant degrees of freedom of excited baryons. Conclusions that we want to have by NSTAR2021.
Baryon Spectroscopy Results at the Tevatron
Van Kooten, R.
2010-08-05
The Tevatron at Fermilab continues to collect data at high luminosity resulting in datasets in excess of 6 fb{sup -1} of integrated luminosity. The high collision energies allow for the observation of new heavy quark baryon states not currently accessible at any other facility. In addition to the ground state Lb, the spectroscopy and properties of the new heavy baryon states {Omega}{sub b}, {Xi}{sub b}, and {Sigma}{sub b}{sup (*)} as measured by the CDF and DOe Collaborations will be presented.
Multipacting Analysis for the Half-Wave Spoke Resonator Crab Cavity for LHC
Ge, Lixin; Li, Zenghai; /SLAC
2011-06-23
A compact 400-MHz half-wave spoke resonator (HWSR) superconducting crab cavity is being developed for the LHC upgrade. The cavity shape and the LOM/HOM couplers for such a design have been optimized to meet the space and beam dynamics requirements, and satisfactory RF parameters have been obtained. As it is known that multipacting is an issue of concern in a superconducting cavity which may limit the achievable gradient. Thus it is important in the cavity RF design to eliminate the potential MP conditions to save time and cost of cavity development. In this paper, we present the multipacting analysis for the HWSR crab cavity using the Track3P code developed at SLAC, and to discuss means to mitigate potential multipacting barriers. Track3P was used to analyze potential MP in the cavity and the LOM, HOM and FPC couplers. No resonances were found in the LOM couplers and the coaxial beam pipe. Resonant trajectories were identified on various locations in cavity, HOM and FPC couplers. Most of the resonances are not at the peak SEY of Nb. Run-away resonances were identified in broader areas on the cavity end plate and in the HOM coupler. The enhancement counter for run-away resonances does not show significant MP. HOM coupler geometry will be optimized to minimize the high SEY resonance.
Modeling and analysis of mechanical Quality factor of the resonator for cylinder vibratory gyroscope
NASA Astrophysics Data System (ADS)
Xi, Xiang; Wu, Xuezhong; Wu, Yulie; Zhang, Yongmeng
2016-08-01
Mechanical Quality factor(Q factor) of the resonator is an important parameter for the cylinder vibratory gyroscope(CVG). Traditional analytical methods mainly focus on a partial energy loss during the vibration process of the CVG resonator, thus are not accurate for the mechanical Q factor prediction. Therefore an integrated model including air damping loss, surface defect loss, support loss, thermoelastic damping loss and internal friction loss is proposed to obtain the mechanical Q factor of the CVG resonator. Based on structural dynamics and energy dissipation analysis, the contribution of each energy loss to the total mechanical Q factor is quantificationally analyzed. For the resonator with radius ranging from 10 mm to 20 mm, its mechanical Q factor is mainly related to the support loss, thermoelastic damping loss and internal friction loss, which are fundamentally determined by the geometric sizes and material properties of the resonator. In addition, resonators made of alloy 3J53 (Ni42CrTiAl), with different sizes, were experimentally fabricated to test the mechanical Q factor. The theoretical model is well verified by the experimental data, thus provides an effective theoretical method to design and predict the mechanical Q factor of the CVG resonator.
Analysis of light propagation in slotted resonator based systems via coupled-mode theory.
Hiremath, Kirankumar R; Niegemann, Jens; Busch, Kurt
2011-04-25
Optical devices with a slot configuration offer the distinct feature of strong electric field confinement in a low refractive index region and are, therefore, of considerable interest in many applications. In this work we investigate light propagation in a waveguide-resonator system where the resonators consist of slotted ring cavities. Owing to the presence of curved material interfaces and the vastly different length scales associated with the sub-wavelength sized slots and the waveguide-resonator coupling regions on the one hand, and the spatial extent of the ring on the other hand, this prototypical system provides significant challenges to both direct numerical solvers and semi-analytical approaches. We address these difficulties by modeling the slot resonators via a frequency-domain spatial Coupled-Mode Theory (CMT) approach, and compare its results with a Discontinuous Galerkin Time-Domain (DGTD) solver that is equipped with curvilinear finite elements. In particular, the CMT model is built on the underlying physical properties of the slotted resonators, and turns out to be quite efficient for analyzing the device characteristics. We also discuss the advantages and limitations of the CMT approach by comparing the results with the numerically exact solutions obtained by the DGTD solver. Besides providing considerable physical insight, the CMT model thus forms a convenient basis for the efficient analysis of more complex systems with slotted resonators such as entire arrays of waveguide-coupled resonators and systems with strongly nonlinear optical properties. PMID:21643116
Study of Charm Baryons with the BaBar Experiment
Petersen, Brian Aa.
2006-10-24
The authors report on several studies of charm baryon production and decays by the BABAR collaboration. They confirm previous observations of the {Xi}'{sub c}{sup 0/+}, {Xi}{sub c}(2980){sup +} and {Xi}{sub c}(3077){sup +} baryons, measure branching ratios for Cabibbo-suppressed {Lambda}{sub c}{sup +} decays and use baryon decays to study the properties of the light-quark baryons, {Omega}{sup -} and {Xi}(1690){sup 0}.
Diagnosis and Repair of Negative Polarity Constructions in the Light of Symbolic Resonance Analysis
ERIC Educational Resources Information Center
Drenhaus, Heiner; beim Graben, Peter; Saddy, Douglas; Frisch, Stefan
2006-01-01
In a post hoc analysis, we investigate differences in event-related potentials of two studies (Drenhaus et al., 2004, to appear; Saddy et al., 2004) by using the symbolic resonance analysis (Beim Graben & Kurths, 2003). The studies under discussion, examined the failure to license a negative polarity item (NPI) in German: Saddy et al. (2004a)…
Matrix theory for baryons: an overview of holographic QCD for nuclear physics.
Aoki, Sinya; Hashimoto, Koji; Iizuka, Norihiro
2013-10-01
We provide, for non-experts, a brief overview of holographic QCD (quantum chromodynamics) and a review of the recent proposal (Hashimoto et al 2010 (arXiv:1003.4988[hep-th])) of a matrix-like description of multi-baryon systems in holographic QCD. Based on the matrix model, we derive the baryon interaction at short distances in multi-flavor holographic QCD. We show that there is a very universal repulsive core of inter-baryon forces for a generic number of flavors. This is consistent with a recent lattice QCD analysis for Nf = 2, 3 where the repulsive core looks universal. We also provide a comparison of our results with the lattice QCD and the operator product expansion analysis.
Matrix theory for baryons: an overview of holographic QCD for nuclear physics
NASA Astrophysics Data System (ADS)
Aoki, Sinya; Hashimoto, Koji; Iizuka, Norihiro
2013-10-01
We provide, for non-experts, a brief overview of holographic QCD (quantum chromodynamics) and a review of the recent proposal (Hashimoto et al 2010 (arXiv:1003.4988[hep-th])) of a matrix-like description of multi-baryon systems in holographic QCD. Based on the matrix model, we derive the baryon interaction at short distances in multi-flavor holographic QCD. We show that there is a very universal repulsive core of inter-baryon forces for a generic number of flavors. This is consistent with a recent lattice QCD analysis for Nf = 2, 3 where the repulsive core looks universal. We also provide a comparison of our results with the lattice QCD and the operator product expansion analysis.
Nuclear magnetic resonance spectral analysis and molecular properties of berberine
NASA Astrophysics Data System (ADS)
Huang, Ming-Ju; Lee, Ken S.; Hurley, Sharon J.
An extensive theoretical study of berberine has been performed at the ab initio HF/6-31G**, HF/6-311G**, and B3LYP/6-311G** levels with and without solvent effects. The optimized structures are compared with X-ray data. We found that the optimized structures with solvent effects are in slightly better agreement with X-ray data than those without solvent effects. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of berberine were calculated by using the gauge-independent atomic orbital (GIAO) (with and without solvent effects), CSGT, and IGAIM methods. The calculated chemical shifts were compared with the two-dimensional NMR experimental data. Overall, the calculated chemical shifts show very good agreement with the experimental results. The harmonic vibrational frequencies for berberine were calculated at the B3LYP/6-311G** level.
Observation of an Exotic Baryon with S=+1 in Photoproduction from the Proton
Valery Kubarovsky; Lei Guo; Dennis Weygand; Paul Stoler; Marco Battaglieri; Raffaella De Vita; Gary Adams; Ji Li; Mina Nozar; Carlos Salgado; Pawel Ambrozewicz; Eric Anciant; Marco Anghinolfi; Burin Asavapibhop; Gerard Audit; Thierry Auger; Harutyun AVAKIAN; Hovhannes Baghdasaryan; Jacques Ball; Steve Barrow
2004-01-01
The reaction {gamma}p {yields} {pi}{sup +} K{sup -} K{sup +}n was studied at Jefferson Lab using a tagged photon beam with an energy range of 3-5.47 GeV. A narrow baryon state with strangeness S = +1 and mass M = 1555 {+-} 10 MeV/c{sup 2} was observed in the nK{sup +} invariant mass spectrum. The peak's width is consistent with the CLAS resolution (FWHM = 26 MeV/c{sup 2}), and its statistical significance is 7.8 {+-} 1.0 {sigma}. A baryon with positive strangeness has exotic structure and cannot be described in the framework of the naive constituent quark model. The mass of the observed state is consistent with the mass predicted by a chiral soliton model for the {Theta}{sup +} baryon. In addition, the pK{sup +} invariant mass distribution was analyzed in the reaction {gamma} p {yields} K{sup -} K{sup +}p with high statistics in search of doubly-charged exotic baryon states. No resonance structures were found in this spectrum.
Electroweak interactions and dark baryons in the sextet BSM model with a composite Higgs particle
NASA Astrophysics Data System (ADS)
Fodor, Zoltan; Holland, Kieran; Kuti, Julius; Mondal, Santanu; Nogradi, Daniel; Wong, Chik Him
2016-07-01
The electroweak interactions of a strongly coupled gauge theory are discussed with an outlook beyond the Standard Model (BSM) under global and gauge anomaly constraints. The theory is built on a minimal massless fermion doublet of the SU(2) BSM flavor group (bsm-flavor) with a confining gauge force at the TeV scale in the two-index symmetric (sextet) representation of the BSM SU(3) color gauge group (bsm-color). The intriguing possibility of near-conformal sextet gauge dynamics could lead to the minimal realization of the composite Higgs mechanism with a light 0++ scalar, far separated from strongly coupled resonances of the confining gauge force in the 2-3 TeV range, distinct from Higgsless technicolor. In previous publications we have presented results for the meson spectrum of the theory, including the light composite scalar, which is perhaps the emergent Higgs impostor. Here we discuss the critically important role of the baryon spectrum in the sextet model investigating its compatibility with what we know about thermal evolution of the early Universe including its galactic and terrestrial relics. For an important application, we report the first numerical results on the baryon spectrum of this theory from nonperturbative lattice simulations with baryon correlators in the staggered fermion implementation of the strongly coupled gauge sector. The quantum numbers of composite baryons and their spectroscopy from lattice simulations are required inputs for exploring dark matter contributions of the sextet BSM model, as outlined for future work.
Hand-held resonance sensor for tissue stiffness measurements—a theoretical and experimental analysis
NASA Astrophysics Data System (ADS)
Jalkanen, Ville
2010-05-01
A piezoelectric transducer in a feedback circuit operating in a resonance state is the basis of a resonance sensor. Upon contact with a soft object a change in the resonance frequency reflects the acoustic impedance. Together with force measurement it is possible to obtain the elastic stiffness of the object. The aim of this study was to evaluate the concept of a hand-held resonance sensor for tissue stiffness measurement. A time derivative analysis of the force and the frequency change showed that a stiffness-sensitive parameter was independent of the impression speed. Soft tissue phantoms of gelatin were used in an experimental validation of the theory. A force indentation method was used as a reference method for assessing the gelatin's elastic stiffness. Results from the hand-held measurements showed that the stiffness parameter accurately measured the elastic stiffness of the gelatin (R2 = 0.94, p < 0.05). The stiffness parameter was weakly (on average R2 = 0.15) and non-significantly (p > 0.05, 14 out of 17) dependent on an impression speed parameter. On average, a small amount of the total variance was explained by the impression speed. In conclusion, soft tissue stiffness can be objectively measured with free-hand measurement with a resonance sensor. This study contributes a theoretical analysis and an experimental demonstration of the concept of a hand-held resonance sensor for stiffness measurements.
Goldring, Damian; Levy, Uriel; Mendlovic, David
2007-03-19
We propose and analyze a novel design of a hybrid micro-ring resonator and photonic crystal device. The proposed device is based on a micro-ring resonator with the addition of a series of periodic defects that are introduced to the microring. When the wavelength of operation approaches the band-gap of the periodic structure, the modal dispersion is significantly increased. The huge dispersion leads to narrowing of the spectral linewidth of the resonator. We predict an order of magnitude linewidth narrowing for a microring radius of the order of 10mum. The proposed hybrid device is analyzed theoretically and numerically using finite-elements calculations and finite-difference-time-domain calculations. We also present as well as the design and analysis of add-drop and notch filters based on the highly dispersive ring resonator. PMID:19532554
Electromagnetic production of hyperon resonances
K. Hicks, D. Keller, W. Tang
2011-10-01
The study of hyperon resonances has entered a new era of precision with advent of high-statistics photoproduction data from the CLAS detector at Jefferson Lab. These data have multi-particle final states, allowing clean identification of exclusive reactions associated with strange mesons and baryons. Examples of physics results are: evidence for isospin interference in the decay of the {Lambda}(1405) resonance; a strong suggestion of meson cloud effects in the structure of the {Sigma}(1385) resonance; data from K* photoproduction that will test the existence of the purported K{sub 0}(800)$ meson. Properties of other hyperon resonances will also be studied in the near future.
Orbit-based analysis of resonant excitations of Alfvén waves in tokamaks
Bierwage, Andreas; Shinohara, Kouji
2014-11-15
The exponential growth phase of fast-ion-driven Alfvénic instabilities is simulated and the resonant wave-particle interactions are analyzed numerically. The simulations are carried out in realistic magnetic geometry and with a realistic particle distribution for a JT-60U plasma driven by negative-ion-based neutral beams. In order to deal with the large magnetic drifts of the fast ions, two new mapping methods are developed and applied. The first mapping yields the radii and pitch angles at the points, where the unperturbed orbit of a particle intersects the mid-plane. These canonical coordinates allow to express analysis results (e.g., drive profiles and resonance widths) in a form that is easy to understand and directly comparable to the radial mode structure. The second mapping yields the structure of the wave field along the particle trajectory. This allows us to unify resonance conditions for trapped and passing particles, determine which harmonics are driven, and which orders of the resonance are involved. This orbit-based resonance analysis (ORA) method is applied to fast-ion-driven instabilities with toroidal mode numbers n = 1-3. After determining the order and width of each resonance, the kinetic compression of resonant particles and the effect of linear resonance overlap are examined. On the basis of the ORA results, implications for the fully nonlinear regime, for the long-time evolution of the system in the presence of a fast ion source, and for the interpretation of experimental observations are discussed.
Aspects of SU(3) baryon extrapolation
Young, R. D.
2009-12-17
We report on a recent chiral extrapolation, based on an SU(3) framework, of octet baryon masses calculated in 2+1-flavour lattice QCD. Here we further clarify the form of the extrapolation, the estimation of the infinite-volume limit, the extracted low-energy constants and the corrections in the strange-quark mass.
On the nature of the baryon asymmetry
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1984-01-01
Whether the baryon asymmetry in the universe is a locally varying or universally fixed number is examined with focus on the existence of a possible matter antimatter domain structure in the universe arising from a GUT with spontaneous CP symmetry breaking. Theoretical considerations and observational data and astrophysical tests relating to this fundamental question are reviewed.
Weak radiative baryonic decays of B mesons
Kohara, Yoji
2004-11-01
Weak radiative baryonic B decays B{yields}B{sub 1}B{sub 2}-bar{gamma} are studied under the assumption of the short-distance b{yields}s{gamma} electromagnetic penguin transition dominance. The relations among the decay rates of various decay modes are derived.
Beauty baryon decays: a theoretical overview
NASA Astrophysics Data System (ADS)
Wang, Yu-Ming
2014-11-01
I overview the theoretical status and recent progress on the calculations of beauty baryon decays focusing on the QCD aspects of the exclusive semi-leptonic Λb → plμ decay at large recoil and theoretical challenges of radiative and electro-weak penguin decays Λb → Λγ,Λl+l-.
The baryonic self similarity of dark matter
Alard, C.
2014-06-20
The cosmological simulations indicates that dark matter halos have specific self-similar properties. However, the halo similarity is affected by the baryonic feedback. By using momentum-driven winds as a model to represent the baryon feedback, an equilibrium condition is derived which directly implies the emergence of a new type of similarity. The new self-similar solution has constant acceleration at a reference radius for both dark matter and baryons. This model receives strong support from the observations of galaxies. The new self-similar properties imply that the total acceleration at larger distances is scale-free, the transition between the dark matter and baryons dominated regime occurs at a constant acceleration, and the maximum amplitude of the velocity curve at larger distances is proportional to M {sup 1/4}. These results demonstrate that this self-similar model is consistent with the basics of modified Newtonian dynamics (MOND) phenomenology. In agreement with the observations, the coincidence between the self-similar model and MOND breaks at the scale of clusters of galaxies. Some numerical experiments show that the behavior of the density near the origin is closely approximated by a Einasto profile.
Analysis of cell surface antigens by Surface Plasmon Resonance imaging.
Stojanović, Ivan; Schasfoort, Richard B M; Terstappen, Leon W M M
2014-02-15
Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on the surface of cancer cells and specific ligands deposited on sensor chips using an IBIS MX96 SPR imager (SPRi). As a model system, cells from the breast cancer cell line HS578T, SKBR3 and MCF7 were used. SPRi responses to Epithelial Cell Adhesion Molecule (EpCAM) antibody and other ligands coated on the sensor chips were measured. SPR curves show a response attributable to the sedimentation of the cells and a specific binding response on top of the initial response, the magnitude of which is dependent on the ligand density and the cell type used. Comparison of SPRi with flow cytometry showed similar EpCAM expression on MCF7, SKBR3 and HS578T cells.
Surface plasmon resonance sensor based on spectral interferometry: numerical analysis.
Zhang, Yunfang; Li, Hui; Duan, Jingyuan; Shi, Ancun; Liu, Yuliang
2013-05-10
In this paper, we introduce a numerical simulation of a phase detecting surface plasmon resonance (SPR) scheme based on spectral interference. Based on the simulation, we propose a method to optimize various aspects of SPR sensors, which enables better performance in both measurement range (MR) and sensitivity. In the simulation, four parameters including the spectrum of the broadband light source, incident angle, Au film thickness, and refractive index of the prism coupler are analyzed. The results show that it is a good solution for better performance to use a warm white broadband (625-800 nm) light source, a divergence angle of the collimated incident light less than 0.02°, and an optimized 48 nm thick Au film when a visible broadband light source is used. If a near-IR light source is used, however, the Au film thickness should be somewhat thinner according the specific spectrum. In addition, a wider MR could be obtained if a prism coupler with higher refractive index is used. With all the parameters appropriately set, the SPR MR could be extended to 0.55 refractive index units while keeping the sensitivity at a level of 10(-8). PMID:23669838
Unified origin for baryonic visible matter and antibaryonic dark matter.
Davoudiasl, Hooman; Morrissey, David E; Sigurdson, Kris; Tulin, Sean
2010-11-19
We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.
Observation of an Excited Charm Baryon Ωc* Decaying to Ωc0γ
NASA Astrophysics Data System (ADS)
Aubert, B.; Bona, M.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Ofte, I.; Stugu, B.; Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Gill, M. S.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Pripstein, M.; Roe, N. A.; Ronan, M. T.; Wenzel, W. A.; Del Amo Sanchez, P.; Barrett, M.; Ford, K. E.; Hart, A. J.; Harrison, T. J.; Hawkes, C. M.; Watson, A. T.; Held, T.; Koch, H.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schroeder, T.; Steinke, M.; Boyd, J. T.; Burke, J. P.; Cottingham, W. N.; Walker, D.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Kyberd, P.; Saleem, M.; Sherwood, D. J.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Bruinsma, M.; Chao, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Mommsen, R. K.; Roethel, W.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Foulkes, S. D.; Gary, J. W.; Long, O.; Shen, B. C.; Wang, K.; Zhang, L.; Hadavand, H. K.; Hill, E. J.; Paar, H. P.; Rahatlou, S.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Nesom, G.; Schalk, T.; Schumm, B. A.; Seiden, A.; Spradlin, P.; Williams, D. C.; Wilson, M. G.; Albert, J.; Chen, E.; Dvoretskii, A.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Ryd, A.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Ruddick, W. O.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.; Chen, A.; Eckhart, E. A.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q.; Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Brandt, T.; Klose, V.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.; Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Xie, Y.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Brandenburg, G.; Chaisanguanthum, K. S.; Morii, M.; Wu, J.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Flack, R. L.; Nash, J. A.; Nikolich, M. B.; Vazquez, W. Panduro; Bard, D. J.; Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Meyer, N. T.; Ziegler, V.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Denig, A. G.; Fritsch, M.; Schott, G.; Arnaud, N.; Davier, M.; Grosdidier, G.; Höcker, A.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Oyanguren, A.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wang, W. F.; Wormser, G.; Cheng, C. H.; Lange, D. J.; Wright, D. M.; Chavez, C. A.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, K. A.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Menges, W.; Sacco, R.; Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Jackson, P. S.; McMahon, T. R.; Ricciardi, S.; Salvatore, F.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Allison, J.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; Naisbit, M. T.; Williams, J. C.; Yi, J. I.; Chen, C.; Hulsbergen, W. D.; Jawahery, A.; Lae, C. K.; Roberts, D. A.; Simi, G.; Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Saremi, S.; Staengle, H.; Cowan, R.; Sciolla, G.; Sekula, S. J.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Kim, H.; McLachlin, S. E.; Patel, P. M.; Robertson, S. H.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Brunet, S.; Côté, D.; Simard, M.; Taras, P.; Viaud, F. B.; Nicholson, H.; Cavallo, N.; de Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Losecco, J. M.; Allmendinger, T.; Benelli, G.; Corwin, L. A.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Jackson, P. D.; Kagan, H.; Kass, R.; Rahimi, A. M.; Regensburger, J. J.; Ter-Antonyan, R.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Benayoun, M.; Briand, H.; Chauveau, J.; David, P.; Del Buono, L.; de La Vaissière, Ch.; Hamon, O.; Hartfiel, B. L.; Leruste, Ph.; Malclès, J.; Ocariz, J.; Roos, L.; Therin, G.; Gladney, L.; Biasini, M.; Covarelli, R.; Angelini, C.; Batignani, G.; Bettarini, S.; Bucci, F.; Calderini, G.; Carpinelli, M.; Cenci, R.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Haire, M.; Judd, D.; Wagoner, D. E.; Biesiada, J.; Danielson, N.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Del Re, D.; di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Tehrani, F. Safai; Voena, C.; Ebert, M.; Schröder, H.; Waldi, R.; Adye, T.; de Groot, N.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Aleksan, R.; Emery, S.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Legendre, M.; Vasseur, G.; Yèche, Ch.; Zito, M.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Wilson, J. R.; Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Berger, N.; Claus, R.; Coleman, J. P.; Convery, M. R.; Cristinziani, M.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dujmic, D.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Halyo, V.; Hast, C.; Hryn'Ova, T.; Innes, W. R.; Kelsey, M. H.; Kim, P.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'Vra, J.; van Bakel, N.; Weaver, M.; Weinstein, A. J. R.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Petersen, B. A.; Roat, C.; Wilden, L.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.; Bugg, W.; Krishnamurthy, M.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Satpathy, A.; Schilling, C. J.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Ye, S.; Bianchi, F.; Gallo, F.; Gamba, D.; Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Ricca, G. Della; Dittongo, S.; Lanceri, L.; Vitale, L.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Banerjee, Sw.; Bhuyan, B.; Brown, C. M.; Fortin, D.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Back, J. J.; Harrison, P. F.; Latham, T. E.; Mohanty, G. B.; Pappagallo, M.; Band, H. R.; Chen, X.; Cheng, B.; Dasu, S.; Datta, M.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Mellado, B.; Mihalyi, A.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.; Yu, Z.; Neal, H.
2006-12-01
We report the first observation of an excited singly charmed baryon Ωc* (css) in the radiative decay Ωc0γ, where the Ωc0 baryon is reconstructed in the decays to the final states Ω-π+, Ω-π+π0, Ω-π+π-π+, and Ξ-K-π+π+. This analysis is performed using a data set of 230.7fb-1 collected by the BABAR detector at the PEP-II asymmetric-energy B factory at the Stanford Linear Accelerator Center. The mass difference between the Ωc* and the Ωc0 baryons is measured to be 70.8±1.0(stat)±1.1(syst)MeV/c2. We also measure the ratio of inclusive production cross sections of Ωc* and Ωc0 in e+e- annihilation.
Observation of an excited charm baryon Omega c* decaying to Omega c0gamma.
Aubert, B; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; del Amo Sanchez, P; Barrett, M; Ford, K E; Hart, A J; Harrison, T J; Hawkes, C M; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Bard, D J; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Regensburger, J J; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Gladney, L; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Tehrani, F Safai; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihalyi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H
2006-12-01
We report the first observation of an excited singly charmed baryon Omega c* (css) in the radiative decay Omega c0gamma, where the Omega c0 baryon is reconstructed in the decays to the final states Omega(-)pi+, Omega(-)pi+pi0, Omega(-)pi+pi(-)pi+, and Xi(-)K(-)pi+pi+. This analysis is performed using a data set of 230.7 fb(-1) collected by the BABAR detector at the PEP-II asymmetric-energy B factory at the Stanford Linear Accelerator Center. The mass difference between the Omega c* and the Omega c0 baryons is measured to be 70.8+/-1.0(stat)+/-1.1(syst) MeV/c2. We also measure the ratio of inclusive production cross sections of Omega c* and Omega c0 in e+e(-) annihilation. PMID:17280195
On the consistency of recent QCD lattice data of the baryon ground-state masses
NASA Astrophysics Data System (ADS)
Lutz, M. F. M.; Semke, A.
2012-11-01
In our recent analysis of lattice data of the BMW, LHPC and PACS-CS groups we determined a parameter set of the chiral Lagrangian that allows a simultaneous description of the baryon octet and decuplet masses as measured by those lattice groups. The results on the baryon spectrum of the HSC group were recovered accurately without their inclusion into our six parameter fit. We show that the same parameter set provides an accurate reproduction of the recent results of the QCDSF-UKQCD group probing the baryon masses at quite different quark masses. This shows a remarkable consistency amongst the different lattice simulations. With even more accurate lattice data in the near future it will become feasible to determine all low-energy parameters relevant at N3LO.
Kulakov, A A; Braĭlovskaia, T V; Osman, B M; Bedretdinov, R M; Dzhakoniia, V D
2014-01-01
The report concerns dental implantation effectiveness in case of jawbone atrophy. Thirty patients were included in the study to reveal resonance frequency analysis rates of intraosseous dental implants by dental implant placement with bone augmentation using the veneer technique of cortico-cancellous blocks and guided bone regeneration (GBR) with biodegradable membranes and pins having poly (dl- lactic acid) base.
NASA Astrophysics Data System (ADS)
Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram
2016-04-01
We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.
Time-resolved crystal structure analysis of resonantly vibrating langasite oscillator
NASA Astrophysics Data System (ADS)
Aoyagi, Shinobu; Osawa, Hitoshi; Sugimoto, Kunihisa; Takeda, Shoichi; Moriyoshi, Chikako; Kuroiwa, Yoshihiro
2016-10-01
The momentary crystal structure of a Y-cut langasite oscillator resonantly vibrating under an alternating electric field is revealed by time-resolved crystal structure analysis to understand the microscopic mechanism of piezoelectricity. The thickness-shear lattice strain under an electric field is amplified ∼103 times by the resonant effect. The lattice vibration involves the deformation of GaO4 and Ga0.5Si0.5O4 tetrahedra accompanied by atomic displacements of specific oxygen atoms along the electric field. The deformation of GaO4 and Ga0.5Si0.5O4 tetrahedra enhances the piezoelectricity of langasite.
Strategies for detecting the missing hot baryons in the universe
NASA Astrophysics Data System (ADS)
Bregman, Joel N.; Alves, Guilherme Camargo; Miller, Matthew J.; Hodges-Kluck, Edmund
2015-10-01
About 30% to 50% of the baryons in the local universe are unaccounted for and are likely in a hot phase, 105.5 to 108 K. A hot halo (106.3 K) is detected around the Milky Way through the O VII and O VIII resonance absorption and emission lines in the soft x-ray band. Current instruments are not sensitive enough to detect this gas in absorption around other galaxies and galaxy groups, the two most likely sites. We show that resonant line absorption by this hot gas can be detected with current technology, with a collecting area exceeding ˜300 cm2 and a spectral resolution R>2000. For a few notional x-ray telescope configurations that could be constructed as Explorer or Probe missions, we calculate the differential number of O VII and O VIII absorbers as a function of equivalent width through redshift space, dN/dz. The hot halos of individual external galaxies produce absorption that should be detectable out to about their virial radii. For the Milky Way, one can determine the radial distribution of density, temperature, and metallicity after making optical depth corrections. Spectroscopic observations can determine the rotation of a hot gaseous halo.
Predicting Flaw-Induced Resonance Spectrum Shift with Theoretical Perturbation Analysis
Lai, Canhai; Sun, Xin
2013-10-28
Resonance inspection is an emerging non-destructive evaluation (NDE) technique which uses the resonance spectra differences between the good part population and the flawed parts to identify anomalous parts. It was previously established that finite-element (FE)-based modal analysis can be used to predict the resonance spectrum for an engineering scale part with relatively good accuracy. However, FE-based simulations can be time consuming in examining the spectrum shifts induced by all possible structural flaws. This paper aims at developing a computationally efficient perturbation technique to quantify the frequency shifts induced by small structural flaws, based on the FE simulated resonance spectrum for the perfect part. A generic automotive connecting rod is used as the example part for our study. The results demonstrate that the linear perturbation theory provides a very promising way in predicting frequency changes induced by small structural flaws. As the flaw size increases, the discrepancy between the perturbation analysis and the actual FE simulation results increases due to nonlinearity, yet the perturbation analysis is still able to predict the right trend in frequency shift.
Predicting flaw-induced resonance spectrum shift with theoretical perturbation analysis
NASA Astrophysics Data System (ADS)
Lai, C.; Sun, X.
2013-10-01
Resonance inspection is an emerging non-destructive evaluation (NDE) technique used by the automotive casting industry which uses the resonance spectra differences between the good part population and the flawed parts to identify anomalous parts. It was previously established that finite-element (FE)-based modal analysis can be used to predict the resonance spectrum for an engineering scale part with relatively good accuracy. However, FE-based simulations can be time consuming in examining the spectrum shifts induced by all possible structural flaws. This paper aims at developing a computationally efficient perturbation technique to quantify the frequency shifts induced by small structural flaws, based on the FE simulated resonance spectrum for the perfect part. A generic automotive connecting rod is used as the example part for our study. The results demonstrate that the linear perturbation theory provides a very promising way in predicting frequency changes induced by small structural flaws. As the flaw size increases, the discrepancy between the perturbation analysis and the actual FE simulation results increases due to nonlinearity, yet the perturbation analysis is still able to predict the right trend in frequency shift.
Real-time analysis of mechanical and electrical resonances with open-source sound card software
NASA Astrophysics Data System (ADS)
Makan, G.; Kopasz, K.; Gingl, Z.
2014-01-01
We present an easily reproducible, open-source, sound card based experimental set-up to support transfer function measurement. Our system is able to visualize the signals of mechanical and electrical resonances and their spectra in real time. We give a brief description of the system, and show some examples of electrical and mechanical resonance experiments that are supported by the system. The theoretical background, experimental set-up, component selection and digital signal processing are all discussed, and more detailed information (building instructions, software download) is provided on a dedicated web page (www.noise.inf.u-szeged.hu/edudev/RealTimeAnalysisOfResonances/). The experimental set-up can support the undergraduate and graduate education of students of physics, physics education and engineering by means of experimental demonstrations and laboratory exercises. The very low cost, high efficiency and transparent system provides a scalable experimental environment that can be easily built in several instances.
A Schwarzschild-like model for baryons
NASA Astrophysics Data System (ADS)
Singleton, D.; Yoshida, A.
2002-06-01
We present a toy model of baryons using singular solutions of the SU(2) Yang-Mill-Higgs (YMH) field equations, which bears some similarity to the Schwarzschild solution of general relativity. The SU (2) solutions are used as a background field into which a scalar, SU (2) test particle is placed. This can be compared to placing an electrically charged particle in a Coulomb background field, except the SU (2) YMH solutions are singular on a spherical membrane thus trapping (confining) the test particle inside the sphere in a manner similar to certain bag models of baryons. An interesting consequence of this model is that the composite system is a fermion even though the original Lagrangian contains only bosonic fields.
The Baryonic Tully-Fisher Relation.
McGaugh; Schombert; Bothun; de Blok WJ
2000-04-20
We explore the Tully-Fisher relation over five decades in stellar mass in galaxies with circular velocities ranging over 30 less, similarVc less, similar300 km s-1. We find a clear break in the optical Tully-Fisher relation: field galaxies with Vc less, similar90 km s-1 fall below the relation defined by brighter galaxies. These faint galaxies, however, are very rich in gas; adding in the gas mass and plotting the baryonic disk mass Md=M*+Mgas in place of luminosity restores the single linear relation. The Tully-Fisher relation thus appears fundamentally to be a relation between rotation velocity and total baryonic mass of the form Md~V4c.
Two Baryons with Twisted Boundary Conditions
Briceno, Raul; Davoudi, Zohreh; Luu, Thomas; Savage, Martin
2014-04-01
The quantization condition for two particle systems with arbitrary number of two-body open coupled-channels, spin and masses in a finite cubic volume is presented. The condition presented is in agreement with all previous studies of two-body systems in a finite volume. The result is fully relativistic and holds for all momenta below inelastic thresholds and is exact up to exponential volume corrections that are governed by m{sub {pi}} L, where m{sub {pi}} is the pion mass and L is the spatial extent of my box. Its implication for the studies of coupled-channel baryon-baryon systems is discussed, and the necessary tools for implementing the formalism are review.
Observational tests of baryon symmetric cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1983-01-01
Observational evidence for Baryon symmetric (matter/antimatter) cosmology and future observational tests are reviewed. The most significant consequences of Baryon symmetric cosmology lie in the prediction of an observable cosmic background of gamma radiation from the decay of Pi(O)-mesons produced in nucleon-antinucleon annihilations. Equations for the prediction of the gamma ray background spectrum for the case of high redshifts are presented. The theoretical and observational plots of the background spectrum are shown to be in good agreement. Measurements of cosmic ray antiprotons and the use of high energy neutrino astronomy to look for antimatter elsewhere in the universe are also addressed. Previously announced in STAR as N83-10996
An Unquenched Quark Model of Baryons
Bijker, Roelof; Santopinto, Elena
2007-10-26
We present the formalism for a new generation of unquenched quark models for baryons in which the effects of quark-antiquark pairs are taken into account in an explicit form via a microscopic, QCD-inspired, quark-antiquark creation mechanism. The present approach is an extension of the fiux-tube breaking model of Geiger and Isgur in which now the contribution of quark-antiquark pairs can be studied for any inital baryon, for any fiavor of the qq-bar pair (not only ss-bar but also uu-bar and dd-bar) and for arbitrary hadron wave functions. The method is illustrated with an application to the spin of the proton and the flavor asymmetry of the nucleon sea.
Magnetic resonance analysis of malignant transformation in recurrent glioma
Jalbert, Llewellyn E.; Neill, Evan; Phillips, Joanna J.; Lupo, Janine M.; Olson, Marram P.; Molinaro, Annette M.; Berger, Mitchel S.; Chang, Susan M.; Nelson, Sarah J.
2016-01-01
Background Patients with low-grade glioma (LGG) have a relatively long survival, and a balance is often struck between treating the tumor and impacting quality of life. While lesions may remain stable for many years, they may also undergo malignant transformation (MT) at the time of recurrence and require more aggressive intervention. Here we report on a state-of-the-art multiparametric MRI study of patients with recurrent LGG. Methods One hundred and eleven patients previously diagnosed with LGG were scanned at either 1.5 T or 3 T MR at the time of recurrence. Volumetric and intensity parameters were estimated from anatomic, diffusion, perfusion, and metabolic MR data. Direct comparisons of histopathological markers from image-guided tissue samples with metrics derived from the corresponding locations on the in vivo images were made. A bioinformatics approach was applied to visualize and interpret these results, which included imaging heatmaps and network analysis. Multivariate linear-regression modeling was utilized for predicting transformation. Results Many advanced imaging parameters were found to be significantly different for patients with tumors that had undergone MT versus those that had not. Imaging metrics calculated at the tissue sample locations highlighted the distinct biological significance of the imaging and the heterogeneity present in recurrent LGG, while multivariate modeling yielded a 76.04% accuracy in predicting MT. Conclusions The acquisition and quantitative analysis of such multiparametric MR data may ultimately allow for improved clinical assessment and treatment stratification for patients with recurrent LGG. PMID:26911151
Recent results on baryon production at PETRA
Wu, S.L.
1982-01-01
One of the recent excitements at PETRA is the observation of the copious production of baryons. About a year ago, TASSO observed the inclusive production of protons and antiprotons. More recently JADE confirmed the inclusive antiproton spectrum to about 1 GeV/c and also observed the inclusive anti ..lambda.. spectrum to about 1.4 GeV/c, while TASSO obtained the ..lambda.. and anti-..lambda.. spectrum all the way up 10 GeV/c in momentum.
Baryon operators and spectroscopy in lattice QCD
Subhasish Basak; Robert Edwards; Rudolf Fiebig; George Fleming; Urs Heller; Colin Morningstar; David Richards; Ikuro Sato; Stephen Wallace
2001-10-01
The construction of the operators and correlators required to determine the excited baryon spectrum is presented, with the aim of exploring the spatial and spin structure of the states while minimizing the number of propagator inversions. The method used to construct operators that transform irreducibly under the symmetries of the lattice is detailed, and the properties of example operators is studied using domain-wall fermion valence propagators computed on MILC asqtad dynamical lattices.
Understanding the baryon and meson spectra
Pennington, Michael R.
2013-10-01
A brief overview is given of what we know of the baryon and meson spectra, with a focus on what are the key internal degrees of freedom and how these relate to strong coupling QCD. The challenges, experimental, theoretical and phenomenological, for the future are outlined, with particular reference to a program at Jefferson Lab to extract hadronic states in which glue unambiguously contributes to their quantum numbers.
NASA Astrophysics Data System (ADS)
Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Antonelli, S.; Aushev, V.; Behnke, O.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Boos, E. G.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Dementiev, R. K.; Devenish, R. C. E.; Dusini, S.; Foster, B.; Gach, G.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Golubkov, Yu. A.; Grzelak, G.; Guzik, M.; Gwenlan, C.; Hain, W.; Hlushchenko, O.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Januschek, F.; Jomhari, N. Z.; Kadenko, I.; Kananov, S.; Karshon, U.; Kaur, P.; Kisielewska, D.; Klanner, R.; Klein, U.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Krupa, B.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Makarenko, I.; Malka, J.; Mastroberardino, A.; Mohamad Idris, F.; Mohammad Nasir, N.; Myronenko, V.; Nagano, K.; Nobe, T.; Nowak, R. J.; Onishchuk, Yu.; Paul, E.; Perlański, W.; Pokrovskiy, N. S.; Polini, A.; Przybycień, M.; Roloff, P.; Ruspa, M.; Saxon, D. H.; Schioppa, M.; Schneekloth, U.; Schörner-Sadenius, T.; Shcheglova, L. M.; Shevchenko, R.; Shkola, O.; Shyrma, Yu.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stopa, P.; Sztuk-Dambietz, J.; Tassi, E.; Tokushuku, K.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zotkin, D. S.
2016-08-01
A search for a narrow baryonic state in the p KS0 and p ‾ KS0 system has been performed in ep collisions at HERA with the ZEUS detector using an integrated luminosity of 358pb-1 taken in 2003-2007. The search was performed with deep inelastic scattering events at an ep centre-of-mass energy of 318GeV for exchanged photon virtuality, Q2, between 20 and 100GeV2. Contrary to evidence presented for such a state around 1.52 GeV in a previous ZEUS analysis using a sample of 121 pb-1 taken in 1996-2000, no resonance peak was found in the p (p ‾) KS0 invariant-mass distribution in the range 1.45-1.7 GeV. Upper limits on the production cross section are set.
Streaming Velocities and the Baryon Acoustic Oscillation Scale.
Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M
2016-03-25
At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation. PMID:27058069
Streaming Velocities and the Baryon Acoustic Oscillation Scale.
Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M
2016-03-25
At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.
Staggered heavy baryon chiral perturbation theory
Bailey, Jon A.
2008-03-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{sup 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.
Staggered heavy baryon chiral perturbation theory
NASA Astrophysics Data System (ADS)
Bailey, Jon A.
2008-03-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(mπ3), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a2). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.
NASA Astrophysics Data System (ADS)
Xiao, Yong; Wen, Jihong; Huang, Lingzhi; Wen, Xisen
2014-01-01
We present theoretical examination and experimental demonstration of locally resonant (LR) phononic plates consisting of a periodic array of beam-like resonators attached to a thin homogeneous plate. Such phononic plates feature unique wave physics due to the coexistence of localized resonance and structural periodicity. We demonstrate that a low-frequency complete band gap for flexural plate waves can be created in the proposed structure owing to the interaction between the localized resonant modes of the beam-like resonators and the flexural wave modes of the host plate. We show that the location and width of the complete band gap can be dramatically tuned by changing the properties of the beam-like resonators. To understand the opening mechanism and evolution behaviour of the complete band gap, some approximate but explicit models are provided and discussed. We further perform experimental measurements of a specimen fabricated by an array of double-stacked aluminum beam-like resonators attached to a thin aluminum plate with 5 cm structure periodicity. The experimental results evidence a complete band gap extending from 465 to 860 Hz, matching well with our theoretical prediction. The LR phononic plates proposed in this work can find potential applications in attenuation of low-frequency mechanical vibrations and insulation of low-frequency audible sound.
Partial-wave analysis of n +241Am reaction cross sections in the resonance region
NASA Astrophysics Data System (ADS)
Noguere, G.; Bouland, O.; Kopecky, S.; Lampoudis, C.; Schillebeeckx, P.; Plompen, A.; Gunsing, F.; Sage, C.; Sirakov, I.
2015-07-01
Cross sections for neutron-induced reactions of 241Am in the resonance region have been evaluated. Results of time-of-flight cross section experiments carried out at the GELINA, LANSCE, ORELA and Saclay facilities have been combined with optical model calculations to derive consistent cross sections from the thermal energy region up to the continuum region. Resolved resonance parameters were derived from a resonance shape analysis of transmissions, capture yields, and fission yields in the energy region up to 150 eV using the refit code. From a statistical analysis of these parameters, a neutron strength function (104S0=1.01 ±0.12 ), mean level spacing (D0=0.60 ±0.01 eV) and average radiation width (<Γγ 0>=43.3 ±1.1 meV) for s -wave resonances were obtained. Neutron strength functions for higher partial waves (l >0 ) together with channel and effective scattering radii were deduced from calculations based on a complex mean-field optical model potential, applying an equivalent hard-sphere scattering radius approximation.
Electroweak-scale resonant leptogenesis
Pilaftsis, Apostolos; Underwood, Thomas E.J.
2005-12-01
We study minimal scenarios of resonant leptogenesis near the electroweak phase transition. These models offer a number of testable phenomenological signatures for low-energy experiments and future high-energy colliders. Our study extends previous analyses of the relevant network of Boltzmann equations, consistently taking into account effects from out of equilibrium sphalerons and single lepton flavors. We show that the effects from single lepton flavors become very important in variants of resonant leptogenesis, where the observed baryon asymmetry in the Universe is created by lepton-to-baryon conversion of an individual lepton number, for example, that of the {tau}-lepton. The predictions of such resonant {tau}-leptogenesis models for the final baryon asymmetry are almost independent of the initial lepton-number and heavy neutrino abundances. These models accommodate the current neutrino data and have a number of testable phenomenological implications. They contain electroweak-scale heavy Majorana neutrinos with appreciable couplings to electrons and muons, which can be probed at future e{sup +}e{sup -} and {mu}{sup +}{mu}{sup -} high-energy colliders. In particular, resonant {tau}-leptogenesis models predict sizable 0{nu}{beta}{beta} decay, as well as e- and {mu}-number-violating processes, such as {mu}{yields}e{gamma} and {mu}{yields}e conversion in nuclei, with rates that are within reach of the experiments proposed by the MEG and MECO collaborations.
Physics of B0(s) Mesons and Bottom Baryons
Paulini, Manfred; /Carnegie Mellon U.
2009-06-01
We discuss the physics of B{sub s}{sup 0} mesons focusing on CP violation in B{sub s}{sup 0} {yields} J/{Psi}{phi} decays at the Tevatron. We summarize measurements of the properties of bottom baryons at the Tevatron including the {Sigma}{sub b} states and the {Xi}{sub b}{sup -} baryon. We also discuss the discovery of the {Omega}{sub b}{sup -} baryon.
A simple method for the analysis of neutron resonance capture spectra
Clarijs, Martijn C.; Bom, Victor R.; Eijk, Carel W. E. van
2009-03-15
Neutron resonance capture analysis (NRCA) is a method used to determine the bulk composition of various kinds of objects and materials. It is based on analyzing direct capture resonance peaks. However, the analysis is complicated by scattering followed by capture effects in the object itself. These effects depend on the object's shape and size. In this paper the new Delft elemental analysis program (DEAP) is presented which can automatically and quickly analyze multiple NRCA spectra in a practical and simple way, yielding the elemental bulk composition of an object, largely independent of its shape and size. The DEAP method is demonstrated with data obtained with a Roman bronze water tap excavated in Nijmegen (The Netherlands). DEAP will also be used in the framework of the Ancient Charm project as data analysis program for neutron resonance capture imaging (NRCI) experiments. NRCI provides three-dimensional visualization and quantification of the internal structure of archaeological objects by performing scanning measurements with narrowly collimated neutron beams on archaeological objects in computed tomography based experimental setups. The large amounts (hundreds to thousands) of spectra produced during a NRCI experiment can automatically and quickly be analyzed by DEAP.
Precision cosmology and the density of baryons in the universe.
Kaplinghat, M; Turner, M S
2001-01-15
Big-bang nucleosynthesis (BBN) and cosmic microwave background (CMB) anisotropy measurements give independent, accurate measurements of the baryon density and can test the framework of the standard cosmology. Early CMB data are consistent with the long-standing conclusion from BBN that baryons constitute a small fraction of matter in the Universe, but may indicate a slightly higher value for the baryon density. We clarify precisely what the two methods determine and point out that differing values for the baryon density can indicate either an inconsistency or physics beyond the standard models of cosmology and particle physics. We discuss other signatures of the new physics in CMB anisotropy.
STOPPING AND BARYON TRANSPORT IN HEAVY ION REACTIONS.
VIDEBAEK, F.
2005-02-05
In this report I will give an experimental overview on nuclear stopping in hadron collisions, and relate observations to understanding of baryon transport. Baryon number transport is not only evidenced via net-proton distributions but also by the enhancement of strange baryons near mid-rapidity. Although the focus is on high-energy data obtained from pp and heavy ions from RHIC, relevant data from SPS and ISR will be considered. A discussion how the available data at higher energy relates and gives information on baryon junction, quark-diquark breaking will be made.
Introduction to the theory and analysis of resolved (and unresolved) neutron resonances via SAMMY
Larson, N.M.
1998-02-01
Neutron cross-section data are important for two distinct purposes: First, they provide insight into the nature of matter, thus assisting in the understanding of fundamental physics. Second, they are needed for practical applications (e.g., for calculating when and how a reactor will become critical, or how much shielding is needed for storage of nuclear materials, and for medical applications). Neutron cross section data in the resolved-resonance region are generally obtained by time-of-flight experiments, which must be carefully analyzed if they are to be properly understood and utilized. In this paper, important features of the analysis process are discussed, with emphasis on the particular techniques used in the analysis code SAMMY. Other features of the code are also described; these include such topics as calculation of group cross sections (including covariance matrices), generation and fitting of integral quantities, and extensions into the unresolved-resonance region and higher energy regions.
Introduction to the Theory and Analysis of Resolved (and Unresolved) Neutron Resonances via SAMMY
Larson, N.
2000-03-13
Neutron cross-section data are important for two purposes: First, they provide insight into the nature of matter, increasing our understanding of fundamental physics. Second, they are needed for practical applications (e.g., for calculating when and how a reactor will become critical, or how much shielding is needed for storage of nuclear materials, or for medical applications). Neutron cross section data in the resolved-resonance region are generally obtained by time-of-flight experiments, which must be carefully analyzed if they are to be properly understood and utilized. In this report, important features of the analysis process are discussed, with emphasis on the particular techniques used in the analysis code SAMMY. Other features of the code are also described; these include such topics as calculation of group cross sections (including covariance matrices), generation and fitting of integral quantities, and extensions into the unresolved-resonance region and higher-energy regions.
Introduction to theory and analysis of resolved (and unresolved) neutron resonances via SAMMY
Larson, N.M.
1998-07-01
Neutron cross-section data are important for two distinct purposes: first, they provide insight into the nature of matter, thus assisting in the understanding of fundamental physics; second, they are needed for practical applications (e.g., for calculating when and how a reactor will become critical, or how much shielding is needed for storage of nuclear materials, and for medical applications). Neutron cross section data in the resolved-resonance region are generally obtained by time-of-flight experiments, which must be carefully analyzed if they are to be properly understood and utilized. In this paper, important features of the analysis process are discussed, with emphasis on the particular technique used in the analysis code SAMMY. Other features of the code are also described; these include such topics as calculation of group cross sections (including covariance matrices), generation and fitting of integral quantities, and extensions into the unresolved-resonance region and higher-energy regions.
NASA Astrophysics Data System (ADS)
Zemlyakov, V. V.; Zargano, G. F.
2015-12-01
We solve the problem of electrodynamic analysis of a complex waveguide resonance diaphragm with an aperture in the form of a rectangular window with two centrally symmetric L-shaped ridges. The properties of the diaphragm are studied on the basis of the analysis of the imaginary part of its normalized conductivity. Critical wave numbers and electromagnetic fields are calculated by the partial region technique allowing for the singularity of the electromagnetic field on metal ribs. It is shown that the imaginary part of the normalized conductivity of the diaphragm as a function of the frequency not only turns to zero, but also contains a discontinuity of the second kind, which corresponds to the parallel and series resonance.
Analysis of the optical extraction efficiency in gas-flow lasers with different types of resonator.
Barmashenko, B D; Rosenwaks, S
1996-12-20
The celebrated Rigrod model [J. Appl. Phys. 34, 2602 (1963)] has recently been shown to be inadequate for calculating the output power of gas-flow lasers when the quenching of excited species is slow and the optical extraction efficiency is high [Opt. Lett. 20, 1480 (1995)]. The previous analysis of two-level systems is presented here in detail and extended to include the chemical oxygen-iodine laser (COIL). For both two-level systems and COIL's, we obtained simple analytic formulas for the output power, which should be used instead of the Rigrod model. We present the formulas for Fabry-Perot, stable, and unstable resonators. Both the saturation parameter and the extraction efficiency differ from those appearing in the Rigrod model. The highest extraction efficiency is achievable for both stable and unstable resonators with uniform intensity distribution over the resonator cross section and is greater than that calculated by the Rigrod model. A rather surprising conclusion is that the extraction efficiency of unstable resonators can be increased substantially if one increases the length of the part of the mirrors lying downstream of the optical axis. The derived formulas are applied to describe published experimental results of supersonic COIL's. The dependence of the power on the threshold gain is evaluated and from this the plenum yield of singlet oxygen is estimated. The value of the yield is in better agreement with experimental measurements than that obtained by the Rigrod model. PMID:21151313
Magnetic resonance velocity imaging derived pressure differential using control volume analysis
2011-01-01
Background Diagnosis and treatment of hydrocephalus is hindered by a lack of systemic understanding of the interrelationships between pressures and flow of cerebrospinal fluid in the brain. Control volume analysis provides a fluid physics approach to quantify and relate pressure and flow information. The objective of this study was to use control volume analysis and magnetic resonance velocity imaging to non-invasively estimate pressure differentials in vitro. Method A flow phantom was constructed and water was the experimental fluid. The phantom was connected to a high-resolution differential pressure sensor and a computer controlled pump producing sinusoidal flow. Magnetic resonance velocity measurements were taken and subsequently analyzed to derive pressure differential waveforms using momentum conservation principles. Independent sensor measurements were obtained for comparison. Results Using magnetic resonance data the momentum balance in the phantom was computed. The measured differential pressure force had amplitude of 14.4 dynes (pressure gradient amplitude 0.30 Pa/cm). A 12.5% normalized root mean square deviation between derived and directly measured pressure differential was obtained. These experiments demonstrate one example of the potential utility of control volume analysis and the concepts involved in its application. Conclusions This study validates a non-invasive measurement technique for relating velocity measurements to pressure differential. These methods may be applied to clinical measurements to estimate pressure differentials in vivo which could not be obtained with current clinical sensors. PMID:21414222
Gronau, M.
1987-09-01
We attempt an estimate of vertical bar V/sub ub//V/sub cb/vertical bar from the recent ARGUS observation of B/sup + -/ ..-->.. p anti p..pi../sup + -/ and B/sup 0/ ..-->.. p anti p..pi../sup +/..pi../sup -/ by studying general processes of the type B ..-->.. N anti N + n..pi.. (n greater than or equal to 0). The main ingredients of the analysis are the pion multiplicity distribution and a few models for the isospin structure of the final state. It is concluded quite generally that vertical bar V/sub ub//V/sub cb/vertical bar = 0.25 +- 0.10 and vertical bar V/sub ub//V/sub cb/vertical bar greater than or equal to 0.08. The ratio may become lower only in the event that both the relevant experimental and theoretical quantities obtain the extreme values considered in our study. We also discuss briefly a possible realization of a ..delta..I = 1/2 rule in these processes.
Leal, L.C.
2001-02-27
The R-matrix resonance analysis of experimental neutron transmission and cross sections of {sup 233}U, with the Reich-Moore Bayesian code SAMMY, was extended up to the neutron energy of 600 eV by taking advantage of new high resolution neutron transmission and fission cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA). The experimental data base is described. In addition to the microscopic data (time-of-flight measurements of transmission and cross sections), some experimental and evaluated integral quantities were included in the data base. Tabulated and graphical comparisons between the experimental data and the SAMMY calculated cross sections are given. The ability of the calculated cross sections to reproduce the effective multiplication factors k{sub eff} for various thermal, intermediate, and fast systems was tested. The statistical properties of the resonance parameters were examined and recommended values of the average s-wave resonance parameters are given.
The baryon vector current in the combined chiral and 1/Nc expansions
Flores-Mendieta, Ruben; Goity, Jose L
2014-12-01
The baryon vector current is computed at one-loop order in large-Nc baryon chiral perturbation theory, where Nc is the number of colors. Loop graphs with octet and decuplet intermediate states are systematically incorporated into the analysis and the effects of the decuplet-octet mass difference and SU(3) flavor symmetry breaking are accounted for. There are large-Nc cancellations between different one-loop graphs as a consequence of the large-Nc spin-flavor symmetry of QCD baryons. The results are compared against the available experimental data through several fits in order to extract information about the unknown parameters. The large-Nc baryon chiral perturbation theory predictions are in very good agreement both with the expectations from the 1/Nc expansion and with the experimental data. The effect of SU(3) flavor symmetry breaking for the |Delta S|=1 vector current form factors f1(0) results in a reduction by a few percent with respect to the corresponding SU(3) symmetric values.
Ratoff, Peter Neil; /Lancaster U.
2009-01-01
The observation of the b baryons {Xi}{sub b}{sup -} and {Omega}{sub b}{sup -} in high energy proton-antiproton collisions in the D-Zero Detector at Fermilab's Tevatron Collider are presented, along with measurements of the masses and production rates of these states. Within the standard model a total of 15 b baryons are predicted (counting quark content only). Taking into consideration intrinsic angular momentum, there are 10 charmless b baryons in J=1/2 and J=3/2 muliplets. These states are unique to hadron colliders since the B factories operate at insufficient energy to produce them, and they are expected to be produced copiously at the Tevatron. There are interesting mass predictions for these states from various theoretical models but the experimental challenge to observe them is very substantial. At the start of Tevatron Run II ({approx}2003) only the {Lambda}{sub b} had been observed (first by the UA1 collaboration in 1991). However, in the past three years at the Tevatron, another four of the predicted J=1/2 states containing just one b quark have been observed. The {Sigma}{sub b}{sup +} (uub) and {Sigma}{sub b}{sup -} (ddb) were recorded by the CDF collaboration in the {Sigma}{sub b} {yields} {pi}{Lambda}{sub c} {pi} ({Lambda}{sub c} {pi}) channel while at D-Zero the {Xi}{sub b}{sup -} (bds) and {Omega}{sub b}{sup -} (bss) states were observed. The measurements leading to the identification of the latter two states are the subject of the remainder of this presentation.
Hadronic Resonances from Lattice QCD
Lichtl, Adam C.; Bulava, John; Morningstar, Colin; Edwards, Robert; Mathur, Nilmani; Richards, David; Fleming, George; Juge, K. Jimmy; Wallace, Stephen J.
2007-10-26
The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.
Hadronic Resonances from Lattice QCD
John Bulava; Robert Edwards; George Fleming; K. Jimmy Juge; Adam C. Lichtl; Nilmani Mathur; Colin Morningstar; David Richards; Stephen J. Wallace
2007-06-16
The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.
Production of the charmed strange baryon. xi. /sub c//sup +/ by neutrons
Not Available
1986-12-01
We report on the observation of a narrow resonance at a mass of 2450 MeV/c/sup 2/ in the final states ..lambda..K/sup -/..pi../sup +/..pi../sup +/ and ..sigma../sup 0/K/sup -/..pi../sup +/..pi../sup +/. The mass, width, lifetime, and decay modes support the interpretation of a hadronically produced charm-strange baryon, the ..xi../sub c//sup +/. We present our preliminary measurements of the lifetime, and the ..lambda.., x/sub feynman,/ and p/sub t/ dependence of the state.
Schematic baryon models, their tight binding description and their microwave realization
NASA Astrophysics Data System (ADS)
Sadurní, E.; Franco-Villafañe, J. A.; Kuhl, U.; Mortessagne, F.; Seligman, T. H.
2013-12-01
A schematic model for baryon excitations is presented in terms of a symmetric Dirac gyroscope, a relativistic model solvable in closed form, that reduces to a rotor in the non-relativistic limit. The model is then mapped on a nearest neighbour tight binding model. In its simplest one-dimensional form this model yields a finite equidistant spectrum. This is experimentally implemented as a chain of dielectric resonators under conditions where their coupling is evanescent and a good agreement with the prediction is achieved.
Cascade Baryon Spectrum from Lattice QCD
Mathur, Nilmani; Bulava, John; Edwards, Robert; Engelson, Eric; Joo, Balint; Lichtl, Adam; Lin, Huey-Wen; Morningstar, Colin; Richards, David; Wallace, Stephen
2008-12-01
A comprehensive study of the cascade baryon spectrum using lattice QCD affords the prospect of predicting the masses of states not yet discovered experimentally, and determining the spin and parity of those states for which the quantum numbers are not yet known. The study of the cascades, containing two strange quarks, is particularly attractive for lattice QCD in that the chiral effects are reduced compared to states composed only of u/d quarks, and the states are typically narrow. We report preliminary results for the cascade spectrum obtained by using anisotropic Nf = 2 Wilson lattices with temporal lattice spacing 5.56 GeV?1.
Non-baryonic dark matter in cosmology
NASA Astrophysics Data System (ADS)
Del Popolo, A.
2013-07-01
This paper is based on lectures given at the IX Mexican School on Gravitation and Mathematical Physics. The lectures (as the paper) were a broad-band review of the current status of non-baryonic dark matter research. I start with a historical overview of the evidences of dark matter existence, then I discuss how dark matter is distributed from small scale to large scale, and I then verge the attention to dark matter nature: dark matter candidates and their detection. I finally discuss some of the limits of the ΛCDM model, with particular emphasis on the small scale problems of the paradigm.
Energy harvesting using rattleback: Theoretical analysis and simulations of spin resonance
NASA Astrophysics Data System (ADS)
Nanda, Aditya; Singla, Puneet; Karami, M. Amin
2016-05-01
This paper investigates the spin resonance of a rattleback subjected to base oscillations which is able to transduce vibrations into continuous rotary motion and, therefore, is ideal for applications in Energy harvesting and Vibration sensing. The rattleback is a toy with some curious properties. When placed on a surface with reasonable friction, the rattleback has a preferred direction of spin. If rotated anti to it, longitudinal vibrations are set up and spin direction is reversed. In this paper, the dynamics of a rattleback placed on a sinusoidally vibrating platform are simulated. We can expect base vibrations to excite the pitch motion of the rattleback, which, because of the coupling between pitch and spin motion, should cause the rattleback to spin. Results are presented which show that this indeed is the case-the rattleback has a mono-peak spin resonance with respect to base vibrations. The dynamic response of the rattleback was found to be composed of two principal frequencies that appeared in the pitch and rolling motions. One of the frequencies was found to have a large coupling with the spin of the rattleback. Spin resonance was found to occur when the base oscillatory frequency was twice the value of the coupled frequency. A linearized model is developed which can predict the values of the two frequencies accurately and analytical expressions for the same in terms of the parameters of the rattleback have been derived. The analysis, thus, forms an effective and easy method for obtaining the spin resonant frequency of a given rattleback. Novel ideas for applications utilizing the phenomenon of spin resonance, for example, an energy harvester composed of a magnetized rattleback surrounded by ferromagnetic walls and a small scale vibration sensor comprising an array of several magnetized rattlebacks, are included.
Baryon Antibaryon Photoproduction using CLAS at Jefferson Lab
NASA Astrophysics Data System (ADS)
Phelps, William
2015-04-01
There is little known about the baryon antibaryon photoproduction mechanism. Three reactions, γp --> pp p , γp --> ppπ- n , and γp --> p p π+ n have been investigated for the photon energy range of 4.4-5.45 GeV. The data were from the g12 experiment taken with the CLAS detector using a liquid hydrogen target at Thomas Jefferson National Accelerator Facility. This experiment had high statistics, with an integrated luminosity of 68 pb-1. General features of the data for these three reactions will be shown. In particular, the angular and energy dependence of the antibaryons as well as the preliminary normalized yields will be presented. Also, preliminary partial wave analysis results for the p p system will be discussed.
Baryon Antibaryon Photoproduction using CLAS at Jefferson Lab
NASA Astrophysics Data System (ADS)
Phelps, William; CLAS Collaboration
2014-09-01
There is little known about the baryon antibaryon photoproduction mechanism. Three reactions, γ p --> pp p , γp --> pp π- n , and γp --> p p π+ n have been investigated for the photon energy range of 4.4-5.45 GeV. The data were from the g12 experiment taken with the CLAS detector using a liquid hydrogen target at Thomas Jefferson National Accelerator Facility. This experiment had high statistics, with an integrated luminosity of 68 pb-1. General features of the data for these three reactions will be shown. In particular, the angular and energy dependence of the antibaryons as well as the preliminary normalized yields will be presented. Also, preliminary partial wave analysis results for the p p system will be discussed.
Baryon Antibaryon Photoproduction using CLAS at Jefferson Lab
NASA Astrophysics Data System (ADS)
Phelps, William; CLAS Collaboration
2013-10-01
There is little known about the baryon antibaryon production mechanism. The following reactions were looked at, γp -->pp p , γp -->ppπ- n , and γp -->p p π+ n. For these reactions the photon energies that were selected were from 4.4-5.45 GeV. The data were from the g12 experiment taken with the CLAS detector using a liquid hydrogen target at Thomas Jefferson National Accelerator Facility. This experiment had high statistics, with a luminosity of 68 pb-1. Features of the data such as invariant mass spectra, missing mass spectra, and angular distributions necessary for the analysis will be shown. In addition, a first observation of antineutrons in photoproduction in the missing mass spectra of γp -->ppπ- n will also be shown.
NASA Astrophysics Data System (ADS)
Zimmermann, Ralf; Heger, Hans Jörg; Dorfner, Ralph; Boesl, Ulrich; Kettrup, Antonius
1998-12-01
Laser induced Resonance-Enhanced Multi-Photon Ionization Time-Of-Flight Mass Spectrometry (REMPI TOFMS) is a highly selective as well as sensitive analytical technique, well suited for species selective, on-line monitoring of trace-substances. In this contribution some analytical applications of a mobile REMPI-TOFMS are presented. This includes REMPI-TOMS on-line analysis of coffee roasting gas and waste incineration flue gas as well as headspace measurements of pulp processing lye or rapid analysis of polycyclic aromatic hydrocarbons from soil samples via thermal desorption.
Method for high resolution magnetic resonance analysis using magic angle technique
Wind, Robert A.; Hu, Jian Zhi
2004-12-28
A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.
Method for high resolution magnetic resonance analysis using magic angle technique
Wind, Robert A.; Hu, Jian Zhi
2003-12-30
A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.
Prabhu Gaunkar, N. Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C.; Bulu, I.; Ganesan, K.; Song, Y. Q.
2015-05-07
This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.
Luzanov, Anatoliy V.; Casanova, David; Feng, Xintian; Krylov, Anna I.
2015-06-14
We extend excited-state structural analysis to quantify the charge-resonance and multi-exciton character in wave functions of weakly interacting chromophores such as molecular dimers. The approach employs charge and spin cumulants which describe inter-fragment electronic correlations in molecular complexes. We introduce indexes corresponding to the weights of local, charge resonance, and biexciton (with different spin structure) configurations that can be computed for general wave functions thus allowing one to quantify the character of doubly excited states. The utility of the approach is illustrated by applications to several small dimers, e.g., He-H{sub 2}, (H{sub 2}){sub 2}, and (C{sub 2}H{sub 4}){sub 2}, using full and restricted configuration interaction schemes. In addition, we present calculations for several systems relevant to singlet fission, such as tetracene, 1,6-diphenyl-1,3,5-hexatriene, and 1,3-diphenylisobenzofuran dimers.
Ha, Steven T.K.; Wilkins, Charles L.; Abidi, Sharon L.
1989-01-01
A mixture of closely related streptomyces fermentation products, antimycin A, Is separated, and the components are identified by using reversed-phase high-performance liquid chromatography with directly linked 400-MHz proton nuclear magnetic resonance detection. Analyses of mixtures of three amino acids, alanine, glycine, and valine, are used to determine optimal measurement conditions. Sensitivity increases of as much as a factor of 3 are achieved, at the expense of some loss in chromatographic resolution, by use of an 80-μL NMR cell, Instead of a smaller 14-μL cell. Analysis of the antimycin A mixture, using the optimal analytical high performance liquid chromatography/nuclear magnetic resonance conditions, reveals it to consist of at least 10 closely related components.
NASA Astrophysics Data System (ADS)
Kruk, D.; Earle, K. A.; Mielczarek, A.; Kubica, A.; Milewska, A.; Moscicki, J.
2011-12-01
A general theory of lineshapes in nuclear quadrupole resonance (NQR), based on the stochastic Liouville equation, is presented. The description is valid for arbitrary motional conditions (particularly beyond the valid range of perturbation approaches) and interaction strengths. It can be applied to the computation of NQR spectra for any spin quantum number and for any applied magnetic field. The treatment presented here is an adaptation of the "Swedish slow motion theory," [T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000), 10.1006/jmre.2000.2125] originally formulated for paramagnetic systems, to NQR spectral analysis. The description is formulated for simple (Brownian) diffusion, free diffusion, and jump diffusion models. The two latter models account for molecular cooperativity effects in dense systems (such as liquids of high viscosity or molecular glasses). The sensitivity of NQR slow motion spectra to the mechanism of the motional processes modulating the nuclear quadrupole interaction is discussed.
NASA Astrophysics Data System (ADS)
Pilger, Christoph; Schmidt, Carsten; Bittner, Michael
2013-02-01
The detection of infrasonic signals in temperature time series of the mesopause altitude region (at about 80-100 km) is performed at the German Remote Sensing Data Center of the German Aerospace Center (DLR-DFD) using GRIPS instrumentation (GRound-based Infrared P-branch Spectrometers). Mesopause temperature values with a temporal resolution of up to 10 s are derived from the observation of nocturnal airglow emissions and permit the identification of signals within the long-period infrasound range.Spectral intensities of wave signatures with periods between 2.5 and 10 min are estimated applying the wavelet analysis technique to one minute mean temperature values. Selected events as well as the statistical distribution of 40 months of observation are presented and discussed with respect to resonant modes of the atmosphere. The mechanism of acoustic resonance generated by strong infrasonic sources is a potential explanation of distinct features with periods between 3 and 5 min observed in the dataset.
Estimation of body resonances from a time-frequency analysis of violin vibrato
NASA Astrophysics Data System (ADS)
Mellody, Maureen; Wakefield, Gregory H.
1999-11-01
We present a signal-based technique for evaluating a pole-zero representation of the resonant response of a violin instrument. This technique combines time-frequency signal analysis with system identification techniques to determine the pole-zero function that would account for amplitude modulation observed on the partials of violin notes performed with vibrato. Violin vibrato signals are analyzed with the modal distribution to obtain values of instantaneous amplitude and frequency for each partial. From these, input and output functions are synthesized and used to estimate the violin body's impulse response using an infinite impulse response (IIR) system identification procedure. In each case, the input and output functions share the same instantaneous frequency of the measured partial. However, the rapid amplitude variations are present only on the output function. We report on the location and spacing of these estimated resonances and discuss their relationship to those obtained from theoretical predictions and other measurement procedures.
Kruk, D; Earle, K A; Mielczarek, A; Kubica, A; Milewska, A; Moscicki, J
2011-12-14
A general theory of lineshapes in nuclear quadrupole resonance (NQR), based on the stochastic Liouville equation, is presented. The description is valid for arbitrary motional conditions (particularly beyond the valid range of perturbation approaches) and interaction strengths. It can be applied to the computation of NQR spectra for any spin quantum number and for any applied magnetic field. The treatment presented here is an adaptation of the "Swedish slow motion theory," [T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000)] originally formulated for paramagnetic systems, to NQR spectral analysis. The description is formulated for simple (Brownian) diffusion, free diffusion, and jump diffusion models. The two latter models account for molecular cooperativity effects in dense systems (such as liquids of high viscosity or molecular glasses). The sensitivity of NQR slow motion spectra to the mechanism of the motional processes modulating the nuclear quadrupole interaction is discussed. PMID:22168707
A neutron resonance capture analysis experimental station at the ISIS spallation source.
Pietropaolo, Antonino; Gorini, Giuseppe; Festa, Giulia; Reali, Enzo; Grazzi, Francesco; Schooneveld, Erik M
2010-09-01
Neutron resonance capture analysis (NRCA) is a nuclear technique that is used to determine the elemental composition of materials and artifacts (e.g., bronze objects) of archaeological interest. NRCA experiments are mostly performed at the GELINA facility in Belgium, a pulsed neutron source operating with an electron linear accelerator. Very intense fluxes of epithermal neutrons are also provided by spallation neutron sources, such as the ISIS spallation neutron source in the United Kingdom. In the present study, the suitability of the Italian Neutron Experimental Station (INES) beam line for NRCA measurements is assessed using a compact (n, γ) resonance detector made of a Yttrium-Aluminum-Perovskite (YAP) scintillation crystal coupled with a silicon photomultiplier (SiPM) readout. The measurements provided a qualitative recognition of the composition of the standard sample, a lower limit for the sensitivity for NRCA for almost-in-traces elements, and an estimation of the relative isotopic concentration in the sample.
Masses and widths of scalar-isoscalar multi-channel resonances from data analysis
NASA Astrophysics Data System (ADS)
Surovtsev, Yurii S.; Bydžovský, Petr; Kamiński, Robert; Lyubovitskij, Valery E.; Nagy, Miroslav
2014-02-01
The peculiarities of obtaining parameters for broad multi-channel resonances from data are discussed, analyzing the experimental data on processes \\pi \\pi \\rightarrow \\pi \\pi ,K\\overline{K} in the IGJPC = 0+0++ channel in a model-independent approach based on analyticity and unitarity, and using an uniformization procedure. We show that it is possible to obtain a good description of the ππ scattering data from the threshold to 1.89 GeV with parameters of resonances cited in the Particle Data Group tables as preferred. However, in this case, first, the representation of the ππ background is unsatisfactory; second, the data on the coupled process \\pi \\pi \\rightarrow K\\overline{K} are not well described even qualitatively above 1.15 GeV when using the resonance parameters from only the ππ scattering analysis. The combined analysis of these coupled processes is needed, and is carried out satisfactorily. Then, both of the above-indicated issues related to the analysis of ππ scattering only are overcome. The most remarkable change of parameters with respect to the values of the ππ scattering only analysis appears for the mass of the f0(600), which is now in some accordance with the Weinberg prediction on the basis of mended symmetry and with an analysis using the large-Nc consistency conditions between the unitarization and resonance saturation. The obtained ππ scattering length a_0^0, in the case where we are restricted to the analysis of the ππ scattering or where we consider the so-called A-solution (with a lower mass and width of f0(600) meson), agrees well with the prediction of the chiral perturbation theory and with data extracted at CERN by the NA48/2 collaboration from the analysis of the Ke4 decay and by the DIRAC collaboration from the measurement of the π+π- lifetime.
Probing the Cool Baryons at z~5
NASA Astrophysics Data System (ADS)
Stanway, Elizabeth; Feain, Ilana; Bremer, Malcolm; Birkinshaw, Mark; Lehnert, Matthew; Douglas, Laura; Davies, Luke
2009-04-01
Star-forming systems are now used to study the universe at z>5, but these galaxies represent <3% of the total baryonic mass. In a pilot programme, we detected CO(2-1) emission at z=5.1245+/-0.0001 (with no optical counterpart to R>28 and I>27) in a field hosting an overdensity of UV-luminous star-forming Lyman break galaxies (LBGs) at the same redshift. The emission line has a peak flux density of 0.94 mJy and FWHM of 110 km/s. Assuming standard conversion factors and that the line width represents a virialised system, this implies M(H_2)=2x10^{10} solar masses, more the total UV-bright stellar mass in the structure. This detection implies that CO lines may probe the bulk of the baryonic matter in z>=5 structures. We must now determine whether our initial detection was typical and intend to study the cool gas in a second field which contains the richest overdensity in our LBG survey. To this end, we will probe an additional three pointings in the CO(2-1) line, and also begin to constrain the temperature from CO(1-0) emission at the same locations.
Baryogenesis from baryon-number-violating scalar interactions
NASA Astrophysics Data System (ADS)
Bowes, J. P.; Volkas, R. R.
1997-03-01
In the following work we consider the possibility of explaining the observed baryon-number asymmetry in the universe from simple baryon-number-violating modifications, involving massive scalar bosons, to the standard model. In these cases baryon-number violation is mediated through a combination of Yukawa and scalar self-coupling interactions. Starting with a previously compiled catalogue of baryon-number-violating extensions of the standard model, we identify the minimal subsets which can induce a B-L asymmetry and thus be immune to sphaleron washout. For each of these models, we identify the region of parameter space that leads to the production of a baryon number asymmetry of the correct order of magnitude.
Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model
Gilberto Ramalho, Kazuo Tsushima
2011-09-01
We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.
ON THE BARYON FRACTIONS IN CLUSTERS AND GROUPS OF GALAXIES
Dai Xinyu; Bregman, Joel N.; Kochanek, Christopher S.; Rasia, Elena
2010-08-10
We present the baryon fractions of 2MASS groups and clusters as a function of cluster richness using total and gas masses measured from stacked ROSAT X-ray data and stellar masses estimated from the infrared galaxy catalogs. We detect X-ray emission even in the outskirts of clusters, beyond r {sub 200} for richness classes with X-ray temperatures above 1 keV. This enables us to more accurately determine the total gas mass in these groups and clusters. We find that the optically selected groups and clusters have flatter temperature profiles and higher stellar-to-gas mass ratios than the individually studied, X-ray bright clusters. We also find that the stellar mass in poor groups with temperatures below 1 keV is comparable to the gas mass in these systems. Combining these results with individual measurements for clusters, groups, and galaxies from the literature, we find a break in the baryon fraction at {approx}1 keV. Above this temperature, the baryon fraction scales with temperature as f{sub b} {proportional_to} T {sup 0.20{+-}0.03}. We see significantly smaller baryon fractions below this temperature and the baryon fraction of poor groups joins smoothly onto that of systems with still shallower potential wells such as normal and dwarf galaxies where the baryon fraction scales with the inferred velocity dispersion as f{sub b} {proportional_to} {sigma}{sup 1.6}. The small scatter in the baryon fraction at any given potential well depth favors a universal baryon loss mechanism and a preheating model for the baryon loss. The scatter is, however, larger for less massive systems. Finally, we note that although the broken power-law relation can be inferred from data points in the literature alone, the consistency between the baryon fractions for poor groups and massive galaxies inspires us to fit the two categories of objects (galaxies and clusters) with one relation.
THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III
Dawson, Kyle S.; Ahn, Christopher P.; Bolton, Adam S.; Schlegel, David J.; Bailey, Stephen; Anderson, Scott F.; Bhardwaj, Vaishali; Aubourg, Eric; Bautista, Julian E.; Beifiori, Alessandra; Berlind, Andreas A.; Bizyaev, Dmitry; Brewington, Howard; Blake, Cullen H.; Blanton, Michael R.; Blomqvist, Michael; Borde, Arnaud; Brandt, W. N.; and others
2013-01-01
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large-scale structure. BOSS uses 1.5 million luminous galaxies as faint as i = 19.9 over 10,000 deg{sup 2} to measure BAO to redshifts z < 0.7. Observations of neutral hydrogen in the Ly{alpha} forest in more than 150,000 quasar spectra (g < 22) will constrain BAO over the redshift range 2.15 < z < 3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Ly{alpha} forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance d{sub A} to an accuracy of 1.0% at redshifts z = 0.3 and z = 0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Ly{alpha} forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D{sub A} (z) and H {sup -1}(z) parameters to an accuracy of 1.9% at z {approx} 2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.
The extended Baryon Oscillation Spectroscopic Survey: a cosmological forecast
NASA Astrophysics Data System (ADS)
Zhao, Gong-Bo; Wang, Yuting; Ross, Ashley J.; Shandera, Sarah; Percival, Will J.; Dawson, Kyle S.; Kneib, Jean-Paul; Myers, Adam D.; Brownstein, Joel R.; Comparat, Johan; Delubac, Timothée; Gao, Pengyuan; Hojjati, Alireza; Koyama, Kazuya; McBride, Cameron K.; Meza, Andrés; Newman, Jeffrey A.; Palanque-Delabrouille, Nathalie; Pogosian, Levon; Prada, Francisco; Rossi, Graziano; Schneider, Donald P.; Seo, Hee-Jong; Tao, Charling; Wang, Dandan; Yèche, Christophe; Zhang, Hanyu; Zhang, Yuecheng; Zhou, Xu; Zhu, Fangzhou; Zou, Hu
2016-04-01
We present a science forecast for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) survey. Focusing on discrete tracers, we forecast the expected accuracy of the baryonic acoustic oscillation (BAO), the redshift-space distortion (RSD) measurements, the fNL parameter quantifying the primordial non-Gaussianity, the dark energy and modified gravity parameters. We also use the line-of-sight clustering in the Lyman α forest to constrain the total neutrino mass. We find that eBOSS luminous red galaxies, emission line galaxies and clustering quasars can achieve a precision of 1, 2.2 and 1.6 per cent, respectively, for spherically averaged BAO distance measurements. Using the same samples, the constraint on fσ8 is expected to be 2.5, 3.3 and 2.8 per cent, respectively. For primordial non-Gaussianity, eBOSS alone can reach an accuracy of σ(fNL) ˜ 10-15. eBOSS can at most improve the dark energy figure of merit by a factor of 3 for the Chevallier-Polarski-Linder parametrization, and can well constrain three eigenmodes for the general equation-of-state parameter. eBOSS can also significantly improve constraints on modified gravity parameters by providing the RSD information, which is highly complementary to constraints obtained from weak lensing measurements. A principal component analysis shows that eBOSS can measure the eigenmodes of the effective Newton's constant to 2 per cent precision; this is a factor of 10 improvement over that achievable without eBOSS. Finally, we derive the eBOSS constraint (combined with Planck, Dark Energy Survey and BOSS) on the total neutrino mass, σ(Σmν) = 0.03 eV (68 per cent CL), which in principle makes it possible to distinguish between the two scenarios of neutrino mass hierarchies.
Analysis of the composite response of shear wave resonators to the attachment of mammalian cells.
Wegener, J; Seebach, J; Janshoff, A; Galla, H J
2000-01-01
The suitability of the quartz crystal microbalance (QCM) technique for monitoring the attachment and spreading of mammalian cells has recently been established. Different cell species were shown to generate an individual response of the QCM when they make contact with the resonator surface. Little is known, however, about the underlying mechanisms that determine the QCM signal for a particular cell type. Here we describe our results for different experimental approaches designed to probe the particular contributions of various subcellular compartments to the overall QCM signal. Using AC impedance analysis in a frequency range that closely embraces the resonators' fundamental frequency, we have explored the signal contribution of the extracellular matrix, the actin cytoskeleton, the medium that overlays the cell layer, as well as the liquid compartment that is known to exist between the basal plasma membrane and the culture substrate. Results indicate that the QCM technique is only sensitive to those parts of the cellular body that are involved in cell substrate adhesion and are therefore close to the resonator surface. Because of its noninvasive nature, sensitivity, and time resolution, the QCM is a powerful means of quantitatively studying various aspects of cell-substrate interactions. PMID:10827965
Analysis of a single ring resonator with 2×2 90-degree multimode waveguide turning couplers
NASA Astrophysics Data System (ADS)
Chiu, C. L.; Liao, Yen-Hsun
2016-02-01
A novel design of a single ring resonator with two low-loss 2×2 90-degree multimode waveguide turning mirror couplers based on a InP structure. The coupling factor of the 2×2 90-degree multimode waveguide turning mirror coupler is inversed for K=0.85 to K=0.15 when one folding is achieved. The 2×2 90-degree turning mirror coupler for K=0.15 is (3/4)Lπ in length. Its length is reduced 3 times than the conventional straight 2×2 multimode waveguide interference coupler (9/4)Lπ in length for K=0.15. The cavity length of the curve waveguide (90-degree arc length) in this ring resonator with two 2×2 90-degree multimode waveguide turning couplers is decreased 1/2 times than with two 2×2 MMI couplers (180-degree arc length). The free spectral range (FSR) is increased 2 times. The output spectral response gets a FSR of 82 GHz for the device and a contrast of 4 dB and FWHM of 0.24 nm for the drop port. The results of numerical analysis calculated by the transfer functions in a single ring resonator are agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Jalbout, Abraham F.; Jiang, Tao; Fengqi, Liu; Ding, C.; Darwish, Abdalla M.
2002-02-01
A detailed careful analysis of the infrared resonance (IR) spectra of polystyrene (PSt), polymethyl methacrylate (PMMA), polyacrylonitrile (PAN) and their co-mixtures were performed. Through this study the absorption peak area to weight ratios as well as working curves were obtained to test for their reliability as well as their suitability. Satisfactory results were achieved and these working curves were then used to measure the polymerized components of binary and ternary co-polymers. By investigating the acquired data we conclude that the monomer preferential polymeric sequence is St>MMA>AN. A quantitative method to measure P (St/AN/MMA) concentrations by IR spectroscopy is proposed in this work.
Köcher, S S; Heydenreich, T; Glaser, S J
2014-10-17
We study the utility of joint time-frequency representations for the analysis of shaped or composite pulses for magnetic resonance. Such spectrograms are commonly used for the visualization of shaped laser pulses in optical spectroscopy. This intuitive representation provides additional insight compared to conventional approaches, which exclusively show either temporal or spectral information. We focus on the short-time Fourier transform, which provides not only amplitude but also phase information. The approach is illustrated for broadband inversion pulses, multiple quantum excitation and broadband heteronuclear decoupling. The physical interpretation and validity of the approach is discussed.
An Analysis Method for Superconducting Resonator Parameter Extraction with Complex Baseline Removal
NASA Technical Reports Server (NTRS)
Cataldo, Giuseppe
2014-01-01
A new semi-empirical model is proposed for extracting the quality (Q) factors of arrays of superconducting microwave kinetic inductance detectors (MKIDs). The determination of the total internal and coupling Q factors enables the computation of the loss in the superconducting transmission lines. The method used allows the simultaneous analysis of multiple interacting discrete resonators with the presence of a complex spectral baseline arising from reflections in the system. The baseline removal allows an unbiased estimate of the device response as measured in a cryogenic instrumentation setting.
Analysis of C II resonance lines in some main sequence early-type stars
NASA Technical Reports Server (NTRS)
Cugier, H.; Hardorp, J.
1988-01-01
IUE data are used to investigate C II resonance lines at 1335 A in eight main-sequence stars of spectral types from A0 to B3, and both LTE and non-LTE line profiles have been computed. In stars with low rotational velocities (such as Vega, Pi Cet, and Tau Her), logarithmic carbon abundances log N(C/H) of -3.55 to -3.45 are obtained for the non-LTE case. The LTE analysis reveals lower carbon abundances by about 0.1 dex. Significant differences among the fast rotating stars are pointed out.
NASA Astrophysics Data System (ADS)
Agrawal, L.; Bhardwaj, A.; Pal, S.; Kumar, A.
2007-11-01
This article presents the results of a detailed theoretical and experimental analysis carried out on a folded Z-shaped polarization coupled, electro-optically Q-switched laser resonator with Porro prisms and waveplates. The advantages of adding waveplates in a Porro prism resonator have been explored for creating high loss condition prior to Q-switching and obtaining variable reflectivity with fixed orientation of Porro prism. Generalized expressions have been derived in terms of azimuth angles and phase shifts introduced by the polarizing elements. These expressions corroborate with known reported results under appropriate substitutions. A specific case of a crossed Porro prism diode-pumped Nd:YAG laser has been theoretically and experimentally investigated. In the feedback arm, a 0.57λ waveplate oriented at 135° completely compensates the phase shift of a fused silica Porro prism and provides better tolerances than a BK-7 prism/0.60λ waveplate combination to stop prelasing. The fused silica prism/0.57λ combination with waveplate at 112° acts like a 100% mirror and was utilized for optimization of free running performance. The effective reflectivity was determined for various orientations of the quarter waveplate in the gain arm to numerically estimate the Q-switched laser pulse parameters through rate equation analysis. Experimental results match well with the theoretical analysis.
NASA Astrophysics Data System (ADS)
Lambrakos, S. G.; Yapijakis, C.; Aiken, D.; Shabaev, A.; Ramsey, S.; Peak, J.
2015-05-01
Hyperspectral analysis of water samples taken from public water resources in the New York City metro area has demonstrated the potential application of this type of analysis for water monitoring, treatment and evaluation prior to filtration. Hyperspectral monitoring of contaminants with respect to types and relative concentrations requires tracking statistical profiles of water contaminants in terms of spatial-temporal distributions of electromagnetic absorption spectra ranging from the ultraviolet to infrared, which are associated with specific water resources. To achieve this, it is necessary to establish correlation between hyperspectral signatures and types of contaminants to be found within specific water resources. Correlation between absorption spectra and changes in chemical and physical characteristics of contaminants requires sufficient sensitivity. The present study examines the sensitivity of modulated resonance features with respect to characteristics of water contaminants for hyperspectral analysis of water samples.
Light baryon spectrum using improved interpolating operators
S. Basak, R. G. Edwards, G. T. Fleming, J. Juge, A. Lichtl, C. Morningstar D. G. Richards, I. Sato, S. J. Wallace
2006-06-26
Energies for excited light baryons are computed in quenched QCD with a pion mass of 490 MeV. Operators used in the simulations include local operators and the simplest nonlocal operators that have nontrivial orbital structures. All operators are designed with the use of Clebsch-Gordan coefficients of the octahedral group so that they transform irreducibly under the group rotations. Matrices of correlation functions are computed for each irreducible representation, and then the variational method is applied to separate mass eigenstates. We obtained 17 states for isospin 1/2 and 11 states for isospin 3/2 in various spin-parity channels including J{sup P}=5/2{sup {+-}}. The pattern of the lowest-lying energies from each irrep is discussed. We use anisotropic lattices of volume 24{sup 3} x 64 with temporal lattice spacing a{sub t}{sup -1}=6.05 GeV with renormalized anisotropy xi=3.0.
Photoproduction of the Λ c charmed baryon
NASA Astrophysics Data System (ADS)
Alvarez, M. P.; Barate, R.; Bloch, D.; Bonamy, P.; Borgeaud, P.; Burchell, M.; Burmeister, H.; Brunet, J. M.; Calvino, F.; Cattaneo, M.; Crespo, J. M.; d'Almagne, B.; David, M.; DiCiaccio, L.; Dixon, J.; Druet, P.; Duane, A.; Engel, J. P.; Ferrer, A.; Filippas, T. A.; Fokitis, E.; Forty, R. W.; Foucault, P.; Gazis, E. N.; Gerber, J. P.; Giomataris, Y.; Hofmokl, T.; Katsoufis, E. C.; Koratzinos, M.; Krafft, C.; Lefievre, B.; Lemoigne, Y.; Lopez, A.; Lui, W. K.; Magneville, C.; Maltezos, A.; McEwen, J. G.; Papadopoulou, Th.; Pattison, B.; Poutot, D.; Primout, M.; Rahmani, H.; Roudeau, P.; Seez, C.; Six, J.; Strub, R.; Treille, D.; Triscos, P.; Tristram, G.; Villet, G.; Volte, A.; Wayne, M.; Websdale, D. M.; Wormser, G.; Zolnierowski, Y.; NA14/2 Collaboration
1990-08-01
In a photoproduction experiment using a mean photon energy of 100 GeV we have observed 29±8 Λ c( overlineΛ c) charmed-baryon and antibaryon decays in the pK-π + ( overlinepK +π -) final state. Quasi two-body final states do not contribite significantly to this channel. The mass of the Λ c was measured to be 2281.7±2.7±2.6 MeV/ c2 and its lifetime 0.18±0.03±0.03 ps. The ratio of {Λ c}/{D} production, measured in this experiment, is significantly greater than that predicted by photon-gluon fusion and using a Lund model to describe the hadronization. This excess cannot be completely accounted for in this model, even using a Λ c branching fraction in pK π as high as 5%.
First Observation of a Baryonic Bc+ Decay
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cojocariu, L.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H.-M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, RF; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.; LHCb Collaboration
2014-10-01
A baryonic decay of the Bc+ meson, Bc+→J/ψpp ¯π+, is observed for the first time, with a significance of 7.3 standard deviations, in pp collision data collected with the LHCb detector and corresponding to an integrated luminosity of 3.0 fb-1 taken at center-of-mass energies of 7 and 8 TeV. With the Bc+→J/ψπ+ decay as the normalization channel, the ratio of branching fractions is measured to be B(Bc+→J/ψpp ¯π+)/B(Bc+→J/ψπ+)=0.143-0.034+0.039(stat)±0.013(syst). The mass of the Bc+ meson is determined as M(Bc+)=6274.0±1.8(stat)±0.4(syst) MeV/c2, using the Bc+→J/ψpp ¯π+ channel.
Search for the doubly charmed baryon
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; David, P.; David, P. N. Y.; Davis, A.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Dogaru, M.; Donleavy, S.; Dordei, F.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Falabella, A.; Färber, C.; Farinelli, C.; Farry, S.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garosi, P.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorbounov, P.; Gordon, H.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hicks, E.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Huse, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Kochebina, O.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Li Gioi, L.; Liles, M.; Lindner, R.; Linn, C.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lu, H.; Lucchesi, D.; Luisier, J.; Luo, H.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Maratas, J.; Marconi, U.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martins Tostes, D.; Martynov, A.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Maurice, E.; Mazurov, A.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morawski, P.; Mordà, A.; Morello, M. J.; Mountain, R.; Mous, I.; Muheim, F.; Müller, K.; Muresan, R.; Muryn, B.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neubert, S.; Neufeld, N.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrick, G. N.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Pérez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Pessina, G.; Petridis, K.; Petrolini, A.; Phan, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Playfer, S.; Plo Casasus, M.; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redford, S.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Roberts, D. A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Ruiz Valls, P.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Straticiuc, M.; Straumann, U.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; Waldi, R.; Wallace, C.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiechczynski, J.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.
2013-12-01
A search for the doubly charmed baryon in the decay mode is performed with a data sample, corresponding to an integrated luminosity of 0.65 fb-1, of pp collisions recorded at a centre-of-mass energy of 7 TeV. No significant signal is found in the mass range 3300-3800 MeV /c 2. Upper limits at the 95% confidence level on the ratio of the production cross-section times branching fraction to that of the , R, are given as a function of the mass and lifetime. The largest upper limits range from R < 1.5 × 10-2 for a lifetime of 100 fs to R < 3 .9 × 10-4 for a lifetime of 400 fs. [Figure not available: see fulltext.
Shedding light on baryonic dark matter.
Silk, J
1991-02-01
Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10(6) to 10(8) solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by non-degenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable x-ray signal associated with dark matter aggregations in galaxy halos and galaxy cluster cores.
Quantum Operator Design for Lattice Baryon Spectroscopy
Lichtl, Adam
2006-09-07
A previously-proposed method of constructing spatially-extended gauge-invariant three-quark operators for use in Monte Carlo lattice QCD calculations is tested, and a methodology for using these operators to extract the energies of a large number of baryon states is developed. This work is part of a long-term project undertaken by the Lattice Hadron Physics Collaboration to carry out a first-principles calculation of the low-lying spectrum of QCD. The operators are assemblages of smeared and gauge-covariantly-displaced quark fields having a definite flavor structure. The importance of using smeared fields is dramatically demonstrated. It is found that quark field smearing greatly reduces the couplings to the unwanted high-lying short-wavelength modes, while gauge field smearing drastically reduces the statistical noise in the extended operators.
Cluster outskirts and the missing baryons
NASA Astrophysics Data System (ADS)
Eckert, D.
2016-06-01
Galaxy clusters are located at the crossroads of intergalactic filaments and are still forming through the continuous merging and accretion of smaller structures from the surrounding cosmic web. Deep, wide-field X-ray studies of the outskirts of the most massive clusters bring us valuable insight into the processes leading to the growth of cosmic structures. In addition, cluster outskirts are privileged sites to search for the missing baryons, which are thought to reside within the filaments of the cosmic web. I will present the XMM cluster outskirts project, a VLP that aims at mapping the outskirts of 13 nearby clusters. Based on the results obtained with this program, I will then explore ideas to exploit the capabilities of XMM during the next decade.
Shedding light on baryonic dark matter
NASA Technical Reports Server (NTRS)
Silk, Joseph
1991-01-01
Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10 to the 6th to 10 to the 8th solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by nondegenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable X-ray signal associated with dark matter aggregations in galaxy cluster cores.
Measurements of the properties of Λc(2595) , Λc(2625) , Σc(2455) , and Σc(2520) baryons
Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Apresyan, A.; et al
2011-07-13
We report measurements of the resonance properties of Λc(2595)+ and Λc(2595)+ baryons in their decays to Λc+π+π- as well as Σc(2455)++,0 and Σc(2455)++,0 baryons in their decays to Λc+π± final states. These measurements are performed using data corresponding to 5.2 fb-1 of integrated luminosity from pp̄ collisions at √s = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. In addition, exploiting the largest available charmed baryon sample, we measure masses and decay widths with uncertainties comparable to the world averages for Σc states, and significantly smaller uncertainties than the world averages for excited Λc+ states.
Hamiltonian Effective Field Theory Study of the N*(1535 ) Resonance in Lattice QCD
NASA Astrophysics Data System (ADS)
Liu, Zhan-Wei; Kamleh, Waseem; Leinweber, Derek B.; Stokes, Finn M.; Thomas, Anthony W.; Wu, Jia-Jun
2016-02-01
Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying JP=1 /2- nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.
Resonant laser ablation ion trap mass spectrometry -- Recent applications for chemical analysis
Gill, C.G.; Garrett, A.W.; Hemberger, P.H.; Nogar, N.S.
1995-12-31
Resonant Laser Ablation (RLA) is a useful ionization process for selectively producing gas phase ions from a solid sample. Recent use of RLA for mass spectrometry by this group and by others has produced a wealth of knowledge and useful analytical techniques. The method relies upon the focusing of modest intensity laser pulses ({le} 10{sup 7} W {center_dot} Cm{sup {minus}2}) upon a sample surface. A small quantity of material is vaporized, and atoms of desired analyte are subsequently ionized by (n + m) photon processes in the gas phase (where n = number of photons to a resonant transition and m = number of photons to exceed the ionization limit). The authors have been using (2 + 1) resonant ionization schemes for this work. Quadrupole ion trap mass spectrometry is realizing a very prominent role in current mass spectrometric research. Ion traps are versatile, powerful and extremely sensitive mass spectrometers, capable of a variety of ionization modes, MS{sup n} type experiments, high mass ranges and high resolution, all for a fraction of the cost of other instrumentation with similar capabilities. Quadrupole ion traps are ideally suited to pulsed ionization sources such as laser ionization methods, since their normal operational method (Mass Selective Instability) relies upon the storage of ions from a finite ionization period followed by ejection and detection of these ions based upon their mass to charge ratios. The paper describes selective ionization for trace atomic analysis, selective reagent ion source for ion chemistry investigations, and the analysis of ``difficult`` environmental contaminants, i.e., TBP.
Dark matter and the baryon asymmetry of the universe.
Farrar, Glennys R; Zaharijas, Gabrijela
2006-02-01
We present a mechanism to generate the baryon asymmetry of the Universe which preserves the net baryon number created in the big bang. If dark matter particles carry baryon number Bx, and sigmaxannih
Dark matter and the baryon asymmetry of the universe.
Farrar, Glennys R; Zaharijas, Gabrijela
2006-02-01
We present a mechanism to generate the baryon asymmetry of the Universe which preserves the net baryon number created in the big bang. If dark matter particles carry baryon number Bx, and sigmaxannih
Baryon asymmetry from hypermagnetic helicity in dilaton hypercharge electromagnetism
Bamba, Kazuharu
2006-12-15
The generation of the baryon asymmetry of the Universe from the hypermagnetic helicity, the physical interpretation of which is given in terms of hypermagnetic knots, is studied in inflationary cosmology, taking into account the breaking of the conformal invariance of hypercharge electromagnetic fields through both a coupling with the dilaton and with a pseudoscalar field. It is shown that, if the electroweak phase transition is strongly first order and the present amplitude of the generated magnetic fields on the horizon scale is sufficiently large, a baryon asymmetry with a sufficient magnitude to account for the observed baryon-to-entropy ratio can be generated.
Theoretical and experimental analysis of optical gyroscopes based on fiber ring resonators
NASA Astrophysics Data System (ADS)
Liu, Yao-ying; Xue, Chen-yang; Cui, Xiao-wen; Cui, Dan-feng; Wei, Li-ping; Wang, Yong-hua; Li, Yan-na
2014-12-01
The research on gyroscopes has lasted for a long time, but there is not a thorough analysis of them. In this paper, a detailed theoretical analysis of fiber ring gyroscope and its gyroscope effect were presented, the performance characteristics of optical resonator gyroscope ranging from transmission function Tfrr, Finesse, Q-factor, the gyro sensitivity, signal noise ratio, random walk to dynamic range are all deduced in detail. In addition, a large number of experiments have been done to verify the deduced theoretical results. Simulating the relevance of dQ and turn number of fiber ring, analyzing the frequency difference of two counter transmitted waves (CW and CCW) of the rotated system, make the conclusion that with the increase of turn number of ring, the resonance depth increased while the dQ value decreased, obtain a high sensitivity of 0.210/h, random walk of 0.00350/√h, and Q factor of 8×106. Moreover, in the digital frequency locked dual rotation gyro experiments, obvious step effect was observed. And the experimental line of frequency difference is very agreement with the theoretical line. The research provides a good theoretical and experimental basis for the study of gyroscopes.
Liu, Linlin; Yang, Jun; Yang, Zhong; Wan, Xiaoping; Hu, Ning; Zheng, Xiaolin
2013-01-01
Surface plasmon resonance (SPR) sensor is widely used for its high precision and real-time analysis. Fiber-optic SPR sensor is easy for miniaturization, so it is commonly used in the development of portable detection equipment. It can also be used for remote, real-time, and online detection. In this study, a wavelength modulation fiber-optic SPR sensor is designed, and theoretical analysis of optical propagation in the optical fiber is also done. Compared with existing methods, both the transmission of a skew ray and the influence of the chromatic dispersion are discussed. The resonance wavelength is calculated at two different cases, in which the chromatic dispersion in the fiber core is considered. According to the simulation results, a novel multi-channel fiber-optic SPR sensor is likewise designed to avoid defaults aroused by the complicated computation of the skew ray as well as the chromatic dispersion. Avoiding the impact of skew ray can do much to improve the precision of this kind of sensor. PMID:23748170
Risk management in magnetic resonance: failure mode, effects, and criticality analysis.
Petrillo, Antonella; Fusco, Roberta; Granata, Vincenza; Filice, Salvatore; Raiano, Nicola; Amato, Daniela Maria; Zirpoli, Maria; di Finizio, Alessandro; Sansone, Mario; Russo, Anna; Covelli, Eugenio Maria; Pedicini, Tonino; Triassi, Maria
2013-01-01
The aim of the study was to perform a risk management procedure in "Magnetic Resonance Examination" process in order to identify the critical phases and sources of radiological errors and to identify potential improvement projects including procedures, tests, and checks to reduce the error occurrence risk. In this study we used the proactive analysis "Failure Mode Effects Criticality Analysis," a qualitative and quantitative risk management procedure; has calculated Priority Risk Index (PRI) for each activity of the process; have identified, on the PRI basis, the most critical activities and, for them, have defined improvement projects; and have recalculated the PRI after implementation of improvement projects for each activity. Time stop and audits are performed in order to control the new procedures. The results showed that the most critical tasks of "Magnetic Resonance Examination" process were the reception of the patient, the patient schedule drafting, the closing examination, and the organization of activities. Four improvement projects have been defined and executed. PRI evaluation after improvement projects implementation has shown that the risk decreased significantly following the implementation of procedures and controls defined in improvement projects, resulting in a reduction of the PRI between 43% and 100%. PMID:24171173
Papastergis, Emmanouil; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P.; Cattaneo, Andrea E-mail: shan@astro.cornell.edu E-mail: haynes@astro.cornell.edu
2012-11-10
We use both an H I-selected and an optically selected galaxy sample to directly measure the abundance of galaxies as a function of their 'baryonic' mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey and atomic gas masses are calculated using atomic hydrogen (H I) emission line data from the Arecibo Legacy Fast ALFA survey. By using the technique of abundance matching, we combine the measured baryonic function of galaxies with the dark matter halo mass function in a {Lambda}CDM universe, in order to determine the galactic baryon fraction as a function of host halo mass. We find that the baryon fraction of low-mass halos is much smaller than the cosmic value, even when atomic gas is taken into account. We find that the galactic baryon deficit increases monotonically with decreasing halo mass, in contrast with previous studies which suggested an approximately constant baryon fraction at the low-mass end. We argue that the observed baryon fractions of low-mass halos cannot be explained by reionization heating alone, and that additional feedback mechanisms (e.g., supernova blowout) must be invoked. However, the outflow rates needed to reproduce our result are not easily accommodated in the standard picture of galaxy formation in a {Lambda}CDM universe.
Luchansky, Matthew S; Bailey, Ryan C
2010-03-01
The ability to perform multiple simultaneous protein biomarker measurements in complex media with picomolar sensitivity presents a large challenge to disease diagnostics and fundamental biological studies. Silicon photonic microring resonators represent a promising platform for real-time detection of biomolecules on account of their spectral sensitivity toward surface binding events between a target and antibody-modified microrings. For all refractive index-based sensing schemes, the mass of bound analytes, in combination with other factors such as antibody affinity and surface density, contributes to the observed signal and measurement sensitivity. Therefore, proteins that are simultaneously low in abundance and have a lower molecular weight are often challenging to detect. By employing a more massive secondary antibody to amplify the signal arising from the initial binding event, it is possible to improve both the sensitivity and the specificity of protein assays, allowing for quantitative sensing in complex sample matrices. Herein, a sandwich assay is used to detect the 15.5 kDa human cytokine interleukin-2 (IL-2) at concentrations down to 100 pg/mL (6.5 pM) and to quantitate unknown solution concentrations over a dynamic range spanning 2.5 orders of magnitude. This same sandwich assay is then used to monitor the temporal secretion profile of IL-2 from Jurkat T lymphocytes in serum-containing cell culture media in the presence of the entire Jurkat secretome. The same temporal secretion analysis is performed in parallel using a commercial ELISA, revealing similar IL-2 concentration profiles but superior precision for the microring resonator sensing platform. Furthermore, we demonstrate the generality of the sandwich assay methodology on the microring resonator platform for the analysis of any biomolecular target for which two high-affinity antibodies exist by detecting the approximately 8 kDa cytokine interleukin-8 (IL-8) with a limit of detection and dynamic
NASA Astrophysics Data System (ADS)
Streibel, Thorsten; Zimmermann, Ralf
2014-06-01
Process analysis is an emerging discipline in analytical sciences that poses special requirements on analytical techniques, especially when conducted in an online manner. Mass spectrometric methods seem exceedingly suitable for this task, particularly if a soft ionization method is applied. Resonance-enhanced multiphoton ionization (REMPI) in combination with time-of-flight mass spectrometry (TOFMS) provides a selective and sensitive means for monitoring (poly)aromatic compounds in process flows. The properties of REMPI and various variations of the ionization process are presented. The potential of REMPI for process analysis is highlighted with several examples, and drawbacks of the method are also noted. Applications of REMPI-TOFMS for the detection and monitoring of aromatic species in a large variety of combustion processes comprising flames, vehicle exhaust, and incinerators are discussed. New trends in technical development and combination with other analytical methods are brought forward.
Eigen analysis of series compensation schemes reducing the potential of subsynchronous resonance
Iravani, M.R.; Edris, A.A.
1995-05-01
A previous paper describes a new concept for mitigation of the phenomenon of subsynchronous resonance (SSR) based on asymmetrical series capacitor compensation at SSR frequencies. The studies reported in that paper are based on a digital time-domain simulation technique. This paper provides a quantitative evaluation of the concept using a novel eigen analysis approach. The eigen analysis approach represents the mathematical models of power system components in the three-phase basis, and can evaluate the impacts of asymmetry and imbalance on the system dynamics in the subsynchronous frequency range. The study results restate technical feasibility of the proposed SSR countermeasure. This paper opens the avenue for examination of active power filter topologies to introduce artificial asymmetry at SSR frequencies to counteract torsional oscillations.
Comparative loss analysis and efficiency performance of resonance-based PDP sustain drivers
NASA Astrophysics Data System (ADS)
Kwak, S.-S.; Kim, I.-G.; Lee, J.
2016-01-01
Sustain drivers based on the LC resonant operation have a significant influence on the entire circuit efficiency and cost of plasma display panels (PDPs). Although circuit efficiency of PDP drivers is extremely important, theoretical loss analysis and comparative studies of the sustain drivers have been missed in the literature, despite a variety of developed PDP sustain drivers. This paper presents in detail theoretical analyses and systematic comparisons of semiconductor losses in the PDP sustain drivers, including the inevitable conduction losses by the displacement currents, the undesirable extra conduction losses, the switching losses by the forced current commutations and the switching losses by the step voltage changes. Based on derived theoretical analysis and comparative features, sustain drivers are evaluated in terms of PDP operating speed as well as circuits' efficiency.
Analysis of resonant optical gyroscopes with two input/output waveguides.
Hah, Dooyoung; Zhang, Dan
2010-08-16
Rotation sensitivity of optical gyroscopes with ring resonators and two input/output waveguides in a coplanar add-drop filter configuration is studied. First, the gyroscope with a single resonator is analyzed, which is shown to have slightly higher sensitivity than the one with one waveguide. Next, the sensor with two identical resonators coupled through waveguides is investigated, which turns out to have half the sensitivity of the one with a single resonator when compared for the same footprints. The last point is valid when the resonators have the same coupling coefficients to the waveguides in the sensor with two resonators.
NASA Astrophysics Data System (ADS)
Naresh, P.; Hitesh, C.; Patel, A.; Kolge, T.; Sharma, Archana; Mittal, K. C.
2013-08-01
A fourth order (LCLC) resonant converter based capacitor charging power supply (CCPS) is designed and developed for pulse power applications. Resonant converters are preferred t utilize soft switching techniques such as zero current switching (ZCS) and zero voltage switching (ZVS). An attempt has been made to overcome the disadvantages in 2nd and 3rd resonant converter topologies; hence a fourth order resonant topology is used in this paper for CCPS application. In this paper a novel fourth order LCLC based resonant converter has been explored and mathematical analysis carried out to calculate load independent constant current. This topology provides load independent constant current at switching frequency (fs) equal to resonant frequency (fr). By changing switching condition (on time and dead time) this topology has both soft switching techniques such as ZCS and ZVS for better switching action to improve the converter efficiency. This novel technique has special features such as low peak current through switches, DC blocking for transformer, utilizing transformer leakage inductance as resonant component. A prototype has been developed and tested successfully to charge a 100 μF capacitor to 200 V.
Naresh, P; Hitesh, C; Patel, A; Kolge, T; Sharma, Archana; Mittal, K C
2013-08-01
A fourth order (LCLC) resonant converter based capacitor charging power supply (CCPS) is designed and developed for pulse power applications. Resonant converters are preferred t utilize soft switching techniques such as zero current switching (ZCS) and zero voltage switching (ZVS). An attempt has been made to overcome the disadvantages in 2nd and 3rd resonant converter topologies; hence a fourth order resonant topology is used in this paper for CCPS application. In this paper a novel fourth order LCLC based resonant converter has been explored and mathematical analysis carried out to calculate load independent constant current. This topology provides load independent constant current at switching frequency (fs) equal to resonant frequency (fr). By changing switching condition (on time and dead time) this topology has both soft switching techniques such as ZCS and ZVS for better switching action to improve the converter efficiency. This novel technique has special features such as low peak current through switches, DC blocking for transformer, utilizing transformer leakage inductance as resonant component. A prototype has been developed and tested successfully to charge a 100 μF capacitor to 200 V. PMID:24007087
Dirac's Covariant Constraint Dynamics Applied to the Baryon Spectrum
NASA Astrophysics Data System (ADS)
Whitney, Joshua; Crater, Horace
2010-02-01
A baryon is a hadron containing three quarks in a combination of up, down, strange, charm, or bottom. For prediction of the baryon energy spectrum, a baryon is modeled as a three-body system with the interacting forces coming from a set of two-body potentials that depend on the distance between the quarks, the spin-spin and spin-orbit angular momentum coupling terms, and a tensor term. Techniques and equations are derived from Todorov's work on constraint dynamics and the quasi-potential equation together with Two Body Dirac equations developed by Crater and Van Alstine, and adapted to this specific problem by further use of Sazdjian's N-body constraints dynamics for general confined systems. Baryon spectroscopy results are presented and compared with experiment. Typically, a best fit method is used in the analyses that employ several different algorithms, including a gradient approach, Monte Carlo modeling, and simulated annealing methods. )
Heaviest bound baryons production at the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Wu, Su-Zhi; Li, You-Wei; Rashidin, Reyima
2012-12-01
We calculate the hadronic production of three heaviest bound baryons Ωbbb, Ωbbc*, and Ωbbc at hadron colliders at tree level. We present the integrated cross section and differential cross section distributions in this paper.
Penguin diagram dominance in radiative weak decays of bottom baryons
Kohara, Yoji
2005-05-01
Radiative weak decays of antitriplet bottom baryons are studied under the assumption of penguin diagram dominance and flavor-SU(3) (or SU(2)) symmetry. Relations among decay rates of various decay modes are derived.
The electroweak axion, dark energy, inflation and baryonic matter
McLerran, L.
2015-03-15
In a previous paper [1], the standard model was generalized to include an electroweak axion which carries baryon plus lepton number, B + L. It was shown that such a model naturally gives the observed value of the dark energy, if the scale of explicit baryon number violation A was chosen to be of the order of the Planck mass. In this paper, we consider the effect of the modulus of the axion field. Such a field must condense in order to generate the standard Goldstone boson associated with the phase of the axion field. This condensation breaks baryon number. We argue that this modulus might be associated with inflation. If an additional B − L violating scalar is introduced with a mass similar to that of the modulus of the axion field, we argue that decays of particles associated with this field might generate an acceptable baryon asymmetry.
CDM/baryon isocurvature perturbations in a sneutrino curvaton model
Harigaya, Keisuke; Kawasaki, Masahiro; Hayakawa, Taku; Yokoyama, Shuichiro E-mail: taku1215@icrr.u-tokyo.ac.jp E-mail: shuichiro@rikkyo.ac.jp
2014-10-01
Matter isocurvature perturbations are strictly constrained from cosmic microwave background observations. We study a sneutrino curvaton model where both cold dark matter (CDM)/baryon isocurvature perturbations are generated. In our model, total matter isocurvature perturbations are reduced since the CDM/baryon isocurvature perturbations compensate for each other. We show that this model can not only avoid the stringent observational constraints but also suppress temperature anisotropies on large scales, which leads to improved agreement with observations.
Kidera, M.; Nakagawa, T.; Takahashi, K.; Enomoto, S.; Igarashi, K.; Fujimaki, M.; Ikezawa, E.; Kamigaito, O.; Kase, M.; Goto, A.; Yano, Y.
2006-03-15
We have developed a new analytical system that consists of an electron cyclotron resonance ion source (RIKEN 18 GHz ECRIS) and a RIKEN heavy ion linear accelerator (RILAC). This system is called trace element analysis using electron cyclotron resonance ion source and RILAC (ECRIS-RILAC-TEA). ECRIS-RILAC-TEA has several advantages as described in the work of Kidera et al. [AIP Conf. Proc. 749, 85 (2005)]. However, many experimental results during the last several years revealed a few problems: (1) large background contamination in the ECRIS, particularly at the surface of the plasma chamber wall, (2) high counting of the ionization chamber and the data taking system that is monitored by the direct beam from the accelerator, and (3) difficulty in the selection of the pilot sample and pilot beam production from the ECRIS for the purpose of normalization. In order to overcome these problems, we conducted several test experiments over the past year. In this article, we report the experimental results in detail and future plans for improving this system.
Analysis of the impedance resonance of piezoelectric multi-fiber composite stacks
NASA Astrophysics Data System (ADS)
Sherrit, S.; Djrbashian, A.; Bradford, S. C.
2013-04-01
Multi-Fiber Composites™ (MFC's) produced by Smart Materials Corp behave essentially like thin planar stacks where each piezoelectric layer is composed of a multitude of fibers. We investigate the suitability of using previously published inversion techniques [9] for the impedance resonances of monolithic co-fired piezoelectric stacks to the MFC™ to determine the complex material constants from the impedance data. The impedance equations examined in this paper are those based on the derivation by Martin [5,6,10]. The utility of resonance techniques to invert the impedance data to determine the small signal complex material constants are presented for a series of MFC's. The technique was applied to actuators with different geometries and the real coefficients were determined to be similar within changes of the boundary conditions due to change of geometry. The scatter in the imaginary coefficient was found to be larger. The technique was also applied to the same actuator type but manufactured in different batches with some design changes in the non active portion of the actuator and differences in the dielectric and the electromechanical coupling between the two batches were easily measureable. It is interesting to note that strain predicted by small signal impedance analysis is much lower than high field stains. Since the model is based on material properties rather than circuit constants, it could be used for the direct evaluation of specific aging or degradation mechanisms in the actuator as well as batch sorting and adjustment of manufacturing processes.
Sertsu, M G; Nardello, M; Giglia, A; Corso, A J; Maurizio, C; Juschkin, L; Nicolosi, P
2015-12-10
Accurate measurements of optical properties of multilayer (ML) mirrors and chemical compositions of interdiffusion layers are particularly challenging to date. In this work, an innovative and nondestructive experimental characterization method for multilayers is discussed. The method is based on extreme ultraviolet (EUV) reflectivity measurements performed on a wide grazing incidence angular range at an energy near the absorption resonance edge of low-Z elements in the ML components. This experimental method combined with the underlying physical phenomenon of abrupt changes of optical constants near EUV resonance edges enables us to characterize optical and structural properties of multilayers with high sensitivity. A major advantage of the method is to perform detailed quantitative analysis of buried interfaces of multilayer structures in a nondestructive and nonimaging setup. Coatings of Si/Mo multilayers on a Si substrate with period d=16.4 nm, number of bilayers N=25, and different capping structures are investigated. Stoichiometric compositions of Si-on-Mo and Mo-on-Si interface diffusion layers are derived. Effects of surface oxidation reactions and carbon contaminations on the optical constants of capping layers and the impact of neighboring atoms' interactions on optical responses of Si and Mo layers are discussed. PMID:26836858
Pion-Nucleon Scattering and Analysis from threshold to the N*(1440) Resonance Region
NASA Astrophysics Data System (ADS)
Sadler, Michael; Watson, Shon; Stahov, Jugoslav
2008-10-01
Many measurements for pion-nucleon scattering from threshold to the N*(1440) resonance region have been made since 1980, when the landmark Karlsruhe-Helsinki (KH) and Carnegie Mellon-Berkeley (CMB) partial wave analyses (PWA) were completed. These measurements consist of differential cross sections and analyzing powers for elastic scattering and charge exchange. Spin rotation parameters for elastic scattering in the momentum interval 0.4 -- 0.7 GeV/c have also been obtained. The program culminated with measurements of π-p -> Neutrals (charge exchange, multiple pi-zero final states, eta production, and inverse photoproduction) using the Crystal Ball at BNL. Resonance parameters for the N*(1440) in the Review of Particle Physics by the Particle Data Group have been obtained from the KH and CMB analyses. The 2006 edition also includes the analysis by George Washington University (GWU) ``for averages, fits, limits, etc.'', but the parameters were unchanged. An overview of the data will be presented along with comparisons to PWA.
Sertsu, M G; Nardello, M; Giglia, A; Corso, A J; Maurizio, C; Juschkin, L; Nicolosi, P
2015-12-10
Accurate measurements of optical properties of multilayer (ML) mirrors and chemical compositions of interdiffusion layers are particularly challenging to date. In this work, an innovative and nondestructive experimental characterization method for multilayers is discussed. The method is based on extreme ultraviolet (EUV) reflectivity measurements performed on a wide grazing incidence angular range at an energy near the absorption resonance edge of low-Z elements in the ML components. This experimental method combined with the underlying physical phenomenon of abrupt changes of optical constants near EUV resonance edges enables us to characterize optical and structural properties of multilayers with high sensitivity. A major advantage of the method is to perform detailed quantitative analysis of buried interfaces of multilayer structures in a nondestructive and nonimaging setup. Coatings of Si/Mo multilayers on a Si substrate with period d=16.4 nm, number of bilayers N=25, and different capping structures are investigated. Stoichiometric compositions of Si-on-Mo and Mo-on-Si interface diffusion layers are derived. Effects of surface oxidation reactions and carbon contaminations on the optical constants of capping layers and the impact of neighboring atoms' interactions on optical responses of Si and Mo layers are discussed.
Power and efficiency analysis of a realistic resonant tunneling diode thermoelectric
Agarwal, Akshay; Muralidharan, Bhaskaran
2014-07-07
Low-dimensional systems with sharp features in the density of states have been proposed as a means for improving the efficiency of thermoelectric devices. Quantum dot systems, which offer the sharpest density of states achievable, however, suffer from low power outputs while bulk (3-D) thermoelectrics, while displaying high power outputs, offer very low efficiencies. Here, we analyze the use of a resonant tunneling diode structure that combines the best of both aspects, that is, density of states distortion with a finite bandwidth due to confinement that aids the efficiency and a large number of current carrying transverse modes that enhances the total power output. We show that this device can achieve a high power output (∼0.3 MW∕m{sup 2}) at efficiencies of ∼40% of the Carnot efficiency due to the contribution from these transverse momentum states at a finite bandwidth of kT∕2. We then provide a detailed analysis of the physics of charge and heat transport with insights on parasitic currents that reduce the efficiency. Finally, a comparison between the resonant tunneling diode and a quantum dot device with comparable bandwidth reveals that a similar performance requires ultra-dense areal quantum dot densities of ∼10{sup 12}/cm{sup 2}.
Analysis of Resonance Response Performance of C-Band Antenna Using Parasitic Element
Islam, M. T.; Misran, N.; Mandeep, J. S.
2014-01-01
Analysis of the resonance response improvement of a planar C-band (4–8 GHz) antenna is proposed using parasitic element method. This parasitic element based method is validated for change in the active and parasitic antenna elements. A novel dual-band antenna for C-band application covering 5.7 GHz and 7.6 GHz is designed and fabricated. The antenna is composed of circular parasitic element with unequal microstrip lines at both sides and a rectangular partial ground plane. A fractional bandwidth of 13.5% has been achieved from 5.5 GHz to 6.3 GHz (WLAN band) for the lower band. The upper band covers from 7.1 GHz to 8 GHz with a fractional bandwidth of 12%. A gain of 6.4 dBi is achieved at the lower frequency and 4 dBi is achieved at the upper frequency. The VSWR of the antenna is less than 2 at the resonance frequency. PMID:24895643
Analysis of the Impedance Resonance of Piezoelectric Multi-Fiber Composite Stacks
NASA Technical Reports Server (NTRS)
Sherrit, S.; Djrbashian, A.; Bradford, S C
2013-01-01
Multi-Fiber CompositesTM (MFC's) produced by Smart Materials Corp behave essentially like thin planar stacks where each piezoelectric layer is composed of a multitude of fibers. We investigate the suitability of using previously published inversion techniques for the impedance resonances of monolithic co-fired piezoelectric stacks to the MFCTM to determine the complex material constants from the impedance data. The impedance equations examined in this paper are those based on the derivation. The utility of resonance techniques to invert the impedance data to determine the small signal complex material constants are presented for a series of MFC's. The technique was applied to actuators with different geometries and the real coefficients were determined to be similar within changes of the boundary conditions due to change of geometry. The scatter in the imaginary coefficient was found to be larger. The technique was also applied to the same actuator type but manufactured in different batches with some design changes in the non active portion of the actuator and differences in the dielectric and the electromechanical coupling between the two batches were easily measureable. It is interesting to note that strain predicted by small signal impedance analysis is much lower than high field stains. Since the model is based on material properties rather than circuit constants, it could be used for the direct evaluation of specific aging or degradation mechanisms in the actuator as well as batch sorting and adjustment of manufacturing processes.
Power and efficiency analysis of a realistic resonant tunneling diode thermoelectric
NASA Astrophysics Data System (ADS)
Agarwal, Akshay; Muralidharan, Bhaskaran
2014-07-01
Low-dimensional systems with sharp features in the density of states have been proposed as a means for improving the efficiency of thermoelectric devices. Quantum dot systems, which offer the sharpest density of states achievable, however, suffer from low power outputs while bulk (3-D) thermoelectrics, while displaying high power outputs, offer very low efficiencies. Here, we analyze the use of a resonant tunneling diode structure that combines the best of both aspects, that is, density of states distortion with a finite bandwidth due to confinement that aids the efficiency and a large number of current carrying transverse modes that enhances the total power output. We show that this device can achieve a high power output (˜0.3 MW/m2) at efficiencies of ˜40% of the Carnot efficiency due to the contribution from these transverse momentum states at a finite bandwidth of kT/2. We then provide a detailed analysis of the physics of charge and heat transport with insights on parasitic currents that reduce the efficiency. Finally, a comparison between the resonant tunneling diode and a quantum dot device with comparable bandwidth reveals that a similar performance requires ultra-dense areal quantum dot densities of ˜ 10 12 / cm 2.
NASA Astrophysics Data System (ADS)
Graben, Peter Beim; Frisch, Stefan; Fink, Andrew; Saddy, Douglas; Kurths, Jürgen
2005-11-01
We apply the recently developed symbolic resonance analysis to electroencephalographic measurements of event-related brain potentials (ERPs) in a language processing experiment by using a three-symbol static encoding with varying thresholds for analyzing the ERP epochs, followed by a spin-flip transformation as a nonlinear filter. We compute an estimator of the signal-to-noise ratio (SNR) for the symbolic dynamics measuring the coherence of threshold-crossing events. Hence, we utilize the inherent noise of the EEG for sweeping the underlying ERP components beyond the encoding thresholds. Plotting the SNR computed within the time window of a particular ERP component (the N400) against the encoding thresholds, we find different resonance curves for the experimental conditions. The maximal differences of the SNR lead to the estimation of optimal encoding thresholds. We show that topographic brain maps of the optimal threshold voltages and of their associated coherence differences are able to dissociate the underlying physiological processes, while corresponding maps gained from the customary voltage averaging technique are unable to do so.
Analysis of resonance response performance of C-band antenna using parasitic element.
Zaman, M R; Islam, M T; Misran, N; Mandeep, J S
2014-01-01
Analysis of the resonance response improvement of a planar C-band (4-8 GHz) antenna is proposed using parasitic element method. This parasitic element based method is validated for change in the active and parasitic antenna elements. A novel dual-band antenna for C-band application covering 5.7 GHz and 7.6 GHz is designed and fabricated. The antenna is composed of circular parasitic element with unequal microstrip lines at both sides and a rectangular partial ground plane. A fractional bandwidth of 13.5% has been achieved from 5.5 GHz to 6.3 GHz (WLAN band) for the lower band. The upper band covers from 7.1 GHz to 8 GHz with a fractional bandwidth of 12%. A gain of 6.4 dBi is achieved at the lower frequency and 4 dBi is achieved at the upper frequency. The VSWR of the antenna is less than 2 at the resonance frequency. PMID:24895643
Galaxy and Group Baryonic Mass Functions for the RESOLVE Survey
NASA Astrophysics Data System (ADS)
Eckert, Kathleen D.; Kannappan, Sheila; Moffett, Amanda J.; Baker, Ashley; Stark, David; Berlind, Andreas A.; Storey-Fisher, Kate; Erickcek, Adrienne L.; Norris, Mark A.; Resolve Team
2015-01-01
We present a comparison of the galaxy and group baryonic mass functions for a subvolume of the RESOLVE (Resolved Spectroscopy Of a Local VolumE) survey. RESOLVE occupies A and B semester volumes totaling ~52,000 cubic Mpc, complete in baryonic mass to ~10^9.3 Msun and 10^9.0 Msun respectively, with galaxies and groups ranging in halo mass from 10^11-10^14 Msun. The A semester volume is surrounded by the larger ECO catalog, which lacks complete HI data but occupies ~561,000 cubic Mpc. We define the observed baryonic mass of a galaxy or group to be the sum of its stellar and cold atomic hydrogen components, with the latter inferred indirectly for much of ECO. For groups, we infer the total baryonic mass by summing the observed components of each constituent galaxy and add the likely hot halo gas based on prescriptions from observations and semi-analytic models. We perform subhalo/halo abundance matching between observed galaxies/groups and dark matter simulations, and we compare derived halo properties based on matching on luminosity vs. on observed baryonic mass (or on inferred total baryonic mass for groups). We also present a status update on the galaxy and group velocity functions for these surveys, which will allow for more direct comparison with dark matter simulations. This project was supported by NSF funding for the RESOLVE survey (AST-0955368).
Cosmological implications of baryon acoustic oscillation measurements
NASA Astrophysics Data System (ADS)
Aubourg, Éric; Bailey, Stephen; Bautista, Julian E.; Beutler, Florian; Bhardwaj, Vaishali; Bizyaev, Dmitry; Blanton, Michael; Blomqvist, Michael; Bolton, Adam S.; Bovy, Jo; Brewington, Howard; Brinkmann, J.; Brownstein, Joel R.; Burden, Angela; Busca, Nicolás G.; Carithers, William; Chuang, Chia-Hsun; Comparat, Johan; Croft, Rupert A. C.; Cuesta, Antonio J.; Dawson, Kyle S.; Delubac, Timothée; Eisenstein, Daniel J.; Font-Ribera, Andreu; Ge, Jian; Le Goff, J.-M.; Gontcho, Satya Gontcho A.; Gott, J. Richard; Gunn, James E.; Guo, Hong; Guy, Julien; Hamilton, Jean-Christophe; Ho, Shirley; Honscheid, Klaus; Howlett, Cullan; Kirkby, David; Kitaura, Francisco S.; Kneib, Jean-Paul; Lee, Khee-Gan; Long, Dan; Lupton, Robert H.; Magaña, Mariana Vargas; Malanushenko, Viktor; Malanushenko, Elena; Manera, Marc; Maraston, Claudia; Margala, Daniel; McBride, Cameron K.; Miralda-Escudé, Jordi; Myers, Adam D.; Nichol, Robert C.; Noterdaeme, Pasquier; Nuza, Sebastián E.; Olmstead, Matthew D.; Oravetz, Daniel; Pâris, Isabelle; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pellejero-Ibanez, Marcos; Percival, Will J.; Petitjean, Patrick; Pieri, Matthew M.; Prada, Francisco; Reid, Beth; Rich, James; Roe, Natalie A.; Ross, Ashley J.; Ross, Nicholas P.; Rossi, Graziano; Rubiño-Martín, Jose Alberto; Sánchez, Ariel G.; Samushia, Lado; Santos, Ricardo Tanausú Génova; Scóccola, Claudia G.; Schlegel, David J.; Schneider, Donald P.; Seo, Hee-Jong; Sheldon, Erin; Simmons, Audrey; Skibba, Ramin A.; Slosar, Anže; Strauss, Michael A.; Thomas, Daniel; Tinker, Jeremy L.; Tojeiro, Rita; Vazquez, Jose Alberto; Viel, Matteo; Wake, David A.; Weaver, Benjamin A.; Weinberg, David H.; Wood-Vasey, W. M.; Yèche, Christophe; Zehavi, Idit; Zhao, Gong-Bo; BOSS Collaboration
2015-12-01
We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. In particular, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibrated physical scale of the sound horizon, the combination of BAO and SN data into an "inverse distance ladder" yields a measurement of H0=67.3 ±1.1 km s-1 Mpc-1 , with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat Λ CDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ ), our BAO +SN +CMB combination yields matter density Ωm=0.301 ±0.008 and curvature Ωk=-0.003 ±0.003 . When we allow more general forms of evolving dark energy, the BAO +SN +CMB parameter constraints are always consistent with flat Λ CDM values at ≈1 σ . While the overall χ2 of model fits is satisfactory, the LyaF BAO measurements are in moderate (2 - 2.5 σ ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, ∑mν<0.56 eV (95% confidence), improving to ∑mν<0.25 eV if we include the
Roethke, Matthias C.; Kuru, Timur H.; Mueller-Wolf, Maya B.; Agterhuis, Erik; Edler, Christopher; Hohenfellner, Markus; Schlemmer, Heinz-Peter; Hadaschik, Boris A.
2016-01-01
Objective To evaluate the diagnostic performance of an automated analysis tool for the assessment of prostate cancer based on multiparametric magnetic resonance imaging (mpMRI) of the prostate. Methods A fully automated analysis tool was used for a retrospective analysis of mpMRI sets (T2-weighted, T1-weighted dynamic contrast-enhanced, and diffusion-weighted sequences). The software provided a malignancy prediction value for each image pixel, defined as Malignancy Attention Index (MAI) that can be depicted as a colour map overlay on the original images. The malignancy maps were compared to histopathology derived from a combination of MRI-targeted and systematic transperineal MRI/TRUS-fusion biopsies. Results In total, mpMRI data of 45 patients were evaluated. With a sensitivity of 85.7% (with 95% CI of 65.4–95.0), a specificity of 87.5% (with 95% CI of 69.0–95.7) and a diagnostic accuracy of 86.7% (with 95% CI of 73.8–93.8) for detection of prostate cancer, the automated analysis results corresponded well with the reported diagnostic accuracies by human readers based on the PI-RADS system in the current literature. Conclusion The study revealed comparable diagnostic accuracies for the detection of prostate cancer of a user-independent MAI-based automated analysis tool and PI-RADS-scoring-based human reader analysis of mpMRI. Thus, the analysis tool could serve as a detection support system for less experienced readers. The results of the study also suggest the potential of MAI-based analysis for advanced lesion assessments, such as cancer extent and staging prediction. PMID:27454770
NASA Astrophysics Data System (ADS)
Ao, Jingqi; Mitra, Sunanda; Liu, Zheng; Nutter, Brian
2011-03-01
The coupling of carefully designed experiments with proper analysis of functional magnetic resonance imaging (fMRI) data provides us with a powerful as well as noninvasive tool to help us understand cognitive processes associated with specific brain regions and hence could be used to detect abnormalities induced by a diseased state. The hypothesisdriven General Linear Model (GLM) and the data-driven Independent Component Analysis (ICA) model are the two most commonly used models for fMRI data analysis. A hybrid ICA-GLM model combines the two models to take advantages of benefits from both models to achieve more accurate mapping of the stimulus-induced activated brain regions. We propose a modified hybrid ICA-GLM model with probabilistic ICA that includes a noise model. In this modified hybrid model, a probabilistic principle component analysis (PPCA)-based component number estimation is used in the ICA stage to extract the intrinsic number of original time courses. In addition, frequency matching is introduced into the time course selection stage, along with temporal correlation, F-test based model fitting estimation, and time course combination, to produce a more accurate design matrix for GLM. A standard fMRI dataset is used to compare the results of applying GLM and the proposed hybrid ICA-GLM in generating activation maps.
NASA Astrophysics Data System (ADS)
Sumachev, V. V.; Bekrenev, V. S.; Beloglazov, Yu. A.; Filimonov, E. A.; Kovalev, A. I.; Kozlenko, N. G.; Kruglov, S. P.; Kulbardis, A. A.; Lopatin, I. V.; Novinsky, D. V.; Shchedrov, V. A.; Trautman, V. Yu.; Alekseev, I. G.; Budkovsky, P. E.; Kanavets, V. P.; Koroleva, L. I.; Morozov, B. V.; Nesterov, V. M.; Ryltsov, V. V.; Sulimov, A. D.; Svirida, D. N.; Bazhanov, N. A.; Bunyatova, E. I.
2007-11-01
Numerous attempts to create a model that would exactly reproduce the N* - and Δ - resonances spectrum (that was presented in the Review of Particle Physics) failed. The existing models usually predicted considerably more resonances (twice or more in number) than were found in elastic πN - scattering. This problem is known as the problem of "missing" resonances. The recent partial wave analysis (PWA) SP06 that was made at George Washington University (2006) and included the modern experimental data revealed considerably fewer (approximately half) the N*- and Δ-resonances than those presented in the Review of Particle Physics (RPP) tables (2006). This disagreement invites further experimental investigation of the pion-nucleon interactions. Recent spin rotation parameter A and R measurements of the PNPI and PNPI-ITEP collaborations resolved a part of the twofold ambiguities of the PWA's. These results were used in the last PWA of the George Washington University (GWU) groups. The proposal for the additional measurements of the differential cross section and spin-rotation parameters R and A in the resonance region of the πN interactions is motivated. Such additional experiments are necessary to resolve the problem of the narrow (Γ < 30 MeV) baryon resonances existing and to complete monosemantic PWA of the πN elastic scattering.
Method for high resolution magnetic resonance analysis using magic angle technique
Wind, Robert A.; Hu, Jian Zhi
2003-11-25
A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.
Linman, Matthew J; Yu, Hai; Chen, Xi; Cheng, Quan
2012-01-01
Monitoring multiple biological interactions in a multiplexed array format has numerous advantages. However, converting well-developed surface chemistry for spectroscopic measurements to array-based, high-throughput screening is not a trivial process and often proves to be the bottleneck in method development. This chapter reports the fabrication and characterization of a new carbohydrate microarray with synthetic sialosides for surface plasmon resonance imaging analysis of lectin-carbohydrate interactions. Contact printing of functional sialosides on neutravidin-coated surfaces was carried out and the properties of the resulting elements were characterized by fluorescence microscopy. Sambucus nigra agglutinin (SNA) was used for testing on four different carbohydrate-functionalized surfaces and differential binding was analyzed. Multiplexed detection of SNA/biotinylated sialoside interactions on arrays up to 400 elements has been performed with good data correlation, demonstrating the effectiveness of the biotin-neutravidin-based biointerface to control probe orientation for reproducible and efficient protein binding to carbohydrates.
NASA Astrophysics Data System (ADS)
Gliozzi, A. S.; Mazzetti, S.; Delsanto, P. P.; Regge, D.; Stasi, M.
2011-02-01
Dynamic contrast enhancement in magnetic resonance imaging (DCE-MRI) is a promising tool for the clinical diagnosis of tumors, whose implementation may be improved through the use of suitable hemodynamic models. If one prefers to avoid assumptions about the tumor physiology, empirical fitting functions may be adopted. For this purpose, in this paper we discuss the exploitation of a recently proposed phenomenological universalities (PUN) formalism. In fact, we show that a novel PUN class may be used to describe the time-signal intensity curves in both healthy and tumoral tissues, discriminating between the two cases and thus potentially providing a convenient diagnostic tool. The proposed approach is applied to analysis of the DCE-MRI data relative to a study group composed of ten patients with spine tumors.
Alzheimer's Disease Detection in Brain Magnetic Resonance Images Using Multiscale Fractal Analysis
Lahmiri, Salim; Boukadoum, Mounir
2013-01-01
We present a new automated system for the detection of brain magnetic resonance images (MRI) affected by Alzheimer's disease (AD). The MRI is analyzed by means of multiscale analysis (MSA) to obtain its fractals at six different scales. The extracted fractals are used as features to differentiate healthy brain MRI from those of AD by a support vector machine (SVM) classifier. The result of classifying 93 brain MRIs consisting of 51 images of healthy brains and 42 of brains affected by AD, using leave-one-out cross-validation method, yielded 99.18% ± 0.01 classification accuracy, 100% sensitivity, and 98.20% ± 0.02 specificity. These results and a processing time of 5.64 seconds indicate that the proposed approach may be an efficient diagnostic aid for radiologists in the screening for AD. PMID:24967286
Resonant waveguide grating imagers for single cell analysis and high throughput screening
NASA Astrophysics Data System (ADS)
Fang, Ye
2015-08-01
Resonant waveguide grating (RWG) systems illuminate an array of diffractive nanograting waveguide structures in microtiter plate to establish evanescent wave for measuring tiny changes in local refractive index arising from the dynamic mass redistribution of living cells upon stimulation. Whole-plate RWG imager enables high-throughput profiling and screening of drugs. Microfluidics RWG imager not only manifests distinct receptor signaling waves, but also differentiates long-acting agonism and antagonism. Spatially resolved RWG imager allows for single cell analysis including receptor signaling heterogeneity and the invasion of cancer cells in a spheroidal structure through 3-dimensional extracellular matrix. High frequency RWG imager permits real-time detection of drug-induced cardiotoxicity. The wide coverage in target, pathway, assay, and cell phenotype has made RWG systems powerful tool in both basic research and early drug discovery process.
NASA Astrophysics Data System (ADS)
Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi
2010-04-01
Electron spin resonance (ESR) spectral characterizations of gingers irradiated with electron beam were studied. Complex asymmetrical spectra (near g=2.005) with major spectral components (line width=2.4 mT) and minor signals (at 6 mT apart) were observed in irradiated gingers. The spectral intensity decreased considerably 30 days after irradiation, and continued to decrease steadily thereafter. The spectra simulated on the basis of characteristics of free radical components derived from carbohydrates in gingers are in good agreement with the observed spectra. Analysis showed that shortly after irradiation the major radical components of gingers were composed of radical species derived from amylose and cellulose, and the amylose radicals subsequently decreased considerably. At 30 days after irradiation, the major radical components of gingers were composed of radical species derived from cellulose, glucose, fructose or sucrose.
Sborgi, Lorenzo; Verma, Abhinav; Sadqi, Mourad; de Alba, Eva; Muñoz, Victor
2013-01-01
The study of protein folding has been conventionally hampered by the assumption that all single-domain proteins fold by an all-or-none process (two-state folding) that makes it impossible to resolve folding mechanisms experimentally. Here we describe an experimental method for the thermodynamic analysis of protein folding at atomic resolution using nuclear magnetic resonance (NMR). The method is specifically developed for the study of small proteins that fold autonomously into basic supersecondary structure motifs, and that do so in the sub-millisecond timescale (folding archetypes). From the NMR experiments we obtain hundreds of atomic unfolding curves that are subsequently analyzed leading to the determination of the characteristic network of folding interactions. The application of this approach to a comprehensive catalog of elementary folding archetypes holds the promise of becoming the first experimental approach capable of unraveling the basic rules connecting protein structure and folding mechanism. PMID:22987355
Extraction of $P_{11}$ Resonance from piN Data and Its Stability
Satoshi Nakamura
2011-10-01
We address a question about how much resonance poles and residues extracted from data depend on a model used for the extraction, and on the precision of data. We focus on the P{sub 11} {pi}-N scattering and use the dynamical coupled-channel (DCC) model developed in Excited Baryon Analysis Center (EBAC) at JLab. We examine the model-dependence of the poles by varying parameters largely within the EBAC-DCC model. We find that two poles associated with the Roper resonance are fairly stable against the variation. We also study the stability of the Roper poles against different analytic structure of the P{sub 11} amplitude below {pi}-N threshold by using a bare nucleon model. We again find a good stability of the Roper poles.
Exclusive measurements of omega electroproduction off the proton in the resonance region
Phelps, Evan
2014-01-01
A complete theory of strong interactions must describe the excited baryon spectrum as well as the structure of prominent states, which reflects the dynamics of nonperturbative QCD. Beyond the discriminating power of exclusive single- and double-pion electroproduction, the omega channel provides an additional probe of high-mass excited states. The current analysis provides preliminary differential and integrated cross sections of omega electroproduction off the proton from W = 1.7 to 3.2 GeV and Q{sup 2} = 1.5 to 5.5 GeV{sup 2}. The data was collected by JLab's CLAS detector during two run periods and comprises the largest sample of exclusive resonance-region omega electroproduction ever analyzed. Preliminary Legendre decomposition of the cross sections supports previous indications of s-channel contributions to cross sections in the resonance region.
Ratios of heavy baryons to heavy mesons in relativistic nucleus-nucleus collisions
Oh, Yongseok; Ko, Che Ming; Lee, Su Houng; Yasui, Shigehiro
2009-04-15
Heavy baryon/meson ratios {lambda}{sub c}/D{sup 0} and {lambda}{sub b}/B{sup 0} in relativistic heavy ion collisions are studied in the quark coalescence model. For heavy baryons, we include production from coalescence of heavy quarks with free light quarks as well as with bounded light diquarks that might exist in the strongly coupled quark-gluon plasma produced in these collisions. Including the contribution from decays of heavy hadron resonances and also that due to fragmentation of heavy quarks that are left in the system after coalescence, the resulting {lambda}{sub c}/D{sup 0} and {lambda}{sub b}/B{sup 0} ratios in midrapidity (|y|{<=}0.5) from central Au+Au collisions at {radical}(s{sub NN})=200 GeV are about a factor of five and ten, respectively, larger than those given by the thermal model, and about a factor of ten and twelve, respectively, larger than corresponding ratios in the PYTHIA model for pp collisions. These ratios are reduced by a factor of about 1.6 if there are no diquarks in the quark-gluon plasma. The transverse momentum dependence of the heavy baryon/meson ratios is found to be sensitive to the heavy quark mass, with the {lambda}{sub b}/B{sup 0} ratio being much flatter than the {lambda}{sub c}/D{sup 0} ratio. The latter peaks at the transverse momentum p{sub T}{approx_equal}0.8 GeV but the peak shifts to p{sub T}{approx_equal}2 GeV in the absence of diquarks.
A NEW WAY OF DETECTING INTERGALACTIC BARYONS
Lieu, Richard; Duan Lingze
2013-02-01
For each photon wave packet of extragalactic light, the dispersion by line-of-sight intergalactic plasma causes an increase in the envelope width and a chirp (drift) in the carrier frequency. It is shown that for continuous emission of many temporally overlapping wave packets with random epoch phases such as quasars in the radio band, this in turn leads to quasi-periodic variations in the intensity of the arriving light on timescales between the coherence time (defined as the reciprocal of the bandwidth of frequency selection, taken here as of order 0.01 GHz for radio observations) and the stretched envelope, with most of the fluctuation power on the latter scale which is typically in the millisecond range for intergalactic dispersion. Thus, by monitoring quasar light curves on such short scales, it should be possible to determine the line-of-sight plasma column along the many directions and distances to the various quasars, affording one a three-dimensional picture of the ionized baryons in the near universe.
First observation of a baryonic Bc+ decay.
Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani', S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A
2014-10-10
A baryonic decay of the B(c)(+) meson, B(c)(+) → J/ψppπ(+), is observed for the first time, with a significance of 7.3 standard deviations, in pp collision data collected with the LHCb detector and corresponding to an integrated luminosity of 3.0 fb(-1) taken at center-of-mass energies of 7 and 8 TeV. With the B(c)(+) → J/ψπ(+) decay as the normalization channel, the ratio of branching fractions is measured to be B(B(c)(+) → J/ψppπ(+))/B(B(c)(+) → J/ψπ(+)) = 0.143(-0.034)(+0.039)(stat) ± 0.013(syst). The mass of the B(c)(+) meson is determined as M(B(c)(+) = 6274.0 ± 1.8(stat) ± 0.4(syst) MeV/c(2), using the B(c)(+) → J/ψppπ(+) channel. PMID:25375705
Heavy to light baryon transition form factors
Guo, X. |; Huang, T. |; Li, Z.
1996-05-01
Recently, Stech found form factor relations for heavy to light transitions based on two simple dynamical assumptions for a spectator particle. In this paper we generalize his approach to the case of baryons and find that for {Lambda}{sub {ital Q}}{r_arrow}{Lambda} ({ital Q}={ital b} or {ital c}) only one independent form factor remains in the limit {ital m}{sub {ital Q}}{r_arrow}{infinity}. Furthermore, combining with the model of Guo and Kroll we determine both of the two form factors for {Lambda}{sub {ital Q}}{r_arrow}{Lambda} in the heavy quark limit. The results are applied to {Lambda}{sub {ital b}}{r_arrow}{Lambda}+{ital J}/{psi} which is not clarified both theoretically and experimentally. It is found that the branching ratio of {Lambda}{sub {ital b}}{r_arrow}{Lambda}+{ital J}/{psi} is of order 10{sup {minus}5}. {copyright} {ital 1996 The American Physical Society.}
Heavy-Baryon Spectroscopy from Lattice QCD
Huey-Wen Lin, Saul D. Cohen, Liuming Liu, Nilmani Mathur, Konstantinos Orginos, Andre Walker-Loud
2011-01-01
We use a four-dimensional lattice calculation of the full-QCD (quantum chromodynamics, the non-abliean gauge theory of the strong interactions of quarks and gluons) path integrals needed to determine the masses of the charmed and bottom baryons. In the charm sector, our results are in good agreement with experiment within our systematics, except for the spin-1/2 $\\Xi_{cc}$, for which we found the isospin-averaged mass to be $\\Xi_{cc}$ to be $3665\\pm17\\pm14^{+0}_{-78}$ MeV. We predict the mass of the (isospin-averaged) spin-1/2 $\\Omega_{cc}$ to be $3763\\pm19\\pm26^{+13}_{-79}$ {MeV}. In the bottom sector, our results are also in agreement with experimental observations and other lattice calculations within our statistical and systematic errors. In particular, we find the mass of the $\\Omega_b$ to be consistent with the recent CDF measurement. We also predict the mass for the as yet unobserved $\\Xi^\\prime_b$ to be 5955(27) MeV.
Is the cygnet the quintessential baryon?
Segal, I E
1991-01-01
The apparently new hadron-like particle ("cygnet") indicated by cosmic ray observations on certain neutron stars is predicted to be a spin 1/2 fermion of magnetic moment and charge 0 and lifetime infinity. This derives from the natural identification of the cygnet with the one hitherto unobserved fundamental fermion of chronometric particle theory, the x or "exon", which plays the role of a quintessential baryon. The "partons" are represented by the other fundamental fermions, consisting of e, nue, and numu; e.g., n = x + e+ + e-, p = x + e+ + nue. With further empirical assignments, chronometric theory has a potential for explaining diverse phenomena, such as mixing in the neutral kaon complex and the nature of the higher electrons. Its fundamental fermion and boson fields transform indecomposably under its symmetry group, the conformal group G. Theoretical elementary particles transforming irreducibly under G derive as successive quotients in a maximal chain of invariant subspaces. Mass fixing by Mach's principle breaks the symmetry down to microscopically observed covariance with respect to the Poincare group P0. The resulting representation is normally irreducible, but splits in the case of the K0 into two P0-irreducible components that are mixed by the excess of the chronometric over the relativistic energy ("gravity"), which provides a "superweak" force that may be explanatory of CP violation. PMID:11607152
Is the cygnet the quintessential baryon?
Segal, I E
1991-02-01
The apparently new hadron-like particle ("cygnet") indicated by cosmic ray observations on certain neutron stars is predicted to be a spin 1/2 fermion of magnetic moment and charge 0 and lifetime infinity. This derives from the natural identification of the cygnet with the one hitherto unobserved fundamental fermion of chronometric particle theory, the x or "exon", which plays the role of a quintessential baryon. The "partons" are represented by the other fundamental fermions, consisting of e, nue, and numu; e.g., n = x + e+ + e-, p = x + e+ + nue. With further empirical assignments, chronometric theory has a potential for explaining diverse phenomena, such as mixing in the neutral kaon complex and the nature of the higher electrons. Its fundamental fermion and boson fields transform indecomposably under its symmetry group, the conformal group G. Theoretical elementary particles transforming irreducibly under G derive as successive quotients in a maximal chain of invariant subspaces. Mass fixing by Mach's principle breaks the symmetry down to microscopically observed covariance with respect to the Poincare group P0. The resulting representation is normally irreducible, but splits in the case of the K0 into two P0-irreducible components that are mixed by the excess of the chronometric over the relativistic energy ("gravity"), which provides a "superweak" force that may be explanatory of CP violation.
Quark interchange model of baryon interactions
Maslow, J.N.
1983-01-01
The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.
Baryon-Derived Scaling Relations from CLASH
NASA Astrophysics Data System (ADS)
Czakon, Nicole G.; Donahue, M.; Medezinski, E.; CLASH; Bolocam
2014-01-01
The CLASH observing program has produced a unique data set which allows the accurate calibration of a large set of galaxy cluster masses. The cosmological and astrophysical implications of these measurements extend far beyond HST-only science. To capitalize on the astronomy community’s interest in the CLASH data products, our collaboration has assembled a team of experts across many different observational cluster probes, including: strong lensing, weak lensing, X-ray, and the Sunyaev-Zel’dovich Effect (SZE). By combining weak- and strong-lensing measurements, full cluster profiles can be constrained from the inner tens of kpc out to several Mpc. This has important implications in cross-probe analyses as different observational probes are sensitive to different regions of a cluster’s mass profile. Another goal of the CLASH program is to characterize the level of hydrostatic mass bias in X-ray measurements. This is important as hydrostatic mass estimates are commonly used to calibrate X-ray and SZE cluster studies. In my talk, I will report on the status of several cross-probe scaling relations comparing the CLASH lensing masses and various baryonic cluster mass probes, including: optical richness, X-ray, and SZE observations of the full CLASH cluster catalog. The results of these investigations will be interesting for both large-scale surveys and individual cluster studies, when high quality lensing data is unavailable.
First observation of a baryonic Bc+ decay.
Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani', S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A
2014-10-10
A baryonic decay of the B(c)(+) meson, B(c)(+) → J/ψppπ(+), is observed for the first time, with a significance of 7.3 standard deviations, in pp collision data collected with the LHCb detector and corresponding to an integrated luminosity of 3.0 fb(-1) taken at center-of-mass energies of 7 and 8 TeV. With the B(c)(+) → J/ψπ(+) decay as the normalization channel, the ratio of branching fractions is measured to be B(B(c)(+) → J/ψppπ(+))/B(B(c)(+) → J/ψπ(+)) = 0.143(-0.034)(+0.039)(stat) ± 0.013(syst). The mass of the B(c)(+) meson is determined as M(B(c)(+) = 6274.0 ± 1.8(stat) ± 0.4(syst) MeV/c(2), using the B(c)(+) → J/ψppπ(+) channel.
BASE - The Baryon Antibaryon Symmetry Experiment
NASA Astrophysics Data System (ADS)
Smorra, C.; Blaum, K.; Bojtar, L.; Borchert, M.; Franke, K. A.; Higuchi, T.; Leefer, N.; Nagahama, H.; Matsuda, Y.; Mooser, A.; Niemann, M.; Ospelkaus, C.; Quint, W.; Schneider, G.; Sellner, S.; Tanaka, T.; Van Gorp, S.; Walz, J.; Yamazaki, Y.; Ulmer, S.
2015-11-01
The Baryon Antibaryon Symmetry Experiment (BASE) aims at performing a stringent test of the combined charge parity and time reversal (CPT) symmetry by comparing the magnetic moments of the proton and the antiproton with high precision. Using single particles in a Penning trap, the proton/antiproton g-factors, i.e. the magnetic moment in units of the nuclear magneton, are determined by measuring the respective ratio of the spin-precession frequency to the cyclotron frequency. The spin precession frequency is measured by non-destructive detection of spin quantum transitions using the continuous Stern-Gerlach effect, and the cyclotron frequency is determined from the particle*s motional eigenfrequencies in the Penning trap using the invariance theorem. By application of the double Penning-trap method we expect that in our measurements a fractional precision of δg/g 10-9 can be achieved. The successful application of this method to the antiproton will consist a factor 1000 improvement in the fractional precision of its magnetic moment. The BASE collaboration has constructed and commissioned a new experiment at the Antiproton Decelerator (AD) of CERN. This article describes and summarizes the physical and technical aspects of this new experiment.
Hydrogen detection near surfaces and shallow interfaces with resonant nuclear reaction analysis
NASA Astrophysics Data System (ADS)
Wilde, Markus; Fukutani, Katsuyuki
2014-12-01
This review introduces hydrogen depth profiling by nuclear reaction analysis (NRA) via the resonant 1H(15N,αγ)12C reaction as a versatile method for the highly depth-resolved observation of hydrogen (H) at solid surfaces and interfaces. The technique is quantitative, non-destructive, and readily applied to a large variety of materials. Its fundamentals, instrumental requirements, advantages and limitations are described in detail, and its main performance benchmarks in terms of depth resolution and sensitivity are compared to those of elastic recoil detection (ERD) as a competing method. The wide range of 1H(15N,αγ)12C NRA applications in research of hydrogen-related phenomena at surfaces and interfaces is reviewed. Special emphasis is placed on the powerful combination of 1H(15N,αγ)12C NRA with surface science techniques of in-situ target preparation and characterization, as the NRA technique is ideally suited to investigate hydrogen interactions with atomically controlled surfaces and intact interfaces. In conjunction with thermal desorption spectroscopy, 15N NRA can assess the thermal stability of absorbed hydrogen species in different depth locations against diffusion and desorption. Hydrogen diffusion dynamics in the near-surface region, including transitions of hydrogen between the surface and the bulk, and between shallow interfaces of nanostructured thin layer stacks can directly be visualized. As a unique feature of 15N NRA, the analysis of Doppler-broadened resonance excitation curves allows for the direct measurement of the zero-point vibrational energy of hydrogen atoms adsorbed on single crystal surfaces.
Baryons at Varying Nc: a study with Lattice QCD and Effective Theory
NASA Astrophysics Data System (ADS)
Goity, Jose; Calle Cordon, Alvaro; Degrand, Thomas
2013-10-01
Recent Lattice QCD (LQCD) calculations of baryon masses with the number of colors Nc = 3 , 5 and 7 have opened the opportunity for exploring quantitatively the 1 /Nc expansion of QCD in the baryon sector. While similar studies have been carried out for glueballs and mesons, which show a remarkably well behaved 1 /Nc expansion down to the real world's Nc = 3 , the results in are the first ones of their kind. The calculations were performed in quenched LQCD and with quark masses giving Mπ > 400 MeV. The results are analyzed using an Effective Theory based on the combination of Baryon Chiral Perturbation Theory and the 1 /Nc expansion. A detailed discussion of the analysis and its implications will be presented, along the lines of a current work in progress. Work supported by DOE Contract No. DEAC05- 06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility, by DOE grant DE-FG02-04ER41290, and by NSF grants PHY-0855789 and PHY-1307413.
Quark-mass dependence of the baryon ground-state masses
NASA Astrophysics Data System (ADS)
Semke, A.; Lutz, M. F. M.
2012-02-01
We perform a chiral extrapolation of the baryon octet and decuplet masses in a relativistic formulation of chiral perturbation theory. A partial summation is assumed as implied by the use of physical baryon and meson masses in the one-loop diagrams. Upon a chiral expansion, our results are consistent with strict chiral perturbation theory at the next-to-next-to-next-to-leading order. All counter terms are correlated by a large-Nc operator analysis. Our results are confronted with recent results of unquenched three-flavor lattice simulations. We adjust the parameter set to the pion-mass dependence of the nucleon and omega masses as computed by the BMW Collaboration and predict the pion-mass dependence of the remaining baryon octet and decuplet states. The current lattice simulations can be described accurately and smoothly up to pion masses of about 600 MeV. In particular, we recover the recent results of the HSC without any further adjustments.
The impact of baryons on the direct detection of dark matter
NASA Astrophysics Data System (ADS)
Kelso, Chris; Savage, Christopher; Valluri, Monica; Freese, Katherine; Stinson, Gregory S.; Bailin, Jeremy
2016-08-01
The spatial and velocity distributions of dark matter particles in the Milky Way Halo affect the signals expected to be observed in searches for dark matter. Results from direct detection experiments are often analyzed assuming a simple isothermal distribution of dark matter, the Standard Halo Model (SHM). Yet there has been skepticism regarding the validity of this simple model due to the complicated gravitational collapse and merger history of actual galaxies. In this paper we compare the SHM to the results of cosmological hydrodynamical simulations of galaxy formation to investigate whether or not the SHM is a good representation of the true WIMP distribution in the analysis of direct detection data. We examine two Milky Way-like galaxies from the MaGICC cosmological simulations (a) with dark matter only and (b) with baryonic physics included. The inclusion of baryons drives the shape of the DM halo to become more spherical and makes the velocity distribution of dark matter particles less anisotropic especially at large heliocentric velocities, thereby making the SHM a better fit. We also note that we do not find a significant disk-like rotating dark matter component in either of the two galaxy halos with baryons that we examine, suggesting that dark disks are not a generic prediction of cosmological hydrodynamical simulations. We conclude that in the Solar neighborhood, the SHM is in fact a good approximation to the true dark matter distribution in these cosmological simulations (with baryons) which are reasonable representations of the Milky Way, and hence can also be used for the purpose of dark matter direct detection calculations.
Hadron resonances with a quark core embedded in the continuum
Shimizu, Kiyotaka; Takeuchi, Sachiko; Takizawa, Makoto
2011-05-06
We investigate the excited baryons and mesons which cannot be described in terms of a simple constituent quark model, such as {Lambda}(1405) and X(3872) as a resonance in a coupled channel hadron-hadron (baryon-meson or meson-meson) scattering with a 'bound state embedded in the continuum' (BSEC). For this purpose, we solve the Lippmann-Schwinger equation including a BSEC in the momentum space. This BSEC is introduced by hand, as a state not originated from a simple baryon-meson or meson-meson system. We assume it comes from the three-quark state or quark-anti quark state and show such a picture can describe the {Lambda}(1405) and X(3872) resonances.
Meta-analysis of magnetic resonance imaging for the differential diagnosis of spinal degeneration.
Hou, Ying-Nuo; Ding, Wen-Yuan; Shen, Yong; Yang, Da-Long; Wang, Lin-Feng; Zhang, Peng
2015-01-01
To systematically evaluate the clinical significance of magnetic resonance imaging for the identification and diagnosis of spinal degenerative changes. We searched Cochrane Library, PubMed, EMbase, CNKI, WanFang Data, Medalink, VIP and CBM databases for clinical studies on the significance of magnetic resonance imaging for the differential diagnosis of spinal degeneration; retrieval time was from database building to October 2014. Two reviewers independently screened the literature, extracted data and evaluated methodological quality according to the inclusion and exclusion criteria. Meta-DiSc 1.4 software was used for meta-analysis. The study included six documents, 10 independent results and a total of 505 individuals. Meta-analysis showed that: In the present study, the efficacy of magnetic resonance imaging in the differential diagnosis of cervical and lumbar degeneration was firstly analyzed and discussed using the Meta-Disc 1.4 software. SPE: χ(2) = 77.59, P = 0.000, I(2) = 88.4%; SEN: χ(2) = 167.25, P = 0.000, I(2) = 94.6%; DOR: Cochran-Q = 71.64, P = 0.000. Meta-analysis of random effect model showed that: SEN merge = 0.849 [95% CI (0.816,0.878)], SPE merge = 0.745 [95% CI (0.695, 0.792)], + LR = 2.735 [95% CI (1.600, -4.676)], - LR = 0.245 [95% CI (0.122, -0.493)], DOR merge = 21.158 [95% CI (5.234, -85.529)], SROC AUC = 0.8698; the results had good stability. Then the efficacy of magnetic resonance imaging in the differential diagnosis of cervical degeneration was analyzed and the results showed that: SPE: χ(2) = 6.92, P = 0.075, I(2) = 56.6%; SEN: χ(2) = 81.73, P = 0.000, I(2) = 96.3%; DOR: Cochran-Q = 12.71, P = 0.005. Meta-analysis of random effect model showed that: SEN merge = 0.799 [95% CI (0.741, 0.850)], SPE merge = 0.769 [95% CI (0.683, -0.840)], + LR = 2.506 [95% CI (1.399, -4.489)], - LR = 0.363 [95% CI (0.149, -0.882)], DOR merge = 11.949 [95% CI (2.195, -65.036)], SROC AUC = 0.8210. The stability was good. Finally, analysis of six
LaFountain, Amy M; Pacheco, Carlos; Prum, Richard O; Frank, Harry A
2013-11-15
Previous analysis of carotenoids extracted from the burgundy plumage of the Pompadour Cotinga (Xipholena punicea) revealed six novel keto-carotenoid pigments with methoxyl groups in the C3-position of one or both β-rings. High performance liquid chromatography (HPLC), mass spectrometry, chemical analysis and, in some instances (1)H NMR spectroscopy were employed to determine the structures of the molecules. Further analysis by NMR was precluded due to lack of material. The recent acquisition of multiple feathers from X. punicea specimens has made it possible to complete this work using correlated homonuclear spectroscopy (COSY), nuclear overhauser effect spectroscopy (NOESY) and (1)H NMR. These new data conclusively confirm the structures of the six methoxy-carotenoids suggested by the earlier work. In addition, the resonance positions of the protons from the novel 3-methoxy-4-keto-β-ring and 2,3-didehydro-3-methoxy-4-keto-β-ring moieties are reported here for the first time. PMID:23999492
Bigler, Erin D
2015-09-01
Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.
Integrated system modeling analysis of a cryogenic multi-cell deflecting-mode cavity resonator
Shin, Young-Min; Church, Michael
2013-09-15
A deflecting mode cavity is the integral element for six-dimensional phase-space beam control in bunch compressors and emittance transformers at high energy beam test facilities. RF performance of a high-Q device is, however, highly sensitive to operational conditions, in particular in a cryo-cooling environment. Using analytic calculations and RF simulations, we examined cavity parameters and deflecting characteristics of TM{sub 110,π} mode of a 5 cell resonator in a liquid nitrogen cryostat, which has long been used at the Fermilab A0 Photoinjector (A0PI). The sensitivity analysis indicated that the cavity could lose 30%–40% of deflecting force due to defective input power coupling accompanying non-uniform field distribution across the cells with 40 ∼ 50 MeV electron beam and 70–80 kW klystron power. Vacuum-cryomodules of the 5 cell cavity are planned to be installed at the Fermilab Advanced Superconducting Test Accelerator facility. Comprehensive modeling analysis integrated with multi-physics simulation tools showed that RF loading of 1 ms can cause a ∼5 K maximum temperature increase, corresponding to a ∼4.3 μm/ms deformation and a 1.32 MHz/K maximum frequency shift. The integrated system modeling analysis will improve design process of a high-Q cavity with more accurate prediction of cryogenic RF performance under a high power pulse operation.
Surface-based analysis methods for high-resolution functional magnetic resonance imaging
Khan, Rez; Zhang, Qin; Darayan, Shayan; Dhandapani, Sankari; Katyal, Sucharit; Greene, Clint; Bajaj, Chandra; Ress, David
2011-01-01
Functional magnetic resonance imaging (fMRI) has become a popular technique for studies of human brain activity. Typically, fMRI is performed with >3-mm sampling, so that the imaging data can be regarded as two-dimensional samples that average through the 1.5—4-mm thickness of cerebral cortex. The increasing use of higher spatial resolutions, <1.5-mm sampling, complicates the analysis of fMRI, as one must now consider activity variations within the depth of the brain tissue. We present a set of surface-based methods to exploit the use of high-resolution fMRI for depth analysis. These methods utilize white-matter segmentations coupled with deformable-surface algorithms to create a smooth surface representation at the gray-white interface and pial membrane. These surfaces provide vertex positions and normals for depth calculations, enabling averaging schemes that can increase contrast-to-noise ratio, as well as permitting the direct analysis of depth profiles of functional activity in the human brain. PMID:22125419
Instructive discussion of an effective block algorithm for baryon-baryon correlators
NASA Astrophysics Data System (ADS)
Nemura, Hidekatsu
2016-10-01
We describe an approach for the efficient calculation of a large number of four-point correlation functions for various baryon-baryon (BB) channels, which are the primary quantities for studying the nuclear and hyperonic nuclear forces from lattice quantum chromodynamics. Using the four-point correlation function of a proton- Λ system as a specific example, we discuss how an effective block algorithm significantly reduces the number of iterations. The effective block algorithm is applied to calculate 52 channels of the four-point correlation functions from nucleon-nucleon to Ξ- Ξ, in order to study the complete set of isospin symmetric BB interactions. The elapsed times measured for hybrid parallel computation on BlueGene/Q demonstrate that the performance of the present algorithm is reasonable for various combinations of the number of OpenMP threads and the number of MPI nodes. The numerical results are compared with the results obtained using the unified contraction algorithm for all computed sites of the 52 four-point correlators.
B baryon production and decays and B hadron lifetimes
Donati, S.; /Pisa U. /INFN, Pisa
2010-01-01
In this paper we review the most recent results concerning B Baryons at CDF and D0, including the observation and the study of the properties of the {Omega}{sub b}{sup -}, {Xi}{sub b}{sup -} and {Sigma}{sub b}{sup {+-}(*)}, the observation of new {Lambda}{sub b}{sup 0} decay modes, and a new measurement of the lifetime of the b hadrons in decays with a J/{Psi}. The {Omega}{sub b}{sup -} baryon is observed through the decay chain {Omega}{sub b}{sup -} {yields} J/{Psi}{Omega}{sup -}, where J/{Psi} {yields} {mu}{sup +}{mu}{sup -}, {Omega}{sup -} {yields} {Lambda}K{sup -}, and {Lambda} {yields} pK{sup -}, using 4.2 fb{sup -1} of data. The {Omega}{sub b}{sup -} mass is measured to be 6054.4 {+-} 6.8(stat.) {+-} 0.9(syst.) MeV/c{sup 2}, and the lifetime 1.13{sub -0.40}{sup +0.53}(stat.) {+-} 0.02(syst.) ps. For the {Xi}{sub b}{sup -} the mass is measured 5790.9 {+-} 2.6(stat.) {+-} 0.8(syst.) MeV/c{sup 2} and the lifetime 1.56{sub -0.25}{sup +0.27}(stat.) {+-} 0.02(syst.) ps. A new accurate measurement of the properties of the resonances {Sigma}{sub b}{sup +}, {Sigma}{sub b}{sup -}, {Sigma}*{sub b}{sup +}, and {Sigma}*{sub b}{sup -} has been performed in 6 fb{sup -1} of data, and the masses have been determined, m({Sigma}{sub b}{sup +}) = 5811.2{sub -0.8}{sup +0.9}(stat.) {+-} 1.7(syst.), m({Sigma}{sub b}{sup -}) = 5815.5{sub -0.5}{sup +0.6}(stat.) {+-} 1.7(syst.), m({Sigma}*{sub b}{sup +}) = 5832.0 {+-} 0.7(stat.) {+-} 1.8(syst.), and m({Sigma}*{sub b}{sup -}) = 5835.0 {+-} 0.6(stat.) {+-} 1.8(syst.). The {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2595){sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2625){sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455){sup ++}{pi}{sup -}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, and {Lambda}{sub b}{sup 0} {yields} {Sigma
Search for baryon number violation in top-quark decays
Chatrchyan, Serguei
2014-02-20
A search for baryon number violation (BNV) in top-quark decays is performed using pp collisions produced by the LHC at sqrt(s) = 8 TeV. The top-quark decay considered in this search results in one light lepton (muon or electron), two jets, but no neutrino in the final state. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.5 inverse femtobarns. The event selection is optimized for top quarks produced in pairs, with one undergoing the BNV decay and the other the standard model hadronic decay to three jets. No significant excess of events over the expected yield from standard model processes is observed. The upper limits at 95% confidence level on the branching fraction of the BNV top-quark decay are calculated to be 0.0016 and 0.0017 for the muon and the electron channels, respectively. Assuming lepton universality, an upper limit of 0.0015 results from the combination of the two channels. These limits are the first that have been obtained on a BNV process involving the top quark.
Search for baryon number violation in top-quark decays
Chatrchyan, Serguei
2014-02-20
A search for baryon number violation (BNV) in top-quark decays is performed using pp collisions produced by the LHC at sqrt(s) = 8 TeV. The top-quark decay considered in this search results in one light lepton (muon or electron), two jets, but no neutrino in the final state. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.5 inverse femtobarns. The event selection is optimized for top quarks produced in pairs, with one undergoing the BNV decay and the other the standard model hadronic decay to three jets. No significant excessmore » of events over the expected yield from standard model processes is observed. The upper limits at 95% confidence level on the branching fraction of the BNV top-quark decay are calculated to be 0.0016 and 0.0017 for the muon and the electron channels, respectively. Assuming lepton universality, an upper limit of 0.0015 results from the combination of the two channels. These limits are the first that have been obtained on a BNV process involving the top quark.« less
Highlights in light-baryon spectroscopy and searches for gluonic excitations
NASA Astrophysics Data System (ADS)
Crede, Volker
2016-01-01
The spectrum of excited hadrons - mesons and baryons - serves as an excellent probe of quantum chromodynamics (QCD), the fundamental theory of the strong interaction. The strong coupling however makes QCD challenging. It confines quarks and breaks chiral symmetry, thus providing us with the world of light hadrons. Highly-excited hadronic states are sensitive to the details of quark confinement, which is only poorly understood within QCD. This is the regime of non-perturbative QCD and it is one of the key issues in hadronic physics to identify the corresponding internal degrees of freedom and how they relate to strong coupling QCD. The quark model suggests mesons are made of a constituent quark and an antiquark and baryons consist of three such quarks. QCD predicts other forms of matter. What is the role of glue? Resonances with large gluonic components are predicted as bound states by QCD. The lightest hybrid mesons with exotic quantum numbers are estimated to have masses in the range from 1 to 2 GeV/c2 and are well in reach of current experimental programs. At Jefferson Laboratory (JLab) and other facilities worldwide, the high-energy electron and photon beams present a remarkably clean probe of hadronic matter, providing an excellent microscope for examining atomic nuclei and the strong nuclear force.
Baryon states with hidden charm in the extended local hidden gauge approach
NASA Astrophysics Data System (ADS)
Uchino, T.; Liang, Wei-Hong; Oset, E.
2016-03-01
The s -wave interaction of bar{D}Λ_c , bar{D} Σ_c , bar{D}^{ast}Λ_c , bar{D}^{ast}Σ_c and bar{D}Σ_c^{ast} , bar{D}^{ast}Σ_c^{ast} , is studied within a unitary coupled channels scheme with the extended local hidden gauge approach. In addition to the Weinberg-Tomozawa term, several additional diagrams via the pion exchange are also taken into account as box potentials. Furthermore, in order to implement the full coupled channels calculation, some of the box potentials which mix the vector-baryon and pseudoscalar-baryon sectors are extended to construct the effective transition potentials. As a result, we have observed six possible states in several angular momenta. Four of them correspond to two pairs of admixture states, two of bar{D}Σ_c-bar{D}^{ast}Σ_c with J = 1/2 , and two of bar{D}Σ_c^{ast} - bar{D}^{ast}Σ_c^{ast} with J = 3/2 . Moreover, we find a bar{D}^{ast}Σ_c resonance which couples to the bar{D}Λ_c channel and one spin degenerated bound state of bar{D}^{ast}Σ_c^{ast} with J = 1/2,5/2.
Baryons States with Hidden Charm in the Extended Local Hidden Gauge Approach
NASA Astrophysics Data System (ADS)
Uchino, Toshitaka; Liang, Wei-Hong; Oset, Eulogio
The s-wave interaction of bar{D}Λ c, bar{D}Σ c, {bar{D}}nolimits*Λ c, {bar{D}}nolimits*Σ c and bar{D}Σ c*, {bar{D}}nolimits*Σ c*, is studied within a unitary coupled channels scheme with the extended local hidden gauge approach. In addition to the Weinberg-Tomozawa term, several additional diagrams via the pion-exchange are also taken into account as box potentials. Furthermore, in order to implement the full coupled channels calculation, some of the box potentials which mix the vector-baryon and pseudoscalar-baryon sectors are extended to construct the effective transition potentials. As a result, we have observed six possible states in several angular momenta. Four of them correspond to two pairs of admixture states, two of bar{D}Σ c - {bar{D}}nolimits*Σ c with J = 1/2, and two of bar{D}Σ c* - {bar{D}}nolimits*Σ c* with J = 3/2. Moreover, we find a {bar{D}}nolimits*Σ c resonance which couples to the bar{D}Λ c channel and one spin degenerated bound state of {bar{D}}nolimits*Σ c* with J = 1/2,5/2.
Towards a realistic description of hadron resonances
NASA Astrophysics Data System (ADS)
Schmidt, R. A.; Canton, L.; Schweiger, W.; Plessas, W.
2016-08-01
We report on our attempts of treating excited hadron states as true quantum resonances. Hitherto the spectroscopy of mesons, usually considered as quark-antiquark systems, and of baryons, usually considered as three-quark systems, has been treated through excitation spectra of bound states (namely, confined few-quark systems), corresponding to poles of the quantum-mechanical resolvent at real negative values in the complex energy plane. As a result the wave functions, i.e. the residua of the resolvent, have not exhibited the behaviour as required for hadron resonances with their multiple decay modes. This has led to disturbing shortcomings in the description of hadronic resonance phenomena. We have aimed at a more realistic description of hadron resonances within relativistic constituent-quark models taking into account explicitly meson-decay channels. The corresponding coupled-channels theory is based on a relativistically invariant mass operator capable of producing hadron ground states with real energies and hadron resonances with complex energies, the latter corresponding to poles in the lower half-plane of the unphysical sheet of the complex energy plane. So far we have demonstrated the feasibility of the coupled-channels approach to hadron resonances along model calculations producing indeed the desired properties. The corresponding spectral properties will be discussed in this contribution. More refined studies are under way towards constructing a coupled-channels relativistic constituent-quark model for meson and baryon resonances.
NASA Astrophysics Data System (ADS)
Schulze, H. G.; Bass, A.; Addison, C.; Hughesman, C.; So, A. P.; Haynes, C. A.; Blades, M. W.; Turner, R. F. B.
2005-09-01
Advances in DNA microarray fabrication technologies, expanding probe libraries, and new bioinformatics methods and resources have firmly established array-based techniques as mainstream bioanalytical tools and the application space is proliferating rapidly. However, the capability of these tools to yield truly quantitative information remains limited, primarily due to problems inherent to the use of fluorescence imaging for reading the hybridized arrays. The obvious advantages of fluorescence are the unrivaled sensitivity and simplicity of the instrumentation. There are disadvantages of this approach, however, such as difficulties in achieving optimal labeling of targets and reproducible signals (due to quenching, resonance energy transfer, photobleaching effects, etc.) that undermine precision. We are exploring alternative approaches, based mainly on Raman and resonance Raman spectroscopy, that in principle permit direct analysis of structural differences between hybridized and unhybridized probes, thereby eliminating the need for labeling the target analytes. We report here on the status of efforts to evaluate the potential of these methods based on a combination of measured data and simulated experiments involving short (12-mer) ssDNA oligomer probes with varying degrees of hybridized target DNA. Preliminary results suggest that it may be possible to determine the fraction of duplex probes within a single register on a DNA microarray from 100% down to 10% (or possibly less) with a precision of +/-2 5%. Details of the methods used, their implementation, and their potential advantages and limitations are presented, along with discussion of the utility of using 2DCOS methods to emphasize small spectral changes sensitive to interstrand H bonding, backbone flexibility, hypochromicity due to base-stacking in duplex structures and solvation effects.
Thomas, G H; Baxter, R L
1987-01-01
The adaptation of Neurospora crassa mycelium to growth on acetate as the sole carbon source was examined by using 13C nuclear magnetic resonance. Extracts were examined by nuclear magnetic resonance at various times after transfer of the mycelium from medium containing sucrose to medium containing [2-13C]acetate as the sole carbon source. The label was initially seen to enter the alanine, glutamate, and glutamine pools, and after 6 h 13C-enriched trehalose was evident, indicating that gluconeogenesis was occurring. Analysis of the isotopomer ratios in the alanine and glutamate-glutamine pools indicated that substantial glyoxylate cycle activity became evident between 2 and 4 h after transfer. Immediately after transfer of the mycelium to acetate medium, the alanine pool increased to about four times its previous level, only a small fraction of which was enriched with 13C. The quantity of 13C-enriched alanine remained almost constant between 2 and 7.5 h after the transfer, whereas the overall alanine pool decreased to its original level. The selective catabolism of the unenriched alanine leads us to suggest that the alanine pool is partitioned into two compartments during adaptation. Two acetate-nonutilizing mutants were also studied by this technique. An acu-3 strain, deficient for isocitrate lyase (EC 4.1.3.1) activity, showed metabolic changes consistent with this lesion. An acp strain, previously thought to be deficient in an inducible acetate permease, took up [2-13C]acetate but showed no evidence of glyoxylate cycle activity despite synthesizing the necessary enzymes; the lesion was therefore reinterpreted. PMID:2947898
NASA Astrophysics Data System (ADS)
Burkert, Volker D.
2016-10-01
Recent results of meson photo-production at the existing electron machines with polarized real photon beams and the measurement of polarization observables of the final state baryons have provided high precision data that led to the discovery of new excited nucleon and Δ states using multi-channel partial wave analyses procedures. The internal structure of several prominent excited states has been revealed employing meson electroproduction processes. On the theoretical front, lattice QCD is now predicting the baryon spectrum with very similar characteristics as the constituent quark model, and continuum QCD, such as is represented in the Dyson-Schwinger equations approach and in light front relativistic quark models, describes the non-perturbative behavior of resonance excitations at photon virtuality of Q^2 > 1.5 GeV^2. In this talk I discuss the need to continue a vigorous program of nucleon spectroscopy and the study of the internal structure of excited states as a way to reveal the effective degrees of freedom underlying the excited states and their dependence on the distance scale probed.
NASA Astrophysics Data System (ADS)
Choy, S.; Ahmed, H.; Wheatley, A.; McCormack, D. G.; Parraga, G.
2010-03-01
We developed image analysis tools to evaluate spatial and temporal 3He magnetic resonance imaging (MRI) ventilation in asthma and cystic fibrosis. We also developed temporal ventilation probability maps to provide a way to describe and quantify ventilation heterogeneity over time, as a way to test respiratory exacerbations or treatment predictions and to provide a discrete probability measurement of 3He ventilation defect persistence.
Measurement and analysis of molecular hyperpolarizability in the two-photon resonance regime
NASA Astrophysics Data System (ADS)
Berkovic, G.; Meshulam, G.; Kotler, Z.
2000-03-01
The frequency dependent hyperpolarizability of typical donor-acceptor organic nonlinear optical molecules is commonly represented by a nonresonant two-level model, first presented by Oudar and Chemla. We discuss how this model can be extended into the resonant regime, including cases where the molecular transition is described by an inhomogeneously broadened peak. A resonant measurement of hyperpolarizability by electric field induced second harmonic generation (EFISH) is demonstrated, as well as the more conventional off-resonance EFISH. The theoretical model correctly predicts both the amplitude and phase of the resonant hyperpolarizability measured by EFISH. We also show that both on-resonance and off-resonance EFISH yield the same hyperpolarizability extrapolated to the zero frequency limit.
Novel analysis of a sudden ionospheric disturbance using Schumann resonance measurements
NASA Astrophysics Data System (ADS)
Dyrda, Michał; Kulak, Andrzej; Mlynarczyk, Janusz; Ostrowski, Michał
2015-03-01
A spherical cavity between Earth and the lower ionosphere forms a global resonator for Extremely Low Frequency electromagnetic waves. Constant thunderstorm activity leads to the formation of a resonance field in the cavity, known as the Schumann resonance. Solar flare generated Sudden Ionospheric Disturbances (SID) modify the ionosphere affecting the ground-based radio communication systems. They are also expected to modify radiowave propagation in the cavity. In this paper, the Schumann Resonance spectral decomposition method is used for the first time to study the cavity resonance frequencies during the SID accompanying a strong X2.1 solar flare. We analyzed rapid changes in the frequencies and Q factors of the first five resonance modes using a 5 min timescale. The observed frequency shifts were compared to the ionizing solar flare fluxes in the UV, X-ray, and high-energy γ rays.
Self Interacting Dark Matter and Baryons
NASA Astrophysics Data System (ADS)
Fry, Alexander B.; Governato, Fabio; Pontzen, Andrew; Quinn, Thomas R.
2015-01-01
Self Interacting Dark Matter (SIDM) is a cosmologically consistent alternative theory to Cold Dark Matter (CDM). SIDM is motivated as a solution to solve problems of the CDM model on small scales including the core/cusp problem, the missing satellites, and halo triaxiality. Each of these problems has secular astrophysical solutions, however taken together and along with suggestions from dark matter (DM) particle physics it is interesting to place constraints on how strong a self interaction would have to be for us to observe it and conversely the null hypothesis of whether we can rule out SIDM. We use high resolution cosmological simulations to compare evolution of stellar populations and (DM) components of dwarf galaxies. Our advanced smooth particle hydrodynamics N-body simulations combine SIDM with baryon physics including star formation, feedback recipes, metal line cooling, UV background, and thermal diffusion that eliminates artificial surface gas tension. We find for a constant SIDM cross section of 2 cm2 g-1 that DM interactions alone are not significant enough to create cores in dwarf galaxies and for low mass (Vpeak= 25 km s-1) galaxies the introduction of SIDM fails to decrease the DM central density. Our simulations with star formation feedback are in good agreement with observational estimates of Local Group dwarfs. The lower mass (below 108 M⊙) halos have inefficient SF, late formation time, and less DM interactions thus small field halos in CDM and SIDM remain cuspy. We conclude that constant cross section SIDM of 2 cm2 g-1 would be close to unobservable in dwarf galaxies and yet at the same time this cross section is already larger than some observational constraints found in larger (higher velocity) systems. We conclude that to differentiate between SIDM and CDM in an observationally detectable and astrophysically consistent manner a velocity dependent cross section that peaks for halos with small peak velocities will be necessary.
Baryons, universe and everything in between
NASA Astrophysics Data System (ADS)
Ho, Shirley
2008-06-01
This thesis is a tour of topics in cosmology, unified by their diversity and pursuits in better understanding of our Universe. The first chapter measures the Integrated Sachs-Wolfe effect as a function of redshift utilizing a large range of large scale structure observations and the cosmic microwave background. We combine the ISW likelihood function with weak lensing of CMB (which is described in Chapter 2) and CMB powerspectrum to constrain the equation of state of dark energy and the curvature of the Universe. The second chapter investigates the correlation of gravitational lensing of the cosmic microwave background (CMB) with several tracers of large-scale structure, and we find evidence for a positive cross-correlation at the 2.5s level. The third chapter explores the statistical properties of Luminous Red Galaxies in a sample of X-ray selected galaxy clusters, including the halo occupation distribution, how Poisson is the satellite distribution of LRGs and the radial profile of LRGs within clusters. The forth chapter explores the idea of using multiplicity of galaxies to understand their merging timescales. We find that (by using the multiplicity function of LRGs in Chapter 3) Massive halos (~ 10 14 M [Special characters omitted.] ) at low redshift have, for example, been bombarded by several ~ 10 13 M [Special characters omitted.] halos throughout their history and these accreted LRGs merge on relatively short timescales (~ 2 Gyr). The fifth chapter presents a new method for generating a template for the kinematic Sunyaev-Zel'dovich effect that can be used to detect the missing baryons. We assessed the feasibility of the method by investigating combinations of differeng galaxy surveys and CMB observations and find that we can detect the gas-momentum kSZ correlation, and thus the ionized gas, at significant signal-to-noise level.
Hadronic interactions in large N_c QCD: Studies of excited baryon decays and scattering relations
NASA Astrophysics Data System (ADS)
Dakin, Daniel C.
Decays and scattering events are two of the principal ways to learn about particle physics. Decays, in which a particle spontaneously disintegrates and we examine the debris, are quantified by a decay width. The decay of a resonance state provides information about the structure of the state and the interaction between its components. In particular, we can learn about the dynamics of quarks and gluons by studying the decay of hadrons. Scattering, in which particles are directed towards each other and interact, are quantified by partial-wave amplitudes. These amplitudes give us information about the interaction between the scattered particles. In principle, all of hadronic physics follows from quantum chromodynamics (QCD), which describes the interactions of quarks and gluons. However, the techniques of perturbation theory are not applicable to QCD at low energy because the strong coupling constant (the natural choice for the expansion parameter) is large at the energy scale of hadronic physics. A powerful model-independent method is the 1/Nc expansion in which the number of quark color degrees of freedom (Nc) is treated as a large number. This thesis presents the application of the 1/ Nc expansion to the calculation of physical observables for excited baryons, pion-nucleon scattering, and pion photoproduction. The framework of the contracted SU(4) group that emerges in large Nc QCD is applied to the study of excited baryon decays. The Nc power scaling of the excited baryon's decay width depends on the symmetry of its spin-flavor wavefunction. The scaling with Nc for different symmetries is discussed in the context of a quark-shell model that permits mixing of different symmetry types. The subtle issues concerning the legitimacy of applying the contracted SU(4) group theory to excited baryons are discussed. The contracted SU(4) spin-flavor symmetry severely restricts the angular momentum and isospin dependence of partial-wave amplitudes. The consequences of this
Analysis of Three Body Resonances in the Complex Scaled Orthogonal Condition Model
Odsuren, M.; Katō, K.; Aikawa, M.
2014-06-15
Although the resonance structures of α+α+n have been studied experimentally and theoretically, it is still necessary to have more accurate and comprehensive understandings of the structure and decay of the low-lying excited states in {sup 9}Be. To perform calculations of an α+α+n system, we investigate five resonant states of α+α subsystem by utilizing different potential parameters and basis functions. In addition, two resonance states of α+n subsystem are computed.
Kazin, Eyal A.; Blanton, Michael R.; Scoccimarro, Roman; McBride, Cameron K.; Berlind, Andreas A.
2010-08-20
We analyze the line-of-sight baryonic acoustic feature in the two-point correlation function {xi} of the Sloan Digital Sky Survey luminous red galaxy (LRG) sample (0.16 < z < 0.47). By defining a narrow line-of-sight region, r{sub p} < 5.5 h {sup -1} Mpc, where r{sub p} is the transverse separation component, we measure a strong excess of clustering at {approx}110 h {sup -1} Mpc, as previously reported in the literature. We also test these results in an alternative coordinate system, by defining the line of sight as {theta} < 3{sup 0}, where {theta} is the opening angle. This clustering excess appears much stronger than the feature in the better-measured monopole. A fiducial {Lambda}CDM nonlinear model in redshift space predicts a much weaker signature. We use realistic mock catalogs to model the expected signal and noise. We find that the line-of-sight measurements can be explained well by our mocks as well as by a featureless {xi} = 0. We conclude that there is no convincing evidence that the strong clustering measurement is the line-of-sight baryonic acoustic feature. We also evaluate how detectable such a signal would be in the upcoming Baryon Oscillation Spectroscopic Survey (BOSS) LRG volume. Mock LRG catalogs (z < 0.6) suggest that (1) the narrow line-of-sight cylinder and cone defined above probably will not reveal a detectable acoustic feature in BOSS; (2) a clustering measurement as high as that in the current sample can be ruled out (or confirmed) at a high confidence level using a BOSS-sized data set; (3) an analysis with wider angular cuts, which provide better signal-to-noise ratios, can nevertheless be used to compare line-of-sight and transverse distances, and thereby constrain the expansion rate H(z) and diameter distance D{sub A}(z).
Mathematical analysis of plasmonic resonances for nanoparticles: The full Maxwell equations
NASA Astrophysics Data System (ADS)
Ammari, Habib; Ruiz, Matias; Yu, Sanghyeon; Zhang, Hai
2016-09-01
In this paper we use the full Maxwell equations for light propagation in order to analyze plasmonic resonances for nanoparticles. We mathematically define the notion of plasmonic resonance and analyze its shift and broadening with respect to changes in size, shape, and arrangement of the nanoparticles, using the layer potential techniques associated with the full Maxwell equations. We present an effective medium theory for resonant plasmonic systems and derive a condition on the volume fraction under which the Maxwell-Garnett theory is valid at plasmonic resonances.
Doubly heavy baryon spectra guided by lattice QCD
NASA Astrophysics Data System (ADS)
Garcilazo, H.; Valcarce, A.; Vijande, J.
2016-10-01
This paper provides results for the ground state and excited spectra of three-flavored doubly heavy baryons, b c n and b c s . We take advantage of the spin-independent interaction recently obtained to reconcile the lattice SU(3) QCD static potential and the results of nonperturbative lattice QCD for the triply heavy baryon spectra. We show that the spin-dependent potential might be constrained on the basis of nonperturbative lattice QCD results for the spin splittings of three-flavored doubly heavy baryons. Our results may also represent a challenge for future lattice QCD work, because a smaller lattice error could help in distinguishing between different prescriptions for the spin-dependent part of the interaction. Thus, by comparing with the reported baryon spectra obtained with parameters estimated from lattice QCD, one can challenge the precision of lattice calculations. The present work supports a coherent description of singly, doubly and triply heavy baryons with the same Cornell-like interacting potential. The possible experimental measurement of these states at LHCb is an incentive for this study.
Spectroscopy of doubly charmed baryons from lattice QCD
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael
2015-05-06
This study presents the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16³ × 128, with inverse spacing in temporal direction a_{t}⁻¹=5.67(4) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3)_{F} symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analyzed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7/2 and the pattern of low-lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU(6)×O(3) symmetry. Various spin-dependent energy splittings between the extracted states are also evaluated.
Contributed review: nuclear magnetic resonance core analysis at 0.3 T.
Mitchell, Jonathan; Fordham, Edmund J
2014-11-01
Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.
Quantitative 3D Analysis of Plant Roots Growing in Soil Using Magnetic Resonance Imaging.
van Dusschoten, Dagmar; Metzner, Ralf; Kochs, Johannes; Postma, Johannes A; Pflugfelder, Daniel; Bühler, Jonas; Schurr, Ulrich; Jahnke, Siegfried
2016-03-01
Precise measurements of root system architecture traits are an important requirement for plant phenotyping. Most of the current methods for analyzing root growth require either artificial growing conditions (e.g. hydroponics), are severely restricted in the fraction of roots detectable (e.g. rhizotrons), or are destructive (e.g. soil coring). On the other hand, modalities such as magnetic resonance imaging (MRI) are noninvasive and allow high-quality three-dimensional imaging of roots in soil. Here, we present a plant root imaging and analysis pipeline using MRI together with an advanced image visualization and analysis software toolbox named NMRooting. Pots up to 117 mm in diameter and 800 mm in height can be measured with the 4.7 T MRI instrument used here. For 1.5 l pots (81 mm diameter, 300 mm high), a fully automated system was developed enabling measurement of up to 18 pots per day. The most important root traits that can be nondestructively monitored over time are root mass, length, diameter, tip number, and growth angles (in two-dimensional polar coordinates) and spatial distribution. Various validation measurements for these traits were performed, showing that roots down to a diameter range between 200 μm and 300 μm can be quantitatively measured. Root fresh weight correlates linearly with root mass determined by MRI. We demonstrate the capabilities of MRI and the dedicated imaging pipeline in experimental series performed on soil-grown maize (Zea mays) and barley (Hordeum vulgare) plants.
Bifurcation analysis of delay-induced resonances of the El-Niño Southern Oscillation
Krauskopf, Bernd; Sieber, Jan
2014-01-01
Models of global climate phenomena of low to intermediate complexity are very useful for providing an understanding at a conceptual level. An important aspect of such models is the presence of a number of feedback loops that feature considerable delay times, usually due to the time it takes to transport energy (for example, in the form of hot/cold air or water) around the globe. In this paper, we demonstrate how one can perform a bifurcation analysis of the behaviour of a periodically forced system with delay in dependence on key parameters. As an example, we consider the El-Niño Southern Oscillation (ENSO), which is a sea-surface temperature (SST) oscillation on a multi-year scale in the basin of the Pacific Ocean. One can think of ENSO as being generated by an interplay between two feedback effects, one positive and one negative, which act only after some delay that is determined by the speed of transport of SST anomalies across the Pacific. We perform here a case study of a simple delayed-feedback oscillator model for ENSO, which is parametrically forced by annual variation. More specifically, we use numerical bifurcation analysis tools to explore directly regions of delay-induced resonances and other stability boundaries in this delay-differential equation model for ENSO. PMID:25197254
NASA Astrophysics Data System (ADS)
Melnychuk, O.; Grassellino, A.; Romanenko, A.
2014-12-01
In this paper, we discuss error analysis for intrinsic quality factor (Q0) and accelerating gradient (Eacc) measurements in superconducting radio frequency (SRF) resonators. The analysis is applicable for cavity performance tests that are routinely performed at SRF facilities worldwide. We review the sources of uncertainties along with the assumptions on their correlations and present uncertainty calculations with a more complete procedure for treatment of correlations than in previous publications [T. Powers, in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27]. Applying this approach to cavity data collected at Vertical Test Stand facility at Fermilab, we estimated total uncertainty for both Q0 and Eacc to be at the level of approximately 4% for input coupler coupling parameter β1 in the [0.5, 2.5] range. Above 2.5 (below 0.5) Q0 uncertainty increases (decreases) with β1 whereas Eacc uncertainty, in contrast with results in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27], is independent of β1. Overall, our estimated Q0 uncertainty is approximately half as large as that in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27].
Contributed Review: Nuclear magnetic resonance core analysis at 0.3 T
Mitchell, Jonathan Fordham, Edmund J.
2014-11-15
Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.
Galdames, Francisco J; Jaillet, Fabrice; Perez, Claudio A
2012-01-01
Skull stripping methods are designed to eliminate the non-brain tissue in magnetic resonance (MR) brain images. Removal of non-brain tissues is a fundamental step in enabling the processing of brain MR images. The aim of this study is to develop an automatic accurate skull stripping method based on deformable models and histogram analysis. A rough-segmentation step is used to find the optimal starting point for the deformation and is based on thresholds and morphological operators. Thresholds are computed using comparisons with an atlas, and modeling by Gaussians. The deformable model is based on a simplex mesh and its deformation is controlled by the image local gray levels and the information obtained on the gray level modeling of the rough-segmentation. Our Simplex Mesh and Histogram Analysis Skull Stripping (SMHASS) method was tested on the following international databases commonly used in scientific articles: BrainWeb, Internet Brain Segmentation Repository (IBSR), and Segmentation Validation Engine (SVE). A comparison was performed against three of the best skull stripping methods previously published: Brain Extraction Tool (BET), Brain Surface Extractor (BSE), and Hybrid Watershed Algorithm (HWA). Performance was measured using the Jaccard index (J) and Dice coefficient (κ). Our method showed the best performance and differences were statistically significant (p<0.05): J=0.904 and κ=0.950 on BrainWeb; J=0.905 and κ=0.950 on IBSR; J=0.946 and κ=0.972 on SVE.
Quantitative 3D Analysis of Plant Roots Growing in Soil Using Magnetic Resonance Imaging.
van Dusschoten, Dagmar; Metzner, Ralf; Kochs, Johannes; Postma, Johannes A; Pflugfelder, Daniel; Bühler, Jonas; Schurr, Ulrich; Jahnke, Siegfried
2016-03-01
Precise measurements of root system architecture traits are an important requirement for plant phenotyping. Most of the current methods for analyzing root growth require either artificial growing conditions (e.g. hydroponics), are severely restricted in the fraction of roots detectable (e.g. rhizotrons), or are destructive (e.g. soil coring). On the other hand, modalities such as magnetic resonance imaging (MRI) are noninvasive and allow high-quality three-dimensional imaging of roots in soil. Here, we present a plant root imaging and analysis pipeline using MRI together with an advanced image visualization and analysis software toolbox named NMRooting. Pots up to 117 mm in diameter and 800 mm in height can be measured with the 4.7 T MRI instrument used here. For 1.5 l pots (81 mm diameter, 300 mm high), a fully automated system was developed enabling measurement of up to 18 pots per day. The most important root traits that can be nondestructively monitored over time are root mass, length, diameter, tip number, and growth angles (in two-dimensional polar coordinates) and spatial distribution. Various validation measurements for these traits were performed, showing that roots down to a diameter range between 200 μm and 300 μm can be quantitatively measured. Root fresh weight correlates linearly with root mass determined by MRI. We demonstrate the capabilities of MRI and the dedicated imaging pipeline in experimental series performed on soil-grown maize (Zea mays) and barley (Hordeum vulgare) plants. PMID:26729797
Bifurcation analysis of delay-induced resonances of the El-Niño Southern Oscillation.
Krauskopf, Bernd; Sieber, Jan
2014-09-01
Models of global climate phenomena of low to intermediate complexity are very useful for providing an understanding at a conceptual level. An important aspect of such models is the presence of a number of feedback loops that feature considerable delay times, usually due to the time it takes to transport energy (for example, in the form of hot/cold air or water) around the globe. In this paper, we demonstrate how one can perform a bifurcation analysis of the behaviour of a periodically forced system with delay in dependence on key parameters. As an example, we consider the El-Niño Southern Oscillation (ENSO), which is a sea-surface temperature (SST) oscillation on a multi-year scale in the basin of the Pacific Ocean. One can think of ENSO as being generated by an interplay between two feedback effects, one positive and one negative, which act only after some delay that is determined by the speed of transport of SST anomalies across the Pacific. We perform here a case study of a simple delayed-feedback oscillator model for ENSO, which is parametrically forced by annual variation. More specifically, we use numerical bifurcation analysis tools to explore directly regions of delay-induced resonances and other stability boundaries in this delay-differential equation model for ENSO.
Estimation and veering analysis of nonlinear resonant frequencies of cracked plates
NASA Astrophysics Data System (ADS)
Saito, A.; Castanier, M. P.; Pierre, C.
2009-10-01
In this paper, veering phenomena in the nonlinear vibration frequencies of a cantilevered cracked plate are investigated, and an efficient method for estimating these frequencies is proposed. Of particular interest is the vibration response in parameter regions where the natural frequency loci show veerings. For a representative finite element model, it is shown that the veerings due to crack length variation involve the switching of mode shapes and modal interactions. The nonlinearity caused by the crack closing effect is then introduced, and its effect on the vibration response near the veerings is discussed. The nonlinear forced response analysis is carried out using a hybrid frequency/time domain method, which is based on the method of harmonic balance. The nonlinear vibration response near loci veerings and crossings due to the variation of crack length is investigated in detail. Finally, a novel method for estimating the nonlinear resonant frequency is introduced by generalizing the concept of bilinear frequency approximation, and the method is validated with the results of nonlinear forced response analysis for several veering regions.
Label-free, real-time interaction and adsorption analysis 1: surface plasmon resonance.
Fee, Conan J
2013-01-01
A key requirement for the development of proteins for use in nanotechnology is an understanding of how individual proteins bind to other molecules as they assemble into larger structures. The introduction of labels to enable the detection of biomolecules brings the inherent risk that the labels themselves will influence the nature of biomolecular interactions. Thus, there is a need for label-free interaction and adsorption analysis. In this and the following chapter, two biosensor techniques are reviewed: surface plasmon resonance (SPR) and the quartz crystal microbalance (QCM). Both allow real-time analysis of biomolecular interactions and both are label-free. The first of these, SPR, is an optical technique that is highly sensitive to the changes in refractive index that occur with protein (or other molecule) accumulation near an illuminated gold surface. Unlike QCM ( Chapter 18 ) SPR is not affected by the water that may be associated with the adsorbed layer nor by conformational changes in the adsorbed species. SPR thus provides unique information about the interaction of a protein with its binding partners. PMID:23504431
Analysis of adipose tissue distribution using whole-body magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Wald, Diana; Schwarz, Tobias; Dinkel, Julien; Delorme, Stefan; Teucher, Birgit; Kaaks, Rudolf; Meinzer, Hans-Peter; Heimann, Tobias
2011-03-01
Obesity is an increasing problem in the western world and triggers diseases like cancer, type two diabetes, and cardiovascular diseases. In recent years, magnetic resonance imaging (MRI) has become a clinically viable method to measure the amount and distribution of adipose tissue (AT) in the body. However, analysis of MRI images by manual segmentation is a tedious and time-consuming process. In this paper, we propose a semi-automatic method to quantify the amount of different AT types from whole-body MRI data with less user interaction. Initially, body fat is extracted by automatic thresholding. A statistical shape model of the abdomen is then used to differentiate between subcutaneous and visceral AT. Finally, fat in the bone marrow is removed using morphological operators. The proposed method was evaluated on 15 whole-body MRI images using manual segmentation as ground truth for adipose tissue. The resulting overlap for total AT was 93.7% +/- 5.5 with a volumetric difference of 7.3% +/- 6.4. Furthermore, we tested the robustness of the segmentation results with regard to the initial, interactively defined position of the shape model. In conclusion, the developed method proved suitable for the analysis of AT distribution from whole-body MRI data. For large studies, a fully automatic version of the segmentation procedure is expected in the near future.
Bifurcation analysis of delay-induced resonances of the El-Niño Southern Oscillation.
Krauskopf, Bernd; Sieber, Jan
2014-09-01
Models of global climate phenomena of low to intermediate complexity are very useful for providing an understanding at a conceptual level. An important aspect of such models is the presence of a number of feedback loops that feature considerable delay times, usually due to the time it takes to transport energy (for example, in the form of hot/cold air or water) around the globe. In this paper, we demonstrate how one can perform a bifurcation analysis of the behaviour of a periodically forced system with delay in dependence on key parameters. As an example, we consider the El-Niño Southern Oscillation (ENSO), which is a sea-surface temperature (SST) oscillation on a multi-year scale in the basin of the Pacific Ocean. One can think of ENSO as being generated by an interplay between two feedback effects, one positive and one negative, which act only after some delay that is determined by the speed of transport of SST anomalies across the Pacific. We perform here a case study of a simple delayed-feedback oscillator model for ENSO, which is parametrically forced by annual variation. More specifically, we use numerical bifurcation analysis tools to explore directly regions of delay-induced resonances and other stability boundaries in this delay-differential equation model for ENSO. PMID:25197254
Lee, Seonjoo; Shen, Haipeng; Truong, Young; Lewis, Mechelle; Huang, Xuemei
2016-01-01
Independent component analysis (ICA) is an effective data-driven method for blind source separation. It has been successfully applied to separate source signals of interest from their mixtures. Most existing ICA procedures are carried out by relying solely on the estimation of the marginal density functions, either parametrically or nonparametrically. In many applications, correlation structures within each source also play an important role besides the marginal distributions. One important example is functional magnetic resonance imaging (fMRI) analysis where the brain-function-related signals are temporally correlated. In this article, we consider a novel approach to ICA that fully exploits the correlation structures within the source signals. Specifically, we propose to estimate the spectral density functions of the source signals instead of their marginal density functions. This is made possible by virtue of the intrinsic relationship between the (unobserved) sources and the (observed) mixed signals. Our methodology is described and implemented using spectral density functions from frequently used time series models such as autoregressive moving average (ARMA) processes. The time series parameters and the mixing matrix are estimated via maximizing the Whittle likelihood function. We illustrate the performance of the proposed method through extensive simulation studies and a real fMRI application. The numerical results indicate that our approach outperforms several popular methods including the most widely used fastICA algorithm. This article has supplementary material online. PMID:27524847
Quantitative 3D Analysis of Plant Roots Growing in Soil Using Magnetic Resonance Imaging1[OPEN
Kochs, Johannes; Pflugfelder, Daniel
2016-01-01
Precise measurements of root system architecture traits are an important requirement for plant phenotyping. Most of the current methods for analyzing root growth require either artificial growing conditions (e.g. hydroponics), are severely restricted in the fraction of roots detectable (e.g. rhizotrons), or are destructive (e.g. soil coring). On the other hand, modalities such as magnetic resonance imaging (MRI) are noninvasive and allow high-quality three-dimensional imaging of roots in soil. Here, we present a plant root imaging and analysis pipeline using MRI together with an advanced image visualization and analysis software toolbox named NMRooting. Pots up to 117 mm in diameter and 800 mm in height can be measured with the 4.7 T MRI instrument used here. For 1.5 l pots (81 mm diameter, 300 mm high), a fully automated system was developed enabling measurement of up to 18 pots per day. The most important root traits that can be nondestructively monitored over time are root mass, length, diameter, tip number, and growth angles (in two-dimensional polar coordinates) and spatial distribution. Various validation measurements for these traits were performed, showing that roots down to a diameter range between 200 μm and 300 μm can be quantitatively measured. Root fresh weight correlates linearly with root mass determined by MRI. We demonstrate the capabilities of MRI and the dedicated imaging pipeline in experimental series performed on soil-grown maize (Zea mays) and barley (Hordeum vulgare) plants. PMID:26729797
Monleón, Daniel; Colson, Kimberly; Moseley, Hunter N B; Anklin, Clemens; Oswald, Robert; Szyperski, Thomas; Montelione, Gaetano T
2002-01-01
Rapid data collection, spectral referencing, processing by time domain deconvolution, peak picking and editing, and assignment of NMR spectra are necessary components of any efficient integrated system for protein NMR structure analysis. We have developed a set of software tools designated AutoProc, AutoPeak, and AutoAssign, which function together with the data processing and peak-picking programs NMRPipe and Sparky, to provide an integrated software system for rapid analysis of protein backbone resonance assignments. In this paper we demonstrate that these tools, together with high-sensitivity triple resonance NMR cryoprobes for data collection and a Linux-based computer cluster architecture, can be combined to provide nearly complete backbone resonance assignments and secondary structures (based on chemical shift data) for a 59-residue protein in less than 30 hours of data collection and processing time. In this optimum case of a small protein providing excellent spectra, extensive backbone resonance assignments could also be obtained using less than 6 hours of data collection and processing time. These results demonstrate the feasibility of high throughput triple resonance NMR for determining resonance assignments and secondary structures of small proteins, and the potential for applying NMR in large scale structural proteomics projects.
Analysis of myocardial motion using generalized spline models and tagged magnetic resonance images
NASA Astrophysics Data System (ADS)
Chen, Fang; Rose, Stephen E.; Wilson, Stephen J.; Veidt, Martin; Bennett, Cameron J.; Doddrell, David M.
2000-06-01
Heart wall motion abnormalities are the very sensitive indicators of common heart diseases, such as myocardial infarction and ischemia. Regional strain analysis is especially important in diagnosing local abnormalities and mechanical changes in the myocardium. In this work, we present a complete method for the analysis of cardiac motion and the evaluation of regional strain in the left ventricular wall. The method is based on the generalized spline models and tagged magnetic resonance images (MRI) of the left ventricle. The whole method combines dynamical tracking of tag deformation, simulating cardiac movement and accurately computing the regional strain distribution. More specifically, the analysis of cardiac motion is performed in three stages. Firstly, material points within the myocardium are tracked over time using a semi-automated snake-based tag tracking algorithm developed for this purpose. This procedure is repeated in three orthogonal axes so as to generate a set of one-dimensional sample measurements of the displacement field. The 3D-displacement field is then reconstructed from this sample set by using a generalized vector spline model. The spline reconstruction of the displacement field is explicitly expressed as a linear combination of a spline kernel function associated with each sample point and a polynomial term. Finally, the strain tensor (linear or nonlinear) with three direct components and three shear components is calculated by applying a differential operator directly to the displacement function. The proposed method is computationally effective and easy to perform on tagged MR images. The preliminary study has shown potential advantages of using this method for the analysis of myocardial motion and the quantification of regional strain.
Singh, Siddharth; Venkatesh, Sudhakar K.; Keaveny, Andrew; Adam, Sharon; Miller, Frank H.; Asbach, Patrick; Godfrey, Edmund M.; Silva, Alvin C.; Wang, Zhen; Murad, Mohammad Hassan; Asrani, Sumeet K.; Lomas, David J.; Ehman, Richard L.
2016-01-01
Background and Aims We conducted an individual participant data (IPD) pooled analysis on the diagnostic accuracy of magnetic resonance elastography (MRE) to detect fibrosis stage in liver transplant recipients. Methods Through a systematic literature search, we identified studies on diagnostic performance of MRE for staging liver fibrosis, using liver biopsy as gold standard. We contacted study authors for published and unpublished IPD on age, sex, body mass index, liver stiffness, fibrosis stage, degree of inflammation and interval between MRE and biopsy; from these we limited analysis to patients who had undergone liver transplantation. Through pooled analysis using nonparametric two-stage receiver-operating curve (ROC) regression models, we calculated the cluster-adjusted AUROC, sensitivity and specificity of MRE for any (≥stage 1), significant (≥stage 2) and advanced fibrosis (≥stage 3) and cirrhosis (stage 4). Results We included 6 cohorts (4 published and 2 unpublished series) reporting on 141 liver transplant recipients (mean age, 57 years; 75.2% male; mean BMI, 27.1 kg/m2). Fibrosis stage distribution stage 0, 1, 2, 3, or 4, was 37.6%, 23.4%, 24.8%, 12% and 2.2%, respectively. Mean AUROC values (and 95% confidence intervals) for diagnosis of any (≥stage 1), significant (≥stage 2), or advanced fibrosis (≥stage 3) and cirrhosis were 0.73 (0.66–0.81), 0.69 (0.62–0.74), 0.83 (0.61–0.88) and 0.96 (0.93–0.98), respectively. Similar diagnostic performance was observed in stratified analysis based on sex, obesity and inflammation grade. Conclusions In conclusion, MRE has high diagnostic accuracy for detection of advanced fibrosis in liver transplant recipients, independent of BMI and degree of inflammation. PMID:27049490
Analysis of states in {sup 13}C populated in {sup 9}Be + {sup 4}He resonant scattering
Freer, M.; Ashwood, N. I.; Curtis, N.; Kokalova, Tz.; Wheldon, C.; Di Pietro, A.; Figuera, P.; Fisichella, M.; Scuderi, V.; Torresi, D.; Grassi, L.; Jelavic Malenica, D.; Koncul, M.; Mijatovic, T.; Prepolec, L.; Skukan, N.; Soic, N.; Szilner, S.; Tokic, V.; Milin, M.
2011-09-15
Measurements of {sup 9}Be + {alpha} resonant scattering have been performed using the thick-target approach with a {sup 4}He gas volume and a large-area silicon strip detector. {sup 9}Be beam energies in the range 12 to 21.4 MeV were used to measure the {sup 13}C excitation energy spectrum between 13.2 and 16.2 MeV. An R-matrix analysis has been performed to characterize the spins and widths of {sup 13}C resonances, some of which have been proposed to be associated with a 3{alpha}+n molecular band.
NASA Astrophysics Data System (ADS)
Khaleque, Tanzina
This dissertation addresses the guided-mode resonance (GMR) effect and its applications. In particular, this study presents theoretical analysis and corresponding experiments on two important GMR devices that can be broadly described as GMR-enabled thin-film solar cells and flat-top reflectors. The GMR-induced enhanced absorption of input light is observed and quantified in a fabricated nano-patterned amorphous silicon (a-Si) thin-film. Compared to a reference homogeneous thin-film of a-Si, approximately 50% integrated absorbance enhancement is achieved in the patterned structure. This result motivates the application of these resonance effects in thin-film solar cells where enhanced solar absorbance is a crucial requirement. Light trapping in thin-film solar cells through the GMR effect is theoretically explained and experimentally demonstrated. Nano-patterned solar cells with 300-nm periods in one-dimensional gratings are designed, fabricated, and characterized. Compared to a planar reference solar cell, around 35% integrated absorption enhancement is observed over the 450--750-nm wavelength range. This light-management method results in enhanced short-circuit current density of 14.8 mA/cm 2, which is a ˜40% improvement over planar solar cells. The experimental demonstration proves the potential of simple and well-designed guided-mode resonant features in thin-film solar cells. In order to complement the research on GMR thin-film solar cells, a single-step, low-cost fabrication method for generating resonant nano-grating patterns on poly-methyl-methacrylate (PMMA; plexiglas) substrates using thermal nano-imprint lithography is reported. The imprinted structures of both one and two dimensional nano-grating patterns with 300 nm period are fabricated. Thin films of indium-tin-oxide and silicon are deposited over patterned substrates and the absorbance of the films is measured. Around 25% and 45% integrated optical absorbance enhancement is observed over the 450-nm
Zhang, Wei; Xiang, Bingren; Wu, Yanwei; Shang, Erxin
2006-02-01
Based on the theory of stochastic resonance, the signal to noise ratio (SNR) of HPLC/UV chromatographic signal of roxithromycin is enhanced by cooperation of signal, noise and nonlinear system. A simple new method for the determination of low concentration of roxithromycin in beagle dog plasma is presented. Using signal enhancement by stochastic resonance, this method extends the limit of quantitation from the reported 0.5 to 0.1 microg/ml. During validation of the new method, HPLC/MS was used as a comparison technique. The results indicate that the recovery and low concentrations of roxithromycin in beagle dog plasma were equivalent between the two methods (P>0.05). Stochastic resonance may be a promising tool for improving detection limits in trace analysis.
Evidence for B Semileptonic Decays into the Lambda_c Charm Baryon
Aubert, Bernard; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, Antimo; Pappagallo, M.; Eigen, G.; Stugu, Bjarne; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, Robert N.; Jacobsen, R.G.; /LBL, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Consorzio Milano Ricerche /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Napoli Seconda U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /INFN, Pisa /Princeton U. /Banca di Roma /Frascati /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison
2008-11-05
We present the first evidence for B semileptonic decays into the charmed baryon {Lambda}{sub c}{sup +} based on 420 fb{sup -1} of data collected at the {Upsilon}(4S) resonance with the BABAR detector at the PEP-II e{sup +}e{sup -} storage rings. Events are tagged by fully reconstructing one of the B mesons in a hadronic decay mode. We measure the relative branching fraction {Beta}({bar B} {yields} {Lambda}{sub c}{sup +} X{ell}{sup -}{bar {nu}}{sub {ell}})/{Beta}({bar B} {yields} {Lambda}{sub c}{sup +}/{bar {Lambda}}{sub c}{sup -}X) = (3.2 {+-} 0.9{sub stat.} {+-} 0.9{sub syst.})%. The significance of the signal including the systematic uncertainty is 4.9 standard deviations.
The octet meson and octet baryon interaction with strangeness and the Λ(1405)
NASA Astrophysics Data System (ADS)
He, Jun; Lü, Pei-Liang
2015-10-01
The octet meson and baryon interaction with strangeness S = -1 is studied fully relativistically with chiral Lagrangian. In this paper, a Bethe-Salpeter equation (BSE) approach with spectator quasipotential approximation is applied to study the reactions K-p → MB with MB = K-p,K¯0n,π-Σ+,π0Σ0,π+Σ- and ηΛ with all possible partial waves and theoretical results are comparable with experimental data. It is found that the Weinberg-Tomozawa potential derived from the lowest order chiral Lagrangian only provides the contributions from partial waves with spin-parities JP = 1/2+ and 1/2-. Two-pole structure of the Λ(1405) is confirmed with poles at 1383 + 99i and 1423 + 14i MeV. The lower and higher poles originate from Σπ interaction as a resonance and K¯N interaction as a bound state, respectively.
NASA Astrophysics Data System (ADS)
Raeder, S.; Stöbener, N.; Gottwald, T.; Passler, G.; Reich, T.; Trautmann, N.; Wendt, K.
2011-03-01
The long-lived radio isotope 237Np is generated within the nuclear fuel cycle and represents a major hazard in the final disposal of nuclear waste. Related geochemical research requires sensitive methods for the detection of ultratrace amounts of neptunium in environmental samples. Resonance ionization mass spectrometry (RIMS) has proven to be one of the most sensitive methods for the detection of plutonium. A precondition for the application of RIMS to ultratrace analysis of neptunium is the knowledge of an efficient and selective scheme for optical excitation and ionization. Therefore, a multitude of medium to high-lying atomic levels in neptunium was located by applying in-source resonance ionization spectroscopy. By using excitation via six previously known first excited, intermediate levels of odd parity, a set of twelve so far unknown high-lying levels of even parity were identified and studied further for their suitability in resonant excitation/ionization schemes. Autoionizing resonances for efficient ionization of neptunium atoms were subsequently accessed spectroscopically. Altogether five resonance ionization schemes were investigated and characterized concerning their saturation behavior and relative efficiency. Applying a calibrated sample, an overall efficiency of 0.3 % was determined.
Resonances and resonance widths
Collins, T.
1986-05-01
Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances.
Mapping chiral symmetry breaking in the excited baryon spectrum
NASA Astrophysics Data System (ADS)
Bicudo, Pedro; Cardoso, Marco; Llanes-Estrada, Felipe J.; Van Cauteren, Tim
2016-09-01
We study the conjectured "insensitivity to chiral symmetry breaking" in the highly excited light baryon spectrum. While the experimental spectrum is being measured at JLab and CBELSA/TAPS, this insensitivity remains to be computed theoretically in detail. As the only existing option to have both confinement, highly excited states, and chiral symmetry, we adopt the truncated Coulomb-gauge formulation of QCD, considering a linearly confining Coulomb term. Adopting a systematic and numerically intensive variational treatment up to 12 harmonic oscillator shells we are able to access several angular and radial excitations. We compute both the excited spectra of I =1 /2 and I =3 /2 baryons, up to large spin J =13 /2 , and study in detail the proposed chiral multiplets. While the static-light and light-light spectra clearly show chiral symmetry restoration high in the spectrum, the realization of chiral symmetry is more complicated in the baryon spectrum than earlier expected.
Properties of Doubly Heavy Baryons in the Relativistic Quark Model
Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.
2005-05-01
Mass spectra and semileptonic decay rates of baryons consisting of two heavy (b or c) and one light quark are calculated in the framework of the relativistic quark model. The doubly heavy baryons are treated in the quark-diquark approximation. The ground and excited states of both the diquark and quark-diquark bound systems are considered. The quark-diquark potential is constructed. The light quark is treated completely relativistically, while the expansion in the inverse heavy-quark mass is used. The weak transition amplitudes of heavy diquarks bb and bc going, respectively, to bc and cc are explicitly expressed through the overlap integrals of the diquark wave functions in the whole accessible kinematic range. The relativistic baryon wave functions of the quark-diquark bound system are used for the calculation of the decay matrix elements, the Isgur-Wise function, and decay rates in the heavy-quark limit.
Magnetic moments of octet baryons and sea antiquark polarizations
Bartelski, Jan; Tatur, Stanislaw
2005-01-01
Using generalized Sehgal equations for magnetic moments of baryon octet and taking into account {sigma}{sup 0}-{lambda} mixing and two particle corrections to independent quark contributions we obtain very good fit using experimental values for errors of such moments. We present sum rules for quark magnetic moments ratios and for integrated spin densities ratios. Because of the SU(3) structure of our equations the results for magnetic moments of quarks and their densities depend on two additional parameters. Using information from deep inelastic scattering and baryon {beta}-decays we discuss the dependence of antiquark polarizations on introduced parameters. For some plausible values of these parameters we show that these polarizations are small if we neglect angular momenta of quarks. Our very good fit to magnetic moments of baryon octet can still be improved by using specific model for angular momentum of quarks.
Proposal for the systematic naming of mesons and baryons
Porter, F.C.; Hernandez, J.J.; Montanet, L.; Roos, M.; Toernqvist, N.A.; Barnett, R.M.; Cahn, R.N.; Gidal, G.; Rittenberg, A.; Trippe, T.G.
1984-10-01
Twenty years ago, the Particle Data Group adopted a systematic naming convention for baryons: the symbols N, ..delta.., ..lambda.., ..sigma.., ..xi.., and ..cap omega.. were to identify the isospin and strangeness, The mesons, by contrast, have become an alphabet soup of uninformative names - theta, iota, xi, zeta, g/sub T/, g/sub s/, H, E, delta, h, g, r, kappa, etc. -, and in some cases identical names are used for mesons with different quantum numbers (A, B, and D). Furthermore, experimentalists are now discovering baryons that contain heavy quarks. It is therefore timely to consider systematic naming conventions both for mesons and for baryons with heavy quarks. The Particle Data Group is circulating this proposal in the hope of generating feedback, and we attach a sheet for responses. It should be emphasized that the Particle Tables would show both the old and new names for some time.
Sigma term and strangeness content of octet baryons
NASA Astrophysics Data System (ADS)
Dürr, S.; Fodor, Z.; Hemmert, T.; Hoelbling, C.; Frison, J.; Katz, S. D.; Krieg, S.; Kurth, T.; Lellouch, L.; Lippert, T.; Portelli, A.; Ramos, A.; Schäfer, A.; Szabó, K. K.
2012-01-01
By using lattice QCD computations we determine the sigma terms and strangeness content of all octet baryons by means of an application of the Hellmann-Feynman theorem. In addition to polynomial and rational expressions for the quark-mass dependence of octet members, we use SU(3) covariant baryon chiral perturbation theory to perform the extrapolation to the physical up and down quark masses. Our Nf=2+1 lattice ensembles include pion masses down to about 190 MeV in large volumes (MπL≳4), and three values of the lattice spacing. Our main results are the nucleon sigma term σπN=39(4)(-7+18) and the strangeness content yN=0.20(7)(-17+13). Under the assumption of validity of covariant baryon χPT in our range of masses one finds yN=0.276(77)(-62+90).
Theoretical analysis of whispering-gallery mode dielectric resonator in mm-wave MIC
NASA Astrophysics Data System (ADS)
Chen, Ning; Sun, Z. L.
1993-09-01
The radial mode matching method is employed to rigorously compute the whispering-gallery mode (WGM) disk type dielectric resonator used in millimeter wave microstrip integrated circuits. Results are presented of the dependence of resonant frequencies of WGMs on the size of shielding box and Q factors of WGM's relationship to leakage loss in the case of parallel-plate shielding structure.
Analysis of Glass-Reinforced Epoxy Material for Radio Frequency Resonator
Islam, M. T.; Misran, N.; Yatim, Baharudin
2014-01-01
A radio frequency (RF) resonator using glass-reinforced epoxy material for C and X band is proposed in this paper. Microstrip line technology for RF over glass-reinforced epoxy material is analyzed. Coupling mechanism over RF material and parasitic coupling performance is explained utilizing even and odd mode impedance with relevant equivalent circuit. Babinet's principle is deployed to explicate the circular slot ground plane of the proposed resonator. The resonator is designed over four materials from different backgrounds which are glass-reinforced epoxy, polyester, gallium arsenide (GaAs), and rogers RO 4350B. Parametric studies and optimization algorithm are applied over the geometry of the microstrip resonator to achieve dual band response for C and X band. Resonator behaviors for different materials are concluded and compared for the same structure. The final design is fabricated over glass-reinforced epoxy material. The fabricated resonator shows a maximum directivity of 5.65 dBi and 6.62 dBi at 5.84 GHz and 8.16 GHz, respectively. The lowest resonance response is less than −20 dB for C band and −34 dB for X band. The resonator is prototyped using LPKF (S63) drilling machine to study the material behavior. PMID:24977230
Propagators of resonances and rescatterings of the decay products
NASA Astrophysics Data System (ADS)
Anisovich, A. V.; Anisovich, V. V.; Matveev, M. A.; Nyiri, J.; Sarantsev, A. V.; Semenova, A. N.
2016-08-01
Hadronic resonance propagators which take into account the analytical properties of decay processes are built in terms of the dispersion relation technique. Such propagators can describe multi-component systems, for example, those when quark degrees of freedom create a resonance state, and decay products correct the corresponding pole by adding hadronic deuteron-like components. Meson and baryon states are considered, examples of particles with different spins are presented.
Combining Quark and Link Smearing to Improve Extended Baryon Operators
Adam Lichtl; Subhasish Basak; Robert Edwards; George T. Fleming; Urs M. Heller; Colin Morningstar; David Richards; Ikuro Sato; Stephen Wallace
2005-09-29
The effects of Gaussian quark-field smearing and analytic stout-link smearing on the correlations of gauge-invariant extended baryon operators are studied. Gaussian quark-field smearing substantially reduces contributions from the short wavelength modes of the theory, while stout-link smearing significantly reduces the noise from the stochastic evaluations. The use of gauge-link smearing is shown to be crucial for baryon operators constructed of covariantly-displaced quark fields. Preferred smearing parameters are determined for a lattice spacing a_s ~ 0.1 fm.
Indication of divergent baryon-number susceptibility in QCD matter
Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.
2010-01-15
The baryon-number density formed in relativistic nuclear collisions versus the chemical potential of the freeze-out states is systematically studied on the basis of existing measurements. A remarkable power-law behavior of the baryon-number susceptibility is found at the CERN Super Proton Synchrotron, consistent with the existence of a QCD critical point at mu{sub B,c}approx =222 MeV, T{sub c}approx =155 MeV. The equation of state in different asymptotic regimes of the critical region is also examined and confronted with freeze-out states in these experiments.