Characterization of Cardiovascular Alterations Induced by Different Chronic Cisplatin Treatments
Herradón, Esperanza; González, Cristina; Uranga, José A.; Abalo, Raquel; Martín, Ma I.; López-Miranda, Visitacion
2017-01-01
In the last years, many clinical studies have revealed that some cisplatin-treated cancer survivors have a significantly increased risk of cardiovascular events, being cisplatin-induced cardiovascular toxicity an increasing concern. The aim of the present work was to evaluate the cardiovascular alterations induced by different chronic cisplatin treatments, and to identify some of the mechanisms involved. Direct blood pressure, basal cardiac (left ventricle and coronary arteries) and vascular (aortic and mesenteric) functions were evaluated in chronic (5 weeks) saline- or cisplatin-treated male Wistar rats. Three different doses of cisplatin were tested (1, 2, and 3 mg/kg/week). Alterations in cardiac and vascular tissues were also investigated by immunohistochemistry, Western Blot, and or quantitative RT-PCR analysis. Cisplatin treatment provoked a significant modification of arterial blood pressure, heart rate, and basal cardiac function at the maximum dose tested. However, vascular endothelial dysfunction occurred at lower doses. The expression of collagen fibers and conexin-43 were increased in cardiac tissue in cisplatin-treated rats with doses of 2 and 3 mg/kg/week. The expression of endothelial nitric oxide synthase was also modified in cardiac and vascular tissues after cisplatin treatment. In conclusion, chronic cisplatin treatment provokes cardiac and vascular toxicity in a dose-dependent manner. Besides, vascular endothelial dysfunction occurs at lower doses than cardiac and systemic cardiovascular toxicity. Moreover, some structural changes in cardiac and vascular tissues are also patent even before any systemic cardiovascular alterations. PMID:28533750
Characterization of Cardiovascular Alterations Induced by Different Chronic Cisplatin Treatments.
Herradón, Esperanza; González, Cristina; Uranga, José A; Abalo, Raquel; Martín, Ma I; López-Miranda, Visitacion
2017-01-01
In the last years, many clinical studies have revealed that some cisplatin-treated cancer survivors have a significantly increased risk of cardiovascular events, being cisplatin-induced cardiovascular toxicity an increasing concern. The aim of the present work was to evaluate the cardiovascular alterations induced by different chronic cisplatin treatments, and to identify some of the mechanisms involved. Direct blood pressure, basal cardiac (left ventricle and coronary arteries) and vascular (aortic and mesenteric) functions were evaluated in chronic (5 weeks) saline- or cisplatin-treated male Wistar rats. Three different doses of cisplatin were tested (1, 2, and 3 mg/kg/week). Alterations in cardiac and vascular tissues were also investigated by immunohistochemistry, Western Blot, and or quantitative RT-PCR analysis. Cisplatin treatment provoked a significant modification of arterial blood pressure, heart rate, and basal cardiac function at the maximum dose tested. However, vascular endothelial dysfunction occurred at lower doses. The expression of collagen fibers and conexin-43 were increased in cardiac tissue in cisplatin-treated rats with doses of 2 and 3 mg/kg/week. The expression of endothelial nitric oxide synthase was also modified in cardiac and vascular tissues after cisplatin treatment. In conclusion, chronic cisplatin treatment provokes cardiac and vascular toxicity in a dose-dependent manner. Besides, vascular endothelial dysfunction occurs at lower doses than cardiac and systemic cardiovascular toxicity. Moreover, some structural changes in cardiac and vascular tissues are also patent even before any systemic cardiovascular alterations.
Cardiovascular effects in rats after intratracheal instillation of metal welding particles
Zheng, Wen; Antonini, James M.; Lin, Yen-Chang; Roberts, Jenny R.; Kashon, Michael L.; Castranova, Vincent; Kan, Hong
2015-01-01
Studies have indicated that pulmonary exposure to welding fumes can induce a series of adverse effects in the respiratory system, including infection, bronchitis, siderosis and decreased pulmonary function. Recent clinical and epidemiological studies have found that pulmonary exposure to welding fumes is also associated with a higher incidence of cardiovascular events. However, there is insufficient evidence to confirm a direct effect of welding fumes on the cardiovascular system. The present study investigated the effects of pulmonary exposure to welding fumes on the heart and the vascular system in rats. Two chemically distinct welding fumes generated from manual metal arc-hard surfacing (MMA-HS) and gas metal arc-mild steel (GMA-MS) welding were tested. Three groups of rats were instilled intratracheally with MMA-HS (2 mg/rat), GMA-MS (2 mg/rat) or saline as control once a week for seven weeks. On days 1 and 7 after the last treatment, basal cardiovascular function and the cardiovascular response to increasing doses of adrenoreceptor agonists were assessed. MMA-HS treatment reduced the basal levels of left ventricle end-systolic pressure and dP/dtmax at 1 day post-treatment, and decreased dP/dtmin in response to isoproterenol (ISO) at 7 days post-treatment. Unlike MMA-HS, GMA-MS only affected left ventricular end-diastolic pressure in response to ISO at 7 days post-treatment. Treatment with MMA-HS or GMA-MS did not alter heart rate and blood pressure. Our findings suggest that exposure to different welding fumes can induce different adverse effects on the cardiovascular system, and that cardiac contractility may be a sensitive indicator of cardiovascular dysfunction. PMID:25600139
Cardiovascular effects in rats after intratracheal instillation of metal welding particles.
Zheng, Wen; Antonini, James M; Lin, Yen-Chang; Roberts, Jenny R; Kashon, Michael L; Castranova, Vincent; Kan, Hong
2015-01-01
Studies have indicated that pulmonary exposure to welding fumes can induce a series of adverse effects in the respiratory system, including infection, bronchitis, siderosis and decreased pulmonary function. Recent clinical and epidemiological studies have found that pulmonary exposure to welding fumes is also associated with a higher incidence of cardiovascular events. However, there is insufficient evidence to confirm a direct effect of welding fumes on the cardiovascular system. The present study investigated the effects of pulmonary exposure to welding fumes on the heart and the vascular system in rats. Two chemically distinct welding fumes generated from manual metal arc-hard surfacing (MMA-HS) and gas metal arc-mild steel (GMA-MS) welding were tested. Three groups of rats were instilled intratracheally with MMA-HS (2 mg/rat), GMA-MS (2 mg/rat) or saline as control once a week for seven weeks. On days 1 and 7 after the last treatment, basal cardiovascular function and the cardiovascular response to increasing doses of adrenoreceptor agonists were assessed. MMA-HS treatment reduced the basal levels of left ventricle end-systolic pressure and dP/dt(max) at 1 day post-treatment, and decreased dP/dt(min) in response to isoproterenol (ISO) at 7 days post-treatment. Unlike MMA-HS, GMA-MS only affected left ventricular end-diastolic pressure in response to ISO at 7 days post-treatment. Treatment with MMA-HS or GMA-MS did not alter heart rate and blood pressure. Our findings suggest that exposure to different welding fumes can induce different adverse effects on the cardiovascular system, and that cardiac contractility may be a sensitive indicator of cardiovascular dysfunction.
Rindler, Tara N.; Lasko, Valerie M.; Nieman, Michelle L.; Okada, Motoi; Lorenz, John N.
2013-01-01
The α2-isoform of the Na,K-ATPase (α2) is the minor isoform of the Na,K-ATPase expressed in the cardiovascular system and is thought to play a critical role in the regulation of cardiovascular hemodynamics. However, the organ system/cell type expressing α2 that is required for this regulation has not been fully defined. The present study uses a heart-specific knockout of α2 to further define the tissue-specific role of α2 in the regulation of cardiovascular hemodynamics. To accomplish this, we developed a mouse model using the Cre/loxP system to generate a tissue-specific knockout of α2 in the heart using β-myosin heavy chain Cre. We have achieved a 90% knockout of α2 expression in the heart of the knockout mice. Interestingly, the heart-specific knockout mice exhibit normal basal cardiac function and systolic blood pressure, and in addition, these mice develop ACTH-induced hypertension in response to ACTH treatment similar to control mice. Surprisingly, the heart-specific knockout mice display delayed onset of cardiac dysfunction compared with control mice in response to pressure overload induced by transverse aortic constriction; however, the heart-specific knockout mice deteriorated to control levels by 9 wk post-transverse aortic constriction. These results suggest that heart expression of α2 does not play a role in the regulation of basal cardiovascular function or blood pressure; however, heart expression of α2 plays a role in the hypertrophic response to pressure overload. This study further emphasizes that the tissue localization of α2 determines its unique roles in the regulation of cardiovascular function. PMID:23436327
Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function
Beigi, Farideh; Gonzalez, Daniel R.; Minhas, Khalid M.; Sun, Qi-An; Foster, Matthew W.; Khan, Shakil A.; Treuer, Adriana V.; Dulce, Raul A.; Harrison, Robert W.; Saraiva, Roberto M.; Premer, Courtney; Schulman, Ivonne Hernandez; Stamler, Jonathan S.; Hare, Joshua M.
2012-01-01
Although protein S-nitrosylation is increasingly recognized as mediating nitric oxide (NO) signaling, roles for protein denitrosylation in physiology remain unknown. Here, we show that S-nitrosoglutathione reductase (GSNOR), an enzyme that governs levels of S-nitrosylation by promoting protein denitrosylation, regulates both peripheral vascular tone and β-adrenergic agonist-stimulated cardiac contractility, previously ascribed exclusively to NO/cGMP. GSNOR-deficient mice exhibited reduced peripheral vascular tone and depressed β-adrenergic inotropic responses that were associated with impaired β-agonist–induced denitrosylation of cardiac ryanodine receptor 2 (RyR2), resulting in calcium leak. These results indicate that systemic hemodynamic responses (vascular tone and cardiac contractility), both under basal conditions and after adrenergic activation, are regulated through concerted actions of NO synthase/GSNOR and that aberrant denitrosylation impairs cardiovascular function. Our findings support the notion that dynamic S-nitrosylation/denitrosylation reactions are essential in cardiovascular regulation. PMID:22366318
Zoli, A; Bosello, S; Comerci, G; Galiano, N; Forni, A; Loperfido, F; Ferraccioli, G F
2017-01-01
Rheumatoid arthritis (RA) is associated with an increased risk of myocardial infarction and congestive heart failure. In RA patients, elevated NT-proBNP levels have been reported to be a prognostic marker of left ventricular dysfunction. In this study, we evaluated cardiorespiratory functional capacity and NT-proBNP levels before and during cardiopulmonary exercise test in early RA (ERA) patients. Twenty ERA patients and 10 healthy controls were studied by color Doppler echocardiography to evaluate ventricular systolic and diastolic function. Arterial stiffness and wave reflections were quantified non-invasively using applanation tonometry of the radial artery. Cardiopulmonary treadmill test was performed to measure peak VO 2 and VE/VCO 2 parameters. NT-proBNP plasma levels were measured before and at the exercise peak during cardiopulmonary exercise. The peak oxygen uptake [VO 2 (ml/min/kg)], the ventilatory equivalents for carbon dioxide (EqCO 2 ), respiratory exchange ratio and arterial stiffness were similar between patients and controls during cardiopulmonary exercise test. Basal and peak cardiopulmonary exercise NT-proBNP plasma levels were comparable in ERA patients with respect to healthy controls. When we analyzed patients according to disease characteristics and cardiovascular risk factors, ERA patients with high disease activity, BMI > 25 kg/m 2 and ACPA positivity presented significantly higher baseline and exercise peak NT-proBNP levels. Cardiorespiratory function is preserved in patients with recent onset of rheumatoid arthritis. The increased basal and exercise peak NT-proBNP plasma levels in patients with negative disease prognostic factors represent a possible marker to stratify the cardiovascular risk in patients with early rheumatoid arthritis.
Kim, Sung-Tae; Kim, Byung-Joon; Song, In-Geol; Jung, Jang-Han; Lee, Kang-Woo; Park, Keun-Young; Cho, Youn-Zoo; Lee, Dae-Ho; Koh, Gwan-Pyo
2011-01-01
Background Recent studies have revealed that C-peptide induces smooth muscle cell proliferation and causes human atherosclerotic lesions in diabetic patients. The present study was designed to examine whether the basal C-peptide levels correlate with cardiovascular risk in type 2 diabetes mellitus (T2DM) patients. Methods Data was obtained from 467 patients with T2DM from two institutions who were followed for four years. The medical findings of all patients were reviewed, and patients with creatinine >1.4 mg/dL, any inflammation or infection, hepatitis, or type 1 DM were excluded. The relationships between basal C-peptide and other clinical values were statistically analyzed. Results A simple correlation was found between basal C-peptide and components of metabolic syndrome (MS). Statistically basal C-peptide levels were significantly higher than the three different MS criteria used in the present study, the Adult Treatment Panel III (ATP III) of the National Cholesterol Education Program's (NCEP's), World Health Organization (WHO), and the International Diabetes Federation (IDF) criteria (NCEP-ATP III, P=0.001; IDF, P<0.001; WHO, P=0.029). The multiple regression analysis between intima-media thickness (IMT) and clinical values showed that basal C-peptide significantly correlated with IMT (P=0.043), while the analysis between the 10-year coronary heart disease risk by the United Kingdom Prospective Diabetes Study risk engine and clinical values showed that basal C-peptide did not correlate with IMT (P=0.226). Conclusion Basal C-peptide is related to cardiovascular predictors (IMT) of T2DM, suggesting that basal C-peptide does provide a further indication of cardiovascular disease. PMID:21537412
NASA Technical Reports Server (NTRS)
Eatman, D.; Listhrop, R. A.; Beasley, A. S.; Socci, R. R.; Abukhalaf, I.; Bayorh, M. A.
2003-01-01
Impairment in cardiovascular functions sometimes manifested in astronauts during standing postflight, may be related to the diminished autonomic function and/or excessive production of endothelium-dependent relaxing factors. In the present study, using the 30 degrees head-down tilt (HDT) model, we compared the cardiovascular and biochemical effects of 7 days of suspension and a subsequent 6-h post-suspension period between suspended and non-suspended conscious female Sprague-Dawley rats. Mean arterial pressure (MAP) and heart rate were measured prior to suspension (basal), daily thereafter, and every 2h post-suspension. Following 7 days of suspension, MAP was not different from their basal values, however, upon release from suspension, MAP was significantly reduced compared to the non-suspended rats. Nitric oxide levels were elevated while thromboxane A(2) levels declined significantly in both plasma and tissue samples following post-suspension. The levels of prostacyclin following post-suspension remained unaltered in plasma and aortic rings but was significantly elevated in carotid arterial rings. Therefore, the post-suspension reduction in mean arterial pressure is due mostly to overproduction of nitric oxide and to a lesser extent prostacyclin.
Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice
NASA Astrophysics Data System (ADS)
Meneton, Pierre; Bloch-Faure, May; Hagege, Albert A.; Ruetten, Hartmut; Huang, Wei; Bergaya, Sonia; Ceiler, Debbie; Gehring, Doris; Martins, Isabelle; Salmon, Georges; Boulanger, Chantal M.; Nussberger, Jürg; Crozatier, Bertrand; Gasc, Jean-Marie; Heudes, Didier; Bruneval, Patrick; Doetschman, Tom; Ménard, Joël; Alhenc-Gelas, François
2001-02-01
Tissue kallikrein is a serine protease thought to be involved in the generation of bioactive peptide kinins in many organs like the kidneys, colon, salivary glands, pancreas, and blood vessels. Low renal synthesis and urinary excretion of tissue kallikrein have been repeatedly linked to hypertension in animals and humans, but the exact role of the protease in cardiovascular function has not been established largely because of the lack of specific inhibitors. This study demonstrates that mice lacking tissue kallikrein are unable to generate significant levels of kinins in most tissues and develop cardiovascular abnormalities early in adulthood despite normal blood pressure. The heart exhibits septum and posterior wall thinning and a tendency to dilatation resulting in reduced left ventricular mass. Cardiac function estimated in vivo and in vitro is decreased both under basal conditions and in response to βadrenergic stimulation. Furthermore, flow-induced vasodilatation is impaired in isolated perfused carotid arteries, which express, like the heart, low levels of the protease. These data show that tissue kallikrein is the main kinin-generating enzyme in vivo and that a functional kallikrein-kinin system is necessary for normal cardiac and arterial function in the mouse. They suggest that the kallikrein-kinin system could be involved in the development or progression of cardiovascular diseases.
Cardiopulmonary and Metabolic Effects of Yoga in Healthy Volunteers
Divya, T Satheesh; Vijayalakshmi, MT; Mini, K; Asish, K; Pushpalatha, M; Suresh, Varun
2017-01-01
Background: Yoga the spiritual union of mind with the divine intelligence of the universe aims to liberate a human being from conflicts of body–mind duality. Beneficial cardiovascular and pulmonary effects of yoga are in par with aerobic exercise, even amounting to replace the exercise model. We conducted an interventional study in healthy volunteers, to analyze the impact of short-term yoga training on cardiovascular, pulmonary, autonomic function tests, lipid profile, and thyroid function tests. Materials and Methods: A sample of fifty new recruits attending the district yoga center was subject to 75 min yoga practice a day for 41 days. Basal values of cardiovascular, pulmonary, autonomic function tests, lipid profile, and thyroid function tests were recorded before yoga training and were reassessed for postyoga changes after 41 days. Results: After yoga practice there was a significant reduction in the resting heart rate, systolic blood pressure, diastolic blood pressure, and mean blood pressure of the participants. Effects on autonomic function tests were variable and inconclusive. There was a significant increase in forced vital capacity, forced expiratory volume in 1 s, and peak expiratory flow rate after yoga. A significant reduction in body mass index was observed. Effects on metabolic parameters were promising with a significant reduction in fasting blood sugar level, serum total cholesterol, serum triglycerides serum low-density lipoprotein levels, and significant increase in high-density lipoprotein. There was no significant change in thyroid function tests after yoga. Conclusion: Short-term yoga practice has no effect on thyroid functions. Yoga practice was found beneficial in maintaining physiological milieu pertaining to cardiovascular and other metabolic parameters. PMID:29422741
Cardiopulmonary and Metabolic Effects of Yoga in Healthy Volunteers.
Divya, T Satheesh; Vijayalakshmi, M T; Mini, K; Asish, K; Pushpalatha, M; Suresh, Varun
2017-01-01
Yoga the spiritual union of mind with the divine intelligence of the universe aims to liberate a human being from conflicts of body-mind duality. Beneficial cardiovascular and pulmonary effects of yoga are in par with aerobic exercise, even amounting to replace the exercise model. We conducted an interventional study in healthy volunteers, to analyze the impact of short-term yoga training on cardiovascular, pulmonary, autonomic function tests, lipid profile, and thyroid function tests. A sample of fifty new recruits attending the district yoga center was subject to 75 min yoga practice a day for 41 days. Basal values of cardiovascular, pulmonary, autonomic function tests, lipid profile, and thyroid function tests were recorded before yoga training and were reassessed for postyoga changes after 41 days. After yoga practice there was a significant reduction in the resting heart rate, systolic blood pressure, diastolic blood pressure, and mean blood pressure of the participants. Effects on autonomic function tests were variable and inconclusive. There was a significant increase in forced vital capacity, forced expiratory volume in 1 s, and peak expiratory flow rate after yoga. A significant reduction in body mass index was observed. Effects on metabolic parameters were promising with a significant reduction in fasting blood sugar level, serum total cholesterol, serum triglycerides serum low-density lipoprotein levels, and significant increase in high-density lipoprotein. There was no significant change in thyroid function tests after yoga. Short-term yoga practice has no effect on thyroid functions. Yoga practice was found beneficial in maintaining physiological milieu pertaining to cardiovascular and other metabolic parameters.
Herrera, Emilio A; Rojas, Rodrigo T; Krause, Bernardo J; Ebensperger, Germán; Reyes, Roberto V; Giussani, Dino A; Parer, Julian T; Llanos, Aníbal J
2016-03-01
High-altitude hypoxia causes intrauterine growth restriction and cardiovascular programming. However, adult humans and animals that have evolved at altitude show certain protection against the effects of chronic hypoxia. Whether the highland fetus shows similar protection against high altitude gestation is unclear. We tested the hypothesis that high-altitude fetal sheep have evolved cardiovascular compensatory mechanisms to withstand chronic hypoxia that are different from lowland sheep. We studied seven high-altitude (HA; 3600 m) and eight low-altitude (LA; 520 m) pregnant sheep at ∼90% gestation. Pregnant ewes and fetuses were instrumented for cardiovascular investigation. A three-period experimental protocol was performed in vivo: 30 min of basal, 1 h of acute superimposed hypoxia (∼10% O2) and 30 min of recovery. Further, we determined ex vivo fetal cerebral and femoral arterial function. HA pregnancy led to chronic fetal hypoxia, growth restriction and altered cardiovascular function. During acute superimposed hypoxia, LA fetuses redistributed blood flow favouring the brain, heart and adrenals, whereas HA fetuses showed a blunted cardiovascular response. Importantly, HA fetuses have a marked reduction in umbilical blood flow versus LA. Isolated cerebral arteries from HA fetuses showed a higher contractile capacity but a diminished response to catecholamines. In contrast, femoral arteries from HA fetuses showed decreased contractile capacity and increased adrenergic contractility. The blunting of the cardiovascular responses to hypoxia in fetuses raised in the Alto Andino may indicate a change in control strategy triggered by chronic hypoxia, switching towards compensatory mechanisms that are more cost-effective in terms of oxygen uptake. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Carvajal-Zarrabal, Octavio; Nolasco-Hipolito, Cirilo; Aguilar-Uscanga, Ma Guadalupe; Melo Santiesteban, Guadalupe; Hayward-Jones, Patricia M; Barradas-Dermitz, Dulce Ma
2014-01-01
Metabolic changes, along with cardiovascular and hepatic factors, are associated with the development of diseases such as diabetes, dyslipidemia, and obesity. We evaluated the effect of avocado oil supplementation (centrifuged and solvent extracted), compared with olive oil, upon the hepatic function in sucrose-fed rats. Twenty-five rats were divided into five groups: control (basal diet), a sucrose-fed group (basal diet plus 30% sucrose solution), and three other groups (S-OO, S-AOC, and S-AOS, indicating basal diet plus 30% sucrose solution plus olive oil OO, avocado oil extracted by centrifugation AOC or using solvent AOS, resp.). Glucose, total cholesterol, triglycerides, total protein, albumin, globulin, direct bilirubin, glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, alkaline phosphatase, cholinesterase, and α -amylase concentrations were determined and avocado oil effect on them was studied. In some cases the induced metabolic alteration significantly affected total protein and bilirubin levels and also had a highly significant effect on α -amylase levels. AOC and AOS exhibited effects similar to those of olive oil, according to the nonsignificant difference in fatty acid profile observed by other authors. Avocado oil consumption could be beneficial in the control of altered metabolic profile illnesses as it presents effects on hepatic function biochemical markers similar to olive oil.
Carvajal-Zarrabal, Octavio; Nolasco-Hipolito, Cirilo; Aguilar-Uscanga, Ma. Guadalupe; Melo Santiesteban, Guadalupe; Hayward-Jones, Patricia M.; Barradas-Dermitz, Dulce Ma.
2014-01-01
Metabolic changes, along with cardiovascular and hepatic factors, are associated with the development of diseases such as diabetes, dyslipidemia, and obesity. We evaluated the effect of avocado oil supplementation (centrifuged and solvent extracted), compared with olive oil, upon the hepatic function in sucrose-fed rats. Twenty-five rats were divided into five groups: control (basal diet), a sucrose-fed group (basal diet plus 30% sucrose solution), and three other groups (S-OO, S-AOC, and S-AOS, indicating basal diet plus 30% sucrose solution plus olive oil OO, avocado oil extracted by centrifugation AOC or using solvent AOS, resp.). Glucose, total cholesterol, triglycerides, total protein, albumin, globulin, direct bilirubin, glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, alkaline phosphatase, cholinesterase, and α-amylase concentrations were determined and avocado oil effect on them was studied. In some cases the induced metabolic alteration significantly affected total protein and bilirubin levels and also had a highly significant effect on α-amylase levels. AOC and AOS exhibited effects similar to those of olive oil, according to the nonsignificant difference in fatty acid profile observed by other authors. Avocado oil consumption could be beneficial in the control of altered metabolic profile illnesses as it presents effects on hepatic function biochemical markers similar to olive oil. PMID:24860825
Cuffe, James S M; Burgess, Danielle J; O'Sullivan, Lee; Singh, Reetu R; Moritz, Karen M
2016-04-01
Short-term maternal corticosterone (Cort) administration at mid-gestation in the mouse reduces nephron number in both sexes while programming renal and cardiovascular dysfunction in 12-month male but not female offspring. The renal renin-angiotensin-aldosterone system (RAAS), functions in a sexually dimorphic manner to regulate both renal and cardiovascular physiology. This study aimed to identify if there are sex-specific differences in basal levels of the intrarenal RAAS and to determine the impact of maternal Cort exposure on the RAAS in male and female offspring at 6 months of age. While intrarenal renin concentrations were higher in untreated females compared to untreated males, renal angiotensin II concentrations were higher in males than females. Furthermore, basal plasma aldosterone concentrations were greater in females than males. Cort exposed male but not female offspring had reduced water intake and urine excretion. Cort exposure increased renal renin concentrations and elevated mRNA expression of Ren1, Ace2, and Mas1 in male but not female offspring. In addition, male Cort exposed offspring had increased expression of the aldosterone receptor, Nr3c2 and renal sodium transporters. In contrast, Cort exposure increased Agtr1a mRNA levels in female offspring only. This study demonstrates that maternal Cort exposure alters key regulators of renal function in a sex-specific manner at 6 months of life. These finding likely contribute to the disease outcomes in male but not female offspring in later life and highlights the importance of renal factors other than nephron number in the programming of renal and cardiovascular disease. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Langbein, Heike; Hofmann, Anja; Brunssen, Coy; Goettsch, Winfried; Morawietz, Henning
2015-05-01
Obesity and physical inactivity are important cardiovascular risk factors. Regular physical exercise has been shown to mediate beneficial effects in the prevention of cardiovascular diseases. However, the impact of physical exercise on endothelial function in proatherosclerotic low-density lipoprotein receptor deficient (LDLR(-/-)) mice has not been studied so far. Six-week-old male LDLR(-/-) mice were fed a standard diet or a high-fat diet (39 kcal% fat diet) for 20 weeks. The impact of high-fat diet and voluntary running on body weight and amount of white adipose tissue was monitored. Basal tone and endothelial function was investigated in aortic rings using a Mulvany myograph. LDLR(-/-) mice on high-fat diet had increased cumulative food energy intake, but also higher physical activity compared to mice on control diet. Body weight and amount of visceral and retroperitoneal white adipose tissue of LDLR(-/-) mice were significantly increased by high-fat diet and partially reduced by voluntary running. Endothelial function in aortae of LDLR(-/-) mice was impaired after 20 weeks on standard and high-fat diet and could not be improved by voluntary running. Basal tone showed a trend to be increased by high-fat diet. Voluntary running reduced body weight and amount of white adipose tissue in LDLR(-/-) mice. Endothelial dysfunction in LDLR(-/-) mice could not be improved by voluntary running. In a clinical context, physical exercise alone might not have an influence on functional parameters and LDL-C levels in patients with familial hypercholesterolemia. However, physical activity in these patients may be in general beneficial and should be performed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Effects of Chronic Hyperoxia on the Cardiovascular Responses to Vasoative Compounds in the Rabbit.
1985-05-01
experimental renal hypertension. Proceedings of the IIIrd Simposio Interamericano sobre Hipertension Arterial . Mexico City, Mexico. February 11-15, 1979. 35...phenylephrine before and during extended exposure to air or oxygen. Basal mean arterial pressure decreased for both groups during the exposure...However, the normoxic and the hyperoxic basal mean arterial pressures were never significantly different from one another at any exposure point. Basal
Impact of vitamin D3 on cardiovascular responses to glucocorticoid excess.
Ahmed, Mona A
2013-06-01
Although the cardiovascular system is not a classical target for 1,25-dihydroxyvitamin D3, both cardiac myocytes and vascular smooth muscle cells respond to this hormone. The present study aimed to elucidate the effect of active vitamin D3 on cardiovascular functions in rats exposed to glucocorticoid excess. Adult male Wistar rats were allocated into three groups: control group, dexamethasone (Dex)-treated group receiving Dex (200 μg/kg) subcutaneously for 12 days, and vitamin D3-Dex-treated group receiving 1,25-(OH)2D3 (100 ng/kg) and Dex (200 μg/kg) subcutaneously for 12 days. Rats were subjected to measurement of systolic (SBP), diastolic (DBP), and mean arterial (MAP) blood pressures and heart rate. Rate pressure product (RPP) was calculated. Rats' isolated hearts were perfused in Langendorff preparation and studied for basal activities (heart rate, peaked developed tension, time to peak tension, half relaxation time, and myocardial flow rate) and their responses to isoproterenol infusion. Blood samples were collected for determination of plasma level of nitrite, nitric oxide surrogate. Dex-treated group showed significant increase in SBP, DBP, MAP, and RPP, as well as cardiac hypertrophy and enhancement of basal cardiac performance evidenced by increased heart rate, rapid and increased contractility, and accelerated lusitropy, together with impaired contractile and myocardial flow rate responsiveness to beta-adrenergic activation and depressed inotropic and coronary vascular reserves. Such alterations were accompanied by low plasma nitrite. These changes were markedly improved by vitamin D3 treatment. In conclusion, vitamin D3 is an efficacious modulator of the deleterious cardiovascular responses induced by glucocorticoid excess, probably via accentuation of nitric oxide.
Gamella-Pozuelo, Luis; Fuentes-Calvo, Isabel; Gómez-Marcos, Manuel A.; Recio-Rodriguez, José I.; Agudo-Conde, Cristina; Fernández-Martín, José L.; Cannata-Andía, Jorge B.; López-Novoa, José M.; García-Ortiz, Luis; Martínez-Salgado, Carlos
2015-01-01
Abstract The search for biomarkers of hypertension and diabetes-induced damage to multiple target organs is a priority. We analyzed the correlation between plasma cardiotrophin-1 (CT-1), a chemokine that participates in cardiovascular remodeling and organ fibrosis, and a wide range of parameters currently used to diagnose morphological and functional progressive injury in left ventricle, arteries, and kidneys of diabetic and hypertensive patients, in order to validate plasma levels of CT-1 as clinical biomarker. This is an observational study with 93 type 2-diabetic patients, 209 hypertensive patients, and 82 healthy controls in which we assessed the following parameters: plasma CT-1, basal glycaemia, systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP), left ventricular hypertrophy (LVH by electrocardiographic indexes), peripheral vascular disease (by pulse wave velocity—PWV, carotid intima-media thickness—C-IMT, and ankle-brachial index—ABI), and renal impairment (by microalbuminuria, albumin/creatinine urinary ratio, plasma creatinine concentrations, and glomerular filtration rate). Hypertensive or diabetic patients have higher plasma CT-1 than control patients. CT-1 positively correlates with basal glycaemia, SBP, DBP, PP, LVH, arterial damage (increased IMT, decreased ABI), and early renal damage (microalbuminuria, elevated albumin/creatinine ratio). CT-1 also correlates with increased 10-year cardiovascular risk. Multiple linear regression analysis confirmed that CT-1 was associated with arterial injury assessed by PWV, IMT, ABI, and cardiac damage evaluated by Cornell voltage duration product. Increases in plasma CT-1 are strongly related to the intensity of several parameters associated to target organ damage supporting further investigation of its diagnostic capacity as single biomarker of cardiovascular injury and risk and, possibly, of subclinical renal damage. PMID:26222851
Corcelles, Ricard; Vidal, Josep; Delgado, Salvadora; Ibarzabal, Ainitze; Bravo, Raquel; Momblan, Dulce; Espert, Juanjo; Morales, Xavi; Almenara, Raúl; Lacy, Antonio M
2014-01-01
The major goal of surgical treatment in morbid obesity is to decrease morbidity and mortality associated with excess weight. In this sense, the main factors of death are cardiovascular disease and metabolic syndrome. The objective of this study is to evaluate the effects of gastric bypass on cardiovascular risk estimation in patients after bariatric surgery. We retrospectively evaluated pre and postoperative cardiovascular risk estimation of 402 morbidly obese patients who underwent laparoscopic gastric bypass. The major variable studied is the cardiovascular risk estimation that is calculated preoperatively and after 12 months. Cardiovascular risk estimation analysis has been performed with the REGICOR Equation. REGICOR formulation allows calculating a 10 year risk of cardiovascular events adapted to the Spanish population and is expressed in percentages. We reported an overall 4.1±3.0 mean basal REGICOR score. One year after the operation, cardiovascular risk estimation significantly decreased to 2,2±1,6 (P<.001). In patients with metabolic syndrome according to ATP-III criteria, basal REGICOR score was 4.8±3.1 whereas in no metabolic syndrome patients 2.2±1.8. Evaluation 12 months after surgery, determined a significant reduction in both groups (metabolic syndrome and non metabolic syndrome) with a mean REGICOR score of 2.3±1.6 and 1.6±1.0 respectively. The results of our study demonstrate favorable effects of gastric bypass on the cardiovascular risk factors included in the REGICOR equation. Copyright © 2013 AEC. Published by Elsevier Espana. All rights reserved.
Gorr, Matthew W; Youtz, Dane J; Eichenseer, Clayton M; Smith, Korbin E; Nelin, Timothy D; Cormet-Boyaka, Estelle; Wold, Loren E
2015-07-01
Particulate matter (PM) exposure induces a pathological response from both the lungs and the cardiovascular system. PM is capable of both manifestation into the lung epithelium and entrance into the bloodstream. Therefore, PM has the capacity for both direct and lung-mediated indirect effects on the heart. In the present studies, we exposed isolated rat cardiomyocytes to ultrafine particulate matter (diesel exhaust particles, DEP) and examined their contractile function and calcium handling ability. In another set of experiments, lung epithelial cells (16HBE14o- or Calu-3) were cultured on permeable supports that allowed access to both the basal (serosal) and apical (mucosal) media; the basal media was used to culture cardiomyocytes to model the indirect, lung-mediated effects of PM on the heart. Both the direct and indirect treatments caused a reduction in contractility as evidenced by reduced percent sarcomere shortening and reduced calcium handling ability measured in field-stimulated cardiomyocytes. Treatment of cardiomyocytes with various anti-oxidants before culture with DEP was able to partially prevent the contractile dysfunction. The basal media from lung epithelial cells treated with PM contained several inflammatory cytokines, and we found that monocyte chemotactic protein-1 was a key trigger for cardiomyocyte dysfunction. These results indicate the presence of both direct and indirect effects of PM on cardiomyocyte function in vitro. Future work will focus on elucidating the mechanisms involved in these separate pathways using in vivo models of air pollution exposure. Copyright © 2015 the American Physiological Society.
Lee, Craig R; Bass, Almasa; Ellis, Kyle; Tran, Bryant; Steele, Savanna; Caughey, Melissa; Stouffer, George A; Hinderliter, Alan L
2012-03-01
Digital peripheral arterial tonometry (PAT) is an emerging, noninvasive method to assess vascular function. The physiology underlying this phenotype, however, remains unclear. Therefore, we evaluated the relation between digital PAT and established brachial artery ultrasound measures of vascular function under basal conditions and after reactive hyperemia. Using a cross-sectional study design, digital PAT and brachial artery ultrasonography with pulsed wave Doppler were simultaneously completed at baseline and after reactive hyperemia in both those with established coronary artery disease (n = 99) and healthy volunteers with low cardiovascular disease risk (n = 40). Under basal conditions, the digital pulse volume amplitude demonstrated a significant positive correlation with the brachial artery velocity-time integral that was independent of the arterial diameter, in both the healthy volunteer (r(s) = 0.64, p <0.001) and coronary artery disease (r(s) = 0.63, p <0.001) cohorts. Similar positive relations were observed with the baseline brachial artery blood flow velocity and blood flow. In contrast, no relation between the reactive hyperemia-evoked digital PAT ratio and either brachial artery flow-mediated dilation or shear stress was observed in either cohort (p = NS). In conclusion, these findings demonstrate that the digital PAT measures of vascular function more closely reflect basal blood flow in the brachial artery than reactive hyperemia-induced changes in the arterial diameter or flow velocity, and the presence of vascular disease does not modify the physiology underlying the digital PAT phenotype. Copyright © 2012 Elsevier Inc. All rights reserved.
Trevenzoli, I H; Valle, M M R; Machado, F B; Garcia, R M G; Passos, M C F; Lisboa, P C; Moura, E G
2007-01-01
Epidemiological studies have shown a strong correlation between stressful events (nutritional, hormonal or environmental) in early life and development of adult diseases such as obesity, diabetes and cardiovascular failure. It is known that gestation and lactation are crucial periods for healthy growth in mammals and that the sympathoadrenal system is markedly influenced by environmental conditions during these periods. We previously demonstrated that neonatal hyperleptinaemia in rats programmes higher body weight, higher food intake and hypothalamic leptin resistance in adulthood. Using this model of programming, we investigated adrenal medullary function and effects on cardiovascular parameters in male rats in adulthood. Leptin treatment during the first 10 days of lactation (8μg 100 g−1 day−1, s.c.) resulted in lower body weight (6.5%, P < 0.05), hyperleptinaemia (10-fold, P < 0.05) and higher catecholamine content in adrenal glands (18.5%, P < 0.05) on the last day of treatment. In adulthood (150 days), the rats presented higher body weight (5%, P < 0.05), adrenal catecholamine content (3-fold, P < 0.05), tyrosine hydroxylase expression (35%, P < 0.05) and basal and caffeine-stimulated catecholamine release (53% and 100%, respectively, P < 0.05). Systolic blood pressure and heart rate were also higher in adult rats (7% and 6%, respectively, P < 0.05). Our results show that hyperleptinaemia in early life increases adrenal medullary function in adulthood and that this may alter cardiovascular parameters. Thus, we suggest that imprinting factors which increase leptin and catecholamine levels during the neonatal period could be involved in development of adult chronic diseases. PMID:17218354
Obligatory role for GPER in cardiovascular aging and disease^
Daniel, Christoph; Sharma, Geetanjali; Amann, Kerstin; Arterburn, Jeffrey B.; Barton, Matthias; Prossnitz, Eric R.
2016-01-01
Pharmacological activation of the heptahelical G protein-coupled receptor GPER by selective ligands counteracts multiple aspects of cardiovascular disease. We thus expected that genetic deletion or pharmacological inhibition of GPER would further aggravate such disease states, particularly with age. To the contrary, we found that genetic ablation of Gper in mice prevented cardiovascular pathologies associated with aging by reducing superoxide (.O2−) formation by NADPH oxidase (Nox) and reduced expression the Nox isoform Nox1. Blocking GPER activity pharmacologically with G36, a synthetic, small molecule, GPER-selective blocker (GRB), decreased Nox1 abundance and .O2− production to basal amounts in cells exposed to angiotensin II and in mice chronically infused with angiotensin II. Thus, this study revealed a role for GPER activity in regulating Nox1 abundance and associated .O2−-mediated structural and functional damage that contributes to disease pathology. Our results indicated that GRBs represent a new class of drugs that can indirectly reduce Nox activity and could be used for the treatment of chronic disease processes involving excessive .O2− formation, including arterial hypertension and diastolic heart failure. PMID:27803283
Valenti, Vitor E; de Abreu, Luiz Carlos; Sato, Monica A; Ferreira, Celso; Adami, Fernando; Fonseca, Fernando L A; Xavier, Valdelias; Godoy, Moacir; Monteiro, Carlos B; Vanderlei, Luiz Carlos M; Saldiva, Paulo H N
2012-03-30
Cigarette exposure increases brain oxidative stress. The literature showed that increased brain oxidative stress affects cardiovascular regulation. However, no previous study investigated the involvement of brain oxidative stress in animals exposed to cigarette and its relationship with cardiovascular regulation. We aimed to evaluate the effects of central catalase inhibition on baroreflex and cardiovascular responses in rats exposed to sidestream cigarette smoke (SSCS). We evaluated males Wistar rats (320-370 g), which were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). Femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. Rats were exposed to SSCS during three weeks, 180 minutes, 5 days/week (CO: 100-300 ppm). Baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 μg/kg, bolus) to induce bradycardic reflex and a depressor dose of sodium nitroprusside (SNP, 50 μg/kg, bolus) to induce tachycardic reflex. Cardiovascular responses were evaluated before, 5, 15, 30 and 60 minutes after 3-amino-1,2,4-triazole (ATZ, catalase inhibitor, 0.001 g/100 μL) injection into the 4th V. Central catalase inhibition increased basal HR in the control group during the first 5 minutes. SSCS exposure increased basal HR and attenuated bradycardic peak during the first 15 minutes. We suggest that SSCS exposure affects cardiovascular regulation through its influence on catalase activity.
2012-01-01
Background Cigarette exposure increases brain oxidative stress. The literature showed that increased brain oxidative stress affects cardiovascular regulation. However, no previous study investigated the involvement of brain oxidative stress in animals exposed to cigarette and its relationship with cardiovascular regulation. We aimed to evaluate the effects of central catalase inhibition on baroreflex and cardiovascular responses in rats exposed to sidestream cigarette smoke (SSCS). Methods We evaluated males Wistar rats (320-370 g), which were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). Femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. Rats were exposed to SSCS during three weeks, 180 minutes, 5 days/week (CO: 100-300 ppm). Baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 μg/kg, bolus) to induce bradycardic reflex and a depressor dose of sodium nitroprusside (SNP, 50 μg/kg, bolus) to induce tachycardic reflex. Cardiovascular responses were evaluated before, 5, 15, 30 and 60 minutes after 3-amino-1,2,4-triazole (ATZ, catalase inhibitor, 0.001 g/100 μL) injection into the 4th V. Results Central catalase inhibition increased basal HR in the control group during the first 5 minutes. SSCS exposure increased basal HR and attenuated bradycardic peak during the first 15 minutes. Conclusion We suggest that SSCS exposure affects cardiovascular regulation through its influence on catalase activity. PMID:22463380
Antioxidants Supplementation in Elderly Cardiovascular Patients
Vila, Susana; Azzato, F.; Milei, José
2013-01-01
Supplementation with antioxidants and its benefit-risk relationship have been largely discussed in the elderly population. We evaluated whether antioxidants supplementation improved the biochemical profile associated with oxidative metabolism in elderly cardiovascular patients. Patients (n = 112) received daily supplementation with α-TP 400 mg, beta-carotene 40 mg, and vitamin C 1000 mg for 2 months (treatment). Plasma concentrations of alpha-tocopherol (α-TP), β-carotene (βC), ubiquinol-10 (QH-10), glutathione, and thiobarbituric acid reactive substances (TBARS) were determined before and after treatment. Response to treatment was dependent on pretreatment α-TP and βC levels. Increase in α-TP and βC levels was observed only in patients with basal levels <18 μM for α-TP (P < 0.01) and <0.30 μM for βC (P < 0.02). Ubiquinol-10, glutathione, and TBARS were unaffected by treatment: QH-10 (+57%, F 1,110 = 3.611, P < 0.06, and N.S.), glutathione (+21%, F 1,110 = 2.92, P < 0.09, and N.S.), and TBARS (−29%, F 1,110 = 2.26, P < 0.14, and N.S.). Treatment reduced oxidative metabolism: 5.3% versus 14.6% basal value (F 1,110 = 9.21, P < 0.0003). Basal TBARS/α-TP ratio was higher in smokers compared to nonsmokers: 0.11 ± 0.02 versus 0.06 ± 0.01 (F 32,80 = 1.63, P < 0.04). Response to antioxidant supplementation was dependent on basal plasma levels of α-TP and βC. Smoking status was strongly associated with atherosclerotic cardiovascular disease and high TBARS/α-TP ratio (lipid peroxidation). PMID:24489984
Gómez-Huelgas, R; Sabán-Ruiz, J; García-Román, F J; Quintela-Fernández, N; Seguí-Ripoll, J M; Bonilla-Hernández, M V; Romero-Meliá, G
2017-05-01
To assess the safety and efficacy of a basal-plus (BP) regimen with insulin glargine (as basal insulin) and insulin glulisine (as prandial insulin) with the main meal for elderly patients with type 2 diabetes mellitus (DM2) and high cardiovascular risk, following standard clinical practice. An observational, retrospective study was conducted in 21 centres of internal medicine in Spain. The study included patients aged 65 years or older with DM2, undergoing treatment with a BP regimen for 4 to 12 months before inclusion in the study and a diagnosis of cardiovascular disease or high cardiovascular risk. The primary endpoint was the change in glycated haemoglobin (HbA1c) from the introduction of the glulisine to inclusion in the study. The study included 198 patients (mean age, 74±6.4 years; males, 52%). After at least 4 months of treatment with the BP regimen, started with the addition of glulisine, the mean HbA1c value decreased significantly (9±1.5% vs. 7.7±1.1%; P<.001), and almost 24% of the patients reached HbA1c levels of 7.5-8%. Furthermore, blood glucose levels under fasting conditions decreased significantly (190.6±73.2mg/dl vs. 138.9±38.2mg/dl; P<.001). A total of 35 patients (17.7%) had some hypoglycaemia during the month prior to the start of the study, and 2 cases (1.01%) of severe hypoglycaemia were detected. The BP strategy could significantly improve blood glucose control in patients 65 years of age or older with DM2 and high cardiovascular risk and is associated with a low risk of severe hypoglycaemia. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.
Goday, A; Gabriel, R; Ascaso, J F; Franch, J; Ortega, R; Martínez, O; Lerones, N
2008-09-01
The metabolic syndrome is an association of closely related alterations. The main objective of this study is to know the frequency of the metabolic syndrome and insulin resistance, and their role as cardiovascular risk indicators in an adult population assigned to Primary Care centers in Spain. Subjects > or = 45 years with basal glycemia > or = 90 mg/dl and abdominal circumference > or = 94 cm (men) or > or = 80 cm (women). ATP III modified-criteria were used for the metabolic syndrome and HOMA index > 3.29 was used for insulin resistance. Cardiovascular risk was estimated by the Framingham and SCORE models. A total of 2,341 subjects (62 +/- 10 years; 44.6% males) were included. Frequency of metabolic syndrome and insulin resistance was 54.6% (52.5; 56.8) and 56.6% (54.5; 58.7) respectively. Metabolic syndrome was associated to a higher cardiovascular risk score with both Framingham (16 [15; 16] vs 11 [11; 12] p < 0.0001) and SCORE (2.7 [2.4; 3] vs 2.4 [2.1; 2.8]; p = 0.006) models. The results were similar for the presence of insulin resistance. Metabolic syndrome and insulin resistance are cardiovascular risk predictors. Early identification of metabolic syndrome by the use of simple clinical measures (basal glycemia and waist circumference) would make the intervention on the different disorders of metabolic syndrome possible.
Levine, Glenn N; Lange, Richard A; Bairey-Merz, C Noel; Davidson, Richard J; Jamerson, Kenneth; Mehta, Puja K; Michos, Erin D; Norris, Keith; Ray, Indranill Basu; Saban, Karen L; Shah, Tina; Stein, Richard; Smith, Sidney C
2017-09-28
Despite numerous advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains a leading cause of morbidity and mortality. Novel and inexpensive interventions that can contribute to the primary and secondary prevention of cardiovascular disease are of interest. Numerous studies have reported on the benefits of meditation. Meditation instruction and practice is widely accessible and inexpensive and may thus be a potential attractive cost-effective adjunct to more traditional medical therapies. Accordingly, this American Heart Association scientific statement systematically reviewed the data on the potential benefits of meditation on cardiovascular risk. Neurophysiological and neuroanatomical studies demonstrate that meditation can have long-standing effects on the brain, which provide some biological plausibility for beneficial consequences on the physiological basal state and on cardiovascular risk. Studies of the effects of meditation on cardiovascular risk have included those investigating physiological response to stress, smoking cessation, blood pressure reduction, insulin resistance and metabolic syndrome, endothelial function, inducible myocardial ischemia, and primary and secondary prevention of cardiovascular disease. Overall, studies of meditation suggest a possible benefit on cardiovascular risk, although the overall quality and, in some cases, quantity of study data are modest. Given the low costs and low risks of this intervention, meditation may be considered as an adjunct to guideline-directed cardiovascular risk reduction by those interested in this lifestyle modification, with the understanding that the benefits of such intervention remain to be better established. Further research on meditation and cardiovascular risk is warranted. Such studies, to the degree possible, should utilize randomized study design, be adequately powered to meet the primary study outcome, strive to achieve low drop-out rates, include long-term follow-up, and be performed by those without inherent bias in outcome. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Gajendragadkar, Parag R.; Hubsch, Annette; Mäki-Petäjä, Kaisa M.; Serg, Martin; Wilkinson, Ian B.; Cheriyan, Joseph
2014-01-01
Aims The mechanisms by which a ‘Mediterranean diet’ reduces cardiovascular disease (CVD) burden remain poorly understood. Lycopene is a potent antioxidant found in such diets with evidence suggesting beneficial effects. We wished to investigate the effects of lycopene on the vasculature in CVD patients and separately, in healthy volunteers (HV). Methods and Results We randomised 36 statin treated CVD patients and 36 healthy volunteers in a 2∶1 treatment allocation ratio to either 7 mg lycopene or placebo daily for 2 months in a double-blind trial. Forearm responses to intra-arterial infusions of acetylcholine (endothelium-dependent vasodilatation; EDV), sodium nitroprusside (endothelium-independent vasodilatation; EIDV), and NG-monomethyl-L-arginine (basal nitric oxide (NO) synthase activity) were measured using venous plethysmography. A range of vascular and biochemical secondary endpoints were also explored. EDV in CVD patients post-lycopene improved by 53% (95% CI: +9% to +93%, P = 0.03 vs. placebo) without changes to EIDV, or basal NO responses. HVs did not show changes in EDV after lycopene treatment. Blood pressure, arterial stiffness, lipids and hsCRP levels were unchanged for lycopene vs. placebo treatment groups in the CVD arm as well as the HV arm. At baseline, CVD patients had impaired EDV compared with HV (30% lower; 95% CI: −45% to −10%, P = 0.008), despite lower LDL cholesterol (1.2 mmol/L lower, 95% CI: −1.6 to −0.9 mmol/L, P<0.001). Post-therapy EDV responses for lycopene-treated CVD patients were similar to HVs at baseline (2% lower, 95% CI: −30% to +30%, P = 0.85), also suggesting lycopene improved endothelial function. Conclusions Lycopene supplementation improves endothelial function in CVD patients on optimal secondary prevention, but not in HVs. Trial Registration ClinicalTrials.gov NCT01100385 PMID:24911964
Obligatory role for GPER in cardiovascular aging and disease.
Meyer, Matthias R; Fredette, Natalie C; Daniel, Christoph; Sharma, Geetanjali; Amann, Kerstin; Arterburn, Jeffrey B; Barton, Matthias; Prossnitz, Eric R
2016-11-01
Pharmacological activation of the heptahelical G protein-coupled estrogen receptor (GPER) by selective ligands counteracts multiple aspects of cardiovascular disease. We thus expected that genetic deletion or pharmacological inhibition of GPER would further aggravate such disease states, particularly with age. To the contrary, we found that genetic ablation of Gper in mice prevented cardiovascular pathologies associated with aging by reducing superoxide (⋅O 2 - ) formation by NADPH oxidase (Nox) specifically through reducing the expression of the Nox isoform Nox1 Blocking GPER activity pharmacologically with G36, a synthetic, small-molecule, GPER-selective blocker (GRB), decreased Nox1 abundance and ⋅O 2 - production to basal amounts in cells exposed to angiotensin II and in mice chronically infused with angiotensin II, reducing arterial hypertension. Thus, this study revealed a role for GPER activity in regulating Nox1 abundance and associated ⋅O 2 - -mediated structural and functional damage that contributes to disease pathology. Our results indicated that GRBs represent a new class of drugs that can reduce Nox abundance and activity and could be used for the treatment of chronic disease processes involving excessive ⋅O 2 - formation, including arterial hypertension and heart failure. Copyright © 2016, American Association for the Advancement of Science.
West, Christopher R; Crawford, Mark A; Poormasjedi-Meibod, Malihe-Sadat; Currie, Katharine D; Fallavollita, Andre; Yuen, Violet; McNeill, John H; Krassioukov, Andrei V
2014-04-15
Spinal cord injury (SCI) causes altered autonomic control and severe physical deconditioning that converge to drive maladaptive cardiac remodelling. We used a clinically relevant experimental model to investigate the cardio-metabolic responses to SCI and to establish whether passive hind-limb cycling elicits a cardio-protective effect. Initially, 21 male Wistar rats were evenly assigned to three groups: uninjured control (CON), T3 complete SCI (SCI) or T3 complete SCI plus passive hind-limb cycling (SCI-EX; 2 × 30 min day(-1), 5 days week(-1) for 4 weeks beginning 6 days post-SCI). On day 32, cardio-metabolic function was assessed using in vivo echocardiography, ex vivo working heart assessments, cardiac histology/molecular biology and blood lipid profiles. Twelve additional rats (n = 6 SCI and n = 6 SCI-EX) underwent in vivo echocardiography and basal haemodynamic assessments pre-SCI and at days 7, 14 and 32 post-SCI to track temporal cardiovascular changes. Compared with CON, SCI exhibited a rapid and sustained reduction in left ventricular dimensions and function that ultimately manifested as reduced contractility, increased myocardial collagen deposition and an up-regulation of transforming growth factor beta-1 (TGFβ1) and mothers against decapentaplegic homolog 3 (Smad3) mRNA. For SCI-EX, the initial reduction in left ventricular dimensions and function at day 7 post-SCI was completely reversed by day 32 post-SCI, and there were no differences in myocardial contractility between SCI-EX and CON. Collagen deposition was similar between SCI-EX and CON. TGFβ1 and Smad3 were down-regulated in SCI-EX. Blood lipid profiles were improved in SCI-EX versus SCI. We provide compelling novel evidence that passive hind-limb cycling prevents cardiac dysfunction and reduces cardiovascular disease risk in experimental SCI.
Chu, Ya-Chun; Yang, Cheryl C H; Lin, Ho-Tien; Chen, Pin-Tarng; Chang, Kuang-Yi; Yang, Shun-Chin; Kuo, Terry B J
2012-10-01
Neonatal nociception has significant long-term effects on sensory perception in adult animals. Although neonatal adverse experience affect future responsiveness to stressors is documented, little is known about the involvement of early nociceptive experiences in the susceptibility to subsequent nociceptive stress exposure during adulthood. The aim of this study is to explore the developmental change in cardiovascular regulating activity in adult rats that had been subjected to neonatal nociceptive insults. To address this question, we treated neonatal rats with an intraplantar injection of saline (control) or carrageenan at postnatal day 1. The carrageenan-treated rats exhibited generalized hypoalgesia at basal state, and localized hyperalgesia after re-nociceptive challenge induced by intraplantar injections of complete Freund's adjuvant (CFA) as adults. Then we recorded baseline cardiovascular variables and 24-h responsiveness to an injection of CFA in the free-moving adult rats with telemetric technique. The carrageenan-treated rats showed significantly higher basal blood pressures (110.3±3.16 vs. control 97.0±4.28 mmHg). In control animals, baroreceptor reflex sensitivity (BRS) decreased, sympathetic vasomotor activity increased, and parasympathetic activity was inhibited after CFA injection. Blood pressure elevation was evident (107.0±2.75 vs. pre-injection 97.0±4.28 mmHg). Comparatively, the carrageenan-treated rats showed a higher BRS (BrrLF 1.03±0.09 vs. control 0.70±0.06 ms/mmHg) and higher parasympathetic activity [0.93±0.17 vs. control 0.32±0.02 ln(ms²)] after CFA injection. The change in blood pressure is negligible (111.9±4.05 vs. pre-injection 110.3±3.16 mmHg). Our research has shown that neonatal nociception alters future pain sensation, raises basal blood pressure level, and attenuates cardiovascular responsiveness to nociceptive stress in adult rats. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.
Simas, Bruna B; Nunes, Everson A; Crestani, Carlos C; Speretta, Guilherme F
2018-05-01
Obesity and chronic stress are considered independent risk factors for the development of cardiovascular diseases and changes in autonomic system activity. However, the cardiovascular consequences induced by the association between high-fat diet (HFD) and chronic stress are not fully understood. We hypothesized that the association between HFD and exposure to a chronic variable stress (CVS) protocol for four weeks might exacerbate the cardiovascular and metabolic disturbances in rats when compared to these factors singly. To test this hypothesis, male Wistar rats were divided into four groups: control-standard chow diet (SD; n = 8); control-HFD (n = 8); CVS-SD (n = 8); and CVS-HFD (n = 8). The CVS consisted of repeated exposure of the rats to different inescapable and unpredictable stressors (restraint tress; damp sawdust, cold, swim stress and light cycle inversion). We evaluated cardiovascular function, autonomic activity, dietary intake, adiposity and metabolism. The HFD increased body weight, adiposity and blood glucose concentration (∼15%) in both control and CVS rats. The CVS-HFD rats showed decreased insulin sensitivity (25%) compared to CVS-SD rats. The control-HFD and CVS-HFD rats presented increased intrinsic heart rate (HR) values (∼8%). CVS increased cardiac sympathetic activity (∼65%) in both SD- and HFD-fed rats. The HFD increased basal HR (∼10%). Blood pressure and baroreflex analyzes showed no differences among the experimental groups. In conclusion, the present data indicate absence of interaction on autonomic imbalance evoked by either CVS or HFD. Additionally, HFD increased HR and evoked metabolic disruptions which are independent of stress exposure.
Long-term insulin glargine therapy in type 2 diabetes mellitus: a focus on cardiovascular outcomes
Joseph, Joshua J; Donner, Thomas W
2015-01-01
Cardiovascular disease is the leading cause of mortality in type 2 diabetes mellitus. Hyperinsulinemia is associated with increased cardiovascular risk, but the effects of exogenous insulin on cardiovascular disease progression have been less well studied. Insulin has been shown to have both cardioprotective and atherosclerosis-promoting effects in laboratory animal studies. Long-term clinical trials using insulin to attain improved diabetes control in younger type 1 and type 2 diabetes patients have shown improved cardiovascular outcomes. Shorter trials of intensive diabetes control with high insulin use in higher risk patients with type 2 diabetes have shown either no cardiovascular benefit or increased all cause and cardiovascular mortality. Glargine insulin is a basal insulin analog widely used to treat patients with type 1 and type 2 diabetes. This review focuses on the effects of glargine on cardiovascular outcomes. Glargine lowers triglycerides, leads to a modest weight gain, causes less hypoglycemia when compared with intermediate-acting insulin, and has a neutral effect on blood pressure. The Outcome Reduction With Initial Glargine Intervention (ORIGIN trial), a 6.2 year dedicated cardiovascular outcomes trial of glargine demonstrated no increased cardiovascular risk. PMID:25657589
Udo, Tomoko; Mun, Eun-Young; Buckman, Jennifer F; Vaschillo, Evgeny G; Vaschillo, Bronya; Bates, Marsha E
2013-09-01
Emerging adults often begin making independent lifestyle choices during college, yet the association of these choices with fundamental indicators of health and adaptability is unclear. The present study examined the relationship between health risks and neurocardiac function in college drinkers. Heart rate variability (HRV) was assessed at baseline and in reaction to a paced breathing challenge in 212 college drinkers (53.8% women). Basal HRV served as a general indicator of health. Reactive HRV (during paced breathing) was used as a marker of an individual's adaptability to challenge. The relationship of HRV to alcohol use, cigarette use, exercise, sleep, and body mass index (BMI) was assessed. Greater alcohol use and less exercise were associated with lower basal HRV. BMI was unrelated to basal HRV but was negatively associated with reactive HRV during the breathing challenge. High levels of alcohol use and lack of exercise are negative correlates of cardiovascular and general health, even in apparently healthy college drinkers. The negative relationship between BMI and reactive HRV suggests that overweight individuals have reduced ability to psychophysiologically adapt to challenges; understanding the temporal course of this relationship is needed. This study highlights the importance of examining HRV at baseline and in response to a challenge to capture the active neurocardiac processes that contribute to health and adaptive responding. The suppressive effects of health risks on HRV are modifiable; thus, HRV may be useful in evaluating the health benefits of lifestyle change and in promoting change behaviors in college drinkers.
Meuwese, Christiaan L.; Dekker, Friedo W.; Lindholm, Bengt; Qureshi, Abdul R.; Heimburger, Olof; Barany, Peter; Stenvinkel, Peter; Carrero, Juan J.
2012-01-01
Summary Background and objectives Conflicting evidence exists with regard to the association of thyroid hormones and mortality in dialysis patients. This study assesses the association between basal and trimestral variation of thyroid stimulating hormone, triiodothyronine, and thyroxine and mortality. Design, setting, participants, & measurements In 210 prevalent hemodialysis patients, serum triiodothyronine, thyroxine, thyroid stimulating hormone, and interleukin-6 were measured 3 months apart. Cardiovascular and non-cardiovascular deaths were registered during follow-up. Based on fluctuations along tertiles of distribution, four trimestral patterns were defined for each thyroid hormone: persistently low, decrease, increase, and persistently high. The association of baseline levels and trimestral variation with mortality was investigated with Kaplan–Meier curves and Cox proportional hazard models. Results During follow-up, 103 deaths occurred. Thyroid stimulating hormone levels did not associate with mortality. Patients with relatively low basal triiodothyronine concentrations had higher hazards of dying than patients with high levels. Longitudinally, patients with persistently low levels of triiodothyronine during the 3-month period had higher mortality hazards than those having persistently high levels. These associations were mainly attributable to cardiovascular-related mortality. The association between thyroxine and mortality was not altered after adjustment for triiodothyronine. Conclusions Hemodialysis patients with reduced triiodothyronine or thyroxine levels bear an increased mortality risk, especially due to cardiovascular causes. This was true when considering both baseline measurements and trimestral variation patterns. Our longitudinal design adds observational evidence supporting the hypothesis that the link may underlie a causal effect. PMID:22246282
Meuwese, Christiaan L; Dekker, Friedo W; Lindholm, Bengt; Qureshi, Abdul R; Heimburger, Olof; Barany, Peter; Stenvinkel, Peter; Carrero, Juan J
2012-01-01
Conflicting evidence exists with regard to the association of thyroid hormones and mortality in dialysis patients. This study assesses the association between basal and trimestral variation of thyroid stimulating hormone, triiodothyronine, and thyroxine and mortality. In 210 prevalent hemodialysis patients, serum triiodothyronine, thyroxine, thyroid stimulating hormone, and interleukin-6 were measured 3 months apart. Cardiovascular and non-cardiovascular deaths were registered during follow-up. Based on fluctuations along tertiles of distribution, four trimestral patterns were defined for each thyroid hormone: persistently low, decrease, increase, and persistently high. The association of baseline levels and trimestral variation with mortality was investigated with Kaplan-Meier curves and Cox proportional hazard models. During follow-up, 103 deaths occurred. Thyroid stimulating hormone levels did not associate with mortality. Patients with relatively low basal triiodothyronine concentrations had higher hazards of dying than patients with high levels. Longitudinally, patients with persistently low levels of triiodothyronine during the 3-month period had higher mortality hazards than those having persistently high levels. These associations were mainly attributable to cardiovascular-related mortality. The association between thyroxine and mortality was not altered after adjustment for triiodothyronine. Hemodialysis patients with reduced triiodothyronine or thyroxine levels bear an increased mortality risk, especially due to cardiovascular causes. This was true when considering both baseline measurements and trimestral variation patterns. Our longitudinal design adds observational evidence supporting the hypothesis that the link may underlie a causal effect.
Affective brain areas and sleep disordered breathing
Harper, Ronald M.; Kumar, Rajesh; Macey, Paul M.; Woo, Mary A.; Ogren, Jennifer A.
2014-01-01
The neural damage accompanying the hypoxia, reduced perfusion, and other consequences of sleep-disordered breathing found in obstructive sleep apnea, heart failure (HF), and congenital central hypoventilation syndrome (CCHS), appears in areas that serve multiple functions, including emotional drives to breathe, and involve systems that serve affective, cardiovascular, and breathing roles. The damage, assessed with structural magnetic resonance imaging (MRI) procedures, shows tissue loss or water content and diffusion changes indicative of injury, and impaired axonal integrity between structures; damage is preferentially unilateral. Functional MRI responses in affected areas also are time- or amplitude- distorted to ventilatory or autonomic challenges. Among the structures injured are the insular, cingulate, and ventral medial prefrontal cortices, as well as cerebellar deep nuclei and cortex, anterior hypothalamus, raphé, ventrolateral medulla, basal ganglia and, in CCHS, the locus coeruleus. Raphé and locus coeruleus injury may modify serotonergic and adrenergic modulation of upper airway and arousal characteristics. Since both axons and gray matter show injury, the consequences to function, especially to autonomic, cognitive, and mood regulation, are major. Several affected rostral sites, including the insular and cingulate cortices and hippocampus, mediate aspects of dyspnea, especially in CCHS, while others, including the anterior cingulate and thalamus, participate in initiation of inspiration after central breathing pauses, and the medullary injury can impair baroreflex and breathing control. The ancillary injury associated with sleep-disordered breathing to central structures can elicit multiple other distortions in cardiovascular, cognitive, and emotional functions in addition to effects on breathing regulation. PMID:24746053
Functional neuroanatomy of the basal ganglia.
Lanciego, José L; Luquin, Natasha; Obeso, José A
2012-12-01
The "basal ganglia" refers to a group of subcortical nuclei responsible primarily for motor control, as well as other roles such as motor learning, executive functions and behaviors, and emotions. Proposed more than two decades ago, the classical basal ganglia model shows how information flows through the basal ganglia back to the cortex through two pathways with opposing effects for the proper execution of movement. Although much of the model has remained, the model has been modified and amplified with the emergence of new data. Furthermore, parallel circuits subserve the other functions of the basal ganglia engaging associative and limbic territories. Disruption of the basal ganglia network forms the basis for several movement disorders. This article provides a comprehensive account of basal ganglia functional anatomy and chemistry and the major pathophysiological changes underlying disorders of movement. We try to answer three key questions related to the basal ganglia, as follows: What are the basal ganglia? What are they made of? How do they work? Some insight on the canonical basal ganglia model is provided, together with a selection of paradoxes and some views over the horizon in the field.
Testing of neuroendocrine function in astronauts as related to fluid shifts
NASA Astrophysics Data System (ADS)
Sauseng-Fellegger, G.; König, E. M.; Hinghofer-Szalkay, H.; Jezová, D.; Vigas, M.
We addressed the question of optimal conditions for neuroendocrine and cardiovascular testing in astronauts. We tested stress reactions during LBNP of ≤-50 mm Hg. There was a mild transient elevation of plasma GH concentration and a nonsignificant rise of plasma ACTH, while PRL, insulin and glucose remained unchanged. Aldosterone was decreased 5 and 10 min after beginning of LBNP, thereafter rose significantly, and displayed a further significant concentration increase 5 min post-LBNP. The endocrine and cardiovascular responses to submaximal exercise were tested at 8.00 am and 8.00 pm. Exercise-induced changes of heart rate and blood pressure remained unchanged with daytime whereas plasma concentrations of epinephrine, GH and PRL in response to work load were significantly higher in the evening than in the morning. As expected, basal resting values of plasma cortisol were significantly lower in the evening than in the morning but were similar one hour after cessation of exercise. Our findings demonstrate the importance of frequent sampling in case of transient physiological phenomena, and contribute to existing knowledge on circadian influences upon neuroendocrine stress responses.
[Chronic noise exposure and the cardiovascular system in aircraft pilots].
Tomei, F; Papaleo, B; Baccolo, T P; Tomao, E; Alfi, P; Fantini, S
1996-01-01
The aim of this study was to assess whether pilots are exposed to any risk of effects on the cardiovascular apparatus, whether chronic exposure to noise can be a risk factor for this occupation, the importance of intensity, length and type of exposure to noise, and if any relationship exists between audiometric deficits and cardiovascular effects. The study comprised 416 pilots subdivided into two groups according to the different levels of chronic exposure to noise, and a group of 150 control subjects not exposed to noise. The results showed: a) a higher prevalence of hypertension, nearly always diastolic, and of ECG abnormalities in the group of pilots of turboprop aircraft compared to jet plane pilots and to controls (p < 0.005 and p < 0.01 respectively); b) a higher prevalence of orthostatic hypotension in the two groups of pilots than in the controls (p < 0.05); c) a higher prevalence of hypertension with audiometric deficit compared to hypertension without audiometric deficit both in the more heavily and in the less heavily exposed to noise (p < 0.05), and a higher prevalence of hypertension with audiometric deficit in subjects exposed to higher levels of noise compared to hypertension with deficit but in subjects with lower levels of exposure (p < 0.05); d) a higher prevalence of abnormalities of basal, maximum effort and recovery ECG in pilots exposed to higher noise intensity (p < 0.05); e) improved hypertensive response to ergometric test in pilots with basal hypertension; f) subjects with a maximal load up to 120 W belonged prevalently to the group exposed to more intense noise (p < 0.001), while those with maximal load up to 210 W (p < 0.001) belonged to the group exposed to less intense noise. Considering that pilots are comparable for traditional cardiovascular risk factors, including age, both within the group and with the controls, the results confirm 1) that pilots could be exposed to the risk of effects on the cardiovascular apparatus, 2) that noise could be one of the risk factors and that cardiovascular effects could be related to intensity, type and length of exposure, age being the same, 3) that vascular damage is often accompanied by hearing loss even if the response of the auditory apparatus is different from the response of the cardiovascular apparatus, 4) that the postural diminution of arterial blood pressure might be a sign of a cardiovascular effect of noise. Lastly, a higher hypertensive response in hypertensive pilots suggests that basal hypertension is not reversible. Also a longer exposure to noise seems to influence the cardiovascular apparatus, causing a decrease in the response to work loads due to a lower sympathetic adaptability. The altered response of sympathetic activity to the postural modifications in the more exposed subjects and the response to lower work loads in pilots exposed to more intense noise, suggests a hypothesis of catecholamine depletion and alteration of baroceptor sensitivity as a consequence of chronic sympathetic activation due to chronic exposure to noise.
Autophagy as an emerging therapy target for ovarian carcinoma
Zhan, Lei; Zhang, Yu; Wang, Wenyan; Song, Enxue; Fan, Yijun; Li, Jun; Wei, Bing
2016-01-01
Autophagy is a conserved cellular self-digestion pathway for maintenance of homeostasis under basal and stressed conditions. Autophagy plays pivotal roles in the pathogenesis of many diseases, such as aging-related diseases, autoimmune diseases, cardiovascular diseases, and cancers. Of special note is that accumulating data suggest an intimate relationship between autophagy and ovarian carcinoma. Autophagy is well identified to act as either as a tumor-suppressor or as a tumor-promoter in ovarian carcinoma. The exact function of autophagy in ovarian carcinoma is highly dependent on the circumstances of cancer including hypoxic, nutrient-deficient, chemotherapy and so on. However, the mechanism underlying autophagy associated with ovarian carcinoma remains elusive, the precise role of autophagy in ovarian carcinoma also remains undetermined. In this review, we tried to sum up and discuss recent research achievements of autophagy in ovarian cancer. Moreover, waves of novel therapies ways for ovarian carcinoma based on the functions of autophagy were collected. PMID:27825125
West, Christopher R; Crawford, Mark A; Poormasjedi-Meibod, Malihe-Sadat; Currie, Katharine D; Fallavollita, Andre; Yuen, Violet; McNeill, John H; Krassioukov, Andrei V
2014-01-01
Spinal cord injury (SCI) causes altered autonomic control and severe physical deconditioning that converge to drive maladaptive cardiac remodelling. We used a clinically relevant experimental model to investigate the cardio-metabolic responses to SCI and to establish whether passive hind-limb cycling elicits a cardio-protective effect. Initially, 21 male Wistar rats were evenly assigned to three groups: uninjured control (CON), T3 complete SCI (SCI) or T3 complete SCI plus passive hind-limb cycling (SCI-EX; 2 × 30 min day−1, 5 days week−1 for 4 weeks beginning 6 days post-SCI). On day 32, cardio-metabolic function was assessed using in vivo echocardiography, ex vivo working heart assessments, cardiac histology/molecular biology and blood lipid profiles. Twelve additional rats (n = 6 SCI and n = 6 SCI-EX) underwent in vivo echocardiography and basal haemodynamic assessments pre-SCI and at days 7, 14 and 32 post-SCI to track temporal cardiovascular changes. Compared with CON, SCI exhibited a rapid and sustained reduction in left ventricular dimensions and function that ultimately manifested as reduced contractility, increased myocardial collagen deposition and an up-regulation of transforming growth factor beta-1 (TGFβ1) and mothers against decapentaplegic homolog 3 (Smad3) mRNA. For SCI-EX, the initial reduction in left ventricular dimensions and function at day 7 post-SCI was completely reversed by day 32 post-SCI, and there were no differences in myocardial contractility between SCI-EX and CON. Collagen deposition was similar between SCI-EX and CON. TGFβ1 and Smad3 were down-regulated in SCI-EX. Blood lipid profiles were improved in SCI-EX versus SCI. We provide compelling novel evidence that passive hind-limb cycling prevents cardiac dysfunction and reduces cardiovascular disease risk in experimental SCI. PMID:24535438
Longitudinal Health Research in the U.S. Navy.
1979-12-01
while morbidity variables would be the presence or absence of a specific disease or condition, or perhaps a continuous response such S as level of...Cardiovascular routine electrocardiogram * * * * startle electrocardiogram * computer processed electrocardiogram * * exercise electrocardiogram...basal metabolic rate * other * * Anthropometry somatotype * * * measurements (in addition to height & weight) e * * Teleoroentgenograms
Inter-study reproducibility of cardiovascular magnetic resonance tagging
2013-01-01
Background The aim of this study is to determine the test-retest reliability of the measurement of regional myocardial function by cardiovascular magnetic resonance (CMR) tagging using spatial modulation of magnetization. Methods Twenty-five participants underwent CMR tagging twice over 12 ± 7 days. To assess the role of slice orientation on strain measurement, two healthy volunteers had a first exam, followed by image acquisition repeated with slices rotated ±15 degrees out of true short axis, followed by a second exam in the true short axis plane. To assess the role of slice location, two healthy volunteers had whole heart tagging. The harmonic phase (HARP) method was used to analyze the tagged images. Peak midwall circumferential strain (Ecc), radial strain (Err), Lambda 1, Lambda 2, and Angle α were determined in basal, mid and apical slices. LV torsion, systolic and early diastolic circumferential strain and torsion rates were also determined. Results LV Ecc and torsion had excellent intra-, interobserver, and inter-study intra-class correlation coefficients (ICC range, 0.7 to 0.9). Err, Lambda 1, Lambda 2 and angle had excellent intra- and interobserver ICC than inter-study ICC. Angle had least inter-study reproducibility. Torsion rates had superior intra-, interobserver, and inter-study reproducibility to strain rates. The measurements of LV Ecc were comparable in all three slices with different short axis orientations (standard deviation of mean Ecc was 0.09, 0.18 and 0.16 at basal, mid and apical slices, respectively). The mean difference in LV Ecc between slices was more pronounced in most of the basal slices compared to the rest of the heart. Conclusions Intraobserver and interobserver reproducibility of all strain and torsion parameters was excellent. Inter-study reproducibility of CMR tagging by SPAMM varied between different parameters as described in the results above and was superior for Ecc and LV torsion. The variation in LV Ecc measurement due to altered slice orientation is negligible compared to the variation due to slice location. Trial registration This trial is registered as NCT00005487 at National Heart, Lung and Blood institute. PMID:23663535
Insulin and Its Cardiovascular Effects: What Is the Current Evidence?
Dongerkery, Sahana Pai; Schroeder, Pamela R; Shomali, Mansur E
2017-10-23
In this article, we examine the nature of the complex relationship between insulin and cardiovascular disease. With metabolic abnormalities comes increased risk for cardiovascular complications. We discuss the key factors implicated in development and progression of cardiovascular disease, its relationship to insulin therapy, and what can be learned from large, recent cardiovascular outcome studies. Preclinical studies suggest that insulin has positive effects of facilitating glucose entry into cells and maintaining euglycemia and negative effects of favoring obesity and atherogenesis under certain conditions. Confounding this relationship is that cardiovascular morbidity is linked closely to duration and control of diabetes, and insulin is often used in patients with diabetes of longer duration. However, more recent clinical studies examining the cardiovascular safety of insulin therapy have been reassuring. Diabetes and cardiovascular outcomes are closely linked. Many studies have implicated insulin resistance and hyperinsulinemia as a major factor for poor cardiovascular outcomes. Additional studies link the anabolic effects of therapeutic insulin to weight gain, along with hypoglycemia, which may further aggravate cardiovascular risk in this population. Though good glycemic control has been shown to improve microvascular risks in type 1 and type 2 diabetes, what are the known cardiovascular effects of insulin therapy? The ORIGIN trial suggests at least a neutral effect of the basal insulin glargine on cardiovascular outcomes. Recent studies have demonstrated that ultra-long-acting insulin analogs like insulin degludec are non-inferior to insulin glargine with regard to cardiovascular outcomes.
Mendes, Adélia; Costa, Natália Rios; Chora, Inês; Ferreira, Sara; Araújo, Emanuel; Lopes, Pedro; Rosa, Gilberto; Marques, Pedro; Bettencourt, Paulo; Oliveira, Inês; Costa, Francisco; Ramos, Isabel; Teles, Maria José; Guimarães, João Tiago; Sobrinho-Simões, Manuel; Soares, Paula
2016-01-01
Head and neck cancers, and cardiovascular disease have been described as late effects of low dose radiation (LDR) exposure, namely in tinea capitis cohorts. In addition to radiation dose, gender and younger age at exposure, the genetic background might be involved in the susceptibility to LDR late effects. The -174 G>C (rs1800795) SNP in IL6 has been associated with cancer and cardiovascular disease, nevertheless this association is still controversial. We assessed the association of the IL6-174 G>C SNP with LDR effects such as thyroid carcinoma, basal cell carcinoma and carotid atherosclerosis in the Portuguese tinea capitis cohort. The IL6-174 G>C SNP was genotyped in 1269 individuals formerly irradiated for tinea capitis. This sampling group included thyroid cancer (n = 36), basal cell carcinoma (n = 113) and cases without thyroid or basal cell carcinoma (1120). A subgroup was assessed for atherosclerosis by ultrasonography (n = 379) and included matched controls (n = 222). Genotypes were discriminated by real-time PCR using a TaqMan SNP genotyping assay. In the irradiated group, we observed that the CC genotype was significantly associated with carotid plaque risk, both in the genotypic (OR = 3.57, CI = 1.60–7.95, p-value = 0.002) and in the recessive (OR = 3.02, CI = 1.42–6.42, p-value = 0.004) models. Irradiation alone was not a risk factor for carotid atherosclerosis. We did not find a significant association of the IL6-174 C allele with thyroid carcinoma or basal cell carcinoma risk. The IL6-174 CC genotype confers a three-fold risk for carotid atherosclerotic disease suggesting it may represent a genetic susceptibility factor in the LDR context. PMID:27662210
Silva-Fernández, Lucía; Otón, Teresa; Askanase, Anca; Carreira, Patricia; López-Longo, Francisco Javier; Olivé, Alejandro; Rúa-Figueroa, Íñigo; Narváez, Javier; Ruiz-Lucea, Esther; Andrés, Mariano; Calvo, Enrique; Toyos, Francisco; Alegre-Sancho, Juan José; Tomero, Eva; Montilla, Carlos; Zea, Antonio; Uriarte, Esther; Calvo-Alén, Jaime; Marras, Carlos; Martínez-Taboada, Víctor M; Belmonte-López, María Ángeles; Rosas, José; Raya, Enrique; Bonilla, Gema; Freire, Mercedes; Pego-Reigosa, José María; Millán, Isabel; Hughes-Morley, Adwoa; Andreu, José Luis
2017-05-18
The course and long-term outcome of pure membranous lupus nephritis (MLN) are little understood. The aims of this study are to evaluate the clinical features, course, outcome and prognostic indicators in pure MLN and to determine the impact of ethnicity and the type of health insurance on the course and prognosis of pure MLN. We conducted a retrospective review of medical records of 150 patients with pure MLN from Spain and the USA. Mean age was 34.2±12.5 and 80% were women. Sixty-eight percent of patients had nephrotic syndrome at diagnosis. The average serum creatinine was 0.98±0.78mg/dl. Six percent of patients died and 5.3% developed end-stage renal disease (ESRD). ESRD was predicted by male sex, hypertension, dyslipidemia, high basal 24h-proteinuria, high basal serum creatinine and a low basal creatinine clearance. Age, cardiac insufficiency, peripheral artheriopathy, hemodialysis and not having received mycophenolate mofetil or antimalarials for MLN predicted death. Pure MLN frequently presents with nephrotic syndrome, high proteinuria and normal serum creatinine. Its prognosis is favourable in maintaining renal function although proteinuria usually persists over time. Baseline cardiovascular disease and not having a health insurance are related with poor prognosis. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.
Imaging basal ganglia function
BROOKS, DAVID J.
2000-01-01
In this review, the value of functional imaging for providing insight into the role of the basal ganglia in motor control is reviewed. Brain activation findings in normal subjects and Parkinson's disease patients are examined and evidence supporting the existence for functionally independent distributed basal ganglia-frontal loops is presented. It is argued that the basal ganglia probably act to focus and filter cortical output, optimising the running of motor programs. PMID:10923986
Evaluation of Cardiovascular Risk Factors in the Wistar Audiogenic Rat (WAR) Strain
Fazan, Rubens; Silva, Carlos Alberto A.; Oliveira, José Antônio Cortes; Salgado, Helio Cesar; Montano, Nicola; Garcia-Cairasco, Norberto
2015-01-01
Introduction Risk factors for life-threatening cardiovascular events were evaluated in an experimental model of epilepsy, the Wistar Audiogenic Rat (WAR) strain. Methods We used long-term ECG recordings in conscious, one year old, WAR and Wistar control counterparts to evaluate spontaneous arrhythmias and heart rate variability, a tool to assess autonomic cardiac control. Ventricular function was also evaluated using the pressure-volume conductance system in anesthetized rats. Results Basal RR interval (RRi) was similar between WAR and Wistar rats (188±5 vs 199±6 ms). RRi variability strongly suggests that WAR present an autonomic imbalance with sympathetic overactivity, which is an isolated risk factor for cardiovascular events. Anesthetized WAR showed lower arterial pressure (92±3 vs 115±5 mmHg) and exhibited indices of systolic dysfunction, such as higher ventricle end-diastolic pressure (9.2±0.6 vs 5.6±1 mmHg) and volume (137±9 vs 68±9 μL) as well as lower rate of increase in ventricular pressure (5266±602 vs 7320±538 mmHg.s-1). Indices of diastolic cardiac function, such as lower rate of decrease in ventricular pressure (-5014±780 vs -7766±998 mmHg.s-1) and a higher slope of the linear relationship between end-diastolic pressure and volume (0.078±0.011 vs 0.036±0.011 mmHg.μL), were also found in WAR as compared to Wistar control rats. Moreover, Wistar rats had 3 to 6 ventricular ectopic beats, whereas WAR showed 15 to 30 ectopic beats out of the 20,000 beats analyzed in each rat. Conclusions The autonomic imbalance observed previously at younger age is also present in aged WAR and, additionally, a cardiac dysfunction was also observed in the rats. These findings make this experimental model of epilepsy a valuable tool to study risk factors for cardiovascular events in epilepsy. PMID:26029918
Effect of Weight Reduction on Cardiovascular Risk Factors and CD34-positive Cells in Circulation
Mikirova, Nina A; Casciari, Joseph J; Hunninghake, Ronald E; Beezley, Margaret M
2011-01-01
Being overweight or obese is associated with an increased risk for the development of non-insulin-dependent diabetes mellitus, hypertension, and cardiovascular disease. Dyslipidemia of obesity is characterized by elevated fasting triglycerides and decreased high-density lipoprotein-cholesterol concentrations. Endothelial damage and dysfunction is considered to be a major underlying mechanism for the elevated cardiovascular risk associated with increased adiposity. Alterations in endothelial cells and stem/endothelial progenitor cell function associated with overweight and obesity predispose to atherosclerosis and thrombosis. In our study, we analyzed the effect of a low calorie diet in combination with oral supplementation by vitamins, minerals, probiotics and human chorionic gonadotropin (hCG, 125-180 IUs) on the body composition, lipid profile and CD34-positive cells in circulation. During this dieting program, the following parameters were assessed weekly for all participants: fat free mass, body fat, BMI, extracellular/intracellular water, total body water and basal metabolic rate. For part of participants blood chemistry parameters and circulating CD34-positive cells were determined before and after dieting. The data indicated that the treatments not only reduced body fat mass and total mass but also improved the lipid profile. The changes in body composition correlated with the level of lipoproteins responsible for the increased cardiovascular risk factors. These changes in body composition and lipid profile parameters coincided with the improvement of circulatory progenitor cell numbers. As the result of our study, we concluded that the improvement of body composition affects the number of stem/progenitor cells in circulation. PMID:21850193
Effect of weight reduction on cardiovascular risk factors and CD34-positive cells in circulation.
Mikirova, Nina A; Casciari, Joseph J; Hunninghake, Ronald E; Beezley, Margaret M
2011-01-01
Being overweight or obese is associated with an increased risk for the development of non-insulin-dependent diabetes mellitus, hypertension, and cardiovascular disease. Dyslipidemia of obesity is characterized by elevated fasting triglycerides and decreased high-density lipoprotein-cholesterol concentrations. Endothelial damage and dysfunction is considered to be a major underlying mechanism for the elevated cardiovascular risk associated with increased adiposity. Alterations in endothelial cells and stem/endothelial progenitor cell function associated with overweight and obesity predispose to atherosclerosis and thrombosis. In our study, we analyzed the effect of a low calorie diet in combination with oral supplementation by vitamins, minerals, probiotics and human chorionic gonadotropin (hCG, 125-180 IUs) on the body composition, lipid profile and CD34-positive cells in circulation. During this dieting program, the following parameters were assessed weekly for all participants: fat free mass, body fat, BMI, extracellular/intracellular water, total body water and basal metabolic rate. For part of participants blood chemistry parameters and circulating CD34-positive cells were determined before and after dieting. The data indicated that the treatments not only reduced body fat mass and total mass but also improved the lipid profile. The changes in body composition correlated with the level of lipoproteins responsible for the increased cardiovascular risk factors. These changes in body composition and lipid profile parameters coincided with the improvement of circulatory progenitor cell numbers. As the result of our study, we concluded that the improvement of body composition affects the number of stem/progenitor cells in circulation.
Autonomic and Renal Alterations in the Offspring of Sleep-Restricted Mothers During Late Pregnancy.
Raimundo, Joyce R S; Bergamaschi, Cassia T; Campos, Ruy R; Palma, Beatriz D; Tufik, Sergio; Gomes, Guiomar N
2016-09-01
Considering that changes in the maternal environment may result in changes in progeny, the aim of this study was to investigate the influence of sleep restriction during the last week of pregnancy on renal function and autonomic responses in male descendants at an adult age. After confirmation of pregnancy, female Wistar rats were randomly assigned to either a control or a sleep restriction group. The sleep-restricted rats were subjected to sleep restriction using the multiple platforms method for over 20 hours per day between the 14th and 20th day of pregnancy. After delivery, the litters were limited to 6 offspring that were designated as offspring from control and offspring from sleep-restricted mothers. Indirect measurements of systolic blood pressure (BPi), renal plasma flow, glomerular filtration rate, glomerular area and number of glomeruli per field were evaluated at three months of age. Direct measurements of cardiovascular function (heart rate and mean arterial pressure), cardiac sympathetic tone, cardiac parasympathetic tone, and baroreflex sensitivity were evaluated at four months of age. The sleep-restricted offspring presented increases in BPi, glomerular filtration rate and glomerular area compared with the control offspring. The sleep-restricted offspring also showed higher basal heart rate, increased mean arterial pressure, increased sympathetic cardiac tone, decreased parasympathetic cardiac tone and reduced baroreflex sensitivity. Our data suggest that reductions in sleep during the last week of pregnancy lead to alterations in cardiovascular autonomic regulation and renal morpho-functional changes in offspring, triggering increases in blood pressure.
Moon, James C; Sheppard, Mary; Reed, Emma; Lee, Phillip; Elliott, Perry M; Pennell, Dudley J
2006-01-01
Anderson-Fabry Disease (AFD) is a storage disease that mimics hypertrophic cardiomyopathy. Late gadolinium enhancement (LGE) by cardiovascular magnetic resonance occurs in approximately 50% of patients in the basal inferolateral LV wall, but how an intracellular storage disease causes focal LGE is unknown. We present a whole-heart histological validation that LGE is caused by focal myocardial collagen scarring. This scarring may be the substrate for electrical re-entry and sudden arrhythmic death. The reasons for this distribution of fibrosis are unclear, but may reflect inhomogeneous left ventricular wall stress.
NASA Astrophysics Data System (ADS)
Ulyanov, Sergey S.; Tuchin, Valery V.
1993-06-01
The sex differences in cardiovascular system responses to a mild noise stress are established using the physiological and the dynamic systems theory methods. Lower levels of basal systolic arterial pressure and higher rates of its dropping and normalization under influence and after its cessation are typical for women. There are no hypertensive responses to stresses in women in contrast to men. The normalized entropy of the ECG signal, describing the physiological variability, increases in women and decreases in men. The advantages of female cardiovascular system response to mild stresses are discussed.
Effect of prolonged space flight on cardiac function and dimensions
NASA Technical Reports Server (NTRS)
Henry, W. L.; Epstein, S. E.; Griffith, J. M.; Goldstein, R. E.; Redwood, D. R.
1974-01-01
Echocardiographic studies were performed preflight 5 days before launch and on recovery day and 1, 2, 4, 11, 31 and 68 days postflight. From these echocardiograms measurements were made. From these primary measurements, left ventricular end-diastolic volume, end-systolic volume, stroke volume, and mass were derived using the accepted assumptions. Findings in the Scientist Pilot and Pilot resemble those seen in trained distance runners. Wall thickness measurements were normal in all three crewmembers preflight. Postflight basal studies were unchanged in the Commander on recovery day through 68 days postflight in both the Scientist Pilot and Pilot, however, the left ventricular end-diastolic volume, stroke volume, and mass were decreased slightly. Left ventricular function curves were constructed for the Commander and Pilot by plotting stroke volume versus end-diastolic volume. In both astronauts, preflight and postflight data fell on the same straight line demonstrating that no deterioration in cardiac function had occurred. These data indicate that the cardiovascular system adapts well to prolonged weightlessness and suggest that alterations in cardiac dimensions and function are unlikely to limit man's future in space.
Brant, Luisa C. C.; Hamburg, Naomi M.; Barreto, Sandhi M.; Benjamin, Emelia J.; Ribeiro, Antonio L. P.
2014-01-01
Background Vascular dysfunction is an early expression of atherosclerosis and predicts cardiovascular (CV) events. Peripheral arterial tonometry (PAT) evaluates basal pulse amplitude (BPA), endothelial function (PAT ratio), and wave reflection (PAT‐AIx) in the digital microvessels. In Brazilian adults, we investigated the correlations of PAT responses to CV risk factors and to carotid‐femoral pulse wave velocity (PWV), a measure of arterial stiffness. Methods and Results In a cross‐sectional study, 1535 participants of the ELSA‐Brasil cohort underwent PAT testing (52±9 years; 44% women). In multivariable analyses, more‐impaired BPA and PAT ratios were associated with male sex, higher body mass index (BMI), and total cholesterol/high‐density lipoprotein. Higher age and triglycerides were related to higher BPA, whereas lower systolic blood pressure, hypertension (HTN) treatment, and prevalent CV disease (CVD) were associated with lower PAT ratio. PAT‐AIx correlated positively with female sex, advancing age, systolic and diastolic blood pressures, and smoking and inversely to heart rate, height, BMI, and prevalent CVD. Black race was associated with lower BPA, higher PAT ratio, and PAT‐AIx. Microvessel vasodilator function was not associated with PWV. Higher PAT‐AIx was modestly correlated to higher PWV and PAT ratio and inversely correlated to BPA. Conclusion Metabolic risk factors are related to impaired microvessel vasodilator function in Brazil. However, in contrast to studies from the United States, black race was not associated with an impaired microvessel vasodilator response, implying that vascular function may vary by race across populations. PAT‐AIx relates to HTN, may be a valid measure of wave reflection, and provides distinct information from arterial stiffness. PMID:25510401
Baker, Jillian G.; Kemp, Philip; March, Julie; Fretwell, Laurice; Hill, Stephen J.; Gardiner, Sheila M.
2011-01-01
β-Adrenoceptor antagonists differ in their degree of partial agonism. In vitro assays have provided information on ligand affinity, selectivity, and intrinsic efficacy. However, the extent to which these properties are manifest in vivo is less clear. Conscious freely moving rats, instrumented for measurement of heart rate (β1; HR) and hindquarters vascular conductance (β2; HVC) were used to measure receptor selectivity and ligand efficacy in vivo. CGP 20712A caused a dose-dependent decrease in basal HR (P<0.05, ANOVA) at 5 doses between 6.7 and 670 μg/kg (i.v.) and shifted the dose-response curve for isoprenaline to higher agonist concentrations without altering HVC responses. In contrast, at doses of 67 μg/kg (i.v.) and above, ICI 118551 substantially reduced the HVC response to isoprenaline without affecting HR responses. ZD 7114, xamoterol, and bucindolol significantly increased basal HR (ΔHR: +122±12, +129±11, and +59±11 beats/min, respectively; n=6), whereas other β-blockers caused significant reductions (all at 2 mg/kg i.v.). The agonist effects of xamoterol and ZD 7114 were equivalent to that of the highest dose of isoprenaline. Bucindolol, however, significantly antagonized the response to the highest doses isoprenaline. An excellent correlation was obtained between in vivo and in vitro measures of β1-adrenoceptor efficacy (R2=0.93; P<0.0001).—Baker, J. G., Kemp, P., March, J., Fretwell, L., Hill, S. J., Gardiner, S. M. Predicting in vivo cardiovascular properties of β-blockers from cellular assays: a quantitative comparison of cellular and cardiovascular pharmacological responses. PMID:21865315
Quagliotto, E.; Casali, K.R.; Dal Lago, P.; Rasia-Filho, A.A.
2014-01-01
The rat posterodorsal medial amygdala (MePD) links emotionally charged sensory stimuli to social behavior, and is part of the supramedullary control of the cardiovascular system. We studied the effects of microinjections of neuroactive peptides markedly found in the MePD, namely oxytocin (OT, 10 ng and 25 pg; n=6/group), somatostatin (SST, 1 and 0.05 μM; n=8 and 5, respectively), and angiotensin II (Ang II, 50 pmol and 50 fmol; n=7/group), on basal cardiovascular activity and on baroreflex- and chemoreflex-mediated responses in awake adult male rats. Power spectral and symbolic analyses were applied to pulse interval and systolic arterial pressure series to identify centrally mediated sympathetic/parasympathetic components in the heart rate variability (HRV) and arterial pressure variability (APV). No microinjected substance affected basal parameters. On the other hand, compared with the control data (saline, 0.3 µL; n=7), OT (10 ng) decreased mean AP (MAP50) after baroreflex stimulation and increased both the mean AP response after chemoreflex activation and the high-frequency component of the HRV. OT (25 pg) increased overall HRV but did not affect any parameter of the symbolic analysis. SST (1 μM) decreased MAP50, and SST (0.05 μM) enhanced the sympathovagal cardiac index. Both doses of SST increased HRV and its low-frequency component. Ang II (50 pmol) increased HRV and reduced the two unlike variations pattern of the symbolic analysis (P<0.05 in all cases). These results demonstrate neuropeptidergic actions in the MePD for both the increase in the range of the cardiovascular reflex responses and the involvement of the central sympathetic and parasympathetic systems on HRV and APV. PMID:25424367
Kim, Hyun Jin; Park, Seok O; Ko, Seung Hyun; Rhee, Sang Youl; Hur, Kyu Yeon; Kim, Nan Hee; Moon, Min Kyong; Lee, Byung Wan; Kim, Jin Hwa; Choi, Kyung Mook
2017-12-01
The glucagon-like peptide-1 receptor agonists (GLP-1RAs) were recommended as a monotherapy or combination therapy with oral hypoglycemic agents or basal insulin in the position statement of the Korean Diabetes Association 2017 for pharmacological therapy. Many randomized clinical trials and systematic reviews report that GLP-1RAs have considerable glucose-lowering effect and lead to weight reduction and low risk of hypoglycemia when used as a monotherapy or combination therapy. The cardiovascular safety of GLP-1RAs has been assessed in several randomized clinical trials and systematic reviews. The results of cardiovascular outcome trials of long-acting GLP-1RAs (liraglutide, semaglutide) demonstrated cardiovascular benefits in subjects with type 2 diabetes mellitus and a high risk of cardiovascular disease. The GLP-1RA may be a choice of therapy when weight control and avoidance of hypoglycemia are important, and patients with high risk of cardiovascular disease might also favor choosing GLP-1RA. Copyright © 2017 Korean Diabetes Association.
Caligiore, Daniele; Pezzulo, Giovanni; Baldassarre, Gianluca; Bostan, Andreea C; Strick, Peter L; Doya, Kenji; Helmich, Rick C; Dirkx, Michiel; Houk, James; Jörntell, Henrik; Lago-Rodriguez, Angel; Galea, Joseph M; Miall, R Chris; Popa, Traian; Kishore, Asha; Verschure, Paul F M J; Zucca, Riccardo; Herreros, Ivan
2017-02-01
Despite increasing evidence suggesting the cerebellum works in concert with the cortex and basal ganglia, the nature of the reciprocal interactions between these three brain regions remains unclear. This consensus paper gathers diverse recent views on a variety of important roles played by the cerebellum within the cerebello-basal ganglia-thalamo-cortical system across a range of motor and cognitive functions. The paper includes theoretical and empirical contributions, which cover the following topics: recent evidence supporting the dynamical interplay between cerebellum, basal ganglia, and cortical areas in humans and other animals; theoretical neuroscience perspectives and empirical evidence on the reciprocal influences between cerebellum, basal ganglia, and cortex in learning and control processes; and data suggesting possible roles of the cerebellum in basal ganglia movement disorders. Although starting from different backgrounds and dealing with different topics, all the contributors agree that viewing the cerebellum, basal ganglia, and cortex as an integrated system enables us to understand the function of these areas in radically different ways. In addition, there is unanimous consensus between the authors that future experimental and computational work is needed to understand the function of cerebellar-basal ganglia circuitry in both motor and non-motor functions. The paper reports the most advanced perspectives on the role of the cerebellum within the cerebello-basal ganglia-thalamo-cortical system and illustrates other elements of consensus as well as disagreements and open questions in the field.
Motor functions of the basal ganglia.
Phillips, J G; Bradshaw, J L; Iansek, R; Chiu, E
1993-01-01
A study of movement disorders such as Parkinson's disease and Huntington's disease can provide an indication of the motor functions of the basal ganglia. Basal-ganglia diseases affect voluntary movement and can cause involuntary movement. Deficits are often manifested during the coordination of fine multi-joint movements (e.g., handwriting). The disturbances of motor control (e.g. akinesia, bradykinesia) caused by basal-ganglia disorders are illustrated. Data suggest that the basal ganglia play an important role in the automatic execution of serially ordered complex movements.
Basal-body-associated macromolecules: a continuing debate.
Pierre Mignot, J; Brugerolle, G; Didier, P; Bornens, M
1993-07-01
Controversy over the possibility that centrioles/basal bodies contain nucleic acids has overshadowed results demonstrating other macromolecules in the lumen of these organelles. Glycogen particles, which are known to be present within the lumen of the centriole/basal body of sperm cells, have now been found in basal bodies of protists belonging to three different groups. Here, we extend the debate on a role for RNA in basal body/centriole function and speculate on the origin and the function of centriolar glycogen.
Dong, Li; Wang, Pu; Peng, Rui; Jiang, Sisi; Klugah-Brown, Benjamin; Luo, Cheng; Yao, Dezhong
2016-12-01
The purpose of this study was to investigate alterations of basal ganglia-cortical functional connections in patients with frontal lobe epilepsy (FLE). Resting-state functional magnetic resonance imaging (fMRI) data were gathered from 19 FLE patients and 19 age- and gender-matched healthy controls. Functional connectivity (FC) analysis was used to assess the functional connections between basal ganglia and cerebral cortex. Regions of interest, including the left/right caudate, putamen, pallidum and thalamus, were selected as the seeds. Two sample t-test was used to determine the difference between patients and controls, while controlling the age, gender and head motions. Compared with controls, FLE patients demonstrated increased FCs between basal ganglia and regions including the right fusiform gyrus, the bilateral cingulate gyrus, the precuneus and anterior cingulate gyrus. Reduced FCs were mainly located in a range of brain regions including the bilateral middle occipital gyrus, the ventral frontal lobe, the right putamen, the left fusiform gyrus and right rolandic operculum. In addition, the relationships between basal ganglia-cingulate connections and durations of epilepsy were also found. The alterations of functional integrity within the basal ganglia, as well as its connections to limbic and ventral frontal areas, indicate the important roles of the basal ganglia-cortical functional connections in FLE, and provide new insights in the pathophysiological mechanism of FLE. Copyright © 2016 Elsevier B.V. All rights reserved.
Association of VAV2 and VAV3 polymorphisms with cardiovascular risk factors
Perretta-Tejedor, Nuria; Fernández-Mateos, Javier; García-Ortiz, Luis; Gómez-Marcos, Manuel A.; Recio-Rodríguez, José I.; Agudo-Conde, Cristina; Rodriguez-Sánchez, Emiliano; Morales, Ana I.; López-Hernández, Francisco J.; López-Novoa, José M.; González-Sarmiento, Rogelio; Martínez-Salgado, Carlos
2017-01-01
Hypertension, diabetes and obesity are cardiovascular risk factors closely associated to the development of renal and cardiovascular target organ damage. VAV2 and VAV3, members of the VAV family proto-oncogenes, are guanosine nucleotide exchange factors for the Rho and Rac GTPase family, which is related with cardiovascular homeostasis. We have analyzed the relationship between the presence of VAV2 rs602990 and VAV3 rs7528153 polymorphisms with cardiovascular risk factors and target organ damage (heart, vessels and kidney) in 411 subjects. Our results show that being carrier of the T allele in VAV2 rs602990 polymorphism is associated with an increased risk of obesity, reduced levels of ankle-brachial index and diastolic blood pressure and reduced retinal artery caliber. In addition, being carrier of T allele is associated with increased risk of target organ damage in males. On the other hand, being carrier of the T allele in VAV3 rs7528153 polymorphism is associated with a decreased susceptibility of developing a pathologic state composed by the presence of hypertension, diabetes, obesity or cardiovascular damage, and with an increased risk of developing altered basal glycaemia. This is the first report showing an association between VAV2 and VAV3 polymorphisms with cardiovascular risk factors and target organ damage. PMID:28157227
Visceral predictors of cardiovascular deconditioning in late middle-aged men
NASA Technical Reports Server (NTRS)
Goldwater, D. J.; De Roshia, C.; Natelson, B. H.; Levin, B. E.
1985-01-01
A number of visceral and behavioral factors connected with cardiovascular deconditioning were investigated, in order to identify a method for predicting the degree of orthostatic intolerance to spaceflight in several late-middle-aged men (55-65 years). Preliminary measurements were made of: mean arterial blood pressure plasma cortisol levels; and norepinephrine levels. Measurements of core temperature; plasma epinephrine level and subjective arousal from sleep were also obtained. Pairwise correlations were found for each of the variables and the time-to-blackout due centrifugal acceleration of up to +3 Gz. It is shown that the men with relatively low resting blood pressure were at greater risk of developing the clinical signs of cardiovascular deconditioning than were the men with higher basal blood pressure. Some applications of the experimental results to the development of selection criteria for Shuttle crews are discussed.
ALDOSTERONE DYSREGULATION WITH AGING PREDICTS RENAL-VASCULAR FUNCTION AND CARDIO-VASCULAR RISK
Brown, Jenifer M.; Underwood, Patricia C.; Ferri, Claudio; Hopkins, Paul N.; Williams, Gordon H.; Adler, Gail K.; Vaidya, Anand
2014-01-01
Aging and abnormal aldosterone regulation are both associated with vascular disease. We hypothesized that aldosterone dysregulation influences the age-related risk of renal- and cardio-vascular disease. We conducted an analysis of 562 subjects who underwent detailed investigations under conditions of liberal and restricted dietary sodium intake (1,124 visits) in a Clinical Research Center. Aldosterone regulation was characterized by the ratio of maximal suppression-to-stimulation (supine serum aldosterone on a liberal sodium diet divided by the same measure on a restricted sodium diet). We previously demonstrated that higher levels of this Sodium-modulated Aldosterone Suppression-Stimulation Index (SASSI) indicate greater aldosterone dysregulation. Renal plasma flow (RPF) was determined via p-aminohippurate clearance to assess basal renal hemodynamics, and the renal-vascular responses to dietary sodium manipulation and angiotensin II (AngII) infusion. Cardiovascular risk was calculated using the Framingham Risk Score. In univariate linear regression, older age (β= -4.60, p<0.0001) and higher SASSI (β= -58.63, p=0.001) predicted lower RPF and a blunted RPF response to sodium loading and AngII infusion. We observed a continuous, independent, multivariate-adjusted interaction between age and SASSI, where the inverse relationship between SASSI and RPF was most apparent with older age (p<0.05). Higher SASSI and lower RPF independently predicted higher Framingham Risk Score (p<0.0001) and together displayed an additive effect. Aldosterone regulation and age may interact to mediate renal-vascular disease. Our findings suggest that the combination of aldosterone dysregulation and renal-vascular dysfunction could additively increase the risk of future cardiovascular outcomes; therefore, aldosterone dysregulation may represent a modifiable mechanism of age-related vascular disease. PMID:24664291
Aldosterone dysregulation with aging predicts renal vascular function and cardiovascular risk.
Brown, Jenifer M; Underwood, Patricia C; Ferri, Claudio; Hopkins, Paul N; Williams, Gordon H; Adler, Gail K; Vaidya, Anand
2014-06-01
Aging and abnormal aldosterone regulation are both associated with vascular disease. We hypothesized that aldosterone dysregulation influences the age-related risk of renal vascular and cardiovascular disease. We conducted an analysis of 562 subjects who underwent detailed investigations under conditions of liberal and restricted dietary sodium intake (1124 visits) in the General Clinical Research Center. Aldosterone regulation was characterized by the ratio of maximal suppression to stimulation (supine serum aldosterone on a liberal sodium diet divided by the same measure on a restricted sodium diet). We previously demonstrated that higher levels of this Sodium-modulated Aldosterone Suppression-Stimulation Index (SASSI) indicate greater aldosterone dysregulation. Renal plasma flow (RPF) was determined via p-aminohippurate clearance to assess basal renal hemodynamics and the renal vascular responses to dietary sodium manipulation and angiotensin II infusion. Cardiovascular risk was calculated using the Framingham Risk Score. In univariate linear regression, older age (β=-4.60; P<0.0001) and higher SASSI (β=-58.63; P=0.001) predicted lower RPF and a blunted RPF response to sodium loading and angiotensin II infusion. We observed a continuous, independent, multivariate-adjusted interaction between age and SASSI, where the inverse relationship between SASSI and RPF was most apparent with older age (P<0.05). Higher SASSI and lower RPF independently predicted higher Framingham Risk Score (P<0.0001) and together displayed an additive effect. Aldosterone regulation and age may interact to mediate renal vascular disease. Our findings suggest that the combination of aldosterone dysregulation and renal vascular dysfunction could additively increase the risk of future cardiovascular outcomes; therefore, aldosterone dysregulation may represent a modifiable mechanism of age-related vascular disease.
Wichmann, Thomas; DeLong, Mahlon R
2016-04-01
Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks.
Felger, Jennifer C; Miller, Andrew H
2012-08-01
Data suggest that cytokines released during the inflammatory response target subcortical structures including the basal ganglia as well as dopamine function to acutely induce behavioral changes that support fighting infection and wound healing. However, chronic inflammation and exposure to inflammatory cytokines appears to lead to persisting alterations in the basal ganglia and dopamine function reflected by anhedonia, fatigue, and psychomotor slowing. Moreover, reduced neural responses to hedonic reward, decreased dopamine metabolites in the cerebrospinal fluid and increased presynaptic dopamine uptake and decreased turnover have been described. This multiplicity of changes in the basal ganglia and dopamine function suggest fundamental effects of inflammatory cytokines on dopamine synthesis, packaging, release and/or reuptake, which may sabotage and circumvent the efficacy of current treatment approaches. Thus, examination of the mechanisms by which cytokines alter the basal ganglia and dopamine function will yield novel insights into the treatment of cytokine-induced behavioral changes and inflammatory malaise. Copyright © 2012 Elsevier Inc. All rights reserved.
Novel role of transient receptor potential vanilloid 2 in the regulation of cardiac performance
Lasko, Valerie M.; Koch, Sheryl E.; Singh, Vivek P.; Carreira, Vinicius; Robbins, Nathan; Patel, Amit R.; Jiang, Min; Bidwell, Philip; Kranias, Evangelia G.; Jones, W. Keith; Lorenz, John N.
2013-01-01
Transient receptor potential cation channels have been implicated in the regulation of cardiovascular function, but only recently has our laboratory described the vanilloid-2 subtype (TRPV2) in the cardiomyocyte, though its exact mechanism of action has not yet been established. This study tests the hypothesis that TRPV2 plays an important role in regulating myocyte contractility under physiological conditions. Therefore, we measured cardiac and vascular function in wild-type and TRPV2−/− mice in vitro and in vivo and found that TRPV2 deletion resulted in a decrease in basal systolic and diastolic function without affecting loading conditions or vascular tone. TRPV2 stimulation with probenecid, a relatively selective TRPV2 agonist, caused an increase in both inotropy and lusitropy in wild-type mice that was blunted in TRPV2−/− mice. We examined the mechanism of TRPV2 inotropy/lusitropy in isolated myocytes and found that it modulates Ca2+ transients and sarcoplasmic reticulum Ca2+ loading. We show that the activity of this channel is necessary for normal cardiac function and that there is increased contractility in response to agonism of TRPV2 with probenecid. PMID:24322617
Autophagy as a Therapeutic Target in Cardiovascular Disease
Nemchenko, Andriy; Chiong, Mario; Turer, Aslan; Lavandero, Sergio; Hill, Joseph A.
2011-01-01
The epidemic of heart failure continues apace, and development of novel therapies with clinical efficacy has lagged. Now, important insights into the molecular circuitry of cardiovascular autophagy have raised the prospect that this cellular pathway of protein quality control may be a target of clinical relevance. Whereas basal levels of autophagy are required for cell survival, excessive levels – or perhaps distinct forms of autophagic flux – contribute to disease pathogenesis. Our challenge will be to distinguish mechanisms that drive adaptive versus maladaptive autophagy and to manipulate those pathways for therapeutic gain. Recent evidence suggests this may be possible. Here, we review the fundamental biology of autophagy and its role in a variety of forms of cardiovascular disease. We discuss ways in which this evolutionarily conserved catabolic mechanism can be manipulated, discuss studies presently underway in heart disease, and provide our perspective on where this exciting field may lead in the future. PMID:21723289
Effect of peptide histidine valine on cardiovascular and respiratory function in normal subjects.
Chilvers, E R; Dixon, C M; Yiangou, Y; Bloom, S R; Ind, P W
1988-01-01
Non-adrenergic inhibitory nerves may have an important role in regulating airway calibre. A recently discovered peptide, peptide histidine valine, is a potent relaxer of airway smooth muscle in vitro and has been proposed as a possible neurotransmitter in this tissue. The cardiovascular and respiratory effects of graded infusions of this peptide (2.5-10 pmol kg-1 min-1) have been examined in six normal subjects in a placebo controlled, randomised double blind study. The mean (SEM) peak plasma concentration of peptide histidine valine during the highest infusion rate was 2392 (170) pmol/l, representing a 29 fold increase above the basal concentration. This was accompanied by flushing, a significant increase in heart rate of 28 (3.7) beats/min and skin temperature of 1.8 degrees (0.16 degrees) C, but no effect on systolic or diastolic blood pressure. Despite these high plasma concentrations of the peptide and the substantial tachycardia and increase in skin blood flow, there was no change in partial expiratory flow at 40% of vital capacity (Vp40) or in the airway response to inhaled histamine (geometric PD40 9.37 and 9.73 mumol during saline and peptide histidine valine infusion respectively). Although these findings provide no support for a physiological role of peptide histidine valine in controlling airway function in healthy subjects, important effects of locally released peptides in the vasoactive intestinal peptide family cannot be excluded. PMID:3206383
Effect of peptide histidine valine on cardiovascular and respiratory function in normal subjects.
Chilvers, E R; Dixon, C M; Yiangou, Y; Bloom, S R; Ind, P W
1988-10-01
Non-adrenergic inhibitory nerves may have an important role in regulating airway calibre. A recently discovered peptide, peptide histidine valine, is a potent relaxer of airway smooth muscle in vitro and has been proposed as a possible neurotransmitter in this tissue. The cardiovascular and respiratory effects of graded infusions of this peptide (2.5-10 pmol kg-1 min-1) have been examined in six normal subjects in a placebo controlled, randomised double blind study. The mean (SEM) peak plasma concentration of peptide histidine valine during the highest infusion rate was 2392 (170) pmol/l, representing a 29 fold increase above the basal concentration. This was accompanied by flushing, a significant increase in heart rate of 28 (3.7) beats/min and skin temperature of 1.8 degrees (0.16 degrees) C, but no effect on systolic or diastolic blood pressure. Despite these high plasma concentrations of the peptide and the substantial tachycardia and increase in skin blood flow, there was no change in partial expiratory flow at 40% of vital capacity (Vp40) or in the airway response to inhaled histamine (geometric PD40 9.37 and 9.73 mumol during saline and peptide histidine valine infusion respectively). Although these findings provide no support for a physiological role of peptide histidine valine in controlling airway function in healthy subjects, important effects of locally released peptides in the vasoactive intestinal peptide family cannot be excluded.
Alexander, Jan; Aaseth, Jan
2016-01-01
Background Selenium is needed by all living cells in order to ensure the optimal function of several enzyme systems. However, the selenium content in the soil in Europe is generally low. Previous reports indicate that a dietary supplement of selenium could reduce cardiovascular disease but mainly in populations in low selenium areas. The objective of this secondary analysis of a previous randomised double-blind placebo-controlled trial from our group was to determine whether the effects on cardiovascular mortality of supplementation with a fixed dose of selenium and coenzyme Q10 combined during a four-year intervention were dependent on the basal level of selenium. Methods In 668 healthy elderly individuals from a municipality in Sweden, serum selenium concentration was measured. Of these, 219 individuals received daily supplementation with selenium (200 μg Se as selenized yeast) and coenzyme Q10 (200 mg) combined for four years. The remaining participants (n = 449) received either placebo (n = 222) or no treatment (n = 227). All cardiovascular mortality was registered. No participant was lost during a median follow-up of 5.2 years. Based on death certificates and autopsy results, all mortality was registered. Findings The mean serum selenium concentration among participants at baseline was low, 67.1 μg/L. Based on the distribution of selenium concentration at baseline, the supplemented group was divided into three groups; <65 μg/L, 65–85 μg/L, and >85 μg/L (45 and 90 percentiles) and the remaining participants were distributed accordingly. Among the non-treated participants, lower cardiovascular mortality was found in the high selenium group as compared with the low selenium group (13.0% vs. 24.1%; P = 0.04). In the group with the lowest selenium basal concentration, those receiving placebo or no supplementation had a mortality of 24.1%, while mortality was 12.1% in the group receiving the active substance, which was an absolute risk reduction of 12%. In the middle selenium concentration group a mortality of 14.0% in the non-treated group, and 6.0% in the actively treated group could be demonstrated; thus, there was an absolute risk reduction of 8.0%. In the group with a serum concentration of >85 μg/L, a cardiovascular mortality of 17.5% in the non-treated group, and 13.0% in the actively treated group was observed. No significant risk reduction by supplementation could thus be found in this group. Conclusions In this evaluation of healthy elderly Swedish municipality members, two important results could be reported. Firstly, a low mean serum selenium concentration, 67 μg/L, was found among the participants, and the cardiovascular mortality was higher in the subgroup with the lower selenium concentrations <65 μg/L in comparison with those having a selenium concentration >85 μg/L. Secondly, supplementation was cardio-protective in those with a low selenium concentration, ≤85 at inclusion. In those with serum selenium>85 μg/L and no apparent deficiency, there was no effect of supplementation. This is a small study, but it presents interesting data, and more research on the impact of lower selenium intake than recommended is therefore warranted. Trial Registration Clinicaltrials.gov NCT01443780 PMID:27367855
Cognitive-motor interactions of the basal ganglia in development
Leisman, Gerry; Braun-Benjamin, Orit; Melillo, Robert
2014-01-01
Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, language comprehension, and other cognitive functions associated with frontal lobes. The basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human reasoning and adaptive function. The basal ganglia are key elements in the control of reward-based learning, sequencing, discrete elements that constitute a complete motor act, and cognitive function. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. We know that the relation between the basal ganglia and the cerebral cortical region allows for connections organized into discrete circuits. Rather than serving as a means for widespread cortical areas to gain access to the motor system, these loops reciprocally interconnect a large and diverse set of cerebral cortical areas with the basal ganglia. Neuronal activity within the basal ganglia associated with motor areas of the cerebral cortex is highly correlated with parameters of movement. Neuronal activity within the basal ganglia and cerebellar loops associated with the prefrontal cortex is related to the aspects of cognitive function. Thus, individual loops appear to be involved in distinct behavioral functions. Damage to the basal ganglia of circuits with motor areas of the cortex leads to motor symptoms, whereas damage to the subcortical components of circuits with non-motor areas of the cortex causes higher-order deficits. In this report, we review some of the anatomic, physiologic, and behavioral findings that have contributed to a reappraisal of function concerning the basal ganglia and cerebellar loops with the cerebral cortex and apply it in clinical applications to attention deficit/hyperactivity disorder (ADHD) with biomechanics and a discussion of retention of primitive reflexes being highly associated with the condition. PMID:24592214
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Ashini; Coburn, Cary G.; Watson-Siriboe, Abena
2011-10-15
Polybrominated diphenyl ethers (PBDEs) and the structurally similar chemicals polychlorinated biphenyls (PCBs) disrupt the function of multiple endocrine systems. PCBs and PBDEs disrupt the secretion of vasopressin (VP) from the hypothalamus during osmotic activation. Since the peripheral and central vasopressinergic axes are critical for osmotic and cardiovascular regulation, we examined whether perinatal PBDE exposure could impact these functions during physiological activation. Rats were perinatally dosed with a commercial PBDE mixture, DE-71. Dams were given 0 (corn oil control), 1.7 (low dose) or 30.6 mg/kg/day (high dose) in corn oil from gestational day (GD) 6 through postnatal day (PND) 21 bymore » oral gavage. In the male offspring exposed to high dose PBDE plasma thyroxine and triiodothyronine levels were reduced at PND 21 and recovered to control levels by PND 60 when thyroid stimulating hormone levels were elevated. At 14-18 months of age, cardiovascular responses were measured in four groups of rats: Normal (Oil, normosmotic condition), Hyper (Oil, hyperosmotic stress), Hyper PBDE low (1.7 mg/kg/day DE-71 perinatally, hyperosmotic stress), and Hyper PBDE high (30.6 mg/kg/day DE-71 perinatally, hyperosmotic stress). Systolic blood pressure (BP), diastolic BP, and heart rate (HR) were determined using tail cuff sphygmomanometry and normalized to pretreatment values (baseline) measured under basal conditions. Hyperosmotic treatment yielded significant changes in systolic BP in PBDE exposed rats only. Hyper PBDE low and high dose rats showed 36.1 and 64.7% greater systolic BP responses at 3 h post hyperosmotic injection relative to pretreatment baseline, respectively. No treatment effects were measured for diastolic BP and HR. Hyper and Hyper PBDE rats showed increased mean plasma osmolality values by 45 min after injection relative to normosmotic controls. In contrast to Hyper rats, Hyper PBDE (high) rats showed a further increase in mean plasma osmolality at 3 h (358.3 {+-} 12.4 mOsm/L) relative to 45 min post hyperosmotic injection (325.1 {+-} 11.4 mOsm/L). Impaired osmoregulation in PBDE-treated animals could not be attributed to decreased levels of plasma vasopressin. Our findings suggest that developmental exposure to PBDEs may disrupt cardiovascular reactivity and osmoregulatory responses to physiological activation in late adulthood. - Highlights: > We examined whether PBDE exposure could impact osmotic and cardiovascular regulation. > Hyperosmotic treatment yielded significant changes in systolic BP in PBDE exposed rats only. > PBDEs may disrupt cardiovascular and osmoregulatory responses to physiological activation.« less
Mechanisms underlying the antimotion sickness effects of psychostimulants
NASA Technical Reports Server (NTRS)
Kohl, Randall L.; Lewis, Michael R.
1987-01-01
Data related to the mechanism responsible for the antimotion sickness effects of psychostimulants such as amphetamine are examined. From the analysis of current literature and new evidence, the following three hypotheses are suggested: (1) selective enhancement of dopaminergic, but not noradrenergic, transmission is sufficient to account for amphetamine-induced resistance and, perhaps, for natural resistance to motion sickness; (2) the site of this enhanced dopaminergic transmission is probably within the basal ganglia; and (3) the neuropharmacology of the basal ganglia, but not of the brain-stem vestibular areas, can account for the therapeutic synergism of scopolamine and amphetamine. The therapeutic action of psychostimulants may be dissociable from some of their side effects, particularly cardiovascular effects related to peripheral norepinephrine release.
Chang, Yu-Kai; Tsai, Jack Han-Chao; Wang, Chun-Chih; Chang, Erik Chihhung
2015-07-01
The aim of this study was to use diffusion tensor imaging (DTI) to characterize and compare microscopic differences in white matter integrity in the basal ganglia between elite professional athletes specializing in running and martial arts. Thirty-three young adults with sport-related skills as elite professional runners (n = 11) or elite professional martial artists (n = 11) were recruited and compared with non-athletic and healthy controls (n = 11). All participants underwent health- and skill-related physical fitness assessments. Fractional anisotropy (FA) and mean diffusivity (MD), the primary indices derived from DTI, were computed for five regions of interest in the bilateral basal ganglia, including the caudate nucleus, putamen, globus pallidus internal segment (GPi), globus pallidus external segment (GPe), and subthalamic nucleus. Results revealed that both athletic groups demonstrated better physical fitness indices compared with their control counterparts, with the running group exhibiting the highest cardiovascular fitness and the martial arts group exhibiting the highest muscular endurance and flexibility. With respect to the basal ganglia, both athletic groups showed significantly lower FA and marginally higher MD values in the GPi compared with the healthy control group. These findings suggest that professional sport or motor skill training is associated with changes in white matter integrity in specific regions of the basal ganglia, although these positive changes did not appear to depend on the type of sport-related motor skill being practiced.
Basal insulin and cardiovascular and other outcomes in dysglycemia.
Gerstein, Hertzel C; Bosch, Jackie; Dagenais, Gilles R; Díaz, Rafael; Jung, Hyejung; Maggioni, Aldo P; Pogue, Janice; Probstfield, Jeffrey; Ramachandran, Ambady; Riddle, Matthew C; Rydén, Lars E; Yusuf, Salim
2012-07-26
The provision of sufficient basal insulin to normalize fasting plasma glucose levels may reduce cardiovascular events, but such a possibility has not been formally tested. We randomly assigned 12,537 people (mean age, 63.5 years) with cardiovascular risk factors plus impaired fasting glucose, impaired glucose tolerance, or type 2 diabetes to receive insulin glargine (with a target fasting blood glucose level of ≤95 mg per deciliter [5.3 mmol per liter]) or standard care and to receive n-3 fatty acids or placebo with the use of a 2-by-2 factorial design. The results of the comparison between insulin glargine and standard care are reported here. The coprimary outcomes were nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes and these events plus revascularization or hospitalization for heart failure. Microvascular outcomes, incident diabetes, hypoglycemia, weight, and cancers were also compared between groups. The median follow-up was 6.2 years (interquartile range, 5.8 to 6.7). Rates of incident cardiovascular outcomes were similar in the insulin-glargine and standard-care groups: 2.94 and 2.85 per 100 person-years, respectively, for the first coprimary outcome (hazard ratio, 1.02; 95% confidence interval [CI], 0.94 to 1.11; P=0.63) and 5.52 and 5.28 per 100 person-years, respectively, for the second coprimary outcome (hazard ratio, 1.04; 95% CI, 0.97 to 1.11; P=0.27). New diabetes was diagnosed approximately 3 months after therapy was stopped among 30% versus 35% of 1456 participants without baseline diabetes (odds ratio, 0.80; 95% CI, 0.64 to 1.00; P=0.05). Rates of severe hypoglycemia were 1.00 versus 0.31 per 100 person-years. Median weight increased by 1.6 kg in the insulin-glargine group and fell by 0.5 kg in the standard-care group. There was no significant difference in cancers (hazard ratio, 1.00; 95% CI, 0.88 to 1.13; P=0.97). When used to target normal fasting plasma glucose levels for more than 6 years, insulin glargine had a neutral effect on cardiovascular outcomes and cancers. Although it reduced new-onset diabetes, insulin glargine also increased hypoglycemia and modestly increased weight. (Funded by Sanofi; ORIGIN ClinicalTrials.gov number, NCT00069784.).
The Roles of Primary Cilia in Cardiovascular System
2015-10-01
defect, oral facial syndrome, obesity , hypertension and others [60]. Primary cilia can be activated by bending through perfusing cells with fluid...synthase, was found to be elevated in PKD patients [125]. The correlation between hypertension and kidney volume occurs in the early childhood stages...involvement of centrosome and basal body dysfunction in the pathogenesis of obesity , insulin resistance, and type 2 diabetes. Diabetes 2005; 54(5
Effects of excess salt and fat intake on myocardial function and infarct size in rat.
Mozaffari, Mahmood S; Patel, Champa; Ballas, Claudia; Schaffer, Stephen W
2006-03-13
Important risk factors for cardiovascular disease include excess dietary intake of saturated fat and (or) salt. This study tested the hypothesis that excess intakes of saturated fat (e.g., beef tallow) and salt cause greater myocardial cell death following ischemia-reperfusion injury than each risk factor alone. Male rats were divided into four groups: basal fat diet (4.5% as calories; control), high fat diet (40% as calories; FAT), basal fat diet and high salt (1% NaCl solution; SALT) and high fat diet and high salt (FATSALT). The gain in body weight was significantly higher for FAT and FATSALT groups than those of either the control or the SALT group. Five weeks of exposure to the dietary regimens did not significantly affect the coronary flow rate and except for the salt-fed group, had no effect on the rate-pressure-product of the isolated heart perfused in Langendorff mode. Although infarct size was not affected by the high fat diet, it was reduced by the high salt regimen relative to the high fat diet or the control groups. When rats were fed the FAT and SALT combination, the effect of salt feeding on infarct size was not observed. In addition, the FATSALT group displayed a more marked deterioration in contractile function following ischemia-reperfusion injury than the other groups. In conclusion, short-term intake of a high fat diet, which significantly increases body weight, does not worsen ischemia-reperfusion injury although the treatment prevents the reduction of infarct size associated with high salt feeding.
Efficacy and Safety of Degludec versus Glargine in Type 2 Diabetes.
Marso, Steven P; McGuire, Darren K; Zinman, Bernard; Poulter, Neil R; Emerson, Scott S; Pieber, Thomas R; Pratley, Richard E; Haahr, Poul-Martin; Lange, Martin; Brown-Frandsen, Kirstine; Moses, Alan; Skibsted, Simon; Kvist, Kajsa; Buse, John B
2017-08-24
Degludec is an ultralong-acting, once-daily basal insulin that is approved for use in adults, adolescents, and children with diabetes. Previous open-label studies have shown lower day-to-day variability in the glucose-lowering effect and lower rates of hypoglycemia among patients who received degludec than among those who received basal insulin glargine. However, data are lacking on the cardiovascular safety of degludec. We randomly assigned 7637 patients with type 2 diabetes to receive either insulin degludec (3818 patients) or insulin glargine U100 (3819 patients) once daily between dinner and bedtime in a double-blind, treat-to-target, event-driven cardiovascular outcomes trial. The primary composite outcome in the time-to-event analysis was the first occurrence of an adjudicated major cardiovascular event (death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke) with a prespecified noninferiority margin of 1.3. Adjudicated severe hypoglycemia, as defined by the American Diabetes Association, was the prespecified, multiplicity-adjusted secondary outcome. Of the patients who underwent randomization, 6509 (85.2%) had established cardiovascular disease, chronic kidney disease, or both. At baseline, the mean age was 65.0 years, the mean duration of diabetes was 16.4 years, and the mean (±SD) glycated hemoglobin level was 8.4±1.7%; 83.9% of the patients were receiving insulin. The primary outcome occurred in 325 patients (8.5%) in the degludec group and in 356 (9.3%) in the glargine group (hazard ratio, 0.91; 95% confidence interval, 0.78 to 1.06; P<0.001 for noninferiority). At 24 months, the mean glycated hemoglobin level was 7.5±1.2% in each group, whereas the mean fasting plasma glucose level was significantly lower in the degludec group than in the glargine group (128±56 vs. 136±57 mg per deciliter, P<0.001). Prespecified adjudicated severe hypoglycemia occurred in 187 patients (4.9%) in the degludec group and in 252 (6.6%) in the glargine group, for an absolute difference of 1.7 percentage points (rate ratio, 0.60; P<0.001 for superiority; odds ratio, 0.73; P<0.001 for superiority). Rates of adverse events did not differ between the two groups. Among patients with type 2 diabetes at high risk for cardiovascular events, degludec was noninferior to glargine with respect to the incidence of major cardiovascular events. (Funded by Novo Nordisk and others; DEVOTE ClinicalTrials.gov number, NCT01959529 .).
Basal paravian functional anatomy illuminated by high-detail body outline
Wang, Xiaoli; Pittman, Michael; Zheng, Xiaoting; Kaye, Thomas G.; Falk, Amanda R.; Hartman, Scott A.; Xu, Xing
2017-01-01
Body shape is a fundamental expression of organismal biology, but its quantitative reconstruction in fossil vertebrates is rare. Due to the absence of fossilized soft tissue evidence, the functional consequences of basal paravian body shape and its implications for the origins of avians and flight are not yet fully understood. Here we reconstruct the quantitative body outline of a fossil paravian Anchiornis based on high-definition images of soft tissues revealed by laser-stimulated fluorescence. This body outline confirms patagia-bearing arms, drumstick-shaped legs and a slender tail, features that were probably widespread among paravians. Finely preserved details also reveal similarities in propatagial and footpad form between basal paravians and modern birds, extending their record to the Late Jurassic. The body outline and soft tissue details suggest significant functional decoupling between the legs and tail in at least some basal paravians. The number of seemingly modern propatagial traits hint that feathering was a significant factor in how basal paravians utilized arm, leg and tail function for aerodynamic benefit. PMID:28248287
DOR undergoes nucleo-cytoplasmic shuttling, which involves passage through the nucleolus.
Mauvezin, Caroline; Sancho, Ana; Ivanova, Saska; Palacin, Manuel; Zorzano, Antonio
2012-09-21
DOR is a bi-functional protein that regulates transcription and enhances starvation-induced autophagy. While autophagy has been mostly described as a stress-response mechanism, cells also need autophagy to maintain homeostasis in basal conditions. However, the mechanisms regulating basal autophagy still remain unknown. Our results show that DOR acts in basal autophagy. Indeed, DOR already undergoes nucleo-cytoplasmic shuttling in basal conditions and, surprisingly, DOR exits continuously the nucleus and traverses the nucleolus. However, the nucleolus integrity is not essential for both DOR nucleo-cytoplasmic shuttling and DOR function on basal autophagy. Taken together, we propose that DOR exit from the nucleus is essential for basal autophagy stimulation even under nucleolus disruption. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Coste, S C; Kesterson, R A; Heldwein, K A; Stevens, S L; Heard, A D; Hollis, J H; Murray, S E; Hill, J K; Pantely, G A; Hohimer, A R; Hatton, D C; Phillips, T J; Finn, D A; Low, M J; Rittenberg, M B; Stenzel, P; Stenzel-Poore, M P
2000-04-01
The actions of corticotropin-releasing hormone (Crh), a mediator of endocrine and behavioural responses to stress, and the related hormone urocortin (Ucn) are coordinated by two receptors, Crhr1 (encoded by Crhr) and Crhr2. These receptors may exhibit distinct functions due to unique tissue distribution and pharmacology. Crhr-null mice have defined central functions for Crhr1 in anxiety and neuroendocrine stress responses. Here we generate Crhr2-/- mice and show that Crhr2 supplies regulatory features to the hypothalamic-pituitary-adrenal axis (HPA) stress response. Although initiation of the stress response appears to be normal, Crhr2-/- mice show early termination of adrenocorticotropic hormone (Acth) release, suggesting that Crhr2 is involved in maintaining HPA drive. Crhr2 also appears to modify the recovery phase of the HPA response, as corticosterone levels remain elevated 90 minutes after stress in Crhr2-/- mice. In addition, stress-coping behaviours associated with dearousal are reduced in Crhr2-/- mice. We also demonstrate that Crhr2 is essential for sustained feeding suppression (hypophagia) induced by Ucn. Feeding is initially suppressed in Crhr2-/- mice following Ucn, but Crhr2-/- mice recover more rapidly and completely than do wild-type mice. In addition to central nervous system effects, we found that, in contrast to wild-type mice, Crhr2-/- mice fail to show the enhanced cardiac performance or reduced blood pressure associated with systemic Ucn, suggesting that Crhr2 mediates these peripheral haemodynamic effects. Moreover, Crhr2-/- mice have elevated basal blood pressure, demonstrating that Crhr2 participates in cardiovascular homeostasis. Our results identify specific responses in the brain and periphery that involve Crhr2.
Karamitsos, Theodoros D; Hudsmith, Lucy E; Selvanayagam, Joseph B; Neubauer, Stefan; Francis, Jane M
2007-01-01
Accurate and reproducible measurement of left ventricular (LV) mass and function is a significant strength of Cardiovascular Magnetic Resonance (CMR). Reproducibility and accuracy of these measurements is usually reported between experienced operators. However, an increasing number of inexperienced operators are now training in CMR and are involved in post-processing analysis. The aim of the study was to assess the interobserver variability of the manual planimetry of LV contours amongst two experienced and six inexperienced operators before and after a two months training period. Ten healthy normal volunteers (5 men, mean age 34+/-14 years) comprised the study population. LV volumes, mass, and ejection fraction were manually evaluated using Argus software (Siemens Medical Solutions, Erlangen, Germany) for each subject, once by the two experienced and twice by the six inexperienced operators. The mean values of experienced operators were considered the reference values. The agreement between operators was evaluated by means of Bland-Altman analysis. Training involved standardized data acquisition, simulated off-line analysis and mentoring. The trainee operators demonstrated improvement in the measurement of all the parameters compared to the experienced operators. The mean ejection fraction variability improved from 7.2% before training to 3.7% after training (p=0.03). The parameter in which the trainees showed the least improvement was LV mass (from 7.7% to 6.7% after training). The basal slice selection and contour definition were the main sources of errors. An intensive two month training period significantly improved the accuracy of LV functional measurements. Adequate training of new CMR operators is of paramount importance in our aim to maintain the accuracy and high reproducibility of CMR in LV function analysis.
Mechanisms of CaMKII Activation in the Heart.
Erickson, Jeffrey R
2014-01-01
Calcium/calmodulin (Ca(2+)/CaM) dependent protein kinase II (CaMKII) has emerged as a key nodal protein in the regulation of cardiac physiology and pathology. Due to the particularly elegant relationship between the structure and function of the kinase, CaMKII is able to translate a diverse set of signaling events into downstream physiological effects. While CaMKII is typically autoinhibited at basal conditions, prolonged rapid Ca(2+) cycling can activate the kinase and allow post-translational modifications that depend critically on the biochemical environment of the heart. These modifications result in sustained, autonomous CaMKII activation and have been associated with pathological cardiac signaling. Indeed, improved understanding of CaMKII activation mechanisms could potentially lead to new clinical therapies for the treatment or prevention of cardiovascular disease. Here we review the known mechanisms of CaMKII activation and discuss some of the pathological signaling pathways in which they play a role.
Mori, Fumika; Okada, Ken-Ichi; Nomura, Taishin; Kobayashi, Yasushi
2016-01-01
As an important component of ascending activating systems, brainstem cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg) are involved in the regulation of motor control (locomotion, posture and gaze) and cognitive processes (attention, learning and memory). The PPTg is highly interconnected with several regions of the basal ganglia, and one of its key functions is to regulate and relay activity from the basal ganglia. Together, they have been implicated in the motor control system (such as voluntary movement initiation or inhibition), and modulate aspects of executive function (such as motivation). In addition to its intimate connection with the basal ganglia, projections from the PPTg to the cerebellum have been recently reported to synaptically activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were regarded as forming separated anatomical loops that play a distinct functional role in motor and cognitive behavioral control. Here, we suggest that the PPTg may also act as an interface device between the basal ganglia and cerebellum. As such, part of the therapeutic effect of PPTg deep brain stimulation (DBS) to relieve gait freezing and postural instability in advanced Parkinson's disease (PD) patients might also involve modulation of the cerebellum. We review the anatomical position and role of the PPTg in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive function and PD.
Xu, Benjamin; Sandrini, Marco; Wang, Wen-tung; Smith, Jason F.; Sarlls, Joelle E.; Awosika, Oluwole; Butman, John A.; Horwitz, Barry; Cohen, Leonardo G.
2016-01-01
Previous work using transcranial magnetic stimulation (TMS) demonstrated that the right pre-supplementary motor area (preSMA), a node in the fronto-basal-ganglia network, is critical for response inhibition. However, TMS influences interconnected regions, raising the possibility of a link between the preSMA activity and the functional connectivity within the network. To understand this relationship, we applied single-pulse TMS to the right preSMA during functional magnetic resonance imaging when the subjects were at rest to examine changes in neural activity and functional connectivity within the network in relation to the efficiency of response inhibition evaluated with a stop-signal task. The results showed that preSMA-TMS increased activation in the right inferior-frontal cortex (rIFC) and basal ganglia and modulated their task-free functional connectivity. Both the TMS-induced changes in the basal-ganglia activation and the functional connectivity between rIFC and left striatum, and of the overall network correlated with the efficiency of response inhibition and with the white-matter microstructure along the preSMA – rIFC pathway. These results suggest that the task-free functional and structural connectivity between the rIFCop and basal ganglia are critical to the efficiency of response inhibition. PMID:27144466
Iacovides, Stella; Meiring, Rebecca M
2018-01-23
Many physiological health benefits observed after following a ketogenic diet (KD) can be attributed to the associated weight loss. The KD has become more prominent as a popular health choice, not only in obese/overweight individuals, but also in healthy adults. The study aims to determine the effects of a KD, independent of weight loss, on various aspects of physiological health including: sleep, thyroid function, cognition, and cardio-metabolic health. The study will also aim to determine whether a change in basal metabolic rate may be associated with any changes observed. Twenty healthy men and women between 18 and 50 years of age will take part in this study. In a randomized controlled, cross-over design, participants will follow two isocaloric diets: a high-carbohydrate, low-fat diet (55% CHO, 20% fat, 25% protein) and a KD (15% CHO, 60% fat, 25% protein). Each dietary intervention will last for a minimum of 3 weeks, with a 1-week washout period in between. Before and after each diet, participants will be assessed for sleep quality, cognitive function, thyroid function, and basal metabolic rate. A blood sample will also be taken for the measurement of cardio-metabolic and immune markers. The present study will help in understanding the potential effects of a KD on aspects of physiological health in healthy adults, without the confounding factor of weight loss. The study aims to fill a significant void in the academic literature with regards to the benefits and/or risks of a KD in a healthy population, but will also explore whether diet-related metabolic changes may be responsible for the changes observed in physiological health. Pan African Clinical Trial Registry ( www.pactr.org ), trial number: PACTR201707002406306 . Registered on 20 July 2017.
Vismodegib (ERIVEDGE°) In basal cell carcinoma: too many unknowns.
2015-01-01
Basal cell carcinomas are the most common skin cancers. They are usually localised and carry a good prognosis. There is no standard treatment for the rare patients with metastatic basal cell carcinoma or very extensive basal cell carcinoma for whom surgery or radiotherapy is inappropriate. Vismodegib, a cytotoxic drug, is claimed to prevent tumour growth by inhibiting a pathway involved in tissue repair and embryogenesis. It has been authorised in the European Union for patients with metastatic or locally advanced and extensive basal cell carcinoma. Clinical evaluation of vismodegib is based on a non-comparative clinical trial involving 104 patients, providing only weak evidence. Twenty-one months after the start of the trial, 7 patients with metastases (21%) and 6 patients with advanced basal cell carcinoma (10%) had died. Given the lack of a placebo group, there is no way of knowing whether vismodegib had any effect, positive or negative, on survival. There were no complete responses among patients with metastases, but about one-third of them had partial responses. Among the 63 patients with locally advanced basal cell carcinoma, there were 14 complete responses and 16 partial responses. The recurrence rate in patients with complete responses was not reported. Similar results were reported in two other uncontrolled trials available in mid-2014. Vismodegib has frequent and sometimes serious adverse effects, including muscle spasms, fatigue and severe hyponatraemia. Cases of severe weight loss, alopecia, ocular disorders, other cancers (including squamous cell carcinoma) and anaemia have also been reported. More data are needed on possible hepatic and cardiovascular adverse effects. A potent teratogenic effect was seen in experimental animals. As vismodegib enters semen, contraception is mandatory for both men (condoms) and women. In practice, vismodegib has frequent and varied adverse effects, some of which are serious, while its benefits are poorly documented. Vismodegib should only be proposed to patients in whom basal cell cancer markedly undermines quality of life, and only in the context of clinical research.
Dong, Qiaoxiang; Gao, Hui; Shi, Yuanshuo; Zhang, Fuchuang; Gu, Xiang; Wu, Anqi; Wang, Danhan; Chen, Yuanhong; Bandyopadhyay, Abhik; Yeh, I-Tien; Daniel, Benjamin J.; Chen, Yidong; Zou, Yi; Rebel, Vivienne L.; Walter, Christi A.; Lu, Jianxin; Huang, Changjiang; Sun, Lu-Zhe
2016-01-01
Breast cancer incidence increases during aging, yet the mechanism of age-associated mammary tumorigenesis is unclear. Mammary stem cells are believed to play an important role in breast tumorigenesis, but how their function changes with age is unknown. We compared mammary epithelial cells isolated from young and old mammary glands of different cohorts of C57BL6/J and BALB/c mice, and our findings revealed that old mammary glands were characterized by increased basal cell pool comprised of mostly CD49fhi cells, altered luminal-to-basal cell ratio, and irregular ductal morphology. More interestingly, basal stem cells in old mice were increased in frequency, but showed a functional decline of differentiation and increased neoplastic transformation potential. Gene signature enrichment analysis revealed a significant enrichment of a luminal cell gene expression signature in the basal stem cell-enriched population from old mice, suggesting some luminal cells were expressing basal markers. Immunofluorescence staining confirmed the presence of luminal cells with high CD49f expression in hyperplastic lesions implicating these cells as undergoing luminal to basal phenotypic changes during aging. Whole transcriptome analysis showed elevated immune and inflammatory responses in old basal stem cells and stromal cells, which may be the underlying cause for increased CD49fhi basal-like cells in aged glands. PMID:27852980
Dong, Qiaoxiang; Gao, Hui; Shi, Yuanshuo; Zhang, Fuchuang; Gu, Xiang; Wu, Anqi; Wang, Danhan; Chen, Yuanhong; Bandyopadhyay, Abhik; Yeh, I-Tien; Daniel, Benjamin J; Chen, Yidong; Zou, Yi; Rebel, Vivienne L; Walter, Christi A; Lu, Jianxin; Huang, Changjiang; Sun, Lu-Zhe
2016-11-15
Breast cancer incidence increases during aging, yet the mechanism of age-associated mammary tumorigenesis is unclear. Mammary stem cells are believed to play an important role in breast tumorigenesis, but how their function changes with age is unknown. We compared mammary epithelial cells isolated from young and old mammary glands of different cohorts of C57BL6/J and BALB/c mice, and our findings revealed that old mammary glands were characterized by increased basal cell pool comprised of mostly CD49f hi cells, altered luminal-to-basal cell ratio, and irregular ductal morphology. More interestingly, basal stem cells in old mice were increased in frequency, but showed a functional decline of differentiation and increased neoplastic transformation potential. Gene signature enrichment analysis revealed a significant enrichment of a luminal cell gene expression signature in the basal stem cell-enriched population from old mice, suggesting some luminal cells were expressing basal markers. Immunofluorescence staining confirmed the presence of luminal cells with high CD49f expression in hyperplastic lesions implicating these cells as undergoing luminal to basal phenotypic changes during aging. Whole transcriptome analysis showed elevated immune and inflammatory responses in old basal stem cells and stromal cells, which may be the underlying cause for increased CD49f hi basal-like cells in aged glands.
NASA Technical Reports Server (NTRS)
Mehler, William R.
1981-01-01
Our review has shown that recent studies with the new anterograde and retrograde axon transport methods have confirmed and extended our knowledge of the projection of the basal ganglia and clarified their sites of origin. They have thrown new light on certain topographic connectional relationships and revealed several new reciprocal connections between constituent nuclei of the basal ganglia. Similarly, attention has been drawn to the fact that there have also been many new histochemical techniques introduced in recent years that are now providing regional biochemical overlays for connectional maps of the central nervous system, especially regions in, or interconnecting with, the basal ganglia. However, although these new morphological biochemical maps are very complex and technically highly advanced, our understanding of the function controlled by the basal ganglia still remains primitive. The reader who is interested in some new ideas of the functional aspects of the basal ganglia is directed to Nauta's proposed conceptual reorganization of the basal ganglia telencephalon and to Marsden's more clinically orientated appraisal of the unsolved mysteries of the basal ganglia participation in the control of movement.
A spiking neural network based on the basal ganglia functional anatomy.
Baladron, Javier; Hamker, Fred H
2015-07-01
We introduce a spiking neural network of the basal ganglia capable of learning stimulus-action associations. We model learning in the three major basal ganglia pathways, direct, indirect and hyperdirect, by spike time dependent learning and considering the amount of dopamine available (reward). Moreover, we allow to learn a cortico-thalamic pathway that bypasses the basal ganglia. As a result the system develops new functionalities for the different basal ganglia pathways: The direct pathway selects actions by disinhibiting the thalamus, the hyperdirect one suppresses alternatives and the indirect pathway learns to inhibit common mistakes. Numerical experiments show that the system is capable of learning sets of either deterministic or stochastic rules. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rolinski, Michal; Griffanti, Ludovica; Piccini, Paola; Roussakis, Andreas A; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A; Quinnell, Timothy; Zaiwalla, Zenobia; Klein, Johannes C; Mackay, Clare E; Hu, Michele T M
2016-08-01
SEE POSTUMA DOI101093/AWW131 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson's disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson's disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson's disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson's disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson's disease and 10 control subjects received (123)I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye movement sleep behaviour disorder and Parkinson's disease relative to each other and to controls. Connectivity measures of basal ganglia network dysfunction differentiated both rapid eye movement sleep behaviour disorder and Parkinson's disease from controls with high sensitivity (96%) and specificity (74% for rapid eye movement sleep behaviour disorder, 78% for Parkinson's disease), indicating its potential as an indicator of early basal ganglia dysfunction. Rapid eye movement sleep behaviour disorder was indistinguishable from Parkinson's disease on resting state functional magnetic resonance imaging despite obvious differences on dopamine transported single photon emission computerized tomography. Basal ganglia connectivity is a promising biomarker for the detection of early basal ganglia network dysfunction, and may help to identify patients at risk of developing Parkinson's disease in the future. Future risk stratification using a polymodal approach could combine basal ganglia network connectivity with clinical and other imaging measures, with important implications for future neuroprotective trials in rapid eye movement sleep behaviour disorder. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
Rolinski, Michal; Griffanti, Ludovica; Piccini, Paola; Roussakis, Andreas A.; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A.; Quinnell, Timothy; Zaiwalla, Zenobia; Klein, Johannes C.; Mackay, Clare E.
2016-01-01
Abstract See Postuma (doi:10.1093/aww131) for a scientific commentary on this article. Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson’s disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson’s disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson’s disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson’s disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson’s disease and 10 control subjects received 123I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye movement sleep behaviour disorder and Parkinson’s disease relative to each other and to controls. Connectivity measures of basal ganglia network dysfunction differentiated both rapid eye movement sleep behaviour disorder and Parkinson’s disease from controls with high sensitivity (96%) and specificity (74% for rapid eye movement sleep behaviour disorder, 78% for Parkinson’s disease), indicating its potential as an indicator of early basal ganglia dysfunction. Rapid eye movement sleep behaviour disorder was indistinguishable from Parkinson’s disease on resting state functional magnetic resonance imaging despite obvious differences on dopamine transported single photon emission computerized tomography. Basal ganglia connectivity is a promising biomarker for the detection of early basal ganglia network dysfunction, and may help to identify patients at risk of developing Parkinson’s disease in the future. Future risk stratification using a polymodal approach could combine basal ganglia network connectivity with clinical and other imaging measures, with important implications for future neuroprotective trials in rapid eye movement sleep behaviour disorder. PMID:27297241
Kario, Kazuomi; Tomitani, Naoko; Matsumoto, Yuri; Hamasaki, Haruna; Okawara, Yukie; Kondo, Maiko; Nozue, Ryoko; Yamagata, Hiromi; Okura, Ayako; Hoshide, Satoshi
2016-01-01
Asians have specific characteristics of hypertension (HTN) and its relationship with cardiovascular disease. The morning surge in blood pressure (BP) in Asians is more extended, and the association slope between higher BP and the risk for cardiovascular events is steeper in this population than in whites. Thus, 24-hour BP control including at night and in the morning is especially important for Asian patients with HTN. There are 3 components of "perfect 24-hour BP control": the 24-hour BP level, adequate dipping of nocturnal BP (dipper type), and adequate BP variability such as the morning BP surge. The morning BP-guided approach using home BP monitoring (HBPM) is the first step toward perfect 24-hour BP control. After controlling morning HTN, nocturnal HTN is the second target. We have been developing HBPM that can measure nocturnal BP. First, we developed a semiautomatic HBPM device with the function of automatic fixed-interval BP measurement during sleep. In the J-HOP (Japan Morning Surge Home Blood Pressure) study, the largest nationwide home BP cohort, we successfully measured nocturnal home BP using this device with data memory, 3 times during sleep (2, 3, and 4 am), and found that nocturnal home BP is significantly correlated with organ damage independently of office and morning BP values. The second advance was the development of trigger nocturnal BP (TNP) monitoring with an added trigger function that initiates BP measurements when oxygen desaturation falls below a variable threshold continuously monitored by pulse oximetry. TNP can detect the specific nocturnal BP surges triggered by hypoxic episodes in patients with sleep apnea syndrome. We also added the lowest heart rate-trigger function to TNP to detect the "basal nocturnal BP," which is determined by the circulating volume and structural cardiovascular system without any increase in sympathetic tonus. This double TNP is a novel concept for evaluating the pathogenic pressor mechanism of nocturnal BP. These data are now collected using an information and communication technology (ICT)-based monitoring system. The BP variability includes different time-phase variability from the shortest beat-by-beat, positional, diurnal, day-by-day, visit-to-visit, seasonal, and the longest yearly changes. The synergistic resonance of each type of BP variability would produce great dynamic BP surges, which trigger cardiovascular events. Thus, in the future, the management of HTN based on the simultaneous assessment of the resonance of all of the BP variability phenotypes using a wearable "surge" BP monitoring device with an ICT-based data analysis system will contribute to the ultimate individualized medication for cardiovascular disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Bernatova, Iveta; Dubovicky, Michal; Price, William A; Grubbs, Robert D; Lucot, James B; Morris, Mariana
2003-03-01
Experiments were performed to determine the effect of chronic low-dose pyridostigmine bromide (PB) treatment on blood acetylcholinesterase (AChE), cardiovascular (CV) function, and behavior in C57BL/6J male mice. Chronic carotid arterial catheters were used for long-term CV measurements and for collection of blood samples. Separate groups of mice were used for behavioral open field tests. PB was administered subcutaneously using osmotic minipumps at 1 and 3 mg/kg/day for 7 days. Blood pressure and heart rate (HR) were measured continuously for 24 h before treatment and on Days 3 and 7 after minipump insertion. Blood samples were collected on the same days. Mean arterial pressure (MAP) of the control group was 108+/-2 and 104+/-2 mm Hg during the dark and light periods, respectively. HR was 510+/-18 and 493+/-19 beats/min during the dark and light periods, respectively. PB treatment had no effect on MAP or HR in either dark or light period. Basal AChE activity was 0.42+/-0.1 micromol/min/ml, with no changes observed with PB at 1 mg/kg/day. The higher PB dose (3 mg/kg/day) decreased blood AChE activity by 85% on Day 7. Despite the reduction in blood AChE activity, there were no alterations in open field behaviors (locomotor activity, rearing, distance traveled, rest time, number of entries, and pokes). In conclusion, chronic low-dose PB exposure decreased blood AChE activity but had no effect on CV function or behavior in mice.
Laird, A S; Carrive, P; Waite, P M E
2006-01-01
In patients with high spinal cord injuries autonomic dysfunction can be dangerous, leading to medical complications such as postural hypotension, autonomic dysreflexia and temperature disturbance. While animal models have been developed to study autonomic dysreflexia, associated temperature changes have not been documented. Our aim here was to use radiotelemetry and infrared thermography in rodents to record the development of cardiovascular and skin temperature changes following complete T4 transection. In adult male Wistar rats (n = 5), responses were assessed prior to spinal cord injury (intact) and for 6 weeks following injury. Statistical analysis by a repeated-measure ANOVA revealed that following spinal cord injury (SCI), rats exhibited decreased mean arterial pressure (MAP, average decrease of 26 mmHg; P < 0.035) and elevated heart rate (HR, average increase of 65 bpm, P < 0.035) at rest. The basal core body temperature following SCI was also significantly lower than intact levels (−0.9°C; P < 0.0035). Associated with this decreased basal core temperature following SCI was an increased skin temperature of the mid-tail and hindpaw (+5.6 and +4.0°C, respectively; P < 0.0003) consistent with decreased cutaneous vasoconstrictor tone. Autonomic dysreflexia, in response to a 1 min colorectal distension (25 mmHg), was fully developed by 4 weeks after spinal cord transection, producing increases in MAP greater than 25 mmHg (P < 0.0003). In contrast to the tachycardia seen in intact animals in response to colorectal distension, SCI animals exhibited bradycardia (P < 0.0023). During episodes of autonomic dysreflexia mid-tail surface temperature decreased (approx. −1.7°C, P < 0.012), consistent with cutaneous vasoconstriction. This is the first study to compare cardiovascular dysfunction with temperature changes following spinal cord transection in rats. PMID:16973703
Barbosa, Milena Maria de Araújo Lima; Melo, Alexandra Lorenzzi Trinanes Raposo de; Damasceno, Nágila Raquel Teixeira
2017-02-01
The aim of this study was to analyze whether ω-3 supplementation improves cardiometabolic profile in individuals with cardiovascular risk factors and to determine the effect of adiponectin levels on these changes. In this double-blind, placebo-controlled, 2-mo clinical trial, we randomized 80 individuals of both sexes (mean age 52 y) with at least one cardiovascular risk factor (excess weight, hypertension, dyslipidemia, diabetes, or smoking) into two groups: ω-3 (supplemented with 3 g/d of fish oil containing 37% eicosapentaenoic acid and 23% docosahexaenoic acid) and placebo (3 g/d of sunflower oil containing 65% linoleic acid). At baseline and after the intervention, we evaluated serum adiponectin, leptin, lipid profile, apolipoproteins (apo), electronegative low-density lipoprotein (LDL[-]), and glucose metabolism (glucose and insulin). After supplementation, the ω-3 group showed an increase in serum adiponectin. After stratifying the ω-3 group by adiponectin concentration at baseline, participants with lower adiponectin concentration showed a higher reduction of total cholesterol, LDL, LDL/high-density lipoprotein ratio, LDL/apo B, and LDL(-). Individuals with a higher variation of adiponectin concentration after ω-3 supplementation presented with reduced blood glucose. The variation of serum adiponectin induced by ω-3 supplementation was negatively correlated with the Framingham and Adult Treatment Panel IV scores (r = -0.4 and P < 0.05 for both). Adiponectin is shown as one of the mechanisms by which ω-3 improves cardiometabolic profile in persons with cardiovascular risk. Moreover, the benefit varies according to the adiponectin basal level and adiponectin variation after supplementation. Copyright © 2016 Elsevier Inc. All rights reserved.
Chronobiology in aortic diseases - "is this really a random phenomenon?".
Manfredini, Roberto; Fabbian, Fabio; Manfredini, Fabio; Salmi, Raffaella; Gallerani, Massimo; Bossone, Eduardo
2013-01-01
Although acute aortic rupture or dissection is relatively uncommon, it ranks in third position among necropsy-confirmed causes of out-of-hospital sudden death in the general population. Similar to other acute cardiovascular events (e.g., acute myocardial infarction, sudden death, stroke, and pulmonary embolism) there is a growing body of evidence regarding temporal patterns in onset, characterized by circadian, seasonal and weekly variations for aortic aneurysms. On one hand, it is possible that these cardiovascular diseases share common underlying pathophysiologic mechanisms, e.g., increase in blood pressure, heart rate, sympathetic activity, basal vascular tone, vasoconstrictive hormones, and prothrombotic tendency. On the other hand, the possibility exists that the connecting link is an internal disruption (dyssynchrony) of some molecular mechanisms intrinsic to the peripheral biological clock (that of cardiomyocyte is the most widely investigated). Such disruption may contribute to cardiovascular disease and biological rhythms - an intriguing hypothesis for future research. Copyright © 2013 Elsevier Inc. All rights reserved.
MR-DTI and PET multimodal imaging of dopamine release within subdivisions of basal ganglia
NASA Astrophysics Data System (ADS)
Tziortzi, A.; Searle, G.; Tsoumpas, C.; Long, C.; Shotbolt, P.; Rabiner, E.; Jenkinson, M.; Gunn, R. N.
2011-09-01
The basal ganglia is a group of anatomical nuclei, functionally organised into limbic, associative and sensorimotor regions, which plays a central role in dopamine related neurological and psychiatric disorders. In this study, we combine two imaging modalities to enable the measurement of dopamine release in functionally related subdivisions of the basal ganglia. [11C]-(+)-PHNO Positron Emission Tomography (PET) measurements in the living human brain pre- and post-administration of amphetamine allow for the estimation of regional dopamine release. Combined Magnetic Resonance Diffusion Tensor Imaging (MR-DTI) data allows for the definition of functional territories of the basal ganglia from connectivity information. The results suggest that there is a difference in dopamine release among the connectivity derived functional subdivisions. Dopamine release is highest in the limbic area followed by the sensorimotor and then the associative area with this pattern reflected in both striatum and pallidum.
Xu, Benjamin; Sandrini, Marco; Wang, Wen-Tung; Smith, Jason F; Sarlls, Joelle E; Awosika, Oluwole; Butman, John A; Horwitz, Barry; Cohen, Leonardo G
2016-09-01
Previous work using transcranial magnetic stimulation (TMS) demonstrated that the right presupplementary motor area (preSMA), a node in the fronto-basal-ganglia network, is critical for response inhibition. However, TMS influences interconnected regions, raising the possibility of a link between the preSMA activity and the functional connectivity within the network. To understand this relationship, we applied single-pulse TMS to the right preSMA during functional magnetic resonance imaging when the subjects were at rest to examine changes in neural activity and functional connectivity within the network in relation to the efficiency of response inhibition evaluated with a stop-signal task. The results showed that preSMA-TMS increased activation in the right inferior-frontal cortex (rIFC) and basal ganglia and modulated their task-free functional connectivity. Both the TMS-induced changes in the basal-ganglia activation and the functional connectivity between rIFC and left striatum, and of the overall network correlated with the efficiency of response inhibition and with the white-matter microstructure along the preSMA-rIFC pathway. These results suggest that the task-free functional and structural connectivity between the rIFCop and basal ganglia are critical to the efficiency of response inhibition. Hum Brain Mapp 37:3236-3249, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Montero Alonso, Miguel A; González-Jiménez, Emilio
2013-01-01
The first objective of this study was to evaluate the nutritional status and insulin resistance index in a population of adolescents as calculated by Homeostatic Model Assessment (HOMA). The second objective was to establish correlations between the nutritional status of the subjects, the possible existence of insulin resistance, and the risk of high blood pressure. POPULATION SAMPLE AND METHODOLOGY: The sample was composed of 1001 adolescents, 9-17 years of age, from 18 schools in the provinces of Granada and Almeria. Their nutritional status was determined by means of anthropometric evaluation. For the metabolic study, a blood sample was collected from each subject by venipuncture. An analysis was performed of the basal glucose and insulin levels as well as the Homeostatic Model Assessment- Insulin Resistance (HOMAIR) index. Also evaluated were the levels of glycosylated haemoglobin (HbA1c), serum lipoprotein (a), and non-esterified fatty acids (NEFAs). Insulin resistance was calculated with the formula, proposed by Matthews et al. (1985) : HOMA-IR = (insulin[mmol/L] x glucose[mU/L])/22.5. The evaluation of the nutritional status of the subjects reflected a progressive increase in the values of anthropometric variables as the nutritional status of the subjects worsened. The results of this study showed, regardless of age and gender, 85.01% of the subjects were of normal weight, whereas 9.99% were overweight, and 4.99% were obese. The metabolic study reflected that in comparison to normal-weight and overweight students, obese students had significantly higher serum levels (p < 0,0001) of HbA1c, basal insulin, basal glycemia, basal NEFA, lipoprotein (a), and HOMA-IR. Obesity was found to be a serious health problem in the population of adolescents studied, especially given the high cardiovascular risk that is characteristic of this condition. As reflected in the results of this study, obesity led to the premature development of metabolic disorders, which generally do not appear until adulthood. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.
Zhou, Shanshan; Jin, Jingpeng; Bai, Tao; Sachleben, Leroy R; Cai, Lu; Zheng, Yang
2015-08-01
Diabetes and its cardiovascular complications have been a major public health issue. These complications are mainly attributable to a severe imbalance between free radical and reactive oxygen species production and the antioxidant defense systems. Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that controls the basal and inducible expression of a battery of antioxidant enzyme genes and other cyto-protective phase II detoxifying enzymes. As a result, Nrf2 has gained great attention as a promising drug target for preventing diabetic cardiovascular complications. And while animal studies have shown that several Nrf2 activators manifest a potential to efficiently prevent the diabetic complications, their use in humans has not been approved due to the lack of substantial evidence regarding safety and efficacy of the Nrf2 activation. We provide here a brief review of a few clinically-used drugs that can up-regulate Nrf2 with the potential of extending their usage to diabetic patients for the prevention of cardiovascular complications and conclude with a closer inspection of dimethyl fumarate and its mimic members. Copyright © 2015 Elsevier Inc. All rights reserved.
Villa, Paola; Costantini, Barbara; Suriano, Rosanna; Perri, Concetta; Macrì, Francesca; Ricciardi, Luigi; Panunzi, Simona; Lanzone, Antonio
2009-02-01
The wide family of the phytoestrogens has become an alternative to the classical hormonal therapy in menopause; nevertheless, some findings are still conflicting. To examine the effect of genistein administration on metabolic parameters and vascular reactivity considering the basal endocrine status of the patients. A randomized placebo controlled study was conducted at a university hospital. Fifty postmenopausal women participated. Thirty subjects (group A) were randomized to receive 54 mg/d genistein while 20 subjects (group B) were treated with the placebo for 24 wk. In group A, we distinguish two subgroups: 14 normoinsulinemic and 12 hyperinsulinemic patients. Anthropometric measures, hormonal and lipid assays, oral glucose tolerance test with glycemic, insulin, and C-peptide evaluation, indexes of insulin sensitivity and endothelial function, and euglycemic-hyperinsulinemic clamps were performed. The insulin basal values significantly decreased in group A, whereas the homeostasis model index of insulin sensitivity and the fasting glucose levels significantly improved compared with placebo group. The genistein administration decreased fasting glucose and area under the curve glucose levels in the normoinsulinemic patients after treatment. In the hyperinsulinemic patients, a significant reduction in fasting insulin, fasting C-peptide, and area under the curve insulin levels as well as an increase in fractional hepatic insulin extraction was shown. In these patients, high-density lipoprotein cholesterol levels were significantly improved. The endothelium-dependent and -independent dilatation improved in the treated group. Normoinsulinemic patients showed both a significantly enhanced flow-mediated and nitrate-mediated dilatation, whereas no significant changes were found in the hyperinsulinemic group. The glycoinsulinemic metabolism and the endothelial function were significantly influenced by genistein. In particular, normoinsulinemic patients showed an improvement in glycemic and vascular reactivity indexes. Conversely, an improvement in the insulin sensitivity indexes was noted in hyperinsulinemic patients.
Cardiac changes induced by immersion and breath-hold diving in humans.
Marabotti, Claudio; Scalzini, Alessandro; Cialoni, Danilo; Passera, Mirko; L'Abbate, Antonio; Bedini, Remo
2009-01-01
To evaluate the separate cardiovascular response to body immersion and increased environmental pressure during diving, 12 healthy male subjects (mean age 35.2 +/- 6.5 yr) underwent two-dimensional Doppler echocardiography in five different conditions: out of water (basal); head-out immersion while breathing (condition A); fully immersed at the surface while breathing (condition B) and breath holding (condition C); and breath-hold diving at 5-m depth (condition D). Heart rate, left ventricular volumes, stroke volume, and cardiac output were obtained by underwater echocardiography. Early (E) and late (A) transmitral flow velocities, their ratio (E/A), and deceleration time of E (DTE) were also obtained from pulsed-wave Doppler, as left ventricular diastolic function indexes. The experimental protocol induced significant reductions in left ventricular volumes, left ventricular stroke volume (P < 0.05), cardiac output (P < 0.001), and heart rate (P < 0.05). A significant increase in E peak (P < 0.01) and E/A (P < 0.01) and a significant reduction of DTE (P < 0.01) were also observed. Changes occurring during diving (condition D) accounted for most of the changes observed in the experimental series. In particular, cardiac output at condition D was significantly lower compared with each of the other experimental conditions, E/A was significantly higher during condition D than in conditions A and C. Finally, DTE was significantly shorter at condition D than in basal and condition C. This study confirms a reduction of cardiac output in diving humans. Since most of the changes were observed during diving, the increased environmental pressure seems responsible for this hemodynamic rearrangement. Left ventricular diastolic function changes suggest a constrictive effect on the heart, possibly accounting for cardiac output reduction.
Lipski, Witold J; Wozny, Thomas A; Alhourani, Ahmad; Kondylis, Efstathios D; Turner, Robert S; Crammond, Donald J; Richardson, Robert Mark
2017-09-01
Coupled oscillatory activity recorded between sensorimotor regions of the basal ganglia-thalamocortical loop is thought to reflect information transfer relevant to movement. A neuronal firing-rate model of basal ganglia-thalamocortical circuitry, however, has dominated thinking about basal ganglia function for the past three decades, without knowledge of the relationship between basal ganglia single neuron firing and cortical population activity during movement itself. We recorded activity from 34 subthalamic nucleus (STN) neurons, simultaneously with cortical local field potentials and motor output, in 11 subjects with Parkinson's disease (PD) undergoing awake deep brain stimulator lead placement. STN firing demonstrated phase synchronization to both low- and high-beta-frequency cortical oscillations, and to the amplitude envelope of gamma oscillations, in motor cortex. We found that during movement, the magnitude of this synchronization was dynamically modulated in a phase-frequency-specific manner. Importantly, we found that phase synchronization was not correlated with changes in neuronal firing rate. Furthermore, we found that these relationships were not exclusive to motor cortex, because STN firing also demonstrated phase synchronization to both premotor and sensory cortex. The data indicate that models of basal ganglia function ultimately will need to account for the activity of populations of STN neurons that are bound in distinct functional networks with both motor and sensory cortices and code for movement parameters independent of changes in firing rate. NEW & NOTEWORTHY Current models of basal ganglia-thalamocortical networks do not adequately explain simple motor functions, let alone dysfunction in movement disorders. Our findings provide data that inform models of human basal ganglia function by demonstrating how movement is encoded by networks of subthalamic nucleus (STN) neurons via dynamic phase synchronization with cortex. The data also demonstrate, for the first time in humans, a mechanism through which the premotor and sensory cortices are functionally connected to the STN. Copyright © 2017 the American Physiological Society.
Attenuated frontal and sensory inputs to the basal ganglia in cannabis users.
Blanco-Hinojo, Laura; Pujol, Jesus; Harrison, Ben J; Macià, Dídac; Batalla, Albert; Nogué, Santiago; Torrens, Marta; Farré, Magí; Deus, Joan; Martín-Santos, Rocío
2017-07-01
Heavy cannabis use is associated with reduced motivation. The basal ganglia, central in the motivation system, have the brain's highest cannabinoid receptor density. The frontal lobe is functionally coupled to the basal ganglia via segregated frontal-subcortical circuits conveying information from internal, self-generated activity. The basal ganglia, however, receive additional influence from the sensory system to further modulate purposeful behaviors according to the context. We postulated that cannabis use would impact functional connectivity between the basal ganglia and both internal (frontal cortex) and external (sensory cortices) sources of influence. Resting-state functional connectivity was measured in 28 chronic cannabis users and 29 controls. Selected behavioral tests included reaction time, verbal fluency and exposition to affective pictures. Assessments were repeated after one month of abstinence. Cannabis exposure was associated with (1) attenuation of the positive correlation between the striatum and areas pertaining to the 'limbic' frontal-basal ganglia circuit, and (2) attenuation of the negative correlation between the striatum and the fusiform gyrus, which is critical in recognizing significant visual features. Connectivity alterations were associated with lower arousal in response to affective pictures. Functional connectivity changes had a tendency to normalize after abstinence. The results overall indicate that frontal and sensory inputs to the basal ganglia are attenuated after chronic exposure to cannabis. This effect is consistent with the common behavioral consequences of chronic cannabis use concerning diminished responsiveness to both internal and external motivation signals. Such an impairment of the fine-tuning in the motivation system notably reverts after abstinence. © 2016 Society for the Study of Addiction.
Migliori, Massimiliano; Cantaluppi, Vincenzo; Mannari, Claudio; Bertelli, Alberto A E; Medica, Davide; Quercia, Alessandro Domenico; Navarro, Victor; Scatena, Alessia; Giovannini, Luca; Biancone, Luigi; Panichi, Vincenzo
2015-01-01
Several studies demonstrated that endothelium dependent vasodilatation is impaired in cardiovascular and chronic kidney diseases because of oxidant stress-induced nitric oxide availability reduction. The Mediterranean diet, which is characterized by food containing phenols, was correlated with a reduced incidence of cardiovascular diseases and delayed progression toward end stage chronic renal failure. Previous studies demonstrated that both red and white wine exert cardioprotective effects. In particular, wine contains Caffeic acid (CAF), an active component with known antioxidant activities. The aim of the present study was to investigate the protective effect of low doses of CAF on oxidative stress-induced endothelial injury. CAF increased basal as well as acetylcholine-induced NO release by a mechanism independent from eNOS expression and phosphorylation. In addition, low doses of CAF (100 nM and 1 μM) increased proliferation and angiogenesis and inhibited leukocyte adhesion and endothelial cell apoptosis induced by hypoxia or by the uremic toxins ADMA, p-cresyl sulfate and indoxyl sulfate. The biological effects exerted by CAF on endothelial cells may be at least in part ascribed to modulation of NO release and by decreased ROS production. In an experimental model of kidney ischemia-reperfusion injury in mice, CAF significantly decreased tubular cell apoptosis, intraluminal cast deposition and leukocyte infiltration. The results of the present study suggest that CAF, at very low dosages similar to those observed after moderate white wine consumption, may exert a protective effect on endothelial cell function by modulating NO release independently from eNOS expression and phosphorylation. CAF-induced NO modulation may limit cardiovascular and kidney disease progression associated with oxidative stress-mediated endothelial injury.
Lo, Pang-Kuo; Yao, Yuan; Lee, Ji Shin; Zhang, Yongshu; Huang, Weiliang; Kane, Maureen A
2018-01-01
Current understanding of aggressive human basal-like triple-negative breast cancer (TNBC) remains incomplete. In this study, we show endothelial lipase (LIPG) is aberrantly overexpressed in basal-like TNBCs. We demonstrate that LIPG is required for in vivo tumorigenicity and metastasis of TNBC cells. LIPG possesses a lipase-dependent function that supports cancer cell proliferation and a lipase-independent function that promotes invasiveness, stemness and basal/epithelial-mesenchymal transition features of TNBC. Mechanistically, LIPG executes its oncogenic function through its involvement in interferon-related DTX3L-ISG15 signaling, which regulates protein function and stability by ISGylation. We show that DTX3L, an E3-ubiquitin ligase, is required for maintaining LIPG protein levels in TNBC cells by inhibiting proteasome-mediated LIPG degradation. Inactivation of LIPG impairs DTX3L-ISG15 signaling, indicating the existence of DTX3L-LIPG-ISG15 signaling. We further reveal LIPG-ISG15 signaling is lipase-independent. We demonstrate that DTX3L-LIPG-ISG15 signaling is essential for malignancies of TNBC cells. Targeting this pathway provides a novel strategy for basal-like TNBC therapy. PMID:29350614
Androgen actions on endothelium functions and cardiovascular diseases
Cai, Jing-Jing; Wen, Juan; Jiang, Wei-Hong; Lin, Jian; Hong, Yuan; Zhu, Yuan-Shan
2016-01-01
The roles of androgens on cardiovascular physiology and pathophysiology are controversial as both beneficial and detrimental effects have been reported. Although the reasons for this discrepancy are unclear, multiple factors such as genetic and epigenetic variation, sex-specificity, hormone interactions, drug preparation and route of administration may contribute. Recently, growing evidence suggests that androgens exhibit beneficial effects on cardiovascular function though the mechanism remains to be elucidated. Endothelial cells (ECs) which line the interior surface of blood vessels are distributed throughout the circulatory system, and play a crucial role in cardiovascular function. Endothelial progenitor cells (EPCs) are considered an indispensable element for the reconstitution and maintenance of an intact endothelial layer. Endothelial dysfunction is regarded as an initiating step in development of atherosclerosis and cardiovascular diseases. The modulation of endothelial functions by androgens through either genomic or nongenomic signal pathways is one possible mechanism by which androgens act on the cardiovascular system. Obtaining insight into the mechanisms by which androgens affect EC and EPC functions will allow us to determine whether androgens possess beneficial effects on the cardiovascular system. This in turn may be critical in the prevention and therapy of cardiovascular diseases. This article seeks to review recent progress in androgen regulation of endothelial function, the sex-specificity of androgen actions, and its clinical applications in the cardiovascular system. PMID:27168746
An individual-tree basal area growth model for loblolly pine stands
Paul A. Murphy; Michael G. Shelton
1996-01-01
Tree basal area growth has been modeled as a combination of a potential growth function and a modifier function, in which the potential function is fitted separately from open-grown tree data or a subset of the data and the modifier function includes stand and site variables. We propose a modification of this by simultaneously fitting both a growth component and a...
Cardiovascular effects of Nemopilema nomurai (Scyphozoa: Rhizostomeae) jellyfish venom in rats.
Kim, Euikyung; Lee, Seunghwan; Kim, Jong-Shu; Yoon, Won Duk; Lim, Donghyun; Hart, Andrew J; Hodgson, Wayne C
2006-12-15
Over the past few years, populations of the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) have increased dramatically in the waters of China, Korea, and Japan without any definitive reason. This has resulted in severe damage to fisheries in the areas. During a pilot study, we observed that the venom of N. nomurai produced a functional cardiac depression in mice. However, the mechanism of action was not examined. In the present study, we investigated the cardiovascular effects of nematocyst-derived venom from N. nomurai in anesthetized rats. Venom (0.1-2.4 mg protein/kg, i.v.) produced dose-dependent hypotension (65+/-12% of initial at a cumulative dose of 3 mg/kg) and bradycardia (80+/-5% of initial at a cumulative dose of 3 mg/kg). At the highest dose, this was characterized by a transient decrease in blood pressure (phase 1) followed by a return to basal level and then a slower decrease in blood pressure (phase 2). Venom also produced a decrease in rate and force of contraction in the rat isolated atria. Interestingly, venom induced a contraction of isolated aortic rings which was blocked by felodipine but not by prazosin, suggesting the contraction is mediated by calcium channel activation. These results suggest that the negative inotropic and chronotropic effects of the venom of N. nomurai may be due to a direct effect on the heart.
Re-evaluating the functional landscape of the cardiovascular system during development
Takada, Norio; Omae, Madoka; Sagawa, Fumihiko; Chi, Neil C.; Endo, Satsuki; Kozawa, Satoshi
2017-01-01
ABSTRACT The cardiovascular system facilitates body-wide distribution of oxygen, a vital process for the development and survival of virtually all vertebrates. However, the zebrafish, a vertebrate model organism, appears to form organs and survive mid-larval periods without a functional cardiovascular system. Despite such dispensability, it is the first organ to develop. Such enigma prompted us to hypothesize other cardiovascular functions that are important for developmental and/or physiological processes. Hence, systematic cellular ablations and functional perturbations were performed on the zebrafish cardiovascular system to gain comprehensive and body-wide understanding of such functions and to elucidate the underlying mechanisms. This approach identifies a set of organ-specific genes, each implicated for important functions. The study also unveils distinct cardiovascular mechanisms, each differentially regulating their expressions in organ-specific and oxygen-independent manners. Such mechanisms are mediated by organ-vessel interactions, circulation-dependent signals, and circulation-independent beating-heart-derived signals. A comprehensive and body-wide functional landscape of the cardiovascular system reported herein may provide clues as to why it is the first organ to develop. Furthermore, these data could serve as a resource for the study of organ development and function. PMID:28982700
Re-evaluating the functional landscape of the cardiovascular system during development.
Takada, Norio; Omae, Madoka; Sagawa, Fumihiko; Chi, Neil C; Endo, Satsuki; Kozawa, Satoshi; Sato, Thomas N
2017-11-15
The cardiovascular system facilitates body-wide distribution of oxygen, a vital process for the development and survival of virtually all vertebrates. However, the zebrafish, a vertebrate model organism, appears to form organs and survive mid-larval periods without a functional cardiovascular system. Despite such dispensability, it is the first organ to develop. Such enigma prompted us to hypothesize other cardiovascular functions that are important for developmental and/or physiological processes. Hence, systematic cellular ablations and functional perturbations were performed on the zebrafish cardiovascular system to gain comprehensive and body-wide understanding of such functions and to elucidate the underlying mechanisms. This approach identifies a set of organ-specific genes, each implicated for important functions. The study also unveils distinct cardiovascular mechanisms, each differentially regulating their expressions in organ-specific and oxygen-independent manners. Such mechanisms are mediated by organ-vessel interactions, circulation-dependent signals, and circulation-independent beating-heart-derived signals. A comprehensive and body-wide functional landscape of the cardiovascular system reported herein may provide clues as to why it is the first organ to develop. Furthermore, these data could serve as a resource for the study of organ development and function. © 2017. Published by The Company of Biologists Ltd.
Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R.; Tang, Dean G.
2016-01-01
The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features. PMID:26924072
Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R; Tang, Dean G
2016-02-29
The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features.
Park, Andres E; Huynh, Pauline; Schell, Anne M; Baker, Laura A
2015-08-01
Reduced cardiovascular responses to psychological stressors have been found to be associated with both obesity and negative affect in adults, but have been less well studied in children and adolescent populations. These findings have most often been interpreted as reflecting reduced sympathetic nervous system response, perhaps associated with heightened baseline sympathetic activation among the obese and those manifesting negative affect. However, obesity and negative affect may themselves be correlated, raising the question of whether they both independently affect cardiovascular reactivity. The present study thus examined the separate effects of obesity and negative affect on both cardiovascular and skin conductance responses to stress (e.g., during a serial subtraction math task) in adolescents, while controlling for baseline levels of autonomic activity during rest. Both obesity and negative affect had independent and negative associations with cardiovascular reactivity, such that reduced stress responses were apparent for obese adolescents and those with high levels of negative affect. In contrast, neither obesity nor negative affect was related to skin conductance responses to stress, implicating specifically noradrenergic mechanisms rather than sympathetic mechanisms generally as being deficient. Moreover, baseline heart rate was unrelated to obesity in this sample, which suggests that heightened baseline of sympathetic activity is not necessary for the reduced cardiovascular reactivity to stress. Copyright © 2015 Elsevier B.V. All rights reserved.
Hatzold, Julia; Beleggia, Filippo; Herzig, Hannah; Altmüller, Janine; Nürnberg, Peter; Bloch, Wilhelm; Wollnik, Bernd; Hammerschmidt, Matthias
2016-01-01
The molecular pathways underlying tumor suppression are incompletely understood. Here, we identify cooperative non-cell-autonomous functions of a single gene that together provide a novel mechanism of tumor suppression in basal keratinocytes of zebrafish embryos. A loss-of-function mutation in atp1b1a, encoding the beta subunit of a Na,K-ATPase pump, causes edema and epidermal malignancy. Strikingly, basal cell carcinogenesis only occurs when Atp1b1a function is compromised in both the overlying periderm (resulting in compromised epithelial polarity and adhesiveness) and in kidney and heart (resulting in hypotonic stress). Blockade of the ensuing PI3K-AKT-mTORC1-NFκB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, prevents malignant transformation. Our results identify hypotonic stress as a (previously unrecognized) contributor to tumor development and establish a novel paradigm of tumor suppression. DOI: http://dx.doi.org/10.7554/eLife.14277.001 PMID:27240166
The effect of plastic strain on the evolution of crystallographic texture in Zircaloy-2
NASA Astrophysics Data System (ADS)
Ballinger, R. G.; Lucas, G. E.; Pelloux, R. M.
1984-09-01
The evolution of crystallographic texture during plastic deformation was investigated in Zircaloy-2 using X-ray and metallographic techniques. Inverse pole figures, the resolved fraction of basal poles, and the volume fraction of twinned material, were determined as a function of plastic strain for several strain paths and initial textures at 298 K and 623 K. Incremental transverse platic strain ratios ( R) were mesured as a function of plastic strain. Texture rotation occurs early in the deformation process, after as little as 1.5% plastic strain. For compressive plastic strains, the resolved fraction of basal poles increases in the direction parallel to the strain axis. For tensile plastic strains, the resolved fraction of basal poles decreases in the direction parallel to the strain axis. The rate of change of the resolved fraction of basal poles with plastic strain is a function of the initial resolved fraction of basal poles. The texture rotation can be explained by considering the operation of the principal tensile twinning systems, {101¯2}<1¯011>.
Basal body assembly in ciliates: the power of numbers
Pearson, Chad G.; Winey, Mark
2009-01-01
Centrioles perform the dual functions of organizing both centrosomes and cilia. The biogenesis of nascent centrioles is an essential cellular event that is tightly coupled to the cell cycle so that each cell contains only two or four centrioles at any given point in the cell cycle. The assembly of centrioles and their analogs, basal bodies, is well characterized at the ultrastructural level whereby structural modules are built into a functional organelle. Genetic studies in model organisms combined with proteomic, bioinformatic, and identifying ciliary disease gene orthologs have revealed a wealth of molecules requiring further analysis to determine their roles in centriole duplication, assembly, and function. Nonetheless, at this stage our understanding of how molecular components interact to build new centrioles and basal bodies is limited. The ciliates, Tetrahymena and Paramecium, historically have been the subject of cytological and genetic study of basal bodies. Recent advances in the ciliate genetic and molecular toolkit have placed these model organisms in a favorable position to study the molecular mechanisms of centriole and basal body assembly. PMID:19192246
Learning and memory functions of the Basal Ganglia.
Packard, Mark G; Knowlton, Barbara J
2002-01-01
Although the mammalian basal ganglia have long been implicated in motor behavior, it is generally recognized that the behavioral functions of this subcortical group of structures are not exclusively motoric in nature. Extensive evidence now indicates a role for the basal ganglia, in particular the dorsal striatum, in learning and memory. One prominent hypothesis is that this brain region mediates a form of learning in which stimulus-response (S-R) associations or habits are incrementally acquired. Support for this hypothesis is provided by numerous neurobehavioral studies in different mammalian species, including rats, monkeys, and humans. In rats and monkeys, localized brain lesion and pharmacological approaches have been used to examine the role of the basal ganglia in S-R learning. In humans, study of patients with neurodegenerative diseases that compromise the basal ganglia, as well as research using brain neuroimaging techniques, also provide evidence of a role for the basal ganglia in habit learning. Several of these studies have dissociated the role of the basal ganglia in S-R learning from those of a cognitive or declarative medial temporal lobe memory system that includes the hippocampus as a primary component. Evidence suggests that during learning, basal ganglia and medial temporal lobe memory systems are activated simultaneously and that in some learning situations competitive interference exists between these two systems.
Yang, Jun; Adamian, Michael; Li, Tiansen
2006-02-01
Rootletin, a major structural component of the ciliary rootlet, is located at the basal bodies and centrosomes in ciliated and nonciliated cells, respectively. Here we investigated its potential role in the linkage of basal bodies/centrioles and the mechanism involved in such linkages. We show that rootletin interacts with C-Nap1, a protein restricted at the ends of centrioles and functioning in centrosome cohesion in interphase cells. Their interaction in vivo is supported by their colocalization at the basal bodies/centrioles and coordinated association with the centrioles during the cell cycle. Ultrastructural examinations demonstrate that rootletin fibers connect the basal bodies in ciliated cells and are present both at the ends of and in between the pair of centrioles in nonciliated cells. The latter finding stands in contrast with C-Nap1, which is present only at the ends of the centrioles. Transient expression of C-Nap1 fragments dissociated rootletin fibers from the centrioles, resulting in centrosome separation in interphase. Overexpression of rootletin in cells caused multinucleation, micronucleation, and irregularity of nuclear shape and size, indicative of defects in chromosome separation. These data suggest that rootletin may function as a physical linker between the pair of basal bodies/centrioles by binding to C-Nap1.
Haley, R W; Fleckenstein, J L; Marshall, W W; McDonald, G G; Kramer, G L; Petty, F
2000-09-01
Many complaints of Gulf War veterans are compatible with a neurologic illness involving the basal ganglia. In 12 veterans with Haley Gulf War syndrome 2 and in 15 healthy control veterans of similar age, sex, and educational level, we assessed functioning neuronal mass in both basal ganglia by measuring the ratio of N-acetyl-aspartate to creatine with proton magnetic resonance spectroscopy. Central dopamine activity was assessed by measuring the ratio of plasma homovanillic acid (HVA) and 3-methoxy-4-hydroxyphenlyglycol (MHPG). The logarithm of the age-standardized HVA/MHPG ratio was inversely associated with functioning neuronal mass in the left basal ganglia (R(2) = 0.56; F(1,27) = 33.82; P<.001) but not with that in the right (R(2) = 0. 04; F(1,26) = 1.09; P =.30). Controlling for age, renal clearances of creatinine and weak organic anions, handedness, and smoking did not substantially alter the associations. The reduction in functioning neuronal mass in the left basal ganglia of these veterans with Gulf War syndrome seems to have altered central dopamine production in a lateralized pattern. This finding supports the theory that Gulf War syndrome is a neurologic illness, in part related to injury to dopaminergic neurons in the basal ganglia.
Basal Ganglia Circuits as Targets for Neuromodulation in Parkinson Disease.
DeLong, Mahlon R; Wichmann, Thomas
2015-11-01
The revival of stereotactic surgery for Parkinson disease (PD) in the 1990s, with pallidotomy and then with high-frequency deep brain stimulation (DBS), has led to a renaissance in functional surgery for movement and other neuropsychiatric disorders. To examine the scientific foundations and rationale for the use of ablation and DBS for treatment of neurologic and psychiatric diseases, using PD as the primary example. A summary of the large body of relevant literature is presented on anatomy, physiology, pathophysiology, and functional surgery for PD and other basal ganglia disorders. The signs and symptoms of movement disorders appear to result largely from signature abnormalities in one of several parallel and largely segregated basal ganglia thalamocortical circuits (ie, the motor circuit). The available evidence suggests that the varied movement disorders resulting from dysfunction of this circuit result from propagated disruption of downstream network activity in the thalamus, cortex, and brainstem. Ablation and DBS act to free downstream networks to function more normally. The basal ganglia thalamocortical circuit may play a key role in the expression of disordered movement, and the basal ganglia-brainstem projections may play roles in akinesia and disturbances of gait. Efforts are under way to target circuit dysfunction in brain areas outside of the traditionally implicated basal ganglia thalamocortical system, in particular, the pedunculopontine nucleus, to address gait disorders that respond poorly to levodopa and conventional DBS targets. Deep brain stimulation is now the treatment of choice for many patients with advanced PD and other movement disorders. The success of DBS and other forms of neuromodulation for neuropsychiatric disorders is the result of the ability to modulate circuit activity in discrete functional domains within the basal ganglia circuitry with highly focused interventions, which spare uninvolved areas that are often disrupted with drugs.
Reductive Potential - A Savior Turns Stressor in Protein Aggregation Cardiomyopathy
Narasimhan, Madhusudhanan; Rajasekaran, Namakkal S.
2015-01-01
Redox homeostasis is essential for basal signaling of several physiological processes, but a unilateral shift towards an ‘oxidative’ or ‘reductive’ trait will alter intracellular redox milieu. Typically, such an event influences the structure and the native function of a cell or an organelle. Numerous experimental research and clinical trials over the last 6 decades have demonstrated that enhanced oxygen-derived free radicals constitutes a major stimuli to trigger damage in several human diseases, including cardiovascular complications supporting the theory of oxidative stress (OS). However, until our key discovery, the dynamic interrelationship between “Reductive Stress (RS)” and cardiac health has been obscured by overwhelming OS studies (Rajasekaran et al., 2007). Notably, this seminal finding spurred considerable interest in investigations of other mechanistic insights, and thus far the results indicate a similar or stronger role for RS, than that of OS. In addition, from our own findings we strongly believe that constitutive activation of pathways that enable sustained generation of reducing equivalents glutathione (GSH), reduced nicotinamide adenine dinucleotide phosphate (NADPH) will cause RS and impair the basal cellular signaling mechanisms operating through harmless pro-oxidative events, in turn, disrupting single and/or a combination of key cellular processes such as growth, maturation, differentiation, survival, death etc., that govern healthy cell physiology. Here, we have discussed the role of RS as a causal or contributing factor in relevant pathophysiology of a major cardiac disease of human origin. PMID:25446995
Grais, Ira Martin; Sowers, James R.
2015-01-01
Thyroid hormones modulate every component of the cardiovascular system necessary for normal cardiovascular development and function. When cardiovascular disease is present, thyroid function tests are characteristically indicated to determine if overt thyroid disorders or even subclinical dysfunction exists. As hypothyroidism, hypertension and cardiovascular disease all increase with advancing age monitoring of TSH, the most sensitive test for hypothyroidism, is important in this expanding segment of our population. A better understanding of the impact of thyroid hormonal status on cardiovascular physiology will enable health care providers to make decisions regarding thyroid hormone evaluation and therapy in concert with evaluating and treating hypertension and cardiovascular disease. The goal of this review is to access contemporary understanding of the effects of thyroid hormones on normal cardiovascular function and the potential role of overt and subclinical hypothyroidism and hyperthyroidism in a variety of cardiovascular diseases. PMID:24662620
Lindroos, Robert; Dorst, Matthijs C.; Du, Kai; Filipović, Marko; Keller, Daniel; Ketzef, Maya; Kozlov, Alexander K.; Kumar, Arvind; Lindahl, Mikael; Nair, Anu G.; Pérez-Fernández, Juan; Grillner, Sten; Silberberg, Gilad; Hellgren Kotaleski, Jeanette
2018-01-01
The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors. The striatal microstructure is also divided into striosomes and matrix compartments, based on the differential expression of several proteins. Dopaminergic afferents from the midbrain and local cholinergic interneurons play crucial roles for basal ganglia function, and striatal signaling via the striosomes in turn regulates the midbrain dopaminergic system directly and via the lateral habenula. Consequently, abnormal functions of the basal ganglia neuromodulatory system underlie many neurological and psychiatric disorders. Neuromodulation acts on multiple structural levels, ranging from the subcellular level to behavior, both in health and disease. For example, neuromodulation affects membrane excitability and controls synaptic plasticity and thus learning in the basal ganglia. However, it is not clear on what time scales these different effects are implemented. Phosphorylation of ion channels and the resulting membrane effects are typically studied over minutes while it has been shown that neuromodulation can affect behavior within a few hundred milliseconds. So how do these seemingly contradictory effects fit together? Here we first briefly review neuromodulation of the basal ganglia, with a focus on dopamine. We furthermore use biophysically detailed multi-compartmental models to integrate experimental data regarding dopaminergic effects on individual membrane conductances with the aim to explain the resulting cellular level dopaminergic effects. In particular we predict dopaminergic effects on Kv4.2 in D1-MSNs. Finally, we also explore dynamical aspects of the onset of neuromodulation effects in multi-scale computational models combining biochemical signaling cascades and multi-compartmental neuron models. PMID:29467627
Navarini, Susanne; Bellsham-Revell, Hannah; Chubb, Henry; Gu, Haotian; Sinha, Manish D; Simpson, John M
2017-12-01
Systemic arterial hypertension predisposes children to cardiovascular risk in childhood and adult life. Despite extensive study of left ventricular (LV) hypertrophy, detailed 3-dimensional strain analysis of cardiac function in hypertensive children has not been reported. The aim of this study was to evaluate LV mechanics (strain, twist, and torsion) in young patients with hypertension compared with a healthy control group and assess factors associated with functional measurements. Sixty-three patients (26 hypertension and 37 normotensive) were enrolled (mean age, 14.3 and 11.4 years; 54% men and 41% men, respectively). All children underwent clinical evaluation and echocardiographic examination, including 3-dimensional strain. There was no difference in LV volumes and ejection fraction between the groups. Myocardial deformation was significantly reduced in those with hypertension compared with controls. For hypertensive and normotensive groups, respectively, global longitudinal strain was -15.1±2.3 versus -18.5±1.9 ( P <0.0001), global circumferential strain -15.2±3 versus -19.9±3.1 (<0.0001), global radial strain +44.0±11.3 versus 63.4±10.5 ( P <0.0001), and global 3-dimensional strain -26.1±3.8 versus -31.5±3.8 ( P <0.0001). Basal clockwise rotation, apical counterclockwise rotation, twist, and torsion were not significantly different. After multivariate regression analyses blood pressure, body mass index and LV mass maintained a significant relationship with measures of LV strain. Similar ventricular volumes and ejection fraction were observed in hypertensive and normotensive children, but children with hypertension had significantly lower strain indices. Whether reduced strain might predict future cardiovascular risk merits further longitudinal study. © 2017 American Heart Association, Inc.
Lemos, Sara P.; Passos, Valéria Maria A.; Brant, Luisa C.C.; Bensenor, Isabela J.M.; Ribeiro, Antônio Luiz P.; Barreto, Sandhi Maria
2015-01-01
Abstract To estimate the association between 2 markers for atherosclerosis, measurements of carotid artery intima-media thickness (IMT) and of peripheral arterial tonometry (PAT), and to evaluate the role of traditional cardiovascular risk factors in this association. We applied the 2 diagnostic tests to 588 participants from the ELSA-Brazil longitudinal study cohort. The PAT measurements, obtained with the EndoPAT2000, were the reactive hyperemia index (RHI), the Framingham RHI (F-RHI), and the mean basal pulse amplitude (BPA). We used the mean of the mean scores of carotid IMT of the distal layers of the left and right common carotids obtained by ultrasonography after 3 cardiac cycles. We used linear regression and the Spearman correlation coefficient to test the relationship between the 2 markers, and multiple linear regressions to exam the relationship between the RHI/F-RHI scores and the mean BPA and IMT scores after adjusting for cardiovascular risk factors. In the multivariate analysis, RHI (but not F-RHI) was positively correlated with the mean of the means of the IMT values after adjusting for sex and risk factors connected with both measures (β = 0.05, P = 0.02). Mean BPA did not remain significantly associated with IMT after adjusting for common risk factors. We found that the higher the IMT (or the worse the IMT), the higher the RHI (or the better the endothelial function). F-RHI was not associated with IMT. These 2 results are against the direction that one would expect and may imply that digital endothelial function (RHI and F-RHI) and IMT correspond to distinct and independent stages of the complex atherosclerosis process and represent different pathways in the disease's progression. Therefore, IMT and PAT measures may be considered complementary and not interchangeable. PMID:26287431
Metabolic syndrome in children and adolescents with phenylketonuria.
Kanufre, Viviane C; Soares, Rosângelis D L; Alves, Michelle Rosa A; Aguiar, Marcos J B; Starling, Ana Lúcia P; Norton, Rocksane C
2015-01-01
This study aimed to identify markers of metabolic syndrome (MS) in patients with phenylketonuria (PKU). This was a cross-sectional study consisting of 58 PKU patients (ages of 4-15 years): 29 patients with excess weight, and 29 with normal weight. The biochemical variables assessed were phenylalanine (phe), total cholesterol, HDL-c, triglycerides, glucose, and basal insulin. The patients had Homeostasis Model Assessment (HOMA) and waist circumference assessed. No inter-group difference was found for phe. Overweight patients had higher levels of triglycerides, basal insulin, and HOMA, but lower concentrations of HDL-cholesterol, when compared to the eutrophic patients. Total cholesterol/HDL-c was significantly higher in the overweight group. A positive correlation between basal insulin level and HOMA with waist circumference was found only in the overweight group. The results of this study suggest that patients with PKU and excess weight are potentially vulnerable to the development of metabolic syndrome. Therefore, it is necessary to conduct clinical and laboratory monitoring, aiming to prevent metabolic changes, as well as excessive weight gain and its consequences, particularly cardiovascular risk. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Osadchii, Oleg E
2014-12-01
In the clinical setting, patients with slower resting heart rate are less prone to cardiovascular death compared with those with elevated heart rate. However, electrophysiological adaptations associated with reduced cardiac rhythm have not been thoroughly explored. In this study, relationships between intrinsic heart rate and arrhythmic susceptibility were examined by assessments of action potential duration (APD) rate adaptation and inducibility of repolarization alternans in sinoatrial node (SAN)-driven and atrioventricular (AV)-blocked guinea-pig hearts perfused with Langendorff apparatus. Electrocardiograms, epicardial monophasic action potentials, and effective refractory periods (ERP) were assessed in normokalemic and hypokalemic conditions. Slower basal heart rate in AV-blocked hearts was associated with prolonged ventricular repolarization during spontaneous beating, and with attenuated APD shortening at increased cardiac activation rates during dynamic pacing, when compared with SAN-driven hearts. During hypokalemic perfusion, the inducibility of repolarization alternans and tachyarrhythmia by rapid pacing was found to be lower in AV-blocked hearts. This difference was ascribed to prolonged ERP in the setting of reduced basal heart rate, which prevented ventricular capture at critically short pacing intervals required to induce arrhythmia. Reduced basal heart rate is associated with electrophysiological changes that prevent electrical instability upon an abrupt cardiac acceleration.
Cardiovascular functioning, personality, and the social world: the domain of hierarchical power.
Newton, Tamara L
2009-02-01
The present paper considers connections between cardiovascular functioning (i.e., disease status and acute stress responses) and social dominance, and its counterpart, social submissiveness, both of which are part of the broader domain of "hierarchical power" [Bugental, D.B., 2000. Acquisition of the algorithms of social life: a domain-based approach. Psychological Bulletin 126, 187-219]. Empirical research on connections between dominance/submissiveness and cardiovascular morbidity and mortality in humans is reviewed, as is research on dominance/submissiveness and cardiovascular reactivity to, and recovery from, acute stressors. Three general conclusions are established. First, in both cross-sectional and longitudinal investigations, trait and behavioral indicators of dominance have been positively associated with cardiovascular disease severity, incidence, and progression, whereas preliminary evidence from two studies suggests that trait submissiveness may protect against poorer disease outcomes. Second, among men and women, trait dominance is associated with reactivity to and recovery from acute stressors, particularly social challenges. Third, linkages between dominance/submissiveness and cardiovascular functioning, especially cardiovascular reactivity, are characterized by gender-specific patterning, and this patterning emerges as a function of social context. Implications for the next generation of research concerning social dominance, gender, and cardiovascular functioning are discussed.
Effect of thyroxine therapy on autonomic status in hypothyroid patients.
Lakshmi, Vijaya; Vaney, N; Madhu, S V
2009-01-01
The aim of the present study was to evaluate the impact of hypothyroidism on the autonomic regulation of the cardiovascular system by analyzing sympathetic and parasympathetic influences on the heart and the effect of thyroxine replacement. Thirty newly diagnosed female hypothyroid patients with mean age 32.73 +/- 9.98 years were recruited from the Thyroid Clinic, GTB Hospital, Delhi. Various Autonomic function tests to assess Basal heart rate variability, parasympathetic activity (E:I Ratio, 30:15 Ratio, Valsalva Ratio) and sympathetic activity (Postural Challenge test, Sustained handgrip test) were done before and after attainment of euthyroidism. There was significant increase in parasympathetic activity on achieving euthyroid state. The sympathetic activity too significantly improved after L-thyroxine supplementation. Lipid profile parameters significantly decreased after achieving euthyroid state. Our findings are consistent with previous reports that thyroxine therapy appears to restore the efferent vagal activity and alters the relative contribution of systems that maintain resting blood pressure and heart rate.
Computational models of basal-ganglia pathway functions: focus on functional neuroanatomy
Schroll, Henning; Hamker, Fred H.
2013-01-01
Over the past 15 years, computational models have had a considerable impact on basal-ganglia research. Most of these models implement multiple distinct basal-ganglia pathways and assume them to fulfill different functions. As there is now a multitude of different models, it has become complex to keep track of their various, sometimes just marginally different assumptions on pathway functions. Moreover, it has become a challenge to oversee to what extent individual assumptions are corroborated or challenged by empirical data. Focusing on computational, but also considering non-computational models, we review influential concepts of pathway functions and show to what extent they are compatible with or contradict each other. Moreover, we outline how empirical evidence favors or challenges specific model assumptions and propose experiments that allow testing assumptions against each other. PMID:24416002
Yamamoto, Saki; Hayashi, Toshiyuki; Ohara, Makoto; Goto, Satoshi; Sato, Jun; Nagaike, Hiroe; Fukase, Ayako; Sato, Nobuko; Hiromura, Munenori; Tomoyasu, Masako; Nakanishi, Noriko; Lee, Soushou; Osamura, Anna; Yamamoto, Takeshi; Fukui, Tomoyasu; Hirano, Tsutomu
2018-03-26
We examined whether 0.9 mg/day liraglutide plus basal insulin (Lira-basal) is superior to basal-bolus insulin therapy (BBIT) for type 2 diabetes (T2DM) without severe insulin deficiency as determined by glucagon stimulation. Fifty patients receiving BBIT were enrolled in this 24-week, prospective, randomized, open-labeled study. After excluding subjects with fasting C-peptide immunoreactivity (CPR) < 1.0 ng/mL and CPR increase < 1.0 ng/mL at 6 min post glucagon injection, 25 were randomly allocated to receive Lira-basal (n = 12) or continued BBIT (n = 13). Primary endpoint was change in HbA1c. Secondary endpoints were changes in body weight (BW), 7-point self-monitored blood glucose (SMBG), and Diabetes Treatment Satisfaction Questionnaire status (DTSQs) scores. The Lira-basal group demonstrated reduced HbA1c, whereas the BBIT group showed no change. BW was reduced in the Lira-basal group but increased in the BBIT group. The Lira-basal group also exhibited significantly reduced pre-breakfast and pre-lunch SMBG. DTSQs scores improved in the Lira-basal group but not the BBIT group. Plasma lipids, liver function, and kidney function were not significantly changed in either group. Lira-basal therapy is superior to BBIT for T2DM without severe insulin deficiency. This study was registered with UMIN Clinical Trials Registry (UMIN000028313). Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Childhood poverty and health: cumulative risk exposure and stress dysregulation.
Evans, Gary W; Kim, Pilyoung
2007-11-01
A massive literature documents the inverse association between poverty or low socioeconomic status and health, but little is known about the mechanisms underlying this robust relation. We examined longitudinal relations between duration of poverty exposure since birth, cumulative risk exposure, and physiological stress in two hundred seven 13-year-olds. Chronic stress was assessed by basal blood pressure and overnight cortisol levels; stress regulation was assessed by cardiovascular reactivity to a standard acute stressor and recovery after exposure to this stressor. Cumulative risk exposure was measured by multiple physical (e.g., substandard housing) and social (e.g., family turmoil) risk factors. The greater the number of years spent living in poverty, the more elevated was overnight cortisol and the more dysregulated was the cardiovascular response (i.e., muted reactivity). Cardiovascular recovery was not affected by duration of poverty exposure. Unlike the duration of poverty exposure, concurrent poverty (i.e., during adolescence) did not affect these physiological stress outcomes. The effects of childhood poverty on stress dysregulation are largely explained by cumulative risk exposure accompanying childhood poverty.
Educational Content of Basal Reading Texts: Implications for Comprehension Instruction.
ERIC Educational Resources Information Center
Schmidt, William H.; And Others
To explore the issue of educational content in basal readers, a study analyzed 34 basal reading textbooks, representing eight of the most commonly used series in American elementary education. Educational content was defined and categorized along three dimensions: subject matter, function, and ethos. The subject matter component covered theories,…
Agarwal, Shailesh R.; Harvey, Robert D.; Porter, Karen E.; Calaghan, Sarah
2014-01-01
The number of people taking statins is increasing across the globe, highlighting the importance of fully understanding statins' effects on the cardiovascular system. The beneficial impact of statins extends well beyond regression of atherosclerosis to include direct effects on tissues of the cardiovascular system (‘pleiotropic effects’). Pleiotropic effects on the cardiac myocyte are often overlooked. Here we consider the contribution of the caveolin protein, whose expression and cellular distribution is dependent on cholesterol, to statin effects on the cardiac myocyte. Caveolin is a structural and regulatory component of caveolae, and is a key regulator of cardiac contractile function and adrenergic responsiveness. We employed an experimental model in which inhibition of myocyte HMG CoA reductase could be studied in the absence of paracrine influences from non-myocyte cells. Adult rat ventricular myocytes were treated with 10 µM simvastatin for 2 days. Simvastatin treatment reduced myocyte cholesterol, caveolin 3 and caveolar density. Negative inotropic and positive lusitropic effects (with corresponding changes in [Ca2+]i) were seen in statin-treated cells. Simvastatin significantly potentiated the inotropic response to β2-, but not β1-, adrenoceptor stimulation. Under conditions of β2-adrenoceptor stimulation, phosphorylation of phospholamban at Ser16 and troponin I at Ser23/24 was enhanced with statin treatment. Simvastatin increased NO production without significant effects on eNOS expression or phosphorylation (Ser1177), consistent with the reduced expression of caveolin 3, its constitutive inhibitor. In conclusion, statin treatment can reduce caveolin 3 expression, with functional consequences consistent with the known role of caveolae in the cardiac cell. These data are likely to be of significance, particularly during the early phases of statin treatment, and in patients with heart failure who have altered β-adrenoceptor signalling. In addition, as caveolin is ubiquitously expressed and has myriad tissue-specific functions, the impact of statin-dependent changes in caveolin is likely to have many other functional sequelae. PMID:25211146
Mastronardi, Claudio; Smiley, Gregory G; Raber, Jacob; Kusakabe, Takashi; Kawaguchi, Akio; Matagne, Valerie; Dietzel, Anja; Heger, Sabine; Mungenast, Alison E; Cabrera, Ricardo; Kimura, Shioko; Ojeda, Sergio R
2006-12-20
Thyroid transcription factor 1 (TTF1) [also known as Nkx2.1 (related to the NK-2 class of homeobox genes) and T/ebp (thyroid-specific enhancer-binding protein)], a homeodomain gene required for basal forebrain morphogenesis, remains expressed in the hypothalamus after birth, suggesting a role in neuroendocrine function. Here, we show an involvement of TTF1 in the control of mammalian puberty and adult reproductive function. Gene expression profiling of the nonhuman primate hypothalamus revealed that TTF1 expression increases at puberty. Mice in which the Ttf1 gene was ablated from differentiated neurons grew normally and had normal basal ganglia/hypothalamic morphology but exhibited delayed puberty, reduced reproductive capacity, and a short reproductive span. These defects were associated with reduced hypothalamic expression of genes required for sexual development and deregulation of a gene involved in restraining puberty. No extrapyramidal impairments associated with basal ganglia dysfunction were apparent. Thus, although TTF1 appears to fulfill only a morphogenic function in the ventral telencephalon, once this function is satisfied in the hypothalamus, TTF1 remains active as part of the transcriptional machinery controlling female sexual development.
Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok
2016-01-01
Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by ¹⁸F-2-fluoro-2-deoxyglucose positron emission tomography. During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.
Bajaj, Harpreet S; Venn, Karri; Ye, Chenglin; Patrick, Avril; Kalra, Shivani; Khandwala, Hasnain; Aslam, Nadeem; Twum-Barima, David; Aronson, Ronnie
2017-02-01
There is a dearth of published literature comparing glucose variability (GV) between different insulin regimens in type 2 diabetes. This cohort study compares GV using continuous glucose monitoring (CGM) in patients with well-controlled type 2 diabetes using four common insulin regimens: basal insulin + oral drugs (BO), basal insulin + glucagon-like peptide 1 receptor agonist (GLP-1 RA) (BGLP), premixed insulin (PM), and basal-bolus insulin (BB). Consecutive patients from three endocrinology clinics who met study criteria-type 2 diabetes, age 18 to 80 years, BMI ≤ 45 kg/m 2 , stable insulin regimen for a minimum of 6 months, and stable A1C value ≤7.5% (58 mmol/mol) before study enrollment-underwent 6-day masked CGM. Hypoglycemia was defined as a sensor glucose concentration <70 mg/dL on CGM. A total of 160 patients with comparable baseline characteristics formed four equal insulin regimen cohorts. The daily glucose SD (the primary outcome) was significantly lower in the BGLP cohort versus the BO, PM, and BB cohorts (P = 0.03, P = 0.01, and P < 0.01, respectively), and remained so after adjusting for age, BMI, type 2 diabetes duration, and A1C. Similarly, daily hypoglycemia outcomes on CGM were least for the BGLP cohort. The lowest GV and lowest hypoglycemia were observed in patients using the combination of basal insulin with a GLP-1 RA, supporting the complementary glycemic action of these agents in type 2 diabetes. These observed benefits in GV and hypoglycemia may contribute to the cardiovascular outcome reduction seen with GLP-1 RA therapy and should be investigated further. © 2017 by the American Diabetes Association.
Cardiovascular function in male and female JCR:LA-cp rats: effect of high-fat/high-sucrose diet.
Hunter, Ian; Soler, Amanda; Joseph, Gregory; Hutcheson, Brenda; Bradford, Chastity; Zhang, Frank Fan; Potter, Barry; Proctor, Spencer; Rocic, Petra
2017-04-01
Thirty percent of the world population is diagnosed with metabolic syndrome. High-fat/high-sucrose (HF/HS) diet (Western diet) correlates with metabolic syndrome prevalence. We characterized effects of the HF/HS diet on vascular (arterial stiffness, vasoreactivity, and coronary collateral development) and cardiac (echocardiography) function, oxidative stress, and inflammation in a rat model of metabolic syndrome (JCR rats). Furthermore, we determined whether male versus female animals were affected differentially by the Western diet. Cardiovascular function in JCR male rats was impaired versus normal Sprague-Dawley (SD) rats. HF/HS diet compromised cardiovascular (dys)function in JCR but not SD male rats. In contrast, cardiovascular function was minimally impaired in JCR female rats on normal chow. However, cardiovascular function in JCR female rats on the HF/HS diet deteriorated to levels comparable to JCR male rats on the HF/HS diet. Similarly, oxidative stress was markedly increased in male but not female JCR rats on normal chow but was equally exacerbated by the HF/HS diet in male and female JCR rats. These results indicate that the Western diet enhances oxidative stress and cardiovascular dysfunction in metabolic syndrome and eliminates the protective effect of female sex on cardiovascular function, implying that both males and females with metabolic syndrome are at equal risk for cardiovascular disease. NEW & NOTEWORTHY Western diet abolished protective effect of sex against cardiovascular disease (CVD) development in premenopausal animals with metabolic syndrome. Western diet accelerates progression of CVD in male and female animals with preexisting metabolic syndrome but not normal animals. Exacerbation of baseline oxidative stress correlates with accelerated progression of CVD in metabolic syndrome animals on Western diet. Copyright © 2017 the American Physiological Society.
Kim, Seong Hwan; Cho, Goo-Yeong; Baik, Inkyung; Lim, Sang Yup; Choi, Cheol Ung; Lim, Hong Euy; Kim, Eung Ju; Park, Chang Gyu; Park, Juri; Kim, Jinyoung; Shin, Chol
2011-02-01
Prehypertension is associated with increased cardiovascular morbidity and mortality. However, there are few population-based studies on the changes of cardiovascular structure and function that characterize prehypertension. The aim of this study was to assess whether prehypertension is associated with abnormalities of cardiovascular structure and function in the general Korean population. We analyzed the cross-sectional relationships between prehypertension and cardiovascular structure and function in a sample from the Korean Genome Epidemiology Study. A total of 1,671 individuals (54.5% women; mean age: 53 ± 6 years) without hypertension and diabetes mellitus were enrolled. Cardiovascular structure and function were assessed by conventional echocardiography, tissue Doppler imaging (TDI), carotid ultrasonography, and pulse wave velocity (PWV). The left ventricular (LV) mass index was significantly higher in subjects with prehypertension than in those with normotension (41 ± 8 g/m²·⁷ vs. 38 ± 7 g/m²·⁷, P < 0.001). LV diastolic parameters, such as the E/A ratio, TDI E(a) velocity, and E/E(a) ratio, were also impaired in subjects with prehypertension (all P < 0.001). Compared with normotension, prehypertension was characterized by a significantly higher common carotid artery intima-media thickness and a higher brachial-ankle PWV (all P < 0.001). These abnormalities of cardiovascular structure and function remained significant after adjustment for covariates. In this population-based cohort, we found that subtle alterations in cardiovascular structure and function were already present at the prehypertensive stage. Whether such subtle alterations convey an increased risk of cardiovascular events and whether the changes are reversible with treatment warrant further study.
Cardiovascular function in male and female JCR:LA-cp rats: effect of high-fat/high-sucrose diet
Hunter, Ian; Soler, Amanda; Joseph, Gregory; Hutcheson, Brenda; Bradford, Chastity; Zhang, Frank Fan; Potter, Barry; Proctor, Spencer
2017-01-01
Thirty percent of the world population is diagnosed with metabolic syndrome. High-fat/high-sucrose (HF/HS) diet (Western diet) correlates with metabolic syndrome prevalence. We characterized effects of the HF/HS diet on vascular (arterial stiffness, vasoreactivity, and coronary collateral development) and cardiac (echocardiography) function, oxidative stress, and inflammation in a rat model of metabolic syndrome (JCR rats). Furthermore, we determined whether male versus female animals were affected differentially by the Western diet. Cardiovascular function in JCR male rats was impaired versus normal Sprague-Dawley (SD) rats. HF/HS diet compromised cardiovascular (dys)function in JCR but not SD male rats. In contrast, cardiovascular function was minimally impaired in JCR female rats on normal chow. However, cardiovascular function in JCR female rats on the HF/HS diet deteriorated to levels comparable to JCR male rats on the HF/HS diet. Similarly, oxidative stress was markedly increased in male but not female JCR rats on normal chow but was equally exacerbated by the HF/HS diet in male and female JCR rats. These results indicate that the Western diet enhances oxidative stress and cardiovascular dysfunction in metabolic syndrome and eliminates the protective effect of female sex on cardiovascular function, implying that both males and females with metabolic syndrome are at equal risk for cardiovascular disease. NEW & NOTEWORTHY Western diet abolished protective effect of sex against cardiovascular disease (CVD) development in premenopausal animals with metabolic syndrome. Western diet accelerates progression of CVD in male and female animals with preexisting metabolic syndrome but not normal animals. Exacerbation of baseline oxidative stress correlates with accelerated progression of CVD in metabolic syndrome animals on Western diet. PMID:28087518
Asymmetrically localized proteins stabilize basal bodies against ciliary beating forces
Galati, Domenico F.
2016-01-01
Basal bodies are radially symmetric, microtubule-rich structures that nucleate and anchor motile cilia. Ciliary beating produces asymmetric mechanical forces that are resisted by basal bodies. To resist these forces, distinct regions within the basal body ultrastructure and the microtubules themselves must be stable. However, the molecular components that stabilize basal bodies remain poorly defined. Here, we determine that Fop1 functionally interacts with the established basal body stability components Bld10 and Poc1. We find that Fop1 and microtubule glutamylation incorporate into basal bodies at distinct stages of assembly, culminating in their asymmetric enrichment at specific triplet microtubule regions that are predicted to experience the greatest mechanical force from ciliary beating. Both Fop1 and microtubule glutamylation are required to stabilize basal bodies against ciliary beating forces. Our studies reveal that microtubule glutamylation and Bld10, Poc1, and Fop1 stabilize basal bodies against the forces produced by ciliary beating via distinct yet interdependent mechanisms. PMID:27807131
Ana3 is a conserved protein required for the structural integrity of centrioles and basal bodies.
Stevens, Naomi R; Dobbelaere, Jeroen; Wainman, Alan; Gergely, Fanni; Raff, Jordan W
2009-11-02
Recent studies have identified a conserved "core" of proteins that are required for centriole duplication. A small number of additional proteins have recently been identified as potential duplication factors, but it is unclear whether any of these proteins are components of the core duplication machinery. In this study, we investigate the function of one of these proteins, Drosophila melanogaster Ana3. We show that Ana3 is present in centrioles and basal bodies, but its behavior is distinct from that of the core duplication proteins. Most importantly, we find that Ana3 is required for the structural integrity of both centrioles and basal bodies and for centriole cohesion, but it is not essential for centriole duplication. We show that Ana3 has a mammalian homologue, Rotatin, that also localizes to centrioles and basal bodies and appears to be essential for cilia function. Thus, Ana3 defines a conserved family of centriolar proteins and plays an important part in ensuring the structural integrity of centrioles and basal bodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fossa, Anthony A., E-mail: anthony.fossa@icardiac.com; Wisialowski, Todd A.; Cremers, Thomas
2012-11-01
Norepinephrine reuptake inhibitors (NRIs) acutely increase norepinephrine (NE) levels, but therapeutic antidepressant activity is only observed after weeks of treatment because central NE levels progressively increase during continued drug exposure. Similarly, while NRIs acutely increase blood pressure (BP) and heart rate (HR) due to enhanced sympathetic neurotransmission, chronic treatment changes the responsiveness of the central noradrenergic system and suppresses these effects via autonomic regulation. To better understand the relationship between NE increases and cardiovascular safety, we investigated acute and chronic effects of the NRI reboxetine on central NE release and on BP and HR and electrical alternans, a measure ofmore » arrhythmia liability, in guinea pigs. NE release was assessed by microdialysis in medial prefrontal cortex (mPFC) and hypothalamic paraventricular nucleus (PVN); BP and HR were measured by telemetry. Animals were treated for 28 days with 15 mg/kg/day of reboxetine or vehicle via an osmotic minipump and then challenged with acute intravenous doses of reboxetine. Animals chronically treated with reboxetine had 2-fold higher extracellular basal NE levels in mPFC and PVN compared to basal levels after chronic vehicle treatment. BP was significantly increased after the first day of treatment, and gradually returned to vehicle levels by day 21. These data indicate that chronic NRI treatment may lead to an increase in central NE levels and a concomitant reduction in BP based on exposure–response curves compared to vehicle treatment, suggesting a larger separation between preclinical estimates of efficacy vs. safety compared to acute NRI treatment. -- Highlights: ► Acute RBX produces blood pressure increases acutely that decrease with chronic RBX ► Chronic RBX increases brain NE levels, a preclinical surrogate of improved efficacy ► Short-term screening of NRI often underestimates the chronic therapeutic index ► Chronic cardiovascular safety and efficacy more adequately address therapeutic index ► Similar paradigms may exist with other centrally and peripherally acting drugs.« less
Sanchez-Garcia, M Esther; Ramirez-Lara, Irene; Gomez-Delgado, Francisco; Yubero-Serrano, Elena M; Leon-Acuña, Ana; Marin, Carmen; Alcala-Diaz, Juan F; Camargo, Antonio; Lopez-Moreno, Javier; Perez-Martinez, Pablo; Tinahones, Francisco José; Ordovas, Jose M; Caballero, Javier; Blanco-Molina, Angeles; Lopez-Miranda, Jose; Delgado-Lista, Javier
2018-02-23
Microcirculation disturbances have been associated to most of the cardiovascular risk factors as well as to multiple inflammatory diseases. However, whether these abnormalities are specifically augmented in patients with coronary heart disease is still unknown. We aimed to evaluate if there is a relationship between the presence of coronary heart disease and the existence of functional and structural capillary abnormalities evaluated in the cutaneous microcirculation by videocapillaroscopy. Two matched samples of 30 participants with and without coronary heart disease but with similar clinical and anthropometric characteristics were evaluated by videocapillaroscopy at the dorsal skin of the third finger of the non-dominant hand. We calculated basal capillary density as well as capillary density after a period of arterial and venous occlusion in order to evaluate functionality and maximum capillary density. We also measured capillary recruitment. Microvascular capillary density at rest was significantly lower in patients suffering from coronary heart disease than in controls. This fact was also found after dynamic tests (arterial and venous occlusion), suggesting functional impairments. Capillary recruitment of the samples was not different in our sample. In our study, patients with coronary heart disease exhibit functional and structural microvascular disturbances. Although this is a very preliminary study, these findings open the door for further studying the microvascular functionality in coronary patients and how it relates to the response to treatment and/or the prognosis of the disease. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Regulation of the Cardiovascular System by Histamine.
Hattori, Yuichi; Hattori, Kohshi; Matsuda, Naoyuki
2017-01-01
Histamine mediates a wide range of cellular responses, including allergic and inflammatory reactions, gastric acid secretion, and neurotransmission in the central nervous system. Histamine also exerts a series of actions upon the cardiovascular system but may not normally play a significant role in regulating cardiovascular function. During tissue injury, inflammation, and allergic responses, mast cells (or non-mast cells) within the tissues can release large amounts of histamine that leads to noticeable cardiovascular effects. Owing to intensive research during several decades, the distribution, function, and pathophysiological role of cardiovascular H 1 - and H 2 -receptors has become recognized adequately. Besides the recognized H 1 - and H 2 -receptor-mediated cardiovascular responses, novel roles of H 3 - and H 4 -receptors in cardiovascular physiology and pathophysiology have been identified over the last decade. In this review, we describe recent advances in our understanding of cardiovascular function and dysfunction mediated by histamine receptors, including H 3 - and H 4 -receptors, their potential mechanisms of action, and their pathological significance.
A review on cardiovascular diseases originated from subclinical hypothyroidism.
Mansourian, Azad Reza
2012-01-15
Thyroid hormones play an important role on the cardiovascular systems and thyroid disorder ultimately have a profound adverse effects on myocardium and vascular functions. There are extensive reports on the role of overt thyroid dysfunction which adversely can modify the cardiovascular metabolism but even at the present of some controversial reports, the subclinical thyroid disorders are able also to manipulate cardiovascular system to some extent. The aim of this study is to review the cardiovascular disorders accompanied with subclinical hypothyroidism. It is concluded that adverse effect of thyroid malfunction on myocardium and vascular organs are through the direct role of thyroid hormone and dyslipidemia on heart muscle cells at nuclear level and vascular system, respectively. It seems many cardiovascular disorders initially would not have been occurred in the first place if the thyroid of affected person had functioned properly, therefore thyroid function tests should be one of a prior laboratory examinations in cardiovascular disorders.
International spinal cord injury cardiovascular function basic data set.
Krassioukov, A; Alexander, M S; Karlsson, A-K; Donovan, W; Mathias, C J; Biering-Sørensen, F
2010-08-01
To create an International Spinal Cord Injury (SCI) Cardiovascular Function Basic Data Set within the framework of the International SCI Data Sets. An international working group. The draft of the data set was developed by a working group comprising members appointed by the American Spinal Injury Association (ASIA), the International Spinal Cord Society (ISCoS) and a representative of the executive committee of the International SCI Standards and Data Sets. The final version of the data set was developed after review by members of the executive committee of the International SCI Standards and Data Sets, the ISCoS scientific committee, ASIA board, relevant and interested international organizations and societies, individual persons with specific interest and the ISCoS Council. To make the data set uniform, each variable and each response category within each variable have been specifically defined in a way that is designed to promote the collection and reporting of comparable minimal data. The variables included in the International SCI Cardiovascular Function Basic Data Set include the following items: date of data collection, cardiovascular history before the spinal cord lesion, events related to cardiovascular function after the spinal cord lesion, cardiovascular function after the spinal cord lesion, medications affecting cardiovascular function on the day of examination; and objective measures of cardiovascular functions, including time of examination, position of examination, pulse and blood pressure. The complete instructions for data collection and the data sheet itself are freely available on the websites of both ISCoS (http://www.iscos.org.uk) and ASIA (http://www.asia-spinalinjury.org).
ERIC Educational Resources Information Center
Stocco, Andrea; Lebiere, Christian; Anderson, John R.
2010-01-01
The basal ganglia play a central role in cognition and are involved in such general functions as action selection and reinforcement learning. Here, we present a model exploring the hypothesis that the basal ganglia implement a conditional information-routing system. The system directs the transmission of cortical signals between pairs of regions…
Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards
Hikosaka, Okihide
2015-01-01
The basal ganglia control body movements, value processing and decision-making. Many studies have shown that the inputs and outputs of each basal ganglia structure are topographically organized, which suggests that the basal ganglia consist of separate circuits that serve distinct functions. A notable example is the circuits that originate from the rostral (head) and caudal (tail) regions of the caudate nucleus, both of which target the superior colliculus. These two caudate regions encode the reward values of visual objects differently: flexible (short-term) values by the caudate head and stable (long-term) values by the caudate tail. These value signals in the caudate guide the orienting of gaze differently: voluntary saccades by the caudate head circuit and automatic saccades by the caudate tail circuit. Moreover, separate groups of dopamine neurons innervate the caudate head and tail and may selectively guide the flexible and stable learning/memory in the caudate regions. Studies focusing on manual handling of objects also suggest that rostrocaudally separated circuits in the basal ganglia control the action differently. These results suggest that the basal ganglia contain parallel circuits for two steps of goal-directed behaviour: finding valuable objects and manipulating the valuable objects. These parallel circuits may underlie voluntary behaviour and automatic skills, enabling animals (including humans) to adapt to both volatile and stable environments. This understanding of the functions and mechanisms of the basal ganglia parallel circuits may inform the differential diagnosis and treatment of basal ganglia disorders. PMID:25981958
Roselló-Lletí, Esther; Calabuig, Jose R.; Morillas, Pedro; Cortés, Raquel; Martínez-Dolz, Luis; Almenar, Luis; González-Juanatey, Jose R.; Lauwers, Catheline; Salvador, Antonio; Portolés, Manuel; Bertomeu, Vicente; Rivera, Miguel
2012-01-01
Background The variability of NT-proBNP levels has been studied in heart failure, yet no data exist on these changes over time in hypertensive patients. Furthermore, studies on the relationship between natriuretic peptides and inflammatory status are limited. Methodology/Principal Findings 220 clinically and functionally asymptomatic stable patients (age 59±13, 120 male) out of 252 patients with essential hypertension were followed up, and NT-proBNP was measured at baseline, 12 and 24 months. No differences in NT-proBNP were found with respect to the basal stage in the hypertrophic group, but significant changes were found in non-hypertrophic subjects. The reproducibility of NT-proBNP measurements was better in patients with hypertrophy than in the non-hypertrophic group for the three intervals (stage I-basal; stage II-stage I; stage II-basal) with a reference change value of 34%, 35% and 41%, respectively, in the hypertrophic group. A more elevated coefficient of correlation was obtained in the hypertrophic group than in patients without hypertrophy: basal versus stage I (r = 0.79, p<0.0001 and r = 0.59, p<0.0001) and stage I versus stage II (r = 0.86, p<0.0001 and r = 0.56, p<0.0001). Finally, levels of NT-proBNP significantly correlated with sTNF-R1 (p<0.0001) and IL-6 (p<0.01) during follow-up. A multivariate linear regression analysis showed that sTNF-R1 is an independent factor of NT-proBNP. Conclusions/Significance This work shows that there is good stability in NT-proBNP levels in a follow-up study of asymptomatic patients with stable hypertension and left ventricular hypertrophy. As a consequence, assessment of NT-proBNP concentrations may be a useful tool for monitoring the follow-up of hypertensive patients with hypertrophy. Measured variations in peptide levels, exceeding 35% in a 12-month follow-up and 41% in a 24-month follow-up, may indicate an increase in cardiovascular risk, and therefore implies adjustment in the medical treatment. In addition, this study shows a link between neurohormonal and inflammatory activation in these patients. PMID:22384001
Aquaporins in Cardiovascular System.
Tie, Lu; Wang, Di; Shi, Yundi; Li, Xuejun
2017-01-01
Recent studies have shown that some aquaporins (AQPs ), including AQP1, AQP4, AQP7 and AQP9, are expressed in endothelial cells, vascular smooth muscle cells and heart of cardiovascular system. These AQPs are involved in the cardiovascular function and in pathological process of related diseases, such as cerebral ischemia , congestion heart failure , hypertension and angiogenesis. Therefore, it is important to understand the accurate association between AQPs and cardiovascular system, which may provide novel approaches to prevent and treat related diseases. Here we will discuss the expression and physiological function of AQPs in cardiovascular system and summarize recent researches on AQPs related cardiovascular diseases.
Van de Laar, Emily; Clifford, Monica; Hasenoeder, Stefan; Kim, Bo Ram; Wang, Dennis; Lee, Sharon; Paterson, Josh; Vu, Nancy M; Waddell, Thomas K; Keshavjee, Shaf; Tsao, Ming-Sound; Ailles, Laurie; Moghal, Nadeem
2014-12-31
The large airways of the lungs (trachea and bronchi) are lined with a pseudostratified mucociliary epithelium, which is maintained by stem cells/progenitors within the basal cell compartment. Alterations in basal cell behavior can contribute to large airway diseases including squamous cell carcinomas (SQCCs). Basal cells have traditionally been thought of as a uniform population defined by basolateral position, cuboidal cell shape, and expression of pan-basal cell lineage markers like KRT5 and TP63. While some evidence suggests that basal cells are not all functionally equivalent, few heterogeneously expressed markers have been identified to purify and study subpopulations. In addition, few signaling pathways have been identified that regulate their cell behavior. The goals of this work were to investigate tracheal basal cell diversity and to identify new signaling pathways that regulate basal cell behavior. We used flow cytometry (FACS) to profile cell surface marker expression at a single cell level in primary human tracheal basal cell cultures that maintain stem cell/progenitor activity. FACS results were validated with tissue staining, in silico comparisons with normal basal cell and lung cancer datasets, and an in vitro proliferation assay. We identified 105 surface markers, with 47 markers identifying potential subpopulations. These subpopulations generally fell into more (~ > 13%) or less abundant (~ < 6%) groups. Microarray gene expression profiling supported the heterogeneous expression of these markers in the total population, and immunostaining of large airway tissue suggested that some of these markers are relevant in vivo. 24 markers were enriched in lung SQCCs relative to adenocarcinomas, with four markers having prognostic significance in SQCCs. We also identified 33 signaling receptors, including the MST1R/RON growth factor receptor, whose ligand MST1/MSP was mitogenic for basal cells. This work provides the largest description to date of molecular diversity among human large airway basal cells. Furthermore, these markers can be used to further study basal cell function in repair and disease, and may aid in the classification and study of SQCCs.
Deep-Brain Stimulation for Basal Ganglia Disorders.
Wichmann, Thomas; Delong, Mahlon R
2011-07-01
The realization that medications used to treat movement disorders and psychiatric conditions of basal ganglia origin have significant shortcomings, as well as advances in the understanding of the functional organization of the brain, has led to a renaissance in functional neurosurgery, and particularly the use of deep brain stimulation (DBS). Movement disorders are now routinely being treated with DBS of 'motor' portions of the basal ganglia output nuclei, specifically the subthalamic nucleus and the internal pallidal segment. These procedures are highly effective and generally safe. Use of DBS is also being explored in the treatment of neuropsychiatric disorders, with targeting of the 'limbic' basal ganglia-thalamocortical circuitry. The results of these procedures are also encouraging, but many unanswered questions remain in this emerging field. This review summarizes the scientific rationale and practical aspects of using DBS for neurologic and neuropsychiatric disorders.
Galvan, Adriana; Kuwajima, Masaaki; Smith, Yoland
2006-01-01
GABA and glutamate, the main transmitters in the basal ganglia, exert their effects through ionotropic and metabotropic receptors. The dynamic activation of these receptors in response to released neurotransmitter depends, among other factors, on their precise localization in relation to corresponding synapses. The use of high resolution quantitative electron microscope immunocytochemical techniques has provided in-depth description of the subcellular and subsynaptic localization of these receptors in the CNS. In this article, we review recent findings on the ultrastructural localization of GABA and glutamate receptors and transporters in the basal ganglia, at synaptic, extrasynaptic and presynaptic sites. The anatomical evidence supports numerous potential locations for receptor-neurotransmitter interactions, and raises important questions regarding mechanisms of activation and function of synaptic versus extrasynaptic receptors in the basal ganglia. PMID:17059868
Fazio, Leonardo; Logroscino, Giancarlo; Taurisano, Paolo; Amico, Graziella; Quarto, Tiziana; Antonucci, Linda Antonella; Barulli, Maria Rosaria; Mancini, Marina; Gelao, Barbara; Ferranti, Laura; Popolizio, Teresa; Bertolino, Alessandro; Blasi, Giuseppe
2016-01-01
Convergent evidence indicates that apathy affects cognitive behavior in different neurological and psychiatric conditions. Studies of clinical populations have also suggested the primary involvement of the prefrontal cortex and the basal ganglia in apathy. These brain regions are interconnected at both the structural and functional levels and are deeply involved in cognitive processes, such as working memory and attention. However, it is unclear how apathy modulates brain processing during cognition and whether such a modulation occurs in healthy young subjects. To address this issue, we investigated the link between apathy and prefrontal and basal ganglia function in healthy young individuals. We hypothesized that apathy may be related to sub-optimal activity and connectivity in these brain regions. Three hundred eleven healthy subjects completed an apathy assessment using the Starkstein's Apathy Scale and underwent fMRI during working memory and attentional performance tasks. Using an ROI approach, we investigated the association of apathy with activity and connectivity in the DLPFC and the basal ganglia. Apathy scores correlated positively with prefrontal activity and negatively with prefrontal-basal ganglia connectivity during both working memory and attention tasks. Furthermore, prefrontal activity was inversely related to attentional behavior. These results suggest that in healthy young subjects, apathy is a trait associated with inefficient cognitive-related prefrontal activity, i.e., it increases the need for prefrontal resources to process cognitive stimuli. Furthermore, apathy may alter the functional relationship between the prefrontal cortex and the basal ganglia during cognition.
García-Villegas, Elsy Aidé; Lerman-Garber, Israel; Flores-Suárez, Luis Felipe; Aguilar-Salinas, Carlos; Márquez González, Horacio; Villa-Romero, Antonio Rafael
2015-04-08
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease of unknown etiology. In lupus patients there is an increased cardiovascular risk due to an accelerated atherogenesis. Furthermore, Metabolic Syndrome (MS) adds an independent risk for developing Cardiovascular Disease (CVD) in the population. Therefore, it is important to determine whether lupus patients have an increased risk of developing Cardiovascular Disease in the presence of MS. To estimate the prognostic value of MS in the incidence of cardiovascular events in a cohort of premenopausal patients with SLE. Cohort study in 238 patients was carried out. Clinical, biochemical, dietetic and anthropometric evaluations were performed. Patients were classified according to the prevalence of MS in 2001. There was a patient follow-up from 2001 to 2008. In 2008, after studying the records, we obtained the "cases" (patients with CVD) and the "no cases" (patients without CVD). The basal prevalence of MS in the cohort was of 21.8% (ATPIII). The MS component with the highest prevalence in the population studied in 2001 was low HDL-Cholesterol (<50mg/dL) with a prevalence of 55.0%. The cumulative incidence of CVD in the group with MS was 17.3% and in the group without MS it was 7.0% with a Relative Risk (RR) of 2.48 (1.12-5.46) and p<0.05. In the multivariable analysis it was noted that MS is a predictive factor of CVD. We observed the prognostic value of MS for an increased risk of cardiovascular damage in premenopausal patients with lupus. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.
Shaw, Katharina; Brennan, Nicole; Woo, Kaitlin; Zhang, Zhigang; Young, Robert; Peck, Kyung K; Holodny, Andrei
2016-01-01
Studies have shown that some patients with left-hemispheric brain tumors have an increased propensity for developing right-sided language support. However, the precise trigger for establishing co-dominant language function in brain tumor patients remains unknown. We analyzed the MR scans of patients with left-hemispheric tumors and either co-dominant (n=35) or left-hemisphere dominant (n=35) language function on fMRI to investigate anatomical factors influencing hemispheric language dominance. Of eleven neuroanatomical areas evaluated for tumor involvement, the basal ganglia was significantly correlated with co-dominant language function (p<0.001). Moreover, among patients whose tumors invaded the basal ganglia, those with language co-dominance performed significantly better on the Boston Naming Test, a clinical measure of aphasia, compared to their left-lateralized counterparts (56.5 versus 36.5, p=0.025). While further studies are needed to elucidate the role of the basal ganglia in establishing co-dominance, our results suggest that reactive co-dominance may afford a behavioral advantage to patients with left-hemispheric tumors. Copyright © 2016 Elsevier Inc. All rights reserved.
Akanuma, Kyoko; Meguro, Kenichi; Satoh, Masayuki; Tashiro, Manabu; Itoh, Masatoshi
2016-01-01
Clinically, we know that some aphasic patients can sing well despite their speech disturbances. Herein, we report 10 patients with non-fluent aphasia, of which half of the patients improved their speech function after singing training. We studied ten patients with non-fluent aphasia complaining of difficulty finding words. All had lesions in the left basal ganglia or temporal lobe. They selected the melodies they knew well, but which they could not sing. We made a new lyric with a familiar melody using words they could not name. The singing training using these new lyrics was performed for 30 minutes once a week for 10 weeks. Before and after the training, their speech functions were assessed by language tests. At baseline, 6 of them received positron emission tomography to evaluate glucose metabolism. Five patients exhibited improvements after intervention; all but one exhibited intact right basal ganglia and left temporal lobes, but all exhibited left basal ganglia lesions. Among them, three subjects exhibited preserved glucose metabolism in the right temporal lobe. We considered that patients who exhibit intact right basal ganglia and left temporal lobes, together with preserved right hemispheric glucose metabolism, might be an indication of the effectiveness of singing therapy.
Distinct tumor protein p53 mutants in breast cancer subgroups.
Dumay, Anne; Feugeas, Jean-Paul; Wittmer, Evelyne; Lehmann-Che, Jacqueline; Bertheau, Philippe; Espié, Marc; Plassa, Louis-François; Cottu, Paul; Marty, Michel; André, Fabrice; Sotiriou, Christos; Pusztai, Lajos; de Thé, Hugues
2013-03-01
Tumor protein p53 (TP53) is mutated in approximately 30% of breast cancers, but this frequency fluctuates widely between subclasses. We investigated the p53 mutation status in 572 breast tumors, classified into luminal, basal and molecular apocrine subgroups. As expected, the lowest mutation frequency was observed in luminal (26%), and the highest in basal (88%) tumors. Luminal tumors showed significantly higher frequency of substitutions (82 vs. 65%), notably A/T to G/C transitions (31 vs. 15%), whereas molecular apocrine and basal tumors presented much higher frequencies of complex mutations (deletions/insertions) (36 and 33%, respectively, vs. 18%). Accordingly, missense mutations were significantly more frequent in luminal tumors (75 vs. 54%), whereas basal tumors displayed significantly increased rates of TP53 truncations (43 vs. 25%), resulting in loss of function and/or expression. Interestingly, as basal tumors, molecular apocrine tumors presented with a high rate of complex mutations, but paradoxically, these were not associated with increased frequency of p53 truncation. As in luminal tumors, this could reflect a selective pressure for p53 gain of function, possibly through P63/P73 inactivation. Collectively, these observations point not only to different mechanisms of TP53 alterations, but also to different functional consequences in the different breast cancer subtypes. Copyright © 2012 UICC.
Pujol, Jesus; Blanco-Hinojo, Laura; Esteba-Castillo, Susanna; Caixàs, Assumpta; Harrison, Ben J.; Bueno, Marta; Deus, Joan; Rigla, Mercedes; Macià, Dídac; Llorente-Onaindia, Jone; Novell-Alsina, Ramón
2016-01-01
Background Prader Willi syndrome is a genetic disorder with a behavioural expression characterized by the presence of obsessive–compulsive phenomena ranging from elaborate obsessive eating behaviour to repetitive skin picking. Obsessive–compulsive disorder (OCD) has been recently associated with abnormal functional coupling between the frontal cortex and basal ganglia. We have tested the potential association of functional connectivity anomalies in basal ganglia circuits with obsessive–compulsive behaviour in patients with Prader Willi syndrome. Methods We analyzed resting-state functional MRI in adult patients and healthy controls. Whole-brain functional connectivity maps were generated for the dorsal and ventral aspects of the caudate nucleus and putamen. A selected obsessive–compulsive behaviour assessment included typical OCD compulsions, self picking and obsessive eating behaviour. Results We included 24 adults with Prader Willi syndrome and 29 controls in our study. Patients with Prader Willi syndrome showed abnormal functional connectivity between the prefrontal cortex and basal ganglia and within subcortical structures that correlated with the presence and severity of obsessive–compulsive behaviours. In addition, abnormally heightened functional connectivity was identified in the primary sensorimotor cortex–putamen loop, which was strongly associated with self picking. Finally, obsessive eating behaviour correlated with abnormal functional connectivity both within the basal ganglia loops and between the striatum and the hypothalamus and the amygdala. Limitations Limitations of the study include the difficulty in evaluating the nature of content of obsessions in patients with Prader Willi Syndrome and the risk of excessive head motion artifact on brain imaging. Conclusion Patients with Prader Willi syndrome showed broad functional connectivity anomalies combining prefrontal loop alterations characteristic of OCD with 1) enhanced coupling in the primary sensorimotor loop that correlated with the most impulsive aspects of the behaviour and 2) reduced coupling of the ventral striatum with limbic structures for basic internal homeostasis that correlated with the obsession to eat. PMID:26645739
Ryan, John P.; Sheu, Lei K.; Gianaros, Peter J.
2010-01-01
Exaggerated cardiovascular reactivity to stress confers risk for cardiovascular disease. Further, individual differences in stressor-evoked cardiovascular reactivity covary with the functionality of cortical and limbic brain areas, particularly within the cingulate cortex. What remains unclear, however, is how individual differences in personality traits interact with cingulate functionality in the prediction of stressor-evoked cardiovascular reactivity. Accordingly, we tested the associations between (i) a particular personality trait, Agreeableness, which is associated with emotional reactions to conflict, (ii) resting state functional connectivity within the cingulate cortex, and (iii) stressor-evoked blood pressure (BP) reactivity. Participants (N=39, 19 men, aged 20–37 yrs) completed a resting functional connectivity MRI protocol, followed by two standardized stressor tasks that engaged conflict processing and evoked BP reactivity. Agreeableness covaried positively with BP reactivity across individuals. Moreover, connectivity analyses demonstrated that a more positive functional connectivity between the posterior cingulate (BA31) and the perigenual anterior cingulate (BA32) covaried positively with Agreeableness and with BP reactivity. Finally, statistical mediation analyses demonstrated that BA31–BA32 connectivity mediated the covariation between Agreeableness and BP reactivity. Functional connectivity within the cingulate appears to link Agreeableness and a risk factor for cardiovascular disease, stressor-evoked BP reactivity. PMID:21130172
Platelet-derived growth factor-C and -D in the cardiovascular system and diseases.
Lee, Chunsik; Li, Xuri
2018-08-01
The cardiovascular system is among the first organs formed during development and is pivotal for the formation and function of the rest of the organs and tissues. Therefore, the function and homeostasis of the cardiovascular system are finely regulated by many important molecules. Extensive studies have shown that platelet-derived growth factors (PDGFs) and their receptors are critical regulators of the cardiovascular system. Even though PDGF-C and PDGF-D are relatively new members of the PDGF family, their critical roles in the cardiovascular system as angiogenic and survival factors have been amply demonstrated. Understanding the functions of PDGF-C and PDGF-D and the signaling pathways involved may provide novel insights into both basic biomedical research and new therapeutic possibilities for the treatment of cardiovascular diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Skin Blood Perfusion and Oxygenation Colour Affect Perceived Human Health
Stephen, Ian D.; Coetzee, Vinet; Law Smith, Miriam; Perrett, David I.
2009-01-01
Skin blood perfusion and oxygenation depends upon cardiovascular, hormonal and circulatory health in humans and provides socio-sexual signals of underlying physiology, dominance and reproductive status in some primates. We allowed participants to manipulate colour calibrated facial photographs along empirically-measured oxygenated and deoxygenated blood colour axes both separately and simultaneously, to optimise healthy appearance. Participants increased skin blood colour, particularly oxygenated, above basal levels to optimise healthy appearance. We show, therefore, that skin blood perfusion and oxygenation influence perceived health in a way that may be important to mate choice. PMID:19337378
Skin blood perfusion and oxygenation colour affect perceived human health.
Stephen, Ian D; Coetzee, Vinet; Law Smith, Miriam; Perrett, David I
2009-01-01
Skin blood perfusion and oxygenation depends upon cardiovascular, hormonal and circulatory health in humans and provides socio-sexual signals of underlying physiology, dominance and reproductive status in some primates. We allowed participants to manipulate colour calibrated facial photographs along empirically-measured oxygenated and deoxygenated blood colour axes both separately and simultaneously, to optimise healthy appearance. Participants increased skin blood colour, particularly oxygenated, above basal levels to optimise healthy appearance. We show, therefore, that skin blood perfusion and oxygenation influence perceived health in a way that may be important to mate choice.
Lindahl, Mikael; Hellgren Kotaleski, Jeanette
2016-01-01
The basal ganglia are a crucial brain system for behavioral selection, and their function is disturbed in Parkinson's disease (PD), where neurons exhibit inappropriate synchronization and oscillations. We present a spiking neural model of basal ganglia including plausible details on synaptic dynamics, connectivity patterns, neuron behavior, and dopamine effects. Recordings of neuronal activity in the subthalamic nucleus and Type A (TA; arkypallidal) and Type I (TI; prototypical) neurons in globus pallidus externa were used to validate the model. Simulation experiments predict that both local inhibition in striatum and the existence of an indirect pathway are important for basal ganglia to function properly over a large range of cortical drives. The dopamine depletion-induced increase of AMPA efficacy in corticostriatal synapses to medium spiny neurons (MSNs) with dopamine receptor D2 synapses (CTX-MSN D2) and the reduction of MSN lateral connectivity (MSN-MSN) were found to contribute significantly to the enhanced synchrony and oscillations seen in PD. Additionally, reversing the dopamine depletion-induced changes to CTX-MSN D1, CTX-MSN D2, TA-MSN, and MSN-MSN couplings could improve or restore basal ganglia action selection ability. In summary, we found multiple changes of parameters for synaptic efficacy and neural excitability that could improve action selection ability and at the same time reduce oscillations. Identification of such targets could potentially generate ideas for treatments of PD and increase our understanding of the relation between network dynamics and network function.
Meaney, Alejandra; Ceballos-Reyes, Guillermo; Gutiérrez-Salmean, Gabriela; Samaniego-Méndez, Virginia; Vela-Huerta, Agustín; Alcocer, Luis; Zárate-Chavarría, Elisa; Mendoza-Castelán, Emma; Olivares-Corichi, Ivonne; García-Sánchez, Rubén; Martínez-Marroquín, Yolanda; Ramírez-Sánchez, Israel; Meaney, Eduardo
2013-01-01
The aim of this communication is to describe the cardiovascular risk factors affecting a Mexican urban middle-class population. A convenience sample of 2602 middle class urban subjects composed the cohort of the Lindavista Study, a prospective study aimed to determine if conventional cardiovascular risks factors have the same prognosis impact as in other populations. For the baseline data, several measurements were done: obesity indexes, smoking, blood pressure, fasting serum glucose, total cholesterol, HDL-c, LDL-c and triglycerides. This paper presents the basal values of this population, which represents a sample of the Mexican growing urban middle-class. The mean age in the sample was 50 years; 59% were females. Around 50% of the entire group were overweighed, while around 24% were obese. 32% smoked; 32% were hypertensive with a 20% rate of controlled pressure. 6% had diabetes, and 14% had impaired fasting glucose; 66% had total cholesterol ≥ 200 mg/dL; 62% showed HDL-c levels<40 mg/dL; 52% triglycerides>150 mg/dL, and 34% levels of LDL-c ≥ 160 mg/dL. Half of the population studied had the metabolic syndrome. These data show a population with a high-risk profile, secondary to the agglomeration of several cardiovascular risk factors. Copyright © 2012 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.
Baucom, Brian R W; Baucom, Katherine J W; Hogan, Jasara N; Crenshaw, Alexander O; Bourne, Stacia V; Crowell, Sheila E; Georgiou, Panayiotis; Goodwin, Matthew S
2018-03-25
Cardiovascular reactivity during spousal conflict is considered to be one of the main pathways for relationship distress to impact physical, mental, and relationship health. However, the magnitude of association between cardiovascular reactivity during laboratory marital conflict and relationship functioning is small and inconsistent given the scope of its importance in theoretical models of intimate relationships. This study tests the possibility that cardiovascular data collected in laboratory settings downwardly bias the magnitude of these associations when compared to measures obtained in naturalistic settings. Ambulatory cardiovascular reactivity data were collected from 20 couples during two relationship conflicts in a research laboratory, two planned relationship conflicts at couples' homes, and two spontaneous relationship conflicts during couples' daily lives. Associations between self-report measures of relationship functioning, individual functioning, and cardiovascular reactivity across settings are tested using multilevel models. Cardiovascular reactivity was significantly larger during planned and spontaneous relationship conflicts in naturalistic settings than during planned relationship conflicts in the laboratory. Similarly, associations with relationship and individual functioning variables were statistically significantly larger for cardiovascular data collected in naturalistic settings than the same data collected in the laboratory. Our findings suggest that cardiovascular reactivity during spousal conflict in naturalistic settings is statistically significantly different from that elicited in laboratory settings both in magnitude and in the pattern of associations with a wide range of inter- and intrapersonal variables. These differences in findings across laboratory and naturalistic physiological responses highlight the value of testing physiological phenomena across interaction contexts in romantic relationships. © 2018 Family Process Institute.
Moon, James C C; Sachdev, Bhavesh; Elkington, Andrew G; McKenna, William J; Mehta, Atul; Pennell, Dudley J; Leed, Philip J; Elliott, Perry M
2003-12-01
Anderson-Fabry Disease (AFD), an X-linked disorder of sphingolipid metabolism, is a cause of idiopathic left ventricular hypertrophy but the mechanism of hypertrophy is poorly understood. Gadolinium enhanced cardiovascular magnetic resonance can detect focal myocardial fibrosis. We hypothesised that hyperenhancement would be present in AFD. Eighteen males (mean 43+/-14 years) and eight female heterozygotes (mean 48+/-12 years) with AFD underwent cine and late gadolinium cardiovascular magnetic resonance. Nine male (50%) had myocardial hyperenhancement ranging from 3.4% to 20.6% (mean 7.7+/-5.7%) of total myocardium; in males, percentage hyperenhancement related to LV mass index (r=0.78, P=0.0002) but not to ejection fraction or left ventricular volumes. Lesser hyperenhancement was also found in four (50%) heterozygous females (mean 4.6%). In 12 (92%) patients with abnormal gadolinium uptake, hyperenhancement occurred in the basal infero-lateral wall where, unlike myocardial infarction, it was not sub-endocardial. In two male patients with severe LVH (left ventricular hypertrophy) and systolic impairment there was additional hyperenhancement in other myocardial segments. These observations suggests that myocardial fibrosis occurs in AFD and may contribute to the hypertrophy and the natural history of the disease.
Beenen, O H; Pfaffendorf, M; van Zwieten, P A
1996-10-01
The hypothyroid state accompanying diabetes mellitus has been suggested to be partly responsible for the diabetes-induced metabolic, hemodynamic, and pharmacological cardiovascular changes. We assessed the effectivity of streptozotocin (STZ) to induce diabetes mellitus and a hypothyroid state. Furthermore, we investigated the influence of diabetes and hypothyrodism on cardiac function and the inotropic responsiveness to the alpha 1-adrenoceptor agonist cirazoline in isolated perfused hearts. Fasted or nonfasted Wistar rats were made diabetic with STZ 20, 40 or 60 mg/kg intravenously (i.v.). Another group was made hypothyroid by addition of 6-n-propyl-2-thiouracil (PTU) to their drinking water. Rats receiving PTU became hypothyroid, whereas rats receiving STZ became simultaneously diabetic and hypothyroid. Basal functional parameters obtained in isolated perfused hearts were not influenced by diabetes, whereas maximal contractility was reduced in hearts obtained from hypothyroid animals. Cardiac inotropic responses to cirazoline were increased in diabetic rats, whereas responses in hypothyroid rats were not different from those in hearts obtained from control animals. Although diabetes mellitus and hypothyroidism are associated with various similar metabolic and haemodynamic parameters, the increased inotropic response to alpha 1-adrenoceptor stimulation as observed in isolated perfused hearts of diabetic rats cannot be explained by the decrease in serum thyroxine levels.
CONTROL OF SLEEP AND WAKEFULNESS
Brown, Ritchie E.; Basheer, Radhika; McKenna, James T.; Strecker, Robert E.; McCarley, Robert W.
2013-01-01
This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making. PMID:22811426
Deep-Brain Stimulation for Basal Ganglia Disorders
Wichmann, Thomas; DeLong, Mahlon R.
2011-01-01
The realization that medications used to treat movement disorders and psychiatric conditions of basal ganglia origin have significant shortcomings, as well as advances in the understanding of the functional organization of the brain, has led to a renaissance in functional neurosurgery, and particularly the use of deep brain stimulation (DBS). Movement disorders are now routinely being treated with DBS of ‘motor’ portions of the basal ganglia output nuclei, specifically the subthalamic nucleus and the internal pallidal segment. These procedures are highly effective and generally safe. Use of DBS is also being explored in the treatment of neuropsychiatric disorders, with targeting of the ‘limbic’ basal ganglia-thalamocortical circuitry. The results of these procedures are also encouraging, but many unanswered questions remain in this emerging field. This review summarizes the scientific rationale and practical aspects of using DBS for neurologic and neuropsychiatric disorders. PMID:21804953
Haggerty, Christopher M; Kramer, Sage P; Binkley, Cassi M; Powell, David K; Mattingly, Andrea C; Charnigo, Richard; Epstein, Frederick H; Fornwalt, Brandon K
2013-08-27
Advanced measures of cardiac function are increasingly important to clinical assessment due to their superior diagnostic and predictive capabilities. Cine DENSE cardiovascular magnetic resonance (CMR) is ideal for quantifying advanced measures of cardiac function based on its high spatial resolution and streamlined post-processing. While many studies have utilized cine DENSE in both humans and small-animal models, the inter-test and inter-observer reproducibility for quantification of advanced cardiac function in mice has not been evaluated. This represents a critical knowledge gap for both understanding the capabilities of this technique and for the design of future experiments. We hypothesized that cine DENSE CMR would show excellent inter-test and inter-observer reproducibility for advanced measures of left ventricular (LV) function in mice. Five normal mice (C57BL/6) and four mice with depressed cardiac function (diet-induced obesity) were imaged twice, two days apart, on a 7T ClinScan MR system. Images were acquired with 15-20 frames per cardiac cycle in three short-axis (basal, mid, apical) and two long-axis orientations (4-chamber and 2-chamber). LV strain, twist, torsion, and measures of synchrony were quantified. Images from both days were analyzed by one observer to quantify inter-test reproducibility, while inter-observer reproducibility was assessed by a second observer's analysis of day-1 images. The coefficient of variation (CoV) was used to quantify reproducibility. LV strains and torsion were highly reproducible on both inter-observer and inter-test bases with CoVs ≤ 15%, and inter-observer reproducibility was generally better than inter-test reproducibility. However, end-systolic twist angles showed much higher variance, likely due to the sensitivity of slice location within the sharp longitudinal gradient in twist angle. Measures of synchrony including the circumferential (CURE) and radial (RURE) uniformity of strain indices, showed excellent reproducibility with CoVs of 1% and 3%, respectively. Finally, peak measures (e.g., strains) were generally more reproducible than the corresponding rates of change (e.g., strain rate). Cine DENSE CMR is a highly reproducible technique for quantification of advanced measures of left ventricular cardiac function in mice including strains, torsion and measures of synchrony. However, myocardial twist angles are not reproducible and future studies should instead report torsion.
Neurophysiological correlates of post-hypnotic alexia: a controlled study with Stroop test.
Casiglia, Edoardo; Schiff, Sami; Facco, Enrico; Gabbana, Amos; Tikhonoff, Valérie; Schiavon, Laura; Bascelli, Anna; Avdia, Marsel; Tosello, Maria Teresa; Rossi, Augusto Mario; Haxhi Nasto, Hilda; Guidotti, Federica; Giacomello, Margherita; Amodio, Piero
2010-01-01
To clarify whether hypnotically-induced alexia was able to reduce the Stroop effect due to color/word interference, 12 volunteers (6 with high and 6 with low hypnotizability according to Stanford Hypnotic Susceptibility Scale Form C) underwent a Stroop test consisting of measuring, both in basal conditions and during post-hypnotic alexia, the reaction times (RT) at appearance of a colored word indicating a color. In basal conditions, RT were greater in case of incongruence. In highly hypnotizable participants, the interference was less pronounced during post-hypnotic alexia (-34%, p = 0.03). During alexia, late positive complexamplitude was also greater for congruent than incongruent conditions (p < 0.03), and cardiovascular response to stress was less pronounced as well. In participants showing low hypnotizability, no reduction of Stroop effect was detected during post-hypnotic alexia. Posthypnotic alexia is therefore a real and measurable phenomenon, capable of reducing the color-word interference and the haemodynamic effects of the Stroop test.
The Human Airway Epithelial Basal Cell Transcriptome
Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.
2011-01-01
Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium. PMID:21572528
d'Ascanio, Paola; Centini, Claudia; Pompeiano, Maria; Pompeiano, Ottavio; Balaban, Evan
2002-10-15
The nucleus paragigantocellularis lateralis (LPGi) exerts a prominent excitatory influence over locus coeruleus (LC) neurons, which respond to gravity signals. We investigated whether adult albino rats exposed to different gravitational fields during the NASA Neurolab Mission (STS-90) showed changes in Fos and Fos-related antigen (FRA) protein expression in the LPGi and related cardiovascular, vasomotor, and respiratory areas. Fos and FRA proteins are induced rapidly by external stimuli and return to basal levels within hours (Fos) or days (FRA) after stimulation. Exposure to a light pulse (LP) 1 h prior to sacrifice led to increased Fos expression in subjects maintained for 2 weeks in constant gravity (either at approximately 0 or 1 G). Within 24 h of a gravitational change (launch or landing), the Fos response to LP was abolished. A significant Fos response was also induced by gravitational stimuli during landing, but not during launch. FRA responses to LP showed a mirror image pattern, with significant responses 24 h after launch and landing, but no responses after 2 weeks at approximately 0 or 1 G. There were no direct FRA responses to gravity changes. The juxtafacial and retrofacial parts of the LPGi, which integrate somatosensory/acoustic and autonomic signals, respectively, also showed gravity-related increases in LP-induced FRA expression 24 h after launch and landing. The neighboring nucleus ambiguus (Amb) showed completely different patterns of Fos and FRA expression, demonstrating the anatomical specificity of these results. Immediate early gene expression in the LPGi and related cardiovascular vasomotor and ventral respiratory areas may be directly regulated by excitatory afferents from vestibular gravity receptors. These structures could play an important role in shaping cardiovascular and respiratory function during adaptation to altered gravitational environments encountered during space flight and after return to earth. Copyright 2002 Elsevier Science Inc.
Sas-4 proteins are required during basal body duplication in Paramecium
Gogendeau, Delphine; Hurbain, Ilse; Raposo, Graca; Cohen, Jean; Koll, France; Basto, Renata
2011-01-01
Centrioles and basal bodies are structurally related organelles composed of nine microtubule (MT) triplets. Studies performed in Caenorhabditis elegans embryos have shown that centriole duplication takes place in sequential way, in which different proteins are recruited in a specific order to assemble a procentriole. ZYG-1 initiates centriole duplication by triggering the recruitment of a complex of SAS-5 and SAS-6, which then recruits the final player, SAS-4, to allow the incorporation of MT singlets. It is thought that a similar mechanism (that also involves additional proteins) is present in other animal cells, but it remains to be investigated whether the same players and their ascribed functions are conserved during basal body duplication in cells that exclusively contain basal bodies. To investigate this question, we have used the multiciliated protist Paramecium tetraurelia. Here we show that in the absence of PtSas4, two types of defects in basal body duplication can be identified. In the majority of cases, the germinative disk and cartwheel, the first structures assembled during duplication, are not detected. In addition, if daughter basal bodies were formed, they invariably had defects in MT recruitment. Our results suggest that PtSas4 has a broader function than its animal orthologues. PMID:21289083
Vargas, Félix; Rodríguez-Gómez, Isabel; Vargas-Tendero, Pablo; Jimenez, Eugenio; Montiel, Mercedes
2012-04-01
Thyroid disorders are among the most common endocrine diseases and affect virtually all physiological systems, with an especially marked impact on cardiovascular and renal systems. This review summarizes the effects of thyroid hormones on the renin-angiotensin system (RAS) and the participation of the RAS in the cardiovascular and renal manifestations of thyroid disorders. Thyroid hormones are important regulators of cardiac and renal mass, vascular function, renal sodium handling, and consequently blood pressure (BP). The RAS acts globally to control cardiovascular and renal functions, while RAS components act systemically and locally in individual organs. Various authors have implicated the systemic and local RAS in the mediation of functional and structural changes in cardiovascular and renal tissues due to abnormal thyroid hormone levels. This review analyzes the influence of thyroid hormones on RAS components and discusses the role of the RAS in BP, cardiac mass, vascular function, and renal abnormalities in thyroid disorders.
Fazio, Leonardo; Logroscino, Giancarlo; Taurisano, Paolo; Amico, Graziella; Quarto, Tiziana; Antonucci, Linda Antonella; Barulli, Maria Rosaria; Mancini, Marina; Gelao, Barbara; Ferranti, Laura; Popolizio, Teresa; Bertolino, Alessandro; Blasi, Giuseppe
2016-01-01
Objective Convergent evidence indicates that apathy affects cognitive behavior in different neurological and psychiatric conditions. Studies of clinical populations have also suggested the primary involvement of the prefrontal cortex and the basal ganglia in apathy. These brain regions are interconnected at both the structural and functional levels and are deeply involved in cognitive processes, such as working memory and attention. However, it is unclear how apathy modulates brain processing during cognition and whether such a modulation occurs in healthy young subjects. To address this issue, we investigated the link between apathy and prefrontal and basal ganglia function in healthy young individuals. We hypothesized that apathy may be related to sub-optimal activity and connectivity in these brain regions. Methods Three hundred eleven healthy subjects completed an apathy assessment using the Starkstein’s Apathy Scale and underwent fMRI during working memory and attentional performance tasks. Using an ROI approach, we investigated the association of apathy with activity and connectivity in the DLPFC and the basal ganglia. Results Apathy scores correlated positively with prefrontal activity and negatively with prefrontal-basal ganglia connectivity during both working memory and attention tasks. Furthermore, prefrontal activity was inversely related to attentional behavior. Conclusions These results suggest that in healthy young subjects, apathy is a trait associated with inefficient cognitive-related prefrontal activity, i.e., it increases the need for prefrontal resources to process cognitive stimuli. Furthermore, apathy may alter the functional relationship between the prefrontal cortex and the basal ganglia during cognition. PMID:27798669
Role of p21-activated kinases in cardiovascular development and function.
Kelly, Mollie L; Astsaturov, Artyom; Chernoff, Jonathan
2013-11-01
p21-activated kinases (Paks) are a group of six serine/threonine kinases (Pak1-6) that are involved in a variety of biological processes. Recently, Paks, more specifically Pak1, -2, and -4, have been shown to play important roles in cardiovascular development and function in a range of model organisms including zebrafish and mice. These functions include proper morphogenesis and conductance of the heart, cardiac contractility, and development and integrity of the vasculature. The mechanisms underlying these effects are not fully known, but they likely differ among the various Pak isoforms and include both kinase-dependent and -independent functions. In this review, we discuss aspects of Pak function relevant to cardiovascular biology as well as potential therapeutic implications of small-molecule Pak inhibitors in cardiovascular disease.
Bates, Karl T; Maidment, Susannah C R; Allen, Vivian; Barrett, Paul M
2012-01-01
Ornithischia (the ‘bird-hipped’ dinosaurs) encompasses bipedal, facultative quadrupedal and quadrupedal taxa. Primitive ornithischians were small bipeds, but large body size and obligate quadrupedality evolved independently in all major ornithischian lineages. Numerous pelvic and hind limb features distinguish ornithischians from the majority of other non-avian dinosaurs. However, some of these features, notably a retroverted pubis and elongate iliac preacetabular process, appeared convergently in maniraptoran theropods, and were inherited by their avian descendants. During maniraptoran/avian evolution these pelvic modifications led to significant changes in the functions of associated muscles, involving alterations to the moment arms and the activation patterns of pelvic musculature. However, the functions of these features in ornithischians and their influence on locomotion have not been tested and remain poorly understood. Here, we provide quantitative tests of bipedal ornithischian muscle function using computational modelling to estimate 3D hind limb moment arms for the most complete basal ornithischian, Lesothosaurus diagnosticus. This approach enables sensitivity analyses to be carried out to explore the effects of uncertainties in muscle reconstructions of extinct taxa, and allows direct comparisons to be made with similarly constructed models of other bipedal dinosaurs. This analysis supports some previously proposed qualitative inferences of muscle function in basal ornithischians. However, more importantly, this work highlights ambiguities in the roles of certain muscles, notably those inserting close to the hip joint. Comparative analysis reveals that moment arm polarities and magnitudes in Lesothosaurus, basal tetanuran theropods and the extant ostrich are generally similar. However, several key differences are identified, most significantly in comparisons between the moment arms of muscles associated with convergent osteological features in ornithischians and birds. Craniad migration of the iliofemoralis group muscles in birds correlates with increased leverage and use of medial femoral rotation to counter stance phase adduction moments at the hip. In Lesothosaurus the iliofemoralis group maintains significantly higher moment arms for abduction, consistent with the hip abduction mode of lateral limb support hypothesized for basal dinosaurs. Sensitivity analysis highlights ambiguity in the role of musculature associated with the retroverted pubis (puboischiofemoralis externus group) in ornithischians. However, it seems likely that this musculature may have predominantly functioned similarly to homologous muscles in extant birds, activating during the swing phase to adduct the lower limb through lateral rotation of the femur. Overall the results suggest that locomotor muscle leverage in Lesothosaurus (and by inference basal ornithischians in general) was more similar to that of other non-avian dinosaurs than the ostrich, representing what was probably the basal dinosaur condition. This work thereby contradicts previous hypotheses of ornithischian–bird functional convergence. PMID:22211275
Bates, Karl T; Maidment, Susannah C R; Allen, Vivian; Barrett, Paul M
2012-03-01
Ornithischia (the 'bird-hipped' dinosaurs) encompasses bipedal, facultative quadrupedal and quadrupedal taxa. Primitive ornithischians were small bipeds, but large body size and obligate quadrupedality evolved independently in all major ornithischian lineages. Numerous pelvic and hind limb features distinguish ornithischians from the majority of other non-avian dinosaurs. However, some of these features, notably a retroverted pubis and elongate iliac preacetabular process, appeared convergently in maniraptoran theropods, and were inherited by their avian descendants. During maniraptoran/avian evolution these pelvic modifications led to significant changes in the functions of associated muscles, involving alterations to the moment arms and the activation patterns of pelvic musculature. However, the functions of these features in ornithischians and their influence on locomotion have not been tested and remain poorly understood. Here, we provide quantitative tests of bipedal ornithischian muscle function using computational modelling to estimate 3D hind limb moment arms for the most complete basal ornithischian, Lesothosaurus diagnosticus. This approach enables sensitivity analyses to be carried out to explore the effects of uncertainties in muscle reconstructions of extinct taxa, and allows direct comparisons to be made with similarly constructed models of other bipedal dinosaurs. This analysis supports some previously proposed qualitative inferences of muscle function in basal ornithischians. However, more importantly, this work highlights ambiguities in the roles of certain muscles, notably those inserting close to the hip joint. Comparative analysis reveals that moment arm polarities and magnitudes in Lesothosaurus, basal tetanuran theropods and the extant ostrich are generally similar. However, several key differences are identified, most significantly in comparisons between the moment arms of muscles associated with convergent osteological features in ornithischians and birds. Craniad migration of the iliofemoralis group muscles in birds correlates with increased leverage and use of medial femoral rotation to counter stance phase adduction moments at the hip. In Lesothosaurus the iliofemoralis group maintains significantly higher moment arms for abduction, consistent with the hip abduction mode of lateral limb support hypothesized for basal dinosaurs. Sensitivity analysis highlights ambiguity in the role of musculature associated with the retroverted pubis (puboischiofemoralis externus group) in ornithischians. However, it seems likely that this musculature may have predominantly functioned similarly to homologous muscles in extant birds, activating during the swing phase to adduct the lower limb through lateral rotation of the femur. Overall the results suggest that locomotor muscle leverage in Lesothosaurus (and by inference basal ornithischians in general) was more similar to that of other non-avian dinosaurs than the ostrich, representing what was probably the basal dinosaur condition. This work thereby contradicts previous hypotheses of ornithischian-bird functional convergence. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.
Tarzia, Pierpaolo; Lanza, Gaetano A; Sestito, Alfonso; Villano, Angelo; Russo, Giulio; Figliozzi, Stefano; Lamendola, Priscilla; De Vita, Antonio; Crea, Filippo
We previously demonstrated that bariatric surgery (BS) leads to a short-term significant improvement of endothelial function and coronary microvascular function. In this study we assessed whether BS maintains its beneficial effect at long-term follow up. We studied 19 morbidly obese patients (age 43±9years, 12 women) without any evidence of cardiovascular disease who underwent BS. Patients were studied before BS, at 3 months and at 4.0±1.5years follow up. Peripheral vascular function was assessed by flow-mediated dilation (FMD) and nitrate-mediated dilation (NMD), i.e., brachial artery diameter changes in response to post-ischemic forearm hyperhaemia and to nitroglycerin administration, respectively. Coronary microvascular function was assessed by measuring coronary blood flow (CBF) response to intravenous adenosine and to cold pressor test (CPT) in the left anterior descending coronary artery. Together with improvement of anthropometric and metabolic profile, at long-term follow-up patients showed a significant improvement of FMD (6.43±2.88 vs. 8.21±1.73%, p=0.018), and CBF response to both adenosine (1.73±0.48 vs. 2.58±0.54; p<0.01) and CPT (1.43±0.30 vs. 2.23±0.48; p<0.01), compared to basal values. No differences in vascular end-points were shown at 3-month and 4-year follow-up after BS. Our data show that, in morbidly obese patients, BS exerts beneficial and long lasting effects on peripheral endothelial function and on coronary microvascular dilator function. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Wichmann, Thomas; Bergman, Hagai; DeLong, Mahlon R
2018-03-01
Studies in non-human primates (NHPs) have led to major advances in our understanding of the function of the basal ganglia and of the pathophysiologic mechanisms of hypokinetic movement disorders such as Parkinson's disease and hyperkinetic disorders such as chorea and dystonia. Since the brains of NHPs are anatomically very close to those of humans, disease states and the effects of medical and surgical approaches, such as deep brain stimulation (DBS), can be more faithfully modeled in NHPs than in other species. According to the current model of the basal ganglia circuitry, which was strongly influenced by studies in NHPs, the basal ganglia are viewed as components of segregated networks that emanate from specific cortical areas, traverse the basal ganglia, and ventral thalamus, and return to the frontal cortex. Based on the presumed functional domains of the different cortical areas involved, these networks are designated as 'motor', 'oculomotor', 'associative' and 'limbic' circuits. The functions of these networks are strongly modulated by the release of dopamine in the striatum. Striatal dopamine release alters the activity of striatal projection neurons which, in turn, influences the (inhibitory) basal ganglia output. In parkinsonism, the loss of striatal dopamine results in the emergence of oscillatory burst patterns of firing of basal ganglia output neurons, increased synchrony of the discharge of neighboring basal ganglia neurons, and an overall increase in basal ganglia output. The relevance of these findings is supported by the demonstration, in NHP models of parkinsonism, of the antiparkinsonian effects of inactivation of the motor circuit at the level of the subthalamic nucleus, one of the major components of the basal ganglia. This finding also contributed strongly to the revival of the use of surgical interventions to treat patients with Parkinson's disease. While ablative procedures were first used for this purpose, they have now been largely replaced by DBS of the subthalamic nucleus or internal pallidal segment. These procedures are not only effective in the treatment of parkinsonism, but also in the treatment of hyperkinetic conditions (such as chorea or dystonia) which result from pathophysiologic changes different from those underlying Parkinson's disease. Thus, these interventions probably do not counteract specific aspects of the pathophysiology of movement disorders, but non-specifically remove the influence of the different types of disruptive basal ganglia output from the relatively intact portions of the motor circuitry downstream from the basal ganglia. Knowledge gained from studies in NHPs remains critical for our understanding of the pathophysiology of movement disorders, of the effects of DBS on brain network activity, and the development of better treatments for patients with movement disorders and other neurologic or psychiatric conditions.
Vasko, Radovan; Xavier, Sandhya; Chen, Jun; Lin, Chi Hua Sarah; Ratliff, Brian; Rabadi, May; Maizel, Julien; Tanokuchi, Rina; Zhang, Frank; Cao, Jian; Goligorsky, Michael S
2014-02-01
Sirtuin 1 (SIRT1) depletion in vascular endothelial cells mediates endothelial dysfunction and premature senescence in diverse cardiovascular and renal diseases. However, the molecular mechanisms underlying these pathologic effects remain unclear. Here, we examined the phenotype of a mouse model of vascular senescence created by genetically ablating exon 4 of Sirt1 in endothelial cells (Sirt1(endo-/-)). Under basal conditions, Sirt1(endo-/-) mice showed impaired endothelium-dependent vasorelaxation and angiogenesis, and fibrosis occurred spontaneously at low levels at an early age. In contrast, induction of nephrotoxic stress (acute and chronic folic acid-induced nephropathy) in Sirt1(endo-/-) mice resulted in robust acute renal functional deterioration followed by an exaggerated fibrotic response compared with control animals. Additional studies identified matrix metalloproteinase-14 (MMP-14) as a target of SIRT1. In the kidneys of Sirt1(endo-/-) mice, impaired angiogenesis, reduced matrilytic activity, and retention of the profibrotic cleavage substrates tissue transglutaminase and endoglin accompanied MMP-14 suppression. Furthermore, restoration of MMP-14 expression in SIRT1-depeleted mice improved angiogenic and matrilytic functions of the endothelium, prevented renal dysfunction, and attenuated nephrosclerosis. Our findings establish a novel mechanistic molecular link between endothelial SIRT1 depletion, downregulation of MMP-14, and the development of nephrosclerosis.
21 CFR 870.3720 - Pacemaker electrode function tester.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker electrode function tester. 870.3720... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3720 Pacemaker electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which is...
21 CFR 870.3720 - Pacemaker electrode function tester.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker electrode function tester. 870.3720... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3720 Pacemaker electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which is...
21 CFR 870.3630 - Pacemaker generator function analyzer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker generator function analyzer. 870.3630... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3630 Pacemaker generator function analyzer. (a) Identification. A pacemaker generator function analyzer is a device that is...
21 CFR 870.3720 - Pacemaker electrode function tester.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker electrode function tester. 870.3720... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3720 Pacemaker electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which is...
21 CFR 870.3720 - Pacemaker electrode function tester.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker electrode function tester. 870.3720... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3720 Pacemaker electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which is...
21 CFR 870.3630 - Pacemaker generator function analyzer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker generator function analyzer. 870.3630... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3630 Pacemaker generator function analyzer. (a) Identification. A pacemaker generator function analyzer is a device that is...
21 CFR 870.3630 - Pacemaker generator function analyzer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker generator function analyzer. 870.3630... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3630 Pacemaker generator function analyzer. (a) Identification. A pacemaker generator function analyzer is a device that is...
21 CFR 870.3630 - Pacemaker generator function analyzer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker generator function analyzer. 870.3630... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3630 Pacemaker generator function analyzer. (a) Identification. A pacemaker generator function analyzer is a device that is...
Erectile dysfunction in the cardiovascular patient.
Vlachopoulos, Charalambos; Jackson, Graham; Stefanadis, Christodoulos; Montorsi, Piero
2013-07-01
Erectile dysfunction is common in the patient with cardiovascular disease. It is an important component of the quality of life and it also confers an independent risk for future cardiovascular events. The usual 3-year time period between the onset of erectile dysfunction symptoms and a cardiovascular event offers an opportunity for risk mitigation. Thus, sexual function should be incorporated into cardiovascular disease risk assessment for all men. A comprehensive approach to cardiovascular risk reduction (comprising of both lifestyle changes and pharmacological treatment) improves overall vascular health, including sexual function. Proper sexual counselling improves the quality of life and increases adherence to medication. This review explores the critical connection between erectile dysfunction and cardiovascular disease and evaluates how this relationship may influence clinical practice. Algorithms for the management of patient with erectile dysfunction according to the risk for sexual activity and future cardiovascular events are proposed.
2016-01-01
Abstract The basal ganglia are a crucial brain system for behavioral selection, and their function is disturbed in Parkinson’s disease (PD), where neurons exhibit inappropriate synchronization and oscillations. We present a spiking neural model of basal ganglia including plausible details on synaptic dynamics, connectivity patterns, neuron behavior, and dopamine effects. Recordings of neuronal activity in the subthalamic nucleus and Type A (TA; arkypallidal) and Type I (TI; prototypical) neurons in globus pallidus externa were used to validate the model. Simulation experiments predict that both local inhibition in striatum and the existence of an indirect pathway are important for basal ganglia to function properly over a large range of cortical drives. The dopamine depletion–induced increase of AMPA efficacy in corticostriatal synapses to medium spiny neurons (MSNs) with dopamine receptor D2 synapses (CTX-MSN D2) and the reduction of MSN lateral connectivity (MSN–MSN) were found to contribute significantly to the enhanced synchrony and oscillations seen in PD. Additionally, reversing the dopamine depletion–induced changes to CTX–MSN D1, CTX–MSN D2, TA–MSN, and MSN–MSN couplings could improve or restore basal ganglia action selection ability. In summary, we found multiple changes of parameters for synaptic efficacy and neural excitability that could improve action selection ability and at the same time reduce oscillations. Identification of such targets could potentially generate ideas for treatments of PD and increase our understanding of the relation between network dynamics and network function. PMID:28101525
Beneficial and adverse effects of testosterone on the cardiovascular system in men.
Ruige, Johannes B; Ouwens, D Margriet; Kaufman, Jean-Marc
2013-11-01
The widespread use of T therapy, particularly in aging males, necessitates knowledge of the relationship between T and the cardiovascular system. The review is based on a 1970 to 2013 PubMed search with terms related to androgens in combination with cardiovascular disease, including T, dihydrotestosterone, trial, mortality, cardiovascular disease, myocardial infarction, blood pressure, endothelial function, dyslipidemia, thrombosis, ventricular function, and arrhythmia. Original articles, systematic reviews and meta-analyses, and relevant citations were screened. Low T has been linked to increased blood pressure, dyslipidemia, atherosclerosis, arrhythmia, thrombosis, endothelial dysfunction, as well as to impaired left ventricular function. On the one hand, a modest association is suggested between low endogenous T and incident cardiovascular disease or cardiovascular mortality, implying unrecognized beneficial T effects, residual confounding, or a relationship with health status. On the other hand, treatments with T to restore "normal concentrations" have so far not been proven to be beneficial with respect to cardiovascular disease; neither have they definitely shown specific adverse cardiovascular effects. The cardiovascular risk-benefit profile of T therapy remains largely evasive in view of a lack of well-designed and adequately powered randomized clinical trials. The important knowledge gap as to the exact relationship between T and cardiovascular disease would support a cautious, restrained approach to T therapy in aging men, pending clarification of benefits and risks by adequately powered clinical trials of sufficient duration.
Parkinson's disease as a system-level disorder.
Caligiore, Daniele; Helmich, Rick C; Hallett, Mark; Moustafa, Ahmed A; Timmermann, Lars; Toni, Ivan; Baldassarre, Gianluca
2016-01-01
Traditionally, the basal ganglia have been considered the main brain region implicated in Parkinson's disease. This single area perspective gives a restricted clinical picture and limits therapeutic approaches because it ignores the influence of altered interactions between the basal ganglia and other cerebral components on Parkinsonian symptoms. In particular, the basal ganglia work closely in concert with cortex and cerebellum to support motor and cognitive functions. This article proposes a theoretical framework for understanding Parkinson's disease as caused by the dysfunction of the entire basal ganglia-cortex-cerebellum system rather than by the basal ganglia in isolation. In particular, building on recent evidence, we propose that the three key symptoms of tremor, freezing, and impairments in action sequencing may be explained by considering partially overlapping neural circuits including basal ganglia, cortical and cerebellar areas. Studying the involvement of this system in Parkinson's disease is a crucial step for devising innovative therapeutic approaches targeting it rather than only the basal ganglia. Possible future therapies based on this different view of the disease are discussed.
Three-dimensional structure of basal body triplet revealed by electron cryo-tomography
Li, Sam; Fernandez, Jose-Jesus; Marshall, Wallace F; Agard, David A
2012-01-01
Basal bodies and centrioles play central roles in microtubule (MT)-organizing centres within many eukaryotes. They share a barrel-shaped cylindrical structure composed of nine MT triplet blades. Here, we report the structure of the basal body triplet at 33 Å resolution obtained by electron cryo-tomography and 3D subtomogram averaging. By fitting the atomic structure of tubulin into the EM density, we built a pseudo-atomic model of the tubulin protofilaments at the core of the triplet. The 3D density map reveals additional densities that represent non-tubulin proteins attached to the triplet, including a large inner circular structure in the basal body lumen, which functions as a scaffold to stabilize the entire basal body barrel. We found clear longitudinal structural variations along the basal body, suggesting a sequential and coordinated assembly mechanism. We propose a model in which δ-tubulin and other components participate in the assembly of the basal body. PMID:22157822
Overbeek, Jetty A; Heintjes, Edith M; Huisman, Eline L; Tikkanen, Christian K; van Diermen, Arnout W; Penning-van Beest, Fernie J A; Herings, Ron M C
2018-05-03
To compare real-world antidiabetic treatment outcomes over 12 months in obese people with type 2 diabetes mellitus (T2DM) who previously received oral antidiabetic therapy and then initiated a first injectable therapy with liraglutide or basal insulin. This was a retrospective, propensity score-matched, longitudinal cohort study using real-world data (January 2010 to December 2015) from the Dutch PHARMO Database Network. Adult obese (body mass index [BMI] ≥35 kg/m 2 ) patients with T2DM with ≥2 dispensing dates for liraglutide or basal insulin supported oral therapy (BOT) were selected. The primary endpoint was the change in glycated haemoglobin (HbA1c) from baseline during 12 months of follow-up. The secondary endpoints were the changes in weight, BMI and cardiovascular risk factors from baseline. Clinical data were analysed using descriptive statistics and compared using mixed models for repeated measures. Obese patients with T2DM (N = 1157) in each treatment group were matched (liraglutide cohort, n = 544; BOT cohort, n = 613). From 3 months onwards, glycaemic control improved in both cohorts but improved significantly more with liraglutide than with BOT (12 months: -12.2 mmol/mol vs -8.8 mmol/mol; P = .0053). In addition, weight and BMI were significantly lower for treatments with liraglutide vs BOT (12 months: -6.0 kg vs -1.6 kg and - 2.1 kg/m 2 vs -0.5 kg/m 2 , respectively; P < .0001 for both). No significant differences were seen in changes in cardiovascular risk factors. The results of this real-world study in matched obese patients with T2DM showed that liraglutide was more effective than BOT for HbA1c control and weight/BMI reductions. Patients were more likely to maintain glycaemic control over time after initiating liraglutide than after initiating BOT. © 2018 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.
Li, Z; Richter-Levin, G
2013-08-29
The amygdaloid complex, or amygdala, has been implicated in assigning emotional significance to sensory information and producing appropriate behavioral responses to external stimuli. The lateral and basal nuclei (lateral and basal amygdala), which are termed together as basolateral amygdala, play a critical role in emotional and motivational learning and memory. It has been established that the basolateral amygdala activation by behavioral manipulations or direct electrical stimulation can modulate hippocampal long-term potentiation (LTP), a putative cellular mechanism of memory. However, the specific functional role of each subnucleus in the modulation of hippocampal LTP has not been studied yet, even though studies have shown cytoarchitectural differences between the basal and lateral amygdala and differences in the connections of each one of them to other brain areas. In this study we have tested the effects of lateral or basal amygdala pre-stimulation on hippocampal dentate gyrus LTP, induced by theta burst stimulation of the perforant path, in anesthetized rats. We found that while priming stimulation of the lateral amygdala did not affect LTP of the dentate gyrus, priming stimulation of the basal amygdala enhanced the LTP response when the priming stimulation was relatively weak, but impaired it when it was relatively strong. These results show that the basal and lateral nuclei of the amygdala, which have been already shown to differ in their anatomy and connectivity, may also have different functional roles. These findings raise the possibility that the lateral and basal amygdala differentially modulate memory processes in the hippocampus under emotional and motivational situations. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells
Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.
2015-01-01
ABSTRACT Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell–endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal ‘crosstalk’ between human airway basal cells and endothelial cells that regulates proliferation of basal cells. PMID:26116571
Moustafa, Ahmed A.; Keri, Szabolcs; Herzallah, Mohammad M.; Myers, Catherine E.; Gluck, Mark A.
2010-01-01
Building on our previous neurocomputational models of basal ganglia and hippocampal-region function (and their modulation by dopamine and acetylcholine, respectively), we show here how an integration of these models can inform our understanding of the interaction between the basal ganglia and hippocampal region in associative learning and transfer generalization across various patient populations. As a common test bed for exploring interactions between these brain regions and neuromodulators, we focus on the acquired equivalence task, an associative learning paradigm in which stimuli that have been associated with the same outcome acquire a functional similarity such that subsequent generalization between these stimuli increases. This task has been used to test cognitive dysfunction in various patient populations with damages to the hippocampal region and basal ganglia, including studies of patients with Parkinson’s disease (PD), schizophrenia, basal forebrain amnesia, and hippocampal atrophy. Simulation results show that damage to the hippocampal region—as in patients with hippocampal atrophy (HA), hypoxia, mild Alzheimer’s (AD), or schizophrenia—leads to intact associative learning but impaired transfer generalization performance. Moreover, the model demonstrates how PD and anterior communicating artery (ACoA) aneurysm—two very different brain disorders that affect different neural mechanisms—can have similar effects on acquired equivalence performance. In particular, the model shows that simulating a loss of dopamine function in the basal ganglia module (as in PD) leads to slow acquisition learning but intact transfer generalization. Similarly, the model shows that simulating the loss of acetylcholine in the hippocampal region (as in ACoA aneurysm) also results in slower acquisition learning. We argue from this that changes in associative learning of stimulus-action pathways (in the basal ganglia) or changes in the learning of stimulus representations (in the hippocampal region) can have similar functional effects. PMID:20728258
The role of nitric oxide in regulation of the cardiovascular system in reptiles.
Skovgaard, Nini; Galli, Gina; Abe, Augusto; Taylor, Edwin W; Wang, Tobias
2005-10-01
The roles that nitric oxide (NO) plays in the cardiovascular system of reptiles are reviewed, with particular emphasis on its effects on central vascular blood flows in the systemic and pulmonary circulations. New data is presented that describes the effects on hemodynamic variables in varanid lizards of exogenously administered NO via the nitric oxide donor sodium nitroprusside (SNP) and inhibition of nitric oxide synthase (NOS) by l-nitroarginine methyl ester (l-NAME). Furthermore, preliminary data on the effects of SNP on hemodynamic variables in the tegu lizard are presented. The findings are compared with previously published data from our laboratory on three other species of reptiles: pythons (), rattlesnakes () and turtles (). These five species of reptiles possess different combinations of division of the heart and structural complexity of the lungs. Comparison of their responses to NO donors and NOS inhibitors may reveal whether the potential contribution of NO to vascular tone correlates with pulmonary complexity and/or with blood pressure. All existing studies on reptiles have clearly established a potential role for NO in regulating vascular tone in the systemic circulation and NO may be important for maintaining basal systemic vascular tone in varanid lizards, pythons and turtles, through a continuous release of NO. In contrast, the pulmonary circulation is less responsive to NO donors or NOS inhibitors, and it was only in pythons and varanid lizards that the lungs responded to SNP. Both species have a functionally separated heart, so it is possible that NO may exert a larger role in species with low pulmonary blood pressures, irrespective of lung complexity.
O'Sullivan, Lee; Cuffe, James S M; Paravicini, Tamara M; Campbell, Sally; Dickinson, Hayley; Singh, Reetu R; Gezmish, Oksan; Black, M Jane; Moritz, Karen M
2013-01-01
Exposure to synthetic glucocorticoids during development can result in later cardiovascular and renal disease in sheep and rats. Although prenatal glucocorticoid exposure is associated with impaired renal development, less is known about effects on the developing heart. This study aimed to examine the effects of a short-term exposure to dexamethasone (60 hours from embryonic day 12.5) on the developing mouse heart, and cardiovascular function in adult male offspring. Dexamethasone (DEX) exposed fetuses were growth restricted compared to saline treated controls (SAL) at E14.5, but there was no difference between groups at E17.5. Heart weights of the DEX fetuses also tended to be smaller at E14.5, but not different at E17.5. Cardiac AT1aR, Bax, and IGF-1 mRNA expression was significantly increased by DEX compared to SAL at E17.5. In 12-month-old offspring DEX exposure caused an increase in basal blood pressure of ~3 mmHg. In addition, DEX exposed mice had a widened pulse pressure compared to SAL. DEX exposed males at 12 months had an approximate 25% reduction in nephron number compared to SAL, but no difference in cardiomyocyte number. Exposure to DEX in utero appears to adversely impact on nephrogenesis and heart growth but is not associated with a cardiomyocyte deficit in male mice in adulthood, possibly due to compensatory growth of the myocardium following the initial insult. However, the widened pulse pressure may be indicative of altered vascular compliance.
The discovery of nitric oxide and its role in vascular biology
Moncada, S; Higgs, E A
2006-01-01
Nitric oxide (NO) is a relative newcomer to pharmacology, as the paper which initiated the field was published only 25 years ago. Nevertheless its impact is such that to date more than 31,000 papers have been published with NO in the title and more than 65,000 refer to it in some way. The identification of NO with endothelium-derived relaxing factor and the discovery of its synthesis from L-arginine led to the realisation that the L-arginine: NO pathway is widespread and plays a variety of physiological roles. These include the maintenance of vascular tone, neurotransmitter function in both the central and peripheral nervous systems, and mediation of cellular defence. In addition, NO interacts with mitochondrial systems to regulate cell respiration and to augment the generation of reactive oxygen species, thus triggering mechanisms of cell survival or death. This review will focus on the role of NO in the cardiovascular system where, in addition to maintaining a vasodilator tone, it inhibits platelet aggregation and adhesion and modulates smooth muscle cell proliferation. NO has been implicated in a number of cardiovascular diseases and virtually every risk factor for these appears to be associated with a reduction in endothelial generation of NO. Reduced basal NO synthesis or action leads to vasoconstriction, elevated blood pressure and thrombus formation. By contrast, overproduction of NO leads to vasodilatation, hypotension, vascular leakage, and disruption of cell metabolism. Appropriate pharmacological or molecular biological manipulation of the generation of NO will doubtless prove beneficial in such conditions. PMID:16402104
Song, Young-Hwan; Kim, Hae Soon; Park, Hae Sook; Jung, Jo Won; Kim, Nam Su; Noh, Chung Il; Hong, Young Mi
2014-01-01
Objective Obesity in adolescence is associated with increased cardiovascular risk. The patterns of obesity and body composition differ between boys and girls. It is uncertain how body composition correlates with the cardiovascular system and whether such correlations differ by sex in adolescents. Methods Body composition (fat-free mass (FFM), adipose mass, waist circumference (WC)) and cardiovascular parameters and functions were studied in 676 healthy Korean adolescents aged 12-16 years. Partial correlation and path analyses were done. Results WC correlated with stroke volume (SV) and cardiac output (CO), systolic blood pressure (SBP) and pulse pressure (PP), cardiac diastolic function (ratio of early to late filling velocity (E/A ratio)), and vascular function (pulse wave velocity (PWV)) in boys. Adipose mass was related to SV, CO, SBP, PP, left ventricular mass (LVM), and PWV in girls – and to E/A ratio in both sexes. FFM affected SV, CO, SBP, and PP in both sexes and LVM in boys. Cardiac systolic functions had no relation with any body composition variable in either sex. Conclusion In adolescence, the interdependence of the cardiovascular system and the body composition differs between sexes. Understanding of those relations is required to control adolescent obesity and prevent adult cardiovascular disease. PMID:24820977
Defining High-Risk Precursor Signaling to Advance Breast Cancer Risk Assessment and Prevention
2017-03-01
KEYWORDS: 3. ACCOMPLISHMENTS: Aim 1: Functional analysis of progenitor and stem cells in high-risk tissues. Major Task 1Functional...and stem cells in high-risk tissues. Major Task 1: Quantitation of LP (Luminal Progenitor) and basal stem cell (MASC) populations A. Quantitation of...LP and basal stem cell (MASC) populations We have continued to add patients to the cohorts between months 12 and 24. (This reporting period
Thalamus and Language: What do we know from vascular and degenerative pathologies.
Moretti, Rita; Caruso, Paola; Crisman, Elena; Gazzin, Silvia
2018-01-01
Language is a complex cognitive task that is essential in our daily life. For decades, researchers have tried to understand the different role of cortical and subcortical areas in cerebral language representations and language processing. Language-related cortical zones are richly interconnected with other cortical regions (particularly via myelinated fibre tracts), but they also participate in subcortical feedback loops within the basal ganglia (caudate nucleus and putamen) and thalamus. The most relevant thalamic functions are the control and adaptation of cortico-cortical connectivity and bandwidth for information exchange. Despite having the knowledge of thalamic and basal ganglionic involvement in linguistic operations, the specific functions of these subcortical structures remain rather controversial. The aim of this study is to better understand the role of thalamus in language network, exploring the functional configuration of basal network components. The language specificity of subcortical supporting activity and the associated clinical features in thalamic involvement are also highlighted.
Loss of Dickkopf 3 Promotes the Tumorigenesis of Basal Breast Cancer
Lorsy, Eva; Topuz, Aylin Sophie; Geisler, Cordelia; Stahl, Sarah; Garczyk, Stefan; von Stillfried, Saskia; Hoss, Mareike; Gluz, Oleg; Hartmann, Arndt; Knüchel, Ruth; Dahl, Edgar
2016-01-01
Dickkopf 3 (DKK3) has been associated with tumor suppression of various tumor entities including breast cancer. However, the functional impact of DKK3 on the tumorigenesis of distinct molecular breast cancer subtypes has not been considered so far. Therefore, we initiated a study analyzing the subtype-specific DKK3 expression pattern as well as its prognostic and functional impact with respect to breast cancer subtypes. Based on three independent tissue cohorts including one in silico dataset (n = 30, n = 463 and n = 791) we observed a clear down-regulation of DKK3 expression in breast cancer samples compared to healthy breast tissue controls on mRNA and protein level. Interestingly, most abundant reduction of DKK3 expression was detected in the highly aggressive basal breast cancer subtype. Analyzing a large in silico dataset comprising 3,554 cases showed that low DKK3 mRNA expression was significantly associated with reduced recurrence free survival (RFS) of luminal and basal-like breast cancer cases. Functionally, DKK3 re-expression in human breast cancer cell lines led to suppression of cell growth possibly mediated by up-regulation of apoptosis in basal-like but not in luminal-like breast cancer cell lines. Moreover, ectopic DKK3 expression in mesenchymal basal breast cancer cells resulted in partial restoration of epithelial cell morphology which was molecularly supported by higher expression of epithelial markers like E-Cadherin and down-regulation of mesenchymal markers such as Snail 1. Hence, we provide evidence that down-regulation of DKK3 especially promotes tumorigenesis of the aggressive basal breast cancer subtype. Further studies decoding the underlying molecular mechanisms of DKK3-mediated effects may help to identify novel targeted therapies for this clinically highly relevant breast cancer subtype. PMID:27467270
Cardiovascular disease and cognitive function in maintenance hemodialysis patients
USDA-ARS?s Scientific Manuscript database
Cardiovascular disease (CVD) and cognitive impairment are common in dialysis patients. Given the proposed role of microvascular disease on cognitive function, particularly cognitive domains that incorporate executive functions, we hypothesized that prevalent systemic CVD would be associated with wor...
The Molecular Pathway Regulating Bergmann Glia and Folia Generation in the Cerebellum.
Leung, Alan W; Li, James Y H
2018-02-01
Evolution of complex behaviors in higher vertebrates and primates require the development of sophisticated neuronal circuitry and the expansion of brain surface area to accommodate the vast number of neuronal and glial populations. To achieve these goals, the neocortex in primates and the cerebellum in amniotes have developed specialized types of basal progenitors to aid the folding of their cortices. In the cerebellum, Bergmann glia constitute such a basal progenitor population, having a distinctive morphology and playing a critical role in cerebellar corticogenesis. Here, we review recent studies on the induction of Bergmann glia and their crucial role in mediating folding of the cerebellar cortex. These studies uncover a key function of FGF-ERK-ETV signaling cascade in the transformation of Bergmann glia from radial glia in the ventricular zone. Remarkably, in the neocortex, the same signaling axis operates to facilitate the transformation of ventricular radial glia into basal radial glia, a Bergmann glia-like basal progenitor population, which have been implicated in the establishment of neocortical gyri. These new findings draw a striking similarity in the function and ontogeny of the two basal progenitor populations born in distinct brain compartments.
Attentional validity effect across the human menstrual cycle varies with basal temperature changes.
Beaudoin, Jessica; Marrocco, Richard
2005-03-07
This study examined the correlation between covert attention and basal temperature change during menstrual cycle phase in 22 adult females. Previous work showing beneficial effects of estrogen on working memory led us to hypothesize that attentional function would be facilitated at the apparent time of ovulation. Menstrual phase was determined through questionnaires and objective measurements of basal body temperature (BBT) spikes over a 1 month period. The cued target detection (CTD) task was used to assess visuospatial attentional performance at three times during the menstrual cycle. The mean reaction times (RTs) to visual targets were measured as a function of menstrual cycle phase, cue type and target location. As predicted, the onset of ovulation showed decreased reaction times and a significant increase in the cue validity effect on the days immediately preceding and following ovulation. The magnitude of the attention validity effect was negatively correlated with the basal temperature rise. Women lacking basal temperature shifts failed to show these changes. Results support the conclusion that the natural fluctuations of body temperature, and possibly reproductive hormones, during the menstrual cycle may enhance the attentional component of cognitive performance.
Proactive Selective Response Suppression Is Implemented via the Basal Ganglia
Majid, D. S. Adnan; Cai, Weidong; Corey-Bloom, Jody
2013-01-01
In the welter of everyday life, people can stop particular response tendencies without affecting others. A key requirement for such selective suppression is that subjects know in advance which responses need stopping. We hypothesized that proactively setting up and implementing selective suppression relies on the basal ganglia and, specifically, regions consistent with the inhibitory indirect pathway for which there is scant functional evidence in humans. Consistent with this hypothesis, we show, first, that the degree of proactive motor suppression when preparing to stop selectively (indexed by transcranial magnetic stimulation) corresponds to striatal, pallidal, and frontal activation (indexed by functional MRI). Second, we demonstrate that greater striatal activation at the time of selective stopping correlates with greater behavioral selectivity. Third, we show that people with striatal and pallidal volume reductions (those with premanifest Huntington's disease) have both absent proactive motor suppression and impaired behavioral selectivity when stopping. Thus, stopping goals are used to proactively set up specific basal ganglia channels that may then be triggered to implement selective suppression. By linking this suppression to the striatum and pallidum, these results provide compelling functional evidence in humans of the basal ganglia's inhibitory indirect pathway. PMID:23946385
Neural correlates underlying micrographia in Parkinson’s disease
Zhang, Jiarong; Hallett, Mark; Feng, Tao; Hou, Yanan; Chan, Piu
2016-01-01
Micrographia is a common symptom in Parkinson’s disease, which manifests as either a consistent or progressive reduction in the size of handwriting or both. Neural correlates underlying micrographia remain unclear. We used functional magnetic resonance imaging to investigate micrographia-related neural activity and connectivity modulations. In addition, the effect of attention and dopaminergic administration on micrographia was examined. We found that consistent micrographia was associated with decreased activity and connectivity in the basal ganglia motor circuit; while progressive micrographia was related to the dysfunction of basal ganglia motor circuit together with disconnections between the rostral supplementary motor area, rostral cingulate motor area and cerebellum. Attention significantly improved both consistent and progressive micrographia, accompanied by recruitment of anterior putamen and dorsolateral prefrontal cortex. Levodopa improved consistent micrographia accompanied by increased activity and connectivity in the basal ganglia motor circuit, but had no effect on progressive micrographia. Our findings suggest that consistent micrographia is related to dysfunction of the basal ganglia motor circuit; while dysfunction of the basal ganglia motor circuit and disconnection between the rostral supplementary motor area, rostral cingulate motor area and cerebellum likely contributes to progressive micrographia. Attention improves both types of micrographia by recruiting additional brain networks. Levodopa improves consistent micrographia by restoring the function of the basal ganglia motor circuit, but does not improve progressive micrographia, probably because of failure to repair the disconnected networks. PMID:26525918
Developmental cardiovascular physiology of the olive ridley sea turtle (Lepidochelys olivacea).
Crossley, Dane Alan; Crossley, Janna Lee; Smith, Camilla; Harfush, Martha; Sánchez-Sánchez, Hermilo; Garduño-Paz, Mónica Vanessa; Méndez-Sánchez, José Fernando
2017-09-01
Our understanding of reptilian cardiovascular development and regulation has increased substantially for two species the American alligator (Alligator mississippiensis) and the common snapping turtle (Chelydra serpentina) during the past two decades. However, what we know about cardiovascular maturation in many other species remains poorly understood or unknown. Embryonic sea turtles have been studied to understand the maturation of metabolic function, but these studies have not addressed the cardiovascular system. Although prior studies have been pivotal in characterizing development, and factors that influence it, the development of cardiovascular function, which supplies metabolic function, is unknown in sea turtles. During our investigation we focused on quantifying how cardiovascular morphological and functional parameters change, to provide basic knowledge of development in the olive ridley sea turtle (Lepidochelys olivacea). Embryonic mass, as well as mass of the heart, lungs, liver, kidney, and brain increased during turtle embryo development. Although heart rate was constant during this developmental period, arterial pressure approximately doubled. Further, while embryonic olive ridley sea turtles lacked cholinergic tone on heart rate, there was a pronounced beta adrenergic tone on heart rate that decreased in strength at 90% of incubation. This beta adrenergic tone may be partially originating from the sympathetic nervous system at 90% of incubation, with the majority originating from circulating catecholamines. Data indicates that olive ridley sea turtles share traits of embryonic functional cardiovascular maturation with the American alligator (Alligator mississippiensis) but not the common snapping turtle (Chelydra serpentina). Copyright © 2017 Elsevier Inc. All rights reserved.
Lanoue, Julien
2016-01-01
Basal cell carcinoma is the most commonly occurring cancer in the world and overall incidence is still on the rise. While typically a slow-growing tumor for which metastases is rare, basal cell carcinoma can be locally destructive and disfiguring. Given the vast prevalence of this disease, there is a significant overall burden on patient well-being and quality of life. The current mainstay of basal cell carcinoma treatment involves surgical modalities, such as electrodessication and curettage, excision, cryosurgery, and Mohs micrographic surgery. Such methods are typically reserved for localized basal cell carcinoma and offer high five-year cure rates, but come with the risk of functional impairment, disfigurement, and scarring. Here, the authors review the evidence and indications for nonsurgical treatment modalities in cases where surgery is impractical, contraindicated, or simply not desired by the patient. PMID:27386043
Wine, Beer, Alcohol and Polyphenols on Cardiovascular Disease and Cancer
Arranz, Sara; Chiva-Blanch, Gemma; Valderas-Martínez, Palmira; Medina-Remón, Alex; Lamuela-Raventós, Rosa M.; Estruch, Ramón
2012-01-01
Since ancient times, people have attributed a variety of health benefits to moderate consumption of fermented beverages such as wine and beer, often without any scientific basis. There is evidence that excessive or binge alcohol consumption is associated with increased morbidity and mortality, as well as with work related and traffic accidents. On the contrary, at the moment, several epidemiological studies have suggested that moderate consumption of alcohol reduces overall mortality, mainly from coronary diseases. However, there are discrepancies regarding the specific effects of different types of beverages (wine, beer and spirits) on the cardiovascular system and cancer, and also whether the possible protective effects of alcoholic beverages are due to their alcoholic content (ethanol) or to their non-alcoholic components (mainly polyphenols). Epidemiological and clinical studies have pointed out that regular and moderate wine consumption (one to two glasses a day) is associated with decreased incidence of cardiovascular disease (CVD), hypertension, diabetes, and certain types of cancer, including colon, basal cell, ovarian, and prostate carcinoma. Moderate beer consumption has also been associated with these effects, but to a lesser degree, probably because of beer’s lower phenolic content. These health benefits have mainly been attributed to an increase in antioxidant capacity, changes in lipid profiles, and the anti-inflammatory effects produced by these alcoholic beverages. This review summarizes the main protective effects on the cardiovascular system and cancer resulting from moderate wine and beer intake due mainly to their common components, alcohol and polyphenols. PMID:22852062
Uchida, Sae; Kagitani, Fusako
2017-05-12
The olfactory bulb receives cholinergic basal forebrain input, as does the neocortex; however, the in vivo physiological functions regarding the release of extracellular acetylcholine and regulation of regional blood flow in the olfactory bulb are unclear. We used in vivo microdialysis to measure the extracellular acetylcholine levels in the olfactory bulb of urethane-anesthetized rats. Focal chemical stimulation by microinjection of L-glutamate into the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain, which is the main source of cholinergic input to the olfactory bulb, increased extracellular acetylcholine release in the ipsilateral olfactory bulb. When the regional cerebral blood flow was measured using laser speckle contrast imaging, the focal chemical stimulation of the HDB did not significantly alter the blood flow in the olfactory bulb, while increases were observed in the neocortex. Our results suggest a functional difference between the olfactory bulb and neocortex regarding cerebral blood flow regulation through the release of acetylcholine by cholinergic basal forebrain input.
Höfner, Thomas; Eisen, Christian; Klein, Corinna; Rigo-Watermeier, Teresa; Goeppinger, Stephan M.; Jauch, Anna; Schoell, Brigitte; Vogel, Vanessa; Noll, Elisa; Weichert, Wilko; Baccelli, Irène; Schillert, Anja; Wagner, Steve; Pahernik, Sascha; Sprick, Martin R.; Trumpp, Andreas
2015-01-01
Summary Methods to isolate and culture primary prostate epithelial stem/progenitor cells (PESCs) have proven difficult and ineffective. Here, we present a method to grow and expand both murine and human basal PESCs long term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin−SCA-1+CD49f+TROP2high phenotype. Progesterone and sodium selenite are additionally required for the growth of human Lin−CD49f+TROP2high PESCs. The gene-expression profiles of expanded basal PESCs show similarities to ESCs, and NF-kB function is critical for epithelial differentiation of sphere-cultured PESCs. When transplanted in combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules, demonstrating their stem cell activity in vivo. This novel method will facilitate the molecular, genomic, and functional characterization of normal and pathologic prostate glands of mouse and human origin. PMID:25702639
Zwanenburg, Jaco JM; Reinink, Rik; Wisse, Laura EM; Luijten, Peter R; Kappelle, L Jaap; Geerlings, Mirjam I; Biessels, Geert Jan
2016-01-01
Cerebral perivascular spaces (PVS) are small physiological structures around blood vessels in the brain. MRI visible PVS are associated with ageing and cerebral small vessel disease (SVD). 7 Tesla (7T) MRI improves PVS detection. We investigated the association of age, vascular risk factors, and imaging markers of SVD with PVS counts on 7 T MRI, in 50 persons aged ≥ 40. The average PVS count ± SD in the right hemisphere was 17 ± 6 in the basal ganglia and 71 ± 28 in the semioval centre. We observed no relation between age or vascular risk factors and PVS counts. The presence of microbleeds was related to more PVS in the basal ganglia (standardized beta 0.32; p = 0.04) and semioval centre (standardized beta 0.39; p = 0.01), and white matter hyperintensity volume to more PVS in the basal ganglia (standardized beta 0.41; p = 0.02). We conclude that PVS counts on 7T MRI are high and are related SVD markers, but not to age and vascular risk factors. This latter finding may indicate that due to the high sensitivity of 7T MRI, the correlation of PVS counts with age or vascular risk factors may be attenuated by the detection of “normal”, non-pathological PVS. PMID:27154503
Lemos, Sara P; Passos, Valéria Maria A; Brant, Luisa C C; Bensenor, Isabela J M; Ribeiro, Antônio Luiz P; Barreto, Sandhi Maria
2015-08-01
To estimate the association between 2 markers for atherosclerosis, measurements of carotid artery intima-media thickness (IMT) and of peripheral arterial tonometry (PAT), and to evaluate the role of traditional cardiovascular risk factors in this association.We applied the 2 diagnostic tests to 588 participants from the ELSA-Brazil longitudinal study cohort. The PAT measurements, obtained with the EndoPAT2000, were the reactive hyperemia index (RHI), the Framingham RHI (F-RHI), and the mean basal pulse amplitude (BPA). We used the mean of the mean scores of carotid IMT of the distal layers of the left and right common carotids obtained by ultrasonography after 3 cardiac cycles. We used linear regression and the Spearman correlation coefficient to test the relationship between the 2 markers, and multiple linear regressions to exam the relationship between the RHI/F-RHI scores and the mean BPA and IMT scores after adjusting for cardiovascular risk factors.In the multivariate analysis, RHI (but not F-RHI) was positively correlated with the mean of the means of the IMT values after adjusting for sex and risk factors connected with both measures (β = 0.05, P = 0.02). Mean BPA did not remain significantly associated with IMT after adjusting for common risk factors.We found that the higher the IMT (or the worse the IMT), the higher the RHI (or the better the endothelial function). F-RHI was not associated with IMT. These 2 results are against the direction that one would expect and may imply that digital endothelial function (RHI and F-RHI) and IMT correspond to distinct and independent stages of the complex atherosclerosis process and represent different pathways in the disease's progression. Therefore, IMT and PAT measures may be considered complementary and not interchangeable.
Zhang, Xiaoyan; Liu, Zhan-Qiu; Singh, Dara; Wehner, Gregory J; Powell, David K; Campbell, Kenneth S; Fornwalt, Brandon K; Wenk, Jonathan F
2017-08-01
Rat models have assumed an increasingly important role in cardiac research. However, a detailed profile of regional cardiac mechanics, such as strains and torsion, is lacking for rats. We hypothesized that healthy rat left ventricles (LVs) exhibit regional differences in cardiac mechanics, which are part of normal function. In this study, images of the LV were obtained with 3D cine displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance in 10 healthy rats. To evaluate regional cardiac mechanics, the LV was divided into basal, mid-ventricular, and apical regions. The myocardium at the mid-LV was further partitioned into four wall segments (i.e. septal, inferior, lateral, and anterior) and three transmural layers (i.e. sub-endocardium, mid-myocardium, and sub-epicardium). The six Lagrangian strain components (i.e. E rr , E cc , E ll , E cl , E rl , and E cr ) were computed from the 3D displacement field and averaged within each region of interest. Torsion was quantified using the circumferential-longitudinal shear angle. While peak systolic E cl differed between the mid-ventricle and apex, the other five components of peak systolic strain were similar across the base, mid-ventricle, and apex. In the mid-LV myocardium, E cc decreased gradually from the sub-endocardial to the sub-epicardial layer. E ll demonstrated significant differences between the four wall segments, with the largest magnitude in the inferior segment. E rr was uniform among the four wall segments. E cl varied along the transmural direction and among wall segments, whereas E rl differed only among the wall segments. E rc was not associated with significant variations. Torsion also varied along the transmural direction and among wall segments. These results provide fundamental insights into the regional contractile function of healthy rat hearts, and form the foundation for future studies on regional changes induced by disease or treatments. Copyright © 2017 John Wiley & Sons, Ltd.
Seo, Younghee; Kim, Ji-Woong; Choi, Jeewook
2009-01-01
Objective Many studies have showed that excess or lack of sexual hormones, such as prolactin and testosterone, induced the sexual dysfunction in humans. Little, however, is known about the role of sexual hormones showing normal range in, especially, the basal state unexposed to any sexual stimulation. We hypothesized sexual hormones in the basal state may affect sexual behavior. Methods We investigated the association of the sexual hormones level in the basal hormonal state before visual sexual stimulation with the sexual response-related brain activity during the stimulation. Twelve heterosexual men were recorded the functional MRI signals of their brain activation elicited by passive viewing erotic (ERO), happy-faced (HA) couple, food and nature pictures. Both plasma prolacitn and testosterone concentrations were measured before functional MR scanning. A voxel wise regression analyses were performed to investigate the relationship between the concentration of sexual hormones in basal state and brain activity elicited by ERO minus HA, not food minus nature, contrast. Results The plasma concentration of prolactin in basal state showed positive association with the activity of the brain involving cognitive component of sexual behavior including the left middle frontal gyrus, paracingulate/superior frontal/anterior cingulate gyri, bilateral parietal lobule, right angular, bilateral precuneus and right cerebellum. Testosterone in basal state was positively associated with the brain activity of the bilateral supplementary motor area which related with motivational component of sexual behavior. Conclusion Our results suggested sexual hormones in basal state may have their specific target regions or network associated with sexual response. PMID:20046395
Seo, Younghee; Jeong, Bumseok; Kim, Ji-Woong; Choi, Jeewook
2009-09-01
Many studies have showed that excess or lack of sexual hormones, such as prolactin and testosterone, induced the sexual dysfunction in humans. Little, however, is known about the role of sexual hormones showing normal range in, especially, the basal state unexposed to any sexual stimulation. We hypothesized sexual hormones in the basal state may affect sexual behavior. We investigated the association of the sexual hormones level in the basal hormonal state before visual sexual stimulation with the sexual response-related brain activity during the stimulation. Twelve heterosexual men were recorded the functional MRI signals of their brain activation elicited by passive viewing erotic (ERO), happy-faced (HA) couple, food and nature pictures. Both plasma prolacitn and testosterone concentrations were measured before functional MR scanning. A voxel wise regression analyses were performed to investigate the relationship between the concentration of sexual hormones in basal state and brain activity elicited by ERO minus HA, not food minus nature, contrast. The plasma concentration of prolactin in basal state showed positive association with the activity of the brain involving cognitive component of sexual behavior including the left middle frontal gyrus, paracingulate/superior frontal/anterior cingulate gyri, bilateral parietal lobule, right angular, bilateral precuneus and right cerebellum. Testosterone in basal state was positively associated with the brain activity of the bilateral supplementary motor area which related with motivational component of sexual behavior. Our results suggested sexual hormones in basal state may have their specific target regions or network associated with sexual response.
Longhurst, John C.; Tjen-A-Looi, Stephanie C.; Fu, Liang-Wu
2016-01-01
The external lateral parabrachial nucleus (elPBN) within the pons and rostral ventrolateral medulla (rVLM) contributes to central processing of excitatory cardiovascular reflexes during stimulation of cardiac sympathetic afferent nerves (CSAN). However, the importance of elPBN cardiovascular neurons in regulation of rVLM activity during CSAN activation remains unclear. We hypothesized that CSAN stimulation excites the elPBN cardiovascular neurons and, in turn, increases rVLM activity through elPBN-rVLM projections. Compared with controls, in rats subjected to microinjection of retrograde tracer into the rVLM, the numbers of elPBN neurons double-labeled with c-Fos (an immediate early gene) and the tracer were increased after CSAN stimulation (P < 0.05). The majority of these elPBN neurons contain vesicular glutamate transporter 3. In cats, epicardial bradykinin and electrical stimulation of CSAN increased the activity of elPBN cardiovascular neurons, which was attenuated (n = 6, P < 0.05) after blockade of glutamate receptors with iontophoresis of kynurenic acid (Kyn, 25 mM). In separate cats, microinjection of Kyn (1.25 nmol/50 nl) into the elPBN reduced rVLM activity evoked by both bradykinin and electrical stimulation (n = 5, P < 0.05). Excitation of the elPBN with microinjection of dl-homocysteic acid (2 nmol/50 nl) significantly increased basal and CSAN-evoked rVLM activity. However, the enhanced rVLM activity induced by dl-homocysteic acid injected into the elPBN was reversed following iontophoresis of Kyn into the rVLM (n = 7, P < 0.05). These data suggest that cardiac sympathetic afferent stimulation activates cardiovascular neurons in the elPBN and rVLM sequentially through a monosynaptic (glutamatergic) excitatory elPBN-rVLM pathway. PMID:27225950
Evidence for a basal temporal visual language center: cortical stimulation producing pure alexia.
Mani, J; Diehl, B; Piao, Z; Schuele, S S; Lapresto, E; Liu, P; Nair, D R; Dinner, D S; Lüders, H O
2008-11-11
Dejerine and Benson and Geschwind postulated disconnection of the dominant angular gyrus from both visual association cortices as the basis for pure alexia, emphasizing disruption of white matter tracts in the dominant temporooccipital region. Recently functional imaging studies provide evidence for direct participation of basal temporal and occipital cortices in the cognitive process of reading. The exact location and function of these areas remain a matter of debate. To confirm the participation of the basal temporal region in reading. Extraoperative electrical stimulation of the dominant hemisphere was performed in three subjects using subdural electrodes, as part of presurgical evaluation for refractory epilepsy. Pure alexia was reproduced during cortical stimulation of the dominant posterior fusiform and inferior temporal gyri in all three patients. Stimulation resulted in selective reading difficulty with intact auditory comprehension and writing. Reading difficulty involved sentences and words with intact letter by letter reading. Picture naming difficulties were also noted at some electrodes. This region is located posterior to and contiguous with the basal temporal language area (BTLA) where stimulation resulted in global language dysfunction in visual and auditory realms. The location corresponded with the visual word form area described on functional MRI. These observations support the existence of a visual language area in the dominant fusiform and occipitotemporal gyri, contiguous with basal temporal language area. A portion of visual language area was exclusively involved in lexical processing while the other part of this region processed both lexical and nonlexical symbols.
Effects of obesity on lung function and airway reactivity in healthy dogs.
Manens, J; Bolognin, M; Bernaerts, F; Diez, M; Kirschvink, N; Clercx, C
2012-07-01
The present study investigated the effects of bodyweight (BW) gain on respiratory function and airway responsiveness in healthy Beagles using barometric whole body plethysmography (BWBP). Six adult dogs were examined before and after a fattening diet. The high-energy diet induced a mean increase in BW of 41±6%. BWBP basal parameters were recorded prior to airway reactivity testing (using increasing concentrations of histamine nebulisations). An airway responsiveness index (H-Penh300) was calculated as the histamine concentration necessary to reach 300% of basal enhanced pause (Penh, bronchoconstriction index). The same dogs underwent a doxapram hydrochloride (Dxp) stimulation testing 2 weeks later. Basal measurements showed that obese dogs had tidal volume per kg (TV/BW) that was significantly decreased whilst respiratory rate (RR) increased significantly. H-Penh300 decreased significantly in obese Beagles, indicating increased bronchoreactivity. Dxp administration induced a significant increase in TV/BW, minute volume per kg (MV/BW), peak inspiratory and expiratory flows per kg (PIF/BW and PEF/BW) in both normal and obese dogs although the TV/BW increase was significantly less marked in the obese group. In conclusion, obesity induced changes in basal respiratory parameters, increased bronchoreactivity and a blunted response to Dxp-induced respiratory stimulation. This combination of basal respiratory parameters, bronchoreactivity testing and pharmacological stimulation testing using non-invasive BWBP can help characterize pulmonary function and airway responsiveness in obese dogs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Rosario, Fredrick J; Kanai, Yoshikatsu; Powell, Theresa L; Jansson, Thomas
2013-02-01
Abnormal fetal growth increases the risk for perinatal complications and predisposes for the development of obesity, diabetes and cardiovascular disease later in life. Emerging evidence suggests that changes in placental amino acid transport directly contribute to altered fetal growth. However, the molecular mechanisms regulating placental amino acid transport are largely unknown. Here we combined small interfering (si) RNA-mediated silencing approaches with protein expression/localization and functional studies in cultured primary human trophoblast cells to test the hypothesis that mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) regulate amino acid transporters by post-translational mechanisms. Silencing raptor (inhibits mTORC1) or rictor (inhibits mTORC2) markedly decreased basal System A and System L amino acid transport activity but had no effect on growth factor-stimulated amino acid uptake. Simultaneous inhibition of mTORC1 and 2 completely inhibited both basal and growth factor-stimulated amino acid transport activity. In contrast, mTOR inhibition had no effect on serotonin transport. mTORC1 or mTORC2 silencing markedly decreased the plasma membrane expression of specific System A (SNAT2, SLC38A2) and System L (LAT1, SLC7A5) transporter isoforms without affecting global protein expression. In conclusion, mTORC1 and mTORC2 regulate human trophoblast amino acid transporters by modulating the cell surface abundance of specific transporter isoforms. This is the first report showing regulation of amino acid transport by mTORC2. Because placental mTOR activity and amino acid transport are decreased in human intrauterine growth restriction our data are consistent with the possibility that dysregulation of placental mTOR plays an important role in the development of abnormal fetal growth.
75 FR 70933 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
...] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... of Committee: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committees... appropriate clinical study design for thromboxane receptor antagonists for prevention of cardiovascular events...
Monnier, L; Colette, C
2015-12-01
Both postprandial and fasting (basal) hyperglycaemia contribute to overall hyperglycaemia (ambient hyperglycaemia) in type 2 diabetes (T2D). Postprandial glucose is the main contributor in fairly well controlled individuals, whereas basal hyperglycaemia becomes the preponderant contributor in poorly controlled patients. A more generally acceptable description of the contribution of postprandial glucose is to simply say that the absolute impact of postprandial glucose to HbA1c remains constant at approximately 1% across the entire HbA1c spectrum of non-insulin-treated patients with T2D. While epidemiological and pathophysiological studies seem to indicate that excessive postprandial glucose excursions play a role in or are predictors of cardiovascular diseases, there is still currently a lack of clinical evidence that correcting post-meal hyperglycaemia can improve clinical outcomes. However, even in the absence of consensus, there are many reasons for thinking that excessive postprandial glucose might be an independent risk factor for diabetic complications as it contributes to both overall glucose exposure and glycaemic variability, especially in those who have HbA1c levels < 7.5-8%. Given that excessive glucose fluctuations from peaks to nadirs activate oxidative stress, it seems reasonable to consider that a key player in the pathogenesis of diabetic complications, according to the latest IDF guidelines, is post-meal glucose, thereby warranting its assessment and treatment when found at abnormally elevated levels. Nevertheless, healthcare professionals should bear in mind that targeting both post-meal and basal plasma glucose, giving equal consideration to both of them, is probably the best strategy for achieving optimal glycaemic control and thus preventing or reducing the risk of diabetic complications. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Liu, Hua-Shan; Chou, Ming-Chung; Chung, Hsiao-Wen; Cho, Nai-Yu; Chiang, Shih-Wei; Wang, Chao-Ying; Kao, Hung-Wen; Huang, Guo-Shu; Chen, Cheng-Yu
2011-08-01
To investigate the effects of 3,4-methylenedioxymethamphetamine (MDMA, commonly known as "ecstasy") on the alterations of brain metabolites and anatomic tissue integrity related to the function of the basal ganglia-thalamocortical circuit by using proton magnetic resonance (MR) spectroscopy and diffusion-tensor MR imaging. This study was approved by a local institutional review board, and written informed consent was obtained from all subjects. Thirty-one long-term (>1 year) MDMA users and 33 healthy subjects were enrolled. Proton MR spectroscopy from the middle frontal cortex and bilateral basal ganglia and whole-brain diffusion-tensor MR imaging were performed with a 3.0-T system. Absolute concentrations of metabolites were computed, and diffusion-tensor data were registered to the International Consortium for Brain Mapping template to facilitate voxel-based group comparison. The mean myo-inositol level in the basal ganglia of MDMA users (left: 4.55 mmol/L ± 2.01 [standard deviation], right: 4.48 mmol/L ± 1.33) was significantly higher than that in control subjects (left: 3.25 mmol/L ± 1.30, right: 3.31 mmol/L ± 1.19) (P < .001). Cumulative lifetime MDMA dose showed a positive correlation with the levels of choline-containing compounds (Cho) in the right basal ganglia (r = 0.47, P = .02). MDMA users also showed a significant increase in fractional anisotropy (FA) in the bilateral thalami and significant changes in water diffusion in several regions related to the basal ganglia-thalamocortical circuit as compared with control subjects (P < .05; cluster size, >50 voxels). Increased myo-inositol and Cho concentrations in the basal ganglia of MDMA users are suggestive of glial response to degenerating serotonergic functions. The abnormal metabolic changes in the basal ganglia may consequently affect the inhibitory effect of the basal ganglia to the thalamus, as suggested by the increased FA in the thalamus and abnormal changes in water diffusion in the corresponding basal ganglia-thalamocortical circuit. © RSNA, 2011.
The mysterious light of dark chocolate.
Şentürk, Tunay; Günay, Şeyda
2015-03-01
A healthy diet plays a key role in the prevention and management of cardiovascular diseases. Dark chocolate in particular has been shown to improve endothelial functions and lipid profile and to have cardiovascular protective effects via an inhibitory action on platelet functions. Recently, several studies have demonstrated the beneficial effects of chocolate, primarily on hypertension and other conditions such as coronary artery disease and hyperlipidemia. The present review provides a summary of the ingredients, bioavailability and cardiovascular protective effects of chocolate / cocoa and the published effects of chocolate on a number of cardiovascular diseases.
Stemm-Wolf, Alexander J.; Meehl, Janet B.; Winey, Mark
2013-01-01
Summary Directed fluid flow, which is achieved by the coordinated beating of motile cilia, is required for processes as diverse as cellular swimming, developmental patterning and mucus clearance. Cilia are nucleated, anchored and aligned at the plasma membrane by basal bodies, which are cylindrical microtubule-based structures with ninefold radial symmetry. In the unicellular ciliate Tetrahymena thermophila, two centrin family members associated with the basal body are important for both basal body organization and stabilization. We have identified a family of 13 proteins in Tetrahymena that contain centrin-binding repeats related to those identified in the Saccharomyces cerevisiae Sfi1 protein. We have named these proteins Sfr1–Sfr13 (for Sfi1-repeat). Nine of the Sfr proteins localize in unique polarized patterns surrounding the basal body, suggesting non-identical roles in basal body organization and association with basal body accessory structures. Furthermore, the Sfr proteins are found in distinct basal body populations in Tetrahymena cells, indicating that they are responsive to particular developmental programs. A complete genetic deletion of one of the family members, Sfr13, causes unstable basal bodies and defects in daughter basal body separation from the mother, phenotypes also observed with centrin disruption. It is likely that the other Sfr family members are involved in distinct centrin functions, providing specificity to the tasks that centrins perform at basal bodies. PMID:23426847
Andersen, Anders H; Hardy, Peter A; Forman, Eric; Gerhardt, Greg A; Gash, Don M; Grondin, Richard C; Zhang, Zhiming
2015-02-01
The prevalence of both parkinsonian signs and Parkinson's disease (PD) per se increases with age. Although the pathophysiology of PD has been studied extensively, less is known about the functional changes taking place in the basal ganglia circuitry with age. To specifically address this issue, 3 groups of rhesus macaques were studied: normal middle-aged animals (used as controls), middle-aged animals with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, and aged animals (>20 years old) with declines in motor function. All animals underwent the same behavioral and pharmacologic magnetic resonance imaging (phMRI) procedures to measure changes in basal ganglia function in response to dopaminergic drug challenges consisting of apomorphine administration followed by either a D1 (SCH23390) or a D2 (raclopride) receptor antagonist. Significant functional changes were predominantly seen in the external segment of the globus pallidus (GPe) in aged animals and in the striatum (caudate nucleus and putamen) in MPTP-lesioned animals. Despite significant differences seen in the putamen and GPe between MPTP-lesioned versus aged animals, a similar response profile to dopaminergic stimulations was found between these 2 groups in the internal segment of the GP. In contrast, the pharmacologic responses seen in the control animals were much milder compared with the other 2 groups in all the examined areas. Our phMRI findings in MPTP-lesioned parkinsonian and aged animals suggest that changes in basal ganglia function in the elderly may differ from those seen in parkinsonian patients and that phMRI could be used to distinguish PD from other age-associated functional alterations in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.
Djordjevic-Dikic, Ana; Beleslin, Branko; Stepanovic, Jelena; Giga, Vojislav; Tesic, Milorad; Dobric, Milan; Stojkovic, Sinisa; Nedeljkovic, Milan; Vukcevic, Vladan; Dikic, Nenad; Petrasinovic, Zorica; Nedeljkovic, Ivana; Tomasevic, Miloje; Vujisic-Tesic, Bosiljka; Ostojic, Miodrag
2011-05-01
The aim of this study was to evaluate the relation of basal and hyperemic coronary flow with myocardial functional improvement in patients with previous myocardial infarction undergoing elective percutaneous coronary intervention (PCI). Coronary flow was measured using transthoracic Doppler echocardiography in 50 patients (41 men; mean age, 53 ± 8 years) with previous myocardial infarction before, 24 hours, and 3 months after elective PCI. Diastolic deceleration time (DDT) was measured from the peak diastolic velocity to the point of intercept of initial decay slope with baseline. Coronary flow reserve (CFR) was calculated as the ratio of hyperemic to basal peak diastolic flow velocities. In comparison with patients without improvements in left ventricular function, patients with recovered left ventricular function had longer DDTs before angioplasty (841 ± 286 vs. 435 ± 80 msec, P < .001). CFR was significantly higher in recovered compared with nonrecovered patients (2.60 ± 0.70 vs. 2.16 ± 0.34, P = .034) 24 hours after PCI. Global and regional wall motion scores before PCI, end-diastolic and end-systolic volumes, and CFR 24 hours after PCI and DDT before PCI were univariate predictors of left ventricular functional recovery. By multivariate analysis, DDT and regional wall motion score before PCI were independent predictors of left ventricular recovery in the follow-up period (P = .003 and P = .007, respectively). In patients with previous myocardial infarction undergoing elective PCI, evaluation of basal coronary flow pattern and measurement of DDT before angioplasty may predict functional improvement of myocardium in the follow-up period and could be useful quantitative parameters in the evaluation of potential improvement in myocardial function. Copyright © 2011 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Hoekstra, Menno
2017-03-01
High-density lipoprotein (HDL) is considered an anti-atherogenic lipoprotein species due to its role in reverse cholesterol transport. HDL delivers cholesterol esters to the liver through selective uptake by scavenger receptor class B type I (SR-BI). In line with the protective role for HDL in the context of cardiovascular disease, studies in mice and recently also in humans have shown that a disruption of normal SR-BI function predisposes subjects to the development of atherosclerotic lesions and cardiovascular disease. Although SR-BI function has been studied primarily in the liver, it should be acknowledged that the SR-BI protein is expressed in multiple tissues and cell types across the body, albeit at varying levels between the different tissues. Given that SR-BI is widely expressed throughout the body, multiple cell types and tissues can theoretically contribute to the atheroprotective effect of SR-BI. In this review the different functions of SR-BI in normal physiology are highlighted and the (potential) consequences of cell type-specific disruption of SR-BI function for atherosclerosis and cardiovascular disease susceptibility discussed. It appears that hepatocyte and platelet SR-BI inhibit respectively the development of atherosclerotic lesions and thrombosis, suggesting that SR-BI located on these cell compartments should be regarded as being a protective factor in the context of cardiovascular disease. The relative contribution of SR-BI present on endothelial cells, steroidogenic cells, adipocytes and macrophages to the pathogenesis of atherosclerosis and cardiovascular disease remains less clear, although proper SR-BI function in these cells does appear to influence multiple processes that impact on cardiovascular disease susceptibility. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.
Alessandri, N; Tufano, F; Petrassi, M; Alessandri, C; Lanzi, L; Fusco, L; Moscariello, F; De Angelis, C; Tomao, E
2010-05-01
The hysto-morfological composition of the ascending aorta wall gives to the vessel its characteristic elasticity/distensibility, which is deteriorated due to both physiological (age) and pathological events (hypertension, diabetes, dyslipidemia). This contributes to reduce the wall elasticity and to occurrence of cardiovascular events. Thirty young healthy subjects (20 males, 10 females, age <30 yr), were subjected to different postural conditions with and without Lower Body Negative Pressure (LBNP) with conventional procedures, to simulate the microgravity conditions in space flight. During this procedure the cardiovascular parameters and the aorta elasticity were assessed with ecocardiography. The observation of results and statistical comparison showed that despite different hemodynamic conditions and with significant variation of blood pressure related to posture, elasticity/distensibility did not change significantly. The elasticity/distensibility of arterial vessels is the result of two interdependent variables such as blood pressure and systolic and diastolic diameters. While blood pressure and heart rate vary physiologically in relation to posture, the compensation of the vessel diameters modifications maintains the aortic compliance invariate. Therefore, in young healthy people, despite the significant postural and the sudden pressure changes (equivalent to parietal stress) aortic compliance does not alter. This behavior might be related to the low rate of cardiovascular events that are present in healthy people aged under 30 yrs.
Heart rate is associated with markers of fatty acid desaturation: the GOCADAN study
Ebbesson, Sven O.E.; Lopez-Alvarenga, Juan C.; Okin, Peter M.; Devereux, Richard B.; Tejero, Maria Elizabeth; Harris, William S.; Ebbesson, Lars O.E.; MacCluer, Jean W.; Wenger, Charlotte; Laston, Sandra; Fabsitz, Richard R.; Kennish, John; Howard, William J.; Howard, Barbara V.; Umans, Jason; Comuzzie, Anthony G.
2012-01-01
Objectives To determine if heart rate (HR) is associated with desaturation indexes as HR is associated with arrhythmia and sudden death. Study design A community based cross-sectional study of 1214 Alaskan Inuit. Methods Data of FA concentrations from plasma and red blood cell membranes from those ≥35 years of age (n =819) were compared to basal HR at the time of examination. Multiple linear regression with backward stepwise selection was employed to analyze the effect of the desaturase indexes on HR, after adjustment for relevant covariates. Results The Δ5 desaturase index (Δ5-DI) measured in serum has recently been associated with a protective role for cardiovascular disease. This index measured here in plasma and red blood cells showed a negative correlation with HR. The plasma stearoyl-CoA-desaturase (SCD) index, previously determined to be related to cardiovascular disease (CVD) mortality, on the other hand, was positively associated with HR, while the Δ6 desaturase index (Δ6-DI) had no significant effect on HR. Conclusion Endogenous FA desaturation is associated with HR and thereby, in the case of SCD, possibly with arrhythmia and sudden death, which would at least partially explain the previously observed association between cardiovascular mortality and desaturase activity. PMID:22456045
Adaptaciones al ejercicio físico en el perfil lipídico y la salud cardiovascular de obesos mórbidos.
Delgado-Floody, Pedro; Caamaño-Navarrete, Felipe; Jerez-Mayorga, Daniel; Martínez-Salazar, Cristian; García-Pinillos, Felipe; Latorre-Román, Pedro
2017-01-01
To assess the effects of a physical exercise program on the lipid profile, weight status and the cardiovascular health of obese candidates for bariatric surgery. 22 morbidly obese patients participated in a 6-month physical exercise program. 16 formed the adherent group (attendance ≥ 80%; age: 37.81 ± 11.90 years) and six the non-adherent group (attendance < 80%; age: 45.83 ± 14.23 years). Before and 72 h after the last session were evaluated: weight, body mass index (BMI), contour waist, blood pressure, fasting, cardio respiratory fitness, cholesterol and triglycerides. Weight, BMI and WC showed significant changes (p < 0.05) in both groups, with the results of the adherent group being better. In the adherent group, cardiorespiratory capacity (p = 0.001) was also increased, while diastolic pressure (p = 0.011), basal glycemia (p = 0.021) and triglycerides decreased significantly (p < 0.001). The non-adherent group did not present significant changes in these variables (p ≥ 0.05). The intervention was feasible to perform without negative effects for the participants, and it is possible to recommend improving the cardiovascular health of these of patients. Copyright: © 2017 SecretarÍa de Salud
Parkinson’s disease as a system-level disorder
Caligiore, Daniele; Helmich, Rick C; Hallett, Mark; Moustafa, Ahmed A; Timmermann, Lars; Toni, Ivan; Baldassarre, Gianluca
2016-01-01
Traditionally, the basal ganglia have been considered the main brain region implicated in Parkinson’s disease. This single area perspective gives a restricted clinical picture and limits therapeutic approaches because it ignores the influence of altered interactions between the basal ganglia and other cerebral components on Parkinsonian symptoms. In particular, the basal ganglia work closely in concert with cortex and cerebellum to support motor and cognitive functions. This article proposes a theoretical framework for understanding Parkinson’s disease as caused by the dysfunction of the entire basal ganglia–cortex–cerebellum system rather than by the basal ganglia in isolation. In particular, building on recent evidence, we propose that the three key symptoms of tremor, freezing, and impairments in action sequencing may be explained by considering partially overlapping neural circuits including basal ganglia, cortical and cerebellar areas. Studying the involvement of this system in Parkinson’s disease is a crucial step for devising innovative therapeutic approaches targeting it rather than only the basal ganglia. Possible future therapies based on this different view of the disease are discussed. PMID:28725705
Cardiovascular effects of variations in habitual levels of physical activity
NASA Technical Reports Server (NTRS)
Blomqvist, C. G.; Mitchell, J. H.
1975-01-01
Mechanisms involved in human cardiovascular adaption to stress, particularly adaption to different levels of physical activity are determined along with quantitative noninvasive methods for evaluation of cardiovascular function during stess in normal subjects and in individuals with latent or manifest cardiovascular disease. Results are summarized.
Assessment of Cardiovascular Risk in Collegiate Football Players and Nonathletes
ERIC Educational Resources Information Center
Dobrosielski, Devon A.; Rosenbaum, Daryl; Wooster, Benjamin M.; Merrill, Michael; Swanson, John; Moore, J. Brian; Brubaker, Peter H.
2010-01-01
Collegiate American football players may be at risk for cardiovascular disease. Objective: To compare cardiovascular disease risk factors and cardiovascular structure and function parameters of football players, stratified by position, to a group of sedentary, nonathletes. Participants: Twenty-six collegiate football players and 13 nonathletes…
78 FR 76307 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-17
...] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and... combined endpoint of cardiovascular death, MI, stroke, and urgent coronary revascularization. FDA intends...
21 CFR 870.3535 - Intra-aortic balloon and control system
Code of Federal Regulations, 2011 CFR
2011-04-01
... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic... consists of an inflatable balloon, which is placed in the aorta to improve cardiovascular functioning...
21 CFR 870.3535 - Intra-aortic balloon and control system
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic... consists of an inflatable balloon, which is placed in the aorta to improve cardiovascular functioning...
Abdominothoracic mechanisms of functional abdominal distension and correction by biofeedback.
Barba, Elizabeth; Burri, Emanuel; Accarino, Anna; Cisternas, Daniel; Quiroga, Sergi; Monclus, Eva; Navazo, Isabel; Malagelada, Juan-R; Azpiroz, Fernando
2015-04-01
In patients with functional gut disorders, abdominal distension has been associated with descent of the diaphragm and protrusion of the anterior abdominal wall. We investigated mechanisms of abdominal distension in these patients. We performed a prospective study of 45 patients (42 women, 24-71 years old) with functional intestinal disorders (27 with irritable bowel syndrome with constipation, 15 with functional bloating, and 3 with irritable bowel syndrome with alternating bowel habits) and discrete episodes of visible abdominal distension. Subjects were assessed by abdominothoracic computed tomography (n = 39) and electromyography (EMG) of the abdominothoracic wall (n = 32) during basal conditions (without abdominal distension) and during episodes of severe abdominal distension. Fifteen patients received a median of 2 sessions (range, 1-3 sessions) of EMG-guided, respiratory-targeted biofeedback treatment; 11 received 1 control session before treatment. Episodes of abdominal distension were associated with diaphragm contraction (19% ± 3% increase in EMG score and 12 ± 2 mm descent; P < .001 vs basal values) and intercostal contraction (14% ± 3% increase in EMG scores and 6 ± 1 mm increase in thoracic antero-posterior diameter; P < .001 vs basal values). They were also associated with increases in lung volume (501 ± 93 mL; P < .001 vs basal value) and anterior abdominal wall protrusion (32 ± 3 mm increase in girth; P < .001 vs basal). Biofeedback treatment, but not control sessions, reduced the activity of the intercostal muscles (by 19% ± 2%) and the diaphragm (by 18% ± 4%), activated the internal oblique muscles (by 52% ± 13%), and reduced girth (by 25 ± 3 mm) (P ≤ .009 vs pretreatment for all). In patients with functional gut disorders, abdominal distension is a behavioral response that involves activity of the abdominothoracic wall. This distension can be reduced with EMG-guided, respiratory-targeted biofeedback therapy. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
Frequency and function in the basal ganglia: the origins of beta and gamma band activity.
Blenkinsop, Alexander; Anderson, Sean; Gurney, Kevin
2017-07-01
Neuronal oscillations in the basal ganglia have been observed to correlate with behaviours, although the causal mechanisms and functional significance of these oscillations remain unknown. We present a novel computational model of the healthy basal ganglia, constrained by single unit recordings from non-human primates. When the model is run using inputs that might be expected during performance of a motor task, the network shows emergent phenomena: it functions as a selection mechanism and shows spectral properties that match those seen in vivo. Beta frequency oscillations are shown to require pallido-striatal feedback, and occur with behaviourally relevant cortical input. Gamma oscillations arise in the subthalamic-globus pallidus feedback loop, and occur during movement. The model provides a coherent framework for the study of spectral, temporal and functional analyses of the basal ganglia and lays the foundation for an integrated approach to study basal ganglia pathologies such as Parkinson's disease in silico. Neural oscillations in the basal ganglia (BG) are well studied yet remain poorly understood. Behavioural correlates of spectral activity are well described, yet a quantitative hypothesis linking time domain dynamics and spectral properties to BG function has been lacking. We show, for the first time, that a unified description is possible by interpreting previously ignored structure in data describing globus pallidus interna responses to cortical stimulation. These data were used to expose a pair of distinctive neuronal responses to the stimulation. This observation formed the basis for a new mathematical model of the BG, quantitatively fitted to the data, which describes the dynamics in the data, and is validated against other stimulus protocol experiments. A key new result is that when the model is run using inputs hypothesised to occur during the performance of a motor task, beta and gamma frequency oscillations emerge naturally during static-force and movement, respectively, consistent with experimental local field potentials. This new model predicts that the pallido-striatum connection has a key role in the generation of beta band activity, and that the gamma band activity associated with motor task performance has its origins in the pallido-subthalamic feedback loop. The network's functionality as a selection mechanism also occurs as an emergent property, and closer fits to the data gave better selection properties. The model provides a coherent framework for the study of spectral, temporal and functional analyses of the BG and therefore lays the foundation for an integrated approach to study BG pathologies such as Parkinson's disease in silico. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Zawada, Adam M; Rogacev, Kyrill S; Hummel, Björn; Berg, Judith T; Friedrich, Annika; Roth, Heinz J; Obeid, Rima; Geisel, Jürgen; Fliser, Danilo; Heine, Gunnar H
2014-05-01
Although homocysteine has been proposed as a cardiovascular risk factor, interventional trials lowering homocysteine have not consistently demonstrated clinical benefit. Recent evidence proposed the homocysteine metabolite S-adenosylhomocysteine (SAH) rather than homocysteine itself as the real culprit in cardiovascular disease. Of note, SAH is predominantly excreted by the kidneys, and cannot be lowered by vitamin supplementation. Due to its cumbersome measurement, data from large studies on the association between SAH, kidney function and cardiovascular disease are not available. We recruited 420 apparently healthy subjects into our I Like HOMe FU study. Among all study participants, we assessed parameters of C1 metabolism (homocysteine, SAH and S-adenosylmethionine), renal function (estimated glomerular filtration rate [eGFR]) and subclinical atherosclerosis (common carotid intima-media-thickness [IMT]). eGFR was estimated by the CKD-EPIcreat-cys equation. Traditional cardiovascular risk factors and subclinical atherosclerosis were associated with SAH, but not with homocysteine (IMT vs SAH: r = 0.129; p = 0.010; IMT vs homocysteine: r = 0.009; p = 0.853). Moreover, renal function was more closely correlated with SAH than with homocysteine (eGFR vs SAH: r = -0.335; p < 0.001; eGFR vs homocysteine: r = -0.250; p < 0.001). The association between eGFR and SAH remained significant after adjustment for traditional cardiovascular risk factors. In summary, cardiovascular risk factors, subclinical atherosclerosis and eGFR are more strongly associated with SAH than with homocysteine in apparently healthy subjects. Thus, SAH might represent a more promising target to prevent cardiovascular disease than homocysteine. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Bonnefoy-Cudraz, Eric; Bueno, Hector; Casella, Gianni; De Maria, Elia; Fitzsimons, Donna; Halvorsen, Sigrun; Hassager, Christian; Iakobishvili, Zaza; Magdy, Ahmed; Marandi, Toomas; Mimoso, Jorge; Parkhomenko, Alexander; Price, Susana; Rokyta, Richard; Roubille, Francois; Serpytis, Pranas; Shimony, Avi; Stepinska, Janina; Tint, Diana; Trendafilova, Elina; Tubaro, Marco; Vrints, Christiaan; Walker, David; Zahger, Doron; Zima, Endre; Zukermann, Robert; Lettino, Maddalena
2018-02-01
Acute cardiovascular care has progressed considerably since the last position paper was published 10 years ago. It is now a well-defined, complex field with demanding multidisciplinary teamworking. The Acute Cardiovascular Care Association has provided this update of the 2005 position paper on acute cardiovascular care organisation, using a multinational working group. The patient population has changed, and intensive cardiovascular care units now manage a large range of conditions from those simply requiring specialised monitoring, to critical cardiovascular diseases with associated multi-organ failure. To describe better intensive cardiovascular care units case mix, acuity of care has been divided into three levels, and then defining intensive cardiovascular care unit functional organisation. For each level of intensive cardiovascular care unit, this document presents the aims of the units, the recommended management structure, the optimal number of staff, the need for specially trained cardiologists and cardiovascular nurses, the desired equipment and architecture, and the interaction with other departments in the hospital and other intensive cardiovascular care units in the region/area. This update emphasises cardiologist training, referring to the recently updated Acute Cardiovascular Care Association core curriculum on acute cardiovascular care. The training of nurses in acute cardiovascular care is additionally addressed. Intensive cardiovascular care unit expertise is not limited to within the unit's geographical boundaries, extending to different specialties and subspecialties of cardiology and other specialties in order to optimally manage the wide scope of acute cardiovascular conditions in frequently highly complex patients. This position paper therefore addresses the need for the inclusion of acute cardiac care and intensive cardiovascular care units within a hospital network, linking university medical centres, large community hospitals, and smaller hospitals with more limited capabilities.
Matsuzawa, Yasushi; Svedlund, Sara; Aoki, Tatsuo; Guddeti, Raviteja R.; Kwon, Taek-Geun; Cilluffo, Rebecca; Widmer, R.Jay.; Nelson, Rebecca E.; Lennon, Ryan J.; Lerman, Lilach O.; Gao, Sinsia; Ganz, Peter; Gan, Li-Ming; Lerman, Amir
2015-01-01
Background Myocardial perfusion scintigraphy (MPS) is used widely to assess cardiovascular risk in patients with chest pain. The utility of carotid intima-media thickness (CIMT) and endothelial function as assessed by reactive hyperemia-peripheral arterial tonometry index (RHI) in risk stratifying patients with angina-like symptom needs to be defined. We investigated whether addition of CIMT and RHI to Framingham Cardiovascular Risk Score (FCVRS) and MPS improves comprehensive cardiovascular risk prediction in patients presenting with angina-like symptom. Methods We enrolled 343 consecutive patients with angina-like symptom suspected of having stable angina. MPS, CIMT, and RHI were performed and patients were followed for cardiovascular events for a median of 5.3 years (range 4.4-6.2). Patients were stratified by FCVRS and MPS. Results During the follow-up, 57 patients (16.6%) had cardiovascular events. Among patients without perfusion defect, low RHI was significantly associated with cardiovascular events in the intermediate and high FCVRS groups (Hazard ratio (HR) [95% confidence interval (CI)] of RHI≤2.11 was 6.99 [1.34-128] in the intermediate FCVRS group and 6.08 [1.08-114] in the high FCVRS group). Furthermore, although MPS did not predict, only RHI predicted hard cardiovascular events (cardiovascular death, myocardial infarction, and stroke) independent from FCVRS, and adding RHI to FCVRS improved net reclassification index (20.9%, 95% CI 0.8-41.1, p=0.04). Especially, RHI was significantly associated with hard cardiovascular events in the high FCVRS group (HR [95% CI] of RHI≤1.93 was 5.66 [1.54-36.4], p=0.007). Conclusions Peripheral endothelial function may improve discrimination in identifying at-risk patients for future cardiovascular events when added to FCVRS-MPS-based risk stratification. PMID:25918056
Dal Lin, Carlo; Tona, Francesco
2015-01-01
Beyond its hemodynamic function, the heart also acts as a neuroendocrine and immunoregulatory organ. A dynamic communication between the heart and other organs takes place constantly to maintain cardiovascular homeostasis. The current understanding highlights the importance of the endocrine, immune, and nervous factors to fine-tune the crosstalk of the cardiovascular system with the entire body. Once disrupted, this complex interorgan communication may promote the onset and the progression of cardiovascular diseases. Thus, expanding our knowledge on how these factors influence the cardiovascular system can lead to novel therapeutic strategies to improve patient care. In the present paper, we review novel concepts on the role of endocrine, immune, and nervous factors in the modulation of microvascular coronary function. PMID:26124827
Tanaka, Kayo; Tanaka, Hiroaki; Maki, Shintaro; Kubo, Michiko; Nii, Masafumi; Magawa, Shoichi; Hatano, Fumi; Tsuji, Makoto; Osato, Kazuhiro; Kamimoto, Yuki; Umekawa, Takashi; Ikeda, Tomoaki
2018-02-20
The aim of the present study was to evaluate tadalafil for the treatment of fetal growth restriction (FGR) and the cardiac function in pregnant women without cardiovascular disease who used tadalafil for this reason. We examined nine pregnant women without cardiovascular disease who were using tadalafil to treat FGR. Maternal heart rate, systolic blood pressure (BP), and echocardiographic findings were assessed before and after tadalafil use. Diastolic BP was lower after compared to that before using tadalafil, but the difference was not significant. Echocardiographic findings were not significantly different before and after tadalafil use. Tadalafil did not adversely affect pregnant women without cardiovascular disease and was considered acceptable for use since it did not affect the mother's cardiac function.
75 FR 57474 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-21
...] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and... analyses of the TREAT (Trial to Reduce Cardiovascular Events with Aranesp Therapy) study of ARANESP...
78 FR 76308 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-17
...] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and..., Inc., for the proposed indication to reduce the risk of thrombotic cardiovascular events in patients...
77 FR 21982 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-12
...] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...., to reduce the risk of thrombotic cardiovascular events in patients with acute coronary syndrome (ACS...
van Schouwenburg, Martine R; den Ouden, Hanneke E M; Cools, Roshan
2015-06-01
The prefrontal cortex and the basal ganglia interact to selectively gate a desired action. Recent studies have shown that this selective gating mechanism of the basal ganglia extends to the domain of attention. Here, we investigate the nature of this action-like gating mechanism for attention using a spatial attention-switching paradigm in combination with functional neuroimaging and dynamic causal modeling. We show that the basal ganglia guide attention by focally releasing inhibition of task-relevant representations, while simultaneously inhibiting task-irrelevant representations by selectively modulating prefrontal top-down connections. These results strengthen and specify the role of the basal ganglia in attention. Moreover, our findings have implications for psychological theorizing by suggesting that inhibition of unattended sensory regions is not only a consequence of mutual suppression, but is an active process, subserved by the basal ganglia. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting
NASA Astrophysics Data System (ADS)
Gladstone, Rupert Michael; Warner, Roland Charles; Galton-Fenzi, Benjamin Keith; Gagliardini, Olivier; Zwinger, Thomas; Greve, Ralf
2017-01-01
Computer models are necessary for understanding and predicting marine ice sheet behaviour. However, there is uncertainty over implementation of physical processes at the ice base, both for grounded and floating glacial ice. Here we implement several sliding relations in a marine ice sheet flow-line model accounting for all stress components and demonstrate that model resolution requirements are strongly dependent on both the choice of basal sliding relation and the spatial distribution of ice shelf basal melting.Sliding relations that reduce the magnitude of the step change in basal drag from grounded ice to floating ice (where basal drag is set to zero) show reduced dependence on resolution compared to a commonly used relation, in which basal drag is purely a power law function of basal ice velocity. Sliding relations in which basal drag goes smoothly to zero as the grounding line is approached from inland (due to a physically motivated incorporation of effective pressure at the bed) provide further reduction in resolution dependence.A similar issue is found with the imposition of basal melt under the floating part of the ice shelf: melt parameterisations that reduce the abruptness of change in basal melting from grounded ice (where basal melt is set to zero) to floating ice provide improved convergence with resolution compared to parameterisations in which high melt occurs adjacent to the grounding line.Thus physical processes, such as sub-glacial outflow (which could cause high melt near the grounding line), impact on capability to simulate marine ice sheets. If there exists an abrupt change across the grounding line in either basal drag or basal melting, then high resolution will be required to solve the problem. However, the plausible combination of a physical dependency of basal drag on effective pressure, and the possibility of low ice shelf basal melt rates next to the grounding line, may mean that some marine ice sheet systems can be reliably simulated at a coarser resolution than currently thought necessary.
Qin, Qing; Chen, Ming; Yi, Bing; You, Xiaohua; Yang, Ping; Sun, Jianxin
2014-12-01
Endothelin-1 (ET-1) produced by vascular endothelial cells plays essential roles in the regulation of vascular tone and development of cardiovascular diseases. The objective of this study is to identify novel regulators implicated in the regulation of ET-1 expression in vascular endothelial cells (ECs). By using quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), we show that either ectopic expression of orphan nuclear receptor Nur77 or pharmacological activation of Nur77 by 6-mercaptopurine (6-MP) substantially inhibits ET-1 expression in human umbilical vein endothelial cells (HUVECs), under both basal and thrombin-stimulated conditions. Furthermore, thrombin-stimulated ET expression is significantly augmented in both Nur77 knockdown ECs and aort from Nur77 knockout mice, suggesting that Nur77 is a negative regulator of ET-1 expression. Inhibition of ET-1 expression by Nur77 occurs at gene transcriptional levels, since Nur77 potently inhibits ET-1 promoter activity, without affecting ET-1 mRNA stability. As shown in electrophoretic mobility shift assay (EMSA), Nur77 overexpression markedly inhibits both basal and thrombin-stimulated transcriptional activity of AP-1. Mechanistically, we demonstrate that Nur77 specially interacts with c-Jun and inhibits AP-1 dependent c-Jun promoter activity, which leads to a decreased expression of c-Jun, a critical component involved in both AP-1 transcriptional activity and ET-1 expression in ECs. These findings demonstrate that Nur77 is a novel negative regulator of ET-1 expression in vascular ECs through an inhibitory interaction with the c-Jun/AP-1 pathway. Activation of Nur77 may represent a useful therapeutic strategy for preventing certain cardiovascular diseases, such as atherosclerosis and pulmonary artery hypertension. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jantzen, Kim; Møller, Peter; Karottki, Dorina Gabriela; Olsen, Yulia; Bekö, Gabriel; Clausen, Geo; Hersoug, Lars-Georg; Loft, Steffen
2016-06-01
Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34(+)KDR(+) cells) or early (CD34(+)CD133(+)KDR(+) cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2',7'-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Möller, Clara M; Olsa, Eamon J A; Ginty, Annie T; Rapelje, Alyssa L; Tindall, Christina L; Holesh, Laura A; Petersen, Karen L; Conklin, Sarah M
2017-10-01
The potential influence of probiotic supplementation on cardiovascular health and stress responsivity remains largely unexplored. Some evidence suggests the possibility that probiotics may influence blood pressure. A separate body of research suggests that exaggerated cardiovascular reactions to acute psychological stress in the laboratory predict cardiovascular morbidity and mortality. The current investigation explored the effect of acute probiotic use on (1) resting cardiovascular measures in healthy young adults and (2) cardiovascular and psychological reactions to an acute psychological stressor in the laboratory. Participants (N = 105, M [SD] age = 20.17 [1.26], 84.8% white) completed a 2-week, double-blind, and placebo-controlled trial of a multispecies and multistrain probiotic. Exclusion criteria included previous probiotic use, diagnosed gastrointestinal disorder, and/or current antibiotic use. At visits 1 and 2, participants completed the Paced Auditory Serial Addition Test, a widely used psychological stress task. Participants were randomly assigned to a probiotic blend or matched placebo. Compared with placebo, 2-week probiotic supplementation did not affect resting measures of cardiovascular function, cardiovascular responses during or recovery from stress, or psychological reactions to acute psychological stress. Contrary to expectations, short-term use of a probiotic supplement in healthy participants did not influence measures of cardiovascular function or responsivity to psychological stress. Future research is needed to determine species- and strain-specific effects of probiotics in healthy participants with various degrees of stress responsiveness, as well as in diseased populations.
Lenarcik, Agnieszka; Bidzińska-Speichert, Bozena
2010-01-01
Polycystic ovary syndrome (PCOS) is one of the most common reproductive disorder in premenopausal women and is frequently accompanied by the presence of cardiovascular risk factors. It has also been recognized that PCOS women are characterized by cardiopulmonary impairment. Reduced cardiopulmonary functional capacity and the autonomic dysfunction associated with abnormal heart rate recovery might be responsible for the increased cardiovascular risk in patients with PCOS. Exercise training has beneficial effects on cardiopulmonary functional capacity and reduces the risk of cardiovascular disease in PCOS women.
Loss of Centrobin Enables Daughter Centrioles to Form Sensory Cilia in Drosophila.
Gottardo, Marco; Pollarolo, Giulia; Llamazares, Salud; Reina, Jose; Riparbelli, Maria G; Callaini, Giuliano; Gonzalez, Cayetano
2015-08-31
Sensory cilia are organelles that convey information to the cell from the extracellular environment. In vertebrates, ciliary dysfunction results in ciliopathies that in humans comprise a wide spectrum of developmental disorders. In Drosophila, sensory cilia are found only in the neurons of type I sensory organs, but ciliary dysfunction also has dramatic consequences in this organism because it impairs the mechanosensory properties of bristles and chaetae and leads to uncoordination, a crippling condition that causes lethality shortly after eclosion. The cilium is defined by the ciliary membrane, a protrusion of the cell membrane that envelops the core structure known as the axoneme, a microtubule array that extends along the cilium from the basal body. In vertebrates, basal body function requires centriolar distal and subdistal appendages and satellites. Because these structures are acquired through centriole maturation, only mother centrioles can serve as basal bodies. Here, we show that although centriole maturity traits are lacking in Drosophila, basal body fate is reserved to mother centrioles in Drosophila type I neurons. Moreover, we show that depletion of the daughter-centriole-specific protein Centrobin (CNB) enables daughter centrioles to dock on the cell membrane and to template an ectopic axoneme that, although structurally defective, protrudes out of the cell and is enveloped by a ciliary membrane. Conversely, basal body capability is inhibited in mother centrioles modified to carry CNB. These results reveal the crucial role of CNB in regulating basal body function in Drosophila ciliated sensory organs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mohammed, Selma F; Borlaug, Barry A; Roger, Véronique L; Mirzoyev, Sultan A; Rodeheffer, Richard J; Chirinos, Julio A; Redfield, Margaret M
2012-11-01
Patients with heart failure and preserved ejection fraction (HFpEF) display increased adiposity and multiple comorbidities, factors that in themselves may influence cardiovascular structure and function. This has sparked debate as to whether HFpEF represents a distinct disease or an amalgamation of comorbidities. We hypothesized that fundamental cardiovascular structural and functional alterations are characteristic of HFpEF, even after accounting for body size and comorbidities. Comorbidity-adjusted cardiovascular structural and functional parameters scaled to independently generated and age-appropriate allometric powers were compared in community-based cohorts of HFpEF patients (n=386) and age/sex-matched healthy n=193 and hypertensive, n=386 controls. Within HFpEF patients, body size and concomitant comorbidity-adjusted cardiovascular structural and functional parameters and survival were compared in those with and without individual comorbidities. Among HFpEF patients, comorbidities (obesity, anemia, diabetes mellitus, and renal dysfunction) were each associated with unique clinical, structural, functional, and prognostic profiles. However, after accounting for age, sex, body size, and comorbidities, greater concentric hypertrophy, atrial enlargement and systolic, diastolic, and vascular dysfunction were consistently observed in HFpEF compared with age/sex-matched normotensive and hypertensive. Comorbidities influence ventricular-vascular properties and outcomes in HFpEF, yet fundamental disease-specific changes in cardiovascular structure and function underlie this disorder. These data support the search for mechanistically targeted therapies in this disease.
Lau, Brian; Monteiro, Tiago; Paton, Joseph J
2017-10-01
Computational models of reinforcement learning (RL) strive to produce behavior that maximises reward, and thus allow software or robots to behave adaptively [1]. At the core of RL models is a learned mapping between 'states'-situations or contexts that an agent might encounter in the world-and actions. A wealth of physiological and anatomical data suggests that the basal ganglia (BG) is important for learning these mappings [2,3]. However, the computations performed by specific circuits are unclear. In this brief review, we highlight recent work concerning the anatomy and physiology of BG circuits that suggest refinements in our understanding of computations performed by the basal ganglia. We focus on one important component of basal ganglia circuitry, midbrain dopamine neurons, drawing attention to data that has been cast as supporting or departing from the RL framework that has inspired experiments in basal ganglia research over the past two decades. We suggest that the parallel circuit architecture of the BG might be expected to produce variability in the response properties of different dopamine neurons, and that variability in response profile may not reflect variable functions, but rather different arguments that serve as inputs to a common function: the computation of prediction error. Copyright © 2017 Elsevier Ltd. All rights reserved.
Benninger, R K P; Head, W Steven; Zhang, Min; Satin, Leslie S; Piston, David W
2011-11-15
Cell-cell communication in the islet of Langerhans is important for the regulation of insulin secretion. Gap-junctions coordinate oscillations in intracellular free-calcium ([Ca(2+)](i)) and insulin secretion in the islet following elevated glucose. Gap-junctions can also ensure that oscillatory [Ca(2+)](i) ceases when glucose is at a basal levels. We determine the roles of gap-junctions and other cell-cell communication pathways in the suppression of insulin secretion under basal conditions. Metabolic, electrical and insulin secretion levels were measured from islets lacking gap-junction coupling following deletion of connexion36 (Cx36(-/-)), and these results were compared to those obtained using fully isolated β-cells. K(ATP) loss-of-function islets provide a further experimental model to specifically study gap-junction mediated suppression of electrical activity. In isolated β-cells or Cx36(-/-) islets, elevations in [Ca(2+)](i) persisted in a subset of cells even at basal glucose. Isolated β-cells showed elevated insulin secretion at basal glucose; however, insulin secretion from Cx36(-/-) islets was minimally altered. [Ca(2+)](i) was further elevated under basal conditions, but insulin release still suppressed in K(ATP) loss-of-function islets. Forced elevation of cAMP led to PKA-mediated increases in insulin secretion from islets lacking gap-junctions, but not from islets expressing Cx36 gap junctions. We conclude there is a redundancy in how cell-cell communication in the islet suppresses insulin release. Gap junctions suppress cellular heterogeneity and spontaneous [Ca(2+)](i) signals, while other juxtacrine mechanisms, regulated by PKA and glucose, suppress more distal steps in exocytosis. Each mechanism is sufficiently robust to compensate for a loss of the other and still suppress basal insulin secretion.
The year 2012 in the European Heart Journal-Cardiovascular Imaging: Part I.
Edvardsen, Thor; Plein, Sven; Saraste, Antti; Knuuti, Juhani; Maurer, Gerald; Lancellotti, Patrizio
2013-06-01
The new multi-modality cardiovascular imaging journal, European Heart Journal - Cardiovascular Imaging, was started in 2012. During its first year, the new Journal has published an impressive collection of cardiovascular studies utilizing all cardiovascular imaging modalities. We will summarize the most important studies from its first year in two articles. The present 'Part I' of the review will focus on studies in myocardial function, myocardial ischaemia, and emerging techniques in cardiovascular imaging.
Characterization of a Crabs Claw Gene in basal eudicot species Epimedium sagittatum (Berberidaceae).
Sun, Wei; Huang, Wenjun; Li, Zhineng; Lv, Haiyan; Huang, Hongwen; Wang, Ying
2013-01-08
The Crabs Claw (CRC) YABBY gene is required for regulating carpel development in angiosperms and has played an important role in nectary evolution during core eudicot speciation. The function or expression of CRC-like genes has been explored in two basal eudicots, Eschscholzia californica and Aquilegia formosa. To further investigate the function of CRC orthologous genes related to evolution of carpel and nectary development in basal eudicots, a CRC ortholog, EsCRC, was isolated and characterized from Epimedium sagittatum (Sieb. and Zucc.) Maxim. A phylogenetic analysis of EsCRC and previously identified CRC-like genes placed EsCRC within the basal eudicot lineage. Gene expression results suggest that EsCRC is involved in the development of sepals and carpels, but not nectaries. Phenotypic complementation of the Arabidopsis mutant crc-1 was achieved by constitutive expression of EsCRC. In addition, over-expression of EsCRC in Arabidopsis and tobacco gave rise to abaxially curled leaves. Transgenic results together with the gene expression analysis suggest that EsCRC may maintain a conserved function in carpel development and also play a novel role related to sepal formation. Absence of EsCRC and ElCRC expression in nectaries further indicates that nectary development in non-core eudicots is unrelated to expression of CRC-like genes.
Characterization of a Crabs Claw Gene in Basal Eudicot Species Epimedium sagittatum (Berberidaceae)
Sun, Wei; Huang, Wenjun; Li, Zhineng; Lv, Haiyan; Huang, Hongwen; Wang, Ying
2013-01-01
The Crabs Claw (CRC) YABBY gene is required for regulating carpel development in angiosperms and has played an important role in nectary evolution during core eudicot speciation. The function or expression of CRC-like genes has been explored in two basal eudicots, Eschscholzia californica and Aquilegia formosa. To further investigate the function of CRC orthologous genes related to evolution of carpel and nectary development in basal eudicots, a CRC ortholog, EsCRC, was isolated and characterized from Epimedium sagittatum (Sieb. and Zucc.) Maxim. A phylogenetic analysis of EsCRC and previously identified CRC-like genes placed EsCRC within the basal eudicot lineage. Gene expression results suggest that EsCRC is involved in the development of sepals and carpels, but not nectaries. Phenotypic complementation of the Arabidopsis mutant crc-1 was achieved by constitutive expression of EsCRC. In addition, over-expression of EsCRC in Arabidopsis and tobacco gave rise to abaxially curled leaves. Transgenic results together with the gene expression analysis suggest that EsCRC may maintain a conserved function in carpel development and also play a novel role related to sepal formation. Absence of EsCRC and ElCRC expression in nectaries further indicates that nectary development in non-core eudicots is unrelated to expression of CRC-like genes. PMID:23299438
Atomistic simulations of deformation mechanisms in ultralight weight Mg-Li alloys
NASA Astrophysics Data System (ADS)
Karewar, Shivraj
Mg alloys have spurred a renewed academic and industrial interest because of their ultra-light-weight and high specific strength properties. Hexagonal close packed Mg has low deformability and a high plastic anisotropy between basal and non-basal slip systems at room temperature. Alloying with Li and other elements is believed to counter this deficiency by activating non-basal slip by reducing their nucleation stress. In this work I study how Li addition affects deformation mechanisms in Mg using atomistic simulations. In the first part, I create a reliable and transferable concentration dependent embedded atom method (CD-EAM) potential for my molecular dynamics study of deformation. This potential describes the Mg-Li phase diagram, which accurately describes the phase stability as a function of Li concentration and temperature. Also, it reproduces the heat of mixing, lattice parameters, and bulk moduli of the alloy as a function of Li concentration. Most importantly, our CD-EAM potential reproduces the variation of stacking fault energy for basal, prismatic, and pyramidal slip systems that in uences the deformation mechanisms as a function of Li concentration. This success of CD-EAM Mg-Li potential in reproducing different properties, as compared to literature data, shows its reliability and transferability. Next, I use this newly created potential to study the effect of Li addition on deformation mechanisms in Mg-Li nanocrystalline (NC) alloys. Mg-Li NC alloys show basal slip, pyramidal type-I slip, tension twinning, and two-compression twinning deformation modes. Li addition reduces the plastic anisotropy between basal and non-basal slip systems by modifying the energetics of Mg-Li alloys. This causes the solid solution softening. The inverse relationship between strength and ductility therefore suggests a concomitant increase in alloy ductility. A comparison of the NC results with single crystal deformation results helps to understand the qualitative and quantitative effect of Li addition in Mg on nucleation stress and fault energies of each deformation mode. The nucleation stress and fault energies of basal dislocations and compression twins in single crystal Mg-Li alloy increase while those for pyramidal dislocations and tension twinning decrease. This variation in respective values explains the reduction in plastic anisotropy and increase in ductility for Mg-Li alloys.
Differentiation of anchoring junctions in tracheal basal cells in the growing rat.
Evans, M J; Cox, R A; Burke, A S; Moller, P C
1992-02-01
A function of airway basal cells is to attach ciliated and nonciliated columnar cells to the basal lamina. The significance of the basal cell in attachment is related to the height of the columnar epithelium. In taller epithelia, basal cells are more numerous and differentiated with respect to anchoring junctional adhesion mechanisms (desmosomes, hemidesmosomes, and the cytoskeleton) than in shorter epithelia. In this study, we determined if basal cell anchoring junctional adhesion mechanisms differentiated during growth of the airway. Tracheas from five 3-day-old, five 30-day-old, and five 90-day-old rats were prepared for electron microscopy and morphometrically studied by standard techniques. The circumference of the trachea increased from 2.5 +/- 0.2 to 7.5 +/- 0.4 mm during growth. The height of the columnar cell increased from 13.4 +/- 1.5 to 24.6 +/- 3.9 microns, and the number of basal cells per millimeter increased from 3.2 +/- 0.7 to 9.6 +/- 1.8 during growth. The number of desmosomes per basal cell profile increased significantly from 1.5 +/- 0.1 to 2.1 +/- 0.1, as did keratin filament volume density from 0.046 +/- 0.05 to 0.098 +/- 0.032. The amount of hemidesmosome attachment per basal cell did not increase significantly during growth of the airway. These data demonstrate that as tracheas grow in circumference, the columnar cells increase in height, basal cells increase in number, and anchoring junctional adhesion mechanisms differentiate in the basal cells. These changes are closely related to the height of the epithelium and result in maintaining a constant amount of attachment between the columnar epithelium and the basal lamina as the epithelium increases in height.
Lorestani, Alexander; Sheiner, Lilach; Yang, Kevin; Robertson, Seth D.; Sahoo, Nivedita; Brooks, Carrie F.; Ferguson, David J. P.; Striepen, Boris; Gubbels, Marc-Jan
2010-01-01
The membrane occupation and recognition nexus protein 1 (MORN1) is highly conserved among apicomplexan parasites and is associated with several structures that have a role in cell division. Here we dissected the role of MORN1 using the relatively simple budding process of Toxoplasma gondii as a model. Ablation of MORN1 in a conditional null mutant resulted in pronounced defects suggesting a central role for MORN1 in apicoplast segregation and in daughter cell budding. Lack of MORN1 resulted in double-headed parasites. These Janus-headed parasites form two complete apical complexes but fail to assemble a basal complex. Moreover, these parasites were capable of undergoing several more budding rounds resulting in the formation of up to 16-headed parasites conjoined at the basal end. Despite this segregation defect, the mother's cytoskeleton was completely disassembled in every budding round. Overall this argues that successful completion of the budding is not required for cell cycle progression. None of the known basal complex components, including a set of recently identified inner membrane complex (IMC) proteins, localized correctly in these multi-headed parasites. These data suggest that MORN1 is essential for assembly of the basal complex, and that lack of the basal complex abolishes the contractile capacity assigned to the basal complex late in daughter formation. Consistent with this hypothesis we observe that MORN1 mutants fail to efficiently constrict and divide the apicoplast. We used the null background provided by the mutant to dissect the function of subdomains of the MORN1 protein. This demonstrated that deletion of a single MORN domain already prevented the function of MORN1 whereas a critical role for the short linker between MORN domains 6 and 7 was identified. In conclusion, MORN1 is required for basal complex assembly and loss of MORN1 results in defects in apicoplast division and daughter segregation. PMID:20808817
Jenkins, Dafyd J; Stekel, Dov J
2010-02-01
Gene regulation is one important mechanism in producing observed phenotypes and heterogeneity. Consequently, the study of gene regulatory network (GRN) architecture, function and evolution now forms a major part of modern biology. However, it is impossible to experimentally observe the evolution of GRNs on the timescales on which living species evolve. In silico evolution provides an approach to studying the long-term evolution of GRNs, but many models have either considered network architecture from non-adaptive evolution, or evolution to non-biological objectives. Here, we address a number of important modelling and biological questions about the evolution of GRNs to the realistic goal of biomass production. Can different commonly used simulation paradigms, in particular deterministic and stochastic Boolean networks, with and without basal gene expression, be used to compare adaptive with non-adaptive evolution of GRNs? Are these paradigms together with this goal sufficient to generate a range of solutions? Will the interaction between a biological goal and evolutionary dynamics produce trade-offs between growth and mutational robustness? We show that stochastic basal gene expression forces shrinkage of genomes due to energetic constraints and is a prerequisite for some solutions. In systems that are able to evolve rates of basal expression, two optima, one with and one without basal expression, are observed. Simulation paradigms without basal expression generate bloated networks with non-functional elements. Further, a range of functional solutions was observed under identical conditions only in stochastic networks. Moreover, there are trade-offs between efficiency and yield, indicating an inherent intertwining of fitness and evolutionary dynamics.
The evolution of floral biology in basal angiosperms
Endress, Peter K.
2010-01-01
In basal angiosperms (including ANITA grade, magnoliids, Choranthaceae, Ceratophyllaceae) almost all bisexual flowers are dichogamous (with male and female functions more or less separated in time), and nearly 100 per cent of those are protogynous (with female function before male function). Movements of floral parts and differential early abscission of stamens in the male phase are variously associated with protogyny. Evolution of synchronous dichogamy based on the day/night rhythm and anthesis lasting 2 days is common. In a few clades in Magnoliales and Laurales heterodichogamy has also evolved. Beetles, flies and thrips are the major pollinators, with various degrees of specialization up to large beetles and special flies in some large-flowered Nymphaeaceae, Magnoliaceae, Annonaceae and Aristolochiaceae. Unusual structural specializations are involved in floral biological adaptations (calyptras, inner staminodes, synandria and food bodies, and secretory structures on tepals, stamens and staminodes). Numerous specializations that are common in monocots and eudicots are absent in basal angiosperms. Several families are poorly known in their floral biology. PMID:20047868
Chirakarnjanakorn, Srisakul; Navaneethan, Sankar D.; Francis, Gary S.; Tang, W.H. Wilson
2017-01-01
Patients undergoing maintenance hemodialysis develop both structural and functional cardiovascular abnormalities. Despite improvement of dialysis technology, cardiovascular mortality of this population remains high. The pathophysiological mechanisms of these changes are complex and not well understood. It has been postulated that several non-traditional, uremic-related risk factors, especially the long-term uremic state, which may affect the cardiovascular system. There are many cardiovascular changes that occur in chronic kidney disease including left ventricular hypertrophy, myocardial fibrosis, microvascular disease, accelerated atherosclerosis and arteriosclerosis. These structural and functional changes in patients receiving chronic dialysis make them more susceptible to myocardial ischemia. Hemodialysis itself may adversely affect the cardiovascular system due to non-physiologic fluid removal, leading to hemodynamic instability and initiation of systemic inflammation. In the past decade there has been growing awareness that pathophysiological mechanisms cause cardiovascular dysfunction in patients on chronic dialysis, and there are now pharmacological and non-pharmacological therapies that may improve the poor quality of life and high mortality rate that these patients experience. PMID:28108129
Convertino, Victor A; Cooke, William H
2005-09-01
Occurrence of serious cardiac dysrhythmias and diminished cardiac and vascular function are the primary cardiovascular risks of spaceflight identified in the 2005 NASA Bioastronautics Critical Path Roadmap. A review of the literature was conducted on experimental results and observational data obtained from spaceflight and relevant ground simulation studies that addressed occurrence of cardiac dysrhythmias, cardiac contractile and vascular function, manifestation of asymptomatic cardiovascular disease, orthostatic intolerance, and response to exercise stress. Based on data from astronauts who have flown in space, there is no compelling experimental evidence to support significant occurrence of cardiac dysrhythmias, manifestation of asymptomatic cardiovascular disease, or reduction in myocardial contractile function. Although there are post-spaceflight data that demonstrate lower peripheral resistance in astronauts who become presyncopal compared with non-presyncopal astronauts, it is not clear that these differences are the result of decreased vascular function. However, the evidence of postflight orthostatic intolerance and reduced exercise capacity is well substantiated by both spaceflight and ground experiments. Although attenuation of baroreflex function(s) may contribute to postflight orthostatic instability, a primary mechanism of orthostatic intolerance and reduced exercise capacity is reduced end-diastolic and stroke volume associated with lower blood volumes and consequent cardiac remodeling. Data from the literature on the current population of astronauts support the notion that the primary cardiovascular risks of spaceflight are compromised hemodynamic responses to central hypovolemia resulting in reduced orthostatic tolerance and exercise capacity rather than occurrence of cardiac dysrhythmias, reduced cardiac contractile and vascular function, or manifestation of asymptomatic cardiovascular disease. These observations warrant a critical review and revision of the 2005 Bioastronautics Critical Path Roadmap.
Exercise and end-stage kidney disease: functional exercise capacity and cardiovascular outcomes.
Parsons, Trisha L; King-Vanvlack, Cheryl E
2009-11-01
This review examined published reports of the impact of extradialytic and intradialytic exercise programs on physiologic aerobic exercise capacity, functional exercise endurance, and cardiovascular outcomes in individuals with ESKD. Studies spanning 30 years from the first published report of exercise in the ESKD population were reviewed. Studies conducted in the first half of the publication record focused on the efficacy of exercise training programs performed "off"-dialysis with respect to the modification of traditional cardiovascular risk factors, aerobic capacity, and its underlying determinants. In the latter half of the record, there had been a shift to include other client-centered goals such as physical function and quality of life. There is evidence that both intra- and extradialytic programs can significantly enhance aerobic exercise capacity, but moderate-intensity extradialytic programs may result in greater gains in those individuals who initially have extremely poor aerobic capacity. Functionally, substantive improvements in exercise endurance in excess of the minimum clinical significant difference can occur following either low- or moderate-intensity exercise regardless of the initial level of performance. Reductions in blood pressure and enhanced vascular functioning reported after predominantly intradialytic exercise programs suggest that either low- or moderate-intensity exercise programs can confer cardiovascular benefit. Regardless of prescription model, there was an overall lack of evidence regarding the impact of exercise-induced changes in exercise capacity, endurance, and cardiovascular function on a number of relevant health outcomes (survival, morbidity, and cardiovascular risk), and, more importantly, there is no evidence on the long-term impact of exercise and/or physical activity interventions on these health outcomes.
Differences in Physical Fitness and Cardiovascular Function Depend on BMI in Korean Men.
So, Wi-Young; Choi, Dai-Hyuk
2010-01-01
We investigated the associations between cardiovascular function and both body mass index and physical fitness in Korean men. The subjects were 2,013 men, aged 20 to 83 years, who visited a health promotion center for a comprehensive medical and fitness test during 2006-2009. The WHO's Asia-Pacific Standard Report definition of BMI was used in this study. Fitness assessment of cardiorespiratory endurance, muscular strength, muscular endurance, flexibility, power, agility, and balance were evaluated by VO2max (ml/kg/min), grip strength (kg), sit-ups (reps/min), sit and reach (cm), vertical jump (cm), side steps (reps/30s), and standing on one leg with eyes closed (sec), respectively. For cardiovascular function, we evaluated systolic blood pressure (SBP), diastolic blood pressure (DBP), resting heart rate (RHR), double product (DP), and vital capacity. There were significant decreases in cardiorespiratory endurance (p < 0.001), power (p < 0.001), and balance (p < 0.001), and increases in muscular strength (p < 0.001). Further, cardiovascular function, including SBP (p < 0.001), DBP (p < 0.001), double product (p < 0.001), and vital capacity (p=0.006) appeared to be lower for the obesity group. We conclude that an obese person exhibits lower fitness level and weaker cardiovascular function than a normal person. Key pointsThe obese group had a lower fitness level, including cardiorespiratory endurance, power, and balance.Obese group demonstrated an increase in muscular strength.Obese group had higher blood pressure and weaker cardiovascular function, including DP and vital capacity, than the normal group.
Differences in Physical Fitness and Cardiovascular Function Depend on BMI in Korean Men
So, Wi-Young; Choi, Dai-Hyuk
2010-01-01
We investigated the associations between cardiovascular function and both body mass index and physical fitness in Korean men. The subjects were 2,013 men, aged 20 to 83 years, who visited a health promotion center for a comprehensive medical and fitness test during 2006-2009. The WHO's Asia-Pacific Standard Report definition of BMI was used in this study. Fitness assessment of cardiorespiratory endurance, muscular strength, muscular endurance, flexibility, power, agility, and balance were evaluated by VO2max (ml/kg/min), grip strength (kg), sit-ups (reps/min), sit and reach (cm), vertical jump (cm), side steps (reps/30s), and standing on one leg with eyes closed (sec), respectively. For cardiovascular function, we evaluated systolic blood pressure (SBP), diastolic blood pressure (DBP), resting heart rate (RHR), double product (DP), and vital capacity. There were significant decreases in cardiorespiratory endurance (p < 0.001), power (p < 0.001), and balance (p < 0.001), and increases in muscular strength (p < 0.001). Further, cardiovascular function, including SBP (p < 0.001), DBP (p < 0.001), double product (p < 0.001), and vital capacity (p=0.006) appeared to be lower for the obesity group. We conclude that an obese person exhibits lower fitness level and weaker cardiovascular function than a normal person. Key points The obese group had a lower fitness level, including cardiorespiratory endurance, power, and balance. Obese group demonstrated an increase in muscular strength. Obese group had higher blood pressure and weaker cardiovascular function, including DP and vital capacity, than the normal group. PMID:24149691
Lennon, Elizabeth M; Boyle, Tonya E; Hutchins, Rae Grace; Friedenthal, Arit; Correa, Maria T; Bissett, Sally A; Moses, Lorra S; Papich, Mark G; Birkenheuer, Adam J
2007-08-01
To determine whether basal serum or plasma cortisol concentration can be used as a screening test to rule out hypoadrenocorticism in dogs. Retrospective case-control study. 110 dogs with nonadrenal gland illnesses and 13 dogs with hypoadrenocorticism. Sensitivity and specificity of basal serum or plasma cortisol concentrations of either
Höfner, Thomas; Klein, Corinna; Eisen, Christian; Rigo-Watermeier, Teresa; Haferkamp, Axel; Sprick, Martin R
2016-04-01
The long-term propagation of basal prostate progenitor cells ex vivo has been very difficult in the past. The development of novel methods to expand prostate progenitor cells in vitro allows determining their cell surface phenotype in greater detail. Mouse (Lin(-)Sca-1(+) CD49f(+) Trop2(high)-phenotype) and human (Lin(-) CD49f(+) TROP2(high)) basal prostate progenitor cells were expanded in vitro. Human and mouse cells were screened using 242 anti-human or 176 antimouse monoclonal antibodies recognizing the cell surface protein profile. Quantitative expression was evaluated at the single-cell level using flow cytometry. Differentially expressed cell surface proteins were evaluated in conjunction with the known CD49f(+)/TROP2(high) phenotype of basal prostate progenitor cells and characterized by in vivo sandwich-transplantation experiments using nude mice. The phenotype of basal prostate progenitor cells was determined as CD9(+)/CD24(+)/CD29(+)/CD44(+)/CD47(+)/CD49f(+)/CD104(+)/CD147(+)/CD326(+)/Trop2(high) of mouse as well as human origin. Our analysis revealed several proteins, such as CD13, Syndecan-1 and stage-specific embryonal antigens (SSEAs), as being differentially expressed on murine and human CD49f(+) TROP2(+) basal prostate progenitor cells. Transplantation experiments suggest that CD49f(+) TROP2(high) SSEA-4(high) human prostate basal progenitor cells to be more potent to regenerate prostate tubules in vivo as compared with CD49f(+) TROP2(high) or CD49f(+) TROP2(high) SSEA-4(low) cells. Determination of the cell surface protein profile of functionally defined murine and human basal prostate progenitor cells reveals differentially expressed proteins that may change the potency and regenerative function of epithelial progenitor cells within the prostate. SSEA-4 is a candidate cell surface marker that putatively enables a more accurate identification of the basal PESC lineage. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Lü, Wei; Hughes, Brian M; Howard, Siobhán; James, Jack E
2018-02-01
Sleep loss is associated with increased cardiovascular disease, but physiological mechanisms accounting for this relationship are largely unknown. One possible mechanism is that sleep restriction exerts effects on cardiovascular stress responses, and that these effects vary between individuals. Emotional stability (ES) is a personality trait pertinent to sleep restriction and stress responding. However, no study to date has explored how ES and sleep-restriction interactively affect cardiovascular stress responses or processes of adaptation during stress. The present study sought to investigate the association between ES and impact of sleep restriction on cardiovascular function during stress, with particular regard to the trajectory of cardiovascular function change across time. Ninety female university students completed a laboratory vigilance stress task while undergoing continuous cardiovascular (SBP, DBP, HR, SV, CO, TPR) monitoring, after either a night of partial sleep restriction (40% of habitual sleep duration) or a full night's rest. Individuals high in ES showed stable and adaptive cardiovascular (SBP, SV, CO) responses throughout stress exposure, regardless of sleep. In contrast, individuals low in ES exhibited cardiovascular adaptation during stress exposure while rested, but disrupted adaption while sleep-restricted. These findings suggest that sleep-restriction undermines healthful cardiovascular adaptation to stress for individuals low in ES. Copyright © 2017 Elsevier B.V. All rights reserved.
Adenohypophyseal function in dogs with primary hypothyroidism and nonthyroidal illness.
Diaz-Espiñeira, M M; Mol, J A; Rijnberk, A; Kooistra, H S
2009-01-01
A recent study of dogs with induced primary hypothyroidism (PH) demonstrated that thyroid hormone deficiency leads to loss of thyrotropin (TSH) hypersecretion, hypersomatotropism, hypoprolactinemia, and pituitary enlargement with large vacuolated "thyroid deficiency" cells that double-stained for growth hormone (GH) and TSH, indicative of transdifferentiation of somatotropes to thyrosomatropes. Similar functional changes in adenohypophyseal function occur in dogs with spontaneous PH as do in dogs with induced PH, but not in dogs with nonthyroidal illness (NTI). Fourteen dogs with spontaneous PH and 13 dogs with NTI. Adenohypophyseal function was investigated by combined intravenous administration of 4 hypophysiotropic releasing hormones (4RH test), followed by measurement of plasma concentrations of ACTH, GH, luteinizing hormone (LH), prolactin (PRL), and TSH. In the PH dogs this test was repeated after 4 and 12 weeks of thyroxine treatment. In 6 PH dogs, the basal TSH concentration was within the reference range. In the PH dogs, the TSH concentrations did not increase with the 4RH test. However, TSH concentrations increased significantly in the NTI dogs. Basal and stimulated GH and PRL concentrations indicated reversible hypersomatotropism and hyperprolactinemia in the PH dogs, but not in the NTI dogs. Basal and stimulated LH and ACTH concentrations did not differ between groups. Dogs with spontaneous PH hypersecrete GH but have little or no TSH hypersecretion. Development of hyperprolactinemia (and possible galactorrhea) in dogs with PH seems to occur only in sexually intact bitches. In this group of dogs with NTI, basal and stimulated plasma adenohypophyseal hormone concentrations were not altered.
Olmos, Jorge; Ochoa, Leonel; Paniagua-Michel, Jesus; Contreras, Rosalia
2011-01-01
Functional feed supplemented with alternative-economic nutrient sources (protein, carbohydrates, lipids) and probiotics are being considered in shrimp/fish aquaculture production systems as an option to increase yield and profits and to reduce water pollution. In this study the probiotic potential to formulate functional feeds have been evaluated using four dietary treatments: Treatment 1 (B + Bs); Bacillus subtilis potential probiotic strain was supplemented to a soybeanmeal (SBM)—carbohydrates (CHO) basal feed. Treatment 2 (B + Bm); Bacillus megaterium potential probiotic strain was supplemented to the same SBM-CHO basal feed. In Treatment 3 (B); SBM-CHO basal feed was not supplemented with probiotic strains. Treatment 4 (C); fishmeal commercial feed (FM) was utilized as positive control. Feeding trials evaluated the survival, growth, and food conversion ratio and stress tolerance of juvenile Litopenaeus vannamei (Boone) Pacific white shrimp. Best overall shrimp performance was observed for animals fed with Treatment 1 (B+Bs); additionally, stress tolerance and hemolymph metabolites also showed the best performance in this treatment. SBM-CHO basal feed not supplemented with probiotic strains (B) presented smaller growth and lower feed conversion ratio (FCR). Shrimps fed with the fishmeal commercial feed (C) presented the lowest stress tolerance to high ammonia and low oxygen levels. Specifically selected B. subtilis strains are recommended to formulate functional and economical feeds containing high levels of vegetable; protein and carbohydrates as main dietary sources in L. vannamei cultures. PMID:21747750
Olmos, Jorge; Ochoa, Leonel; Paniagua-Michel, Jesus; Contreras, Rosalia
2011-01-01
Functional feed supplemented with alternative-economic nutrient sources (protein, carbohydrates, lipids) and probiotics are being considered in shrimp/fish aquaculture production systems as an option to increase yield and profits and to reduce water pollution. In this study the probiotic potential to formulate functional feeds have been evaluated using four dietary treatments: Treatment 1 (B + Bs); Bacillus subtilis potential probiotic strain was supplemented to a soybeanmeal (SBM)-carbohydrates (CHO) basal feed. Treatment 2 (B + Bm); Bacillus megaterium potential probiotic strain was supplemented to the same SBM-CHO basal feed. In Treatment 3 (B); SBM-CHO basal feed was not supplemented with probiotic strains. Treatment 4 (C); fishmeal commercial feed (FM) was utilized as positive control. Feeding trials evaluated the survival, growth, and food conversion ratio and stress tolerance of juvenile Litopenaeus vannamei (Boone) Pacific white shrimp. Best overall shrimp performance was observed for animals fed with Treatment 1 (B+Bs); additionally, stress tolerance and hemolymph metabolites also showed the best performance in this treatment. SBM-CHO basal feed not supplemented with probiotic strains (B) presented smaller growth and lower feed conversion ratio (FCR). Shrimps fed with the fishmeal commercial feed (C) presented the lowest stress tolerance to high ammonia and low oxygen levels. Specifically selected B. subtilis strains are recommended to formulate functional and economical feeds containing high levels of vegetable; protein and carbohydrates as main dietary sources in L. vannamei cultures.
NASA Technical Reports Server (NTRS)
Phillips, Tiffany; Arzeno, Natalia M.; Stenger, Michael; Lee, Stuart M. C.; Bloomberg, Jacob J.; Platts, Steven H.
2011-01-01
The overall objective of the functional task test (FTT) is to correlate spaceflight-induced physiological adaptations with changes in performance of high priority exploration mission-critical tasks. This presentation will focus on the recovery from fall/stand test (RFST), which measures the cardiovascular response to the transition from the prone posture (simulated fall) to standing in normal gravity, as well as heart rate (HR) during 11 functional tasks. As such, this test describes some aspects of spaceflight-induced cardiovascular deconditioning and the course of recovery in Space Shuttle and International Space Station (ISS) astronauts. The sensorimotor and neuromuscular components of the FTT are described in two separate abstracts: Functional Task Test 1 and 3.
Zócalo, Yanina; Farro, Ignacio; Farro, Federico; Scasso, Santiago; Bia, Daniel
2015-01-01
Introduction. Flow-mediated dilation (FMD), low flow-mediated constriction (L-FMC), and reactive hyperemia-related changes in carotid-to-radial pulse wave velocity (ΔPWVcr%) could offer complementary information about both “recruitability” and “resting” endothelial function (EF). Carotid-to-femoral pulse wave velocity (PWVcf) and pulse wave analysis-derived parameters (i.e., AIx@75) are the gold standard methods for noninvasive evaluation of aortic stiffness and central hemodynamics. If healthy pregnancy is associated with both changes in resting and recruitable EF, as well as in several arterial parameters, it remains unknown and/or controversial. Objectives. To simultaneously and noninvasively assess in healthy pregnant (HP) and nonpregnant (NP) women central parameters in conjunction with “basal and recruitable” EF, employing new complementary approaches. Methods. HP (n = 11, 34.2 ± 3.3 weeks of gestation) and age- and cardiovascular risk factors-matched NP (n = 22) were included. Aortic blood pressure (BP), AIx@75, PWVcf, common carotid stiffness, and intima-media thickness, as well as FMD, L-FMC, and ΔPWVcr %, were measured. Results. Aortic BP, stiffness, and AIx@75 were reduced in HP. ΔPWVcr% and FMD were enhanced in HP in comparison to NP. No differences were found in L-FMC between groups. Conclusion. HP is associated with reduced aortic stiffness, central BP, wave reflections, and enhanced recruitable, but not resting, EF. PMID:26421317
Kingma, J G; Linderoth, B; Ardell, J L; Armour, J A; DeJongste, M J; Foreman, R D
2001-08-13
Electrical stimulation of the dorsal aspect of the upper thoracic spinal cord is used increasingly to treat patients with angina pectoris refractory to conventional therapeutic strategies. The purpose of this study was to determine whether spinal cord stimulation (SCS) in dogs affects regional myocardial blood flow and left-ventricular (LV) function before and during transient obstruction of the left anterior descending coronary artery (LAD). In anesthetized dogs, regional myocardial blood flow distribution was determined using radiolabeled microspheres and left-ventricular function was measured by impedance-derived pressure-volume loops. SCS was accomplished by stimulating the dorsal T1-T2 segments of the spinal cord using epidural bipolar electrodes at 90% of motor threshold (MT) (50 Hz, 0.2-ms duration). Effects of 5-min SCS were assessed under basal conditions and during 4-min occlusion of the LAD. SCS alone evoked no change in regional myocardial blood flow or cardiovascular indices. Transient LAD occlusion significantly diminished blood flow within ischemic, but not in non-ischemic myocardial tissue. Left ventricular pressure-volume loops were shifted rightward during LAD occlusion. Cardiac indices were altered similarly during LAD occlusion and concurrent SCS. SCS does not influence the distribution of blood flow within the non-ischemic or ischemic myocardium. Nor does it modify LV pressure-volume dynamics in the anesthetized experimental preparation.
Cardiovascular studies using the chimpanzee (Pan troglodytes)
NASA Technical Reports Server (NTRS)
Hinds, J. E.; Cothran, L. N.; Hawthorne, E. W.
1977-01-01
Despite the phylogenetic similarities between chimpanzees and man, there exists a paucity of reliable data on normal cardiovascular function and the physiological responses of the system to standard interventions. Totally implanted biotelemetry systems or hardwire analog techniques were used to examine the maximum number of cardiovascular variables which could be simultaneously monitored without significantly altering the system's performance. This was performed in order to acquire base-line data not previously obtained in this species, to determine cardiovascular response to specific forcing functions such as ventricular pacing, drug infusions, and lower body negative pressure. A cardiovascular function profile protocol was developed in order to adjust independently the three major factors which modify ventricular performance, namely, left ventricular performance, left ventricular preload, afterload, and contractility. Cardiac pacing at three levels above the ambient rate was used to adjust end diastolic volume (preload). Three concentrations of angiotensin were infused continuously to evaluate afterload in a stepwide fashion. A continuous infusion of dobutamine was administered to raise the manifest contractile state of the heart.
Effects of Flavonoid-Containing Beverages and EGCG on Endothelial Function
Shenouda, Sherene M.; Vita, Joseph A.
2009-01-01
Abnormalities of the vascular endothelium contribute to all stages of atherosclerosis from lesion development to clinical cardiovascular disease events. Recognized risk factors, including diabetes mellitus, hypertension, dyslipidemia, cigarette smoking, and sedentary lifestyle are associated with endothelial dysfunction. A variety of pharmacological and behavioral interventions have been shown to reverse endothelial dysfunction in patients with cardiovascular disease. A large number of epidemiological studies suggest that dietary factors, including increased intake of flavonoid-containing foods and beverages, reduce cardiovascular risk, and recent studies have shown that such beverages have favorable effects on endothelial function. These studies have engendered interest in the development of dietary supplements or drugs that would allow for more convenient and higher dose administration of flavonoids and might prove useful for prevention or treatment of cardiovascular disease. In this paper, we will review the contribution of endothelial dysfunction to the pathogenesis and clinical expression of atherosclerosis and recent data linking flavonoid and EGCG consumption to improved endothelial function and reduced cardiovascular risk. PMID:17906190
Airway Basal Cells. The “Smoking Gun” of Chronic Obstructive Pulmonary Disease
2014-01-01
The earliest abnormality in the lung associated with smoking is hyperplasia of airway basal cells, the stem/progenitor cells of the ciliated and secretory cells that are central to pulmonary host defense. Using cell biology and ’omics technologies to assess basal cells isolated from bronchoscopic brushings of nonsmokers, smokers, and smokers with chronic obstructive pulmonary disease (COPD), compelling evidence has been provided in support of the concept that airway basal cells are central to the pathogenesis of smoking-associated lung diseases. When confronted by the chronic stress of smoking, airway basal cells become disorderly, regress to a more primitive state, behave as dictated by their inheritance, are susceptible to acquired changes in their genome, lose the capacity to regenerate the epithelium, are responsible for the major changes in the airway that characterize COPD, and, with persistent stress, can undergo malignant transformation. Together, these observations led to the conclusion that accelerated loss of lung function in susceptible individuals begins with disordered airway basal cell biology (i.e., that airway basal cells are the “smoking gun” of COPD, a potential target for the development of therapies to prevent smoking-related lung disorders). PMID:25354273
Leberkühne, Lynn J; Ebtehaj, Sanam; Dimova, Lidiya G; Dikkers, Arne; Dullaart, Robin P F; Bakker, Stephan J L; Tietge, Uwe J F
2016-06-01
Protection of low-density lipoproteins (LDL) against oxidative modification is a key anti-atherosclerotic property of high-density lipoproteins (HDL). This study evaluated the predictive value of the HDL antioxidative function for cardiovascular mortality, all-cause mortality and chronic graft failure in renal transplant recipients (RTR). The capacity of HDL to inhibit native LDL oxidation was determined in vitro in a prospective cohort of renal transplant recipients (RTR, n = 495, median follow-up 7.0 years). The HDL antioxidative functionality was significantly higher in patients experiencing graft failure (57.4 ± 9.7%) than in those without (54.2 ± 11.3%; P = 0.039), while there were no differences for cardiovascular and all-cause mortality. Specifically glomerular filtration rate (P = 0.001) and C-reactive protein levels (P = 0.006) associated independently with antioxidative functionality in multivariate linear regression analyses. Cox regression analysis demonstrated a significant relationship between antioxidative functionality of HDL and graft failure in age-adjusted analyses, but significance was lost following adjustment for baseline kidney function and inflammatory load. No significant association was found between HDL antioxidative functionality and cardiovascular and all-cause mortality. This study demonstrates that the antioxidative function of HDL (i) does not predict cardiovascular or all-cause mortality in RTR, but (ii) conceivably contributes to the development of graft failure, however, not independent of baseline kidney function and inflammatory load. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
O'Donnell, Emma; Goodman, Jack M; Harvey, Paula J
2011-12-01
Evidence indicates that hypoestrogenemia is linked with accelerated progression of atherosclerosis. Premenopausal women presenting with ovulatory disruption due to functional hypothalamic amenorrhea (FHA) are characterized by hypoestrogenemia. One common and reversible form of FHA in association with energy deficiency is exercise-associated amenorrhea (EAA). Articles were found via PubMed search for both original and review articles based on peer review publications between 1974 and 2011 reporting on cardiovascular changes in women with FHA, with emphasis placed on women with EAA. Despite participation in regular exercise training, hypoestrogenic women with EAA demonstrate paradoxical changes in cardiovascular function, including endothelial dysfunction, a known permissive factor for the progression and development of atherosclerosis. Such alterations suggest that the beneficial effects of regular exercise training on vascular function are obviated in the face of hypoestrogenemia. The long-term cardiovascular consequences of altered vascular function in response to ovulatory disruption in women with EAA remain to be determined. Retrospective data, however, suggest premature development and progression of coronary artery disease in older premenopausal women reporting a history of hypothalamic ovulatory disruption. Importantly, in women with EAA, estrogen therapy, folic acid supplementation without change in menstrual status, and resumption of menses restores endothelial function. In this review, we focus on the influence of hypoestrogenemia in association with energy deficiency in mediating changes in cardiovascular function in women with EAA, including endothelial function, regional blood flow, lipid profile, and autonomic control of blood pressure, heart rate, and baroreflex sensitivity. The influence of exercise training is also considered. With the premenopausal years typically considered to be cardioprotective in association with normal ovarian function, ovarian disruption in women with EAA is of importance. Further investigation of the short-term, and potentially long-term, cardiovascular consequences of hypoestrogenemia in women with EAA is recommended.
Zhang, Heng-Zhu; Li, Yu-Ping; Yan, Zheng-cun; Wang, Xing-dong; She, Lei; Wang, Xiao-dong; Dong, Lun
2014-01-01
Neuroendoscopic (NE) surgery as a minimal invasive treatment for basal ganglia hemorrhage is a promising approach. The present study aims to evaluate the efficacy and safety of NE approach using an adjustable cannula to treat basal ganglia hemorrhage. In this study, we analysed the clinical and radiographic outcomes between NE group (21 cases) and craniotomy group (30 cases). The results indicated that NE surgery might be an effective and safe approach for basal ganglia haemorrhage, and it is also suggested that NE approach may improve good functional recovery. However, NE approach only suits the selected patient, and the usefulness of NE approach needs further randomized controlled trials (RCTs) to evaluate. PMID:24949476
Carbachol inhibits basal and forskolin-evoked adult rat striatal acetylcholine release.
Login, I S
1997-05-27
Acutely dissociated adult rat striatal cholinergic neurons labeled with [3H]choline were used in a perifusion system to study muscarinic regulation of basal and forskolin-stimulated fractional [3H]acetylcholine ([3H]-ACh) efflux in the absence of synaptic modulation. Carbachol inhibited basal (40% maximal inhibition; IC50 approximately 0.7 microM) and forskolin-evoked release (75% inhibition; IC50 approximately 0.05 microM) in a concentration-dependent manner, and both carbachol actions were abolished with atropine. Thus, activation of striatal muscarinic cholinergic autoreceptors potently inhibits basal and adenylate cyclase-stimulated ACh release. Tonic inhibitory control of cholinergic activity by functional striatal circuitry apparently prevents detection of these important physiological interactions in slices or in situ.
Wong, Kelvin K L; Wang, Defeng; Ko, Jacky K L; Mazumdar, Jagannath; Le, Thu-Thao; Ghista, Dhanjoo
2017-03-21
Cardiac dysfunction constitutes common cardiovascular health issues in the society, and has been an investigation topic of strong focus by researchers in the medical imaging community. Diagnostic modalities based on echocardiography, magnetic resonance imaging, chest radiography and computed tomography are common techniques that provide cardiovascular structural information to diagnose heart defects. However, functional information of cardiovascular flow, which can in fact be used to support the diagnosis of many cardiovascular diseases with a myriad of hemodynamics performance indicators, remains unexplored to its full potential. Some of these indicators constitute important cardiac functional parameters affecting the cardiovascular abnormalities. With the advancement of computer technology that facilitates high speed computational fluid dynamics, the realization of a support diagnostic platform of hemodynamics quantification and analysis can be achieved. This article reviews the state-of-the-art medical imaging and high fidelity multi-physics computational analyses that together enable reconstruction of cardiovascular structures and hemodynamic flow patterns within them, such as of the left ventricle (LV) and carotid bifurcations. The combined medical imaging and hemodynamic analysis enables us to study the mechanisms of cardiovascular disease-causing dysfunctions, such as how (1) cardiomyopathy causes left ventricular remodeling and loss of contractility leading to heart failure, and (2) modeling of LV construction and simulation of intra-LV hemodynamics can enable us to determine the optimum procedure of surgical ventriculation to restore its contractility and health This combined medical imaging and hemodynamics framework can potentially extend medical knowledge of cardiovascular defects and associated hemodynamic behavior and their surgical restoration, by means of an integrated medical image diagnostics and hemodynamic performance analysis framework.
Insulin glargine 300 U/mL for basal insulin therapy in type 1 and type 2 diabetes mellitus.
Lau, Ip Tim; Lee, Ka Fai; So, Wing Yee; Tan, Kathryn; Yeung, Vincent Tok Fai
2017-01-01
To review published clinical studies on the efficacy and safety of new insulin glargine 300 units/mL (Gla-300), a new long-acting insulin analog, for the treatment of type 1 and type 2 diabetes mellitus (T1DM, T2DM). Data sources comprised primary research articles on Gla-300, including pharmacodynamic, pharmacokinetic, and clinical studies. In pharmacodynamic and pharmacokinetic studies, Gla-300 showed a flatter time-action profile and longer duration of action than Gla-100. Noninferiority of Gla-300 versus Gla-100 for lowering of glycated hemoglobin was demonstrated in Phase III clinical studies covering a range of T1DM and T2DM patient populations. Over 6-12 months of follow-up, Gla-300 consistently showed comparable glycemic efficacy with less hypoglycemia vs Gla-100, even during the first 8 weeks of treatment. Although titrated insulin doses were 11%-17% higher with Gla-300 vs Gla-100, changes in body weight were similar or favored Gla-300. Clinical studies provide evidence that the pharmacodynamic and pharmacokinetic properties of Gla-300 may translate into clinical benefits in both T1DM and T2DM. Gla-300 may provide a new option for people initiating basal insulin, those requiring higher basal insulin doses, those with T1DM, and those who may be at increased risk for hypoglycemia, such as people with chronic kidney disease, the elderly, and those with cardiovascular comorbidities.
West, Christopher R; Krassioukov, Andrei V
2017-01-01
Purpose To investigate the relationship between the classification systems used in wheelchair sports and cardiovascular function in Paralympic athletes with spinal cord injury (SCI). Methods 26 wheelchair rugby (C3-C8) and 14 wheelchair basketball (T3-L1) were assessed for their International Wheelchair Rugby and Basketball Federation sports classification. Next, athletes were assessed for resting and reflex cardiovascular and autonomic function via the change (delta) in systolic blood pressure (SBP) and heart rate (HR) in response to sit-up, and sympathetic skin responses (SSRs), respectively. Results There were no differences in supine, seated, or delta SBP and HR between different sport classes in rugby or basketball (all p > 0.23). Athletes with autonomically complete injuries (SSR score 0-1) exhibited a lower supine SBP, seated SBP and delta SBP compared to those with autonomically incomplete injuries (SSR score >1; all p < 0.010), independent of sport played. There was no association between self-report OH and measured OH (χ 2 = 1.63, p = 0.20). Conclusion We provide definitive evidence that sports specific classification is not related to the degree of remaining autonomic cardiovascular control in Paralympic athletes with SCI. We suggest that testing for remaining autonomic function, which is closely related to the degree of cardiovascular control, should be incorporated into sporting classification. Implications for Rehabilitation Spinal cord injury is a debilitating condition that affects the function of almost every physiological system. It is becoming increasingly apparent that spinal cord injury induced changes in autonomic and cardiovascular function are important determinants of sports performance in athletes with spinal cord injury. This study shows that the current sports classification systems used in wheelchair rugby and basketball do not accurately reflect autonomic and cardiovascular function and thus are placing some athletes at a distinct disadvantage/advantage within their respective sport.
Autophagy in health and disease: focus on the cardiovascular system.
Mialet-Perez, Jeanne; Vindis, Cécile
2017-12-12
Autophagy is a highly conserved mechanism of lysosome-mediated protein and organelle degradation that plays a crucial role in maintaining cellular homeostasis. In the last few years, specific functions for autophagy have been identified in many tissues and organs. In the cardiovascular system, autophagy appears to be essential to heart and vessel homeostasis and function; however defective or excessive autophagy activity seems to contribute to major cardiovascular disorders including heart failure (HF) or atherosclerosis. Here, we review the current knowledge on the role of cardiovascular autophagy in physiological and pathophysiological conditions. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Heart in space: effect of the extraterrestrial environment on the cardiovascular system.
Hughson, Richard L; Helm, Alexander; Durante, Marco
2018-03-01
National space agencies and private corporations aim at an extended presence of humans in space in the medium to long term. Together with currently suboptimal technology, microgravity and cosmic rays raise health concerns about deep-space exploration missions. Both of these physical factors affect the cardiovascular system, whose gravity-dependence is pronounced. Heart and vascular function are, therefore, susceptible to substantial changes in weightlessness. The altered cardiovascular function in space causes physiological problems in the postflight period. A compromised cardiovascular system can be excessively vulnerable to space radiation, synergistically resulting in increased damage. The space radiation dose is significantly lower than in patients undergoing radiotherapy, in whom cardiac damage is well-documented following cancer therapy in the thoracic region. Nevertheless, epidemiological findings suggest an increased risk of late cardiovascular disease even with low doses of radiation. Moreover, the peculiar biological effectiveness of heavy ions in cosmic rays might increase this risk substantially. However, whether radiation-induced cardiovascular effects have a threshold at low doses is still unclear. The main countermeasures to mitigate the effect of the space environment on cardiac function are physical exercise, antioxidants, nutraceuticals, and radiation shielding.
Sivenius, Katariina; Niskanen, Leo; Laakso, Markku; Uusitupa, Matti
2003-08-01
We investigated the impact of a three-amino acid deletion (12Glu9) polymorphism in the alpha(2B)-adrenergic receptor gene on autonomic nervous function. The short form (Glu(9)/Glu(9)) of the polymorphism has previously been associated with a reduced basal metabolic rate in obese subjects. Because autonomic nervous function participates in the regulation of energy metabolism, there could be a link between this polymorphism and autonomic nervous function. Data of a 10-year follow-up study with 126 nondiabetic control subjects and 84 type 2 diabetic patients were used to determine the effects of the 12Glu9 polymorphism on autonomic nervous function. A deep breathing test and an orthostatic test were used to investigate parasympathetic and sympathetic autonomic nervous function. In addition, cardiovascular autonomic function was studied using power spectral analysis of heart rate variability. No significant differences were found in the frequency of the 12Glu9 deletion polymorphism between nondiabetic and diabetic subjects. The nondiabetic men with the Glu(9)/Glu(9) genotype, especially those with abdominal obesity, had significantly lower total and low-frequency power values in the power spectral analysis when compared with other men. Furthermore, in a longitudinal analysis of 10 years, the decrease in parasympathetic function was greater in nondiabetic men with the Glu(9)/Glu(9) genotype than in the men with the Glu(9)/Glu(12) or Glu(12)/Glu(12) genotypes. The results of the present study suggest that the 12Glu9 polymorphism of the alpha(2B)-adrenergic receptor gene modulates autonomic nervous function in Finnish nondiabetic men. In the nondiabetic men with the Glu(9)/Glu(9) genotype, the general autonomic tone is depressed, and vagal activity especially becomes impaired with time. Furthermore, this association is accentuated by central obesity.
[The design and applications of a non-invasive intelligent detector for cardiovascular functions].
Li, Feng; Xing, Wu; Chen, Ming-zhi; Shang, Huai
2006-05-01
An apparatus based on a high sensitive sensor which detects cardiovascular functions is introduced in this paper. Some intelligent detecting technologies, such as syntactic pattern recognition and a medical expert system are used in this detector. Its embedded single-chip microcomputer processes and analyzes pulse signals for gaining automatically the parameters about heart, blood vessel and blood etc., so as to get the health evaluation, correct medical diagnosis and prediction of cardiovascular diseases.
Barroso, Lourdes Cañón; Muro, Eloísa Cruces; Herrera, Natalio Díaz; Ochoa, Gerardo Fernández; Hueros, Juan Ignacio Calvo; Buitrago, Francisco
2010-01-01
Objective To analyse the 10-year performance of the original Framingham coronary risk function and of the SCORE cardiovascular death risk function in a non-diabetic population of 40–65 years of age served by a Spanish healthcare centre. Also, to estimate the percentage of patients who are candidates for antihypertensive and lipid-lowering therapy. Design Longitudinal, observational study of a retrospective cohort followed up for 10 years. Setting Primary care health centre. Patients A total of 608 non-diabetic patients of 40–65 years of age (mean 52.8 years, 56.7% women), without evidence of cardiovascular disease were studied. Main outcome measures Coronary risk at 10 years from the time of their recruitment, using the tables based on the original Framingham function, and of their 10-year risk of fatal cardiovascular disease using the SCORE tables. Results The actual incidence rates of coronary and fatal cardiovascular events were 7.9% and 1.5%, respectively. The original Framingham equation over-predicted risk by 64%, while SCORE function over-predicted risk by 40%, but the SCORE model performed better than the Framingham one for discrimination and calibration statistics. The original Framingham function classified 18.3% of the population as high risk and SCORE 9.2%. The proportions of patients who would be candidates for lipid-lowering therapy were 31.0% and 23.8% according to the original Framingham and SCORE functions, respectively, and 36.8% and 31.2% for antihypertensive therapy. Conclusion The SCORE function showed better values than the original Framingham function for each of the discrimination and calibration statistics. The original Framingham function selected a greater percentage of candidates for antihypertensive and lipid-lowering therapy. PMID:20873973
Miranda, Joana O; Ramalho, Carla; Henriques-Coelho, Tiago; Areias, José Carlos
2017-11-01
Epidemiologic and experimental evidence suggests that adverse stimuli during critical periods in utero permanently alters organ structure and function and may have persistent consequences for the long-term health of the offspring. Fetal hypoxia, maternal malnutrition, or ventricular overloading are among the major adverse conditions that can compromise cardiovascular development in early life. With the heart as a central organ in fetal adaptive mechanisms, a deeper understanding of the fetal cardiovascular physiology and of the echocardiographic tools to assess both normal and stressed pregnancies would give precious information on fetal well-being and hopefully may help in early identification of special risk groups for cardiovascular diseases later in life. Assessment of cardiac function in the fetus represents an additional challenge when comparing to children and adults, requiring advanced training and a critical approach to properly acquire and interpret functional parameters. This review summarizes the basic fetal cardiovascular physiology and the main differences from the mature postnatal circulation, provides an overview of the particularities of echocardiographic evaluation in the fetus, and finally proposes an integrated view of in utero programming of cardiovascular diseases later in life, highlighting priorities for future clinical research.
Pina, Géraldine; Dubois, Séverine; Murat, Arnaud; Berger, Nicole; Niccoli, Patricia; Peix, Jean-Louis; Cohen, Régis; Guillausseau, Claudine; Charrie, Anne; Chabre, Olivier; Cornu, Catherine; Borson-Chazot, Françoise; Rohmer, Vincent
2013-03-01
To evaluate a second-generation assay for basal serum calcitonin (CT) measurements compared with the pentagastrin-stimulation test for the diagnosis of inherited medullary thyroid carcinoma (MTC) and the follow-up of patients with MTC after surgery. Recent American Thyroid Association recommendations suggest the use of basal CT alone to diagnose and assess follow-up of MTC as the pentagastrin (Pg) test is unavailable in many countries. Multicentric prospective study. A total of 162 patients with basal CT <10 ng/l were included: 54 asymptomatic patients harboured noncysteine 'rearranged during transfection' (RET) proto-oncogene mutations and 108 patients had entered follow-up of MTC after surgery. All patients underwent basal and Pg-stimulated CT measurements using a second-generation assay with 5-ng/l functional sensitivity. Ninety-five per cent of patients with basal CT ≥ 5 ng/l and 25% of patients with basal CT <5 ng/l had a positive Pg-stimulation test (Pg CT >10 ng/l). Compared with the reference Pg test, basal CT ≥ 5 ng/l had 99% specificity, a 95%-positive predictive value but only 35% sensitivity (P < 0.0001). Overall, there were 31% less false-negative results using a 5-ng/l threshold for basal CT instead of the previously used 10-ng/l threshold. The ultrasensitive CT assay reduces the false-negative rate of basal CT measurements when diagnosing familial MTC and in postoperative follow-up compared with previously used assays. However, its sensitivity to detect C-cell disease remains lower than that of the Pg-stimulation test. © 2012 Blackwell Publishing Ltd.
Recent advances in Tourette syndrome research.
Albin, Roger L; Mink, Jonathan W
2006-03-01
Tourette syndrome (TS) is a developmentally regulated neurobehavioral disorder characterized by involuntary, stereotyped, repetitive movements. Recent anatomical and neuroimaging studies have provided evidence for abnormal basal ganglia and dopaminergic function in TS. Basic research on striatal inhibitory mechanisms and dopaminergic function complements the recent neuroimaging and anatomical data. Parallel studies of basal ganglia participation in the normal performance and learning of stereotyped repetitive behaviors or habits has provided additional insight. These lines of research have provided new pieces to the TS puzzle, and their increasing convergence is showing how those pieces can be put together.
Tateishi, Kazuhiro; Yamazaki, Yuji; Nishida, Tomoki; Watanabe, Shin; Kunimoto, Koshi; Ishikawa, Hiroaki; Tsukita, Sachiko
2013-11-11
Ciliogenesis is regulated by context-dependent cellular cues, including some transduced through appendage-like structures on ciliary basal bodies called transition fibers and basal feet. However, the molecular basis for this regulation is not fully understood. The Odf2 gene product, ODF2/cenexin, is essential for both ciliogenesis and the formation of the distal and subdistal appendages on centrioles, which become basal bodies. We examined the effects of Odf2 deletion constructs on ciliogenesis in Odf2-knockout F9 cells. Electron microscopy revealed that ciliogenesis and transition fiber formation required the ODF2/cenexin fragment containing amino acids (aa) 188-806, whereas basal foot formation required aa 1-59 and 188-806. These sequences also formed distal and subdistal appendages, respectively, indicating that the centriole appendages are molecularly analogous to those on basal bodies. We used the differential formation of appendages by Odf2 deletion constructs to study the incorporation and function of molecules associated with each appendage type. We found that transition fibers and distal appendages were required for ciliogenesis and subdistal appendages stabilized the centrosomal microtubules.
Basal ganglia and Dopamine Contributions to Probabilistic Category Learning
Shohamy, D.; Myers, C.E.; Kalanithi, J.; Gluck, M.A.
2009-01-01
Studies of the medial temporal lobe and basal ganglia memory systems have recently been extended towards understanding the neural systems contributing to category learning. The basal ganglia, in particular, have been linked to probabilistic category learning in humans. A separate parallel literature in systems neuroscience has emerged, indicating a role for the basal ganglia and related dopamine inputs in reward prediction and feedback processing. Here, we review behavioral, neuropsychological, functional neuroimaging, and computational studies of basal ganglia and dopamine contributions to learning in humans. Collectively, these studies implicate the basal ganglia in incremental, feedback-based learning that involves integrating information across multiple experiences. The medial temporal lobes, by contrast, contribute to rapid encoding of relations between stimuli and support flexible generalization of learning to novel contexts and stimuli. By breaking down our understanding of the cognitive and neural mechanisms contributing to different aspects of learning, recent studies are providing insight into how, and when, these different processes support learning, how they may interact with each other, and the consequence of different forms of learning for the representation of knowledge. PMID:18061261
A Growth and Yield Model for Thinned Stands of Yellow-Poplar
Bruce R. Knoebel; Harold E. Burkhart; Donald E. Beck
1986-01-01
Simultaneous growth and yield equations were developed for predicting basal area growth and cubic-foot volume growth and yield in thinned stands of yellow-poplar. A joint loss function involving both volume and basal area was used to estimate the coefficients in the system of equations. The estimates obtained were analytically compatible, invariant for projection...
ERIC Educational Resources Information Center
Vachon-Presseau, Etienne; Roy, Mathieu; Martel, Marc-Olivier; Caron, Etienne; Marin, Marie-France; Chen, Jeni; Albouy, Genevieve; Plante, Isabelle; Sullivan, Michael J.; Lupien, Sonia J.; Rainville, Pierre
2013-01-01
Recent theories have suggested that chronic pain could be partly maintained by maladaptive physiological responses of the organism facing a recurrent stressor. The present study examined the associations between basal levels of cortisol collected over seven consecutive days, the hippocampal volumes and brain activation to thermal stimulations…
USDA-ARS?s Scientific Manuscript database
Basal endosperm transfer cells (BETCs) constitute one of the four cell types in an endosperm with a major role in solute acquisition and transport functions from the mother plant. The BETCs with their wall-in-growth (WIG) feature that greatly increase plasma membrane area of each cell are critical f...
Gupta, Vinayak; Khan, Abrar A; Sasi, Binu K; Mahapatra, Nitish R
2015-07-01
Monoamine oxidase A (MAOA) plays important roles in the pathogenesis of several neurological and cardiovascular disorders. The mechanism of transcriptional regulation of MAOA under basal and pathological conditions, however, remains incompletely understood. Here, we report systematic identification and characterization of cis elements and transcription factors that govern the expression of MAOA gene. Extensive computational analysis of MAOA promoter, followed by 5'-promoter deletion/reporter assays, revealed that the -71/-40 bp domain was sufficient for its basal transcription. Gel-shift and chromatin immunoprecipitation assays provided evidence of interactions of the transcription factors GATA-binding protein 2 (GATA2), Sp1 and TATA-binding protein (TBP) with this proximal promoter region. Consistently, over-expression of GATA2, Sp1 and TBP augmented MAOA promoter activity in a coordinated manner. In corroboration, siRNA-mediated down-regulation of GATA2/Sp1/TBP repressed the endogenous MAOA expression as well as transfected MAOA promoter activity. Tumor necrosis factor-α and forskolin activated MAOA transcription that was reversed by Sp1 siRNA; in support, tumor necrosis factor-α- and forskolin-induced activities were enhanced by ectopic over-expression of Sp1. On the other hand, MAOA transcription was diminished upon exposure of neuroblasts or cardiac myoblasts to ischemia-like conditions because of reduced binding of GATA2/Sp1/TBP with MAOA promoter. In conclusion, this study revealed previously unknown roles of GATA2, Sp1 and TBP in modulating MAOA expression under basal as well as pathophysiological conditions such as inflammation and ischemia, thus providing new insights into the molecular basis of aberrant MAOA expression in neuronal/cardiovascular disease states. Dysregulation of monoamine oxidase A (MAOA) have been implicated in several behavioral and neuronal disease states. Here, we identified three crucial transcription factors (GATA2, Sp1 and TBP) that regulate MAOA gene expression in a coordinated manner. Aberrant MAOA expression under pathophysiological conditions including inflammation and ischemia is mediated by altered binding of GATA2/Sp1/TBP with MAOA proximal promoter. Thus, these findings provide new insights into pathogenesis of several common diseases. GATA2, GATA-binding protein 2; Sp1, specificity protein 1; TBP, TATA-binding protein. © 2015 International Society for Neurochemistry.
Functions of MicroRNAs in Cardiovascular Biology and Disease
Hata, Akiko
2015-01-01
In 1993, lin-4 was discovered as a critical modulator of temporal development in Caenorhabditis elegans and, most notably, as the first in the class of small, single-stranded noncoding RNAs now defined as microRNAs (miRNAs). Another eight years elapsed before miRNA expression was detected in mammalian cells. Since then, explosive advancements in the field of miRNA biology have elucidated the basic mechanism of miRNA biogenesis, regulation, and gene-regulatory function. The discovery of this new class of small RNAs has augmented the complexity of gene-regulatory programs as well as the understanding of developmental and pathological processes in the cardiovascular system. Indeed, the contributions of miRNAs in cardiovascular development and function have been widely explored, revealing the extensive role of these small regulatory RNAs in cardiovascular physiology. PMID:23157557
Navar, Ann Marie; Gallup, Dianne S; Lokhnygina, Yuliya; Green, Jennifer B; McGuire, Darren K; Armstrong, Paul W; Buse, John B; Engel, Samuel S; Lachin, John M; Standl, Eberhard; Van de Werf, Frans; Holman, Rury R; Peterson, Eric D
2017-11-01
Systolic blood pressure (SBP) treatment targets for adults with diabetes mellitus remain unclear. SBP levels among 12 275 adults with diabetes mellitus, prior cardiovascular disease, and treated hypertension were evaluated in the TECOS (Trial Evaluating Cardiovascular Outcomes With Sitagliptin) randomized trial of sitagliptin versus placebo. The association between baseline SBP and recurrent cardiovascular disease was evaluated using multivariable Cox proportional hazards modeling with restricted cubic splines, adjusting for clinical characteristics. Kaplan-Meier curves by baseline SBP were created to assess time to cardiovascular disease and 2 potential hypotension-related adverse events: worsening kidney function and fractures. The association between time-updated SBP and outcomes was examined using multivariable Cox proportional hazards models. Overall, 42.2% of adults with diabetes mellitus, cardiovascular disease, and hypertension had an SBP ≥140 mm Hg. The association between SBP and cardiovascular disease risk was U shaped, with a nadir ≈130 mm Hg. When the analysis was restricted to those with baseline SBP of 110 to 150 mm Hg, the adjusted association between SBP and cardiovascular disease risk was flat (hazard ratio per 10-mm Hg increase, 0.96; 95% confidence interval, 0.91-1.02). There was no association between SBP and risk of fracture. Above 150 mm Hg, higher SBP was associated with increasing risk of worsening kidney function (hazard ratio per 10-mm Hg increase, 1.10; 95% confidence interval, 1.02-1.18). Many patients with diabetes mellitus have uncontrolled hypertension. The U-shaped association between SBP and cardiovascular disease events was largely driven by those with very high or low SBP, with no difference in cardiovascular disease risk between 110 and 150 mm Hg. Lower SBP was not associated with higher risks of fractures or worsening kidney function. © 2017 American Heart Association, Inc.
[Function of the acetabulum of digenetic trematodes, as exemplified by Dicrocoelium dendriticum].
Neuhaus, W
1985-01-01
The suckers of animals adhere to the substratum either in air or in aqueous fluids. The varying compressibility of these media causes differences in function, the principles of which are described. The ventral arch of the acetabulum of Dicrocoelium dendriticum, like the remaining body, is limited by the integument, basal lamina and skin muscles. The dorsal arch covers a basal lamina, which is close to a plexus of diagonal, longitudinal and circular muscles. The radical muscles, attached at the ventral basal lamina by thin connective tissue, continue in relatively thick contractile fibers, which split up into several fibrils, which also attached by thin connective tissue at the dorsal basal lamina. In this way the tension of the muscles is likewise distributed over the dorsal and ventral arches of the acetabulum. After contact with the substratum the sucker creates a partial vacuum and attachment by means of the pressure of the radial muscles against the wall of the hole. Because of the fluid content of the hole, the volume does not change much. The dorsal arch of the sucker withstands the pressure of the radical muscles, because its surface area is six times greater than that of the ventral arch and consequently the load is six times less. The sucker, covered with basal lamina, has a constant volume; its layer of muscles resists deformation and supports the stability of the arch.
Basal and dynamic relationships between implicit power motivation and estradiol in women.
Stanton, Steven J; Schultheiss, Oliver C
2007-12-01
This study investigated basal and reciprocal relationships between implicit power motivation (n Power), a preference for having impact and dominance over others, and both salivary estradiol and testosterone in women. 49 participants completed the Picture Story Exercise, a measure of n Power. During a laboratory contest, participants competed in pairs on a cognitive task and contest outcome (win vs. loss) was experimentally varied. Estradiol and testosterone levels were determined in saliva samples collected at baseline and several times post-contest, including 1 day post-contest. n Power was positively associated with basal estradiol concentrations. The positive correlation between n Power and basal estradiol was stronger in single women, women not taking oral contraceptives, or in women with low-CV estradiol samples than in the overall sample of women. Women's estradiol responses to a dominance contest were influenced by the interaction of n Power and contest outcome: estradiol increased in power-motivated winners but decreased in power-motivated losers. For power-motivated winners, elevated levels of estradiol were still present the day after the contest. Lastly, n Power and estradiol did not correlate with self-reported dominance and correlated negatively with self-reported aggression. Self-reported dominance and aggression did not predict estradiol changes as a function of contest outcome. Overall, n Power did not predict basal testosterone levels or testosterone changes as a function of dominance contest outcome.
K-Cl cotransport function and its potential contribution to cardiovascular disease.
Adragna, Norma C; Lauf, Peter K
2007-12-01
K-Cl cotransport is the coupled electroneutral movement of K and Cl ions carried out by at least four protein isoforms, KCC1-4. These transporters belong to the SLC12A family of coupled cotransporters and, due to their multiple functions, play an important role in the maintenance of cellular homeostasis. Significant information exists on the overall function of these transporters, but less is known about the role of the specific isoforms. Most functional studies were done on K-Cl cotransport fluxes without knowing the molecular details, and only recently attention has been paid to the isoforms and their individual contribution to the fluxes. This review summarizes briefly and updates the information on the overall functions of this transporter, and offers some ideas on its potential contribution to the pathophysiological basis of cardiovascular disease. By virtue of its properties and the cellular ionic distribution, K-Cl cotransport participates in volume regulation of the nucleated and some enucleated cells studied thus far. One of the hallmarks in cardiovascular disease is the inability of the organism to maintain water and electrolyte balance in effectors and/or target tissues. Oxidative stress is another compounding factor in cardiovascular disease and of great significance in our modern life styles. Several functions of the transporter are modulated by oxidative stress, which in turn may cause the transporter to operate in either "overdrive" with the purpose to counteract homeostatic changes, or not to respond at all, again setting the stage for pathological changes leading to cardiovascular disease. Intracellular Mg, a second messenger, acts as an inhibitor of K-Cl cotransport and plays a crucial role in regulating the activity of protein kinases and phosphatases, which, in turn, regulate a myriad of cellular functions. Although the role of Mg in cardiovascular disease has been dealt with for several decades, this chapter is evolving nowadays at a faster pace and the relationships between Mg, K-Cl cotransport, and cardiovascular disease is an area that awaits further experimentation. We envision that further studies on the role of K-Cl cotransport, and ideally on its specific isoforms, in mammalian cells will add missing links and help to understand the cellular mechanisms involved in the pathophysiology of cardiovascular disease.
Role of TRP channels in the cardiovascular system
Yue, Zhichao; Xie, Jia; Yu, Albert S.; Stock, Jonathan; Du, Jianyang
2014-01-01
The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca2+-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca2+ entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases. PMID:25416190
RhoA/Rho-Kinase in the Cardiovascular System.
Shimokawa, Hiroaki; Sunamura, Shinichiro; Satoh, Kimio
2016-01-22
Twenty years ago, Rho-kinase was identified as an important downstream effector of the small GTP-binding protein, RhoA. Thereafter, a series of studies demonstrated the important roles of Rho-kinase in the cardiovascular system. The RhoA/Rho-kinase pathway is now widely known to play important roles in many cellular functions, including contraction, motility, proliferation, and apoptosis, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Furthermore, the important role of Rho-kinase has been demonstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. Cyclophilin A is secreted by vascular smooth muscle cells and inflammatory cells and activated platelets in a Rho-kinase-dependent manner, playing important roles in a wide range of cardiovascular diseases. Thus, the RhoA/Rho-kinase pathway plays crucial roles under both physiological and pathological conditions and is an important therapeutic target in cardiovascular medicine. Recently, functional differences between ROCK1 and ROCK2 have been reported in vitro. ROCK1 is specifically cleaved by caspase-3, whereas granzyme B cleaves ROCK2. However, limited information is available on the functional differences and interactions between ROCK1 and ROCK2 in the cardiovascular system in vivo. Herein, we will review the recent advances about the importance of RhoA/Rho-kinase in the cardiovascular system. © 2016 American Heart Association, Inc.
Role of TRP channels in the cardiovascular system.
Yue, Zhichao; Xie, Jia; Yu, Albert S; Stock, Jonathan; Du, Jianyang; Yue, Lixia
2015-02-01
The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca(2+)-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca(2+) entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases. Copyright © 2015 the American Physiological Society.
[Effect of occupational stress on cardiovascular function of different vocational population].
Yao, San-qiao; Fan, Xue-yun; Jin, Yu-lan; Bai, Yu-ping; Qu, Yin-e; Zhou, Yuan
2003-02-01
To study the effect of occupational stress on cardiovascular function of different vocational population. The occupational stressors, risk factors of cardiovascular diseases were investigated by questionnaire in 839 people with 4 kinds of jobs. Blood pressure, sugar, and lipid were detected at the same time. Blood pressure were higher in the groups of old age, long standing and teachers, and the abnormal rate of blood pressure was 21.69%. There was no difference in abnormal ECG among ages, standing and occupation, and the abnormal rate of ECG was 19.07%. Job control, job demands, job responsibility, role in a job and shift work were the main stress factors affecting systolic and diastolic blood pressure. More conflict in job, less chance of participation, severe job loads were the risk factors of primary hypertension. Accident due to job responsibility, job responsibility, role in a job were the main risk factors of abnormal electrocardiograph. Self-respect and activity beyond work were the good modifiers of heart function. Occupational stress has certain effect on cardiovascular function.
Rhee, Connie M.; Brent, Gregory A.; Kovesdy, Csaba P.; Soldin, Offie P.; Nguyen, Danh; Budoff, Matthew J.; Brunelli, Steven M.; Kalantar-Zadeh, Kamyar
2015-01-01
Thyroid functional disease, and in particular hypothyroidism, is highly prevalent among chronic kidney disease (CKD) and end-stage renal disease (ESRD) patients. In the general population, hypothyroidism is associated with impaired cardiac contractility, endothelial dysfunction, atherosclerosis and possibly higher cardiovascular mortality. It has been hypothesized that hypothyroidism is an under-recognized, modifiable risk factor for the enormous burden of cardiovascular disease and death in CKD and ESRD, but this has been difficult to test due to the challenge of accurate thyroid functional assessment in uremia. Low thyroid hormone levels (i.e. triiodothyronine) have been associated with adverse cardiovascular sequelae in CKD and ESRD patients, but these metrics are confounded by malnutrition, inflammation and comorbid states, and hence may signify nonthyroidal illness (i.e. thyroid functional test derangements associated with underlying ill health in the absence of thyroid pathology). Thyrotropin is considered a sensitive and specific thyroid function measure that may more accurately classify hypothyroidism, but few studies have examined the clinical significance of thyrotropin-defined hypothyroidism in CKD and ESRD. Of even greater uncertainty are the risks and benefits of thyroid hormone replacement, which bear a narrow therapeutic-to-toxic window and are frequently prescribed to CKD and ESRD patients. In this review, we discuss mechanisms by which hypothyroidism adversely affects cardiovascular health; examine the prognostic implications of hypothyroidism, thyroid hormone alterations and exogenous thyroid hormone replacement in CKD and ESRD; and identify areas of uncertainty related to the interplay between hypothyroidism, cardiovascular disease and kidney disease requiring further investigation. PMID:24574542
The cardiovascular macrophage: a missing link between gut microbiota and cardiovascular diseases?
Chen, X; Zheng, L; Zheng, Y-Q; Yang, Q-G; Lin, Y; Ni, F-H; Li, Z-H
2018-03-01
The prevalence of cardiovascular diseases is on the rise. Interventions that would aid prevention or treatment of these diseases are essential. The microbes residing in the gut, collectively called "gut microbiota", produce a plethora of compounds that enter the bloodstream and affect the cardiovascular system. Signals ascending from gut microbiome are believed to modulate differentiation and functional activity of macrophages residing in perivascular tissue, atherosclerotic plaques, and perivascular areas of the brain. Cardiovascular macrophages may be the key players that transform the signals ascending from gut microbiome into increased predisposition to cardiovascular diseases. The present review summarizes the knowledge to date on potential relationships between gut microbiota, cardiovascular macrophages, and cardiovascular diseases.
Karthik, S; Pal, G K; Nanda, Nivedita; Hamide, Abdoul; Bobby, Zachariah; Amudharaj, D; Pal, Pravati
2009-01-01
The aim of the study was to investigate the role of spectral analysis of heart rate variability (HRV) for assessing the type and degree of sympathovagal imbalance (SVI) and their link to cardiovascular morbidities in thyroid dysfunctions. Forty-five female subjects (15 control subjects and freshly diagnosed untreated 15 hypothyroid and 15 hyperthyroid patients) were recruited for the study. Thyroid profile, body mass index (BMI), basal heart rate (BHR), blood pressure (BP) and spectral indices of HRV (TP, LFnu, HFnu and LF-HF ratio, mean RR, SDNN and RMSSD) were assessed in all the three groups. LF-HF ratio was correlated with thyroid profile, BMI, BHR and BP. SVI was more prominent in hyperthyroid (P < 0.001) compared to hypothyroid (P < 0.05) subjects. LF-HF ratio was correlated with thyroid profile in both hypo and hyperthyroid subjects; but correlation with BHR and BP was significant only in hyperthyroidism. Though the SVI was found to be due to both vagal withdrawal and sympathetic activation, especially in hyperthyroidism, contribution by vagal inhibition was prominent. Vagal inhibition contributes significantly to SVI in thyroid dysfunctions, especially in hyperthyroidism. As the present study indicates poor cardiovascular health due to vagal inhibition in patients suffering from thyroid dysfunctions, attempt should be made to improve vagal tone especially in hyperthyroid subjects to attain a stable sympathovagal and cardiovascular homeostasis.
Chirakarnjanakorn, Srisakul; Navaneethan, Sankar D; Francis, Gary S; Tang, W H Wilson
2017-04-01
Patients undergoing maintenance hemodialysis develop both structural and functional cardiovascular abnormalities. Despite improvement of dialysis technology, cardiovascular mortality of this population remains high. The pathophysiological mechanisms of these changes are complex and not well understood. It has been postulated that several non-traditional, uremic-related risk factors, especially the long-term uremic state, which may affect the cardiovascular system. There are many cardiovascular changes that occur in chronic kidney disease including left ventricular hypertrophy, myocardial fibrosis, microvascular disease, accelerated atherosclerosis and arteriosclerosis. These structural and functional changes in patients receiving chronic dialysis make them more susceptible to myocardial ischemia. Hemodialysis itself may adversely affect the cardiovascular system due to non-physiologic fluid removal, leading to hemodynamic instability and initiation of systemic inflammation. In the past decade there has been growing awareness that pathophysiological mechanisms cause cardiovascular dysfunction in patients on chronic dialysis, and there are now pharmacological and non-pharmacological therapies that may improve the poor quality of life and high mortality rate that these patients experience. Copyright © 2017 Elsevier B.V. All rights reserved.
Hamlet, Sean M; Haggerty, Christopher M; Suever, Jonathan D; Wehner, Gregory J; Andres, Kristin N; Powell, David K; Charnigo, Richard J; Fornwalt, Brandon K
2017-03-01
Left ventricular (LV) torsion is an important indicator of cardiac function that is limited by high inter-test variability (50% of the mean value). We hypothesized that this high inter-test variability is partly due to inconsistent breath-hold positions during serial image acquisitions, which could be significantly improved by using a respiratory navigator for cardiovascular magnetic resonance (CMR) based quantification of LV torsion. We assessed respiratory-related variability in measured LV torsion with two distinct experimental protocols. First, 17 volunteers were recruited for CMR with cine displacement encoding with stimulated echoes (DENSE) in which a respiratory navigator was used to measure and then enforce variability in end-expiratory position between all LV basal and apical acquisitions. From these data, we quantified the inter-test variability of torsion in the absence and presence of enforced end-expiratory position variability, which established an upper bound for the expected torsion variability. For the second experiment (in 20 new, healthy volunteers), 10 pairs of cine DENSE basal and apical images were each acquired from consecutive breath-holds and consecutive navigator-gated scans (with a single acceptance position). Inter-test variability of torsion was compared between the breath-hold and navigator-gated scans to quantify the variability due to natural breath-hold variation. To demonstrate the importance of these variability reductions, we quantified the reduction in sample size required to detect a clinically meaningful change in LV torsion with the use of a respiratory navigator. The mean torsion was 3.4 ± 0.2°/cm. From the first experiment, enforced variability in end-expiratory position translated to considerable variability in measured torsion (0.56 ± 0.34°/cm), whereas inter-test variability with consistent end-expiratory position was 57% lower (0.24 ± 0.16°/cm, p < 0.001). From the second experiment, natural respiratory variability from consecutive breath-holds translated to a variability in torsion of 0.24 ± 0.10°/cm, which was significantly higher than the variability from navigator-gated scans (0.18 ± 0.06°/cm, p = 0.02). By using a respiratory navigator with DENSE, theoretical sample sizes were reduced from 66 to 16 and 26 to 15 as calculated from the two experiments. A substantial portion (22-57%) of the inter-test variability of LV torsion can be reduced by using a respiratory navigator to ensure a consistent breath-hold position between image acquisitions.
Lange-Maia, Brittney S; Newman, Anne B; Jakicic, John M; Cauley, Jane A; Boudreau, Robert M; Schwartz, Ann V; Simonsick, Eleanor M; Satterfield, Suzanne; Vinik, Aaron I; Zivkovic, Sasa; Harris, Tamara B; Strotmeyer, Elsa S
2017-10-01
Age-related peripheral nervous system (PNS) impairments are highly prevalent in older adults. Although sensorimotor and cardiovascular autonomic function have been shown to be related in persons with diabetes, the nature of the relationship in general community-dwelling older adult populations is unknown. Health, Aging and Body Composition participants (n=2399, age=76.5±2.9years, 52% women, 38% black) underwent peripheral nerve testing at the 2000/01 clinic visit. Nerve conduction amplitude and velocity were measured at the peroneal motor nerve. Sensory nerve function was assessed with vibration detection threshold and monofilament (1.4-g/10-g) testing at the big toe. Symptoms of lower-extremity peripheral neuropathy were collected by self-report. Cardiovascular autonomic function indicators included postural hypotension, resting heart rate (HR), as well as HR response to and recovery from submaximal exercise testing (400m walk). Multivariable modeling adjusted for demographic/lifestyle factors, medication use and comorbid conditions. In fully adjusted models, poor motor nerve conduction velocity (<40m/s) was associated with greater odds of postural hypotension, (OR=1.6, 95% CI: 1.0-2.5), while poor motor amplitude (<1mV) was associated with 2.3beats/min (p=0.003) higher resting HR. No associations were observed between sensory nerve function or symptoms of peripheral neuropathy and indicators of cardiovascular autonomic function. Motor nerve function and indicators of cardiovascular autonomic function remained significantly related even after considering many potentially shared risk factors. Future studies should investigate common underlying processes for developing multiple PNS impairments in older adults. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of Sustained Human Centrifugation on Autonomic Cardiovascular and Vestibular Function
NASA Technical Reports Server (NTRS)
Schlegel, Todd T.; Wood, Scott J.; Brown, Troy E.; Benavides, Edgar W.; Harm, Deborah L.; Rupert, A. H.
2002-01-01
Repeated exposure to +Gz enhances human baroreflex responsiveness and improves tolerance to cardiovascular stress. However, both sustained exposure to +Gx and changes in otolith function resulting from the gravitational changes of space flight and parabolic flight may adversely affect autonomic cardiovascular function and orthostatic tolerance. HYPOTHESES: Baroreflex function and orthostatic tolerance are acutely improved by a single sustained (30 min) exposure to +3Gz but not +3Gx. Moreover, after 30 min of +3Gx, any changes that occur in autonomic cardiovascular function will relate commensurately to changes in otolith function. METHODS: Twenty-two healthy human subjects were first exposed to 5 min of +3 Gz centrifugation and then subsequently up to a total of30 min of either +3Gz (n = 15) or +3Gx (n = 7) centrifugation. Tests of autonomic cardiovascular function both before and after both types of centrifugation included: (a) power spectral determinations of beat-to-beat R-R intervals and arterial pressures; (b) carotid-cardiac baroreflex tests; ( c) Valsalva tests; and (d) 30-min head-up tilt (HUT) tests. Otolith function was assessed during centrifugation by the linear vestibulo-ocular reflex and both before and after centrifugation by measurements of ocular counter-rolling and dynamic posturography. RESULTS: All four +3Gz subjects who were intolerant to HUT before centrifugation became tolerant to HUT after centrifugation. The operational point of the carotid-cardiac baroreflex and the Valsalva-related baroreflex were also enhanced in the +3Gz group but not in the +3Gx group. No significant vestibular-autonomic relationships were detected, other than a significant vestibular-cerebrovascular interaction reported previously. CONCLUSIONS: A single, sustained exposure to +3 Gz centrifugation acutely improves baroreflex function and orthostatic tolerance whereas a similar exposure to +3 Gx centrifugation appears to have less effect.
Imaging insights into basal ganglia function, Parkinson’s disease, and dystonia
Stoessl, A. Jon; Lehericy, Stephane; Strafella, Antonio P.
2015-01-01
Recent advances in structural and functional imaging have greatly improved our ability to assess normal functions of the basal ganglia, diagnose parkinsonian syndromes, understand the pathophysiology of parkinsonism and other movement disorders, and detect and monitor disease progression. Radionuclide imaging is the best way to detect and monitor dopamine deficiency, and will probably continue to be the best biomarker for assessment of the effects of disease-modifying therapies. However, advances in magnetic resonance enable the separation of patients with Parkinson’s disease from healthy controls, and show great promise for differentiation between Parkinson’s disease and other akinetic-rigid syndromes. Radionuclide imaging is useful to show the dopaminergic basis for both motor and behavioural complications of Parkinson’s disease and its treatment, and alterations in non-dopaminergic systems. Both PET and MRI can be used to study patterns of functional connectivity in the brain, which is disrupted in Parkinson’s disease and in association with its complications, and in other basal-ganglia disorders such as dystonia, in which an anatomical substrate is not otherwise apparent. Functional imaging is increasingly used to assess underlying pathological processes such as neuroinflammation and abnormal protein deposition. This imaging is another promising approach to assess the effects of treatments designed to slow disease progression. PMID:24954673
Basal ganglia function, stuttering, sequencing, and repair in adult songbirds.
Kubikova, Lubica; Bosikova, Eva; Cvikova, Martina; Lukacova, Kristina; Scharff, Constance; Jarvis, Erich D
2014-10-13
A pallial-basal-ganglia-thalamic-pallial loop in songbirds is involved in vocal motor learning. Damage to its basal ganglia part, Area X, in adult zebra finches has been noted to have no strong effects on song and its function is unclear. Here we report that neurotoxic damage to adult Area X induced changes in singing tempo and global syllable sequencing in all animals, and considerably increased syllable repetition in birds whose song motifs ended with minor repetitions before lesioning. This stuttering-like behavior started at one month, and improved over six months. Unexpectedly, the lesioned region showed considerable recovery, including immigration of newly generated or repaired neurons that became active during singing. The timing of the recovery and stuttering suggest that immature recovering activity of the circuit might be associated with stuttering. These findings indicate that even after juvenile learning is complete, the adult striatum plays a role in higher level organization of learned vocalizations.
Does point-of-care functional echocardiography enhance cardiovascular care in the NICU?
Sehgal, A; McNamara, P J
2008-11-01
Although the last two decades have seen major advances in the care of sick, extremely premature newborns, the approach to cardiovascular assessment and monitoring remains suboptimal owing to an overreliance on poorly predictive clinical markers such as heart rate or capillary refill time. Point-of-care functional echocardiography (PCFecho) enables real-time evaluation of cardiac performance and systemic hemodynamics to characterize acute physiology, identify the exact nature of cardiovascular compromise and guide therapeutic decisions. In this article, we will review four clinical scenarios where bedside functional cardiac imaging enabled delineation of the real clinical problem and refinement of the therapeutic care plan with direct patient benefits.
Cannabinoids in the Cardiovascular System.
Ho, Wing S V; Kelly, Melanie E M
2017-01-01
Cannabinoids are known to modulate cardiovascular functions including heart rate, vascular tone, and blood pressure in humans and animal models. Essential components of the endocannabinoid system, namely, the production, degradation, and signaling pathways of endocannabinoids have been described not only in the central and peripheral nervous system but also in myocardium, vasculature, platelets, and immune cells. The mechanisms of cardiovascular responses to endocannabinoids are often complex and may involve cannabinoid CB 1 and CB 2 receptors or non-CB 1/2 receptor targets. Preclinical and some clinical studies have suggested that targeting the endocannabinoid system can improve cardiovascular functions in a number of pathophysiological conditions, including hypertension, metabolic syndrome, sepsis, and atherosclerosis. In this chapter, we summarize the local and systemic cardiovascular effects of cannabinoids and highlight our current knowledge regarding the therapeutic potential of endocannabinoid signaling and modulation. © 2017 Elsevier Inc. All rights reserved.
Gać, Paweł; Poręba, Małgorzata; Pawlas, Krystyna; Sobieszczańska, Małgorzata; Poręba, Rafał
Exposure to tobacco smoke is a significant problem of environmental medicine. Tobacco smoke contains over one thousand identified chemicals including numerous toxicants. Cardiovascular system diseases are the major cause of general mortality. The recent development of diagnostic imaging provided methods which enable faster and more precise diagnosis of numerous diseases, also those of cardiovascular system. This paper reviews the most significant scientific research concerning relationship between environmental exposure to tobacco smoke and the morphology and function of cardiovascular system carried out using diagnostic imaging methods, i.e. ultrasonography, angiography, computed tomography and magnetic resonance imaging. In the forthcoming future, the studies using current diagnostic imaging methods should contribute to the reliable documentation, followed by the wide-spreading knowledge of the harmful impact of the environmental tobacco smoke exposure on the cardiovascular system.
21 CFR 870.3640 - Indirect pacemaker generator function analyzer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indirect pacemaker generator function analyzer. 870.3640 Section 870.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3640...
21 CFR 870.1435 - Single-function, preprogrammed diagnostic computer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Single-function, preprogrammed diagnostic computer. 870.1435 Section 870.1435 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1435...
21 CFR 870.3630 - Pacemaker generator function analyzer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker generator function analyzer. 870.3630 Section 870.3630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3630 Pacemaker...
Fournier, Sara B; Reger, Brian L; Donley, David A; Bonner, Daniel E; Warden, Bradford E; Gharib, Wissam; Failinger, Conard F; Olfert, Melissa D; Frisbee, Jefferson C; Olfert, I Mark; Chantler, Paul D
2014-01-01
Metabolic syndrome (MetS) is the manifestation of a cluster of cardiovascular risk factors and is associated with a threefold increase in the risk of cardiovascular morbidity and mortality, which is suggested to be mediated, in part, by resting left ventricular (LV) systolic dysfunction. However, to what extent resting LV systolic function is impaired in MetS is controversial, and there are no data indicating whether LV systolic function is impaired during exercise. Accordingly, the objective of this study was to examine comprehensively the LV and arterial responses to exercise in individuals with MetS without diabetes and/or overt cardiovascular disease in comparison to a healthy control population. Cardiovascular function was characterized using Doppler echocardiography and gas exchange in individuals with MetS (n = 27) versus healthy control subjects (n = 20) at rest and during peak exercise. At rest, individuals with MetS displayed normal LV systolic function but reduced LV diastolic function compared with healthy control subjects. During peak exercise, individuals with MetS had impaired contractility, pump performance and vasodilator reserve capacity versus control subjects. A blunted contractile reserve response resulted in diminished arterial-ventricular coupling reserve and limited aerobic capacity in individuals with MetS versus control subjects. These findings are of clinical importance, because they provide insight into the pathophysiological changes in MetS that may predispose this population of individuals to an increased risk of cardiovascular morbidity and mortality.
Fear and disgust in women: Differentiation of cardiovascular regulation patterns.
Comtesse, Hannah; Stemmler, Gerhard
2017-02-01
Both fear and disgust facilitate avoidance of threat. From a functional view, however, cardiovascular responses to fear and disgust should differ as they prepare for appropriate behavior to protect from injury and infection, respectively. Therefore, we examined the cardiovascular responses to fear and contamination-related disgust in comparison to an emotionally neutral state induced with auditory scripts and film clips in female participants. Ten emotion and motivation self-reports and ninecardiovascular response factors derived from 23 cardiovascular variables served as dependent variables. Self-reports confirmed the specific induction of fear and disgust. In addition, fear and disgust differed in their cardiovascular response patterning. For fear, we observed specific increases in factors indicating vasoconstriction and cardiac pump function. For disgust, we found specific increases in vagal cardiac control and decreases in myocardial contractility. These findings provide support for the cardiovascular specificity of fear and disgust and are discussed in terms of a basic emotions approach. Copyright © 2016. Published by Elsevier B.V.
The ABC Model and its Applicability to Basal Angiosperms
Soltis, Douglas E.; Chanderbali, André S.; Kim, Sangtae; Buzgo, Matyas; Soltis, Pamela S.
2007-01-01
Background Although the flower is the central feature of the angiosperms, little is known of its origin and subsequent diversification. The ABC model has long been the unifying paradigm for floral developmental genetics, but it is based on phylogenetically derived eudicot models. Synergistic research involving phylogenetics, classical developmental studies, genomics and developmental genetics has afforded valuable new insights into floral evolution in general, and the early flower in particular. Scope and Conclusions Genomic studies indicate that basal angiosperms, and by inference the earliest angiosperms, had a rich tool kit of floral genes. Homologues of the ABCE floral organ identity genes are also present in basal angiosperm lineages; however, C-, E- and particularly B-function genes are more broadly expressed in basal lineages. There is no single model of floral organ identity that applies to all angiosperms; there are multiple models that apply depending on the phylogenetic position and floral structure of the group in question. The classic ABC (or ABCE) model may work well for most eudicots. However, modifications are needed for basal eudicots and, the focus of this paper, basal angiosperms. We offer ‘fading borders’ as a testable hypothesis for the basal-most angiosperms and, by inference, perhaps some of the earliest (now extinct) angiosperms. PMID:17616563
Thermal history regulates methylbutenol basal emission rate in Pinus ponderosa.
Gray, Dennis W; Goldstein, Allen H; Lerdau, Manuel T
2006-07-01
Methylbutenol (MBO) is a 5-carbon alcohol that is emitted by many pines in western North America, which may have important impacts on the tropospheric chemistry of this region. In this study, we document seasonal changes in basal MBO emission rates and test several models predicting these changes based on thermal history. These models represent extensions of the ISO G93 model that add a correction factor C(basal), allowing MBO basal emission rates to change as a function of thermal history. These models also allow the calculation of a new emission parameter E(standard30), which represents the inherent capacity of a plant to produce MBO, independent of current or past environmental conditions. Most single-component models exhibited large departures in early and late season, and predicted day-to-day changes in basal emission rate with temporal offsets of up to 3 d relative to measured basal emission rates. Adding a second variable describing thermal history at a longer time scale improved early and late season model performance while retaining the day-to-day performance of the parent single-component model. Out of the models tested, the T(amb),T(max7) model exhibited the best combination of day-to-day and seasonal predictions of basal MBO emission rates.
Recent Advances in Cardiovascular Magnetic Resonance Techniques and Applications
Salerno, Michael; Sharif, Behzad; Arheden, Håkan; Kumar, Andreas; Axel, Leon; Li, Debiao; Neubauer, Stefan
2018-01-01
Cardiovascular magnetic resonance imaging has become the gold standard for evaluating myocardial function, volumes, and scarring. Additionally, cardiovascular magnetic resonance imaging is unique in its comprehensive tissue characterization, including assessment of myocardial edema, myocardial siderosis, myocardial perfusion, and diffuse myocardial fibrosis. Cardiovascular magnetic resonance imaging has become an indispensable tool in the evaluation of congenital heart disease, heart failure, cardiac masses, pericardial disease, and coronary artery disease. This review will highlight some recent novel cardiovascular magnetic resonance imaging techniques, concepts, and applications. PMID:28611116
[Autophagy in the cardiovascular system].
Kheloufi, Marouane; Rautou, Pierre-Emmanuel; Boulanger, Chantal M
2017-03-01
Cardiovascular diseases are the leading cause of mortality worldwide. Studies regarding the role of autophagy in cardiac and vascular tissues have opened new therapeutic avenues to treat cardiovascular disorders. Altogether, these studies point out that autophagic activity needs to be maintained at an optimal level to preserve cardiovascular function. Reaching this goal constitutes a challenge for future efficient therapeutic strategies. The present review therefore highlights recent advances in the understanding of the role of autophagy in cardiovascular pathologies. © 2017 médecine/sciences – Inserm.
Crozier, Jennifer; Roig, Marc; Eng, Janice J; MacKay-Lyons, Marilyn; Fung, Joyce; Ploughman, Michelle; Bailey, Damian M; Sweet, Shane N; Giacomantonio, Nicholas; Thiel, Alexander; Trivino, Michael; Tang, Ada
2018-04-01
Stroke is the leading cause of adult disability. Individuals poststroke possess less than half of the cardiorespiratory fitness (CRF) as their nonstroke counterparts, leading to inactivity, deconditioning, and an increased risk of cardiovascular events. Preserving cardiovascular health is critical to lower stroke risk; however, stroke rehabilitation typically provides limited opportunity for cardiovascular exercise. Optimal cardiovascular training parameters to maximize recovery in stroke survivors also remains unknown. While stroke rehabilitation recommendations suggest the use of moderate-intensity continuous exercise (MICE) to improve CRF, neither is it routinely implemented in clinical practice, nor is the intensity always sufficient to elicit a training effect. High-intensity interval training (HIIT) has emerged as a potentially effective alternative that encompasses brief high-intensity bursts of exercise interspersed with bouts of recovery, aiming to maximize cardiovascular exercise intensity in a time-efficient manner. HIIT may provide an alternative exercise intervention and invoke more pronounced benefits poststroke. To provide an updated review of HIIT poststroke through ( a) synthesizing current evidence; ( b) proposing preliminary considerations of HIIT parameters to optimize benefit; ( c) discussing potential mechanisms underlying changes in function, cardiovascular health, and neuroplasticity following HIIT; and ( d) discussing clinical implications and directions for future research. Preliminary evidence from 10 studies report HIIT-associated improvements in functional, cardiovascular, and neuroplastic outcomes poststroke; however, optimal HIIT parameters remain unknown. Larger randomized controlled trials are necessary to establish ( a) effectiveness, safety, and optimal training parameters within more heterogeneous poststroke populations; (b) potential mechanisms of HIIT-associated improvements; and ( c) adherence and psychosocial outcomes.
ERIC Educational Resources Information Center
Browning, Robert; And Others
1979-01-01
Effects that item order and basal and ceiling rules have on test means, variances, and internal consistency estimates for the Peabody Individual Achievement Test mathematics and reading recognition subtests were examined. Items on the math and reading recognition subtests were significantly easier or harder than test placements indicated. (Author)
Understanding the physiology of mindfulness: aortic hemodynamics and heart rate variability.
May, Ross W; Bamber, Mandy; Seibert, Gregory S; Sanchez-Gonzalez, Marcos A; Leonard, Joseph T; Salsbury, Rebecca A; Fincham, Frank D
2016-01-01
Data were collected to examine autonomic and hemodynamic cardiovascular modulation underlying mindfulness from two independent samples. An initial sample (N = 185) underwent laboratory assessments of central aortic blood pressure and myocardial functioning to investigated the association between mindfulness and cardiac functioning. Controlling for religiosity, mindfulness demonstrated a strong negative relationship with myocardial oxygen consumption and left ventricular work but not heart rate or blood pressure. A second sample (N = 124) underwent a brief (15 min) mindfulness inducing intervention to examine the influence of mindfulness on cardiovascular autonomic modulation via blood pressure variability and heart rate variability. The intervention had a strong positive effect on cardiovascular modulation by decreasing cardiac sympathovagal tone, vasomotor tone, vascular resistance and ventricular workload. This research establishes a link between mindfulness and cardiovascular functioning via correlational and experimental methodologies in samples of mostly female undergraduates. Future directions for research are outlined.
Cardiovascular function in pulmonary emphysema.
Visca, Dina; Aiello, Marina; Chetta, Alfredo
2013-01-01
Chronic obstructive pulmonary disease (COPD) and chronic cardiovascular disease, such as coronary artery disease, congestive heart failure, and cardiac arrhythmias, have a strong influence on each other, and systemic inflammation has been considered as the main linkage between them. On the other hand, airflow limitation may markedly affect lung mechanics in terms of static and dynamic hyperinflation, especially in pulmonary emphysema, and they can in turn influence cardiac performance as well. Skeletal mass depletion, which is a common feature in COPD especially in pulmonary emphysema patients, may have also a role in cardiovascular function of these patients, irrespective of lung damage. We reviewed the emerging evidence that highlights the role of lung mechanics and muscle mass impairment on ventricular volumes, stroke volume, and stroke work at rest and on exercise in the presence of pulmonary emphysema. Patients with emphysema may differ among COPD population even in terms of cardiovascular function.
Metzger, F Luise; Auer, Tibor; Helms, Gunther; Paulus, Walter; Frahm, Jens; Sommer, Martin; Neef, Nicole E
2018-01-01
Persistent developmental stuttering is associated with basal ganglia dysfunction or dopamine dysregulation. Here, we studied whole-brain functional connectivity to test how basal ganglia structures coordinate and reorganize sensorimotor brain networks in stuttering. To this end, adults who stutter and fluent speakers (control participants) performed a response anticipation paradigm in the MRI scanner. The preparation of a manual Go/No-Go response reliably produced activity in the basal ganglia and thalamus and particularly in the substantia nigra. Strikingly, in adults who stutter, substantia nigra activity correlated positively with stuttering severity. Furthermore, functional connectivity analyses yielded altered task-related network formations in adults who stutter compared to fluent speakers. Specifically, in adults who stutter, the globus pallidus and the thalamus showed increased network synchronization with the inferior frontal gyrus. This implies dynamic shifts in the response preparation-related network organization through the basal ganglia in the context of a non-speech motor task in stuttering. Here we discuss current findings in the traditional framework of how D1 and D2 receptor activity shapes focused movement selection, thereby suggesting a disproportional involvement of the direct and the indirect pathway in stuttering.
Greenhouse, Ian; Gould, Sherrie; Houser, Melissa; Aron, Adam R.
2014-01-01
Switching between responses is a key executive function known to rely on the frontal cortex and the basal ganglia. Here we aimed to establish with greater anatomical specificity whether such switching could be mediated via different possible frontal–basal-ganglia circuits. Accordingly, we stimulated dorsal vs. ventral contacts of electrodes in the subthalamic nucleus (STN) in Parkinson's patients during switching performance, and also studied matched controls. The patients underwent three sessions: once with bilateral dorsal contact stimulation, once with bilateral ventral contact stimulation, and once Off stimulation. Patients Off stimulation showed abnormal patterns of switching, and stimulation of the ventral contacts but not the dorsal contacts normalized the pattern of behavior relative to controls. This provides some of the first evidence in humans that stimulation of dorsal vs. ventral STN DBS contacts has differential effects on executive function. As response switching is an executive function known to rely on prefrontal cortex, these results suggest that ventral contact stimulation affected an executive/associative cortico-basal ganglia circuit. PMID:23562963
Kauvar, Arielle N B; Cronin, Terrence; Roenigk, Randall; Hruza, George; Bennett, Richard
2015-05-01
Basal cell carcinoma (BCC) is the most common cancer in the US population affecting approximately 2.8 million people per year. Basal cell carcinomas are usually slow-growing and rarely metastasize, but they do cause localized tissue destruction, compromised function, and cosmetic disfigurement. To provide clinicians with guidelines for the management of BCC based on evidence from a comprehensive literature review, and consensus among the authors. An extensive review of the medical literature was conducted to evaluate the optimal treatment methods for cutaneous BCC, taking into consideration cure rates, recurrence rates, aesthetic and functional outcomes, and cost-effectiveness of the procedures. Surgical approaches provide the best outcomes for BCCs. Mohs micrographic surgery provides the highest cure rates while maximizing tissue preservation, maintenance of function, and cosmesis. Mohs micrographic surgery is an efficient and cost-effective procedure and remains the treatment of choice for high-risk BCCs and for those in cosmetically sensitive locations. Nonsurgical modalities may be used for low-risk BCCs when surgery is contraindicated or impractical, but the cure rates are lower.
Pujol, Jesus; Fenoll, Raquel; Macià, Dídac; Martínez-Vilavella, Gerard; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Deus, Joan; Blanco-Hinojo, Laura; Querol, Xavier; Sunyer, Jordi
2016-06-01
Children are more vulnerable to the effects of environmental elements. A variety of air pollutants are among the identified factors causing neural damage at toxic concentrations. It is not obvious, however, to what extent the tolerated high levels of air pollutants are able to alter brain development. We have specifically investigated the neurotoxic effects of airborne copper exposure in school environments. Speed and consistency of motor response were assessed in 2836 children aged from 8 to 12 years. Anatomical MRI, diffusion tensor imaging, and functional MRI were used to directly test the brain repercussions in a subgroup of 263 children. Higher copper exposure was associated with poorer motor performance and altered structure of the basal ganglia. Specifically, the architecture of the caudate nucleus region was less complete in terms of both tissue composition and neural track water diffusion. Functional MRI consistently showed a reciprocal connectivity reduction between the caudate nucleus and the frontal cortex. The results establish an association between environmental copper exposure in children and alterations of basal ganglia structure and function.
Emergence of context-dependent variability across a basal ganglia network.
Woolley, Sarah C; Rajan, Raghav; Joshua, Mati; Doupe, Allison J
2014-04-02
Context dependence is a key feature of cortical-basal ganglia circuit activity, and in songbirds the cortical outflow of a basal ganglia circuit specialized for song, LMAN, shows striking increases in trial-by-trial variability and bursting when birds sing alone rather than to females. To reveal where this variability and its social regulation emerge, we recorded stepwise from corticostriatal (HVC) neurons and their target spiny and pallidal neurons in Area X. We find that corticostriatal and spiny neurons both show precise singing-related firing across both social settings. Pallidal neurons, in contrast, exhibit markedly increased trial-by-trial variation when birds sing alone, created by highly variable pauses in firing. This variability persists even when recurrent inputs from LMAN are ablated. These data indicate that variability and its context sensitivity emerge within the basal ganglia network, suggest a network mechanism for this emergence, and highlight variability generation and regulation as basal ganglia functions. Copyright © 2014 Elsevier Inc. All rights reserved.
Emergence of context-dependent variability across a basal ganglia network
Woolley, Sarah C.; Rajan, Raghav; Joshua, Mati; Doupe, Allison J.
2014-01-01
Summary Context-dependence is a key feature of cortical-basal ganglia circuit activity, and in songbirds, the cortical outflow of a basal ganglia circuit specialized for song, LMAN, shows striking increases in trial-by-trial variability and bursting when birds sing alone rather than to females. To reveal where this variability and its social regulation emerge, we recorded stepwise from cortico-striatal (HVC) neurons and their target spiny and pallidal neurons in Area X. We find that cortico-striatal and spiny neurons both show precise singing-related firing across both social settings. Pallidal neurons, in contrast, exhibit markedly increased trial-by-trial variation when birds sing alone, created by highly variable pauses in firing. This variability persists even when recurrent inputs from LMAN are ablated. These data indicate that variability and its context-sensitivity emerge within the basal ganglia network, suggest a network mechanism for this emergence, and highlight variability generation and regulation as basal ganglia functions. PMID:24698276
Brown, Jennifer; Pan, Wei-Xing; Dudman, Joshua Tate
2014-01-01
Dysfunction of the basal ganglia produces severe deficits in the timing, initiation, and vigor of movement. These diverse impairments suggest a control system gone awry. In engineered systems, feedback is critical for control. By contrast, models of the basal ganglia highlight feedforward circuitry and ignore intrinsic feedback circuits. In this study, we show that feedback via axon collaterals of substantia nigra projection neurons control the gain of the basal ganglia output. Through a combination of physiology, optogenetics, anatomy, and circuit mapping, we elaborate a general circuit mechanism for gain control in a microcircuit lacking interneurons. Our data suggest that diverse tonic firing rates, weak unitary connections and a spatially diffuse collateral circuit with distinct topography and kinetics from feedforward input is sufficient to implement divisive feedback inhibition. The importance of feedback for engineered systems implies that the intranigral microcircuit, despite its absence from canonical models, could be essential to basal ganglia function. DOI: http://dx.doi.org/10.7554/eLife.02397.001 PMID:24849626
Melting beneath Greenland outlet glaciers and ice streams
NASA Astrophysics Data System (ADS)
Alexander, David; Perrette, Mahé; Beckmann, Johanna
2015-04-01
Basal melting of fast-flowing Greenland outlet glaciers and ice streams due to frictional heating at the ice-bed interface contributes significantly to total glacier mass balance and subglacial meltwater flux, yet modelling this basal melt process in Greenland has received minimal research attention. A one-dimensional dynamic ice-flow model is calibrated to the present day longitudinal profiles of 10 major Greenland outlet glaciers and ice streams (including the Jakobshavn Isbrae, Petermann Glacier and Helheim Glacier) and is validated against published ice flow and surface elevation measurements. Along each longitudinal profile, basal melt is calculated as a function of ice flow velocity and basal shear stress. The basal shear stress is dependent on the effective pressure (difference between ice overburden pressure and water pressure), basal roughness and a sliding parametrization. Model output indicates that where outlet glaciers and ice streams terminate into the ocean with either a small floating ice tongue or no floating tongue whatsoever, the proportion of basal melt to total melt (surface, basal and submarine melt) is 5-10% (e.g. Jakobshavn Isbrae; Daugaard-Jensen Glacier). This proportion is, however, negligible where larger ice tongues lose mass mostly by submarine melt (~1%; e.g. Nioghalvfjerdsfjorden Glacier). Modelled basal melt is highest immediately upvalley of the grounding line, with contributions typically up to 20-40% of the total melt for slippery beds and up to 30-70% for resistant beds. Additionally, modelled grounding line and calving front migration inland for all outlet glaciers and ice streams of hundreds of metres to several kilometres occurs. Including basal melt due to frictional heating in outlet glacier and ice stream models is important for more accurately modelling mass balance and subglacial meltwater flux, and therefore, more accurately modelling outlet glacier and ice stream dynamics and responses to future climate change.
Sharott, Andrew; Magill, Peter J; Bolam, J Paul; Brown, Peter
2005-01-01
Population activity in cortico-basal ganglia circuits is synchronized at different frequencies according to brain state. However, the structures that are likely to drive the synchronization of activity in these circuits remain unclear. Furthermore, it is not known whether the direction of transmission of activity is fixed or dependent on brain state. We have used the directed transfer function (DTF) to investigate the direction in which coherent activity is effectively driven in cortico-basal ganglia circuits. Local field potentials (LFPs) were simultaneously recorded in the subthalamic nucleus (STN), globus pallidus (GP) and substantia nigra pars reticulata (SNr), together with the ipsilateral frontal electrocorticogram (ECoG) of anaesthetized rats. Directional analysis was performed on recordings made during robust cortical slow-wave activity (SWA) and ‘global activation’. During SWA, there was coherence at ∼1 Hz between ECoG and basal ganglia LFPs, with much of the coherent activity directed from cortex to basal ganglia. There were similar coherent activities at ∼1 Hz within the basal ganglia, with more activity directed from SNr to GP and STN, and from STN to GP rather than vice versa. During global activation, peaks in coherent activity were seen at higher frequencies (15–60 Hz), with most coherence also directed from cortex to basal ganglia. Within the basal ganglia, however, coherence was predominantly directed from GP to STN and SNr. Together, these results highlight a lead role for the cortex in activity relationships with the basal ganglia, and further suggest that the effective direction of coupling between basal ganglia nuclei is dynamically organized according to brain state, with activity relationships involving the GP displaying the greatest capacity to change. PMID:15550466
van de Heyning, Paul; Arauz, Santiago L; Atlas, Marcus; Baumgartner, Wolf-Dieter; Caversaccio, Marco; Chester-Browne, Ronel; Estienne, Patricia; Gavilan, Javier; Godey, Benoit; Gstöttner, Wolfgang; Han, Demin; Hagen, Rudolph; Kompis, Martin; Kuzovkov, Vlad; Lassaletta, Luis; Lefevre, Franc; Li, Yongxin; Müller, Joachim; Parnes, Lorne; Kleine Punte, Andrea; Raine, Christopher; Rajan, Gunesh; Rivas, Adriana; Rivas, José Antonio; Royle, Nicola; Sprinzl, Georg; Stephan, Kurt; Walkowiak, Adam; Yanov, Yuri; Zimmermann, Kim; Zorowka, Patrick; Skarzynski, Henryk
2016-11-01
One of the many parameters that can affect cochlear implant (CI) users' performance is the site of presentation of electrical stimulation, from the CI, to the auditory nerve. Evoked compound action potential (ECAP) measurements are commonly used to verify nerve function by stimulating one electrode contact in the cochlea and recording the resulting action potentials on the other contacts of the electrode array. The present study aimed to determine if the ECAP amplitude differs between the apical, middle, and basal region of the cochlea, if double peak potentials were more likely in the apex than the basal region of the cochlea, and if there were differences in the ECAP threshold and recovery function across the cochlea. ECAP measurements were performed in the apical, middle, and basal region of the cochlea at fixed sites of stimulation with varying recording electrodes. One hundred and forty one adult subjects with severe to profound sensorineural hearing loss fitted with a Standard or FLEX SOFT electrode were included in this study. ECAP responses were captured using MAESTRO System Software (MED-EL). The ECAP amplitude, threshold, and slope were determined using amplitude growth sequences. The 50% recovery rate was assessed using independent single sequences that have two stimulation pulses (a masker and a probe pulse) separated by a variable inter-pulse interval. For all recordings, ECAP peaks were annotated semi-automatically. ECAP amplitudes were greater upon stimulation of the apical region compared to the basal region of the cochlea. ECAP slopes were steeper in the apical region compared to the basal region of the cochlea and ECAP thresholds were lower in the middle region compared to the basal region of the cochlea. The incidence of double peaks was greater upon stimulation of the apical region compared to the basal region of the cochlea. This data indicates that the site and intensity of cochlear stimulation affect ECAP properties.
Effect of Cushing's syndrome - Endogenous hypercortisolemia on cardiovascular autonomic functions.
Jyotsna, V P; Naseer, Ali; Sreenivas, V; Gupta, Nandita; Deepak, K K
2011-02-24
Cushing's syndrome is associated with increased cardiovascular morbidity and mortality. It's also associated with other cardiac risk factors like hypertension, diabetes mellitus and obesity. Cardiovascular autonomic function impairment could predict cardiovascular morbidity and mortality. Twenty five patients with Cushing's syndrome without diabetes and twenty five age matched healthy controls underwent a battery of cardiovascular autonomic function tests including deep breath test, Valsalva test, hand grip test, cold pressor test and response to standing from lying position. The rise in diastolic blood pressure on hand grip test and diastolic BP response to cold pressor test in Cushing's patients were significantly less compared to healthy controls (9.83 ± 3.90 vs 20.64 ± 9.55, p<0.001 and 10.09 ± 4.07 vs 15.33 ± 6.26, p<0.01 respectively). The E:I ratio on deep breathing test was also less in the patients in comparison to controls (1.36 ± 0.21 vs 1.53 ± 0.19, p<0.01). Seven patients underwent the same battery of tests 6 months after a curative surgery showing a trend towards normalization with significant improvement in expiratory to inspiratory ratio and sinus arrhythmia delta heart rate. To conclude, this study showed that chronic endogenous hypercortisolism in Cushing's is associated with an impaired sympathetic cardiovascular autonomic functioning. After a curative surgery, some of the parameters tend to improve. Copyright © 2010 Elsevier B.V. All rights reserved.
Cardiovascular dynamics of Canadian Indigenous peoples.
Foulds, Heather J A; Bredin, Shannon S D; Warburton, Darren E R
2018-12-01
Limited understanding of Indigenous adults' cardiovascular structure and function exists despite high rates of cardiovascular disease. This investigation characterised cardiovascular structure and function among young Indigenous adults and compared to age- and sex-matched European descendants. Echocardiographic assessments included apical two- and four-chamber images, parasternal short-axis images and Doppler. Analyses included cardiac volumes, dimensions, velocities and strains. Cardiovascular structure and function were similar between Indigenous (n=10, 25 ± 3 years, 4 women) and European-descendant (n=10, 24 ± 4 years, 4 women,) adults, though European descendants demonstrated greater systemic vascular resistance (18.19 ± 3.94 mmHg∙min -1 ∙L -1 vs. 15.36 ± 2.97 mmHg∙min -1 ∙L -1 , p=0.03). Among Indigenous adults, women demonstrated greater arterial elastance (0.80 ± 0.15 mmHg·mL -1 ·m -2 vs. 0.55 ± 0.17 mmHg·mL -1 ·m -2 , p=0.02) and possibly greater systemic vascular resistance (17.51 ± 2.20 mmHg∙min -1 ∙L -1 vs. 13.93 ± 2.61 mmHg∙min -1 ∙L -1 , p=0.07). Indigenous men had greater cardiac size, dimensions and output, though body size differences accounted for cardiac size differences. Similar cardiac rotation and strains were observed across sexes. Arterial elastance and cardiac size were different between Indigenous men and women while cardiovascular structure and function may be similar between Indigenous and European descendants.
Litterini, Amy J; Fieler, Vickie K; Cavanaugh, James T; Lee, Jeannette Q
2013-12-01
To compare the effects of resistance and cardiovascular exercise on functional mobility in individuals with advanced cancer. Prospective, 2-group pretest-posttest pilot study with randomization to either resistance or cardiovascular exercise mode. Comprehensive community cancer center and a hospital-based fitness facility. Volunteer sample of individuals (N=66; 30 men; 36 women; mean age, 62y) with advanced cancer recruited through the cancer center, palliative care service, rehabilitation department, and a local hospice. Ten weeks of individualized resistance or cardiovascular exercise, prescribed and monitored by oncology-trained exercise personnel. Functional mobility was assessed using the Short Physical Performance Battery (SPPB); self-reported pain and fatigue were assessed secondarily using visual analog scales. Data were analyzed using a split plot 2×2 analysis of variance (α=.05). Fifty-two patients (78.8%) completed the study: 23 (67.7%) of 34 patients in the resistance arm and 29 (90.6%) of 32 patients in the cardiovascular arm. No participant withdrew because of study adverse events. Ten-week outcomes (n=52) included a significant increase in SPPB total score (P<.001), increase in gait speed (P=.001), and reduction in fatigue (P=.05). Although cardiovascular exercise participants had a modestly greater improvement in SPPB total score than resistance training participants (F1,49=4.21, P=.045), the difference was not confirmed in a subsequent intention-to-treat analysis (N=66). Individuals with advanced cancer appear to benefit from exercise for improving functional mobility. Neither resistance nor cardiovascular exercise appeared to have a strong differential effect on outcome. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Impact of augmenting dialysis frequency and duration on cardiovascular function.
Ly, Joseph; Chan, Christopher T
2006-01-01
Conventional hemodialysis (CHD) only delivers 10% to 15% of renal function in a nonphysiological intermittent mode. Because it occurs nightly and is sustained over a longer dialysis time, the uremic clearance provided by nocturnal hemodialysis (NHD) far exceeds that of CHD. Increasing the dose and frequency of dialysis by NHD has been demonstrated, in both short- and long-term studies, to reverse several important risk factors for adverse cardiovascular events in patients with end-stage renal disease such as hypertension, left ventricular hypertrophy, systolic dysfunction, conduit artery stiffness, attenuated baroreflex regulation of heart rate, disturbed heart rate variability, sleep apnea, and endothelium-dependent vasodilation. In addition, the Toronto NHD experience has reported an emerging body of evidence demonstrating the benefits of NHD on anemia management, inflammation, and endothelial progenitor cell biology. The mechanism(s) by which nocturnal hemodialysis improves cardiovascular outcomes are under active investigation by our group. It is tempting to speculate that NHD has the potential to decrease endothelial/myocardial injury and restore simultaneously endothelial repair, thereby improving cardiovascular function in patients with end-stage renal disease. The objectives of the present document are (1) to review the mechanisms underlying dialysis-associated cardiovascular morbidity and (2) to describe the restorative potential of NHD on the cardiovascular system.
Neonatal autonomic function after pregnancy complications and early cardiovascular development.
Aye, Christina Y L; Lewandowski, Adam James; Oster, Julien; Upton, Ross; Davis, Esther; Kenworthy, Yvonne; Boardman, Henry; Yu, Grace Z; Siepmann, Timo; Adwani, Satish; McCormick, Kenny; Sverrisdottir, Yrsa B; Leeson, Paul
2018-05-23
Heart rate variability (HRV) has emerged as a predictor of later cardiac risk. This study tested whether pregnancy complications that may have long-term offspring cardiac sequelae are associated with differences in HRV at birth, and whether these HRV differences identify abnormal cardiovascular development in the postnatal period. Ninety-eight sleeping neonates had 5-min electrocardiogram recordings at birth. Standard time and frequency domain parameters were calculated and related to cardiovascular measures at birth and 3 months of age. Increasing prematurity, but not maternal hypertension or growth restriction, was associated with decreased HRV at birth, as demonstrated by a lower root mean square of the difference between adjacent NN intervals (rMSSD) and low (LF) and high-frequency power (HF), with decreasing gestational age (p < 0.001, p = 0.009 and p = 0.007, respectively). We also demonstrated a relative imbalance between sympathetic and parasympathetic tone, compared to the term infants. However, differences in autonomic function did not predict cardiovascular measures at either time point. Altered cardiac autonomic function at birth relates to prematurity rather than other pregnancy complications and does not predict cardiovascular developmental patterns during the first 3 months post birth. Long-term studies will be needed to understand the relevance to cardiovascular risk.
English, Brett A; Appalsamy, Martin; Diedrich, Andre; Ruggiero, Alicia M; Lund, David; Wright, Jane; Keller, Nancy R; Louderback, Katherine M; Robertson, David; Blakely, Randy D
2010-09-01
Healthy cardiovascular function relies on a balanced and responsive integration of noradrenergic and cholinergic innervation of the heart. High-affinity choline uptake by cholinergic terminals is pivotal for efficient ACh production and release. To date, the cardiovascular impact of diminished choline transporter (CHT) expression has not been directly examined, largely due to the transporter's inaccessibility in vivo. Here, we describe findings from cardiovascular experiments using transgenic mice that bear a CHT genetic deficiency. Whereas CHT knockout (CHT(-/-)) mice exhibit early postnatal lethality, CHT heterozygous (CHT(+/-)) mice survive, grow, and reproduce normally and exhibit normal spontaneous behaviors. However, the CHT(+/-) mouse heart displays significantly reduced levels of high-affinity choline uptake accompanied by significantly reduced levels of ACh. Telemeterized recordings of cardiovascular function in these mice revealed tachycardia and hypertension at rest. After treadmill exercise, CHT(+/-) mice exhibited slower heart rate recovery, consistent with a diminished cholinergic reserve, a contention validated through direct vagal nerve stimulation. Echocardiographic and histological experiments revealed an age-dependent decrease in fractional shortening, increased left ventricular dimensions, and increased ventricular fibrosis, consistent with ventricular dysfunction. These cardiovascular phenotypes of CHT(+/-) mice encourage an evaluation of humans bearing reduced CHT expression for their resiliency in maintaining proper heart function as well as risk for cardiovascular disease.
Epidemiological, clinical, and toxicological studies have demonstrated that exposure to ambient air particulate matter (PM) can alter cardiovascular function and may influence cardiovascular disease (CVD). It has been shown that exposure to concentrated ambient air particles (CA...
Yeung, Alan; Kiat, Hosen; Denniss, A Robert; Cheema, Birinder S; Bensoussan, Alan; Machliss, Bianca; Colagiuri, Ben; Chang, Dennis
2014-10-24
Negative affective states such as anxiety, depression and stress are significant risk factors for cardiovascular disease, particularly in cardiac and post-cardiac rehabilitation populations.Yoga is a balanced practice of physical exercise, breathing control and meditation that can reduce psychosocial symptoms as well as improve cardiovascular and cognitive function. It has the potential to positively affect multiple disease pathways and may prove to be a practical adjunct to cardiac rehabilitation in further reducing cardiac risk factors as well as improving self-efficacy and post-cardiac rehabilitation adherence to healthy lifestyle behaviours. This is a parallel arm, multi-centre, randomised controlled trial that will assess the outcomes of post- phase 2 cardiac rehabilitation patients assigned to a yoga intervention in comparison to a no-treatment wait-list control group. Participants randomised to the yoga group will engage in a 12 week yoga program comprising of two group based sessions and one self-administered home session each week. Group based sessions will be led by an experienced yoga instructor. This will involve teaching beginner students a hatha yoga sequence that incorporates asana (poses and postures), pranayama (breathing control) and meditation. The primary outcomes of this study are negative affective states of anxiety, depression and stress assessed using the Depression Anxiety Stress Scale. Secondary outcomes include measures of quality of life, and cardiovascular and cognitive function. The cardiovascular outcomes will include blood pressure, heart rate, heart rate variability, pulse wave velocity, carotid intima media thickness measurements, lipid/glucose profiles and C-reactive protein assays. Assessments will be conducted prior to (week 0), mid-way through (week 6) and following the intervention period (week 12) as well as at a four week follow-up (week 16). This study will determine the effect of yoga practice on negative affective states, cardiovascular and cognitive function in post-phase 2 cardiac rehabilitation patients. The findings may provide evidence to incorporate yoga into standardised cardiac rehabilitation programs as a practical adjunct to improve the management of psychosocial symptoms associated with cardiovascular events in addition to improving patients' cognitive and cardiovascular functions. ACTRN12612000358842.
Left ventricular hypertrophy as protective factor after bypass grafting.
Iannuzzi, Gian Luca; Maniscalco, Mauro; Elia, Andrea; Scognamiglio, Anna; Furgi, Giuseppe; Rengo, Franco
2018-05-01
Left ventricular hypertrophy (LVH) is a well established cardiovascular risk factor, accounting for an increase in cardiovascular morbid-mortality, although how much the magnitude and the kind of LVH could affect cardiovascular outcomes is in large part unknown. We speculate that mild LVH in absence of left ventricular (LV) chamber dilation, could play a protective role towards functional capacity, clinical outcome, cardiovascular and total morbi-mortality in conditions in which LV systolic function is generally reduced. Accordingly to many epidemiological observations, the availability of extra-quote of systolic function could lead to a significative improvement in the final outcome of some kinds of heart patients, as those undergoing bypass-grafting, where the stress for heart and cardiovascular system is always high. We suppose that the functional reserve available for patients with LVH could make the difference with respect to other patients undergoing myocardial revascularization. Similarly, the availability of a contractile reserve warranted by LVH could ensure a little gain in the outcome for patients after other major cardiovascular events (such as myocardial infarction or other heart surgery as surgical valve replacement). However, our hypothesis only involves mild LVH without LV chamber dilation, that is the initial stage of "non-dilated concentric" LVH and "non-dilated eccentric" LVH according to the new four-tiered classification of LVH based on relative wall thickness and LV dilation. Support for our hypothesis derives from the well-known protective role of systolic function that is a major factor in almost all cardiovascular diseases, where LV ejection fraction (LVEF) has shown to significantly improve quality of life, as well as morbidity and mortality. The knowledge that mild LVH in absence of LV chamber dilation is not as harmful in such conditions as believed at present could make avoidable some drugs prescription in some stages of the disease. Furthermore, it may allow a better evaluation of the risk profile of patients with LVH undergoing some cardiovascular major events like bypass grafting, myocardial infarction or surgical heart valve replacement. Copyright © 2018 Elsevier Ltd. All rights reserved.
Navarro-Valverde, Cristina; Quesada-Gómez, Jose M; Pérez-Cano, Ramón; Fernández-Palacín, Ana; Pastor-Torres, Luis F
2018-01-03
Vitamin D deficiency has been consistently linked with cardiovascular diseases. However, results of intervention studies are contradictory. The aim of this study was to evaluate the effect of treatment with calcifediol (25(OH)D 3 ) on the cardiovascular system of patients with non-ST-elevation acute coronary syndrome after percutaneous coronary intervention. A prospective study assessing≥60-year-old patients with non-ST-elevation acute coronary syndrome, coronary artery disease and percutaneous revascularisation. We randomly assigned 41 patients (70.6±6.3 years) into 2 groups: Standard treatment+25(OH)D 3 supplementation or standard treatment alone. Major adverse cardiovascular events (MACE) were evaluated at the conclusion of the 3-month follow-up period. 25(OH)D levels were analysed with regard to other relevant analytical variables and coronary disease extent. Basal levels of 25(OH)D≤50nmol/L were associated with multivessel coronary artery disease (RR: 2.6 [CI 95%:1.1-7.1], P=.027) and 25(OH)D≤50nmol/L+parathormone ≥65pg/mL levels correlated with increased risk for MACE (RR: 4 [CI 95%: 1.1-21.8], P=.04]. One MACE was detected in the supplemented group versus five in the control group (P=.66). Among patients with 25(OH)D levels≤50nmol/L at the end of the study, 28.6% had MACE versus 0% among patients with 25(OH)D>50nmol/L (RR: 1,4; P=.037). Vitamin D deficiency plus secondary hyperparathyroidism may be an effective predictor of MACE. A trend throughout the follow up period towards a reduction in MACE among patients supplemented with 25(OH)D 3 was detected. 25(OH)D levels≤50nmol/L at the end of the intervention period were significantly associated with an increased number of MACE, hence, 25(OH)D level normalisation could improve cardiovascular health in addition to bone health. Copyright © 2017. Published by Elsevier España, S.L.U.
Vera-Lastra, O; Méndez-Flores, S; Cruz-Dominguez, M P; Medina, G; Calderón-Aranda, E; Jara, L J
2016-06-01
Patients with systemic lupus erythematosus (SLE) have a higher risk for cardiovascular disease (CVD), not fully explained by the conventional risk factors. These patients have endothelial dysfunction (ED) as an early process of atherosclerosis, which can be reversed with therapy. To determine the effect of ezetimibe plus pravastatin on endothelial function in patients with SLE after 12 months of treatment. An open study, before and after, which assessed the effect of ezetimibe plus pravastatin treatment, was performed. Twenty two patients (21 women and one man) with diagnosis of SLE were studied, with a mean age 40 ± 5 years. Endothelial dysfunction was evaluated using vascular ultrasound of the brachial artery in order to measure the flow-mediated vasodilation (FMV) basal and after 12 months of treatment with pravastatin 40 mg/day plus ezetimibe 10 mg/day. In addition, a lipid profile: total cholesterol (TC), HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), and serum C-reactive protein (CRP), was done. We found a basal FMV of 7.58% and 18.22% after 12 months of treatment, with an improvement of 10.64 points 95% CI (7.58-13.58), p < 0.001. TC decreased from 201.3 ± 58.9 mg/dL to 158.06 ± 50.13 mg/dL (p < 0.01); LDL-C from 125.78 ± 44.4 mg/dL to 78.8 ± 32.9 mg/dL (p < 0.001); HDL-C increased from 49.0 ± 16.8 mg/dL to 52.2 ± 13.8 mg/dL (p = 0.077). The basal and final concentrations of CRP were 4.49 and 2.8, respectively, with a mean decrease of 2.11 mg/dL, 95% CI (0.908-3.32), p < 0.002. Both drugs were well tolerated. Ezetimibe plus pravastatin significantly improved FMV in patients with SLE, decreasing ED and the lipid profile. This treatment ameliorated an early process of atherosclerosis and a risk factor for CVD. © The Author(s) 2016.
Young patients with cystic fibrosis demonstrate subtle alterations of the cardiovascular system.
Eising, Jacobien B; van der Ent, Cornelis K; Teske, Arco J; Vanderschuren, Maaike M; Uiterwaal, Cuno S P M; Meijboom, Folkert J
2018-02-02
As life expectancy increases in patients with cystic fibrosis, it is important to pay attention to extra-pulmonary comorbidities. Several studies have shown signs of myocardial dysfunction in adult patients, but little is known about onset and development of these changes over time. In this prospective study, cardiac function in children with cystic fibrosis was compared to that of healthy children. 33 children, aged 3-12years, with cystic fibrosis were recruited from the Wilhelmina Children's hospital and 33 age-matched healthy children were selected from the WHISTLER study, a population-based cohort study. Measurements of lung function, arterial stiffness, and echocardiography (conventional measures and myocardial deformation imaging) were performed. There were no differences in anthropometrics, lung function and blood pressure between the two groups. The cystic fibrosis children had a higher arterial stiffness compared to the healthy children (pulse wave velocity respectively 5.76±0.57m/s versus 5.43±0.61m/s, p-value 0.049). Using conventional echocardiographic parameters for right ventricular function, Tricuspid Annular Plane Systolic Excursion) and Tissue Doppler Imaging, cystic fibrosis children had a reduced right ventricular systolic function when compared to the healthy children. After adjustment for lung function, global strains of both right and left ventricles were significantly lower in the cystic fibrosis group than in healthy children (linear regression coefficient 1.45% left ventricle, p-value 0.022 and 4.42% right ventricle, p-value <0.01). Systolic strain rate of basal segment of the left ventricle, the mid segment of the right ventricle and the apical septum were significantly lower in the cystic fibrosis children than in healthy controls. Our study suggests that already at a very young age, children with cystic fibrosis show an increased arterial stiffness and some signs of diminished both right and left ventricular function. Copyright © 2018. Published by Elsevier B.V.
Tissue engineering therapy for cardiovascular disease.
Nugent, Helen M; Edelman, Elazer R
2003-05-30
The present treatments for the loss or failure of cardiovascular function include organ transplantation, surgical reconstruction, mechanical or synthetic devices, or the administration of metabolic products. Although routinely used, these treatments are not without constraints and complications. The emerging and interdisciplinary field of tissue engineering has evolved to provide solutions to tissue creation and repair. Tissue engineering applies the principles of engineering, material science, and biology toward the development of biological substitutes that restore, maintain, or improve tissue function. Progress has been made in engineering the various components of the cardiovascular system, including blood vessels, heart valves, and cardiac muscle. Many pivotal studies have been performed in recent years that may support the move toward the widespread application of tissue-engineered therapy for cardiovascular diseases. The studies discussed include endothelial cell seeding of vascular grafts, tissue-engineered vascular conduits, generation of heart valve leaflets, cardiomyoplasty, genetic manipulation, and in vitro conditions for optimizing tissue-engineered cardiovascular constructs.
Bergeron, Nathalie; Phan, Binh An P; Ding, Yunchen; Fong, Aleyna; Krauss, Ronald M
2015-10-27
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in the regulation of cholesterol homeostasis. By binding to hepatic low-density lipoprotein (LDL) receptors and promoting their lysosomal degradation, PCSK9 reduces LDL uptake, leading to an increase in LDL cholesterol concentrations. Gain-of-function mutations in PCSK9 associated with high LDL cholesterol and premature cardiovascular disease have been causally implicated in the pathophysiology of autosomal-dominant familial hypercholesterolemia. In contrast, the more commonly expressed loss-of-function mutations in PCSK9 are associated with reduced LDL cholesterol and cardiovascular disease risk. The development of therapeutic approaches that inhibit PCSK9 function has therefore attracted considerable attention from clinicians and the pharmaceutical industry for the management of hypercholesterolemia and its associated cardiovascular disease risk. This review summarizes the effects of PCSK9 on hepatic and intestinal lipid metabolism and the more recently explored functions of PCSK9 in extrahepatic tissues. Therapeutic approaches that prevent interaction of PCSK9 with hepatic LDL receptors (monoclonal antibodies, mimetic peptides), inhibit PCSK9 synthesis in the endoplasmic reticulum (antisense oligonucleotides, siRNAs), and interfere with PCSK9 function (small molecules) are also described. Finally, clinical trials testing the safety and efficacy of monoclonal antibodies to PCSK9 are reviewed. These have shown dose-dependent decreases in LDL cholesterol (44%-65%), apolipoprotein B (48%-59%), and lipoprotein(a) (27%-50%) without major adverse effects in various high-risk patient categories, including those with statin intolerance. Initial reports from 2 of these trials have indicated the expected reduction in cardiovascular events. Hence, inhibition of PCSK9 holds considerable promise as a therapeutic option for decreasing cardiovascular disease risk. © 2015 American Heart Association, Inc.
NO Signaling in the Cardiovascular System and Exercise.
Fernandes, Tiago; Gomes-Gatto, Camila V; Pereira, Noemy P; Alayafi, Yahya R; das Neves, Vander J; Oliveira, Edilamar M
2017-01-01
Nitric oxide (NO) is a small molecule implicated in multiple signal transduction pathways thus contributing to the regulation of many cellular functions. The identification of NO synthase (NOS) isoforms and the subsequent characterization of the mechanisms of cell activation of the enzymes permitted the partial understanding of both the physiological and pathological processes. NO bioavailability plays an important role in the pathophysiology of cardiovascular disease and its reduction in endothelial cells is strictly associated to endothelial dysfunction which, in turn, correlates with cardiovascular mortality. Indeed, endothelial NO synthase (eNOS) has a key role in limiting cardiac dysfunction and remodeling in heart diseases, in part by decreasing myocyte hypertrophy. Conversely, exercise training is recommended to prevent and treat cardiovascular diseases-associated disorders at least by enhanced NO synthase activity and expression, and increased production of antioxidants, which prevents premature breakdown of NO. Exercise training may cause an improvement in endothelial function for both experimental animals and humans; Studies in both healthy subjects and patients with impaired NO-related vasorelaxation remarked exercise training ability to improve vascular structure and function and endothelial homeostasis. This chapter will briefly consider the importance of NO signaling in the maintenance of cardiovascular physiology, and discuss recent insights into the effect of exercise training on the signaling pathways that modulate NO synthesis and degradation in health and cardiovascular disease. In addition, we will highlight the molecular mechanisms via which microRNAs (miRs) target NO signaling in the cardiovascular system, and NO as a candidate molecule for development of new therapies.
75 FR 1395 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-11
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2009-N-0664] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...
77 FR 12062 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-28
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... of Committee: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee...
78 FR 36787 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-19
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...
75 FR 35496 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-22
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...
77 FR 43093 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-23
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...
76 FR 39404 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-06
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...
75 FR 30839 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-02
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...
75 FR 52762 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-27
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...
Salunkhe, Vishal A.; Elvstam, Olof; Eliasson, Lena; Wendt, Anna
2016-01-01
Rosuvastatin is a member of the statin family. Like the other statins it is prescribed to lower cholesterol levels and thereby reduce the risk of cardiovascular events. Rosuvastatin lowers the cholesterol levels by inhibiting the key enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) in the cholesterol producing mevalonate pathway. It has been recognized that apart from their beneficial lipid lowering effects, statins also exhibit diabetogenic properties. The molecular mechanisms behind these remain unresolved. To investigate the effects of rosuvastatin on insulin secretion, we treated INS-1 832/13 cells with varying doses (20 nM to 20 μM) of rosuvastatin for 48 h. At concentrations of 2 μM and above basal insulin secretion was significantly increased. Using diazoxide we could determine that rosuvastatin did not increase basal insulin secretion by corrupting the KATP channels. Glucose-induced insulin secretion on the other hand seemed to be affected differently at different rosuvastatin concentrations. Rosuvastatin treatment (20 μM) for 24–48 h inhibited voltage-gated Ca2+ channels, which lead to reduced depolarization-induced exocytosis of insulin-containing granules. At lower concentrations of rosuvastatin (≤ 2 μM) the stimulus-secretion coupling pathway was intact downstream of the KATP channels as assessed by the patch clamp technique. However, a reduction in glucose-induced insulin secretion could be observed with rosuvastatin concentrations as low as 200 nM. The inhibitory effects of rosuvastatin on glucose-induced insulin secretion could be reversed with mevalonate, but not squalene, indicating that rosuvastatin affects insulin secretion through its effects on the mevalonate pathway, but not through the reduction of cholesterol biosynthesis. Taken together, these data suggest that rosuvastatin has the potential to increase basal insulin secretion and reduce glucose-induced insulin secretion. The latter is possibly an unavoidable side effect of rosuvastatin treatment as it occurs through the same mechanisms as the lipid-lowering effects of the drug. PMID:26986474
Sodium and Its Role in Cardiovascular Disease – The Debate Continues
Kong, Yee Wen; Baqar, Sara; Jerums, George; Ekinci, Elif I.
2016-01-01
Guidelines have recommended significant reductions in dietary sodium intake to improve cardiovascular health. However, these dietary sodium intake recommendations have been questioned as emerging evidence has shown that there is a higher risk of cardiovascular disease with a low sodium diet, including in individuals with type 2 diabetes. This may be related to the other pleotropic effects of dietary sodium intake. Therefore, despite recent review of dietary sodium intake guidelines by multiple organizations, including the dietary guidelines for Americans, American Diabetes Association, and American Heart Association, concerns about the impact of the degree of sodium restriction on cardiovascular health continue to be raised. This literature review examines the effects of dietary sodium intake on factors contributing to cardiovascular health, including left ventricular hypertrophy, heart rate, albuminuria, rennin–angiotensin–aldosterone system activation, serum lipids, insulin sensitivity, sympathetic nervous system activation, endothelial function, and immune function. In the last part of this review, the association between dietary sodium intake and cardiovascular outcomes, especially in individuals with diabetes, is explored. Given the increased risk of cardiovascular disease in individuals with diabetes and the increasing incidence of diabetes worldwide, this review is important in summarizing the recent evidence regarding the effects of dietary sodium intake on cardiovascular health, especially in this population. PMID:28066329
Lyons, Jonathan J; Yu, Xiaomin; Hughes, Jason D; Le, Quang T; Jamil, Ali; Bai, Yun; Ho, Nancy; Zhao, Ming; Liu, Yihui; O'Connell, Michael P; Trivedi, Neil N; Nelson, Celeste; DiMaggio, Thomas; Jones, Nina; Matthews, Helen; Lewis, Katie L; Oler, Andrew J; Carlson, Ryan J; Arkwright, Peter D; Hong, Celine; Agama, Sherene; Wilson, Todd M; Tucker, Sofie; Zhang, Yu; McElwee, Joshua J; Pao, Maryland; Glover, Sarah C; Rothenberg, Marc E; Hohman, Robert J; Stone, Kelly D; Caughey, George H; Heller, Theo; Metcalfe, Dean D; Biesecker, Leslie G; Schwartz, Lawrence B; Milner, Joshua D
2016-12-01
Elevated basal serum tryptase levels are present in 4-6% of the general population, but the cause and relevance of such increases are unknown. Previously, we described subjects with dominantly inherited elevated basal serum tryptase levels associated with multisystem complaints including cutaneous flushing and pruritus, dysautonomia, functional gastrointestinal symptoms, chronic pain, and connective tissue abnormalities, including joint hypermobility. Here we report the identification of germline duplications and triplications in the TPSAB1 gene encoding α-tryptase that segregate with inherited increases in basal serum tryptase levels in 35 families presenting with associated multisystem complaints. Individuals harboring alleles encoding three copies of α-tryptase had higher basal serum levels of tryptase and were more symptomatic than those with alleles encoding two copies, suggesting a gene-dose effect. Further, we found in two additional cohorts (172 individuals) that elevated basal serum tryptase levels were exclusively associated with duplication of α-tryptase-encoding sequence in TPSAB1, and affected individuals reported symptom complexes seen in our initial familial cohort. Thus, our findings link duplications in TPSAB1 with irritable bowel syndrome, cutaneous complaints, connective tissue abnormalities, and dysautonomia.
Two appendages homologous between basal bodies and centrioles are formed using distinct Odf2 domains
Tateishi, Kazuhiro; Yamazaki, Yuji; Nishida, Tomoki; Watanabe, Shin; Kunimoto, Koshi; Ishikawa, Hiroaki
2013-01-01
Ciliogenesis is regulated by context-dependent cellular cues, including some transduced through appendage-like structures on ciliary basal bodies called transition fibers and basal feet. However, the molecular basis for this regulation is not fully understood. The Odf2 gene product, ODF2/cenexin, is essential for both ciliogenesis and the formation of the distal and subdistal appendages on centrioles, which become basal bodies. We examined the effects of Odf2 deletion constructs on ciliogenesis in Odf2-knockout F9 cells. Electron microscopy revealed that ciliogenesis and transition fiber formation required the ODF2/cenexin fragment containing amino acids (aa) 188–806, whereas basal foot formation required aa 1–59 and 188–806. These sequences also formed distal and subdistal appendages, respectively, indicating that the centriole appendages are molecularly analogous to those on basal bodies. We used the differential formation of appendages by Odf2 deletion constructs to study the incorporation and function of molecules associated with each appendage type. We found that transition fibers and distal appendages were required for ciliogenesis and subdistal appendages stabilized the centrosomal microtubules. PMID:24189274
Knyihár-Csillik, E; Boncz, I; Sáry, G; Nemcsók, J; Csillik, B
1999-06-01
Meynert's basal nucleus is innervated by calcitonin gene-related peptide (CGRP)-immunoreactive axons synapsing with cholinergic principal cells. Origin of CGRP-immunopositive axons was studied in the albino rat. Since beaded axons containing the nicotinic acetylcholine receptor (nAChR) are also present in the basal nucleus, the microstructural arrangement raises the question whether or not an interaction between CGRP and nAChR exists like in the neuromuscular junction. We found that electrolytic lesion of the parabrachial nucleus results in degeneration of CGRP-immunoreactive axons in the ipsilateral nucleus basalis and induces shrinkage of principal cholinergic neurons while the contralateral nucleus basalis remains intact. Electrolytic lesions in the thalamus, caudate-putamen, and hippocampus did not induce alterations in Meynert's basal nucleus. Disappearance of CGRP after lesions of the parabrachial nucleus does not impair presynaptic nAChR in the basal nucleus, suggesting that, unlike in the neuromuscular junction, CGRP is not involved in the maintenance of nAChR in the basal forebrain. It is concluded that the parabrachial nucleus is involved in the activation of the nucleus basalis-prefrontal cortex system, essential in gnostic and mnemonic functions. Copyright 1999 Academic Press.
Nandi, Nilay; Tyra, Lauren K; Stenesen, Drew; Krämer, Helmut
2017-12-11
Cdk5 is a post-mitotic kinase with complex roles in maintaining neuronal health. The various mechanisms by which Cdk5 inhibits and promotes neurodegeneration are still poorly understood. Here, we show that in Drosophila melanogaster Cdk5 regulates basal autophagy, a key mechanism suppressing neurodegeneration. In a targeted screen, Cdk5 genetically interacted with Acinus (Acn), a primarily nuclear protein, which promotes starvation-independent, basal autophagy. Loss of Cdk5, or its required cofactor p35, reduces S437-Acn phosphorylation, whereas Cdk5 gain-of-function increases pS437-Acn levels. The phospho-mimetic S437D mutation stabilizes Acn and promotes basal autophagy. In p35 mutants, basal autophagy and lifespan are reduced, but restored to near wild-type levels in the presence of stabilized Acn S437D . Expression of aggregation-prone polyQ-containing proteins or the Amyloid-β42 peptide, but not alpha-Synuclein, enhances Cdk5-dependent phosphorylation of S437-Acn. Our data indicate that Cdk5 is required to maintain the protective role of basal autophagy in the initial responses to a subset of neurodegenerative challenges.
Basal ganglia structure in Tourette's disorder and/or attention-deficit/hyperactivity disorder.
Forde, Natalie J; Zwiers, Marcel P; Naaijen, Jilly; Akkermans, Sophie E A; Openneer, Thaira J C; Visscher, Frank; Dietrich, Andrea; Buitelaar, Jan K; Hoekstra, Pieter J
2017-04-01
Tourette's disorder and attention-deficit/hyperactivity disorder often co-occur and have both been associated with structural variation of the basal ganglia. However, findings are inconsistent and comorbidity is often neglected. T1-weighted magnetic resonance images from children (n = 141, 8 to 12 years) with Tourette's disorder and/or attention-deficit/hyperactivity disorder and controls were processed with the Oxford Centre for Functional MRI [Magnetic resonance imaging] of the Brain (FMRIB) integrated registration and segmentation tool to determine basal ganglia nuclei volume and shape. Across all participants, basal ganglia nuclei volume and shape were estimated in relation to Tourette's disorder (categorical), attention-deficit/hyperactivity disorder severity (continuous across all participants), and their interaction. The analysis revealed no differences in basal ganglia nuclei volumes or shape between children with and without Tourette's disorder, no association with attention-deficit/hyperactivity disorder severity, and no interaction between the two. We found no evidence that Tourette's disorder, attention-deficit/hyperactivity disorder severity, or a combination thereof are associated with structural variation of the basal ganglia in 8- to 12-year-old patients. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Marques, Sara R; Ramakrishnan, Chandra; Carzaniga, Raffaella; Blagborough, Andrew M; Delves, Michael J; Talman, Arthur M; Sinden, Robert E
2015-01-01
Gametocytes are the sole Plasmodium parasite stages that infect mosquitoes; therefore development of functional gametes is required for malaria transmission. Flagellum assembly of the Plasmodium male gamete differs from that of most other eukaryotes in that it is intracytoplasmic but retains a key conserved feature: axonemes assemble from basal bodies. The centriole/basal body protein SAS-6 normally regulates assembly and duplication of these organelles and its depletion causes severe flagellar/ciliary abnormalities in a diverse array of eukaryotes. Since basal body and flagellum assembly are intimately coupled to male gamete development in Plasmodium, we hypothesized that SAS-6 disruption may cause gametogenesis defects and perturb transmission. We show that Plasmodium berghei sas6 knockouts display severely abnormal male gametogenesis presenting reduced basal body numbers, axonemal assembly defects and abnormal nuclear allocation. The defects in gametogenesis reduce fertilization and render Pbsas6 knockouts less infectious to mosquitoes. Additionally, we show that lack of Pbsas6 blocks transmission from mosquito to vertebrate host, revealing an additional yet undefined role in ookinete to sporulating oocysts transition. These findings underscore the vulnerability of the basal body/SAS-6 to malaria transmission blocking interventions. PMID:25154861
Neuen, Brendon L; Ohkuma, Toshiaki; Neal, Bruce; Matthews, David R; de Zeeuw, Dick; Mahaffey, Kenneth W; Fulcher, Greg; Desai, Mehul; Li, Qiang; Deng, Hsiaowei; Rosenthal, Norm; Jardine, Meg J; Bakris, George; Perkovic, Vlado
2018-06-25
Background : Canagliflozin is approved for glucose lowering in type 2 diabetes and confers cardiovascular and renal benefits. We sought to assess whether it had benefits in people with chronic kidney disease (CKD), including those with an estimated glomerular filtration rate (eGFR) between 30 and 45 mL/min/1.73 m 2 in whom the drug is not currently approved for use. Methods : The CANagliflozin cardioVascular Assessment Study Program (CANVAS) randomized 10,142 participants with type 2 diabetes and eGFR greater than 30 mL/min/1.73 m 2 to canagliflozin or placebo. The primary outcome was a composite of cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke, with other cardiovascular, renal, and safety outcomes. This secondary analysis describes outcomes in participants with and without CKD, defined as eGFR <60 and ≥60 mL/min/1.73 m 2 , and according to baseline kidney function (eGFR <45, 45-<60, 60-<90, and ≥90 mL/min/1.73 m 2 ). Results : At baseline, 2039 (20.1%) participants had an eGFR <60 mL/min/1.73 m 2 , of whom 71.6% had a history of cardiovascular disease. The effect of canagliflozin on the primary outcome was similar in people with CKD (HR 0.70, 95% CI 0.55-0.90) and those with preserved kidney function (HR 0.92, 95% CI 0.79-1.07, P heterogeneity = 0.08). Relative effects on most cardiovascular and renal outcomes were similar across eGFR subgroups, with possible heterogeneity suggested only for the outcome of fatal/nonfatal stroke ( P heterogeneity = 0.01), as were results for almost all safety outcomes. Conclusions : The effect of canagliflozin on cardiovascular and renal outcomes was not modified by baseline level of kidney function in people with type 2 diabetes and a history or high risk of cardiovascular disease down to eGFR levels of 30 mL/min/1.73 m 2 Reassessing current limitations on the use of canagliflozin in CKD may allow additional individuals to benefit from this therapy. Clinical Trial Registration : URL: https://clinicaltrials.gov. Unique identifiers: NCT01032629, NCT01989754.
Mammary stem cells have myoepithelial cell properties
Prater, Michael D.; Petit, Valérie; Russell, I. Alasdair; Giraddi, Rajshekhar; Shehata, Mona; Menon, Suraj; Schulte, Reiner; Kalajzic, Ivo; Rath, Nicola; Olson, Michael F.; Metzger, Daniel; Faraldo, Marisa M.; Deugnier, Marie-Ange; Glukhova, Marina A.; Stingl, John
2014-01-01
Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt acin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using 2 independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage tracing approach we follow the progeny of α-smooth muscle actin-expressing myoepithelial cells and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy. PMID:25173976
Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease
Redgrave, Peter; Rodriguez, Manuel; Smith, Yoland; Rodriguez-Oroz, Maria C.; Lehericy, Stephane; Bergman, Hagai; Agid, Yves; DeLong, Mahlon R.; Obeso, Jose A.
2011-01-01
Progressive loss of the ascending dopaminergic projection in the basal ganglia is a fundamental pathological feature of Parkinson’s disease. Studies in animals and humans have identified spatially segregated functional territories in the basal ganglia for the control of goal-directed and habitual actions. In patients with Parkinson’s disease the loss of dopamine is predominantly in the posterior putamen, a region of the basal ganglia associated with the control of habitual behaviour. These patients may therefore be forced into a progressive reliance on the goal-directed mode of action control that is mediated by comparatively preserved processing in the rostromedial striatum. Thus, many of their behavioural difficulties may reflect a loss of normal automatic control owing to distorting output signals from habitual control circuits, which impede the expression of goal-directed action. PMID:20944662
Sun, H; Yang, M; Fung, M; Chan, S; Jawi, M; Anderson, T; Poon, M-C; Jackson, S
2017-09-01
Endothelial function has been identified as an independent predictor of cardiovascular risk in the general population. It is unclear if the haemophilia population has a different endothelial function profile compared to the healthy population. This prospective study aims to assess if there is a difference in endothelial function between haemophilia patients and healthy controls, and the impact of endothelial function on vascular outcomes in the haemophilia population. Baseline cardiovascular risk factors and endothelial function were presented. Adult males with haemophilia A or B recruited from the British Columbia and Southern Alberta haemophilia treatment centres were matched to healthy male controls by age and cardiovascular risk factors. Macrovascular endothelial function was assessed by brachial artery flow-mediated dilation (FMD) and nitroglycerin-mediated dilation (NMD), and microvascular endothelial function was assessed by hyperaemic velocity time integral (VTI). Multivariable linear regression was used to assess the association between haemophilia and endothelial function. A total of 81 patients with haemophilia and 243 controls were included. Patients with haemophilia had a similar FMD and NMD compared to controls, although haemophilia was associated with higher FMD on multivariable analysis. Haemophilia was associated with significantly lower VTI on univariate and multivariable analyses, regardless of haemophilia type and severity. Adult males with haemophilia appear to have lower microvascular endothelial function compared to healthy controls. Future studies to assess the impact of endothelial dysfunction on cardiovascular events in the haemophilia population are needed. © 2017 John Wiley & Sons Ltd.
The control of microvascular permeability and blood pressure by neutral endopeptidase.
Lu, B; Figini, M; Emanueli, C; Geppetti, P; Grady, E F; Gerard, N P; Ansell, J; Payan, D G; Gerard, C; Bunnett, N
1997-08-01
Plasma extravasation from postcapillary venules is one of the earliest steps of inflammation. Substance P (SP) and bradykinin (BK) mediate extravasation and cause hypotension. The cell-surface enzyme neutral endopeptidase (NEP) inactivates both peptides. Thus, absence of NEP may predispose development of inflammation and hypotension. We examined these possibilities in mice in which the NEP gene was deleted by homologous recombination. There was widespread basal plasma extravasation in postcapillary venular endothelia in NEP-/- mice, which was reversed by recombinant NEP and antagonists of SP (NK1) and BK (B2) receptors. Mean arterial blood pressure was 20% lower in NEP-/- animals, but this was unaffected by reintroduction of recombinant NEP and the kinin receptor antagonists. The hypotension was also independent of nitric oxide (NO), because NEP-/- mice treated with a NO synthase inhibitor remained hypotensive relative to the wild type. Thus, NEP has important roles in regulating basal microvascular permeability by degrading SP and BK, and may regulate blood pressure set point through a mechanism that is independent of SP, BK and NO. The use of NEP antagonists as candidate drugs in cardiovascular disease is suggested by the blood pressure data reported herein.
Mitochondrial Ubiquitin Ligase in Cardiovascular Disorders.
Yu, Tao; Zhang, Yinfeng; Li, Pei-Feng
2017-01-01
Mitochondrial dynamics play a critical role in cellular responses and physiological process. However, their dysregulation leads to a functional degradation, which results in a diverse array of common disorders, including cardiovascular disease. In this background, the mitochondrial ubiquitin ligase has been attracting substantial research interest in recent years. Mitochondrial ubiquitin ligase is localized in the mitochondrial outer membrane, where it plays an essential role in the regulation of mitochondrial dynamics and apoptosis. In this chapter, we provide a comprehensive overview of the functions of mitochondrial ubiquitin ligases identified hitherto, with a special focus on cardiovascular disorders.
You, Weon-Kyoo; Bonaldo, Paolo; Stallcup, William B.
2012-01-01
To investigate the importance of the vascular basal lamina in tumor blood vessel morphogenesis and function, we compared vessel development, vessel function, and progression of B16F10 melanoma tumors in the brains of wild-type and collagen VI-null mice. In 7-day tumors in the absence of collagen VI, the width of the vascular basal lamina was reduced twofold. Although the ablation of collagen VI did not alter the abundance of blood vessels, a detailed analysis of the number of either pericytes or endothelial cells (or pericyte coverage of endothelial cells) showed that collagen VI-dependent defects during the assembly of the basal lamina have negative effects on both pericyte maturation and the sprouting and survival of endothelial cells. As a result of these deficits, vessel patency was reduced by 25%, and vessel leakiness was increased threefold, resulting in a 10-fold increase in tumor hypoxia along with a fourfold increase in hypoxia-inducible factor-1α expression. In 12-day collagen VI-null tumors, vascular endothelial growth factor expression was increased throughout the tumor stroma, in contrast to the predominantly vascular pattern of vascular endothelial growth factor expression in wild-type tumors. Vessel size was correspondingly reduced in 12-day collagen VI-null tumors. Overall, these vascular deficits produced a twofold decrease in tumor volume in collagen VI-null mice, confirming that collagen VI-dependent basal lamina assembly is a critical aspect of vessel development. PMID:22200614
Bechard, Allison R.; Cacodcar, Nadia; King, Michael A.; Lewis, Mark H.
2015-01-01
Repetitive motor behaviors are observed in many neurodevelopmental and neurological disorders (e.g. autism spectrum disorders, Tourette syndrome, fronto-temporal dementia). Despite their clinical importance, the neurobiology underlying these highly stereotyped, apparently functionless behaviors is poorly understood. Identification of mechanisms that mediate the development of repetitive behaviors will aid in the discovery of new therapeutic targets and treatment development. Using a deer mouse model, we have shown that decreased indirect basal ganglia pathway activity is associated with high levels of repetitive behavior. Environmental enrichment (EE) markedly attenuates the development of such aberrant behaviors in mice, although mechanisms driving this effect are unknown. We hypothesized that EE would reduce repetitive motor behaviors by increasing indirect basal ganglia pathway function. We assessed neuronal activation and dendritic spine density in basal ganglia of adult deer mice reared in EE and standard housing. Significant increases in neuronal activation and dendritic spine densities were observed only in the subthalamic nucleus (STN) and globus pallidus (GP), and only for those mice that exhibited an EE-induced decrease in repetitive motor behavior. As the STN and GP lie within the indirect pathway, these data suggest that EE-induced attenuation of repetitive motor behaviors is associated with increased functional activation of the indirect basal ganglia pathway. These results are consistent with our other findings highlighting the importance of the indirect pathway in mediating repetitive motor behaviors. PMID:26620495
Gut microbiota derived metabolites in cardiovascular health and disease.
Wang, Zeneng; Zhao, Yongzhong
2018-05-03
Trillions of microbes inhabit the human gut, not only providing nutrients and energy to the host from the ingested food, but also producing metabolic bioactive signaling molecules to maintain health and elicit disease, such as cardiovascular disease (CVD). CVD is the leading cause of mortality worldwide. In this review, we presented gut microbiota derived metabolites involved in cardiovascular health and disease, including trimethylamine-N-oxide (TMAO), uremic toxins, short chain fatty acids (SCFAs), phytoestrogens, anthocyanins, bile acids and lipopolysaccharide. These gut microbiota derived metabolites play critical roles in maintaining a healthy cardiovascular function, and if dysregulated, potentially causally linked to CVD. A better understanding of the function and dynamics of gut microbiota derived metabolites holds great promise toward mechanistic predicative CVD biomarker discoveries and precise interventions.
[Dark or white chocolate? Cocoa and cardiovascular health].
Corti, Roberto; Perdrix, Jean; Flammer, Andreas J; Noll, Georg
2010-03-10
Epidemiological data show that a regular dietary intake of plant-derived foods reduces the risk of cardiovascular disease. Recent research indeed demonstrates interesting data about cocoa consumption, with high concentrations of polyphenols, and beneficial effects on blood pressure, insulin resistance and platelet function. Although still debated, a range of potential mechanisms through which cocoa might exert their benefits on cardiovascular health have been suggested: activation of nitric oxide, antioxidant, anti-inflammatory, anti-platelet effects, which might in turn improve endothelial function, lipid levels, blood pressure and insulin resistance. This article reviews available data about the effects of the consumption of cocoa and different types of chocolate on cardiovascular health, and outlines potential mechanisms involved on the basis of recent studies.
Thrombospondins: old players, new games.
Stenina-Adognravi, Olga
2013-10-01
Thrombospondins (TSPs) are secreted extracellular matrix (ECM) proteins from TSP family, which consists of five homologous members. They share a complex domain structure and have numerous binding partners in ECM and multiple cell surface receptors. Information that has emerged over the past decade identifies TSPs as important mediators of cellular homeostasis, assigning new important roles in cardiovascular pathology to these proteins. Recent studies of the functions of TSP in the cardiovascular system, diabetes and aging, which placed several TSPs in a position of critical regulators, demonstrated the involvement of these proteins in practically every aspect of cardiovascular pathophysiology related to atherosclerosis: inflammation, immunity, leukocyte recruitment and function, function of vascular cells, angiogenesis, and responses to hypoxia, ischemia and hyperglycemia. TSPs are also critically important in the development and ultimate outcome of the complications associated with atherosclerosis--myocardial infarction, and heart hypertrophy and failure. Their expression and significance increase with age and with the progression of diabetes, two major contributors to the development of atherosclerosis and its complications. This overview of recent literature examines the latest information on the newfound functions of TSPs that emphasize the importance of ECM in cardiovascular homeostasis and pathology. The functions of TSPs in myocardium, vasculature, vascular complications of diabetes, aging and immunity are discussed.
Basal area increment and growth efficiency as functions of canopy dynamics and stem mechanics
Thomas J. Dean
2004-01-01
Crown and canopy structurecorrelate with growth efficiency and also determine stem size and taper as described by the uniform stress principle of stem formation. A regression model was derived from this principle that expresses basal area increment in terms of the amount and vertical distribution of leaf area and change in these variables during a growth period. This...
Correlated alterations in prostate basal cell layer and basement membrane
Liu, Aijun; Wei, Lixin; Gardner, William A.; Deng, Chu-Xia; Man, Yan-Gao
2009-01-01
Our recent studies revealed that focal basal cell layer disruption (FBCLD) induced auto-immunoreactions represented a contributing factor for human prostate tumor progression and invasion. As the basement membrane surrounds and attaches to the basal cell layer, our current study assessed whether FBCLD would impact the physical integrity of the associated basement membrane. Paraffin sections from 25-human prostate tumors were subjected to double immunohistochemistry to simultaneously elucidate the basal cell layer and the basement membrane with corresponding biomarkers. The physical integrity of the basement membrane overlying FBCLD was examined to determine the extent of correlated alterations. Of a total of 89 FBCLD encountered, 76 (85 %) showed correlated alterations in the overlying basement membrane, which included distinct focal disruptions or fragmentations. In the remaining 13 (15%) FBCLD, the overlying basement membrane showed significant attenuation or reduction of the immunostaining intensity. The basement membrane in all or nearly all ducts or acini with p63 positive basal cells was substantially thicker and more uniform than that in ducts or acini without p63 positive basal cells, and also, a vast majority of the focal disruptions occurred near basal cells that lack p63 expression. These findings suggest that focal disruptions in the basal cell layer and alterations in the basement membrane are correlated events and that the physical and functional status of the basal cells could significantly impact the physical integrity of the overlying basement membrane. As the degradation of both the basal cell layer and the basement membrane is a pre-requisite for prostate tumor invasion or progression, ducts or acini with focally disrupted basal cell layer and basement membrane are likely at greater risk to develop invasive lesions. Thus, further elucidation of the specific molecules and mechanism associated with these events may lead to the development of a more effective alternative for repeat biopsy to monitor tumor progression and invasion. PMID:19343113
Rolle, Teresa; Spinetta, Roberta; Nuzzi, Raffaele
2017-08-03
The effects of preservatives of antiglaucoma medications on corneal surface and tear function have been widely shown in literature; it's not the same as regards the active compounds themselves. The purpose of our study was to compare Ocular Surface Disease (OSD) signs and symptoms of Tafluprost 0.0015% versus preservative free (PF) Timolol 0.1% eyedrops in ocular hypertensive (OH) and in primary open-angle glaucoma (POAG) patients. A cross-sectional study included patients in monotherapy for at least 36 months with Tafluprost 0.0015% (27) or PF Timolol 0.1% (24) and 20 healthy age and sex-matched volunteers. All subjects underwent clinical tests (Schirmer I and break-up time), in vivo confocal microscopy (IVCM) and were surveyed using Ocular Surface Disease Index (OSDI) and Glaucoma Symptoms Scale (GSS) questionnaires. The groups were compared with ANOVA, Kruskal-Wallis test, t-test, Mann-Whitney test and Bonferroni's adjustment of p-values. No significant differences were found in questionnaires scores, clinical tests, IVCM variables between therapy groups. Tafluprost 0.0015% group showed significantly higher OSDI score, basal epithelial cells density, stromal reflectivity, sub-basal nerves tortuosity (p = 0.0000, 0.037, 0.006, 0.0000) and less GSS score, number of sub-basal nerves (p = 0.0000, 0.037) than controls but similar clinical tests results (p > 0.05). PF Timolol group had significantly higher OSDI score, basal epithelial cells density, stromal reflectivity and sub-basal nerve tortuosity (p = 0.000, 0.014, 0.008, 0.002), less GSS score, BUT and number of sub-basal nerves (p = 0.0000, 0.026, 0.003) than controls. Compared to PF Timolol 0.1%, Tafluprost 0.0015% showed similar safety with regards to tear function and corneal status and a similar tolerability profile. Both therapy groups show some alterations in corneal microstructure but no side effects on tear function except for an increased tear instability in PF Timolol 0.1% group. Ophtalmologists should be aware that even PF formulations may lead to a mild ocular surface impairment.
Nabieva, T N
1993-01-01
Behavioral experiments were carried out in cats following methodology which simulates complexly organized, nonautomatized behavior with elements of generalization and abstraction. A conclusion was reached regarding the participation of this formation in the structural-functional support of complex integrative forms of activity, cognitive and gnostic processes, was reached on the basis of the results of the performance of test tasks by the animals with partial destruction of the magnocellular basal nucleus. The proposed mechanism of the involvement of the basal nucleus in gnostic and cognitive processes is the nonspecific support of the system of structures which participate directly in thinking and learning.
Cangiotti, Angela Maria; Lorenzi, Teresa; Zingaretti, Maria Cristina; Fabri, Mara; Morroni, Manrico
2018-05-01
The morphology of the kidney macula densa (MD) has extensively been investigated in animals, whereas human studies are scanty. We studied the fine structure of human MD cells focusing on their apical and basal ends and correlating structure and function. The MD region was examined by transmission electron microscopy in six renal biopsies from patients with kidney disease. Ultrastructural analysis of MD cells was performed on serial sections. MD cells show two polarized ends. The apical portion is characterized by a single, immotile cilium associated with microvilli; apically, cells are joined by adhering junctions. In the basal portion, the cytoplasm contains small, dense granules and numerous, irregular cytoplasmic projections extending to the adjacent extraglomerular mesangium. The projections often contain small, dense granules. A reticulated basement membrane around MD cells separates them from the extraglomerular mesangium. Although the fact that tissue specimens came from patients with kidney disease mandates extreme caution, ultrastructural examination confirmed that MD cells have sensory features due to the presence of the primary cilium, that they are connected by apical adhering junctions forming a barrier that separates the tubular flow from the interstitium, and that they present numerous basal interdigitations surrounded by a reticulated basement membrane. Conceivably, the latter two features are related to the functional activity of the MD. The small, dense granules in the basal cytoplasm and in cytoplasmic projections are likely related to the paracrine function of MD cells. Anat Rec, 301:922-931, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Delli Pizzi, Stefano; Bellomo, Rosa Grazia; Carmignano, Simona Maria; Ancona, Emilio; Franciotti, Raffaella; Supplizi, Marco; Barassi, Giovanni; Onofrj, Marco; Bonanni, Laura; Saggini, Raoul
2017-01-01
Abstract Rehabilitation interventions represent an alternative strategy to pharmacological treatment in order to slow or reverse some functional aspects of disability in Parkinson's disease (PD). To date, the neurophysiological mechanisms underlying rehabilitation-mediated improvement in PD patients are still poorly understood. Interestingly, growing evidence has highlighted a key role of the glutamate in neurogenesis and brain plasticity. The brain levels of glutamate, and of its precursor glutamine, can be detected in vivo and noninvasively as “Glx” by means of proton magnetic resonance spectroscopy (1H-MRS). In the present pilot study, 7 PD patients with frequent falls and axial dystonia underwent 8-week rehabilitative protocol focused on sensorimotor improvement. Clinical evaluation and Glx quantification were performed before and after rehabilitation. The Glx assessment was focused on the basal ganglia in agreement with their key role in the motor functions. We found that the rehabilitation program improves the static and dynamic balance in PD patients, promoting a better global motor performance. Moreover, we observed that the levels of Glx within the left basal ganglia were higher after rehabilitation as compared with baseline. Thus, we posit that our sensorimotor rehabilitative protocol could stimulate the glutamate metabolism in basal ganglia and, in turn, neuroplasticity processes. We also hypothesize that these mechanisms could prepare the ground to restore the functional interaction among brain areas deputed to motor controls, which are affected in PD. PMID:29390267
Listening to Rhythmic Music Reduces Connectivity within the Basal Ganglia and the Reward System.
Brodal, Hans P; Osnes, Berge; Specht, Karsten
2017-01-01
Music can trigger emotional responses in a more direct way than any other stimulus. In particular, music-evoked pleasure involves brain networks that are part of the reward system. Furthermore, rhythmic music stimulates the basal ganglia and may trigger involuntary movements to the beat. In the present study, we created a continuously playing rhythmic, dance floor-like composition where the ambient noise from the MR scanner was incorporated as an additional instrument of rhythm. By treating this continuous stimulation paradigm as a variant of resting-state, the data was analyzed with stochastic dynamic causal modeling (sDCM), which was used for exploring functional dependencies and interactions between core areas of auditory perception, rhythm processing, and reward processing. The sDCM model was a fully connected model with the following areas: auditory cortex, putamen/pallidum, and ventral striatum/nucleus accumbens of both hemispheres. The resulting estimated parameters were compared to ordinary resting-state data, without an additional continuous stimulation. Besides reduced connectivity within the basal ganglia, the results indicated a reduced functional connectivity of the reward system, namely the right ventral striatum/nucleus accumbens from and to the basal ganglia and auditory network while listening to rhythmic music. In addition, the right ventral striatum/nucleus accumbens demonstrated also a change in its hemodynamic parameter, reflecting an increased level of activation. These converging results may indicate that the dopaminergic reward system reduces its functional connectivity and relinquishing its constraints on other areas when we listen to rhythmic music.
Listening to Rhythmic Music Reduces Connectivity within the Basal Ganglia and the Reward System
Brodal, Hans P.; Osnes, Berge; Specht, Karsten
2017-01-01
Music can trigger emotional responses in a more direct way than any other stimulus. In particular, music-evoked pleasure involves brain networks that are part of the reward system. Furthermore, rhythmic music stimulates the basal ganglia and may trigger involuntary movements to the beat. In the present study, we created a continuously playing rhythmic, dance floor-like composition where the ambient noise from the MR scanner was incorporated as an additional instrument of rhythm. By treating this continuous stimulation paradigm as a variant of resting-state, the data was analyzed with stochastic dynamic causal modeling (sDCM), which was used for exploring functional dependencies and interactions between core areas of auditory perception, rhythm processing, and reward processing. The sDCM model was a fully connected model with the following areas: auditory cortex, putamen/pallidum, and ventral striatum/nucleus accumbens of both hemispheres. The resulting estimated parameters were compared to ordinary resting-state data, without an additional continuous stimulation. Besides reduced connectivity within the basal ganglia, the results indicated a reduced functional connectivity of the reward system, namely the right ventral striatum/nucleus accumbens from and to the basal ganglia and auditory network while listening to rhythmic music. In addition, the right ventral striatum/nucleus accumbens demonstrated also a change in its hemodynamic parameter, reflecting an increased level of activation. These converging results may indicate that the dopaminergic reward system reduces its functional connectivity and relinquishing its constraints on other areas when we listen to rhythmic music. PMID:28400717
Nelson, Derek; Stieglitz, John D; Cox, Georgina K; Heuer, Rachael M; Benetti, Daniel D; Grosell, Martin; Crossley, Dane A
2017-10-01
Aerobic exercise capacity is dependent on the cardiorespiratory system's ability to supply oxygen at a rate that meets energetic demands. In teleost fish crude oil exposure, with the associated polycyclic aromatic hydrocarbons (PAH's), reduces exercise performance and this has been hypothesized to be due to compromised cardiovascular function. In this study, we test this hypothesis by simultaneously measuring cardiovascular performance, oxygen consumption, and swim performance in a pelagic teleost, the cobia (Rachycentron canadum). Metabolic rate increased over 300% in both groups during the swim trial but as the fish approached the critical swim speed (U crit ) MO 2 was 12% lower in the oil exposed fish. Further, stroke volume was initially 35% lower while heart rate was 15% higher in the oil exposed compared to control fish. Our findings suggested, while aspects of cardiovascular and metabolic function are altered by oil exposure, additional studies are needed to further understand the homeostatic mechanisms that may sustain cardiovascular function at higher exercise intensities in cobia. Copyright © 2017. Published by Elsevier Inc.
Dore, Gregory A; Elias, Merrill F; Robbins, Michael A; Budge, Marc M; Elias, Penelope K
2008-06-01
Previous studies have demonstrated a relationship between central adiposity and cognitive function. However, only some of these studies have adjusted for cardiovascular risk factors and cardiovascular disease, and none have also adjusted for physical activity level. The purpose of the study was to examine the association between anthropometric measures of central adiposity (waist circumference and waist/hip ratio) and cognitive functioning with adjustment for cardiovascular disease risk factors and physical activity. Participants were 917 stroke- and dementia-free community-dwelling adults (59% women) in the Maine-Syracuse Study. The design was cross-sectional. Outcome measures included tests from the Wechsler Adult Intelligence Scale, the Halstead-Reitan Neuropsychological Battery, the Wechsler Memory Scale Revised, and the Mini-Mental State Examination. Waist circumference and waist/hip ratio were inversely related to multiple cognitive domains with adjustment for age, education, gender, and number of prior exams. For example, a 20-cm increment in waist circumference was associated with a 0.14 SD decrement in the Global Composite score. These relations were attenuated with adjustment for cardiovascular disease risk factors. However, with further adjustment for physical activity level, only waist circumference remained significantly associated with performance on the Similarities test. Waist circumference and waist/hip ratio are inversely related to cognitive function. Measures of central adiposity predict cognitive function independently of associated cardiovascular risk factors and events; however, the association between central adiposity and cognitive function is attenuated, to a large extent, by adjustment for physical activity level. Physical activity is an important covariate in studies relating measures of central adiposity to cognition.
Treatment of Men for “Low Testosterone”: A Systematic Review
Huo, Samantha; Scialli, Anthony R.; McGarvey, Sean; Hill, Elizabeth; Tügertimur, Buğra; Hogenmiller, Alycia; Hirsch, Alessandra I.; Fugh-Berman, Adriane
2016-01-01
Testosterone products are recommended by some prescribers in response to a diagnosis or presumption of “low testosterone” (low-T) for cardiovascular health, sexual function, muscle weakness or wasting, mood and behavior, and cognition. We performed a systematic review of 156 eligible randomized controlled trials in which testosterone was compared to placebo for one or more of these conditions. We included studies in bibliographic databases between January 1, 1950 and April 9, 2016, and excluded studies involving bodybuilding, contraceptive effectiveness, or treatment of any condition in women or children. Studies with multiple relevant endpoints were included in all relevant tables. Testosterone supplementation did not show consistent benefit for cardiovascular risk, sexual function, mood and behavior, or cognition. Studies that examined clinical cardiovascular endpoints have not favored testosterone therapy over placebo. Testosterone is ineffective in treating erectile dysfunction and controlled trials did not show a consistent effect on libido. Testosterone supplementation consistently increased muscle strength but did not have beneficial effects on physical function. Most studies on mood-related endpoints found no beneficial effect of testosterone treatment on personality, psychological well-being, or mood. The prescription of testosterone supplementation for low-T for cardiovascular health, sexual function, physical function, mood, or cognitive function is without support from randomized clinical trials. PMID:27655114
Functional Food and Cardiovascular Disease Prevention and Treatment: A Review.
Asgary, Sedigheh; Rastqar, Ali; Keshvari, Mahtab
2018-03-12
Cardiovascular disease (CVD) is now the leading cause of death globally and is a growing health concern. Lifestyle factors, including nutrition, play an important role in the etiology and treatment of CVD. Functional foods based on their basic nutritional functions can decrease the risk of many chronic diseases and have some physiological benefits. They contain physiologically active components either from plant or animal sources, marketed with the claim of their ability to reduce heart disease risk, focusing primarily on established risk factors, which are hyperlipidemia, diabetes, metabolic syndrome, obesity/overweight, elevated lipoprotein A level, small dense low-density lipoprotein cholesterol (LDL-C), and elevated inflammatory marker levels. Functional foods are suspected to exert their cardioprotective effects mainly through blood lipid profile level and improve hypertension control, endothelial function, platelet aggregation, and antioxidant actions. Clinical and epidemiological observations indicate that vegetable and fruit fiber, nuts and seeds, sea foods, coffee, tea, and dark chocolate have cardioprotective potential in humans, as well whole-grain products containing intact grain kernels rich in fiber and trace nutrients. They are nutritionally more important because they contain phytoprotective substances that might work synergistically to reduce cardiovascular risk. This review will focus on the reciprocal interaction between functional foods and the potential link to cardiovascular health and the possible mechanisms of action.
Insulin glargine 300 U/mL for basal insulin therapy in type 1 and type 2 diabetes mellitus
Lau, Ip Tim; Lee, Ka Fai; So, Wing Yee; Tan, Kathryn; Yeung, Vincent Tok Fai
2017-01-01
Objective To review published clinical studies on the efficacy and safety of new insulin glargine 300 units/mL (Gla-300), a new long-acting insulin analog, for the treatment of type 1 and type 2 diabetes mellitus (T1DM, T2DM) Materials and methods Data sources comprised primary research articles on Gla-300, including pharmacodynamic, pharmacokinetic, and clinical studies. Results In pharmacodynamic and pharmacokinetic studies, Gla-300 showed a flatter time–action profile and longer duration of action than Gla-100. Noninferiority of Gla-300 versus Gla-100 for lowering of glycated hemoglobin was demonstrated in Phase III clinical studies covering a range of T1DM and T2DM patient populations. Over 6–12 months of follow-up, Gla-300 consistently showed comparable glycemic efficacy with less hypoglycemia vs Gla-100, even during the first 8 weeks of treatment. Although titrated insulin doses were 11%–17% higher with Gla-300 vs Gla-100, changes in body weight were similar or favored Gla-300. Conclusion Clinical studies provide evidence that the pharmacodynamic and pharmacokinetic properties of Gla-300 may translate into clinical benefits in both T1DM and T2DM. Gla-300 may provide a new option for people initiating basal insulin, those requiring higher basal insulin doses, those with T1DM, and those who may be at increased risk for hypoglycemia, such as people with chronic kidney disease, the elderly, and those with cardiovascular comorbidities. PMID:28721081
Salzano, Andrea; Arcopinto, Michele; Marra, Alberto M; Bobbio, Emanuele; Esposito, Daniela; Accardo, Giacomo; Giallauria, Francesco; Bossone, Eduardo; Vigorito, Carlo; Lenzi, Andrea; Pasquali, Daniela; Isidori, Andrea M; Cittadini, Antonio
2016-07-01
Klinefelter syndrome (KS) is the most frequently occurring sex chromosomal aberration in males, with an incidence of about 1 in 500-700 newborns. Data acquired from large registry-based studies revealed an increase in mortality rates among KS patients when compared with mortality rates among the general population. Among all causes of death, metabolic, cardiovascular, and hemostatic complication seem to play a pivotal role. KS is associated, as are other chromosomal pathologies and genetic diseases, with cardiac congenital anomalies that contribute to the increase in mortality. The aim of the current study was to systematically review the relationships between KS and the cardiovascular system and hemostatic balance. In summary, patients with KS display an increased cardiovascular risk profile, characterized by increased prevalence of metabolic abnormalities including Diabetes mellitus (DM), dyslipidemia, and alterations in biomarkers of cardiovascular disease. KS does not, however, appear to be associated with arterial hypertension. Moreover, KS patients are characterized by subclinical abnormalities in left ventricular (LV) systolic and diastolic function and endothelial function, which, when associated with chronotropic incompetence may led to reduced cardiopulmonary performance. KS patients appear to be at a higher risk for cardiovascular disease, attributing to an increased risk of thromboembolic events with a high prevalence of recurrent venous ulcers, venous insufficiency, recurrent venous and arterial thromboembolism with higher risk of deep venous thrombosis or pulmonary embolism. It appears that cardiovascular involvement in KS is mainly due to chromosomal abnormalities rather than solely on low serum testosterone levels. On the basis of evidence acquisition and authors' own experience, a flowchart addressing the management of cardiovascular function and prognosis of KS patients has been developed for clinical use. © 2016 European Society of Endocrinology.
Enjoying hobbies is related to desirable cardiovascular effects.
Saihara, Keishi; Hamasaki, Shuichi; Ishida, Sanemasa; Kataoka, Tetsuro; Yoshikawa, Akiko; Orihara, Koji; Ogawa, Masakazu; Oketani, Naoya; Fukudome, Tsuyoshi; Atsuchi, Nobuhiko; Shinsato, Takuro; Okui, Hideki; Kubozono, Takuro; Ichiki, Hitoshi; Kuwahata, So; Mizoguchi, Etsuko; Fujita, Shoji; Takumi, Takuro; Ninomiya, Yuichi; Tomita, Kaai; Tei, Chuwa
2010-03-01
An unhealthy lifestyle can increase the risk of cardiovascular disease. However, the mechanism by which lifestyle influences the development of cardiovascular disease remains unclear. Since coronary endothelial function is a predictor of cardiovascular prognosis, the goal of this study was to characterize the effect of enjoying hobbies on coronary endothelial function and cardiovascular outcomes. A total of 121 consecutive patients (76 men, 45 women) with almost normal coronary arteries underwent Doppler flow study of the left anterior descending coronary artery following sequential administration of papaverine, acetylcholine, and nitroglycerin. On the basis of responses to questionnaires, patients were divided into two groups; the Hobby group (n = 71) who enjoyed hobbies, and the Non-hobby group (n = 50) who had no hobbies. Cardiovascular outcomes were assessed at long-term follow-up using medical records or questionnaire surveys for major adverse cardiovascular events (MACE).The average follow-up period was 916 +/- 515 days. There were no significant differences in demographics when comparing the two groups. The percent change in coronary blood flow and coronary artery diameter induced by acetylcholine was significantly greater in the Hobby group than in the Non-hobby group (49% +/- 77% vs 25% +/- 37%, P < 0.05, 4% +/- 13% vs -3% +/- 20%, P < 0.05, respectively). The MACE rate was significantly lower in the Hobby group than in the Non-hobby group (P < 0.01). Enjoyment of hobbies was the only independent predictor of MACE (odds ratio 8.1 [95% confidence interval 1.60, 41.90], P = 0.01) among the variables tested. In the early stages of arteriosclerosis, enjoying hobbies may improve cardiovascular outcomes via its favorable effects on coronary endothelial function.
Witte, Daniel R; Westerink, Jan; de Koning, Eelco J; van der Graaf, Yolanda; Grobbee, Diederick E; Bots, Michiel L
2005-06-21
The aim of this research was to study whether the relation between endothelial function measured by flow-mediated dilation (FMD) of the brachial artery and cardiovascular risk factors is affected by the baseline cardiovascular risk. Flow-mediated dilation of the brachial artery is widely used as a measure of endothelial function. Relations between FMD and most cardiovascular risk factors have been described. We performed a meta-regression analysis of 211 selected articles (399 populations) reporting on FMD and cardiovascular risk factors. Mean values of FMD; age; proportion of men; proportion of smokers; blood pressure; lipids; glucose; and the presence of diabetes mellitus, of hyperlipidemia, and of hypertension were retrieved from the articles. The 10-year risk of coronary heart disease (CHD) for each population was estimated based on the Framingham risk score. The relation between FMD and cardiovascular risk factors was assessed within each risk category by linear regression analysis, adjusting for age and gender, and weighted for the study size. A relation between FMD and cardiovascular risk factors was most clear in the category with lowest baseline risk (below 2.8% per decade). In populations with low baseline risk, for each % increase in Framingham risk, FMD decreased by 1.42% (95% confidence interval: 0.65 to 2.19). In medium- and high-risk populations, FMD was not related to risk (-0.02% [-0.27 to 0.22] and 0.06% [-0.02 to 0.13], respectively). These findings were independent of differences in brachial lumen diameter and technical aspects of the FMD measurement. Only in populations at low risk, endothelial function measured by FMD is related to the principal cardiovascular risk factors, and to the estimated 10-year risk of CHD.
Regulation of sympathetic nervous system function after cardiovascular deconditioning
NASA Technical Reports Server (NTRS)
Hasser, E. M.; Moffitt, J. A.
2001-01-01
Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently arises from sources other than the caudal ventrolateral medulla. If similar alterations in control of the sympathetic nervous system occur in humans in response to cardiovascular deconditioning, it is likely that they play an important role in the observed tendency for orthostatic intolerance. Combined with potential changes in vascular function, cardiac function, and hypovolemia, the predisposition for orthostatic intolerance following cardiovascular deconditioning would be markedly enhanced by blunted ability to reflexly activate the sympathetic nervous system.
Modulation of platelet functions by crude rice (Oryza sativa) bran policosanol extract.
Wong, Wai-Teng; Ismail, Maznah; Imam, Mustapha Umar; Zhang, Yi-Da
2016-07-28
Rice bran is bioactive-rich and has proven health benefits for humans. Moreover, its source, the brown rice has antioxidant, hypolipidemic and other functional properties that are increasingly making it a nutritional staple especially in Asian countries. This study investigated the antiplatelet aggregation mechanisms of crude hexane/methanolic rice bran extract, in which policosanol was the targeted bioactive. Platelets play a vital role in pathogenesis of atherosclerosis and cardiovascular diseases, and their increased activities could potentially cause arterial thrombus formation or severe bleeding disorders. Thus, in this study, platelet aggregation and adhesion of platelets to major components of basal lamina were examined in vitro. In addition, cellular protein secretion was quantified as a measurement of platelet activation. Adenosine diphosphate (ADP), collagen, and arachidonic acid (AA)-induced aggregation were studied using the microtiter technique. Rat platelets were pre-treated with various concentrations of policosanol extract, and the adhesion of platelets onto collagen- and laminin-coated surface (extracellular matrix) was studied using the acid phosphatase assay. The effect of crude policosanol extract on released proteins from activated platelets was measured using modified Lowry determination method. Rice bran policosanol extract significantly inhibited in vitro platelet aggregation induced by different agonists in a dose dependent manner. The IC50 of ADP-, collagen-, and AA-induced platelet aggregation were 533.37 ± 112.16, 635.94 ± 78.45 and 693.86 ± 70.57 μg/mL, respectively. The present study showed that crude rice bran policosanol extract significantly inhibited platelet adhesion to collagen in a dose dependent manner. Conversely, at a low concentration of 15.625 μg/mL, the extract significantly inhibited platelet adhesion to laminin stimulated by different platelet agonists. In addition to the alteration of cell adhesive properties, cellular protein secretion of the treated platelets towards different stimulants were decreased upon crude extract treatment. Our results showed that crude rice bran policosanol extract could inhibit in vitro platelet adhesion, aggregation and secretion upon activation using agonists. These findings serve as a scientific platform to further explore alternative therapies in cardiovascular diseases related to platelet malfunction.
Evolution of fruit development genes in flowering plants
Pabón-Mora, Natalia; Wong, Gane Ka-Shu; Ambrose, Barbara A.
2014-01-01
The genetic mechanisms regulating dry fruit development and opercular dehiscence have been identified in Arabidopsis thaliana. In the bicarpellate silique, valve elongation and differentiation is controlled by FRUITFULL (FUL) that antagonizes SHATTERPROOF1-2 (SHP1/SHP2) and INDEHISCENT (IND) at the dehiscence zone where they control normal lignification. SHP1/2 are also repressed by REPLUMLESS (RPL), responsible for replum formation. Similarly, FUL indirectly controls two other factors ALCATRAZ (ALC) and SPATULA (SPT) that function in the proper formation of the separation layer. FUL and SHP1/2 belong to the MADS-box family, IND and ALC belong to the bHLH family and RPL belongs to the homeodomain family, all of which are large transcription factor families. These families have undergone numerous duplications and losses in plants, likely accompanied by functional changes. Functional analyses of homologous genes suggest that this network is fairly conserved in Brassicaceae and less conserved in other core eudicots. Only the MADS box genes have been functionally characterized in basal eudicots and suggest partial conservation of the functions recorded for Brassicaceae. Here we do a comprehensive search of SHP, IND, ALC, SPT, and RPL homologs across core-eudicots, basal eudicots, monocots and basal angiosperms. Based on gene-tree analyses we hypothesize what parts of the network for fruit development in Brassicaceae, in particular regarding direct and indirect targets of FUL, might be conserved across angiosperms. PMID:25018763
Advanced technique for long term culture of epithelia in a continuous luminal-basal medium gradient.
Schumacher, Karl; Strehl, Raimund; de, Vries Uwe; Minuth, Will W
2002-02-01
The majority of epithelia in our organism perform barrier functions on being exposed to different fluids at the luminal and basal sides. To simulate this natural situation under in vitro conditions for biomaterial testing and tissue engineering the epithelia have to withstand mechanical and fluid stress over a prolonged period of time. Leakage, edge damage and pressure differences in the culture system have to be avoided so that the epithelial barrier function is maintained. Besides, the environmental influences on important cell biological features such as, sealing or transport functions, have to remain upregulated and a loss of characteristics by dedifferentiation is prevented. Our aim is to expose embryonic renal collecting duct (CD) epithelia as model tissue for 14 days to fluid gradients and to monitor the development of tissue-specific features. For these experiments, cultured embryonic epithelia are placed in tissue carriers and in gradient containers, where different media are superfused at the luminal and basal sides. Epithelia growing on the tissue carriers act as a physiological barrier during the whole culture period. To avoid mechanical damage of the tissue and to suppress fluid pressure differences between the luminal and basal compartments improved transport of the medium and an elimination of unilaterally accumulated gas bubbles in the gradient container compartments by newly developed gas expander modules is introduced. By the application of these tools the yield of embryonic renal collecting duct epithelia with intact barrier function on a fragile natural support material could be increased significantly as compared to earlier experiments. Epithelia treated with a luminal NaCl load ranging from 3 to 24 mmol l were analyzed by immunohistochemical methods to determine the degree of differentiation. The tissue showed an upregulation of individual CD cell features as compared to embryonic epithelia in the neonatal kidney.
Gorden, Nicholas T.; Arts, Heleen H.; Parisi, Melissa A.; Coene, Karlien L.M.; Letteboer, Stef J.F.; van Beersum, Sylvia E.C.; Mans, Dorus A.; Hikida, Abigail; Eckert, Melissa; Knutzen, Dana; Alswaid, Abdulrahman F.; Özyurek, Hamit; Dibooglu, Sel; Otto, Edgar A.; Liu, Yangfan; Davis, Erica E.; Hutter, Carolyn M.; Bammler, Theo K.; Farin, Frederico M.; Dorschner, Michael; Topçu, Meral; Zackai, Elaine H.; Rosenthal, Phillip; Owens, Kelly N.; Katsanis, Nicholas; Vincent, John B.; Hildebrandt, Friedhelm; Rubel, Edwin W.; Raible, David W.; Knoers, Nine V.A.M.; Chance, Phillip F.; Roepman, Ronald; Moens, Cecilia B.; Glass, Ian A.; Doherty, Dan
2008-01-01
Joubert syndrome and related disorders (JSRD) are primarily autosomal-recessive conditions characterized by hypotonia, ataxia, abnormal eye movements, and intellectual disability with a distinctive mid-hindbrain malformation. Variable features include retinal dystrophy, cystic kidney disease, and liver fibrosis. JSRD are included in the rapidly expanding group of disorders called ciliopathies, because all six gene products implicated in JSRD (NPHP1, AHI1, CEP290, RPGRIP1L, TMEM67, and ARL13B) function in the primary cilium/basal body organelle. By using homozygosity mapping in consanguineous families, we identify loss-of-function mutations in CC2D2A in JSRD patients with and without retinal, kidney, and liver disease. CC2D2A is expressed in all fetal and adult tissues tested. In ciliated cells, we observe localization of recombinant CC2D2A at the basal body and colocalization with CEP290, whose cognate gene is mutated in multiple hereditary ciliopathies. In addition, the proteins can physically interact in vitro, as shown by yeast two-hybrid and GST pull-down experiments. A nonsense mutation in the zebrafish CC2D2A ortholog (sentinel) results in pronephric cysts, a hallmark of ciliary dysfunction analogous to human cystic kidney disease. Knockdown of cep290 function in sentinel fish results in a synergistic pronephric cyst phenotype, revealing a genetic interaction between CC2D2A and CEP290 and implicating CC2D2A in cilium/basal body function. These observations extend the genetic spectrum of JSRD and provide a model system for studying extragenic modifiers in JSRD and other ciliopathies. PMID:18950740
Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity.
Fiore, Vincenzo G; Dolan, Raymond J; Strausfeld, Nicholas J; Hirth, Frank
2015-12-19
Survival and reproduction entail the selection of adaptive behavioural repertoires. This selection manifests as phylogenetically acquired activities that depend on evolved nervous system circuitries. Lorenz and Tinbergen already postulated that heritable behaviours and their reliable performance are specified by genetically determined programs. Here we compare the functional anatomy of the insect central complex and vertebrate basal ganglia to illustrate their role in mediating selection and maintenance of adaptive behaviours. Comparative analyses reveal that central complex and basal ganglia circuitries share comparable lineage relationships within clusters of functionally integrated neurons. These clusters are specified by genetic mechanisms that link birth time and order to their neuronal identities and functions. Their subsequent connections and associated functions are characterized by similar mechanisms that implement dimensionality reduction and transition through attractor states, whereby spatially organized parallel-projecting loops integrate and convey sensorimotor representations that select and maintain behavioural activity. In both taxa, these neural systems are modulated by dopamine signalling that also mediates memory-like processes. The multiplicity of similarities between central complex and basal ganglia suggests evolutionarily conserved computational mechanisms for action selection. We speculate that these may have originated from ancestral ground pattern circuitries present in the brain of the last common ancestor of insects and vertebrates. © 2015 The Authors.
Early effects of cranial irradiation on hypothalamic-pituitary function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, K.S.; Tse, V.K.; Wang, C.
1987-03-01
Hypothalamic-pituitary function was studied in 31 patients before and after cranial irradiation for nasopharyngeal carcinoma. The estimated radiotherapy (RT) doses to the hypothalamus and pituitary were 3979 +/- 78 (+/- SD) and 6167 +/- 122 centiGrays, respectively. All patients had normal pituitary function before RT. One year after RT, there was a significant decrease in the integrated serum GH response to insulin-induced hypoglycemia. In the male patients, basal serum FSH significantly increased, while basal serum LH and testosterone did not change. Moreover, in response to LHRH, the integrated FSH response was increased while that of LH was decreased. Such discordantmore » changes in FSH and LH may be explained by a defect in LHRH pulsatile release involving predominantly a decrease in pulse frequency. The peak serum TSH response to TRH became delayed in 28 patients, suggesting a defect in TRH release. Twenty-one patients were reassessed 2 yr after RT. Their mean basal serum T4 and plasma cortisol levels had significantly decreased. Hyperprolactinemia associated with oligomenorrhoea was found in 3 women. Further impairment in the secretion of GH, FSH, LH, TSH, and ACTH had occurred, and 4 patients had hypopituitarism. Thus, progressive impairment in hypothalamic-pituitary function occurs after cranial irradiation and can be demonstrated as early as 1 yr after RT.« less
Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity
Fiore, Vincenzo G.; Dolan, Raymond J.; Strausfeld, Nicholas J.; Hirth, Frank
2015-01-01
Survival and reproduction entail the selection of adaptive behavioural repertoires. This selection manifests as phylogenetically acquired activities that depend on evolved nervous system circuitries. Lorenz and Tinbergen already postulated that heritable behaviours and their reliable performance are specified by genetically determined programs. Here we compare the functional anatomy of the insect central complex and vertebrate basal ganglia to illustrate their role in mediating selection and maintenance of adaptive behaviours. Comparative analyses reveal that central complex and basal ganglia circuitries share comparable lineage relationships within clusters of functionally integrated neurons. These clusters are specified by genetic mechanisms that link birth time and order to their neuronal identities and functions. Their subsequent connections and associated functions are characterized by similar mechanisms that implement dimensionality reduction and transition through attractor states, whereby spatially organized parallel-projecting loops integrate and convey sensorimotor representations that select and maintain behavioural activity. In both taxa, these neural systems are modulated by dopamine signalling that also mediates memory-like processes. The multiplicity of similarities between central complex and basal ganglia suggests evolutionarily conserved computational mechanisms for action selection. We speculate that these may have originated from ancestral ground pattern circuitries present in the brain of the last common ancestor of insects and vertebrates. PMID:26554043
Nunes, Maria Carmo P; Badano, Luigi Paolo; Marin-Neto, J Antonio; Edvardsen, Thor; Fernández-Golfín, Covadonga; Bucciarelli-Ducci, Chiara; Popescu, Bogdan A; Underwood, Richard; Habib, Gilbert; Zamorano, Jose Luis; Saraiva, Roberto Magalhães; Sabino, Ester Cerdeira; Botoni, Fernando A; Barbosa, Márcia Melo; Barros, Marcio Vinicius L; Falqueto, Eduardo; Simões, Marcus Vinicius; Schmidt, André; Rochitte, Carlos Eduardo; Rocha, Manoel Otávio Costa; Ribeiro, Antonio Luiz Pinho; Lancellotti, Patrizio
2018-04-01
To develop a document by Brazilian Cardiovascular Imaging Department (DIC) and the European Association of Cardiovascular Imaging (EACVI) to review and summarize the most recent evidences about the non-invasive assessment of patients with Chagas disease, with the intent to set up a framework for standardized cardiovascular imaging to assess cardiovascular morphologic and functional disturbances, as well as to guide the subsequent process of clinical decision-making. Chagas disease remains one of the most prevalent infectious diseases in Latin America, and has become a health problem in non-endemic countries. Dilated cardiomyopathy is the most severe manifestation of Chagas disease, which causes substantial disability and early mortality in the socially most productive population leading to a significant economical burden. Prompt and correct diagnosis of Chagas disease requires specialized clinical expertise to recognize the unique features of this disease. The appropriate and efficient use of cardiac imaging is pivotal for diagnosing the cardiac involvement in Chagas disease, to stage the disease, assess patients' prognosis and address management. Echocardiography is the most common imaging modality used to assess, and follow-up patients with Chagas disease. The presence of echocardiographic abnormalities is of utmost importance, since it allows to stage patients according to disease progression. In early stages of cardiac involvement, echocardiography may demonstrate segmental left ventricuar wall motion abnormalities, mainly in the basal segments of inferior, inferolateral walls, and the apex, which cannot be attributed to obstructive coronary artery arteries. The prevalence of segmental wall motion abnormalities varies according to the stage of the disease, reaching about 50% in patients with left ventricular dilatation and dysfunction. Speckle tracking echocardiography allows a more precise and quantitative measurement of the regional myocardial function. Since segmental wall motion abnormalities are frequent in Chagas disease, speckle tracking echocardiography may have an important clinical application in these patients, particularly in the indeterminate forms when abnormalities are more subtle. Speckle tracking echocardiography can also quantify the heterogeneity of systolic contraction, which is associated with the risk of arrhythmic events. Three-dimensional (3D) echocardiography is superior to conventional two-dimensional (2D) echocardiography for assessing more accurately the left ventricular apex and thus to detect apical aneurysms and thrombus in patients in whom ventricular foreshortening is suspected by 2D echocardiography. In addition, 3D echocardiography is more accurate than 2D Simpson s biplane rule for assessing left ventricular volumes and function in patients with significant wall motion abnormalities, including aneurysms with distorted ventricular geometry. Contrast echocardiography has the advantage to enhancement of left ventricular endocardial border, allowing for more accurate detection of ventricular aneurysms and thrombus in Chagas disease. Diastolic dysfunction is an important hallmark of Chagas disease even in its early phases. In general, left ventricular diastolic and systolic dysfunction coexist and isolated diastolic dysfunction is uncommon but may be present in patients with the indeterminate form. Right ventricular dysfunction may be detected early in the disease course, but in general, the clinical manifestations occur late at advanced stages of Chagas cardiomyopathy. Several echocardiographic parameters have been used to assess right ventricular function in Chagas disease, including qualitative evaluation, myocardial performance index, tissue Doppler imaging, tricuspid annular plane systolic excursion, and speckle tracking strain. Cardiac magnetic resonance (CMR) is useful to assess global and regional left ventricular function in patients with Chagas diseases. Myocardial fibrosis is a striking feature of Chagas cardiomyopathy and late gadolinium enhancement (LGE) is used to detect and quantify the extension of myocardial fibrosis. Myocardial fibrosis might have a role in risk stratification of patients with Chagas disease. Limited data are available regarding right ventricular function assessed by CMR in Chagas disease. Radionuclide ventriculography is used for global biventricular function assessment in patients with suspected or definite cardiac involvement in Chagas disease with suboptimal acoustic window and contraindication to CMR. Myocardial perfusion scintigraphy may improve risk stratification to define cardiac involvement in Chagas disease, especially in the patients with devices who cannot be submitted to CMR and in the clinical setting of Chagas patients whose main complaint is atypical chest pain. Detection of reversible ischemic defects predicts further deterioration of left ventricular systolic function and helps to avoid unnecessary cardiac catheterization and coronary angiography. Cardiac imaging is crucial to detect the cardiac involvement in patients with Chagas disease, stage the disease and stratify patient risk and address management. Unfortunately, most patients live in regions with limited access to imaging methods and point-of-care, simplified protocols, could improve the access of these remote populations to important information that could impact in the clinical management of the disease. Therefore, there are many fields for further research in cardiac imaging in Chagas disease. How to better provide an earlier diagnosis of cardiac involvement and improve patients risk stratification remains to be addressed using different images modalities.
Basal Forebrain Gating by Somatostatin Neurons Drives Prefrontal Cortical Activity.
Espinosa, Nelson; Alonso, Alejandra; Morales, Cristian; Espinosa, Pedro; Chávez, Andrés E; Fuentealba, Pablo
2017-11-17
The basal forebrain provides modulatory input to the cortex regulating brain states and cognitive processing. Somatostatin-expressing neurons constitute a heterogeneous GABAergic population known to functionally inhibit basal forebrain cortically projecting cells thus favoring sleep and cortical synchronization. However, it remains unclear if somatostatin cells can regulate population activity patterns in the basal forebrain and modulate cortical dynamics. Here, we demonstrate that somatostatin neurons regulate the corticopetal synaptic output of the basal forebrain impinging on cortical activity and behavior. Optogenetic inactivation of somatostatin neurons in vivo rapidly modified neural activity in the basal forebrain, with the consequent enhancement and desynchronization of activity in the prefrontal cortex, reflected in both neuronal spiking and network oscillations. Cortical activation was partially dependent on cholinergic transmission, suppressing slow waves and potentiating gamma oscillations. In addition, recruitment dynamics was cell type-specific, with interneurons showing similar temporal profiles, but stronger responses than pyramidal cells. Finally, optogenetic stimulation of quiescent animals during resting periods prompted locomotor activity, suggesting generalized cortical activation and increased arousal. Altogether, we provide physiological and behavioral evidence indicating that somatostatin neurons are pivotal in gating the synaptic output of the basal forebrain, thus indirectly controlling cortical operations via both cholinergic and non-cholinergic mechanisms. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Cardiovascular autonomic dysfunction in Ehlers-Danlos syndrome-Hypermobile type.
Hakim, Alan; O'Callaghan, Chris; De Wandele, Inge; Stiles, Lauren; Pocinki, Alan; Rowe, Peter
2017-03-01
Autonomic dysfunction contributes to health-related impairment of quality of life in the hypermobile type of Ehlers-Danlos syndrome (hEDS). Typical signs and symptoms include tachycardia, hypotension, gastrointestinal dysmotility, and disturbed bladder function and sweating regulation. Cardiovascular autonomic dysfunction may present as Orthostatic Intolerance, Orthostatic Hypotension, Postural Orthostatic Tachycardia Syndrome, or Neurally Mediated Hypotension. The incidence, prevalence, and natural history of these conditions remain unquantified, but observations from specialist clinics suggest they are frequently seen in hEDS. There is growing understanding of how hEDS-related physical and physiological pathology contributes to the development of these conditions. Evaluation of cardiovascular symptoms in hEDS should include a careful history and clinical examination. Tests of cardiovascular function range from clinic room observation to tilt-table assessment to other laboratory investigations such as supine and standing catecholamine levels. Non-pharmacologic treatments include education, managing the environment to reduce exposure to triggers, improving cardiovascular fitness, and maintaining hydration. Although there are limited clinical trials, the response to drug treatments in hEDS is supported by evidence from case and cohort observational data, and short-term physiological studies. Pharmacologic therapy is indicated for patients with moderate-severe impairment of daily function and who have inadequate response or tolerance to conservative treatment. Treatment in hEDS often requires a focus on functional maintenance. Also, the negative impact of cardiovascular symptoms on physical and psycho-social well-being may generate a need for a more general evaluation and on-going management and support. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Mahendru, Amita A; Everett, Thomas R; McEniery, Carmel M; Wilkinson, Ian B; Lees, Christoph C
2013-03-01
To investigate prepregnancy cardiovascular function and risk factors in women with previous pregnancy complications. Thirty-four women with previous normal pregnancy (controls), 26 with unexplained recurrent miscarriage (RM) and 14 with pre-eclampsia (PE) and/or intrauterine growth restriction (IUGR), planning to conceive were recruited. Brachial and central blood pressures (BP), cardiac output (CO), peripheral vascular resistance (PVR), aortic stiffness, blood biochemistry and platelet aggregation were assessed. Women with previous PE/IUGR had higher brachial diastolic BP (78 ± 9 vs 71 ± 7 mmHg; p = 0.03), central systolic BP (107 ± 10 vs 99 ± 8 mmHg; p = 0.03), mean arterial pressure (92 ± 10 vs 84 ± 8 mmHg; p = 0.01) and PVR (1499 ± 300 vs 1250 ± 220 dynes.s(-1) cm(-5); p = 0.005), than the controls. No differences were observed in either cardiovascular function or blood biochemistry in women with unexplained RM compared with the controls. Women with previous PE/IUGR though not with RM had a stronger family history of cardiovascular disease (CVD) than controls. Women with previous PE and/or IUGR had higher BP and PVR compared with controls, which may predispose them to CVD later in life. However, in the absence of underlying vascular pathology, women with unexplained RM did not have abnormal cardiovascular function. Prepregnancy period provides an opportunity to identify cardiovascular risks in relation to previous obstetric history.
Cardiac Structure and Function in Humans: A New Cardiovascular Physiology Laboratory
ERIC Educational Resources Information Center
Song, Su; Burleson, Paul D.; Passo, Stanley; Messina, Edward J.; Levine, Norman; Thompson, Carl I.; Belloni, Francis L.; Recchia, Fabio A.; Ojaimi, Caroline; Kaley, Gabor; Hintze, Thomas H.
2009-01-01
As the traditional cardiovascular control laboratory has disappeared from the first-year medical school curriculum, we have recognized the need to develop another "hands-on" experience as a vehicle for wide-ranging discussions of cardiovascular control mechanisms. Using an echocardiograph, an automatic blood pressure cuff, and a reclining bicycle,…
Application of stem cells for cardiovascular grafts tissue engineering.
Wu, Kaihong; Liu, Ying Long; Cui, Bin; Han, Zhongchao
2006-06-01
Congenital and acquired heart diseases are leading causes of morbidity and mortality world-wide. Currently, the synthetic materials or bioprosthetic replacement devices for cardiovascular surgery are imperfect and subject patients to one or more ongoing risks including thrombosis, limited durability and need for reoperations due to lack of growth in children and young adults. Suitable replacement grafts should have appropriate characteristics, including resistance to infection, low immunogenicity, good biocompatability and thromboresistance, with appropriate mechanical and physiological properties. Tissue engineering is a new scientific field aiming at fabrication of living, autologous grafts having structure or function properties that can be used to restore, maintain or improve tissue function. The use of autologous stem cells in cardiovascular tissue engineering is quite promising due to their capacity of self-renewal, high proliferation, and differentiation into specialized progeny. Progress has been made in engineering the various components of the cardiovascular system, including myocardial constructs, heart valves, and vascular patches or conduits with autologous stem cells. This paper will review the current achievements in stem cell-based cardiovascular grafts tissue engineering, with an emphasis on its clinical or possible clinical use in cardiovascular surgery.
Crispi, Fatima; Figueras, Francesc; Cruz-Lemini, Monica; Bartrons, Joaquim; Bijnens, Bart; Gratacos, Eduard
2012-08-01
The objective of the study was to evaluate cardiovascular function in children who were small-for-gestational-age (SGA) fetuses. This was a prospective study including 100 controls and 50 children diagnosed in utero as SGA after 34 weeks subdivided into the following categories: SGA and intrauterine growth restriction (IUGR) according to the absence or presence, respectively, of weight centile less than 3 or abnormal cerebroplacental Doppler. Postnatal cardiovascular outcome was evaluated at 3-6 years of age by echocardiography, blood pressure, and carotid ultrasound. Both SGA and IUGR presented in childhood more globular hearts, reduced longitudinal motion, and impaired relaxation with an increase in radial function. Both groups showed increased blood pressure and carotid intima-media thickness. There was a linear tendency to worse cardiovascular results in IUGR as compared with SGA. Fetal cardiovascular programming occurs in SGA, regardless of Doppler and weight centile. These findings challenge the concept of constitutionally small and warrant further investigation to identify predictors of cardiovascular outcome in SGA. Copyright © 2012 Mosby, Inc. All rights reserved.
Cardiovascular disease in the polycystic ovary syndrome: new insights and perspectives.
Cussons, Andrea J; Stuckey, Bronwyn G A; Watts, Gerald F
2006-04-01
The new millennium has brought intense focus of interest on the risk of cardiovascular disease in women. The polycystic ovary syndrome (PCOS) is a common endocrine disorder in women characterised by hyperandrogenism and oligomenorrhoea. Most women with PCOS also exhibit features of the metabolic syndrome, including insulin resistance, obesity and dyslipidaemia. While the association with type 2 diabetes is well established, whether the incidence of cardiovascular disease is increased in women with PCOS remains unclear. Echocardiography, imaging of coronary and carotid arteries, and assessments of both endothelial function and arterial stiffness have recently been employed to address this question. These studies have collectively demonstrated both structural and functional abnormalities of the cardiovascular system in PCOS. These alterations, however, appear to be related to the presence of individual cardiovascular risk factors, particularly insulin resistance, rather than to the presence of PCOS and hyperandrogenaemia per se. However, given the inferential nature of the evidence to date, more rigorous cohort studies of long-term cardiovascular outcomes and clinical trials of risk factor modification are required in women with PCOS.
Juocevicius, Alvydas; Oral, Aydan; Lukmann, Aet; Takáč, Peter; Tederko, Piotr; Hāznere, Ilze; Aguiar-Branco, Catarina; Lazovic, Milica; Negrini, Stefano; Varela Donoso, Enrique; Christodoulou, Nicolas
2018-05-02
Cardiovascular conditions are significant causes of mortality and morbidity leading to substantial disability. The aim of the paper is to improve Physical and Rehabilitation Medicine (PRM) physicians' professional practice for persons with cardiovascular conditions in order to promote their functioning properties and to reduce activity limitations and/or participation restrictions. A systematic review of the literature and a Consensus procedure by means of a Delphi process has been performed involving the delegates of all European countries represented in the UEMS PRM Section. The systematic literature review is reported together with thirty recommendations resulting from the Delphi procedure. The professional role of PRM physicians having expertise in the rehabilitation of cardiovascular conditions is to lead cardiac rehabilitation programmes in multiprofessional teams, working in collaboration with other disciplines in a variety of settings to improve functioning of people with cardiovascular conditions. This EBPP represents the official position of the European Union through the UEMS PRM Section and designates the professional role of PRM physicians in persons with cardiovascular conditions.
Ghrelin and the cardiovascular system.
Tokudome, Takeshi; Kishimoto, Ichiro; Miyazato, Mikiya; Kangawa, Kenj
2014-01-01
Ghrelin is a peptide that was originally isolated from the stomach. It exerts potent growth hormone (GH)-releasing and orexigenic activities. Several studies have highlighted the therapeutic benefits of ghrelin for the treatment of cardiovascular disease. In animal models of chronic heart failure, the administration of ghrelin improved cardiac function and remodeling; these findings were replicated in human patients with heart failure. Moreover, in an animal study, ghrelin administration effectively reduced pulmonary hypertension induced by chronic hypoxia. In addition, repeated administration of ghrelin to cachectic patients with chronic obstructive pulmonary disease had positive effects on overall body function, including muscle wasting, functional capacity and sympathetic activity. The administration of ghrelin early after myocardial infarction (MI) reduced fatal arrhythmia and related mortality. In ghrelin-deficient mice, both exogenous and endogenous ghrelin were protective against fatal arrhythmia and promoted remodeling after MI. Although the mechanisms underlying the effects of ghrelin on the cardiovascular system remain unclear, there are indications that its beneficial effects are mediated through both direct physiological actions, including increased GH levels, improved energy balance and direct actions on cardiovascular cells, and regulation of autonomic nervous system activity. Therefore, ghrelin is a promising novel therapeutic agent for cardiovascular disease. © 2014 S. Karger AG, Basel.
Boppart, Stephen A.; Tearney, Gary J.; Bouma, Brett E.; Southern, James F.; Brezinski, Mark E.; Fujimoto, James G.
1997-01-01
Studies investigating normal and abnormal cardiac development are frequently limited by an inability to assess cardiovascular function within the intact organism. In this work, optical coherence tomography (OCT), a new method of micron-scale, noninvasive imaging based on the measurement of backscattered infrared light, was introduced for the high resolution assessment of structure and function in the developing Xenopus laevis cardiovascular system. Microstructural details, such as ventricular size and wall positions, were delineated with OCT at 16-μm resolution and correlated with histology. Three-dimensional representation of the cardiovascular system also was achieved by repeated cross-sectional imaging at intervals of 25 μm. In addition to structural information, OCT provides high speed in vivo axial ranging and imaging, allowing quantitative dynamic activity, such as ventricular ejection fraction, to be assessed. The sensitivity of OCT for dynamic assessment was demonstrated with an inotropic agent that altered cardiac function and dimensions. Optical coherence tomography is an attractive new technology for assessing cardiovascular development because of its high resolution, its ability to image through nontransparent structures, and its inexpensive portable design. In vivo and in vitro imaging are performed at a resolution approaching that of histopathology without the need for animal killing. PMID:9113976
Bridging the gap between measurements and modelling: a cardiovascular functional avatar.
Casas, Belén; Lantz, Jonas; Viola, Federica; Cedersund, Gunnar; Bolger, Ann F; Carlhäll, Carl-Johan; Karlsson, Matts; Ebbers, Tino
2017-07-24
Lumped parameter models of the cardiovascular system have the potential to assist researchers and clinicians to better understand cardiovascular function. The value of such models increases when they are subject specific. However, most approaches to personalize lumped parameter models have thus far required invasive measurements or fall short of being subject specific due to a lack of the necessary clinical data. Here, we propose an approach to personalize parameters in a model of the heart and the systemic circulation using exclusively non-invasive measurements. The personalized model is created using flow data from four-dimensional magnetic resonance imaging and cuff pressure measurements in the brachial artery. We term this personalized model the cardiovascular avatar. In our proof-of-concept study, we evaluated the capability of the avatar to reproduce pressures and flows in a group of eight healthy subjects. Both quantitatively and qualitatively, the model-based results agreed well with the pressure and flow measurements obtained in vivo for each subject. This non-invasive and personalized approach can synthesize medical data into clinically relevant indicators of cardiovascular function, and estimate hemodynamic variables that cannot be assessed directly from clinical measurements.
Protective effects of dark chocolate on endothelial function and diabetes.
Grassi, Davide; Desideri, Giovambattista; Ferri, Claudio
2013-11-01
Relationship between cocoa consumption and cardiovascular disease, particularly focusing on clinical implications resulting from the beneficial effects of cocoa consumption on endothelial function and insulin resistance. This could be of clinical relevance and may suggest the mechanistic explanation for the reduced risk of cardiovascular events reported in the different studies after cocoa intake. Increasing evidence supports a protective effect of cocoa consumption against cardiovascular disease. Cocoa and flavonoids from cocoa have been described to improve endothelial function and insulin resistance. A proposed mechanism could be considered in the improvement of the endothelium-derived vasodilator nitric oxide by enhancing nitric oxide synthesis or by decreasing nitric oxide breakdown. The endothelium plays a pivotal role in the arterial homeostasis, and insulin resistance is the most important pathophysiological feature in various prediabetic and diabetic states. Reduced nitric oxide bioavailability with endothelial dysfunction is considered the earliest step in the pathogenesis of atherosclerosis. Further, insulin resistance could account, at least in part, for the endothelial dysfunction. Endothelial dysfunction has been considered an important and independent predictor of future development of cardiovascular risk and events. Cocoa and flavonoids from cocoa might positively modulate these mechanisms with a putative role in cardiovascular protection.
Gödecke, Axel; Haendeler, Judith
2017-04-20
Intraorgan communication in the cardiovascular system is exerted not only by direct cell-cell contacts but also by locally released factors, which modulate neighboring cells by paracrine signals (e.g., NO, vascular endothelial growth factor, adenosine, reactive oxygen species). Moreover, cells in close proximity to the typical cardiovascular cells such as fibroblasts, red blood cells, as well as resident and invading immune cells must be considered in attempts to understand cardiovascular function in physiology and pathology. The second level of communication is the interorgan communication, which may be distinguished from intraorgan communication, since it involves signaling from remote organs to the heart and circulation. Therefore, mediators released by, for example, the kidney or skeletal muscle reach the heart and modulate its function. This is not only the case under physiological conditions, because there is increasing evidence that the organ-specific response to a primary insult may affect also the function of remote organs by the release of factors. This Forum will summarize novel mechanisms involved in intraorgan and interorgan communication of the cardiovascular system, with a special view on the remote organs, skeletal muscle and kidney. Antioxid. Redox Signal. 26, 613-615.
Zhai, Qian; Lai, Dengming; Cui, Ping; Zhou, Rui; Chen, Qixing; Hou, Jinchao; Su, Yunting; Pan, Libiao; Ye, Hui; Zhao, Jing-Wei; Fang, Xiangming
2017-10-01
Basal forebrain cholinergic neurons are proposed as a major neuromodulatory system in inflammatory modulation. However, the function of basal forebrain cholinergic neurons in sepsis is unknown, and the neural pathways underlying cholinergic anti-inflammation remain unexplored. Animal research. University research laboratory. Male wild-type C57BL/6 mice and ChAT-ChR2-EYFP (ChAT) transgenic mice. The cholinergic neuronal activity of the basal forebrain was manipulated optogenetically. Cecal ligation and puncture was produced to induce sepsis. Left cervical vagotomy and 6-hydroxydopamine injection to the spleen were used. Photostimulation of basal forebrain cholinergic neurons induced a significant decrease in the levels of tumor necrosis factor-α and interleukin-6 in the serum and spleen. When cecal ligation and puncture was combined with left cervical vagotomy in photostimulated ChAT mice, these reductions in tumor necrosis factor-α and interleukin-6 were partly reversed. Furthermore, photostimulating basal forebrain cholinergic neurons induced a large increase in c-Fos expression in the basal forebrain, the dorsal motor nucleus of the vagus, and the ventral part of the solitary nucleus. Among them, 35.2% were tyrosine hydroxylase positive neurons. Furthermore, chemical denervation showed that dopaminergic neurotransmission to the spleen is indispensable for the anti-inflammation. These results are the first to demonstrate that selectively activating basal forebrain cholinergic neurons is sufficient to attenuate systemic inflammation in sepsis. Specifically, photostimulation of basal forebrain cholinergic neurons activated dopaminergic neurons in dorsal motor nucleus of the vagus/ventral part of the solitary nucleus, and this dopaminergic efferent signal was further transmitted by the vagus nerve to the spleen. This cholinergic-to-dopaminergic neural circuitry, connecting central cholinergic neurons to the peripheral organ, might have mediated the anti-inflammatory effect in sepsis.
The evolutionary origin of the vertebrate basal ganglia and its role in action selection.
Grillner, Sten; Robertson, Brita; Stephenson-Jones, Marcus
2013-11-15
The group of nuclei within the basal ganglia of the forebrain is central to the control of movement. We present data showing that the structure and function of the basal ganglia have been conserved throughout vertebrate evolution over some 560 million years. The interaction between the different nuclei within the basal ganglia is conserved as well as the cellular and synaptic properties and transmitters. We consider the role of the conserved basal ganglia circuitry for basic patterns of motor behaviour controlled via brainstem circuits. The output of the basal ganglia consists of tonically active GABAergic neurones, which target brainstem motor centres responsible for different patterns of behaviour, such as eye and locomotor movements, posture, and feeding. A prerequisite for activating or releasing a motor programme is that this GABAergic inhibition is temporarily reduced. This can be achieved through activation of GABAergic projection neurons from striatum, the input level of the basal ganglia, given an appropriate synaptic drive from cortex, thalamus and the dopamine system. The tonic inhibition of the motor centres at rest most likely serves to prevent the different motor programmes from becoming active when not intended. Striatal projection neurones are subdivided into one group with dopamine 1 receptors that provides increased excitability of the direct pathway that can initiate movements, while inhibitory dopamine 2 receptors are expressed on neurones that instead inhibit movements and are part of the 'indirect loop' in mammals as well as lamprey. We review the evidence showing that all basic features of the basal ganglia have been conserved throughout vertebrate phylogeny, and discuss these findings in relation to the role of the basal ganglia in selection of behaviour.
Larrañaga, Pedro; Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; DeFelipe, Javier; Bielza, Concha
2017-01-01
We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult human pyramidal neurons of the temporal cortex with a total of more than 32,000 spines. We confirmed that there is a spatial variation in spine density that is dependent on the distance to the cell body in all dendrites. Considering the dendritic arborizations of each pyramidal cell as a group of instances of the same observation (the neuron), we used replicated point patterns together with network spatial analysis for the first time to search for significant differences in the spine distribution of basal dendrites between different cells and between all the basal and apical dendrites. To do this, we used a recent variant of Ripley’s K function defined to work along networks. The results showed that there were no significant differences in spine distribution along basal arbors of the same neuron and along basal arbors of different pyramidal neurons. This suggests that dendritic spine distribution in basal dendritic arbors adheres to common rules. However, we did find significant differences in spine distribution along basal versus apical networks. Therefore, not only do apical and basal dendritic arborizations have distinct morphologies but they also obey different rules of spine distribution. Specifically, the results suggested that spines are more clustered along apical than in basal dendrites. Collectively, the results further highlighted that synaptic input information processing is different between these two dendritic domains. PMID:28662210
Anton-Sanchez, Laura; Larrañaga, Pedro; Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; DeFelipe, Javier; Bielza, Concha
2017-01-01
We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult human pyramidal neurons of the temporal cortex with a total of more than 32,000 spines. We confirmed that there is a spatial variation in spine density that is dependent on the distance to the cell body in all dendrites. Considering the dendritic arborizations of each pyramidal cell as a group of instances of the same observation (the neuron), we used replicated point patterns together with network spatial analysis for the first time to search for significant differences in the spine distribution of basal dendrites between different cells and between all the basal and apical dendrites. To do this, we used a recent variant of Ripley's K function defined to work along networks. The results showed that there were no significant differences in spine distribution along basal arbors of the same neuron and along basal arbors of different pyramidal neurons. This suggests that dendritic spine distribution in basal dendritic arbors adheres to common rules. However, we did find significant differences in spine distribution along basal versus apical networks. Therefore, not only do apical and basal dendritic arborizations have distinct morphologies but they also obey different rules of spine distribution. Specifically, the results suggested that spines are more clustered along apical than in basal dendrites. Collectively, the results further highlighted that synaptic input information processing is different between these two dendritic domains.
Mouse Models of Neurodevelopmental Disease of the Basal Ganglia and Associated Circuits
Pappas, Samuel S.; Leventhal, Daniel K.; Albin, Roger L.; Dauer, William T.
2014-01-01
This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role—Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function. PMID:24947237
Laurent, Mourot; Daline, Teffaha; Malika, Bouhaddi; Fawzi, Ounissi; Philippe, Vernochet; Benoit, Dugue; Catherine, Monpère; Jacques, Regnard
2009-04-01
Rehabilitation programs involving immersed exercises are more and more frequently used, with severe cardiac patients as well. This study investigated whether a rehabilitation program including water-based exercises has additional effects on the cardiovascular system compared with a traditional land-based training in heart disease patients. Twenty-four male stable chronic heart failure patients and 24 male coronary artery disease patients with preserved left ventricular function participated in the study. Patients took part in the rehabilitation program performing cycle endurance exercises on land. They also performed gymnastic exercises either on land (first half of the participants) or in water (second half). Resting plasma concentration of nitric oxide metabolites (nitrate and nitrite) and catecholamine were evaluated, and a symptom-limited exercise test on a cycle ergometer was performed before and after the rehabilitation program. In the groups performing water-based exercises, the plasma concentration of nitrates was significantly increased (P = 0.035 for chronic heart failure and P = 0.042 for coronary artery disease), whereas it did not significantly change in the groups performing gymnastic exercise on land. No changes in plasma catecholamine concentration occurred. In every group, the cardiorespiratory capacity of patients was significantly increased after rehabilitation. The water-based exercises seemed to effectively increase the basal level of plasma nitrates. Such changes may be related to an enhancement of endothelial function and may be of importance for the health of the patients.
Liu, Guofeng; Bao, Manzhu
2013-01-01
The identification of mutants in model plant species has led to the isolation of the floral homeotic function genes that play crucial roles in flower organ specification. However, floral homeotic C-function genes are rarely studied in basal eudicots. Here, we report the isolation and characterization of the AGAMOUS (AG) orthologous gene (PaAG) from a basal eudicot London plane tree (Platanus acerifolia Willd). Phylogenetic analysis showed that PaAG belongs to the C- clade AG group of genes. PaAG was found to be expressed predominantly in the later developmental stages of male and female inflorescences. Ectopic expression of PaAG-1 in tobacco (Nicotiana tabacum) resulted in morphological alterations of the outer two flower whorls, as well as some defects in vegetative growth. Scanning electron micrographs (SEMs) confirmed homeotic sepal-to-carpel transformation in the transgenic plants. Protein interaction assays in yeast cells indicated that PaAG could interact directly with PaAP3 (a B-class MADS-box protein in P. acerifolia), and also PaSEP1 and PaSEP3 (E-class MADS-box proteins in P. acerifolia). This study performed the functional analysis of AG orthologous genes outside core eudicots and monocots. Our findings demonstrate a conserved functional role of AG homolog in London plane tree, which also represent a contribution towards understanding the molecular mechanisms of flower development in this monoecious tree species. PMID:23691041
Beat to beat variability in cardiovascular variables: noise or music?
NASA Technical Reports Server (NTRS)
Appel, M. L.; Berger, R. D.; Saul, J. P.; Smith, J. M.; Cohen, R. J.
1989-01-01
Cardiovascular variables such as heart rate, arterial blood pressure, stroke volume and the shape of electrocardiographic complexes all fluctuate on a beat to beat basis. These fluctuations have traditionally been ignored or, at best, treated as noise to be averaged out. The variability in cardiovascular signals reflects the homeodynamic interplay between perturbations to cardiovascular function and the dynamic response of the cardiovascular regulatory systems. Modern signal processing techniques provide a means of analyzing beat to beat fluctuations in cardiovascular signals, so as to permit a quantitative, noninvasive or minimally invasive method of assessing closed loop hemodynamic regulation and cardiac electrical stability. This method promises to provide a new approach to the clinical diagnosis and management of alterations in cardiovascular regulation and stability.
English, Brett A.; Appalsamy, Martin; Diedrich, Andre; Ruggiero, Alicia M.; Lund, David; Wright, Jane; Keller, Nancy R.; Louderback, Katherine M.; Robertson, David
2010-01-01
Healthy cardiovascular function relies on a balanced and responsive integration of noradrenergic and cholinergic innervation of the heart. High-affinity choline uptake by cholinergic terminals is pivotal for efficient ACh production and release. To date, the cardiovascular impact of diminished choline transporter (CHT) expression has not been directly examined, largely due to the transporter's inaccessibility in vivo. Here, we describe findings from cardiovascular experiments using transgenic mice that bear a CHT genetic deficiency. Whereas CHT knockout (CHT−/−) mice exhibit early postnatal lethality, CHT heterozygous (CHT+/−) mice survive, grow, and reproduce normally and exhibit normal spontaneous behaviors. However, the CHT+/− mouse heart displays significantly reduced levels of high-affinity choline uptake accompanied by significantly reduced levels of ACh. Telemeterized recordings of cardiovascular function in these mice revealed tachycardia and hypertension at rest. After treadmill exercise, CHT+/− mice exhibited slower heart rate recovery, consistent with a diminished cholinergic reserve, a contention validated through direct vagal nerve stimulation. Echocardiographic and histological experiments revealed an age-dependent decrease in fractional shortening, increased left ventricular dimensions, and increased ventricular fibrosis, consistent with ventricular dysfunction. These cardiovascular phenotypes of CHT+/− mice encourage an evaluation of humans bearing reduced CHT expression for their resiliency in maintaining proper heart function as well as risk for cardiovascular disease. PMID:20601463
Simonson, Donald C.; Nickerson, Lisa D.; Flores, Veronica L.; Siracusa, Tamar; Hager, Brandon; Lyoo, In Kyoon; Renshaw, Perry F.; Jacobson, Alan M.
2015-01-01
Human brain networks mediating interoceptive, behavioral, and cognitive aspects of glycemic control are not well studied. Using group independent component analysis with dual-regression approach of functional magnetic resonance imaging data, we examined the functional connectivity changes of large-scale resting state networks during sequential euglycemic–hypoglycemic clamp studies in patients with type 1 diabetes and nondiabetic controls and how these changes during hypoglycemia were related to symptoms of hypoglycemia awareness and to concurrent glycosylated hemoglobin (HbA1c) levels. During hypoglycemia, diabetic patients showed increased functional connectivity of the right anterior insula and the prefrontal cortex within the executive control network, which was associated with higher HbA1c. Controls showed decreased functional connectivity of the right anterior insula with the cerebellum/basal ganglia network and of temporal regions within the temporal pole network and increased functional connectivity in the default mode and sensorimotor networks. Functional connectivity reductions in the right basal ganglia were correlated with increases of self-reported hypoglycemic symptoms in controls but not in patients. Resting state networks that showed different group functional connectivity during hypoglycemia may be most sensitive to glycemic environment, and their connectivity patterns may have adapted to repeated glycemic excursions present in type 1 diabetes. Our results suggest that basal ganglia and insula mediation of interoceptive awareness during hypoglycemia is altered in type 1 diabetes. These changes could be neuroplastic adaptations to frequent hypoglycemic experiences. Functional connectivity changes in the insula and prefrontal cognitive networks could also reflect an adaptation to changes in brain metabolic pathways associated with chronic hyperglycemia. SIGNIFICANCE STATEMENT The major factor limiting improved glucose control in type 1 diabetes is the significant increase in hypoglycemia associated with insulin treatment. Repeated exposure to hypoglycemia alters patients' ability to recognize the autonomic and neuroglycopenic symptoms associated with low plasma glucose levels. We examined brain resting state networks during the induction of hypoglycemia in diabetic and control subjects and found differences in networks involved in sensorimotor function, cognition, and interoceptive awareness that were related to chronic levels of glycemic control. These findings identify brain regions that are sensitive to variations in plasma glucose levels and may also provide a basis for understanding the mechanisms underlying the increased incidence of cognitive impairment and affective disorders seen in patients with diabetes. PMID:26245963
Bed Rest Affects Ventricular and Arterial Elastances in Monkeys: Implications for Humans
2004-01-01
Eart may provide insight into adaptation and compromise of cardiovascular function induced by exposure to microgravity or confinement to bed rest...control treatments in our animals in order for Ees to increase in a similar magnitude across LBNP. Although we did not measure cardiac baroreflex function ...treatments. Sunagawa and co-workers have proposed that the integrity of cardiovascular function during rest and exercise is dependent on a mechanical
Kanegusuku, Hélcio; Queiroz, Andréia C; Silva, Valdo J; de Mello, Marco T; Ugrinowitsch, Carlos; Forjaz, Cláudia L
2015-07-01
The effects of high-intensity progressive resistance training (HIPRT) on cardiovascular function and autonomic neural regulation in older adults are unclear. To investigate this issue, 25 older adults were randomly divided into two groups: control (CON, N = 13, 63 ± 4 years; no training) and HIPRT (N = 12, 64 ± 4 years; 2 sessions/week, 7 exercises, 2–4 sets, 10–4 RM). Before and after four months, maximal strength, quadriceps cross-sectional area (QCSA), clinic and ambulatory blood pressures (BP), systemic hemodynamics, and cardiovascular autonomic modulation were measured. Maximal strength and QCSA increased in the HIPRT group and did not change in the CON group. Clinic and ambulatory BP, cardiac output, systemic vascular resistance, stroke volume, heart rate, and cardiac sympathovagal balance did not change in the HIPRT group or the CON group. In conclusion, HIPRT was effective at increasing muscle mass and strength without promoting changes in cardiovascular function or autonomic neural regulation.
Specialized physiological studies in support of manned space flight
NASA Technical Reports Server (NTRS)
Luft, U. C.
1980-01-01
The reversible changes that take place in the cardiovascular system during weightlessness were investigated. Particular attention was given to the assessment of cardiovascular functions during and after space missions. One of the most important of these functions is the amount of blood pumped by the heart per min at rest and during exercise of gravitational stress.
The Association between Cardiovascular Disease and Cochlear Function in Older Adults
ERIC Educational Resources Information Center
Torre, Peter, III; Cruickshanks, Karen J.; Klein, Barbara E.K.; Klein, Ronald; Nondahl, David M.
2005-01-01
The purpose of this research was to evaluate the relation between self-reported cardiovascular disease (CVD) and cochlear function in older adults. The Epidemiology of Hearing Loss Study (EHLS) is an ongoing population-based study of hearing loss and its risk factors in Beaver Dam, Wisconsin. As part of the EHLS questionnaire, participants were…
Salt, Ian P; Hardie, D Grahame
2017-05-26
The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last 2 decades, it has become apparent that AMPK regulates several other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function, as well as promoting anticontractile, anti-inflammatory, and antiatherogenic actions in blood vessels. In this review, we discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions. © 2017 American Heart Association, Inc.
Possible contribution of chronobiology to cardiovascular health.
Sato, Miho; Matsuo, Takahiro; Atmore, Henry; Akashi, Makoto
2013-01-01
The daily variations found in many aspects of physiology are collectively known as circadian rhythm (from "circa" meaning "about" and "dien" meaning "day"). Circadian oscillation in clock gene expression can generate quantitative or functional variations of the molecules directly involved in many physiological functions. This paper reviews the molecular mechanisms of the circadian clock, the transmission of circadian effects to cardiovascular functions, and the effects of circadian dysfunction on cardiovascular diseases. An evaluation of the operation of the internal clock is needed in clinical settings and will be an effective tool in the diagnosis of circadian rhythm disorders. Toward this end, we introduce a novel non-invasive method for assessing circadian time-regulation in human beings through the utilization of hair follicle cells.
The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster
Lattao, Ramona; Kovács, Levente; Glover, David M.
2017-01-01
Centrioles play a key role in the development of the fly. They are needed for the correct formation of centrosomes, the organelles at the poles of the spindle that can persist as microtubule organizing centers (MTOCs) into interphase. The ability to nucleate cytoplasmic microtubules (MTs) is a property of the surrounding pericentriolar material (PCM). The centriole has a dual life, existing not only as the core of the centrosome but also as the basal body, the structure that templates the formation of cilia and flagellae. Thus the structure and functions of the centriole, the centrosome, and the basal body have an impact upon many aspects of development and physiology that can readily be modeled in Drosophila. Centrosomes are essential to give organization to the rapidly increasing numbers of nuclei in the syncytial embryo and for the spatially precise execution of cell division in numerous tissues, particularly during male meiosis. Although mitotic cell cycles can take place in the absence of centrosomes, this is an error-prone process that opens up the fly to developmental defects and the potential of tumor formation. Here, we review the structure and functions of the centriole, the centrosome, and the basal body in different tissues and cultured cells of Drosophila melanogaster, highlighting their contributions to different aspects of development and cell division. PMID:28476861
Evidence for basal distortion-product otoacoustic emission components.
Martin, Glen K; Stagner, Barden B; Lonsbury-Martin, Brenda L
2010-05-01
Distortion-product otoacoustic emissions (DPOAEs) were measured with traditional DP-grams and level/phase (L/P) maps in rabbits with either normal cochlear function or unique sound-induced cochlear losses that were characterized as either low-frequency or notched configurations. To demonstrate that emission generators distributed basal to the f(2) primary-tone contribute, in general, to DPOAE levels and phases, a high-frequency interference tone (IT) was presented at 1/3 of an octave (oct) above the f(2) primary-tone, and DPOAEs were re-measured as "augmented" DP-grams (ADP-grams) and L/P maps. The vector difference between the control and augmented functions was then computed to derive residual DP-grams (RDP-grams) and L/P maps. The resulting RDP-grams and L/P maps, which described the DPOAEs removed by the IT, supported the notion that basal DPOAE components routinely contribute to the generation of standard measures of DPOAEs. Separate experiments demonstrated that these components could not be attributed to the effects of the 1/3-oct IT on f(2), or DPOAEs generated by the addition of a third interfering tone. These basal components can "fill in" the lesion estimated by the commonly employed DP-gram. Thus, ADP-grams more accurately reveal the pattern of cochlear damage and may eventually lead to an improved DP-gram procedure.
Miura, Hirohito; Scott, Jennifer K.; Harada, Shuitsu; Barlow, Linda A.
2014-01-01
Background Taste buds contain ~60 elongate cells and several basal cells. Elongate cells comprise three functional taste cell types: I - glial cells, II - bitter/sweet/umami receptor cells, and III - sour detectors. Although taste cells are continuously renewed, lineage relationships among cell types are ill-defined. Basal cells have been proposed as taste bud stem cells, a subset of which express Sonic hedgehog (Shh). However, Shh+ basal cells turnover rapidly suggesting that Shh+ cells are precursors of some or all taste cell types. Results To fate map Shh-expressing cells, mice carrying ShhCreERT2 and a high (CAG-CAT-EGFP) or low (R26RLacZ) efficiency reporter allele were given tamoxifen to activate Cre in Shh+ cells. Using R26RLacZ, lineage-labeled cells occur singly within buds, supporting a post-mitotic state for Shh+ cells. Using either reporter, we show that Shh+ cells differentiate into all three taste cell types, in proportions reflecting cell type ratios in taste buds (I > II > III). Conclusions Shh+ cells are not stem cells, but are post-mitotic, immediate precursors of taste cells. Shh+ cells differentiate into each of the three taste cell types, and the choice of a specific taste cell fate is regulated to maintain the proper ratio within buds. PMID:24590958
Cruz, Fábio C; Duarte, Josiane O; Leão, Rodrigo M; Hummel, Luiz F V; Planeta, Cleopatra S; Crestani, Carlos C
2016-01-01
It has been demonstrated that disruption of social bonds and perceived isolation (loneliness) are associated with an increased risk of cardiovascular morbidity and mortality. Adolescence is proposed as a period of vulnerability to stress. Nevertheless, the impact of chronic social stress during this ontogenic period in cardiovascular function is poorly understood. Therefore, the purpose of this study was to compare the impact in cardiovascular function of social isolation for 3 weeks in adolescent and adult male rats. Also, the long-term effects of social isolation during adolescence were investigated longitudinally. Social isolation reduced body weight in adolescent, but not in adult animals. Disruption of social bonds during adolescence increased arterial pressure without affecting heart rate and pulse pressure (PP). Nevertheless, social isolation in adulthood reduced systolic arterial pressure and increased diastolic arterial pressure, which in turn decreased PP without affecting mean arterial pressure. Cardiovascular changes in adolescents, but not adults, were followed by facilitation of both baroreflex sensitivity and vascular reactivity to the vasodilator agent acetylcholine. Vascular responsiveness to either the vasodilator agent sodium nitroprusside or the vasoconstrictor agent phenylephrine was not affected by social isolation. Except for the changes in body weight and baroreflex sensitivity, all alterations evoked by social isolation during adolescence were reversed in adulthood after moving animals from isolated to collective housing. These findings suggest a vulnerability of adolescents to the effects of chronic social isolation in cardiovascular function. However, results indicate minimal cardiovascular consequences in adulthood of disruption of social bonds during adolescence. © 2015 Wiley Periodicals, Inc.
The benefits of ribose in cardiovascular disease.
Pauly, D F; Johnson, C; St Cyr, J A
2003-02-01
Cardiovascular disease still ranks as the leading cause of death in men and women. Adults have tried to lower their risk of cardiovascular disease by improving their diet, quitting smoking, controlling blood pressure and exercising regularly. Additionally, many adults have turned to nutriceutical or natural products. Myocardial ischemia, produces a depression in myocardial tissue levels of high energy compounds, along with a compromise in myocardial function. Ribose, a naturally occurring sugar, has been extensively investigated, both in animal and clinical studies, as an agent to enhance the recovery of these depressed energy compounds. Results of these studies have been promising in enhancing the recovery of these energy molecules along with an improvement in myocardial function. Therefore, ribose should be considered as a potential agent in the treatment of ischemic cardiovascular disease.
Redox-mediated signal transduction by cardiovascular Nox NADPH oxidases.
Brandes, Ralf P; Weissmann, Norbert; Schröder, Katrin
2014-08-01
The only known function of the Nox family of NADPH oxidases is the production of reactive oxygen species (ROS). Some Nox enzymes show high tissue-specific expression and the ROS locally produced are required for synthesis of hormones or tissue components. In the cardiovascular system, Nox enzymes are low abundant and function as redox-modulators. By reacting with thiols, nitric oxide (NO) or trace metals, Nox-derived ROS elicit a plethora of cellular responses required for physiological growth factor signaling and the induction and adaptation to pathological processes. The interactions of Nox-derived ROS with signaling elements in the cardiovascular system are highly diverse and will be detailed in this article, which is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System". Copyright © 2014 Elsevier Ltd. All rights reserved.
Brown, Jennifer; Pan, Wei-Xing; Dudman, Joshua Tate
2014-05-21
Dysfunction of the basal ganglia produces severe deficits in the timing, initiation, and vigor of movement. These diverse impairments suggest a control system gone awry. In engineered systems, feedback is critical for control. By contrast, models of the basal ganglia highlight feedforward circuitry and ignore intrinsic feedback circuits. In this study, we show that feedback via axon collaterals of substantia nigra projection neurons control the gain of the basal ganglia output. Through a combination of physiology, optogenetics, anatomy, and circuit mapping, we elaborate a general circuit mechanism for gain control in a microcircuit lacking interneurons. Our data suggest that diverse tonic firing rates, weak unitary connections and a spatially diffuse collateral circuit with distinct topography and kinetics from feedforward input is sufficient to implement divisive feedback inhibition. The importance of feedback for engineered systems implies that the intranigral microcircuit, despite its absence from canonical models, could be essential to basal ganglia function. DOI: http://dx.doi.org/10.7554/eLife.02397.001. Copyright © 2014, Brown et al.
Toward sophisticated basal ganglia neuromodulation: Review on basal ganglia deep brain stimulation.
Da Cunha, Claudio; Boschen, Suelen L; Gómez-A, Alexander; Ross, Erika K; Gibson, William S J; Min, Hoon-Ki; Lee, Kendall H; Blaha, Charles D
2015-11-01
This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson's disease, Huntington's disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan
2015-01-01
Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats.
Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan
2015-01-01
Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats. PMID:25789862
Toward sophisiticated basal ganglia neuromodulation: review on basal gaglia deep brain stimulation
Da Cunha, Claudio; Boschen, Suelen L.; Gómez-A, Alexander; Ross, Erika K.; Gibson, William S. J.; Min, Hoon-Ki; Lee, Kendall H.; Blaha, Charles D.
2015-01-01
This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson’s disease, Huntington’s disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms. PMID:25684727
[Dermoepidermic junction: a selective, complex and vital barrier].
Frede, Silvia C; Dionisio de Cabalier, María E; Zaya, Alejandro; Hliba, Ernesto
2004-01-01
Dermoepidermic junction (DEJ) is a highly complex region, containing a great variety of cellular elements, which despite of having different embriogenesis, interact with each other, generating different substances that keep the function and homeostasis of the greatest organ of the human body. DEJ is regarded as a highly specialized basal lamina, which acts as a highly selective pathway for the migration of cells and macromolecules, inducing cellular differentiation and micro enviromental metabolism modifications. DEJ may be divided into three zones regarding the basal lamina 1--the nearest to epidermic zone, having tonofilaments and hemidesmosomes, which keep anchored basal cells. This region is limited by the lamina densa 2--the intermediate zone, represented exclusively by lamina densa and finally the lamina 3,--the third region--extends from lamina densa to the upper dermis and extracelullar matrix. Despite there is much to learn about DEJ, the knowledge about each molecule and function of every compartment will enable us to know more about the pathogenesis of several dermatologic diseases, with a great prevalence in the clinical practice.
Basal ganglia function, stuttering, sequencing, and repair in adult songbirds
Kubikova, Lubica; Bosikova, Eva; Cvikova, Martina; Lukacova, Kristina; Scharff, Constance; Jarvis, Erich D.
2014-01-01
A pallial-basal-ganglia-thalamic-pallial loop in songbirds is involved in vocal motor learning. Damage to its basal ganglia part, Area X, in adult zebra finches has been noted to have no strong effects on song and its function is unclear. Here we report that neurotoxic damage to adult Area X induced changes in singing tempo and global syllable sequencing in all animals, and considerably increased syllable repetition in birds whose song motifs ended with minor repetitions before lesioning. This stuttering-like behavior started at one month, and improved over six months. Unexpectedly, the lesioned region showed considerable recovery, including immigration of newly generated or repaired neurons that became active during singing. The timing of the recovery and stuttering suggest that immature recovering activity of the circuit might be associated with stuttering. These findings indicate that even after juvenile learning is complete, the adult striatum plays a role in higher level organization of learned vocalizations. PMID:25307086
Clinical neurocardiology defining the value of neuroscience‐based cardiovascular therapeutics
Ajijola, Olujimi A.; Anand, Inder; Armour, J. Andrew; Chen, Peng‐Sheng; Esler, Murray; De Ferrari, Gaetano M.; Fishbein, Michael C.; Goldberger, Jeffrey J.; Harper, Ronald M.; Joyner, Michael J.; Khalsa, Sahib S.; Kumar, Rajesh; Lane, Richard; Mahajan, Aman; Po, Sunny; Schwartz, Peter J.; Somers, Virend K.; Valderrabano, Miguel; Vaseghi, Marmar; Zipes, Douglas P.
2016-01-01
Abstract The autonomic nervous system regulates all aspects of normal cardiac function, and is recognized to play a critical role in the pathophysiology of many cardiovascular diseases. As such, the value of neuroscience‐based cardiovascular therapeutics is increasingly evident. This White Paper reviews the current state of understanding of human cardiac neuroanatomy, neurophysiology, pathophysiology in specific disease conditions, autonomic testing, risk stratification, and neuromodulatory strategies to mitigate the progression of cardiovascular diseases. PMID:27114333
The role of exercise in the management of rheumatoid arthritis.
Metsios, George S; Stavropoulos-Kalinoglou, Antonis; Kitas, George D
2015-01-01
Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with significant functional impairment and increased risk for cardiovascular disease. Along with pharmacological therapy, exercise seems to be a very promising intervention to improve disease-related outcomes, including functional ability and systemic manifestations, such as the increased cardiovascular risk. In this review, we discuss the physiological mechanisms by which exercise improves inflammation, cardiovascular risk and psychological health in patients with rheumatoid arthritis (RA) and describe in detail how exercise can be incorporated in the management of this disease using real examples from our clinical practice.
Alizadeh, Mohammad; Safaeiyan, Abdolrasoul; Ostadrahimi, Alireza; Estakhri, Rassul; Daneghian, Sevana; Ghaffari, Aida; Gargari, Bahram Pourghassem
2012-01-01
We aimed to discover if L-arginine and selenium alone or together can increase the effect of a hypocaloric diet enriched in legumes (HDEL) on central obesity and cardiovascular risk factors in women with central obesity. This randomized, double-blind, placebo-controlled trial was undertaken in 84 premenopausal women with central obesity. After a 2-week run-in period on an isocaloric diet, participants were randomly assigned to a control diet (HDEL), L-arginine (5 g/day) and HDEL, selenium (200 μg/day) and HDEL or L-arginine, selenium and HDEL for 6 weeks. Cardiovascular risk factors were assessed before intervention and 3 and 6 weeks afterwards. After 6 weeks, L-arginine had significantly reduced waist circumference (WC); selenium had significantly lowered fasting concentrations of serum insulin and the homeostasis model assessment of insulin resistance index; the interaction between L-arginine and selenium significantly reduced the fasting concentration of nitric oxides (NO(x)), and HDEL lowered triglycerides (TG) and WC and significantly increased the fasting concentration of NO(x). HDEL reduced high-sensitivity C-reactive protein levels in the first half of the study and returned them to basal levels in the second half. These data indicate the beneficial effects of L-arginine on central obesity, selenium on insulin resistance and HDEL on serum concentrations of NO(x) and TG. Copyright © 2012 S. Karger AG, Basel.
Basal Ganglia Activity Mirrors a Benefit of Action and Reward on Long-Lasting Event Memory.
Koster, Raphael; Guitart-Masip, Marc; Dolan, Raymond J; Düzel, Emrah
2015-12-01
The expectation of reward is known to enhance a consolidation of long-term memory for events. We tested whether this effect is driven by positive valence or action requirements tied to expected reward. Using a functional magnetic resonance imaging (fMRI) paradigm in young adults, novel images predicted gain or loss outcomes, which in turn were either obtained or avoided by action or inaction. After 24 h, memory for these images reflected a benefit of action as well as a congruence of action requirements and valence, namely, action for reward and inaction for avoidance. fMRI responses in the hippocampus, a region known to be critical for long-term memory function, reflected the anticipation of inaction. In contrast, activity in the putamen mirrored the congruence of action requirement and valence, whereas other basal ganglia regions mirrored overall action benefits on long-lasting memory. The findings indicate a novel type of functional division between the hippocampus and the basal ganglia in the motivational regulation of long-term memory consolidation, which favors remembering events that are worth acting for. © The Author 2015. Published by Oxford University Press.
Kristensen, Peter Lommer; Høi-Hansen, Thomas; Olsen, Niels Vidiendal; Pedersen-Bjergaard, Ulrik; Thorsteinsson, Birger
2009-07-01
Preservation of cognitive function during hypoglycaemic episodes is crucial for patients with insulin-treated diabetes to avoid severe hypoglycaemic events. Erythropoietin has neuroprotective potential. However, the role of erythropoietin during hypoglycaemia is unclear. The aim of the study was to explore plasma erythropoietin response to hypoglycaemia and the relationship to basal renin-angiotensin system (RAS) activity and cognitive function. We performed a single-blinded, controlled, cross-over study with induced hypoglycaemia or maintained glycaemic level. Nine patients with type 1 diabetes with high and nine with low activity in RAS were studied. Hypoglycaemia was induced using a standardized insulin-infusion. Overall, erythropoietin concentrations increased during hypoglycaemia. In the high RAS group erythropoietin rose 29% (p=0.032) whereas no significant response was observed in the low RAS group (7% increment; p=0.43). Independently, both hypoglycaemia and high RAS activity were associated with higher levels of erythropoietin (p=0.02 and 0.04, respectively). Low plasma erythropoietin at baseline was associated with poorer cognitive performance during hypoglycaemia. Hypoglycaemia triggers a rise in plasma erythropoietin in patients with type 1 diabetes. The response is influenced by basal RAS activity. Erythropoietin may carry a neuroprotective potential during hypoglycaemia.
Neurophysiology of the pedunculopontine tegmental nucleus.
Vitale, F; Capozzo, A; Mazzone, P; Scarnati, E
2018-03-07
The interest in the pedunculopontine tegmental nucleus (PPTg), a structure located in the brainstem at the level of the pontomesencephalic junction, has greatly increased in recent years because it is involved in the regulation of physiological functions that fail in Parkinson's disease and because it is a promising target for deep brain stimulation in movement disorders. The PPTg is highly interconnected with the main basal ganglia nuclei and relays basal ganglia activity to thalamic and brainstem nuclei and to spinal effectors. In this review, we address the functional role of the main PPTg outputs directed to the basal ganglia, thalamus, cerebellum and spinal cord. Together, the data that we discuss show that the PPTg may influence thalamocortical activity and spinal motoneuron excitability through its ascending and descending output fibers, respectively. Cerebellar nuclei may also relay signals from the PPTg to thalamic and brainstem nuclei. In addition to participating in motor functions, the PPTg participates in arousal, attention, action selection and reward mechanisms. Finally, we discuss the possibility that the PPTg may be involved in excitotoxic degeneration of the dopaminergic neurons of the substantia nigra through the glutamatergic monosynaptic input that it provides to these neurons. Copyright © 2018 Elsevier Inc. All rights reserved.
Li, Haihong; Zhang, Mingjun; Chen, Liyun; Li, Xuexue; Zhang, Bingna
2016-10-01
Increasing evidence indicates that maintenance of cell polarity plays a pivotal role in the regulation of glandular homeostasis and function. We examine the markers for polarity at different time points to investigate the formation of cell polarity during 3D reconstitution of eccrine sweat glands. Mixtures of eccrine sweat gland cells and Matrigel were injected subcutaneously into the inguinal regions of nude mice. At 2, 3, 4, 5 and 6 weeks post-implantation, Matrigel plugs were removed and immunostained for basal collagen IV, lateral β-catenin, lateroapical ZO-1 and apical F-actin. The results showed that the cell polarity of the spheroids appeared in sequence. Formation of basal polarity was prior to lateral, apical and lateroapical polarity. Collagen IV was detected basally at 2 weeks, β-catenin laterally and ZO-1 lateroapically at 3 weeks, and F-actin apically at 4 weeks post-implantation. At week 5 and week 6, the localization and the positive percentage of collagen IV, β-catenin, ZO-1 or F-actin in spheroids was similar to that in native eccrine sweat glands. We conclude that the reconstituted 3D eccrine sweat glands are functional or potentially functional.
Cardiovascular and Cerebrovascular Control on Return from ISS
NASA Technical Reports Server (NTRS)
Hughson, Richard Lee; Shoemaker, Joel Kevin; Blaber, Andrew Philip; Arbeille, Philippe; Greaves, Danielle Kathleen
2008-01-01
Cardiovascular and Cerebrovascular Control on Return from ISS (CCISS) will study the effects of long-duration spaceflight on crew members' heart functions and their blood vessels that supply the brain. Learning more about the cardiovascular and cerebrovascular systems could lead to specific countermeasures that might better protect future space travelers. This experiment is collaborative with the Canadian Space Agency.
Do environmental effects on human emotions cause cardiovascular disorders?
Rosenman, R H
1997-01-01
Environmental influences on human health include the effects of toxic materials and adverse ecological factors. Natural milieu stressors also affect emotions that may adversely affect cardiovascular function and precipitate or otherwise contribute to complications of cardiovascular diseases. However, although variously hypothesized, there is inadequate evidence that they directly contribute to the pathogenesis of sustained hypertension or coronary atherosclerosis.
Orio, Francesco; Cascella, Teresa; Giallauria, Francesco; Palomba, Stefano; De Lorenzo, Anna; Lucci, Rosa; Ambrosino, Elena; Lombardi, Gaetano; Colao, Annamaria; Vigorito, Carlo
2006-03-01
Polycystic ovary syndrome (PCOS) is a good example of obesity-related cardiovascular complication affecting young women. PCOS is not only considered a reproductive problem but rather represents a complex endocrine, multifaceted syndrome with important health implications. Several evidences suggest an increased cardiovascular risk of cardiovascular disease associated with this syndrome, characterized by an impairment of heart structure and function, endothelial dysfunction and lipid abnormalities. All these features, probably linked to insulin-resistance, are often present in obese PCOS patients. Cardiovascular abnormalities represent important long-term sequelae of PCOS that need further investigations.
NASA Technical Reports Server (NTRS)
Hutchins, P. M.; Marshburn, T. H.; Smith, T. L.; Osborne, S. W.; Lynch, C. D.; Moultsby, S. J.
1988-01-01
The investigation of cardiovascular function necessarily involves a consideration of the exchange of substances at the capillary. If cardiovascular function is compromised or in any way altered during exposure to zero gravity in space, then it stands to reason that microvascular function is also modified. We have shown that an increase in cardiac output similar to that reported during simulated weightlessness is associated with a doubling of the number of post-capillary venules and a reduction in the number of arterioles by 35%. If the weightlessness of space travel produces similar changes in cardiopulmonary volume and cardiac output, a reasonable expectation is that astronauts will undergo venous neovascularization. We have developed an animal model in which to correlate microvascular and systemic cardiovascular function. The microcirculatory preparation consists of a lightweight, thermo-neutral chamber implanted around intact skeletal muscle on the back of a rat. Using this technique, the performed microvasculature of the cutaneous maximus muscle may be observed in the conscious, unanesthetized animal. Microcirculatory variables which may be obtained include venular and arteriolar numbers, lengths and diameters, single vessel flow velocities, vasomotion, capillary hematocrit anastomoses and orders of branching. Systemic hemodynamic monitoring of cardiac output by electromagnetic flowmetry, and arterial and venous pressures allows correlation of macro- and microcirculatory changes at the same time, in the same animal. Observed and calculated hemodynamic variables also include pulse pressure, heart rate, stroke volume, total peripheral resistance, aortic compliance, minute work, peak aortic flow velocity and systolic time interval. In this manner, an integrated assessment of total cardiovascular function may be obtained in the same animal without the complicating influence of anesthetics.
Loh, Tiffany; Rubin, Ashley G; Brian Jiang, Shang I
2016-12-01
Basal cell carcinoma (BCC) is the most common malignancy in the United States. Most BCCs occur on cutaneous surfaces, but rare cases on the mucosal lip have also been documented. Because only a small number of mucosal BCC (mBCC) cases have been reported, data on their clinical characteristics and management are limited. To perform an updated literature review of the management of mBCCs on the lip. A comprehensive literature review was conducted through a search of the PubMed database with the key phrases "mucosal basal cell carcinoma," "basal cell carcinoma mucosa," and "basal cell carcinoma lip mucosa." Forty-eight cases of mBCCs have been reported, and 35 had sufficient data for analysis. The average age at presentation was 66.8 years, and 57% (n = 20) had a history of skin cancer. Most cases were treated with surgical excision or Mohs micrographic surgery (MMS), with only 1 recurrence in the literature. Furthermore, the authors present 8 additional cases of mBCCs successfully treated with MMS. Mucosal basal cell carcinomas are rare, and skin cancer history may be a risk factor. Because the lip is a cosmetically and functionally important area, MMS may be the preferred treatment method for mBCCs in this location.
Understanding Defect-Stabilized Noncovalent Functionalization of Graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hua; Uysal, Ahmet; Anjos, Daniela M.
2015-09-01
The noncovalent functionalization of graphene by small molecule aromatic adsorbates, phenanthrenequinone (PQ), is investigated systematically by combining electrochemical characterization, high-resolution interfacial X-ray scattering, and ab initio density functional theory calculations. The findings in this study reveal that while PQ deposited on pristine graphene is unstable to electrochemical cycling, the prior introduction of defects and oxygen functionality (hydroxyl and epoxide groups) to the basal plane by exposure to atomic radicals (i.e., oxygen plasma) effectively stabilizes its noncovalent functionalization by PQ adsorption. The structure of adsorbed PQ molecules resembles the graphene layer stacking and is further stabilized by hydrogen bonding with terminalmore » hydroxyl groups that form at defect sites within the graphene basal plane. The stabilized PQ/graphene interface demonstrates persistent redox activity associated with proton-coupled-electron-transfer reactions. The resultant PQ adsorbed structure is essentially independent of electrochemical potentials. These results highlight a facile approach to enhance functionalities of the otherwise chemically inert graphene using noncovalent interactions.« less
Understanding Defect-Stabilized Noncovalent Functionalization of Graphene
Zhou, Hua; Uysal, Ahmet; Anjos, Daniela M.; ...
2015-09-01
For the noncovalent functionalization of graphene by small molecule aromatic adsorbates, phenanthrenequinone (PQ), is investigated systematically by combining electrochemical characterization, high-resolution interfacial X-ray scattering, and ab initio density functional theory calculations. The fi ndings in this study reveal that while PQ deposited on pristine graphene is unstable to electrochemical cycling, the prior introduction of defects and oxygen functionality (hydroxyl and epoxide groups) to the basal plane by exposure to atomic radicals (i.e., oxygen plasma) effectively stabilizes its noncovalent functionalization by PQ adsorption. Moreover, the structure of adsorbed PQ molecules resembles the graphene layer stacking and is further stabilized by hydrogenmore » bonding with terminal hydroxyl groups that form at defect sites within the graphene basal plane. The stabilized PQ/graphene interface demonstrates persistent redox activity associated with proton-coupled-electron-transfer reactions. The resultant PQ adsorbed structure is essentially independent of electrochemical potentials. Finally, these results highlight a facile approach to enhance functionalities of the otherwise chemically inert graphene using noncovalent interactions.« less
Basal forebrain amnesia: does the nucleus accumbens contribute to human memory?
Goldenberg, G.; Schuri, U.; Gromminger, O.; Arnold, U.
1999-01-01
OBJECTIVE—To analyse amnesia caused by basal forebrain lesions. METHODS—A single case study of a patient with amnesia after bleeding into the anterior portion of the left basal ganglia. Neuropsychological examination included tests of attention, executive function, working memory, recall, and recognition of verbal and non-verbal material, and recall from remote semantic and autobiographical memory. The patient's MRI and those of other published cases of basal forebrain amnesia were reviewed to specify which structures within the basal forebrain are crucial for amnesia. RESULTS—Attention and executive function were largely intact. There was anterograde amnesia for verbal material which affected free recall and recognition. With both modes of testing the patient produced many false positive responses and intrusions when lists of unrelated words had been memorised. However, he confabulated neither on story recall nor in day to day memory, nor in recall from remote memory. The lesion affected mainly the nucleus accumbens, but encroached on the inferior limb of the capsula interna and the most ventral portion of the nucleus caudatus and globus pallidus, and there was evidence of some atrophy of the head of the caudate nucleus. The lesion spared the nucleus basalis Meynert, the diagnonal band, and the septum, which are the sites of cholinergic cell concentrations. CONCLUSIONS—It seems unlikely that false positive responses were caused by insufficient strategic control of memory retrieval. This speaks against a major role of the capsular lesion which might disconnect the prefrontal cortex from the thalamus. It is proposed that the lesion of the nucleus accumbens caused amnesia. PMID:10406982
Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes.
Keller, Lani C; Romijn, Edwin P; Zamora, Ivan; Yates, John R; Marshall, Wallace F
2005-06-21
The centriole is one of the most enigmatic organelles in the cell. Centrioles are cylindrical, microtubule-based barrels found in the core of the centrosome. Centrioles also act as basal bodies during interphase to nucleate the assembly of cilia and flagella. There are currently only a handful of known centriole proteins. We used mass-spectrometry-based MudPIT (multidimensional protein identification technology) to identify the protein composition of basal bodies (centrioles) isolated from the green alga Chlamydomonas reinhardtii. This analysis detected the majority of known centriole proteins, including centrin, epsilon tubulin, and the cartwheel protein BLD10p. By combining proteomic data with information about gene expression and comparative genomics, we identified 45 cross-validated centriole candidate proteins in two classes. Members of the first class of proteins (BUG1-BUG27) are encoded by genes whose expression correlates with flagellar assembly and which therefore may play a role in ciliogenesis-related functions of basal bodies. Members of the second class (POC1-POC18) are implicated by comparative-genomics and -proteomics studies to be conserved components of the centriole. We confirmed centriolar localization for the human homologs of four candidate proteins. Three of the cross-validated centriole candidate proteins are encoded by orthologs of genes (OFD1, NPHP-4, and PACRG) implicated in mammalian ciliary function and disease, suggesting that oral-facial-digital syndrome and nephronophthisis may involve a dysfunction of centrioles and/or basal bodies. By analyzing isolated Chlamydomonas basal bodies, we have been able to obtain the first reported proteomic analysis of the centriole.
Idei, Masahiko; Osada, Keigo; Sato, Shinya; Nakayama, Takeshi; Nagumo, Tamotsu; Mann, David G
2013-08-01
The most complete account to date of the ultrastructure of flagellate cells in diatoms is given for the sperm of Thalassiosira lacustris and Melosira moniliformis var. octogona, based on serial sections. The sperm are uniflagellate, with no trace of a second basal body, and possess a 9 + 0 axoneme. The significance of the 9 + 0 configuration is discussed: lack of the central pair microtubules and radial spokes does not compromise the mastigoneme-bearing flagellum's capacity to perform planar beats and thrust reversal and may perhaps be related to sensory/secretory function of the sperm flagellum during plasmogamy. The basal bodies of diatoms are confirmed to contain doublets rather than triplets, which may correlate with the absence of some centriolar proteins found in most cells producing active flagella. Whereas Melosira possesses a normal cartwheel structure in the long basal body, no such structure is present in Thalassiosira, which instead possesses 'intercalary fibres' linking the basal body doublets. No transitional helices or transitional plates are present in either species studied. Cones of microtubules are associated with the basal body and partially enclose the nucleus in M. moniliformis and T. lacustris. They do not appear to be true microtubular roots and may arise through transformation of the meiosis II spindle. A close association between cone microtubules and tubules containing mastigonemes may indicate a function in intracellular mastigoneme transport. No correlation can yet be detected between methods of spermatogenesis and phylogeny in diatoms, contrary to previous suggestions.
Does systemic steroid deficiency affect inner ear functions?
Dogan, Remzi; Merıc, Ayşenur; Gedık, Ozge; Tugrul, Selahattin; Eren, Sabri Baki; Ozturan, Orhan
2015-01-01
Today corticosteroids are employed for the treatment of various inner ear disorders. In this study we have investigated probable changes in hearing functions resulting from a deficiency of systemic steroid secretions. Twenty four healthy female rats were used in our study, allocated into three groups (medical adrenalectomy, medical adrenalectomy+dexamethasone, no treatment). Audiological evaluations were conducted at the beginning of the study and on days 7, 14 and 21. Blood samples were taken at the beginning and at the end of the study and blood corticosterone levels were determined. While there were no significant differences between the basal, 7th, 14th and 21st day DPOAE values of group 1, their ABR threshold values showed significant increases. In group 2, there were no significant differences between the basal, 7th, 14th and 21st day DPOAE values. ABR thresholds of group 2 showed significant increases on days 7 and 14 as compared to their basal values, but there were no significant differences between the 21st day and basal ABR threshold values. There were no significant differences between the basal cortisol levels of the three groups. The mean cortisol level of group 1 on day 21 was found to be significantly lower than those of groups 2 and 3. The results of the study demonstrated that there were no significant changes in DPOAE values with the cessation of cortisol secretion, while there was a progressive increase in ABR thresholds, which could be overcome with cortisone replacement. Copyright © 2015 Elsevier Inc. All rights reserved.
Singewald, Nicolas; Chicchi, Gary G; Thurner, Clemens C; Tsao, Kwei-Lan; Spetea, Mariana; Schmidhammer, Helmut; Sreepathi, Hari Kishore; Ferraguti, Francesco; Singewald, Georg M; Ebner, Karl
2008-09-01
It has been shown that anxiety and stress responses are modulated by substance P (SP) released within the amygdala. However, there is an important gap in our knowledge concerning the mechanisms regulating extracellular SP in this brain region. To study a possible self-regulating role of SP, we used a selective neurokinin-1 (NK1) receptor antagonist to investigate whether blockade of NK1 receptors results in altered basal and/or stress-evoked SP release in the medial amygdala (MeA), a critical brain area for a functional involvement of SP transmission in enhanced anxiety responses induced by stressor exposure. In vitro binding and functional receptor assays revealed that L-822429 represents a potent and selective rat NK1 receptor antagonist. Intra-amygdaloid administration of L-822429 via inverse microdialysis enhanced basal, but attenuated swim stress-induced SP release, while the low-affinity enantiomer of L-822429 had no effect. Using light and electron microscopy, synaptic contacts between SP-containing fibres and dendrites expressing NK1 receptors was demonstrated in the medial amygdala. Our findings suggest self-regulatory capacity of SP-mediated neurotransmission that differs in the effect on basal and stress-induced release of SP. Under basal conditions endogenous SP can serve as a signal that tonically inhibits its own release via a NK1 receptor-mediated negative feedback action, while under stress conditions SP release is further facilitated by activation of NK1 receptors, likely leading to high local levels of SP and activation of receptors to which SP binds with lower affinity.
St Ecedil Pień, Ewa; Costa, Marina C; Kurc, Szczepan; Drożdż, Anna; Cortez-Dias, Nuno; Enguita, Francisco J
2018-06-07
Pervasive transcription of the human genome is responsible for the production of a myriad of non-coding RNA molecules (ncRNAs) some of them with regulatory functions. The pivotal role of ncRNAs in cardiovascular biology has been unveiled in the last decade, starting from the characterization of the involvement of micro-RNAs in cardiovascular development and function, and followed by the use of circulating ncRNAs as biomarkers of cardiovascular diseases. The human non-coding secretome is composed by several RNA species that circulate in body fluids and could be used as biomarkers for diagnosis and outcome prediction. In cardiovascular diseases, secreted ncRNAs have been described as biomarkers of several conditions including myocardial infarction, cardiac failure, and atrial fibrillation. Among circulating ncRNAs, micro-RNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have been proposed as biomarkers in different cardiovascular diseases. In comparison with standard biomarkers, the biochemical nature of ncRNAs offers better stability and flexible storage conditions of the samples, and increased sensitivity and specificity. In this review we describe the current trends and future prospects of the use of the ncRNA secretome components as biomarkers of cardiovascular diseases, including the opening questions related with their secretion mechanisms and regulatory actions.
Functional food addressing heart health: do we have to target the gut microbiota?
Ryan, Paul M; Ross, Reynolds Paul; Fitzgerald, Gerald F; Caplice, Noel M; Stanton, Catherine
2015-11-01
Health promoting functional food ingredients for cardiovascular health are generally aimed at modulating lipid metabolism in consumers. However, significant advances have furthered our understanding of the mechanisms involved in development, progression, and treatment of cardiovascular disease. In parallel, a central role of the gut microbiota, both in accelerating and attenuating cardiovascular disease, has emerged. Modulation of the gut microbiota, by use of prebiotics and probiotics, has recently shown promise in cardiovascular disease prevention. Certain prebiotics can promote a short chain fatty acid profile that alters hormone secretion and attenuates cholesterol synthesis, whereas bile salt hydrolase and exopolysaccharide-producing probiotics have been shown to actively correct hypercholesterolemia. Furthermore, specific microbial genera have been identified as potential cardiovascular disease risk factors. This effect is attributed to the ability of certain members of the gut microbiota to convert dietary quaternary amines to trimethylamine, the primary substrate of the putatively atherosclerosis-promoting compound trimethylamine-N-oxide. In this respect, current research is indicating trimethylamine-depleting Achaea - termed Archeabiotics as a potential novel dietary strategy for promoting heart health. The microbiota offers a modifiable target, which has the potential to progress or prevent cardiovascular disease development. Whereas host-targeted interventions remain the standard, current research implicates microbiota-mediated therapies as an effective means of modulating cardiovascular health.
Andrade, Chittaranjan; Kumar, Chethan B; Surya, Sandarsh
2013-05-01
Depression and heart disease are commonly comorbid. Selective serotonin reuptake inhibitors (SSRIs) are commonly used to treat depression. In March 2011, we carried out a 15-year search of PubMed for preclinical and clinical publications related to SSRIs and ischemic heart disease (IHD) or congestive heart failure (CHF). We identify and discuss a number of mechanisms by which SSRIs may influence cardiovascular functioning and health outcomes in patients with heart disease; many of the mechanisms that we present have received little attention in previous reviews. We examine studies with positive, neutral, and negative outcomes in IHD and CHF patients treated with SSRIs. SSRIs influence cardiovascular functioning and health through several different mechanisms; for example, they inhibit serotonin-mediated and collagen-mediated platelet aggregation, reduce inflammatory mediator levels, and improve endothelial function. SSRIs improve indices of ventricular functioning in IHD and heart failure without adversely affecting electrocardiographic parameters. SSRIs may also be involved in favorable or unfavorable drug interactions with medications that influence cardiovascular functions. The clinical evidence suggests that, in general, SSRIs are safe in patients with IHD and may, in fact, exert a cardioprotective effect. The clinical data are less clear in patients with heart failure, and the evidence for benefits with SSRIs is weak.
Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia
Kuhn, Viktoria; Diederich, Lukas; Keller, T.C. Stevenson; Kramer, Christian M.; Lückstädt, Wiebke; Panknin, Christina; Suvorava, Tatsiana; Isakson, Brant E.; Kelm, Malte
2017-01-01
Abstract Significance: Recent clinical evidence identified anemia to be correlated with severe complications of cardiovascular disease (CVD) such as bleeding, thromboembolic events, stroke, hypertension, arrhythmias, and inflammation, particularly in elderly patients. The underlying mechanisms of these complications are largely unidentified. Recent Advances: Previously, red blood cells (RBCs) were considered exclusively as transporters of oxygen and nutrients to the tissues. More recent experimental evidence indicates that RBCs are important interorgan communication systems with additional functions, including participation in control of systemic nitric oxide metabolism, redox regulation, blood rheology, and viscosity. In this article, we aim to revise and discuss the potential impact of these noncanonical functions of RBCs and their dysfunction in the cardiovascular system and in anemia. Critical Issues: The mechanistic links between changes of RBC functional properties and cardiovascular complications related to anemia have not been untangled so far. Future Directions: To allow a better understanding of the complications associated with anemia in CVD, basic and translational science studies should be focused on identifying the role of noncanonical functions of RBCs in the cardiovascular system and on defining intrinsic and/or systemic dysfunction of RBCs in anemia and its relationship to CVD both in animal models and clinical settings. Antioxid. Redox Signal. 26, 718–742. PMID:27889956
Tam, Nicoladie D
2013-01-01
This study aims to identify the acute effects of physical exercise on specific cognitive functions immediately following an increase in cardiovascular activity. Stair-climbing exercise is used to increase the cardiovascular output of human subjects. The color-naming Stroop Test was used to identify the cognitive improvements in executive function with respect to processing speed and error rate. The study compared the Stroop results before and immediately after exercise and before and after nonexercise, as a control. The results show that there is a significant increase in processing speed and a reduction in errors immediately after less than 30 min of aerobic exercise. The improvements are greater for the incongruent than for the congruent color tests. This suggests that physical exercise induces a better performance in a task that requires resolving conflict (or interference) than a task that does not. There is no significant improvement for the nonexercise control trials. This demonstrates that an increase in cardiovascular activity has significant acute effects on improving the executive function that requires conflict resolution (for the incongruent color tests) immediately following aerobic exercise more than similar executive functions that do not require conflict resolution or involve the attention-inhibition process (for the congruent color tests).
Abnormal cardiovascular response to exercise in hypertension: contribution of neural factors.
Mitchell, Jere H
2017-06-01
During both dynamic (e.g., endurance) and static (e.g., strength) exercise there are exaggerated cardiovascular responses in hypertension. This includes greater increases in blood pressure, heart rate, and efferent sympathetic nerve activity than in normal controls. Two of the known neural factors that contribute to this abnormal cardiovascular response are the exercise pressor reflex (EPR) and functional sympatholysis. The EPR originates in contracting skeletal muscle and reflexly increases sympathetic efferent nerve activity to the heart and blood vessels as well as decreases parasympathetic efferent nerve activity to the heart. These changes in autonomic nerve activity cause an increase in blood pressure, heart rate, left ventricular contractility, and vasoconstriction in the arterial tree. However, arterial vessels in the contracting skeletal muscle have a markedly diminished vasoconstrictor response. The markedly diminished vasoconstriction in contracting skeletal muscle has been termed functional sympatholysis. It has been shown in hypertension that there is an enhanced EPR, including both its mechanoreflex and metaboreflex components, and an impaired functional sympatholysis. These conditions set up a positive feedback or vicious cycle situation that causes a progressively greater decrease in the blood flow to the exercising muscle. Thus these two neural mechanisms contribute significantly to the abnormal cardiovascular response to exercise in hypertension. In addition, exercise training in hypertension decreases the enhanced EPR, including both mechanoreflex and metaboreflex function, and improves the impaired functional sympatholysis. These two changes, caused by exercise training, improve the muscle blood flow to exercising muscle and cause a more normal cardiovascular response to exercise in hypertension. Copyright © 2017 the American Physiological Society.
The link between erectile and cardiovascular health: the canary in the coal mine.
Meldrum, David R; Gambone, Joseph C; Morris, Marge A; Meldrum, Donald A N; Esposito, Katherine; Ignarro, Louis J
2011-08-15
Lifestyle and nutrition have been increasingly recognized as central factors influencing vascular nitric oxide (NO) production and erectile function. This review underscores the importance of NO as the principal mediator influencing cardiovascular health and erectile function. Erectile dysfunction (ED) is associated with smoking, excessive alcohol intake, physical inactivity, abdominal obesity, diabetes, hypertension, and decreased antioxidant defenses, all of which reduce NO production. Better lifestyle choices; physical exercise; improved nutrition and weight control; adequate intake of or supplementation with omega-3 fatty acids, antioxidants, calcium, and folic acid; and replacement of any testosterone deficiency will all improve vascular and erectile function and the response to phosphodiesterase-5 inhibitors, which also increase vascular NO production. More frequent penile-specific exercise improves local endothelial NO production. Excessive intake of vitamin E, calcium, l-arginine, or l-citrulline may impart significant cardiovascular risks. Interventions discussed also lower blood pressure or prevent hypertension. Certain angiotensin II receptor blockers improve erectile function and reduce oxidative stress. In men aged <60 years and in men with diabetes or hypertension, erectile dysfunction can be a critical warning sign for existing or impending cardiovascular disease and risk for death. The antiarrhythmic effect of omega-3 fatty acids may be particularly crucial for these men at greatest risk for sudden death. In conclusion, by better understanding the complex factors influencing erectile and overall vascular health, physicians can help their patients prevent vascular disease and improve erectile function, which provides more immediate motivation for men to improve their lifestyle habits and cardiovascular health. Copyright © 2011 Elsevier Inc. All rights reserved.