Sample records for basal da levels

  1. Growth hormone isoforms release in response to physiological and pharmacological stimuli.

    PubMed

    Pagani, S; Cappa, M; Meazza, C; Ubertini, G; Travaglino, P; Bozzola, E; Bozzola, M

    2008-06-01

    Ten healthy subjects used to performing regular physical activity and eight subjects affected by idiopathic isolated GH deficiency (GHD) were enrolled; 22- and 20-kDa GH secretion and its biological activity were evaluated in response to pharmacological stimuli such as arginine, L-dopa or glucagon in GHD children, while the hormonal response to exercise was studied according to Bruce protocol in healthy subjects. We found a significant increase in 22- and 20-kDa GH level in healthy subjects after monitored physical exercise (MPE; basal 0.28+/-0.12 vs 7.37+/-2.08 ng/ml and basal 0.076+/-0.04 vs 0.18+/-0.05 ng/ml, respectively). Furthermore, the 22-kDa/20-kDa ratio significantly increased in children who had undergone MPE and the GH bioactivity basal mean value also increased significantly after exercise (basal 2.86+/-0.76 vs 7.64+/-1.9 ng/ml). The mean value of 22-kDa GH in GHD patients increased significantly following GH pharmacological stimulation (2.78+/-0.63 ng/ml) when compared with mean basal (0.20+/-0.11 ng/ml) value. In the GHD group the basal concentration of 20-kDa GH significantly increased following GH pharmacological stimulation (0.34+/-0.11 vs 0.72+/-0.2 ng/ml); the 22-kDa/20-kDa ratio significantly increased too. Likewise, GH bioactivity in children with GHD increased significantly after pharmacological stimulation test (basal 2.53+/-0.56 vs 7.33+/-1.26 ng/ml). Both GH isoform concentrations and their biological activity are significantly increased in healthy subjects after submaximal exercise protocol and in GHD children after pharmacological stimuli.

  2. Pure uptake blockers of dopamine can reduce prolactin secretion: studies with diclofensine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Renzo, G.; Amoroso, S.; Taglialatela, M.

    1988-01-01

    The effects of diclofensine, a pure dopamine (DA) uptake inhibitor on 1) /sup 3/H-DA uptake in rat arcuate-periventricular nucleus-median eminence synaptosomes, 2) basal and K+-evoked endogenous DA release from tuberoinfundibular dopaminergic (TIDA) neurons and 3) in vivo prolactin (PRL) secretion were studied. Diclofensine, in concentrations of 0.01, 0.1 and 1 ..mu..M caused a marked decrease of /sup 3/H-DA uptake. In addition, it was unable to stimulate basal endogenous DA release which, on the contrary, was elicited by d-amphetamine in the same concentration. On the other hand, diclofensine caused a 3 fold enhancement on K+-evoked DA release. Finally, the compound, whenmore » administered in vivo to male rats, significantly reduced basal serum PRL levels. The results of the present study seem to indicate that the pharmacological blockade of DA uptake in TIDA neurons is a condition sufficient to cause a reduction of PRL release.« less

  3. Differential effects of pyrethroid insecticides on extracellular dopamine in the striatum of freely moving rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mubarak Hossain, Muhammad; Suzuki, Tadahiko; United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193

    2006-11-15

    In order to obtain a more complete understanding of pyrethroid neurotoxicity, effects of the pyrethroid insecticides, allethrin (type I), cyhalothrin (type II) and deltamethrin (type II) on extracellular levels of dopamine (DA) and its metabolites in the striatum of conscious rats were studied by in vivo microdialysis. Rats were treated i.p. with pyrethroids or vehicle. Allethrin had a dual effect on DA release. The increase in the extracellular level of striatal DA by 10 mg/kg allethrin reached a maximum of 178% of baseline but 20 and 60 mg/kg inhibited DA release to 63% and 52% of baseline with a peakmore » effect at 60-80 min after injection. Cyhalothrin 10, 20 and 60 mg/kg inhibited DA release to 65%, 56% and 45% of basal release, respectively, with a peak time of inhibition 40-80 min past injection. Deltamethrin (10 and 20 mg/kg) increased DA release to maximum of 187% and 252% of basal release whereas 60 mg/kg first reduced the efflux for 40 min to 50% of basal release and then increased the efflux to a maximum of 344% of basal release with a peak time of 120 min. Local infusion of 1 {mu}M tetrodotoxin, a Na{sup +} blocker through the dialysis probe completely prevented the effect of allethrin (10 and 60 mg/kg), cyhalothrin (60 mg/kg) and deltamethrin (20 mg/kg) on DA release but only partially blocked the effects of 60 mg/kg deltamethrin. The effect of deltamethrin (60 mg/kg) on DA release was completely prevented by local infusion of 10 {mu}M nimodipine, an L-type Ca{sup ++} channel blocker. All three pyrethroids did not alter the extracellular levels of DOPAC, 3-MT and HVA except that 20 and 60 mg/kg of allethrin and cyhalothrin increased 3-MT levels. Effect of the pyrethroids on synaptosomal DA uptake was also examined. The DA uptake was decreased in rats exposed to 60 mg/kg of allethrin and cyhalothrin but was increased in rats exposed to 60 mg/kg of deltamethrin. Our results demonstrate that striatal DA release and DA uptake are differentially affected by type I and the two type II pyrethroids indicating that dopaminergic circuitry, striatal DA in particular, may be a pyrethroid target and that pyrethroids may be acting on striatal DA by multiple mechanisms.« less

  4. Molecular mechanism: the human dopamine transporter histidine 547 regulates basal and HIV-1 Tat protein-inhibited dopamine transport

    PubMed Central

    Quizon, Pamela M.; Sun, Wei-Lun; Yuan, Yaxia; Midde, Narasimha M.; Zhan, Chang-Guo; Zhu, Jun

    2016-01-01

    Abnormal dopaminergic transmission has been implicated as a risk determinant of HIV-1-associated neurocognitive disorders. HIV-1 Tat protein increases synaptic dopamine (DA) levels by directly inhibiting DA transporter (DAT) activity, ultimately leading to dopaminergic neuron damage. Through integrated computational modeling prediction and experimental validation, we identified that histidine547 on human DAT (hDAT) is critical for regulation of basal DA uptake and Tat-induced inhibition of DA transport. Compared to wild type hDAT (WT hDAT), mutation of histidine547 (H547A) displayed a 196% increase in DA uptake. Other substitutions of histidine547 showed that DA uptake was not altered in H547R but decreased by 99% in H547P and 60% in H547D, respectively. These mutants did not alter DAT surface expression or surface DAT binding sites. H547 mutants attenuated Tat-induced inhibition of DA transport observed in WT hDAT. H547A displays a differential sensitivity to PMA- or BIM-induced activation or inhibition of DAT function relative to WT hDAT, indicating a change in basal PKC activity in H547A. These findings demonstrate that histidine547 on hDAT plays a crucial role in stabilizing basal DA transport and Tat-DAT interaction. This study provides mechanistic insights into identifying targets on DAT for Tat binding and improving DAT-mediated dysfunction of DA transmission. PMID:27966610

  5. Dietary uridine-5'-monophosphate supplementation increases potassium-evoked dopamine release and promotes neurite outgrowth in aged rats.

    PubMed

    Wang, Lei; Pooler, Amy M; Albrecht, Meredith A; Wurtman, Richard J

    2005-01-01

    Membrane phospholipids like phosphatidylcholine (PC) are required for cellular growth and repair, and specifically for synaptic function. PC synthesis is controlled by cellular levels of its precursor, cytidine-5'-diphosphate choline (CDP-choline), which is produced from cytidine triphosphate (CTP) and phosphocholine. In rat PC12 cells exogenous uridine was shown to elevate intracellular CDP-choline levels, by promoting the synthesis of uridine triphosphate (UTP), which was partly converted to CTP. In such cells uridine also enhanced the neurite outgrowth produced by nerve growth factor (NGF). The present study assessed the effect of dietary supplementation with uridine-5'-monophosphate disodium (UMP-2Na+, an additive in infant milk formulas) on striatal dopamine (DA) release in aged rats. Male Fischer 344 rats consumed either a control diet or one fortified with 2.5% UMP for 6 wk, ad libitum. In vivo microdialysis was then used to measure spontaneous and potassium (K+)-evoked DA release in the right striatum. Potassium (K+)-evoked DA release was significantly greater among UMP-treated rats, i.e., 341+/-21% of basal levels vs. 283+/-9% of basal levels in control rats (p<0.05); basal DA release was unchanged. In general, each animal's K+-evoked DA release correlated with its striatal DA content, measured postmortem. The levels of neurofilament-70 and neurofilament-M proteins, biomarkers of neurite outgrowth, increased to 182+/-25% (p<0.05) and 221+/-34% (p<0.01) of control values, respectively, with UMP consumption. Hence, UMP treatment not only enhances membrane phosphatide production but also can modulate two membrane-dependent processes, neurotransmitter release and neurite outgrowth, in vivo.

  6. Quantitation of Hydrogen Peroxide Fluctuations and Their Modulation of Dopamine Dynamics in the Rat Dorsal Striatum Using Fast-Scan Cyclic Voltammetry

    PubMed Central

    2013-01-01

    The dopaminergic neurons of the nigrostriatal dopamine (DA) projection from the substantia nigra to the dorsal striatum become dysfunctional and slowly degenerate in Parkinson’s disease, a neurodegenerative disorder that afflicts more than one million Americans. There is no specific known cause for idiopathic Parkinson’s disease; however, multiple lines of evidence implicate oxidative stress as an underlying factor in both the initiation and progression of the disease. This involves the enhanced generation of reactive oxygen species, including hydrogen peroxide (H2O2), whose role in complex biological processes is not well understood. Using fast-scan cyclic voltammetry at bare carbon-fiber microelectrodes, we have simultaneously monitored and quantified H2O2 and DA fluctuations in intact striatal tissue under basal conditions and in response to the initiation of oxidative stress. Furthermore, we have assessed the effect of acute increases in local H2O2 concentration on both electrically evoked DA release and basal DA levels. Increases in endogenous H2O2 in the dorsal striatum attenuated electrically evoked DA release, and also decreased basal DA levels in this brain region. These novel results will help to disambiguate the chemical mechanisms underlying the progression of neurodegenerative disease states, such as Parkinson’s disease, that involve oxidative stress. PMID:23556461

  7. Dopamine physiology in the basal ganglia of male zebra finches during social stimulation.

    PubMed

    Ihle, Eva C; van der Hart, Marieke; Jongsma, Minke; Tecott, Larry H; Doupe, Allison J

    2015-06-01

    Accumulating evidence suggests that dopamine (DA) is involved in altering neural activity and gene expression in a zebra finch cortical-basal ganglia circuit specialized for singing, upon the shift between solitary singing and singing as a part of courtship. Our objective here was to sample changes in the extracellular concentrations of DA in Area X of adult and juvenile birds, to test the hypothesis that DA levels would change similarly during presentation of a socially salient stimulus in both age groups. We used microdialysis to sample the extracellular milieu of Area X in awake, behaving adult and juvenile male zebra finches, and analysed the dialysate using high-performance liquid chromatography coupled with electrochemical detection. The extracellular levels of DA in Area X increased significantly during both female presentation to adult males and tutor presentation to juvenile males. DA levels were not correlated with the time spent singing. We also reverse-dialysed Area X with pharmacologic agents that act either on DA systems directly or on norepinephrine, and found that all of these agents significantly increased DA levels (3- to 10-fold) in Area X. These findings suggest that changes in extracellular DA levels can be stimulated similarly by very different social contexts (courtship and interaction with tutor), and influenced potently by dopaminergic and noradrenergic drugs. These results raise the possibility that the arousal level or attentional state of the subject (rather than singing behavior) is the common feature eliciting changes in extracellular DA concentration. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Potentiation by choline of basal and electrically evoked acetylcholine release, as studied using a novel device which both stimulates and perfuses rat corpus striatum

    NASA Technical Reports Server (NTRS)

    Farber, S. A.; Kischka, U.; Marshall, D. L.; Wurtman, R. J.

    1993-01-01

    We examined the release of acetylcholine (ACh) and dopamine (DA) using a novel probe through which striatal neurons could be both superfused and stimulated electrically in both anesthetized and freely moving awake animals. Optimal stimulation parameters for eliciting ACh release from cholinergic neurons differed from those required for eliciting DA release from dopaminergic terminals: at 0.6 ms pulse duration, 20 Hz and 200 microA, ACh release increased to 357 +/- 30% (P < 0.01) of baseline and was blocked by the addition of tetrodotoxin (TTX). Pulse durations of 2.0 ms or greater were required to increase DA release. Unlike ACh release, DA release showed no frequency dependence above 5 Hz. The maximal evoked releases of ACh and DA were 556 +/- 94% (P < 0.01) and 254 +/- 38% (P < 0.05) of baseline, respectively. Peripheral administration of choline (Ch) chloride (30-120 mg/kg) to anesthetized animals caused dose-related (r = 0.994, P < 0.01) increases in ACh release; basal release rose from 117 +/- 7% to 141 +/- 5% of initial baseline levels (P < 0.05) and electrically evoked ACh release rose from 386 +/- 38% to 600 +/- 34% (P < 0.01) in rats given 120 mg/kg. However, Ch failed to affect basal or evoked DA release although neostigmine (10 microM) significantly elevated basal DA release (from 36.7 fmol/10 min to 71.5 fmol/10 min; P < 0.05). In awake animals, Ch (120 mg/kg) also elevated both basal (from 106 +/- 7% to 154 +/- 17%; P < 0.05) and electrically evoked (from 146 +/- 13 to 262 +/- 16%; P < 0.01) ACh release.(ABSTRACT TRUNCATED AT 250 WORDS).

  9. Ethanol drinking reduces extracellular dopamine levels in the posterior ventral tegmental area of nondependent alcohol-preferring rats.

    PubMed

    Engleman, Eric A; Keen, Elizabeth J; Tilford, Sydney S; Thielen, Richard J; Morzorati, Sandra L

    2011-09-01

    Moderate ethanol exposure produces neuroadaptive changes in the mesocorticolimbic dopamine (DA) system in nondependent rats and increases measures of DA neuronal activity in vitro and in vivo. Moreover, moderate ethanol drinking and moderate systemic exposure elevates extracellular DA levels in mesocorticolimbic projection regions. However, the neuroadaptive changes subsequent to moderate ethanol drinking on basal DA levels have not been investigated in the ventral tegmental area (VTA). In the present study, adult female alcohol-preferring (P) rats were divided into alcohol-naive, alcohol-drinking, and alcohol-deprived groups. The alcohol-drinking group had continuous access to water and ethanol (15%, vol/vol) for 8 weeks. The alcohol-deprived group had 6 weeks of access followed by 2 weeks of ethanol deprivation, 2 weeks of ethanol re-exposure, followed again by 2 weeks of deprivation. The deprived rats demonstrated a robust alcohol deprivation effect (ADE) on ethanol reinstatement. The alcohol-naïve group had continuous access to water only. In the last week of the drinking protocol, all rats were implanted with unilateral microdialysis probes aimed at the posterior VTA and no-net-flux microdialysis was conducted to quantify extracellular DA levels and DA clearance. Results yielded significantly lower basal extracellular DA concentrations in the posterior VTA of the alcohol-drinking group compared with the alcohol-naive and alcohol-deprived groups (3.8±0.3nM vs. 5.0±0.5nM [P<.02] and 4.8±0.4nM, [P<.05], respectively). Extraction fractions were significantly (P<.0002) different between the alcohol-drinking and alcohol-naive groups (72±2% vs. 46±4%, respectively) and not significantly different (P=.051) between alcohol-deprived and alcohol-naive groups (61±6% for the alcohol-deprived group). The data indicate that reductions in basal DA levels within the posterior VTA occur after moderate chronic ethanol intake in nondependent P rats. This reduction may result, in part, from increased DA uptake and may be important for the maintenance of ethanol drinking. These adaptations normalize with ethanol deprivation and may not contribute to the ADE. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Amphetamine Augments Action Potential-Dependent Dopaminergic Signaling in the Striatum in Vivo

    PubMed Central

    Ramsson, Eric S.; Covey, Daniel P.; Daberkow, David P.; Litherland, Melissa T.; Juliano, Steven A.; Garris, Paul A.

    2011-01-01

    Amphetamine (AMPH) is thought to disrupt normal patterns of action potential-dependent dopaminergic signaling by depleting dopamine (DA) vesicular stores and promoting non-exocytotic DA efflux. Voltammetry in brain slices concurrently demonstrates these key drug effects, along with competitive inhibition of neuronal DA uptake. Here we perform comparable kinetic and voltammetric analyses in vivo to determine whether AMPH acts qualitatively and quantitatively similar in the intact brain. Fast-scan cyclic voltammetry measured extracellular DA in dorsal and ventral striata of urethane-anesthetized rats. Electrically evoked recordings were analyzed to determine Km and Vmax for DA uptake and vesicular DA release, while background voltammetric current indexed basal DA concentration. AMPH (0.5, 3, and 10 mg/kg i.p.) robustly increased evoked DA responses in both striatal subregions. The predominant contributor to these elevated levels was competitive uptake inhibition, as exocytotic release was unchanged in the ventral striatum and only modestly decreased in the dorsal striatum. Increases in basal DA levels were not detected. These results are consistent with AMPH augmenting action potential-dependent dopaminergic signaling in vivo across a wide, behaviorally relevant dose range. Future work should be directed at possible causes for the distinct in vitro and in vivo pharmacology of AMPH. PMID:21443523

  11. A computational model of Dopamine and Acetylcholine aberrant learning in Basal Ganglia.

    PubMed

    Baston, Chiara; Ursino, Mauro

    2015-01-01

    Basal Ganglia (BG) are implied in many motor and cognitive tasks, such as action selection, and have a central role in many pathologies, primarily Parkinson Disease. In the present work, we use a recently developed biologically inspired BG model to analyze how the dopamine (DA) level can affect the temporal response during action selection, and the capacity to learn new actions following rewards and punishments. The model incorporates the 3 main pathways (direct, indirect and hyperdirect) working in BG functioning. The behavior of 2 alternative networks (the first with normal DA levels, the second with reduced DA) is analyzed both in untrained conditions, and during training performed in different epochs. The results show that reduced DA causes delayed temporal responses in the untrained network, and difficult of learning during training, characterized by the necessity of much more epochs. The results provide interesting hints to understand the behavior of healthy and dopamine depleted subjects, such as parkinsonian patients.

  12. The glycine reuptake inhibitor org 25935 interacts with basal and ethanol-induced dopamine release in rat nucleus accumbens.

    PubMed

    Lidö, Helga Höifödt; Stomberg, Rosita; Fagerberg, Anne; Ericson, Mia; Söderpalm, Bo

    2009-07-01

    The mesolimbic dopamine (DA) projection from the ventral tegmental area to nucleus accumbens (nAc), a central part of the reward system, is activated by ethanol (EtOH) and other drugs of abuse. We have previously demonstrated that the glycine receptor in the nAc and its amino acid agonists may be implicated in the DA activation and reinforcing properties of EtOH. We have also reported that the glycine transporter 1 inhibitor, Org 25935, produces a robust and dose-dependent decrease in EtOH consumption in Wistar rats. The present study explores the interaction between EtOH and Org 25935 with respect to DA levels in the rat nAc. The effects of Org 25935 (6 mg/kg, i.p.) and/or EtOH (2.5 g/kg, i.p.) on accumbal DA levels were examined by means of in vivo microdialysis (coupled to HPLC-ED) in freely moving male Wistar rats. The effect of Org 25935 on accumbal glycine output was also investigated. Systemic Org 25935 increased DA output in a subpopulation of rats (52% in Experiment 1 and 38% in Experiment 2). In Experiment 2, EtOH produced a significant increase in DA levels in vehicles (35%) and in Org 25935 nonresponders (19%), whereas EtOH did not further increase the DA level in rats responding to Org 25935 (2%). The same dose of Org 25935 increased glycine levels by 87% in nAc. This study demonstrates that Org 25935, probably via increased glycine levels, (i) counteracts EtOH-induced increases of accumbal DA levels and (ii) increases basal DA levels in a subpopulation of rats. The results are in line with previous findings and it is suggested that the effects observed involve interference with accumbal GlyRs and are related to the alcohol consumption modulating effect of Org 25935.

  13. Consequences of partial and severe dopaminergic lesion on basal ganglia oscillatory activity and akinesia.

    PubMed

    Tseng, Kuei Y; Kargieman, Lucila; Gacio, Sebastian; Riquelme, Luis A; Murer, M Gustavo

    2005-11-01

    Severe chronic dopamine (DA) depletion increases the proportion of neurons in the basal ganglia that fire rhythmic bursts of action potential (LFO units) synchronously with the cortical oscillations. Here we report on how different levels of mesencephalic DA denervation affect substantia nigra pars reticulata (SNpr) neuronal activity in the rat and its relationship to akinesia (stepping test). Chronic nigrostriatal lesion induced with 0 (control group), 4, 6 or 8 microg of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle resulted in a dose-dependent decrease of tyrosine hydroxylase positive (TH+) neurons in the SN and ventral tegmental area (VTA). Although 4 microg of 6-OHDA reduced the number of TH+ neurons in the SN by approximately 60%, both stepping test performance and SNpr neuronal activity remained indistinguishable from control animals. By contrast, animals that received 6 microg of 6-OHDA showed a marked reduction of TH+ cells in the SN ( approximately 75%) and VTA ( approximately 55%), a significant stepping test deficit and an increased proportion of LFO units. These changes were not dramatically enhanced with 8 microg 6-OHDA, a dose that induced an extensive DA lesion (> 95%) in the SN and approximately 70% reduction of DA neurons in the VTA. These results suggest a threshold level of DA denervation for both the appearance of motor deficits and LFO units. Thus, the presence of LFO activity in the SNpr is not related to a complete nigrostriatal DA neuron depletion (ultimate stage parkinsonism); instead, it may reflect a functional disruption of cortico-basal ganglia dynamics associated with clinically relevant stages of the disease.

  14. Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia.

    PubMed

    Kita, Hitoshi; Kita, Takako

    2011-07-13

    The motor cortex (MC) sends massive projections to the basal ganglia. Motor disabilities in patients and animal models of Parkinson's disease (PD) may be caused by dopamine (DA)-depleted basal ganglia that abnormally process the information originating from MC. To study how DA depletion alters signal transfer in the basal ganglia, MC stimulation-induced (MC-induced) unitary responses were recorded from the basal ganglia of control and 6-hydroxydopamine-treated hemi-parkinsonian rats anesthetized with isoflurane. This report describes new findings about how DA depletion alters MC-induced responses. MC stimulation evokes an excitation in normally quiescent striatal (Str) neurons projecting to the globus pallidus external segment (GPe). After DA-depletion, the spontaneous firing of Str-GPe neurons increases, and MC stimulation evokes a shorter latency excitation followed by a long-lasting inhibition that was invisible under normal conditions. The increased firing activity and the newly exposed long inhibition generate tonic inhibition and a disfacilitation in GPe. The disfacilitation in GPe is then amplified in basal ganglia circuitry and generates a powerful long inhibition in the basal ganglia output nucleus, the globus pallidus internal segment. Intra-Str injections of a behaviorally effective dose of DA precursor l-3,4-dihydroxyphenylalanine effectively reversed these changes. These newly observed mechanisms also support the generation of pauses and burst activity commonly observed in the basal ganglia of parkinsonian subjects. These results suggest that the generation of abnormal response sequences in the basal ganglia contributes to the development of motor disabilities in PD and that intra-Str DA supplements effectively suppress abnormal signal transfer.

  15. Noradrenaline and dopamine levels in acute cerveau isolé in the cat.

    PubMed

    Szikszay, M; Benedek, G; Obál, F; Obál, F

    1980-01-01

    Noradrenaline (NA) and dopamine (DA) levels were studied in the forebrain of acute immobilized cats and in cerveau isolé preparations. A gradual decrease in NA and DA was observed one and two hours after high mesencephalic transection, while the amount of NA increased in acute immobilized cats after the cessation of ether anaesthesia. These changes in NA level are consistent with the observations suggesting an inverse relationship between NA and cortical deactivation. The decrease of DA with an exaggeration of spindle activity and increased synchronizing effect of basal forebrain stimulation indicate that the spindle-increasing effect of DA suggested by several authors requires the contribution of the brain stem.

  16. Analysis of adrenocortical secretory responses during acute an prolonged immune stimulation in inflammation-susceptible and -resistant rat strains.

    PubMed

    Andersson, I M; Lorentzen, J C; Ericsson-Dahlstrand, A

    2000-11-01

    Endogenous corticosterone secreted during immune challenge restricts the inflammatory process and genetic variations in this neuroendocrine-immune dialogue have been suggested to influence an individuals sensitivity to develop chronic inflammatory disorders. We have tested inflammation-susceptible Dark Agouti (DA) rats and resistant, MHC-identical, PVG.1AV1 rats for their abilities to secrete corticosterone in response to acute challenge with bacterial lipopolysaccharide (LPS) or a prolonged activation of the nonspecific immune system with arthritogenic yeast beta-glucan. Intravenous injection of LPS triggered equipotent secretion of corticosterone in both rat strains. Interestingly, peak concentrations of corticosterone did not differ significantly between the strains. Intradermal injection of beta-glucan caused severe, monophasic, polyarthritis in DA rats while PVG.1AV1 responded with significantly milder joint inflammation. Importantly, serial sampling of plasma from glucan-injected DA and PVG.1AV1 rats did not reveal elevated concentrations of plasma corticosterone at any time from days 1-30 postinjection compared to preinjection values, in spite of the ongoing inflammatory process. Interestingly, adrenalectomized, beta-glucan-challenged DA rats responded with an aggravated arthritic process, indicating an anti-inflammatory role for the basal levels of corticosterone that were detected in intact DA rats challenged with beta-glucan. Moreover, substitution with subcutaneous corticosterone-secreting pellets, yielding moderate stress-levels, significantly attenuated the arthritic response. In contrast, adrenalectomized and glucan-challenged PVG.1AV1 rats did not respond with an elevated arthritic response, suggesting that these rats contain the arthritic process via corticosterone-independent mechanisms. In conclusion, the hypothalamic-pituitary-adrenal axis in both rat strains exhibited strong activation after challenge with LPS. This contrasted to the basal corticosterone levels observed strains during a prolonged arthritic process. No correlation between ability to secrete corticosterone and susceptibility to inflammation could be demonstrated. Basal levels of endogenous corticosterone appeared to restrain inflammation in beta-glucan-challenged DA rats whereas resistance to inflammation in PVG.1AV1 rats may be mediated via corticosterone-independent mechanisms.

  17. Prepuberal intranasal dopamine treatment in an animal model of ADHD ameliorates deficient spatial attention, working memory, amino acid transmitters and synaptic markers in prefrontal cortex, ventral and dorsal striatum.

    PubMed

    Ruocco, L A; Treno, C; Gironi Carnevale, U A; Arra, C; Mattern, C; Huston, J P; de Souza Silva, M A; Nikolaus, S; Scorziello, A; Nieddu, M; Boatto, G; Illiano, P; Pagano, C; Tino, A; Sadile, A G

    2014-09-01

    Intranasal application of dopamine (IN-DA) has been shown to increase motor activity and to release DA in the ventral (VS) and dorsal striatum (DS) of rats. The aim of the present study was to assess the effects of IN-DA treatment on parameters of DA and excitatory amino acid (EAA) function in prepuberal rats of the Naples high-excitability (NHE) line, an animal model for attention-deficit hyperactivity disorder (ADHD) and normal random bred (NRB) controls. NHE and NRB rats were daily administered IN-DA (0.075, 0.15, 0.30 mg/kg) or vehicle for 15 days from postnatal days 28-42 and subsequently tested in the Làt maze and in the Eight-arm radial Olton maze. Soluble and membrane-trapped L-glutamate (L-Glu) and L-aspartate (L-Asp) levels as well as NMDAR1 subunit protein levels were determined after sacrifice in IN-DA- and vehicle-treated NHE and NRB rats in prefrontal cortex (PFc), DS and VS. Moreover, DA transporter (DAT) protein and tyrosine hydroxylase (TH) levels were assessed in PFc, DS, VS and mesencephalon (MES) and in ventral tegmental area (VTA) and substantia nigra, respectively. In NHE rats, IN-DA (0.30 mg/kg) decreased horizontal activity and increased nonselective attention relative to vehicle, whereas the lower dose (0.15 mg/kg) increased selective spatial attention. In NHE rats, basal levels of soluble EAAs were reduced in PFc and DS relative to NRB controls, while membrane-trapped EAAs were elevated in VS. Moreover, basal NMDAR1 subunit protein levels were increased in PFc, DS and VS relative to NRB controls. In addition, DAT protein levels were elevated in PFc and VS relative to NRB controls. IN-DA led to a number of changes of EAA, NMDAR1 subunit protein, TH and DAT protein levels in PFc, DS, VS, MES and VTA, in both NHE and NRB rats with significant differences between lines. Our findings indicate that the NHE rat model of ADHD may be characterized by (1) prefrontal and striatal DAT hyperfunction, indicative of DA hyperactivty, and (2) prefrontal and striatal NMDA receptor hyperfunction indicative of net EAA hyperactivty. IN-DA had ameliorative effects on activity level, attention, and working memory, which are likely to be associated with DA action at inhibitory D2 autoreceptors, leading to a reduction in striatal DA hyperactivity and, possibly, DA action on striatal EAA levels, resulting in a decrease of striatal EAA hyperfunction (with persistence of prefrontal EAA hyperfunction). Previous studies on IN-DA treatment in rodents have indicated antidepressant, anxiolytic and anti-parkinsonian effects in relation to enhanced central DAergic activity. Our present results strengthen the prospects of potential therapeutic applications of intranasal  DA by indicating an enhancement of selective attention and working memory in a deficit model.

  18. Correlation between phosphorylation level of a hippocampal 86kDa protein and extinction of a behaviour in a model of Wernicke-Korsakoff syndrome.

    PubMed

    Pires, Rita G W; Pereira, Sílvia R C; Carvalho, Fabiana M; Oliveira-Silva, Ieda F; Ferraz, Vany P; Ribeiro, Angela M

    2007-06-04

    The effects of chronic ethanol and thiamine deficiency, alone or associated, on hippocampal protein phosphorylation profiles ranging in molecular weight from 30 to 250kDa molecular weight, in stimulated (high K(+) concentration) and unstimulated (basal) conditions were investigated. These treatments significantly changed the phosphorylation level of an 86kDa phosphoprotein. Thiamine deficiency, but not chronic ethanol, induced a decrease in a behavioural extinction index, which is significantly correlated to the phosphorylation level of the p86 protein. These data add to and extend previous findings by our laboratory implicating the involvement of hippocampal neurotransmission components in extinction of a behaviour which involves learning of environmental spatial cues.

  19. Measurement in vivo of dopamine receptor density II: Effect of d-amphetamine on spiroperidol binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, A.M.; De Jesus, O.T.; Woolverton, W.

    1984-01-01

    In the authors continuing studies to measure dopamine (DA) receptors in vivo using the DA antagonist bromospiroperidol (BrSP) and positron emission tomography (PET). The authors have examined the effect of d-amphetamine (d-AMP) on BrSP distribution in primate brain. Using the University of Chicago PETT VI scanner, /sup 76/Br-BrSP was found to localize in the caudate and putamen of anesthetized rhesus monkeys. The maximum level of this drug in these regions was reached at 100 minutes post-injection and remained constant for the next 200 minutes. Levels in the cerebellum, on the other hand, decline steadily after an hour post-injection. This ismore » consistent with the presence of high level of DA receptors in the basal ganglia and low levels in the cerebellum. Preliminary studies showed that the administration of d-AMP (0.5 mg/kg i.v.) resulted in a small but statistically significant decrease in caudate /sup 76/Br-BrSP levels. Since d-AMP is known to release DA in the caudate, these findings are consistent with the competition of released DA for BrSP binding at caudate DA binding sites.« less

  20. Fluorescent light induces neurodegeneration in the rodent nigrostriatal system but near infrared LED light does not.

    PubMed

    Romeo, Stefania; Vitale, Flora; Viaggi, Cristina; di Marco, Stefano; Aloisi, Gabriella; Fasciani, Irene; Pardini, Carla; Pietrantoni, Ilaria; Di Paolo, Mattia; Riccitelli, Serena; Maccarone, Rita; Mattei, Claudia; Capannolo, Marta; Rossi, Mario; Capozzo, Annamaria; Corsini, Giovanni U; Scarnati, Eugenio; Lozzi, Luca; Vaglini, Francesca; Maggio, Roberto

    2017-05-01

    We investigated the effects of continuous artificial light exposure on the mouse substantia nigra (SN). A three month exposure of C57Bl/6J mice to white fluorescent light induced a 30% reduction in dopamine (DA) neurons in SN compared to controls, accompanied by a decrease of DA and its metabolites in the striatum. After six months of exposure, neurodegeneration progressed slightly, but the level of DA returned to the basal level, while the metabolites increased with respect to the control. Three month exposure to near infrared LED light (∼710nm) did not alter DA neurons in SN, nor did it decrease DA and its metabolites in the striatum. Furthermore mesencephalic cell viability, as tested by [ 3 H]DA uptake, did not change. Finally, we observed that 710nm LED light, locally conveyed in the rat SN, could modulate the firing activity of extracellular-recorded DA neurons. These data suggest that light can be detrimental or beneficial to DA neurons in SN, depending on the source and wavelength. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Detection of prosecretory mitogen lacritin in nonprimate tears primarily as a C-terminal-like fragment.

    PubMed

    Laurie, Diane E; Splan, Rebecca K; Green, Kari; Still, Katherine M; McKown, Robert L; Laurie, Gordon W

    2012-09-12

    Lacritin is a human tear glycoprotein that promotes basal tear protein secretion in cultured rat lacrimal acinar cells and proliferation of subconfluent human corneal epithelial cells. When topically added to rabbit eyes, lacritin promotes basal tearing. Despite these activities on several species, lacritin's presence in nonprimate tears or other tissues has not been explored. Here we probed for lacritin in normal horse tears. Sequences were collected from the Ensembl genomic alignment of human LACRT gene with high-quality draft horse genome (EquCab2.0) and analyzed. Normal horse tears were collected and assayed by Western blotting, ELISA, and mass spectrometry. Newly generated rabbit antibodies, respectively, against N- and C-terminal regions of human lacritin were employed. Identity was 75% and 45%, respectively, at nucleotide and protein levels. Structural features were conserved, including a C-terminal amphipathic α-helix. Anti-C-terminal antibodies strongly detected a ∼13 kDa band in horse tears that was validated by mass spectrometry. In human tears, the same antibody detected uncleaved lacritin (∼24 kDa) strongly and C-terminal fragments of ∼13 and ∼11 kDa weakly. Anti-N-terminal antibodies were slightly reactive with a ∼24 kDa horse antigen and showed no reaction with the anti-C-terminal-reactive ∼13 kDa species. Similar respective levels of horse C-terminal versus N-terminal immunoreactivity were apparent by ELISA. Lacritin is present in horse tears, largely as a C-terminal fragment homologous to the mitogenic and bactericidal region in human lacritin, suggesting potential benefit in corneal wound repair.

  2. Site-specific activation of dopamine and serotonin transmission by aniracetam in the mesocorticolimbic pathway of rats.

    PubMed

    Nakamura, K; Shirane, M; Koshikawa, N

    2001-04-06

    The effects of aniracetam on extracellular levels of dopamine (DA), serotonin (5-HT) and their metabolites were examined in five brain regions in freely moving stroke-prone spontaneously hypertensive rats (SHRSP) using in vivo microdialysis. Basal DA release in SHRSP was uniformly lower in all regions tested than that in age-matched control Wistar Kyoto rats. 3,4-Dihydroxyphenylacetic acid and homovanillic acid levels were altered in the basolateral amygdala, dorsal hippocampus and prefrontal cortex of SHRSP. While basal 5-HT release decreased in the striatum and increased in the basolateral amygdala, there was no associated change in 5-hydroxyindoleacetic acid levels. Systemic administration of aniracetam to SHRSP enhanced both DA and 5-HT release with partly associated change in their metabolite levels in the prefrontal cortex, basolateral amygdala and dorsal hippocampus, but not in the striatum and nucleus accumbens shell, in a dose-dependent manner (30 and/or 100 mg/kg p.o.). Microinjection (1 and 10 ng) of aniracetam or its metabolites (N-anisoyl-GABA and 2-pyrrolidinone) into the nucleus accumbens shell produced no turning behavior. These findings indicate that SHRSP have a dopaminergic hypofunction throughout the brain and that aniracetam elicits a site-specific activation in mesocorticolimbic dopaminergic and serotonergic pathways in SHRSP, possibly via nicotinic acetylcholine receptors in the ventral tegmental area and raphe nuclei. The physiological roles in the aniracetam-sensitive brain regions may closely link with their clinical efficacy towards emotional disturbances appearing after cerebral infarction.

  3. Swim stress exaggerates the hyperactive mesocortical dopamine system in a rodent model of autism.

    PubMed

    Nakasato, Akane; Nakatani, Yasushi; Seki, Yoshinari; Tsujino, Naohisa; Umino, Masahiro; Arita, Hideho

    2008-02-08

    Several clinical reports have suggested that there is a hyperactivation of the dopaminergic system in people with autism. Using rats exposed prenatally to valproic acid (VPA) as an animal model of autism, we measured dopamine (DA) levels in samples collected from the frontal cortex (FC) using in vivo microdialysis and HPLC. The basal DA level in FC was significantly higher in VPA-exposed rats relative to controls. Since the mesocortical DA system is known to be sensitive to physical and psychological stressors, we measured DA levels in FC before, during, and after a 60-min forced swim test (FST). There were further gradual increases in FC DA levels during the FST in the VPA-exposed rats, but not in the control rats. Behavioral analysis during the last 10 min of the FST revealed a significant decrease in active, escape-oriented behavior and an increase in immobility, which is thought to reflect the development of depressive behavior that disengages the animal from active forms of coping with stressful stimuli. These results suggest that this rodent model of autism exhibits a hyperactive mesocortical DA system, which is exaggerated by swim stress. This abnormality may be responsible for depressive and withdrawal behavior observed in autism.

  4. An extended reinforcement learning model of basal ganglia to understand the contributions of serotonin and dopamine in risk-based decision making, reward prediction, and punishment learning

    PubMed Central

    Balasubramani, Pragathi P.; Chakravarthy, V. Srinivasa; Ravindran, Balaraman; Moustafa, Ahmed A.

    2014-01-01

    Although empirical and neural studies show that serotonin (5HT) plays many functional roles in the brain, prior computational models mostly focus on its role in behavioral inhibition. In this study, we present a model of risk based decision making in a modified Reinforcement Learning (RL)-framework. The model depicts the roles of dopamine (DA) and serotonin (5HT) in Basal Ganglia (BG). In this model, the DA signal is represented by the temporal difference error (δ), while the 5HT signal is represented by a parameter (α) that controls risk prediction error. This formulation that accommodates both 5HT and DA reconciles some of the diverse roles of 5HT particularly in connection with the BG system. We apply the model to different experimental paradigms used to study the role of 5HT: (1) Risk-sensitive decision making, where 5HT controls risk assessment, (2) Temporal reward prediction, where 5HT controls time-scale of reward prediction, and (3) Reward/Punishment sensitivity, in which the punishment prediction error depends on 5HT levels. Thus the proposed integrated RL model reconciles several existing theories of 5HT and DA in the BG. PMID:24795614

  5. Detection of Prosecretory Mitogen Lacritin in Nonprimate Tears Primarily as a C-Terminal-Like Fragment

    PubMed Central

    Laurie, Diane E.; Splan, Rebecca K.; Green, Kari; Still, Katherine M.; McKown, Robert L.; Laurie, Gordon W.

    2012-01-01

    Purpose. Lacritin is a human tear glycoprotein that promotes basal tear protein secretion in cultured rat lacrimal acinar cells and proliferation of subconfluent human corneal epithelial cells. When topically added to rabbit eyes, lacritin promotes basal tearing. Despite these activities on several species, lacritin's presence in nonprimate tears or other tissues has not been explored. Here we probed for lacritin in normal horse tears. Methods. Sequences were collected from the Ensembl genomic alignment of human LACRT gene with high-quality draft horse genome (EquCab2.0) and analyzed. Normal horse tears were collected and assayed by Western blotting, ELISA, and mass spectrometry. Newly generated rabbit antibodies, respectively, against N- and C-terminal regions of human lacritin were employed. Results. Identity was 75% and 45%, respectively, at nucleotide and protein levels. Structural features were conserved, including a C-terminal amphipathic α-helix. Anti-C-terminal antibodies strongly detected a ∼13 kDa band in horse tears that was validated by mass spectrometry. In human tears, the same antibody detected uncleaved lacritin (∼24 kDa) strongly and C-terminal fragments of ∼13 and ∼11 kDa weakly. Anti-N-terminal antibodies were slightly reactive with a ∼24 kDa horse antigen and showed no reaction with the anti-C-terminal–reactive ∼13 kDa species. Similar respective levels of horse C-terminal versus N-terminal immunoreactivity were apparent by ELISA. Conclusions. Lacritin is present in horse tears, largely as a C-terminal fragment homologous to the mitogenic and bactericidal region in human lacritin, suggesting potential benefit in corneal wound repair. PMID:22871838

  6. Dopamine Induces LTP Differentially in Apical and Basal Dendrites through BDNF and Voltage-Dependent Calcium Channels

    ERIC Educational Resources Information Center

    Navakkode, Sheeja; Sajikumar, Sreedharan; Korte, Martin; Soong, Tuck Wah

    2012-01-01

    The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC).…

  7. An integrative theory of the phasic and tonic modes of dopamine modulation in the prefrontal cortex.

    PubMed

    Dreher, Jean-Claude; Burnod, Yves

    2002-01-01

    This paper presents a model of both tonic and phasic dopamine (DA) effects on maintenance of working memory representations in the prefrontal cortex (PFC). The central hypothesis is that DA modulates the efficacy of inputs to prefrontal pyramidal neurons to prevent interferences for active maintenance. Phasic DA release, due to DA neurons discharges, acts at a short time-scale (a few seconds), while the tonic mode of DA release, independent of DA neurons firing, acts at a long time-scale (a few minutes). The overall effect of DA modulation is modeled as a threshold restricting incoming inputs arriving on PFC neurons. Phasic DA release temporary increases this threshold while tonic DA release progressively increases the basal level of this threshold. Thus, unlike the previous gating theory of phasic DA release, proposing that it facilitates incoming inputs at the time of their arrival, the effect of phasic DA release is supposed to restrict incoming inputs during a period of time after DA neuron discharges. The model links the cellular and behavioral levels during performance of a working memory task. It allows us to understand why a critical range of DA D1 receptors stimulation is required for optimal working memory performance and how D1 receptor agonists (respectively antagonists) increase perseverations (respectively distractability). Finally, the model leads to several testable predictions, including that the PFC regulates DA neurons firing rate to adapt to the delay of the task and that increase in tonic DA release may either improve or decrease performance, depending on the level of DA receptors stimulation at the beginning of the task.

  8. The rare DAT coding variant Val559 perturbs DA neuron function, changes behavior, and alters in vivo responses to psychostimulants.

    PubMed

    Mergy, Marc A; Gowrishankar, Raajaram; Gresch, Paul J; Gantz, Stephanie C; Williams, John; Davis, Gwynne L; Wheeler, C Austin; Stanwood, Gregg D; Hahn, Maureen K; Blakely, Randy D

    2014-11-04

    Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness.

  9. The rare DAT coding variant Val559 perturbs DA neuron function, changes behavior, and alters in vivo responses to psychostimulants

    PubMed Central

    Mergy, Marc A.; Gowrishankar, Raajaram; Gresch, Paul J.; Gantz, Stephanie C.; Williams, John; Davis, Gwynne L.; Wheeler, C. Austin; Stanwood, Gregg D.; Hahn, Maureen K.; Blakely, Randy D.

    2014-01-01

    Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness. PMID:25331903

  10. A Comparative study for striatal-direct and -indirect pathway neurons to DA depletion-induced lesion in a PD rat model.

    PubMed

    Zheng, Xuefeng; Wu, Jiajia; Zhu, Yaofeng; Chen, Si; Chen, Zhi; Chen, Tao; Huang, Ziyun; Wei, Jiayou; Li, Yanmei; Lei, Wanlong

    2018-04-16

    Striatal-direct and -indirect Pathway Neurons showed different vulnerability in basal ganglia disorders. Therefore, present study aimed to examine and compare characteristic changes of densities, protein and mRNA levels of soma, dendrites, and spines between striatal-direct and -indirect pathway neurons after DA depletion by using immunohistochemistry, Western blotting, real-time PCR and immunoelectron microscopy techniques. Experimental results showed that: 1) 6OHDA-induced DA depletion decreased the soma density of striatal-direct pathway neurons (SP+), but no significant changes for striatal-indirect pathway neurons (ENK+). 2) DA depletion resulted in a decline of dendrite density for both striatal-direct (D1+) and -indirect (D2+) pathway neurons, and D2+ dendritic density declined more obviously. At the ultrastructure level, the densities of D1+ and D2+ dendritic spines reduced in the 6OHDA groups compared with their control groups, but the density of D2+ dendritic spines reduced more significant than that of D1. 3) Striatal DA depletion down-regulated protein and mRNA expression levels of SP and D1, on the contrary, ENK and D2 protein and mRNA levels of indirect pathway neurons were up-regulated significantly. Present results suggested that indirect pathway neurons be more sensitive to 6OHDA-induced DA depletion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Alteration of striatal dopamine levels under various partial pressure of oxygen in pre-convulsive and convulsive phases in freely-moving rats.

    PubMed

    Lavoute, Cécile; Weiss, Michel; Risso, Jean-Jacques; Rostain, Jean-Claude

    2014-02-01

    The purpose of this study was to investigate the change in the striatal dopamine (DA) level in freely-moving rat exposed to different partial pressure of oxygen (from 1 to 5 ATA). Some works have suggested that DA release by the substantia nigra pars compacta (SNc) neurons in the striatum could be disturbed by hyperbaric oxygen (HBO) exposure, altering therefore the basal ganglia activity. Such changes could result in a change in glutamatergic and GABAergic control of the dopaminergic neurons into the SNc. Such alterations could provide more information about the oxygen-induced seizures observed at 5 ATA in rat. DA-sensitive electrodes were implanted into the striatum under general anesthesia. After 1 week rest, awaked rats were exposed to oxygen-nitrogen mixture at a partial pressure of oxygen of 1, 2, 3, 4 and 5 ATA. DA level was monitored continuously (every 3 min) by in vivo voltammetry before and during HBO exposure. HBO induced a decrease in DA level in relationship to the increase in partial pressure of oxygen from 1 ATA to 4 ATA (-15 % at 1 ATA, -30 % at 2 ATA, -40 % at 3 ATA, -45 % at 4 ATA), without signs of oxygen toxicity. At 5 ATA, DA level strongly decreases (-75 %) before seizure which occurred after 27 min ± 7 HBO exposure. After the epileptic seizure the decrease in DA level disappeared. These changes and the biphasic effect of HBO were discussed in function of HBO action on neurochemical regulations of the nigro striatal pathway.

  12. Characterization of the effects of serotonin on the release of (/sup 3/H)dopamine from rat nucleus accumbens and striatal slices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurse, B.; Russell, V.A.; Taljaard, J.J.

    1988-05-01

    The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of (/sup 3/H)dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal /sup 3/H overflow and reduced K+-induced release of (/sup 3/H)DA from nucleus accumbens slices. The effect of serotonin on basal /sup 3/H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of (/sup 3/H)DA in the nucleus accumbens or striatum. The serotoninmore » agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of (/sup 3/H)DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens.« less

  13. Neurochemical evidence that cocaine- and amphetamine-regulated transcript (CART) 55-102 peptide modulates the dopaminergic reward system by decreasing the dopamine release in the mouse nucleus accumbens.

    PubMed

    Rakovska, Angelina; Baranyi, Maria; Windisch, Katalin; Petkova-Kirova, Polina; Gagov, Hristo; Kalfin, Reni

    2017-09-01

    CART (Cocaine- and Amphetamine-Regulated Transcript) peptide is a neurotransmitter naturally occurring in the CNS and found mostly in nucleus accumbens, ventrotegmental area, ventral pallidum, amygdalae and striatum, brain regions associated with drug addiction. In the nucleus accumbens, known for its significant role in motivation, pleasure, reward and reinforcement learning, CART peptide inhibits cocaine and amphetamine-induced dopamine-mediated increases in locomotor activity and behavior, suggesting a CART peptide interaction with the dopaminergic system. Thus in the present study, we examined the effect of CART (55-102) peptide on the basal, electrical field stimulation-evoked (EFS-evoked) (30V, 2Hz, 120 shocks) and returning basal dopamine (DA) release and on the release of the DA metabolites 3,4-dihydroxyphenyl acetaldehyde (DOPAL), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3,4-dihydroxyphenylethanol (DOPET), 3-methoxytyramine (3-MT) as well as on norepinephrine (NE) and dopamine-o-quinone (Daq) in isolated mouse nucleus accumbens, in a preparation, in which any CART peptide effects on the dendrites or soma of ventral tegmental projection neurons have been excluded. We further extended our study to assess the effect of CART (55-102) peptide on basal cocaine-induced release of dopamine and its metabolites DOPAL, DOPAC, HVA, DOPET and 3-MT as well as on NE and Daq. To analyze the amount of [ 3 H]dopamine, dopamine metabolites, Daq and NE in the nucleus accumbens superfusate, a high-pressure liquid chromatography (HPLC), coupled with electrochemical, UV and radiochemical detections was used. CART (55-102) peptide, 0.1μM, added alone, exerted: (i) a significant decrease in the basal and EFS-evoked levels of extracellular dopamine (ii) a significant increase in the EFS-evoked and returning basal levels of the dopamine metabolites DOPAC and HVA, major products of dopamine degradation and (iii) a significant decrease in the returning basal levels of DOPET. At the same concentration, 0.1μM, CART (55-102) peptide did not have any effect on the release of noradrenaline. In the presence of CART (55-102) peptide, 0.1μM, the effect of cocaine, 30μM, on the basal dopamine release was inhibited and the effect on the basal DOPAC release substantially increased. To our knowledge, our findings are the first to show direct neurochemical evidence that CART (55-102) peptide plays a neuromodulatory role on the dopaminergic reward system by decreasing dopamine in the mouse nucleus accumbens and by attenuating cocaine-induced effects on dopamine release. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. MPTP-meditated hippocampal dopamine deprivation modulates synaptic transmission and activity-dependent synaptic plasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Guoqi; Chen Ying; Huang Yuying

    2011-08-01

    Parkinson's disease (PD)-like symptoms including learning deficits are inducible by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, it is possible that MPTP may disturb hippocampal memory processing by modulation of dopamine (DA)- and activity-dependent synaptic plasticity. We demonstrate here that intraperitoneal (i.p.) MPTP injection reduces the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) within 7 days. Subsequently, the TH expression level in SN and hippocampus and the amount of DA and its metabolite DOPAC in striatum and hippocampus decrease. DA depletion does not alter basal synaptic transmission and changes pair-pulse facilitation (PPF) of field excitatory postsynaptic potentials (fEPSPs) only atmore » the 30 ms inter-pulse interval. In addition, the induction of long-term potentiation (LTP) is impaired whereas the duration of long-term depression (LTD) becomes prolonged. Since both LTP and LTD depend critically on activation of NMDA and DA receptors, we also tested the effect of DA depletion on NMDA receptor-mediated synaptic transmission. Seven days after MPTP injection, the NMDA receptor-mediated fEPSPs are decreased by about 23%. Blocking the NMDA receptor-mediated fEPSP does not mimic the MPTP-LTP. Only co-application of D1/D5 and NMDA receptor antagonists during tetanization resembled the time course of fEPSP potentiation as observed 7 days after i.p. MPTP injection. Together, our data demonstrate that MPTP-induced degeneration of DA neurons and the subsequent hippocampal DA depletion alter NMDA receptor-mediated synaptic transmission and activity-dependent synaptic plasticity. - Highlights: > I.p. MPTP-injection mediates death of dopaminergic neurons. > I.p. MPTP-injection depletes DA and DOPAC in striatum and hippocampus. > I.p. MPTP-injection does not alter basal synaptic transmission. > Reduction of LTP and enhancement of LTD after i.p. MPTP-injection. > Attenuation of NMDA-receptors mediated fEPSPs after i.p. MPTP-injection.« less

  15. High-frequency stimulation of the subthalamic nucleus restores neural and behavioral functions during reaction time task in a rat model of Parkinson's disease.

    PubMed

    Li, Xiang-Hong; Wang, Jin-Yan; Gao, Ge; Chang, Jing-Yu; Woodward, Donald J; Luo, Fei

    2010-05-15

    Deep brain stimulation (DBS) has been used in the clinic to treat Parkinson's disease (PD) and other neuropsychiatric disorders. Our previous work has shown that DBS in the subthalamic nucleus (STN) can improve major motor deficits, and induce a variety of neural responses in rats with unilateral dopamine (DA) lesions. In the present study, we examined the effect of STN DBS on reaction time (RT) performance and parallel changes in neural activity in the cortico-basal ganglia regions of partially bilateral DA- lesioned rats. We recorded neural activity with a multiple-channel single-unit electrode system in the primary motor cortex (MI), the STN, and the substantia nigra pars reticulata (SNr) during RT test. RT performance was severely impaired following bilateral injection of 6-OHDA into the dorsolateral part of the striatum. In parallel with such behavioral impairments, the number of responsive neurons to different behavioral events was remarkably decreased after DA lesion. Bilateral STN DBS improved RT performance in 6-OHDA lesioned rats, and restored operational behavior-related neural responses in cortico-basal ganglia regions. These behavioral and electrophysiological effects of DBS lasted nearly an hour after DBS termination. These results demonstrate that a partial DA lesion-induced impairment of RT performance is associated with changes in neural activity in the cortico-basal ganglia circuit. Furthermore, STN DBS can reverse changes in behavior and neural activity caused by partial DA depletion. The observed long-lasting beneficial effect of STN DBS suggests the involvement of the mechanism of neural plasticity in modulating cortico-basal ganglia circuits. (c) 2009 Wiley-Liss, Inc.

  16. Putative antipsychotics with pronounced agonism at serotonin 5-HT1A and partial agonist activity at dopamine D2 receptors disrupt basal PPI of the startle reflex in rats.

    PubMed

    Auclair, Agnès L; Galinier, Alexandra; Besnard, Joël; Newman-Tancredi, Adrian; Depoortère, Ronan

    2007-07-01

    Prepulse inhibition (PPI) of the startle reflex has been extensively studied because it is disrupted in several psychiatric diseases, most notably schizophrenia. In rats, and to a lesser extent, in humans, PPI can be diminished by dopamine (DA) D(2)/D(3) and serotonin 5-HT(1A) receptor agonists. A novel class of potential antipsychotics (SSR181507, bifeprunox, and SLV313) possess partial agonist/antagonist properties at D(2) receptors and various levels of 5-HT(1A) activation. It thus appeared warranted to assess, in Sprague-Dawley rats, the effects of these antipsychotics on basal PPI. SSR181507, sarizotan, and bifeprunox decreased PPI, with a near-complete abolition at 2.5-10 mg/kg; SLV313 had a significant effect at 0.16 mg/kg only. Co-treatment with the 5-HT(1A) receptor antagonist WAY100,635 (0.63 mg/kg) showed that the 5-HT(1A) agonist activity of SSR181507 was responsible for its effect. By contrast, antipsychotics with low affinity and/or efficacy at 5-HT(1A) receptors, such as aripiprazole (another DA D(2)/D(3) and 5-HT(1A) ligand), and established typical and atypical antipsychotics (haloperidol, clozapine, risperidone, olanzapine, quetiapine, and ziprasidone) had no effect on basal PPI (0.01-2.5 to 2.5-40 mg/kg). The present data demonstrate that some putative antipsychotics with pronounced 5-HT(1A) agonist activity, coupled with partial agonist activity at DA D(2) receptors, markedly diminish PPI of the startle reflex in rats. These data raise the issue of the influence of such compounds on sensorimotor gating in humans.

  17. Dopamine Receptors and Neurodegeneration

    PubMed Central

    Rangel-Barajas, Claudia; Coronel, Israel; Florán, Benjamín

    2015-01-01

    Dopamine (DA) is one of the major neurotransmitters and participates in a number of functions such as motor coordination, emotions, memory, reward mechanism, neuroendocrine regulation etc. DA exerts its effects through five DA receptors that are subdivided in 2 families: D1-like DA receptors (D1 and D5) and the D2-like (D2, D3 and D4). All DA receptors are widely expressed in the central nervous system (CNS) and play an important role in not only in physiological conditions but also pathological scenarios. Abnormalities in the DAergic system and its receptors in the basal ganglia structures are the basis Parkinson’s disease (PD), however DA also participates in other neurodegenerative disorders such as Huntington disease (HD) and multiple sclerosis (MS). Under pathological conditions reorganization of DAergic system has been observed and most of the times, those changes occur as a mechanism of compensation, but in some cases contributes to worsening the alterations. Here we review the changes that occur on DA transmission and DA receptors (DARs) at both levels expression and signals transduction pathways as a result of neurotoxicity, inflammation and in neurodegenerative processes. The better understanding of the role of DA receptors in neuropathological conditions is crucial for development of novel therapeutic approaches to treat alterations related to neurodegenerative diseases. PMID:26425390

  18. Purification and sequence analysis of two rat tissue inhibitors of metalloproteinases

    NASA Technical Reports Server (NTRS)

    Roswit, W. T.; McCourt, D. W.; Partridge, N. C.; Jeffrey, J. J.

    1992-01-01

    Two protein inhibitors of metalloproteinases (TIMP) were isolated from medium conditioned by the clonal rat osteosarcoma line UMR 106-01. Initial purification of both a 30-kDa inhibitor and a 20-kDa inhibitor was accomplished using heparin-Sepharose chromatography with dextran sulfate elution followed by DEAE-Sepharose and CM-Sepharose chromatography. Purification of the 20-kDa inhibitor to homogeneity was completed with reverse-phase high-performance liquid chromatography. The 20-kDa inhibitor was identified as rat TIMP-2. The 30-kDa inhibitor, although not purified to homogeneity, was identified as rat TIMP-1. Amino terminal amino acid sequence analysis of the 30-kDa inhibitor demonstrated 86% identity to human TIMP-1 for the first 22 amino acids while the sequence of the 20-kDa inhibitor was identical to that of human TIMP-2 for the first 22 residues. Treatment with peptide:N-glycosidase F indicated that the 30-kDa rat inhibitor is glycosylated while the 20-kDa inhibitor is apparently unglycosylated. Inhibition of both rat and human interstitial collagenase by rat TIMP-2 was stoichiometric, with a 1:1 molar ratio required for complete inhibition. Exposure of UMR 106-01 cells to 10(-7) M parathyroid hormone resulted in approximately a 40% increase in total inhibitor production over basal levels.

  19. Dehydroandrographolide, an iNOS inhibitor, extracted from Andrographis paniculata (Burm.f.) Nees, induces autophagy in human oral cancer cells.

    PubMed

    Hsieh, Ming-Ju; Lin, Chiao-Wen; Chiou, Hui-Ling; Yang, Shun-Fa; Chen, Mu-Kuan

    2015-10-13

    Autophagy, which is constitutively executed at the basal level in all cells, promotes cellular homeostasis by regulating the turnover of organelles and proteins. Andrographolide and dehydroandrographolide (DA) are the two principle components of Andrographis paniculata (Burm.f.) Nees. and are the main contributors to its therapeutic properties. However, the pharmacological activities of dehydroandrographolide (DA) remain unclear. In this study, DA induces oral cancer cell death by activating autophagy. Treatment with autophagy inhibitors inhibited DA-induced human oral cancer cell death. In addition, DA increased LC3-II expression and reduced p53 expression in a time- and concentration-dependent manner. Furthermore, DA induced autophagy and decreased cell viability through modulation of p53 expression. DA-induced autophagy was triggered by an activation of JNK1/2 and an inhibition of Akt and p38. In conclusion, this study demonstrated that DA induced autophagy in human oral cancer cells by modulating p53 expression, activating JNK1/2, and inhibiting Akt and p38. Finally, an administration of DA effectively suppressed the tumor formation in the oral carcinoma xenograft model in vivo. This is the first study to reveal the novel function of DA in activating autophagy, suggesting that DA could serve as a new and potential chemopreventive agent for treating human oral cancer.

  20. Dehydroandrographolide, an iNOS inhibitor, extracted from from Andrographis paniculata (Burm.f.) Nees, induces autophagy in human oral cancer cells

    PubMed Central

    Hsieh, Ming-Ju; Lin, Chiao-Wen; Chiou, Hui-Ling; Yang, Shun-Fa; Chen, Mu-Kuan

    2015-01-01

    Autophagy, which is constitutively executed at the basal level in all cells, promotes cellular homeostasis by regulating the turnover of organelles and proteins. Andrographolide and dehydroandrographolide (DA) are the two principle components of Andrographis paniculata (Burm.f.) Nees. and are the main contributors to its therapeutic properties. However, the pharmacological activities of dehydroandrographolide (DA) remain unclear. In this study, DA induces oral cancer cell death by activating autophagy. Treatment with autophagy inhibitors inhibited DA-induced human oral cancer cell death. In addition, DA increased LC3-II expression and reduced p53 expression in a time- and concentration-dependent manner. Furthermore, DA induced autophagy and decreased cell viability through modulation of p53 expression. DA-induced autophagy was triggered by an activation of JNK1/2 and an inhibition of Akt and p38. In conclusion, this study demonstrated that DA induced autophagy in human oral cancer cells by modulating p53 expression, activating JNK1/2, and inhibiting Akt and p38. Finally, an administration of DA effectively suppressed the tumor formation in the oral carcinoma xenograft model in vivo. This is the first study to reveal the novel function of DA in activating autophagy, suggesting that DA could serve as a new and potential chemopreventive agent for treating human oral cancer. PMID:26356821

  1. Protection from inorganic mercury effects on the in vivo dopamine release by ionotropic glutamate receptor antagonists and nitric oxide synthase inhibitors.

    PubMed

    Vidal, Lucía; Durán, Rafael; Faro, Lilian F; Campos, Francisco; Cervantes, Rosa C; Alfonso, Miguel

    2007-09-05

    The possible role of ionotropics glutamate receptors on the HgCl(2)-induced dopamine (DA) release from rat striatum was investigated by using in vivo brain microdialysis technique after administration of selective NMDA and AMPA/Kainate receptors antagonists dizocilpine (MK-801), D (-)-2-amino-5-phoshonopentanoic acid (AP5), and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Moreover, we have also studied the effects of nitric oxide synthase (NOS) inhibitors L-nitro-arginine methyl ester (L-NAME) and 7-nitro-indazol (7-NI) on HgCl(2)-induced DA release. Intraestriatal infusion of 1mM HgCl(2) increased striatal DA to 1717.2+/-375.4% respect to basal levels. Infusion of 1mM HgCl(2) in 400 microM MK-801 pre-treated animals produced an increase on striatal DA levels 61% smaller than that induced in non-pre-treated animals. In the case of AP5, this treatment reduced 92% the increase produced by HgCl(2) as compared to non-pre-treated rats. Nevertheless, the administration of CNQX did not produce any effect on HgCl(2)-induced dopamine release. Intrastriatal infusion of 1mM HgCl(2) in 100 microM L-NAME pre-treated animals produced an increase on extracellular DA levels 82% smaller than produced by HgCl(2) alone. In addition, the pre-treatment with 7-NI reduced 90% the increase produced by infusion of HgCl(2) alone in rats. Thus, HgCl(2)-induced DA release could be produced at last in part, by overstimulation of NMDA receptors with NO production, since administration of NMDA receptor antagonists and NOS inhibitors protected against HgCl(2) effects on DA release.

  2. Synthesis, Protein Levels, Activity and Phosphorylation State of Tyrosine Hydroxylase in Mesoaccumbens and Nigrostriatal Dopamine Pathways of Chronically Food-restricted Rats

    PubMed Central

    Pan, Yan; Berman, Yemiliya; Haberny, Sandra; Meller, Emanuel; Carr, Kenneth D.

    2006-01-01

    Chronic food restriction (FR) enhances the rewarding and motor-activating effects of abused drugs, and is accompanied by changes in dopamine (DA) dynamics and increased D-1 DA receptor-mediated cell signaling and transcriptional responses in nucleus accumbens (NAc). However, little is known about effects of FR on DA synthetic activity in the mesoaccumbens and nigrostriatal pathways. In Experiment 1 of the present study, tyrosine hydroxylase (TH) gene expression was measured in ventral tegmental area and substantia nigra, using real time RT-PCR and in situ hybridization; no differences were observed between FR and ad libitum fed (AL) rats. In Experiment 2, TH protein levels, determined by Western blot, were found to be elevated in NAc and caudate-putamen (CPu) of FR relative to AL rats. In the absence of increased transcription, this may reflect a slowing of TH degradation. In Experiments 3 and 4, DA synthetic activity was assessed by Western blot measurement of TH phosphorylation at Ser-40, and HPLC measurement of in vivo tyrosine hydroxylation rate, as reflected by DOPA accumulation following administration of a decarboxylase inhibitor (NSD-1015; 100 mg/kg, i.p.). Basal phospho-Ser(40)-TH levels did not differ between groups but DOPA accumulation was decreased by FR. Decreased DOPA synthesis, despite increased levels of TH protein, may reflect the inhibitory effect of increased DA binding to TH protein or decreased concentrations of cofactor tetrahydrobiopterin. Finally, in response to d-amphetamine (0.5 and 5.0 mg/kg, i.p.), phospho-Ser(40)-TH was selectively decreased in NAc of FR rats. This suggests increased feedback inhibition of DA synthesis - a possible consequence of postsynaptic receptor hypersensitivity, or increased extracellular DA concentration. These results indicate that FR increases TH protein levels, but may decrease the capacity for DA synthesis by decreasing TH activity. According to this scheme, the previously observed upregulation of striatal cell signaling and transcriptional responses to DA receptor agonist administration may include compensatory neuroadaptations. SECTION: 1. Systems Neuroscience (Regulatory Systems) PMID:17010321

  3. Taurine elevates dopamine levels in the rat nucleus accumbens; antagonism by strychnine.

    PubMed

    Ericson, Mia; Molander, Anna; Stomberg, Rosita; Söderpalm, Bo

    2006-06-01

    The mesolimbic dopamine (DA) system, projecting from the ventral tegmental area (VTA) to the nucleus accumbens (nAcc), is involved in reward-related behaviours and addictive processes, such as alcoholism and drug addiction. It was recently suggested that strychnine-sensitive glycine receptors (GlyR) in the nAcc regulate both basal and ethanol-induced mesolimbic DA activity via a neuronal loop involving endogenous activation of nicotinic acetylcholine receptors (nAChR) in the VTA. However, as the nAcc appears to contain few glycine-immunoreactive cell bodies or fibres, the question as to what may be the endogenous ligand for GlyRs in this brain region remains open. Here we have investigated whether the amino acid taurine could serve this purpose using in vivo microdialysis in awake, freely moving male Wistar rats. Local perfusion of taurine (1, 10 or 100 mm in the perfusate) increased DA levels in the nAcc. The taurine (10 mm)-induced DA increase was, similarly to that previously observed after ethanol, completely blocked by (i) perfusion of the competitive GlyR antagonist strychnine in the nAcc, (ii) perfusion of the nAChR antagonist mecamylamine (100 microm) in the VTA, and (iii) systemic administration of the acetylcholine-depleting drug vesamicol (0.4 mg/kg, i.p). The present results suggest that taurine may be an endogenous ligand for GlyRs in the nAcc and that the taurine-induced elevation of DA levels in this area, similarly to that observed after local ethanol, is mediated via a neuronal loop involving endogenous activation of nAChRs in the VTA.

  4. A brief history of levodopa.

    PubMed

    Hornykiewicz, Oleh

    2010-11-01

    This article highlights some landmarks in the history of levodopa, beginning with its isolation in 1910-13 from seedlings of Vicia faba to the demonstration, in 1961, of its "miraculous" effect in patients with Parkinson's disease (PD). Midway between these two time points, in 1938, L: -dopa decarboxylase was discovered, the enzyme that produces dopamine (DA) from levodopa. In 1957, DA was shown to occur in the brain, and in 1959 it was found to be enriched in the basal ganglia. At that time the striatal localization of DA, together with studies done in 1957-58 in naive and reserpine-treated animals regarding DA in the brain and the central effects of levodopa, suggested its possible involvement in "extrapyramidal control" and "reserpine parkinsonism". Following these discoveries, a study of (postmortem) brains of patients with basal ganglia disorders, including PD, was started, demonstrating, in 1960, a severe striatal DA deficit specifically in PD, thus furnishing a rational basis for the concept of "DA replacement therapy" with levodopa. Accordingly, in 1961, the first highly successful clinical trial with i.v. levodopa was carried out. In 1963, the DA deficit in the PD substantia nigra was found, indicative of a nigrostriatal DA pathway in the human brain, subsequently established in animal studies in 1964-65. In 1967, the chronic, high dose oral levodopa regimen was introduced in treatment of PD. Besides the above highlights in the history of levodopa, the article also cites critical opinions of world authorities in brain research of the time, harmful to the cause of DA, levodopa and PD. Today, the concept of DA replacement with levodopa is uncontested, with levodopa being the "gold standard" of modern drug treatment of PD.

  5. Apical-to-basolateral transepithelial transport of cow's milk caseins by intestinal Caco-2 cell monolayers: MS-based quantitation of cellularly degraded α- and β-casein fragments.

    PubMed

    Sakurai, Nao; Nishio, Shunsuke; Akiyama, Yuka; Miyata, Shinji; Oshima, Kenzi; Nadano, Daita; Matsuda, Tsukasa

    2018-02-27

    Casein is the major milk protein to nourish infants but, in certain population, it causes cow's milk allergy, indicating the uptake of antigenic casein and their peptides through the intestinal epithelium. Using human intestinal Caco-2 cell monolayers, the apical-to-basal transepithelial transport of casein was investigated. Confocal microscopy using component-specific antibodies showed that αs1-casein antigens became detectable as punctate signals at the apical-side cytoplasm and reached to the cytoplasm at a tight-junction level within a few hours. Such intracellular casein signals were more remarkable than those of the other antigens, β-lactoglobulin and ovalbumin, colocalized in part with an early endosome marker protein, EEA1, and decreased in the presence of cytochalasin D or sodium azide and also at lowered temperature at 4 °C. LC-MS analysis of the protein fraction in the basal-side medium identified the αs1-casein fragment including the N-terminal region and the αs2-casein fragment containing the central part of polypeptide at 100∼1000 fmol per well levels. Moreover, β-casein C-terminal overlapping peptides were identified in the peptide fraction below 10 kDa of the basal medium. These results suggest that caseins are partially degraded by cellular proteases and/or peptidases and immunologically active casein fragments are transported to basal side of the cell monolayers.

  6. L-Tyrosine availability affects basal and stimulated catecholamine indices in prefrontal cortex and striatum of the rat.

    PubMed

    Brodnik, Zachary D; Double, Manda; España, Rodrigo A; Jaskiw, George E

    2017-09-01

    We previously found that L-tyrosine (L-TYR) but not D-TYR administered by reverse dialysis elevated catecholamine synthesis in vivo in medial prefrontal cortex (MPFC) and striatum of the rat (Brodnik et al., 2012). We now report L-TYR effects on extracellular levels of catecholamines and their metabolites. In MPFC, reverse dialysis of L-TYR elevated in vivo levels of dihydroxyphenylacetic acid (DOPAC) (L-TYR 250-1000 μM), homovanillic acid (HVA) (L-TYR 1000 μM) and 3-methoxy-4-hydroxyphenylglycol (MHPG) (L-TYR 500-1000 μM). In striatum L-TYR 250 μM elevated DOPAC. We also examined L-TYR effects on extracellular dopamine (DA) and norepinephrine (NE) levels during two 30 min pulses (P2 and P1) of K+ (37.5 mM) separated by t = 2.0 h. L-TYR significantly elevated the ratio P2/P1 for DA (L-TYR 125 μM) and NE (L-TYR 125-250 μM) in MPFC but lowered P2/P1 for DA (L-TYR 250 μM) in striatum. Finally, we measured DA levels in brain slices using ex-vivo voltammetry. Perfusion with L-TYR (12.5-50 μM) dose-dependently elevated stimulated DA levels in striatum. In all the above studies, D-TYR had no effect. We conclude that acute increases within the physiological range of L-TYR levels can increase catecholamine metabolism and efflux in MPFC and striatum. Chronically, such repeated increases in L-TYR availability could induce adaptive changes in catecholamine transmission while amplifying the metabolic cost of catecholamine synthesis and degradation. This has implications for neuropsychiatric conditions in which neurotoxicity and/or disordered L-TYR transport have been implicated. Published by Elsevier Ltd.

  7. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2Rmore » binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.« less

  8. Synaptic plasticity and levodopa-induced dyskinesia: electrophysiological and structural abnormalities.

    PubMed

    Picconi, Barbara; De Leonibus, Elvira; Calabresi, Paolo

    2018-02-28

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive degeneration of dopaminergic neurons located in the midbrain. The gold-standard therapy for PD is the restoration of dopamine (DA) levels through the chronic administration of the DA precursor levodopa (L-DOPA). Although levodopa therapy is the main therapeutic approach for PD, its use is limited by the development of very disabling dyskinetic movements, mainly due to the fluctuation of DA cerebral content. Experimental animal models of PD identified in DA D1/ERK-signaling pathway aberrant activation, occurring in striatal projection neurons, coupled with structural spines abnormalities, the molecular and neuronal basis of L-DOPA-induced dyskinesia (LIDs) occurrence. Different electrophysiological approaches allowed the identification of  the alteration of homeostatic structural and synaptic changes, the neuronal bases of LIDs either in vivo in parkinsonian patients or in vitro in experimental animals. Here, we report the most recent studies showing electrophysiological and morphological evidence of aberrant synaptic plasticity in parkinsonian patients during LIDs in different basal ganglia nuclei and also in cortical transmission, accounting for the complexity of the synaptic changes during dyskinesias. All together, these studies suggest that LIDs are associated with a loss of homeostatic synaptic mechanisms.

  9. Temporal patterns of rat behaviour in the central platform of the elevated plus maze. Comparative analysis between male subjects of strains with different basal levels of emotionality.

    PubMed

    Casarrubea, M; Faulisi, F; Caternicchia, F; Santangelo, A; Di Giovanni, G; Benigno, A; Magnusson, M S; Crescimanno, G

    2016-08-01

    We have analyzed the temporal patterns of behaviour of male rats of the Wistar and DA/Han strains on the central platform of the elevated plus maze. The ethogram encompassed 10 behavioural elements. Durations, frequencies and latencies showed quantitative differences as to walking and sniffing activities. Wistar rats displayed significantly lower latency and significantly higher durations and frequencies of walking activities. DA/Han rats showed a significant increase of sniffing duration. In addition, DA/Han rats showed a significantly higher amount of time spent in the central platform. Multivariate T-pattern analysis revealed differences in the temporal organization of behaviour of the two rat strains. DA/Han rats showed (a) higher behavioural complexity and variability and (b) a significantly higher mean number of T-patterns than Wistar rats. Taken together, T-pattern analysis of behaviour in the centre of the elevated plus maze can noticeably improve the detection of subtle features of anxiety related behaviour. We suggest that T-pattern analysis could be used as sensitive tool to test the action of anxiolytic and anxiogenic manipulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Anatomy of a Decision: Striato-Orbitofrontal Interactions in Reinforcement Learning, Decision Making, and Reversal

    ERIC Educational Resources Information Center

    Frank, Michael J.; Claus, Eric D.

    2006-01-01

    The authors explore the division of labor between the basal ganglia-dopamine (BG-DA) system and the orbitofrontal cortex (OFC) in decision making. They show that a primitive neural network model of the BG-DA system slowly learns to make decisions on the basis of the relative probability of rewards but is not as sensitive to (a) recency or (b) the…

  11. Association of Urinary N-Domain Angiotensin I-Converting Enzyme with Plasma Inflammatory Markers and Endothelial Function

    PubMed Central

    Fernandes, Fernanda B; Plavnik, Frida L; Teixeira, Andressa MS; Christofalo, Dejaldo MJ; Ajzen, Sergio A; Higa, Elisa MS; Ronchi, Fernanda A; Sesso, Ricardo CC; Casarini, Dulce E

    2008-01-01

    The aim of this study was to investigate the association between urinary 90 kDa N-domain Angiotensin I-converting enzyme (ACE) form with C-reactive protein (CRP) and homocysteine plasma levels (Hcy), urinary nitric oxide (NOu), and endothelial function (EF) in normotensive subjects. Forty healthy subjects were evaluated through brachial Doppler US to test the response to reactive hyperemia and a panel of blood tests to determine CRP and Hcy levels, NOu, and urinary ACE. They were divided into groups according to the presence (ACE90+) or absence (ACE90–) of the 90 kDa ACE, the presence (FH+) or absence (FH–) of family history of hypertension, and the presence or absence of these two variables FH+/ACE90+ and FH–/ACE90–. We found an impaired endothelial dilatation in subjects who presented the 90 kDa N-domain ACE as follows: 11.4% ± 5.3% in ACE90+ compared with 17.6% ± 7.1% in ACE90– group and 12.4% ± 5.6% in FH+/ACE90+ compared with 17.7% ± 6.2% in FH–/ACE90– group, P < 0.05. Hcy and CRP levels were statistically significantly lower in FH+/ACE90+ than in FH–/ACE90– group, as follows: 10.0 ± 2.3 μM compared with 12.7 ± 1.5 μM, and 1.3 ± 1.8 mg/L compared with 3.6 ± 2.0 mg/L, respectively. A correlation between flow-mediated dilatation (FMD) and CRP, Hcy, and NOu levels was not found. Our study suggests a reduction in the basal NO production confirmed by NOu analysis in subjects with the 90 kDa N-domain ACE isoform alone or associated with a family history of hypertension. Our data suggest that the presence of the 90 kDa N-domain ACE itself may have a negative impact on flow-mediated dilatation stimulated by reactive hyperemia. PMID:18475311

  12. Subchronic steroid administration induces long lasting changes in neurochemical and behavioral response to cocaine in rats.

    PubMed

    Kailanto, Sanna; Kankaanpää, Aino; Seppälä, Timo

    2011-11-01

    The abuse of anabolic androgenic steroids (AASs), such as nandrolone, is not only a problem in the world of sports but is associated with the polydrug use of non-athletes. Among other adverse effects, AAS abuse has been associated with long term or even persistent psychiatric problems. We have previously found that nandrolone decanoate treatment could produce prolonged changes in rats' brain reward circuits associated to drug dependence. The aim in this study was to evaluate whether AAS-induced neurochemical and behavioral changes are reversible. The increases in extracellular dopamine (DA) and serotonin (5-HT) concentration, as well as stereotyped behavior and locomotor activity (LMA) evoked by cocaine were attenuated by pretreatment with nandrolone. The recovery period, which was needed for the DA system to return back to the basic level, was fairly long compared to the dosing period of the steroid. In the 5-HT system, the time that system needed to return back to the basal level, was even longer than in the DA system. The attenuation was still seen though there were no detectable traces of nandrolone in the blood samples. Given that accumbal outflow of DA and 5-HT, as well as LMA and stereotyped behavior are all related to reward of stimulant drugs, this study suggests that nandrolone decanoate has significant, long-lasting but reversible effects on the rewarding properties of cocaine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice.

    PubMed

    Akundi, Ravi S; Huang, Zhenyu; Eason, Joshua; Pandya, Jignesh D; Zhi, Lianteng; Cass, Wayne A; Sullivan, Patrick G; Büeler, Hansruedi

    2011-01-13

    PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca²+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD) display altered activity in the nigrostriatal system of Pink1⁻/⁻ mice. Purified brain mitochondria of Pink1⁻/⁻ mice showed impaired Ca²+ storage capacity, resulting in increased Ca²+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1⁻/⁻ mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1⁻/⁻ mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1⁻/⁻ mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1⁻/⁻ embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1⁻/⁻ mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. Increased mitochondrial Ca²+ sensitivity and JNK activity are early defects in Pink1⁻/⁻ mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1⁻/⁻ mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1⁻/⁻ mice to inflammation and injury-induced cell death.

  14. Effect of neonatal or adult heat acclimation on plasma fT3 level, testicular thyroid receptors expression in male rats and testicular steroidogenesis in vitro in response to triiodothyronine treatment.

    PubMed

    Kurowicka, B; Chrusciel, M; Zmijewska, A; Kotwica, G

    2016-01-01

    This study aimed to evaluate the effect of heat acclimation of neonatal and adult rats on their testes response to in vitro treatment with triiodothyronine (T3). Four groups of rats were housed from birth as: 1) control (CR) at 20°C for 90 days, 2) neonatal heat-acclimated (NHA) at 34°C for 90 days, 3) adult heat-acclimated (AHA) at 20°C for 45 days followed by 45 days at 34°C and 4) de-acclimated (DA) at 34°C for 45 days followed by 45 days at 20°C. Blood plasma and both testes were harvested from 90-day old rats. Testicular slices were then submitted to in vitro treatment with T3 (100 ng/ml) for 8 h. Plasma fT3 level was lower in AHA, NHA and DA groups than in CR group. Basal thyroid hormone receptor α1 (Thra1) expression was higher in testes of NHA and DA and β1 receptor (Thrb1) in DA rats vs. other groups. In the in vitro experiment, T3: 1) decreased Thra1 expression in all groups and Thrb1 in DA group, 2) increased Star expression in CR, NHA and DA groups, and Hsd17b3 expression in NHA group, 3) decreased the expression of Cyp11a1 in NHA and DA groups, and Cyp19a1 in all the groups, 4) did not affect the activity of steroidogenic enzymes and steroid secretion (A4, T, E2) in all the groups. These results indicate, that heat acclimation of rats, depending on their age, mainly affects the testicular expression of steroidogenic enzymes in response to short-lasting treatment with T3.

  15. Effects of repeated treatment with MDMA on working memory and behavioural flexibility in mice.

    PubMed

    Viñals, Xavier; Maldonado, Rafael; Robledo, Patricia

    2013-03-01

    Repeated administration of 3,4-methylenedioxymethamphetamine (MDMA) produces dopaminergic neurotoxicity in mice. However, it is still not clear whether this exposure induces deficits in cognitive processing related to specific subsets of executive functioning. We evaluated the effects of neurotoxic and non-neurotoxic doses of MDMA (0, 3 and 30 mg/kg, twice daily for 4 days) on working memory and attentional set-shifting in mice, and changes in extracellular levels of dopamine (DA) in the striatum. Treatment with MDMA (30 mg/kg) disrupted performance of acquired operant alternation, and this impairment was still apparent 5 days after the last drug administration. Decreased alternation was not related to anhedonia because no differences were observed between groups in the saccharin preference test under similar experimental conditions. Correct responding on delayed alternation was increased 1 day after repeated treatment with MDMA (30 mg/kg), probably because of general behavioural quiescence. Notably, the high dose regimen of MDMA impaired attentional set-shifting related to an increase in total perseveration errors. Finally, basal extracellular levels of DA in the striatum were not modified in mice repeatedly treated with MDMA with respect to controls. However, an acute challenge with MDMA (10 mg/kg) failed to increase DA outflow in mice receiving the highest MDMA dose (30 mg/kg), corroborating a decrease in the functionality of DA transporters. Seven days after this treatment, the effects of MDMA on DA outflow were recovered. These results suggest that repeated neurotoxic doses of MDMA produce lasting impairments in recall of alternation behaviour and reduce cognitive flexibility in mice. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  16. Intracerebral administration of 2,4-diclorophenoxyacetic acid induces behavioral and neurochemical alterations in the rat brain.

    PubMed

    Bortolozzi, A; Evangelista de Duffard, A M; Dajas, F; Duffard, R; Silveira, R

    2001-04-01

    Although, the mechanism of 2,4-dichlorophenoxyacetic acid (2,4-D) neurotoxicity remains unknown, the monoaminergic system appears to mediate some of its effects in rats as we previously reported. In this study; we examined the 2,4-D effects on locomotor activity, circling behavior and monoamine levels after the injection into the basal ganglia of male adult rats. These effects were compared with those induced after selective lesions of dopaminergic neurons with 6-hydroxydopamine (6-OHDA). 2,4-D-injected into one striatum (100 microg/rat) produced a marked depression in locomotor activity and elicited a moderate circling towards the ipsilateral side at 6 and 24 h postinjection. These behavioral changes were accompanied by a decrease and an increase of serotonin (5-HT) and homovanillic acid (HVA) levels, respectively. 2,4-D administration (100 microg/rat) into the nucleus accumbens, induced similar behavioral and neurochemical patterns to the intrastriatal 2,4-D injection, although rats did not present notorious turning. When 2,4-D was injected into one medial forebrain bundle (MFB, 50 microg/rat), animals presented ipsilateral circling, while locomotor activity was unchanged at 3 and 7 days post-injection. These last rats also exhibited diminished levels of striatal 5-HT, dopamine (DA) and their metabolites without changes in the substantia nigra (SN). Animals sacrificed 3 and 7 days after a 6-OHDA injection into one of the MFB, presented progressive depletion of dopamine in striatum and SN. 2,4-D as well as 6-OHDA-treated rats into one of the MFB were challenged with low dose (0.05 mg/kg s.c.) of apomorphine (only at 7 days post-injection) to evaluate a possible DA-receptor supersensitivity. Only 6-OHDA treated rats showing a vigorous contralateral rotation activity. These results indicate that 2,4-D induced a regionally-specific neurotoxicity in the basal ganglia of rats. The neurotoxic effects of 2,4-D on basal ganglia by interacting with the monoaminergic system depended not only on the exact location of the 2,4-D injection, but also on the dose and time period of post-injection. Toxicity produced by 2,4-D appears to be different in monoaminergic terminals, axonal fibers, and cell bodies.

  17. Activation of mesocorticolimbic reward circuits for assessment of relief of ongoing pain: a potential biomarker of efficacy.

    PubMed

    Xie, Jennifer Y; Qu, Chaoling; Patwardhan, Amol; Ossipov, Michael H; Navratilova, Edita; Becerra, Lino; Borsook, David; Porreca, Frank

    2014-08-01

    Preclinical assessment of pain has increasingly explored operant methods that may allow behavioral assessment of ongoing pain. In animals with incisional injury, peripheral nerve block produces conditioned place preference (CPP) and activates the mesolimbic dopaminergic reward pathway. We hypothesized that activation of this circuit could serve as a neurochemical output measure of relief of ongoing pain. Medications commonly used clinically, including gabapentin and nonsteroidal anti-inflammatory drugs (NSAIDs), were evaluated in models of post-surgical (1 day after incision) or neuropathic (14 days after spinal nerve ligation [SNL]) pain to determine whether the clinical efficacy profile of these drugs in these pain conditions was reflected by extracellular dopamine (DA) release in the nucleus accumbens (NAc) shell. Microdialysis was performed in awake rats. Basal DA levels were not significantly different between experimental groups, and no significant treatment effects were seen in sham-operated animals. Consistent with clinical observation, spinal clonidine produced CPP and produced a dose-related increase in net NAc DA release in SNL rats. Gabapentin, commonly used to treat neuropathic pain, produced increased NAc DA in rats with SNL but not in animals with incisional, injury. In contrast, ketorolac or naproxen produced increased NAc DA in animals with incisional but not neuropathic pain. Increased extracellular NAc DA release was consistent with CPP and was observed selectively with treatments commonly used clinically for post-surgical or neuropathic pain. Evaluation of NAc DA efflux in animal pain models may represent an objective neurochemical assay that may serve as a biomarker of efficacy for novel pain-relieving mechanisms. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  18. Increased Mitochondrial Calcium Sensitivity and Abnormal Expression of Innate Immunity Genes Precede Dopaminergic Defects in Pink1-Deficient Mice

    PubMed Central

    Akundi, Ravi S.; Huang, Zhenyu; Eason, Joshua; Pandya, Jignesh D.; Zhi, Lianteng; Cass, Wayne A.; Sullivan, Patrick G.; Büeler, Hansruedi

    2011-01-01

    Background PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca2+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD) display altered activity in the nigrostriatal system of Pink1−/− mice. Methods and Findings Purified brain mitochondria of Pink1−/− mice showed impaired Ca2+ storage capacity, resulting in increased Ca2+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1−/− mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1−/− mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1−/− mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1−/− embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1−/− mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. Conclusions Increased mitochondrial Ca2+ sensitivity and JNK activity are early defects in Pink1−/− mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1−/− mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1−/− mice to inflammation and injury-induced cell death. PMID:21249202

  19. Dopamine-regulated adrenocorticotropic hormone secretion in lactating rats: functional plasticity of melanotropes.

    PubMed

    Oláh, Márk; Fehér, Pálma; Ihm, Zsófia; Bácskay, Ildikó; Kiss, Timea; Freeman, Marc E; Nagy, Gyorgy M; Vecsernyés, Miklós

    2009-01-01

    Pro-opiomelanocortin (POMC) is processed to adrenocorticotropic hormone (ACTH) and beta-lipotropin in corticotropes of the anterior lobe, and to alpha-melanocyte-stimulating hormone (alpha-MSH) and beta-endorphin in melanotropes of the intermediate lobe (IL) of the pituitary gland. While ACTH secretion is predominantly under the stimulatory influence of the hypothalamic factors, hormone secretion of the IL is tonically inhibited by neuroendocrine dopamine (NEDA) neurons. Lobe-specific POMC processing is not absolute. For example, D(2) type DA receptor (D2R)-deficient mice have elevated plasma ACTH levels, although it is known that corticotropes do not express D2R(s). Moreover, observations that suckling does not influence alpha-MSH release, while it induces an increase in plasma ACTH is unexplained. The aim of the present study was to investigate the involvement of the NEDA system in the regulation of ACTH secretion and the participation of the IL in ACTH production in lactating rats. Untreated and estradiol (E(2))-substituted ovariectomized (OVX) females were also studied. The concentration of ACTH in the IL was higher in lactating rats than in OVX rats, while the opposite change in alpha-MSH level of the IL was observed. DA levels in the IL and the neural lobe were lower in lactating rats than in OVX rats. Suckling-induced ACTH response was eliminated by pretreatment with the DA receptor agonist, bromocriptine (BRC). Inhibition of DA biosynthesis by alpha-methyl-p-tyrosine (alphaMpT) and blockade of D2R by domperidone (DOM) elevated plasma ACTH levels, but did not influence plasma alpha-MSH levels in lactating rats. The same drugs had opposite effects in OVX and OVX + E(2) animals. In lactating mothers, BRC was able to block ACTH responses induced by both alphaMpT and DOM. Surgical denervation of the IL elevated basal plasma levels of ACTH. Taken together, these data indicate that melanotropes synthesize ACTH during lactation and its release from these cells is regulated by NEDA neurons. Copyright 2009 S. Karger AG, Basel.

  20. Dopamine-Regulated Adrenocorticotropic Hormone Secretion in Lactating Rats: Functional Plasticity of Melanotropes

    PubMed Central

    Oláh, Márk; Fehér, Pálma; Ihm, Zsófia; Bácskay, Ildikó; Kiss, Timea; Freeman, Marc E.; Nagy, György M.; Vecsernyés, Miklós

    2009-01-01

    Pro-opiomelanocortin (POMC) is processed to adrenocorticotropic hormone (ACTH) and β-lipotropin in corticotropes of the anterior lobe, and to α-melanocyte-stimulating hormone (α-MSH) and β-endorphin in melanotropes of the intermediate lobe (IL) of the pituitary gland. While ACTH secretion is predominantly under the stimulatory influence of the hypothalamic factors, hormone secretion of the IL is tonically inhibited by neuroendocrine dopamine (NEDA) neurons. Lobe-specific POMC processing is not absolute. For example, D2 type DA receptor (D2R)-deficient mice have elevated plasma ACTH levels, although it is known that corticotropes do not express D2R(s). Moreover, observations that suckling does not influence α-MSH release, while it induces an increase in plasma ACTH is unexplained. The aim of the present study was to investigate the involvement of the NEDA system in the regulation of ACTH secretion and the participation of the IL in ACTH production in lactating rats. Untreated and estradiol (E2)-substituted ovariectomized (OVX) females were also studied. The concentration of ACTH in the IL was higher in lactating rats than in OVX rats, while the opposite change in α-MSH level of the IL was observed. DA levels in the IL and the neural lobe were lower in lactating rats than in OVX rats. Suckling-induced ACTH response was eliminated by pretreatment with the DA receptor agonist, bromocriptine (BRC). Inhibition of DA biosynthesis by α-methyl-p-tyrosine (αMpT) and blockade of D2R by domperidone (DOM) elevated plasma ACTH levels, but did not influence plasma α-MSH levels in lactating rats. The same drugs had opposite effects in OVX and OVX + E2 animals. In lactating mothers, BRC was able to block ACTH responses induced by both αMpT and DOM. Surgical denervation of the IL elevated basal plasma levels of ACTH. Taken together, these data indicate that melanotropes synthesize ACTH during lactation and its release from these cells is regulated by NEDA neurons. PMID:19641299

  1. Dopamine enhances duodenal epithelial permeability via the dopamine D5 receptor in rodent.

    PubMed

    Feng, X-Y; Zhang, D-N; Wang, Y-A; Fan, R-F; Hong, F; Zhang, Y; Li, Y; Zhu, J-X

    2017-05-01

    The intestinal barrier is made up of epithelial cells and intercellular junctional complexes to regulate epithelial ion transport and permeability. Dopamine (DA) is able to promote duodenal epithelial ion transport through D1-like receptors, which includes subtypes of D 1 (D 1 R) and D 5 (D 5 R), but whether D1-like receptors influence the duodenal permeability is unclear. FITC-dextran permeability, short-circuit current (I SC ), Western blot, immunohistochemistry and ELISA were used in human D 5 R transgenic mice and hyperendogenous enteric DA (HEnD) rats in this study. Dopamine induced a downward deflection in I SC and an increase in FITC-dextran permeability of control rat duodenum, which were inhibited by the D1-like receptor antagonist, SCH-23390. However, DA decreased duodenal transepithelial resistance (TER), an effect also reversed by SCH-23390. A strong immunofluorescence signal for D 5 R, but not D 1 R, was observed in the duodenum of control rat. In human D 5 R knock-in transgenic mice, duodenal mucosa displayed an increased basal I SC with high FITC-dextran permeability and decreased TER with a lowered expression of tight junction proteins, suggesting attenuated duodenal barrier function in these transgenic mice. D 5 R knock-down transgenic mice manifested a decreased basal I SC with lowered FITC-dextran permeability. Moreover, an increased FITC-dextran permeability combined with decreased TER and tight junction protein expression in duodenal mucosa were also observed in HEnD rats. This study demonstrates, for the first time, that DA enhances duodenal permeability of control rat via D 5 R, which provides new experimental and theoretical evidence for the influence of DA on duodenal epithelial barrier function. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  2. Bidirectional Modulation of Substantia Nigra Activity by Motivational State

    PubMed Central

    Rossi, Mark A.; Fan, David; Barter, Joseph W.; Yin, Henry H.

    2013-01-01

    A major output nucleus of the basal ganglia is the substantia nigra pars reticulata, which sends GABAergic projections to brainstem and thalamic nuclei. The GABAergic (GABA) neurons are reciprocally connected with nearby dopaminergic neurons, which project mainly to the basal ganglia, a set of subcortical nuclei critical for goal-directed behaviors. Here we examined the impact of motivational states on the activity of GABA neurons in the substantia nigra pars reticulata and the neighboring dopaminergic (DA) neurons in the pars compacta. Both types of neurons show short-latency bursts to a cue predicting a food reward. As mice became sated by repeated consumption of food pellets, one class of neurons reduced cue-elicited firing, whereas another class of neurons progressively increased firing. Extinction or pre-feeding just before the test session dramatically reduced the phasic responses and their motivational modulation. These results suggest that signals related to the current motivational state bidirectionally modulate behavior and the magnitude of phasic response of both DA and GABA neurons in the substantia nigra. PMID:23936522

  3. Loss of VGLUT3 Produces Circadian-Dependent Hyperdopaminergia and Ameliorates Motor Dysfunction and l-Dopa-Mediated Dyskinesias in a Model of Parkinson's Disease

    PubMed Central

    Divito, Christopher B.; Steece-Collier, Kathy; Case, Daniel T.; Williams, Sean-Paul G.; Stancati, Jennifer A.; Zhi, Lianteng; Rubio, Maria E.; Sortwell, Caryl E.; Collier, Timothy J.; Sulzer, David; Edwards, Robert H.; Zhang, Hui

    2015-01-01

    The striatum is essential for many aspects of mammalian behavior, including motivation and movement, and is dysfunctional in motor disorders such as Parkinson's disease. The vesicular glutamate transporter 3 (VGLUT3) is expressed by striatal cholinergic interneurons (CINs) and is thus well positioned to regulate dopamine (DA) signaling and locomotor activity, a canonical measure of basal ganglia output. We now report that VGLUT3 knock-out (KO) mice show circadian-dependent hyperlocomotor activity that is restricted to the waking cycle and is due to an increase in striatal DA synthesis, packaging, and release. Using a conditional VGLUT3 KO mouse, we show that deletion of the transporter from CINs, surprisingly, does not alter evoked DA release in the dorsal striatum or baseline locomotor activity. The mice do, however, display changes in rearing behavior and sensorimotor gating. Elevation of DA release in the global KO raised the possibility that motor deficits in a Parkinson's disease model would be reduced. Remarkably, after a partial 6-hydroxydopamine (6-OHDA)-mediated DA depletion (∼70% in dorsal striatum), KO mice, in contrast to WT mice, showed normal motor behavior across the entire circadian cycle. l-3,4-dihydroxyphenylalanine-mediated dyskinesias were also significantly attenuated. These findings thus point to new mechanisms to regulate basal ganglia function and potentially treat Parkinson's disease and related disorders. SIGNIFICANCE STATEMENT Dopaminergic signaling is critical for both motor and cognitive functions in the mammalian nervous system. Impairments, such as those found in Parkinson's disease patients, can lead to severe motor deficits. Vesicular glutamate transporter 3 (VGLUT3) loads glutamate into secretory vesicles for neurotransmission and is expressed by discrete neuron populations throughout the nervous system. Here, we report that the absence of VGLUT3 in mice leads to an upregulation of the midbrain dopamine system. Remarkably, in a Parkinson's disease model, the mice show normal motor behavior. They also show fewer abnormal motor behaviors (dyskinesias) in response to l-3,4-dihydroxyphenylalanine, the principal treatment for Parkinson's disease. The work thus suggests new avenues for the development of novel treatment strategies for Parkinson's disease and potentially other basal-ganglia-related disorders. PMID:26558771

  4. The effect of alcohol and hydrogen peroxide on liver hepcidin gene expression in mice lacking antioxidant enzymes, glutathione peroxidase-1 or catalase.

    PubMed

    Harrison-Findik, Duygu Dee; Lu, Sizhao

    2015-05-06

    This study investigates the regulation of hepcidin, the key iron-regulatory molecule, by alcohol and hydrogen peroxide (H2O2) in glutathione peroxidase-1 (gpx-1(-/-)) and catalase (catalase(-/-)) knockout mice. For alcohol studies, 10% ethanol was administered in the drinking water for 7 days. Gpx-1(-/-) displayed significantly higher hepatic H2O2 levels than catalase(-/-) compared to wild-type mice, as measured by 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA). The basal level of liver hepcidin expression was attenuated in gpx-1(-/-) mice. Alcohol increased H2O2 production in catalase(-/-) and wild-type, but not gpx-1(-/-), mice. Hepcidin expression was inhibited in alcohol-fed catalase(-/-) and wild-type mice. In contrast, alcohol elevated hepcidin expression in gpx-1(-/-) mice. Gpx-1(-/-) mice also displayed higher level of basal liver CHOP protein expression than catalase(-/-) mice. Alcohol induced CHOP and to a lesser extent GRP78/BiP expression, but not XBP1 splicing or binding of CREBH to hepcidin gene promoter, in gpx-1(-/-) mice. The up-regulation of hepatic ATF4 mRNA levels, which was observed in gpx-1(-/-) mice, was attenuated by alcohol. In conclusion, our findings strongly suggest that H2O2 inhibits hepcidin expression in vivo. Synergistic induction of CHOP by alcohol and H2O2, in the absence of gpx-1, stimulates liver hepcidin gene expression by ER stress independent of CREBH.

  5. The role of N-methyl-D-aspartate receptors and nitric oxide in cochlear dopamine release.

    PubMed

    Halmos, G; Horváth, T; Polony, G; Fekete, A; Kittel, A; Vizi, E S; van der Laan, B F A M; Zelles, T; Lendvai, B

    2008-06-23

    Dopamine (DA) released from lateral olivocochlear (LOC) terminals may have a neuroprotective effect in the cochlea. To explore the role of N-methyl-d-aspartate (NMDA) receptors and nitric oxide (NO) in the modulation of a cochlear DA release, we measured the release of [3H]DA from isolated mouse cochlea in response to the application of NMDA. NMDA at 100 muM significantly increased the electrical-field stimulation-evoked and resting release of DA from the cochlea. The NO donor sodium nitroprusside enhanced the basal outflow of DA but failed to influence the evoked release. The administration of the nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) alone was ineffective, but it significantly inhibited the initial phase of the NMDA-induced elevation of DA outflow, which suggested the role of NO in the NMDA-induced DA release. The DA uptake inhibitor nomifensine increased the electrically evoked release of DA. Nomifensine failed to change the effect of NMDA on the resting or electrically-evoked DA release, which suggested that the uptake mechanism does not play a role in NMDA-evoked and NO-mediated DA release. In summary, we provide evidence that NO can modulate the release of DA from the cochlea following NMDA receptor activation, but does not affect the uptake of DA.

  6. Jagged-1 Signaling Pathway in Prostate Cancer Cell Growth and Angiogenesis

    DTIC Science & Technology

    2010-04-01

    18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 80 19b. TELEPHONE... LN Ca P C4 -2 B M DA P Ca 2B Notch-2 Notch-1 Notch-4 Notch-3 β-actin Jagged-1 PC -3 DU 14 5 LN Ca P C4 -2 B M DA P Ca 2B β-actin Jagged-2 DLL-4 DLL-1...frequently up-regulated in most human malignancies including lung cancer, glioblastomas , PCa, basal cell carcinomas, hepatocellular carcinoma,

  7. Hippocampal Sclerosis but Not Normal Aging or Alzheimer Disease Is Associated With TDP-43 Pathology in the Basal Forebrain of Aged Persons.

    PubMed

    Cykowski, Matthew D; Takei, Hidehiro; Van Eldik, Linda J; Schmitt, Frederick A; Jicha, Gregory A; Powell, Suzanne Z; Nelson, Peter T

    2016-05-01

    Transactivating responsive sequence (TAR) DNA-binding protein 43-kDa (TDP-43) pathology has been described in various brain diseases, but the full anatomical distribution and clinical and biological implications of that pathology are incompletely characterized. Here, we describe TDP-43 neuropathology in the basal forebrain, hypothalamus, and adjacent nuclei in 98 individuals (mean age, 86 years; median final mini-mental state examination score, 27). On examination blinded to clinical and pathologic diagnoses, we identified TDP-43 pathology that most frequently involved the ventromedial basal forebrain in 19 individuals (19.4%). As expected, many of these brains had comorbid pathologies including those of Alzheimer disease (AD), Lewy body disease (LBD), and/or hippocampal sclerosis of aging (HS-Aging). The basal forebrain TDP-43 pathology was strongly associated with comorbid HS-Aging (odds ratio = 6.8, p = 0.001), whereas there was no significant association between basal forebrain TDP-43 pathology and either AD or LBD neuropathology. In this sample, there were some cases with apparent preclinical TDP-43 pathology in the basal forebrain that may indicate that this is an early affected area in HS-Aging. We conclude that TDP-43 pathology in the basal forebrain is strongly associated with HS-Aging. These results raise questions about a specific pathogenetic relationship between basal forebrain TDP-43 and non-HS-Aging comorbid diseases (AD and LBD). © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  8. Hippocampal Sclerosis but Not Normal Aging or Alzheimer Disease Is Associated With TDP-43 Pathology in the Basal Forebrain of Aged Persons

    PubMed Central

    Takei, Hidehiro; Van Eldik, Linda J.; Schmitt, Frederick A.; Jicha, Gregory A.; Powell, Suzanne Z.; Nelson, Peter T.

    2016-01-01

    Transactivating responsive sequence (TAR) DNA-binding protein 43-kDa (TDP-43) pathology has been described in various brain diseases, but the full anatomical distribution and clinical and biological implications of that pathology are incompletely characterized. Here, we describe TDP-43 neuropathology in the basal forebrain, hypothalamus, and adjacent nuclei in 98 individuals (mean age, 86 years; median final mini-mental state examination score, 27). On examination blinded to clinical and pathologic diagnoses, we identified TDP-43 pathology that most frequently involved the ventromedial basal forebrain in 19 individuals (19.4%). As expected, many of these brains had comorbid pathologies including those of Alzheimer disease (AD), Lewy body disease (LBD), and/or hippocampal sclerosis of aging (HS-Aging). The basal forebrain TDP-43 pathology was strongly associated with comorbid HS-Aging (odds ratio = 6.8, p = 0.001), whereas there was no significant association between basal forebrain TDP-43 pathology and either AD or LBD neuropathology. In this sample, there were some cases with apparent preclinical TDP-43 pathology in the basal forebrain that may indicate that this is an early affected area in HS-Aging. We conclude that TDP-43 pathology in the basal forebrain is strongly associated with HS-Aging. These results raise questions about a specific pathogenetic relationship between basal forebrain TDP-43 and non-HS-Aging comorbid diseases (AD and LBD). PMID:26971127

  9. Evaluation of basal sex hormone levels for activation of the hypothalamic-pituitary-gonadal axis.

    PubMed

    Ding, Yu; Li, Juan; Yu, Yongguo; Yang, Peirong; Li, Huaiyuan; Shen, Yongnian; Huang, Xiaodong; Liu, Shijian

    2018-03-28

    This study aimed to identify the predictive value of basal sex hormone levels for activation of the hypothalamic-pituitary-gonadal (HPG) axis in girls. Gonadotropin-releasing hormone (GnRH) stimulation tests were performed and evaluated in a total of 1750 girls with development of secondary sex characteristics. Correlation analyses were conducted between basal sex hormones and peak luteinizing hormone (LH) levels ≥5 IU/L during the GnRH stimulation test. Receiver operating characteristic (ROC) curves for basal levels of LH, follicle-stimulating hormone (FSH), LH/FSH, and estradiol (E2) before the GnRH stimulation test were plotted. The area under the curve (AUC) and 95% confidence intervals (CIs) were measured for each curve. The maximum AUC value was observed for basal LH levels (0.77, 95% CI: 0.74-0.79), followed by basal FSH levels (0.73, 95% CI: 0.70-0.75), the basal LH/FSH ratio (0.68, 95% CI: 0.65-0.71), and basal E2 levels (0.61, 95% CI: 0.59-0.64). The appropriate cutoff value of basal LH levels associated with a positive response of the GnRH stimulation test was 0.35 IU/L, with a sensitivity of 63.96% and specificity of 76.3% from the ROC curves when Youden's index showed the maximum value. When 100% of patients had peak LH levels ≥5 IU/L, basal LH values were >2.72 IU/L, but the specificity was only 5.45%. Increased basal LH levels are a significant predictor of a positive response during the GnRH stimulation test for assessing activation of the HPG axis in most girls with early pubertal signs.

  10. Behavioral Functions of the Mesolimbic Dopaminergic System: an Affective Neuroethological Perspective

    PubMed Central

    Alcaro, Antonio; Huber, Robert; Panksepp, Jaak

    2008-01-01

    The mesolimbic dopaminergic (ML-DA) system has been recognized for its central role in motivated behaviors, various types of reward, and, more recently, in cognitive processes. Functional theories have emphasized DA's involvement in the orchestration of goal-directed behaviors, and in the promotion and reinforcement of learning. The affective neuroethological perspective presented here, views the ML-DA system in terms of its ability to activate an instinctual emotional appetitive state (SEEKING) evolved to induce organisms to search for all varieties of life-supporting stimuli and to avoid harms. A description of the anatomical framework in which the ML system is embedded is followed by the argument that the SEEKING disposition emerges through functional integration of ventral basal ganglia (BG) into thalamocortical activities. Filtering cortical and limbic input that spread into BG, DA transmission promotes the “release” of neural activity patterns that induce active SEEKING behaviors when expressed at the motor level. Reverberation of these patterns constitutes a neurodynamic process for the inclusion of cognitive and perceptual representations within the extended networks of the SEEKING urge. In this way, the SEEKING disposition influences attention, incentive salience, associative learning, and anticipatory predictions. In our view, the rewarding properties of drugs of abuse are, in part, caused by the activation of the SEEKING disposition, ranging from appetitive drive to persistent craving depending on the intensity of the affect. The implications of such a view for understanding addiction are considered, with particular emphasis on factors predisposing individuals to develop compulsive drug seeking behaviors. PMID:17905440

  11. Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective.

    PubMed

    Alcaro, Antonio; Huber, Robert; Panksepp, Jaak

    2007-12-01

    The mesolimbic dopaminergic (ML-DA) system has been recognized for its central role in motivated behaviors, various types of reward, and, more recently, in cognitive processes. Functional theories have emphasized DA's involvement in the orchestration of goal-directed behaviors and in the promotion and reinforcement of learning. The affective neuroethological perspective presented here views the ML-DA system in terms of its ability to activate an instinctual emotional appetitive state (SEEKING) evolved to induce organisms to search for all varieties of life-supporting stimuli and to avoid harms. A description of the anatomical framework in which the ML system is embedded is followed by the argument that the SEEKING disposition emerges through functional integration of ventral basal ganglia (BG) into thalamocortical activities. Filtering cortical and limbic input that spreads into BG, DA transmission promotes the "release" of neural activity patterns that induce active SEEKING behaviors when expressed at the motor level. Reverberation of these patterns constitutes a neurodynamic process for the inclusion of cognitive and perceptual representations within the extended networks of the SEEKING urge. In this way, the SEEKING disposition influences attention, incentive salience, associative learning, and anticipatory predictions. In our view, the rewarding properties of drugs of abuse are, in part, caused by the activation of the SEEKING disposition, ranging from appetitive drive to persistent craving depending on the intensity of the affect. The implications of such a view for understanding addiction are considered, with particular emphasis on factors predisposing individuals to develop compulsive drug seeking behaviors.

  12. Cadaveric feasibility study of da Vinci Si-assisted cochlear implant with augmented visual navigation for otologic surgery.

    PubMed

    Liu, Wen P; Azizian, Mahdi; Sorger, Jonathan; Taylor, Russell H; Reilly, Brian K; Cleary, Kevin; Preciado, Diego

    2014-03-01

    To our knowledge, this is the first reported cadaveric feasibility study of a master-slave-assisted cochlear implant procedure in the otolaryngology-head and neck surgery field using the da Vinci Si system (da Vinci Surgical System; Intuitive Surgical, Inc). We describe the surgical workflow adaptations using a minimally invasive system and image guidance integrating intraoperative cone beam computed tomography through augmented reality. To test the feasibility of da Vinci Si-assisted cochlear implant surgery with augmented reality, with visualization of critical structures and facilitation with precise cochleostomy for electrode insertion. Cadaveric case study of bilateral cochlear implant approaches conducted at Intuitive Surgical Inc, Sunnyvale, California. Bilateral cadaveric mastoidectomies, posterior tympanostomies, and cochleostomies were performed using the da Vinci Si system on a single adult human donor cadaveric specimen. Radiographic confirmation of successful cochleostomies, placement of a phantom cochlear implant wire, and visual confirmation of critical anatomic structures (facial nerve, cochlea, and round window) in augmented stereoendoscopy. With a surgical mean time of 160 minutes per side, complete bilateral cochlear implant procedures were successfully performed with no violation of critical structures, notably the facial nerve, chorda tympani, sigmoid sinus, dura, or ossicles. Augmented reality image overlay of the facial nerve, round window position, and basal turn of the cochlea was precise. Postoperative cone beam computed tomography scans confirmed successful placement of the phantom implant electrode array into the basal turn of the cochlea. To our knowledge, this is the first study in the otolaryngology-head and neck surgery literature examining the use of master-slave-assisted cochleostomy with augmented reality for cochlear implants using the da Vinci Si system. The described system for cochleostomy has the potential to improve the surgeon's confidence, as well as surgical safety, efficiency, and precision by filtering tremor. The integration of augmented reality may be valuable for surgeons dealing with complex cases of congenital anatomic abnormality, for revision cochlear implant with distorted anatomy and poorly pneumatized mastoids, and as a method of interactive teaching. Further research into the cost-benefit ratio of da Vinci Si-assisted otologic surgery, as well as refinements of the proposed workflow, are required before considering clinical studies.

  13. Keep focussing: striatal dopamine multiple functions resolved in a single mechanism tested in a simulated humanoid robot

    PubMed Central

    Fiore, Vincenzo G.; Sperati, Valerio; Mannella, Francesco; Mirolli, Marco; Gurney, Kevin; Friston, Karl; Dolan, Raymond J.; Baldassarre, Gianluca

    2014-01-01

    The effects of striatal dopamine (DA) on behavior have been widely investigated over the past decades, with “phasic” burst firings considered as the key expression of a reward prediction error responsible for reinforcement learning. Less well studied is “tonic” DA, where putative functions include the idea that it is a regulator of vigor, incentive salience, disposition to exert an effort and a modulator of approach strategies. We present a model combining tonic and phasic DA to show how different outflows triggered by either intrinsically or extrinsically motivating stimuli dynamically affect the basal ganglia by impacting on a selection process this system performs on its cortical input. The model, which has been tested on the simulated humanoid robot iCub interacting with a mechatronic board, shows the putative functions ascribed to DA emerging from the combination of a standard computational mechanism coupled to a differential sensitivity to the presence of DA across the striatum. PMID:24600422

  14. Elevated basal progesterone levels are associated with increased preovulatory progesterone rise but not with higher pregnancy rates in ICSI cycles with GnRH antagonists.

    PubMed

    Mutlu, Mehmet Firat; Erdem, Mehmet; Mutlu, Ilknur; Bulut, Berk; Erdem, Ahmet

    2017-09-01

    To ascertain the association between basal progesterone (P) levels and the occurrence of preovulatory progesterone rise (PPR) and clinical pregnancy rates (CPRs) in ICSI cycles with GnRH antagonists. Serum P levels of 464 patients were measured on day 2 and day of hCG of cycles. Cycles with basal P levels>1.6ng/mL were cancelled. All embryos were cryopreserved in cycles with P levels≥2ng/mL on the day of hCG. The primary outcome measures were the incidence of PPR (P>1.5ng/mL) and CPR with regard to basal P. Basal P levels were significantly higher in cycles with PPR than in those without PPR (0.63±0.31 vs. 0.48±0.28ng/mL). Area under the curve for basal P according to ROC analysis to discriminate between elevated and normal P levels on the day of hCG was 0.65 (0.58-0.71 95% CI, p<0.01). The cut-off value for basal P levels that best discriminates between cycles with and without PPR was 0.65ng/mL. Cycles with basal P levels above 0.65ng/mL had a significantly higher incidence of PPR (30.9% vs. 13.5%) but similar clinical and cumulative pregnancy rates (38.8% vs. 31.1% and 41.7% vs. 32.6%, respectively) in comparison to cycles with basal P levels below 0.65ng/mL. In multivariate regression analysis, basal P levels, LH level on the first day of antagonist administration, and estradiol levels on the day of hCG trigger were the variables that predicted PPR. Basal P levels were associated with increased incidence of PPR but not with CPR. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. D-amphetamine (A)-induced dopamine (DA) release is not strictly dependent on newly-synthesized transmitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, E.; Cubeddu, L.

    1986-03-05

    A is thought to exert its stimulant effects by releasing DA from a newly synthesized transmitter pool. This hypothesis was evaluated directly by measuring the basal efflux and electrically-evoked release of endogenous DA and dihydroxyphenylacetic acid (DOPAC). In striatal slices from reserpine-treated rabbits A increased DA efflux, reduced DOPAC efflux, and inhibited electrically-evoked /sup 3/H-ACh release in a concentration-dependent manner. These effects could not be mimicked by inhibition of neuronal uptake or MAO, but were blocked by inhibition of DA synthesis or neuronal uptake, and were potentiated by inhibition of MAO. In slices with intact vesicular transmitter stores A inducedmore » DA efflux was 2-fold greater than that seen in slices having no vesicular stores. Inhibition of DA synthesis reduced A-induced DA efflux by 60%, but had little effect on the ability of A to inhibit /sup 3/H-ACh release. A also increased the electrical stimulation-evoked overflow of DA (an effect which was attenuated slightly by synthesis inhibition), and potently inhibited DOPAC overflow. These results suggest that: 1) A facilitates efflux of axoplasmic DA by an accelerated exchange diffusion mechanism. The releasable axoplasmic pool is derived from newly synthesized and vesicular transmitter pools; 2) postsynaptic indices of transmitter release may be misleading; and 3) A increases electrically-evoked DA release possibly by inhibiting neuronal uptake.« less

  16. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    PubMed

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  17. Specific cytoarchitectureal changes in hippocampal subareas in daDREAM mice.

    PubMed

    Mellström, Britt; Kastanauskaite, Asta; Knafo, Shira; Gonzalez, Paz; Dopazo, Xose M; Ruiz-Nuño, Ana; Jefferys, John G R; Zhuo, Min; Bliss, Tim V P; Naranjo, Jose R; DeFelipe, Javier

    2016-02-29

    Transcriptional repressor DREAM (downstream regulatory element antagonist modulator) is a Ca(2+)-binding protein that regulates Ca(2+) homeostasis through gene regulation and protein-protein interactions. It has been shown that a dominant active form (daDREAM) is implicated in learning-related synaptic plasticity such as LTP and LTD in the hippocampus. Neuronal spines are reported to play important roles in plasticity and memory. However, the possible role of DREAM in spine plasticity has not been reported. Here we show that potentiating DREAM activity, by overexpressing daDREAM, reduced dendritic basal arborization and spine density in CA1 pyramidal neurons and increased spine density in dendrites in dentate gyrus granule cells. These microanatomical changes are accompanied by significant modifications in the expression of specific genes encoding the cytoskeletal proteins Arc, Formin 1 and Gelsolin in daDREAM hippocampus. Our results strongly suggest that DREAM plays an important role in structural plasticity in the hippocampus.

  18. Striatal cell signaling in chronically food-restricted rats under basal conditions and in response to brief handling.

    PubMed

    Pan, Yan; Siregar, Ermanda; Carr, Kenneth D

    2006-01-30

    Chronic food restriction increases exploratory behavior, cognitive function, and the rewarding effects of abused drugs. Recently, striatal neuroadaptations that may be involved in these effects were observed. Specifically, D-1 dopamine (DA) receptor agonist challenge produced stronger activation of extracellular signal-regulated kinase (ERK), calcium-calmodulin-dependent kinase II (CaMKII), and the nuclear transcription factor cAMP response element binding protein (CREB) in nucleus accumbens (NAc) of food-restricted (FR) relative to ad libitum fed (AL) rats. Further, when FR rats were injected intracerebroventricularly (i.c.v.) with vehicle (saline) they displayed stronger activation of c-Jun N-terminal protein kinase (JNK), ERK and CaMKII than did AL rats. It is not known to what extent the latter effects represent the basal state of FR rats or an amplified response to the brief handling involved in the i.c.v. injection procedure. Using Western blotting it was found that basal phospho-JNK is higher in caudate-putamen (CPu) and NAc of FR relative to AL rats. Interestingly, brief handling decreased phospho-JNK levels in FR subjects. Basal phospho-ERK1/2 also tended to be elevated in CPu and NAc of FR rats but the elevation was not significant. However, phospho-MEK--the activated kinase upstream of ERK1/2--was significantly elevated in NAc of FR rats. Neither ERK1/2 nor MEK were activated by brief handling. CaMKII was selectively activated by handling in NAc of FR rats, suggesting a state-dependent response to a salient event. Given the established involvement of mitogen-activated protein kinase (MAPK) and CaMKII in synaptic plasticity, learning and memory, the increase in basal phospho-MEK and hyperresponsiveness of CaMKII in NAc may represent adaptive cellular responses to persistent negative energy balance that facilitate associative learning in connection with food-seeking.

  19. Serum Fetuin-A Levels in Patients with Bilateral Basal Ganglia Calcification.

    PubMed

    Demiryurek, Bekir Enes; Gundogdu, Asli Aksoy

    2018-02-14

    The idiopathic basal ganglia calcification (Fahr syndrome) may occur due to senility. Fetuin-A is a negative acute phase reactant which inhibits calcium-phosphorus precipitation and vascular calcification. In this study, we aimed to evaluate whether serum fetuin-A levels correlate with bilateral basal ganglia calcification. Forty-five patients who had bilateral basal ganglia calcification on brain CT were selected according to the inclusion and exclusion criteria, and 45 age and gender-matched subjects without basal ganglia calcification were included for the control group. Serum fetuin-A levels were measured from venous blood samples. All participants were divided into two groups; with and without basal ganglia calcification. These groups were divided into subgroups regarding age (18-32 and 33-45 years of age) and gender (male, female). We detected lower levels of serum fetuin-A in patients with basal ganglia calcification compared with the subjects without basal ganglia calcification. In all subgroups (female, male, 18-32 years and 33-45 years), mean fetuin-A levels were significantly lower in patients with basal ganglia calcification (p = 0.017, p = 0.014, p = 0.024, p = 0.026, p = 0.01 respectively). And statistically significantly lower levels of fetuin-A was found to be correlated with the increasing densities of calcification in the calcified basal ganglia group (p-value: <0.001). Considering the role of fetuin-A in tissue calcification and inflammation, higher serum fetuin-A levels should be measured in patients with basal ganglia calcification. We believe that the measurement of serum fetuin-A may play a role in the prediction of basal ganglia calcification as a biomarker. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The local effect of octreotide on mechanical pain sensitivity is more sensitive in DA rats than DA.1U rats.

    PubMed

    Yao, Fan-Rong; Wang, Hui-Sheng; Guo, Yuan; Zhao, Yan

    2016-02-01

    A recent study by the authors indicated that major histocompatibility complex (MHC) genes are associated with the differences in basal pain sensitivity and in formalin model between Dark-Agouti (DA) and novel congenic DA.1U rats, which have the same genetic background as DA rats except for the u alleles of MHC. The objective of the present study is to investigate whether there is a difference in the pristane-induced arthritis (PIA) model and local analgesic effect of octreotide (OCT) between DA and DA.1U rats. The hindpaw mechanical withdrawal threshold (MWT) and heat withdrawal latency (HWL) were observed. The C unit firings of the tibial nerve evoked by non-noxious and noxious toe movements were recorded by electrophysiological methods in normal and PIA models in DA and DA.1U rats before and after local OCT administration. The expression of somatostatin receptor 2A (SSTR2A) was observed by immunohistochemistry. The results demonstrate that DA rats have a higher mechanical sensitivity than DA.1U rats after PIA. Local OCT administration significantly elevated MWT in DA rats under normal and PIA sate, but not in DA.1U rats. The electrophysiological experiments showed OCT significantly attenuated the firings of C units evoked by non-noxious and noxious stimulation in DA rats more than those in DA.1U rats both in normal and PIA states. In addition, the expression of SSTR2A in the dorsal horn of the spinal cord was significantly higher in DA than in DA.1U rats. All of the findings suggest a higher local analgesic effect of OCT in DA rats than DA.1U rats, which might be associated with the MHC genes. © 2016 John Wiley & Sons Australia, Ltd.

  1. The p90 ribosomal S6 kinase 2 specifically affects mitotic progression by regulating the basal level, distribution and stability of mitotic spindles

    PubMed Central

    Park, Yun Yeon; Nam, Hyun-Ja; Do, Mihyang; Lee, Jae-Ho

    2016-01-01

    RSK2, also known as RPS6KA3 (ribosomal protein S6 kinase, 90 kDa, polypeptide 3), is a downstream kinase of the mitogen-activated protein kinase (MAPK) pathway, which is important in regulating survival, transcription, growth and proliferation. However, its biological role in mitotic progression is not well understood. In this study, we examined the potential involvement of RSK2 in the regulation of mitotic progression. Interestingly, depletion of RSK2, but not RSK1, caused the accumulation of mitotic cells. Time-lapse analysis revealed that mitotic duration, particularly the duration for metaphase-to-anaphase transition was prolonged in RSK2-depleted cells, suggesting activation of spindle assembly checkpoint (SAC). Indeed, more BubR1 (Bub1-related kinase) was present on metaphase plate kinetochores in RSK2-depleted cells, and depletion of BubR1 abolished the mitotic accumulation caused by RSK2 depletion, confirming BubR1-dependent SAC activation. Along with the shortening of inter-kinetochore distance, these data suggested that weakening of the tension across sister kinetochores by RSK2 depletion led to the activation of SAC. To test this, we analyzed the RSK2 effects on the stability of kinetochore–microtubule interactions, and found that RSK2-depleted cells formed less kinetochore–microtubule fibers. Moreover, RSK2 depletion resulted in the decrease of basal level of microtubule as well as an irregular distribution of mitotic spindles, which might lead to observed several mitotic progression defects such as increase in unaligned chromosomes, defects in chromosome congression and a decrease in pole-to-pole distance in these cells. Taken together, our data reveal that RSK2 affects mitotic progression by regulating the distribution, basal level and the stability of mitotic spindles. PMID:27491410

  2. Dynamics of Aerenchyma Distribution in the Cortex of Sulfate-deprived Adventitious Roots of Maize

    PubMed Central

    BOURANIS, DIMITRIS L.; CHORIANOPOULOU, STYLIANI N.; KOLLIAS, CHARALAMBOS; MANIOU, PHILIPPA; PROTONOTARIOS, VASSILIS E.; SIYIANNIS, VASSILIS F.; HAWKESFORD, MALCOLM J.

    2006-01-01

    • Background and Aims Aerenchyma formation in maize adventitious roots is induced in nutrient solution by the deprivation of sulfate (S) under well-oxygenated conditions. The aim of this research was to examine the extent of aerenchyma formation in the cortex of sulfate-deprived adventitious roots along the root axis, in correlation with the presence of reactive oxygen species (ROS), calcium levels and pH of cortex cells and root lignification. • Methods The morphometry of the second whorl of adventitious (W2) roots, subject to S-deprivation conditions throughout development, was recorded in terms of root length and lateral root length and distribution. W2 roots divided into sectors according to the mean length of lateral roots, and cross-sections of each were examined for aerenchyma. In-situ detection of alterations in ROS presence, calcium levels and pH were performed by means of fluorescence microscopy using H2DCF-DA, fluo-3AM and BCECF, respectively. Lignification was detected using the Wiesner test. • Key Results S-deprivation reduced shoot growth and enhanced root proliferation. Aerenchyma was found in the cortex of 77 % of the root length, particularly in the region of emerging or developing lateral roots. The basal and apical sectors had no aerenchyma and no aerenchyma connection was found with the shoot. S-deprivation resulted in alterations of ROS, calcium levels and pH in aerenchymatous sectors compared with the basal non-aerenchymatous region. Lignified epidermal layers were located at the basal and the proximal sectors. S-deprivation resulted in shorter lateral roots in the upper sectors and in a limited extension of the lignified layers towards the next lateral root carrying sector. • Conclusions Lateral root proliferation is accompanied by spatially localized induced cell death in the cortex of developing young maize adventitious roots during S-deprivation. PMID:16481362

  3. Modafinil Activates Phasic Dopamine Signaling in Dorsal and Ventral Striata

    PubMed Central

    Bobak, Martin J.; Weber, Matthew W.; Doellman, Melissa A.; Schuweiler, Douglas R.; Athens, Jeana M.; Juliano, Steven A.

    2016-01-01

    Modafinil (MOD) exhibits therapeutic efficacy for treating sleep and psychiatric disorders; however, its mechanism is not completely understood. Compared with other psychostimulants inhibiting dopamine (DA) uptake, MOD weakly interacts with the dopamine transporter (DAT) and modestly elevates striatal dialysate DA, suggesting additional targets besides DAT. However, the ability of MOD to induce wakefulness is abolished with DAT knockout, conversely suggesting that DAT is necessary for MOD action. Another psychostimulant target, but one not established for MOD, is activation of phasic DA signaling. This communication mode during which burst firing of DA neurons generates rapid changes in extracellular DA, the so-called DA transients, is critically implicated in reward learning. Here, we investigate MOD effects on phasic DA signaling in the striatum of urethane-anesthetized rats with fast-scan cyclic voltammetry. We found that MOD (30–300 mg/kg i.p.) robustly increases the amplitude of electrically evoked phasic-like DA signals in a time- and dose-dependent fashion, with greater effects in dorsal versus ventral striata. MOD-induced enhancement of these electrically evoked amplitudes was mediated preferentially by increased DA release compared with decreased DA uptake. Principal component regression of nonelectrically evoked recordings revealed negligible changes in basal DA with high-dose MOD (300 mg/kg i.p.). Finally, in the presence of the D2 DA antagonist, raclopride, low-dose MOD (30 mg/kg i.p.) robustly elicited DA transients in dorsal and ventral striata. Taken together, these results suggest that activation of phasic DA signaling is an important mechanism underlying the clinical efficacy of MOD. PMID:27733628

  4. [Gorlin-Goltz syndrome: review of the neuroradiological and maxillofacial features illustrated with two clinical cases].

    PubMed

    Safronova, Marta Maia; Arantes, Mavilde; Lima, Iva; Domingues, Sara; Almeida, Marta; Moniz, Pedro

    2010-01-01

    Gorlin-Goltz syndrome or nevoid basal cell carcinoma syndrome is a rare hereditary autosomal-dominant disorder characterized by multiple basal cell carcinomas in young patients, odontogenic keratocysts, palmar or plantar pits, calcification of the falx cerebri and skeletal malformations. This syndrome is due to mutations in PTCH1 (patched homolog 1 da Drosophila), a tumor suppressor gene. Diagnostic criteria were defined by Evans, revised by Kimonis and include major and minor criteria. The authors review in particular the neuroradiological and maxillofacial characteristics of the syndrome. The authors describe the clinical presentation of two children with Gorlin-Goltz syndrome without affected first degree relatives. In both the clinical suspicion of the syndrome is raised by the presence of multiple odontogenic cysts surgically removed. Histopathological exam revealed keratocysts. None of the patients has basal cell carcinomas but both present with skeletal anomalies, namely marked pectus deformity. The absence of major diagnostic criteria like basal cell carcinomas or palmar or plantar pits in young patients delay the early diagnosis and the correct screening for medulloblastoma, basal cell carcinomas and cardiac fibromas. Odontogenic keratocysts are the most consistent clinical finding in Gorlin-Goltz syndrome in the first one or two decades of life. These patients are very sensitive to ionizing radiation, being able to develop basal cell carcinomas and meningiomas. Treatment should accomplish the complete resection of the tumors.

  5. Aberrant learning in Parkinson's disease: A neurocomputational study on bradykinesia.

    PubMed

    Ursino, Mauro; Baston, Chiara

    2018-05-22

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive decline in motor functions, such as bradykinesia, caused by the pathological denervation of nigrostriatal dopaminergic neurons within the basal ganglia (BG). It is acknowledged that dopamine (DA) directly affects the modulatory role of BG towards the cortex. However, a growing body of literature is suggesting that DA-induced aberrant synaptic plasticity could play a role in the core symptoms of PD, thus recalling for a "reconceptualization" of the pathophysiology. The aim of this work was to investigate DA-driven aberrant learning as a concurrent cause of bradykinesia, using a comprehensive, biologically inspired neurocomputational model of action selection in the BG. The model includes the three main pathways operating in the BG circuitry, that is the direct, indirect and hyperdirect pathways, and use a two-term Hebb rule to train synapses in the striatum, based on previous history of rewards and punishments. Levodopa pharmacodynamics is also incorporated. Through model simulations of the Alternate Finger Tapping motor task, we assessed the role of aberrant learning on bradykinesia. The results show that training under drug medication (levodopa) provides not only immediate but also delayed benefit lasting in time. Conversely, if performed in conditions of vanishing levodopa efficacy, training may result in dysfunctional corticostriatal synaptic plasticity, further worsening motor performances in PD subjects. This suggests that bradykinesia may result from the concurrent effects of low DA levels and dysfunctional plasticity and that training can be exploited in medicated subjects to improve levodopa treatment. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. The major histocompatibility complex genes impact pain response in DA and DA.1U rats.

    PubMed

    Guo, Yuan; Yao, Fan-Rong; Cao, Dong-Yuan; Li, Li; Wang, Hui-Sheng; Xie, Wen; Zhao, Yan

    2015-08-01

    Our recent studies have shown that the difference in basal pain sensitivity to mechanical and thermal stimulation between Dark-Agouti (DA) rats and a novel congenic DA.1U rats is major histocompatibility complex (MHC) genes dependent. In the present study, we further used DA and DA.1U rats to investigate the role of MHC genes in formalin-induced pain model by behavioral, electrophysiological and immunohistochemical methods. Behavioral results showed biphasic nociceptive behaviors increased significantly following the intraplantar injection of formalin in the hindpaw of DA and DA.1U rats. The main nociceptive behaviors were lifting and licking, especially in DA rats (P<0.001 and P<0.01). The composite pain scores (CPS) in DA rats were significantly higher than those in DA.1U rats in both phases of the formalin test (P<0.01). Electrophysiological results also showed the biphasic increase in discharge rates of C and Aδ fibers of L5 dorsal root in the two strains, and the net change of the discharge rate of DA rats was significantly higher than that of DA.1U rats (P<0.05). The mechanical thresholds decreased after formalin injection in both strains (P<0.01), and the net change in the mechanical threshold in DA was greater than that in DA.1U rats (P<0.05). The expression of RT1-B, representation of MHC class II molecule, in laminae I-II of L4/5 spinal cord in DA rats was significantly higher than that in DA.1U rats in the respective experimental group (P<0.05). These results suggested that both DA and DA.1U rats exhibited nociceptive responses in formalin-induced pain model and DA rats were more sensitive to noxious chemical stimulus than DA.1U rats, indicating that MHC genes might contribute to the difference in pain sensitivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Site, gender and age variation in normal skin colour on the back and the forearm: tristimulus colorimeter measurements.

    PubMed

    Fullerton, A; Serup, J

    1997-02-01

    To study whether anatomical location and age and gender of subjects had any influence on the objective skin colour measurements. Baseline colour in prone position was measured with the Minolta ChromaMeter® in the upper, middle and lower level of the upper back and on the forearm of 168 volunteers. These two sites are commonly used in skin testing. Higher basal a* and lower basal L* levels were found on the upper scapular region compared to the lower scapular region and the subscapular region. The basal b* level showed no variation relative to site. The basal a* and the basal b* levels were lower on the forearm compared to the upper back while the basal L* level was higher. Females above 65 years showed a less coloured skin with lower values as compared to those of younger age. Females were found to have a generally lower basal a* level than males both on the upper back and forearm skin. These relatively major differences and sources of variation have to be considered when planning irritancy studies where colour differences between erythema and normal skin is used.

  8. Evidence for Sprouting of Dopamine and Serotonin Axons in the Pallidum of Parkinsonian Monkeys

    PubMed Central

    Gagnon, Dave; Eid, Lara; Coudé, Dymka; Whissel, Carl; Di Paolo, Thérèse; Parent, André; Parent, Martin

    2018-01-01

    This light and electron microscopie immunohistochemical quantitative study aimed at determining the state of the dopamine (DA) and serotonin (5-HT) innervations of the internal (GPi) and external (GPe) segments of the pallidum in cynomolgus monkeys (Macaca fascicularis) rendered parkinsonian by systemic injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In contrast to the prominent DA denervation of striatum, the GPi in MPTP monkeys was found to be markedly enriched in DA (TH+) axon varicosities. The posterior sensorimotor region of this major output structure of the basal ganglia was about 8 times more intensely innervated in MPTP monkeys (0.71 ± 0.08 × 106 TH+ axon varicosities/mm3) than in controls (0.09 ± 0.01 × 106). MPTP intoxication also induced a two-fold increase in the density of 5-HT (SERT+) axon varicosities in both GPe and GPi. This augmentation was particularly pronounced anteriorly in the so-called associative and limbic pallidal territories. The total length of the labeled pallidal axons was also significantly increased in MPTP monkeys compared to controls, but the number of DA and 5-HT axon varicosities per axon length unit remained the same in the two groups, indicating that the DA and 5-HT pallidal hyperinnervations seen in MPTP monkeys result from axon sprouting rather than from the appearance of newly formed axon varicosities on non-growing axons. At the ultrastructural level, pallidal TH+ and SERT+ axons were morphologically similar in MPTP and controls, and their synaptic incidence was very low suggesting a volumic mode of transmission. Altogether, our data reveal a significant sprouting of DA and 5-HT pallidal afferents in parkinsonian monkeys, the functional significance of which remains to be determined. We suggest that the marked DA hyperinnervation of the GPi represents a neuroadaptive change designed to normalize pallidal firing patterns associated with the delayed appearance of motor symptoms, whereas the 5-HT hyperinnervation might be involved in the early expression of non-motor symptoms in Parkinson's disease. PMID:29867377

  9. Correlation Between Personality Traits and Testosterone Concentrations in Healthy Population.

    PubMed

    Tajima-Pozo, Kazuhiro; Bayón, Camila; Díaz-Marsá, Marina; Carrasco, Jose Luis

    2015-01-01

    High plasma testosterone levels have been associated with aggression, sexual behaviour and social status. The aim of this paper was to study the correlation between basal plasma testosterone levels and personality variables in healthy participants. Fifty-four participants were randomly enrolled into this study. Basal plasma testosterone levels were measured between 8:30 am and 10 am. After 24 hours of blood drawing, each subject completed personality questionnaires. Positive correlation between basal plasma testosterone levels and anti-social personality traits in both genders was observed (r = 0.336 and P < 0.018). Also, a positive correlation was observed between basal plasmatestosterone levels and criminal thinking traits (r = 0. 376, P < 0.05) and Millon compulsive (r = 0.386, P < 0.010) in both genders. In female participants, a positive correlation between basal plasmatestosterone levels and psychoticism (r = 0. 25, P < 0.019) and Cloninger AUTO TCI (r = 0.507, P < 0.004) was observed. In males participants positive correlation between baseline plasmatic Testosterone levels and Millon Antisocial trait (r = 0. 544, P < 0.19) and Millon Hypomania trait (r = 0. 485, P < 0.41) and Millon Drug Abuse trait (r = 0.632, P < 0.05) was reported. Our results suggest gender differences in clinical and personality variables related with basal plasma testosterone level. In men, high plasma testosterone levels were associated with clinical traits, substance abuse and hypomania. Women with higher basal testosterone levels showed higher scores on personality self-direction traits.

  10. The Effect of Alcohol and Hydrogen Peroxide on Liver Hepcidin Gene Expression in Mice Lacking Antioxidant Enzymes, Glutathione Peroxidase-1 or Catalase

    PubMed Central

    Harrison-Findik, Duygu Dee; Lu, Sizhao

    2015-01-01

    This study investigates the regulation of hepcidin, the key iron-regulatory molecule, by alcohol and hydrogen peroxide (H2O2) in glutathione peroxidase-1 (gpx-1−/−) and catalase (catalase−/−) knockout mice. For alcohol studies, 10% ethanol was administered in the drinking water for 7 days. Gpx-1−/− displayed significantly higher hepatic H2O2 levels than catalase−/− compared to wild-type mice, as measured by 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA). The basal level of liver hepcidin expression was attenuated in gpx-1−/− mice. Alcohol increased H2O2 production in catalase−/− and wild-type, but not gpx-1−/−, mice. Hepcidin expression was inhibited in alcohol-fed catalase−/− and wild-type mice. In contrast, alcohol elevated hepcidin expression in gpx-1−/− mice. Gpx-1−/− mice also displayed higher level of basal liver CHOP protein expression than catalase−/− mice. Alcohol induced CHOP and to a lesser extent GRP78/BiP expression, but not XBP1 splicing or binding of CREBH to hepcidin gene promoter, in gpx-1−/− mice. The up-regulation of hepatic ATF4 mRNA levels, which was observed in gpx-1−/− mice, was attenuated by alcohol. In conclusion, our findings strongly suggest that H2O2 inhibits hepcidin expression in vivo. Synergistic induction of CHOP by alcohol and H2O2, in the absence of gpx-1, stimulates liver hepcidin gene expression by ER stress independent of CREBH. PMID:25955433

  11. Differential impact of pavlovian drug conditioned stimuli on in vivo dopamine transmission in the rat accumbens shell and core and in the prefrontal cortex.

    PubMed

    Bassareo, Valentina; De Luca, Maria Antonietta; Di Chiara, Gaetano

    2007-04-01

    Conditioned stimuli (CSs) by pavlovian association with reinforcing drugs (US) are thought to play an important role in the acquisition, maintenance and relapse of drug dependence. The aim of this study was to investigate by microdialysis the impact of pavlovian drug CSs on behaviour and on basal and drug-stimulated dopamine (DA) in three terminal DA areas: nucleus accumbens shell, core and prefrontal cortex (PFCX). Conditioned rats were trained once a day for 3 days by presentation of Fonzies filled box (FFB, CS) for 10 min followed by administration of morphine (1 mg/kg), nicotine (0.4 mg/kg) or saline, respectively. Pseudo-conditioned rats were presented with the FFB 10 h after drug or saline administration. Rats were implanted with microdialysis probes in the shell, core and PFCX. The effect of stimuli conditioned with morphine and nicotine on DA and on DA response to drugs was studied. Drug CSs elicited incentive reactions and released DA in the shell and PFCX but not in the core. Pre-exposure to morphine CS potentiated DA release to morphine challenge in the shell but not in the core and PFCX. This effect was related to the challenge dose of morphine and was stimulus-specific since a food CS did not potentiate the shell DA response to morphine. Pre-exposure to nicotine CS potentiated DA release in the shell and PFCX. The results show that drug CSs stimulate DA release in the shell and medial PFCX and specifically potentiate the primary stimulant drug effects on DA transmission.

  12. The rhizoplast of chrysomonads, a basal body-nucleus connector that polarises the dividing spindle.

    PubMed

    Brugerolle, G; Mignot, J-P

    2003-09-01

    An ultrastructure study of the rhizoplast in Synura petersenii, Mallomonas fastigiata, and M. insignis shows that it consists of 15-20 striated rootlets that form a claw or an incomplete cone over the nucleus. These rootlets course along one face of the nucleus between the nuclear membrane and the cis-face of the Golgi stack of cisternae. They converge and merge above the nucleus, forming a stub attached to the proximal section of the two basal bodies. These cross-striated rootlets are composed of closely packed longitudinal microfibrils. By immunofluorescence, the basal bodies and the rootlets forming the claw were decorated by the anti-centrin monoclonal antibody ICL19 raised against the Paramecium tetraurelia acidic centrin protein and by two antibodies raised against the striated parabasal and costal striated fibres of trichomonads. Only the anti-centrin monoclonal antibody 20H5 raised against Chlamydomonas reinhardtii centrin strongly labelled the 20-22 kDa protein bands from the extracted cytoskeleton of S. petersenii by immunoblotting. Electron micrographs of mitosis in S. petersenii cells revealed that the segregated pairs of basal bodies are linked by the striated rootlets of the rhizoplast to the poles of the mitotic spindle. The spindle microtubules arise perpendicularly from the striated rootlets of the basal body-nucleus connector forming the centrosome. In conclusion, in these cells there is a basal body-nucleus connector similar to that of C. reinhardtii and other chlorophytes. It contains centrin proteins, it is involved in the linkage of the basal bodies to the nucleus and is a component of the spindle pole body or centrosome in the dividing cell.

  13. Dopaminergic modulation of striatal acetylcholine release in rats depleted of dopamine as neonates.

    PubMed

    Johnson, B J; Bruno, J P

    1995-02-01

    A repeated sessions, in vivo microdialysis design was used to determine the D1- and D2-like receptor modulation of striatal ACh efflux in intact adult rats and those depleted of DA on postnatal Day 3. Systemic administration of the D1-like agonist SKF 38393 (1.0 or 10.0 mg/kg, or the D2-like antagonist clebopride (1.0 or 10.0 mg/kg) increased ACh efflux in both controls and DA-depleted animals. Systemic administration of the D1-like antagonist SCH 23390 (0.05 or 0.2 mg/kg) or D2-like agonist quinpirole (0.5 or 1.0 mg/kg) decreased ACh efflux in both groups of animals. DA-depleted animals exhibited a larger response than did controls to the lower doses of these drugs. Intrastriatal administration of clebopride (10 microM) increased ACh efflux in DA-depleted animals. Finally, basal and clebopride-stimulated ACh efflux were unaffected by the repeated microdialysis sessions. These data demonstrate that the reciprocal modulation of striatal ACh efflux, seen in controls and in rats depleted of DA as adults, is also present in adults depleted of DA as neonates. Because the roles of D1- and D2-receptors in the expression of motor behavior differ between rats depleted of DA as adults vs as neonates, these data suggest that alterations in the dopaminergic modulation of striatal ACh release do not underlie the sparing from motoric deficits seen in animals depleted of DA as neonates.

  14. Norepinephrine Activates Dopamine D4 Receptors in the Rat Lateral Habenula

    PubMed Central

    Root, David H.; Hoffman, Alexander F.; Good, Cameron H.; Zhang, Shiliang; Gigante, Eduardo

    2015-01-01

    The lateral habenula (LHb) is involved in reward and aversion and is reciprocally connected with dopamine (DA)-containing brain regions, including the ventral tegmental area (VTA). We used a multidisciplinary approach to examine the properties of DA afferents to the LHb in the rat. We find that >90% of VTA tyrosine hydroxylase (TH) neurons projecting to the LHb lack vesicular monoamine transporter 2 (VMAT2) mRNA, and there is little coexpression of TH and VMAT2 protein in this mesohabenular pathway. Consistent with this, electrical stimulation of LHb did not evoke DA-like signals, assessed with fast-scan cyclic voltammetry. However, electrophysiological currents that were inhibited by L741,742, a DA-D4-receptor antagonist, were observed in LHb neurons when DA uptake or degradation was blocked. To prevent DA activation of D4 receptors, we repeated this experiment in LHb slices from DA-depleted rats. However, this did not disrupt D4 receptor activation initiated by the dopamine transporter inhibitor, GBR12935. As the LHb is also targeted by noradrenergic afferents, we examined whether GBR12935 activation of DA-D4 receptors occurred in slices depleted of norepinephrine (NE). Unlike DA, NE depletion prevented the activation of DA-D4 receptors. Moreover, direct application of NE elicited currents in LHb neurons that were blocked by L741,742, and GBR12935 was found to be a more effective blocker of NE uptake than the NE-selective transport inhibitor nisoxetine. These findings demonstrate that NE is released in the rat LHb under basal conditions and that it activates DA-D4 receptors. Therefore, NE may be an important regulator of LHb function. PMID:25716845

  15. Effect of DA-9701 on the Normal Motility and Clonidine-induced Hypomotility of the Gastric Antrum in Rats

    PubMed Central

    Kang, Je Wook; Han, Dae Kyeong; Kim, Ock Nyun; Lee, Kwang Jae

    2016-01-01

    Background/Aims DA-9701 is a novel prokinetic agent. In the present study, we investigated the effect of DA-9701 on the motility of the gastric antrum in the normal and clonidine-induced hypomotility in an in vivo animal model. Methods A strain gauge force transducer was sutured on the gastric antrum to measure the contractile activity in rats. A total of 28 rats were subclassified into the 4 groups: (1) the placebo group, (2) the DA-9701 group, (3) the placebo group in the clonidine-pretreated rats, and (4) the DA-9701 group in the clonidine-pretreated rats. After the basal recording, either placebo (3% [w/v] hydroxypropylmethyl cellulose) or DA-9701 was administered. Contractile signals were measured after the administration and after a meal. In the clonidine-pretreated rats, either placebo or DA-9701 was administered. Contractile signals were measured after the administration and after a meal. Results Oral administration of DA-9701 did not significantly alter the motility index of the gastric antrum in the preprandial and postprandial periods, compared with the placebo group. The administration of clonidine decreased the motility index of the gastric antrum in the preprandial and postprandial periods, compared with the administration of placebo. This reduction of the antral motility by the administration of clonidine was not observed in the clonidine-pretreated DA-9701 group. The percentage of the motility index in the postprandial period was significantly greater in the clonidine-pretreated DA-9701 group, compared with the clonidine-pretreated placebo group. Conclusions DA-9701 improves the hypomotility of the gastric antrum induced by clonidine, suggesting its gastroprokinetic effect in the pathologic condition. PMID:26755679

  16. Effect of DA-9701 on the Normal Motility and Clonidine-induced Hypomotility of the Gastric Antrum in Rats.

    PubMed

    Kang, Je Wook; Han, Dae Kyeong; Kim, Ock Nyun; Lee, Kwang Jae

    2016-04-30

    DA-9701 is a novel prokinetic agent. In the present study, we investigated the effect of DA-9701 on the motility of the gastric antrum in the normal and clonidine-induced hypomotility in an in vivo animal model. A strain gauge force transducer was sutured on the gastric antrum to measure the contractile activity in rats. A total of 28 rats were subclassified into the 4 groups: (1) the placebo group, (2) the DA-9701 group, (3) the placebo group in the clonidine-pretreated rats, and (4) the DA-9701 group in the clonidine-pretreated rats. After the basal recording, either placebo (3% [w/v] hydroxypropylmethyl cellulose) or DA-9701 was administered. Contractile signals were measured after the administration and after a meal. In the clonidinepretreated rats, either placebo or DA-9701 was administered. Contractile signals were measured after the administration and after a meal. Oral administration of DA-9701 did not significantly alter the motility index of the gastric antrum in the preprandial and postprandial periods, compared with the placebo group. The administration of clonidine decreased the motility index of the gastric antrum in the preprandial and postprandial periods, compared with the administration of placebo. This reduction of the antral motility by the administration of clonidine was not observed in the clonidine-pretreated DA-9701 group. The percentage of the motility index in the postprandial period was significantly greater in the clonidine-pretreated DA-9701 group, compared with the clonidine-pretreated placebo group. DA-9701 improves the hypomotility of the gastric antrum induced by clonidine, suggesting its gastroprokinetic effect in the pathologic condition.

  17. Readability Levels of First and Second Grade Basal Texts.

    ERIC Educational Resources Information Center

    Langan, Yvette

    The Fry Readability Formula was used to determine the readability levels of 12 first and second grade basal texts. These texts were part of the Ginn 360, Ginn 720, and Macmillan Series "r" basal reader series. The results showed that 4 of the 12 books tested did not correspond closely to the publisher's readability levels. The Ginn 720 text for…

  18. Extracellular adenosine 5'-triphosphate concentrations changes in rat spinal cord associated with the activation of urinary bladder afferents. A microdialysis study.

    PubMed

    Rocha, Jeová Nina

    2016-01-01

    To determine adenosine 5'-triphosphate levels in the interstice of spinal cord L6-S1 segment, under basal conditions or during mechanical and chemical activation of urinary bladder afferents. A microdialysis probe was transversally implanted in the dorsal half of spinal cord L6-S1 segment in female rats. Microdialysate was collected at 15 minutes intervals during 135 minutes, in anesthetized animals. Adenosine 5'-triphosphate concentrations were determined with a bioluminescent assay. In one group of animals (n=7) microdialysate samples were obtained with an empty bladder during a 10-minutes bladder distension to 20 or 40cmH2O with either saline, saline with acetic acid or saline with capsaicin. In another group of animals (n=6) bladder distention was performed and the microdialysis solution contained the ectonucleotidase inhibitor ARL 67156. Basal extracellular adenosine triphosphate levels were 110.9±35.34fmol/15 minutes, (mean±SEM, n=13), and bladder distention was associated with a significant increase in adenosine 5'-triphosphate levels which was not observed after bladder distention with saline solution containing capsaicin (10µM). Microdialysis with solution containing ARL 67156 (1mM) was associated with significantly higher extracellular adenosine 5'-triphosphate levels and no further increase in adenosine 5'-triphosphate was observed during bladder distension. Adenosine 5'-triphosphate was present in the interstice of L6-S1 spinal cord segments, was degraded by ectonucleotidase, and its concentration increased following the activation of bladder mechanosensitive but not of the chemosensitive afferents fibers. Adenosine 5'-triphosphate may originate either from the central endings of bladder mechanosensitive primary afferent neurons, or most likely from intrinsic spinal neurons, or glial cells and its release appears to be modulated by capsaicin activated bladder primary afferent or by adenosine 5'-triphosphate itself. Determinar as concentrações extracelulares do 5'-trifosfato de adenosina no interstício dos segmentos medulares L6-S1, em condições basais ou durante a ativação mecânica e química das fibras aferentes vesicais. Um cateter de microdiálise foi implantado no sentido transversal na parte dorsal da medula espinal, entre os segmentos L6-S1 de ratas. O microdialisado foi coletado em intervalos de 15 minutos, durante 135 minutos, com os animais anestesiados. A concentração de 5'-trifosfato de adenosina nas amostras foi determinada mediante ensaio de bioluminescência. Em um grupo de animais (n=7), as amostras de microdialisado foram obtidas com a bexiga vazia, com distensão da bexiga para volume de 20 ou 40cmH2O, com solução salina, solução salina com ácido acético, ou solução salina com capsaicina. Em outro grupo (n=6), foi realizada com a bexiga distendida, e a solução para microdiálise continha o inibidor de ectonucleotidase ARL 67156. Os níveis extracelulares de trifosfato de adenosina no início do estudo foram 110,9±35,36fmol/15 minutos (média±EPM, n=13), e a distensão da bexiga causou um aumento nos níveis de 5'-trifosfato de adenosina, o que não foi observado após a distensão da bexiga com solução salina contendo capsaicina (10µM). A microdiálise com solução contendo ARL 67156 (1mM) foi associada com significante aumento dos níveis de trifosfato de adenosina extracelular, e nenhum aumento do trifosfato de adenosina foi observado durante a distensão da bexiga. O 5'-trifosfato de adenosina está presente no interstício do segmento L6-S1 da medula espinal, é degradado por ectonucleotidases, e sua concentração aumentou com a ativação das fibras aferentes mecanossensíveis da bexiga, mas não das quimiossensíveis. O 5'-trifosfato de adenosina pode ter sido liberado das terminações centrais dos neurônios aferentes primários mecanossensíveis ou, mais provavelmente, de neurônios espinais intrínsecos, ou ainda de células gliais. Sua liberação parece ser modulada por fibras aferentes primárias da bexiga ativadas pela capsaicina ou pelo próprio 5'-trifosfato de adenosina.

  19. Advanced glycation end product (AGE) modified proteins in tears of diabetic patients.

    PubMed

    Zhao, Zhenjun; Liu, Jingfang; Shi, Bingyin; He, Shuixiang; Yao, Xiaoli; Willcox, Mark D P

    2010-08-11

    High glucose level in diabetic patients may lead to advanced glycation end product (AGE) modified proteins. This study investigated AGE modified proteins in tears and compared their levels in diabetic patients (DM) with non-diabetic controls (CTL). Basal tears were collected from DM with (DR) or without (DNR) retinopathy and CTL. Total AGE modified proteins were detected quantitatively by a dot immunobinding assay. The AGE modified proteins were separated in 1D- and 2D-SDS gels and detected by western-blotting. The individual AGE modified proteins were also compared between groups using densitometry. Compared with the CTL group, tear concentrations of AGE modified proteins were significantly elevated in DR and DNR groups. The concentration of AGE modified proteins in diabetic tears were positively correlated with AGE modified hemoglobin (HbA1c) and postprandial blood glucose level (PBG). Western blotting of AGE modified proteins from 1D-SDS gels showed several bands, the major one at around 60 kDa. The intensities of AGE modified protein bands were higher in DM tears than in CTL tears. Western blotting from 2D-SDS gels showed a strongly stained horizontal strip, which corresponded to the major band in 1D-SDS gels. Most of the other AGE modified protein species were within molecular weight of 30-60 kDa, PI 5.2-7.0. Densitometry analysis demonstrated several AGE modified proteins were elevated in DR or DNR tears. Total and some individual AGE modified proteins were elevated in DM tears. AGE modified proteins in tears may be used as biomarkers to diagnose diabetes and/or diabetic retinopathy.

  20. Beyond reward prediction errors: the role of dopamine in movement kinematics

    PubMed Central

    Barter, Joseph W.; Li, Suellen; Lu, Dongye; Bartholomew, Ryan A.; Rossi, Mark A.; Shoemaker, Charles T.; Salas-Meza, Daniel; Gaidis, Erin; Yin, Henry H.

    2015-01-01

    We recorded activity of dopamine (DA) neurons in the substantia nigra pars compacta in unrestrained mice while monitoring their movements with video tracking. Our approach allows an unbiased examination of the continuous relationship between single unit activity and behavior. Although DA neurons show characteristic burst firing following cue or reward presentation, as previously reported, their activity can be explained by the representation of actual movement kinematics. Unlike neighboring pars reticulata GABAergic output neurons, which can represent vector components of position, DA neurons represent vector components of velocity or acceleration. We found neurons related to movements in four directions—up, down, left, right. For horizontal movements, there is significant lateralization of neurons: the left nigra contains more rightward neurons, whereas the right nigra contains more leftward neurons. The relationship between DA activity and movement kinematics was found on both appetitive trials using sucrose and aversive trials using air puff, showing that these neurons belong to a velocity control circuit that can be used for any number of purposes, whether to seek reward or to avoid harm. In support of this conclusion, mimicry of the phasic activation of DA neurons with selective optogenetic stimulation could also generate movements. Contrary to the popular hypothesis that DA neurons encode reward prediction errors, our results suggest that nigrostriatal DA plays an essential role in controlling the kinematics of voluntary movements. We hypothesize that DA signaling implements gain adjustment for adaptive transition control, and describe a new model of the basal ganglia (BG) in which DA functions to adjust the gain of the transition controller. This model has significant implications for our understanding of movement disorders implicating DA and the BG. PMID:26074791

  1. Characterization of dopamine release in the substantia nigra by in vivo microdialysis in freely moving rats.

    PubMed

    Robertson, G S; Damsma, G; Fibiger, H C

    1991-07-01

    Dopamine (DA) is released not only from the terminals of the nigrostriatal projection, but also from the dendrites of these neurons, which arborize in the substantia nigra pars reticulata (SNR). Although striatal DA release has been extensively studied by in vivo microdialysis, dendritic DA release in the SNR has not been characterized by this technique. Extracellular DA was monitored simultaneously in the ipsilateral striatum and SNR. The nigral probe was implanted at a 50 degree angle, permitting 2.5 mm of SNR to be dialyzed. Delivery of the tracer Fluoro-Gold into the striatal probe retrogradely labeled tyrosine hydroxylase-positive cell bodies and dendrites in the vicinity of the nigral probe. Hence, it could be demonstrated that dopaminergic neurons near the nigral probe projected to the vicinity of the striatal probe. Addition of 50 mM KCl to the SNR perfusion solution produced a 3.5-fold increase in DA and a 50% reduction in dihydroxyphenylacetic acid (DOPAC) in the SNR; in contrast, this manipulation in the SNR caused DA release in the striatum to be decreased by 20%, while striatal DOPAC was increased by 50%. Local administration of nomifensine (10 microM) in the SNR produced a sevenfold increase in SNR DA but had no effect on striatal DA. Systemic injection of d-amphetamine (2 mg/kg, s.c.) elevated DA in the SNR and striatum five- to sevenfold, while DOPAC was decreased in both structures by at least 40%. To determine the effect of tetrodotoxin (TTX), basal concentrations of DA in the SNR were first elevated threefold by including nomifensine (1 microM) in the nigral perfusion solution.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Standardized Bacopa monnieri extract ameliorates acute paraquat-induced oxidative stress, and neurotoxicity in prepubertal mice brain.

    PubMed

    Hosamani, Ravikumar; Krishna, Gokul; Muralidhara

    2016-12-01

    Bacopa monnieri (BM), an ayurvedic medicinal plant, has attracted considerable interest owing to its diverse neuropharmacological properties. Epidemiological studies have shown significant correlation between paraquat (PQ) exposure and increased risk for Parkinson's disease in humans. In this study, we examined the propensity of standardized extract of BM to attenuate acute PQ-induced oxidative stress, mitochondrial dysfunctions, and neurotoxicity in the different brain regions of prepubertal mice. To test this hypothesis, prepubertal mice provided orally with standardized BM extract (200 mg/kg body weight/day for 4 weeks) were challenged with an acute dose (15 mg/kg body weight, intraperitoneally) of PQ after 3 hours of last dose of extract. Mice were sacrificed after 48 hours of PQ injection, and different brain regions were isolated and subjected to biochemical determinations/quantification of central monoamine (dopamine, DA) levels (by high-performance liquid chromatography). Oral supplementation of BM for 4 weeks resulted in significant reduction in the basal levels of oxidative markers such as reactive oxygen species (ROS), malondialdehyde (MDA), and hydroperoxides (HP) in various brain regions. PQ at the administered dose elicited marked oxidative stress within 48 hours in various brain regions of mice. However, BM prophylaxis significantly improved oxidative homeostasis by restoring PQ-induced ROS, MDA, and HP levels and also by attenuating mitochondrial dysfunction. Interestingly, BM supplementation restored the activities of cholinergic enzymes along with the restoration of striatal DA levels among the PQ-treated mice. Based on these findings, we infer that BM prophylaxis renders the brain resistant to PQ-mediated oxidative perturbations and thus may be better exploited as a preventive approach to protect against oxidative-mediated neuronal dysfunctions.

  3. Basal cortisol levels and metabolic syndrome: A systematic review and meta-analysis of observational studies.

    PubMed

    Garcez, Anderson; Leite, Heloísa Marquardt; Weiderpass, Elisabete; Paniz, Vera Maria Vieira; Watte, Guilherme; Canuto, Raquel; Olinto, Maria Teresa Anselmo

    2018-05-17

    To perform a qualitative synthesis (systematic review) and quantitative analysis (meta-analysis) to summarize the evidence regarding the relationship between basal cortisol levels and metabolic syndrome (MetS) in adults. A systematic search was performed in the PubMed, Embase, and PsycINFO databases for observational studies on the association between basal cortisol levels and MetS. The quality of individual studies was assessed by the Newcastle-Ottawa score. A random effects model was used to report pooled quantitative results and the I 2 statistic was used to assess heterogeneity. Egger's and Begg's tests were used to evaluate publication bias. Twenty-six studies (19 cross-sectional and seven case-control) met the inclusion criteria for the systematic review. The majority was classified as having a low risk of bias and used established criteria for the diagnosis of MetS. Twenty-one studies provided data on basal cortisol levels as continuous values and were included in the meta-analysis; they comprised 35 analyses and 11,808 subjects. Pooled results showed no significant difference in basal cortisol levels between subjects with and without MetS (standardized mean difference [SMD] = 0.02, 95% confidence interval [CI]=-0.11 to 0.14). There was high heterogeneity between the studies when all comparisons were considered (I 2  = 83.1%;p < 0.001). Paradoxically, meta-analysis of studies evaluating saliva samples showed no significantly lower basal cortisol levels among subjects with MetS (SMD=-0.18, 95% CI=-0.37 to 0.01), whereas those studies that evaluated serum samples (SMD = 0.11, 95% CI=-0.02 to 0.24) and urine samples (SMD = 0.73, 95% CI=-0.40 to 1.86) showed no significantly higher basal cortisol levels among subjects with MetS. In the subgroup and meta-regression analyses, a significant difference in basal cortisol levels was observed according to study design, population base, age, gender, cortisol level assessment method, and study quality. This systematic review and meta-analysis does not reveal any association between basal cortisol levels and MetS based on results of observational studies. The results of a random-effect meta-analysis showed no significant difference in basal cortisol levels between subjects with and without MetS. The present findings should be considered in order to help future studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Association of basal serum androgen levels with ovarian response and ICSI cycle outcome.

    PubMed

    Abide Yayla, C; Ozkaya, E; Kayatas Eser, S; Sanverdi, I; Devranoglu, B; Kutlu, T

    2018-05-01

    The purpose of this study was to assess the predictive value of basal serum testosterone (T) and dehydroepiandrosterone sulfate (DHEAS) levels during follicular phase for ovarian response and outcome in intracytoplasmic sperm injection (ICSI) cycles of women with diminished ovarian reserve. We prospectively gathered data of basal serum androgen levels and ICSI cycle characteristics of 120 women with diminished ovarian reserve. Association of basal serum T and DHEAS levels with ovarian response was analyzed. Basal T and DHEAS levels were similar between pregnant and non-pregnant cases (P > 0.05). There were significant differences between groups with and without successful embryo implantation in terms of serum follicle-stimulating hormone (FSH), anti-Müllerian hormone (AMH), gonadotropin starting and total dose, and peak estradiol level (P < 0.05). There were 58 (49.2%) cases who did not reach to the embryo transfer stage due to several reasons including cancelation of stimulation due to unresponsiveness (n = 26, 21.7%), no oocyte at oocyte pickup (n = 11, 9.2%), no mature oocyte (n = 6, 5%), and failure of fertilization or embryo development (n = 15, 12.5%). Basal androgen levels were not significant predictors for any of the cycle outcome. AMH level was a significant predictor for failure of fertilization or embryo development (AUC 0.722, P = 0.01) and cancelation of stimulation (AUC 0.801, P < 0.001). FSH was a significant predictor for cancelation of stimulation (AUC 0.774, P < 0.001). In women with diminished ovarian reserve, basal T and DHEAS levels have no value in predicting any of the cycle outcome parameters.

  5. Elevated basal serum tryptase identifies a multisystem disorder associated with increased TPSAB1 copy number.

    PubMed

    Lyons, Jonathan J; Yu, Xiaomin; Hughes, Jason D; Le, Quang T; Jamil, Ali; Bai, Yun; Ho, Nancy; Zhao, Ming; Liu, Yihui; O'Connell, Michael P; Trivedi, Neil N; Nelson, Celeste; DiMaggio, Thomas; Jones, Nina; Matthews, Helen; Lewis, Katie L; Oler, Andrew J; Carlson, Ryan J; Arkwright, Peter D; Hong, Celine; Agama, Sherene; Wilson, Todd M; Tucker, Sofie; Zhang, Yu; McElwee, Joshua J; Pao, Maryland; Glover, Sarah C; Rothenberg, Marc E; Hohman, Robert J; Stone, Kelly D; Caughey, George H; Heller, Theo; Metcalfe, Dean D; Biesecker, Leslie G; Schwartz, Lawrence B; Milner, Joshua D

    2016-12-01

    Elevated basal serum tryptase levels are present in 4-6% of the general population, but the cause and relevance of such increases are unknown. Previously, we described subjects with dominantly inherited elevated basal serum tryptase levels associated with multisystem complaints including cutaneous flushing and pruritus, dysautonomia, functional gastrointestinal symptoms, chronic pain, and connective tissue abnormalities, including joint hypermobility. Here we report the identification of germline duplications and triplications in the TPSAB1 gene encoding α-tryptase that segregate with inherited increases in basal serum tryptase levels in 35 families presenting with associated multisystem complaints. Individuals harboring alleles encoding three copies of α-tryptase had higher basal serum levels of tryptase and were more symptomatic than those with alleles encoding two copies, suggesting a gene-dose effect. Further, we found in two additional cohorts (172 individuals) that elevated basal serum tryptase levels were exclusively associated with duplication of α-tryptase-encoding sequence in TPSAB1, and affected individuals reported symptom complexes seen in our initial familial cohort. Thus, our findings link duplications in TPSAB1 with irritable bowel syndrome, cutaneous complaints, connective tissue abnormalities, and dysautonomia.

  6. Prefrontal Dopamine in Associative Learning and Memory

    PubMed Central

    Puig, M. Victoria; Antzoulatos, Evan G.; Miller, Earl K.

    2014-01-01

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulate associative learning and memory processes in frontostriatal systems. PMID:25241063

  7. Prefrontal dopamine in associative learning and memory.

    PubMed

    Puig, M V; Antzoulatos, E G; Miller, E K

    2014-12-12

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulates associative learning and memory processes in frontostriatal systems. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. The modulatory action of harmane on serotonergic neurotransmission in rat brain.

    PubMed

    Abu Ghazaleh, Haya; Lalies, Maggie D; Nutt, David J; Hudson, Alan L

    2015-02-09

    The naturally occurring β-carboline, harmane, has been implicated in various physiological and psychological conditions. Some of these effects are attributed to its interaction with monoaminergic systems. Previous literature indicates that certain β-carbolines including harmane modulate central monoamine levels partly through monoamine oxidase (MAO) inhibition. However, this is not always the case and thus additional mechanisms may be involved. This study set to assess the potential modulatory role of harmane on the basal or K(+) stimulated release of preloaded radiolabelled noradrenaline (NA), dopamine (DA) and serotonin (5-HT) in rat brain cortex in vitro in the presence of the MAO inhibitor pargyline. Harmane displayed an overt elevation in K(+) -evoked [(3)H]5-HT release; whilst little and no effect was reported with [(3)H]DA and [(3)H]NA respectively. The effect of harmane on [(3)H]5-HT efflux was partially compensated in K(+)-free medium. Further analyses demonstrated that removal of Ca(2+) ions and addition of 1.2mM EGTA did not alter the action of harmane on [(3)H]5-HT release from rat brain cortex. The precise mechanism of action however remains unclear but is unlikely to reflect an involvement of MAO inhibition. The current finding aids our understanding on the modulatory action of harmane on monoamine levels and could potentially be of therapeutic use in psychiatric conditions such as depression and anxiety. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Simultaneous determination of ascorbic acid, dopamine and uric acid by a novel electrochemical sensor based on N2/Ar RF plasma assisted graphene nanosheets/graphene nanoribbons.

    PubMed

    Jothi, Lavanya; Neogi, Sudarsan; Jaganathan, Saravana Kumar; Nageswaran, Gomathi

    2018-05-15

    A novel nitrogen/argon (N 2 /Ar) radio frequency (RF) plasma functionalized graphene nanosheet/graphene nanoribbon (GS/GNR) hybrid material (N 2 /Ar/GS/GNR) was developed for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Various nitrogen mites introduced into GS/GNR hybrid structure was evidenced by a detailed microscopic, spectroscopic and surface area analysis. Owing to the unique structure and properties originating from the enhanced surface area, nitrogen functional groups and defects introduced on both the basal and edges, N 2 /Ar/GS/GNR/GCE showed high electrocatalytic activity for the electrochemical oxidations of AA, DA, and UA with the respective lowest detection limits of 5.3, 2.5 and 5.7 nM and peak-to-peak separation potential (ΔE P ) (vs Ag/AgCl) in DPV of 220, 152 and 372 mV for AA/DA, DA/UA and AA/UA respectively. Moreover, the selectivity, stability, repeatability and excellent performance in real time application of the fabricated N 2 /Ar/GS/GNR/GCE electrode suggests that it can be considered as a potential electrode material for simultaneous detection of AA, DA, and UA. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Differentiation of a Highly Tumorigenic Basal Cell Compartment in Urothelial Carcinoma

    PubMed Central

    He, Xiaobing; Marchionni, Luigi; Hansel, Donna E.; Yu, Wayne; Sood, Akshay; Yang, Jie; Parmigiani, Giovanni; Matsui, William; Berman, David M.

    2011-01-01

    Highly tumorigenic cancer cell (HTC) populations have been identified for a variety of solid tumors and assigned stem cell properties. Strategies for identifying HTCs in solid tumors have been primarily empirical rather than rational, particularly in epithelial tumors, which are responsible for 80% of cancer deaths. We report evidence for a spatially restricted bladder epithelial (urothelial) differentiation program in primary urothelial cancers (UCs) and in UC xenografts. We identified a highly tumorigenic UC cell compartment that resembles benign urothelial stem cells (basal cells), co-expresses the 67-kDa laminin receptor and the basal cell-specific cytokeratin CK17, and lacks the carcinoembryonic antigen family member CEACAM6 (CD66c). This multipotent compartment resides at the tumor-stroma interface, is easily identified on histologic sections, and possesses most, if not all, of the engraftable tumor-forming ability in the parental xenograft. We analyzed differential expression of genes and pathways in basal-like cells versus more differentiated cells. Among these, we found significant enrichment of pathways comprising “hallmarks” of cancer, and pharmacologically targetable signaling pathways, including Janus kinase-signal transducer and activator of transcription, Notch, focal adhesion, mammalian target of rapamycin, epidermal growth factor receptor (erythroblastic leukemia viral oncogene homolog [ErbB]), and wingless-type MMTV integration site family (Wnt). The basal/HTC gene expression signature was essentially invisible within the context of nontumorigenic cell gene expression and overlapped significantly with genes driving progression and death in primary human UC. The spatially restricted epithelial differentiation program described here represents a conceptual advance in understanding cellular heterogeneity of carcinomas and identifies basal-like HTCs as attractive targets for cancer therapy. PMID:19544456

  11. Dopamine acting at D1-like, D2-like and α1-adrenergic receptors differentially modulates theta and gamma oscillatory activity in primary motor cortex.

    PubMed

    Özkan, Mazhar; Johnson, Nicholas W; Sehirli, Umit S; Woodhall, Gavin L; Stanford, Ian M

    2017-01-01

    The loss of dopamine (DA) in Parkinson's is accompanied by the emergence of exaggerated theta and beta frequency neuronal oscillatory activity in the primary motor cortex (M1) and basal ganglia. DA replacement therapy or deep brain stimulation reduces the power of these oscillations and this is coincident with an improvement in motor performance implying a causal relationship. Here we provide in vitro evidence for the differential modulation of theta and gamma activity in M1 by DA acting at receptors exhibiting conventional and non-conventional DA pharmacology. Recording local field potentials in deep layer V of rat M1, co-application of carbachol (CCh, 5 μM) and kainic acid (KA, 150 nM) elicited simultaneous oscillations at a frequency of 6.49 ± 0.18 Hz (theta, n = 84) and 34.97 ± 0.39 Hz (gamma, n = 84). Bath application of DA resulted in a decrease in gamma power with no change in theta power. However, application of either the D1-like receptor agonist SKF38393 or the D2-like agonist quinpirole increased the power of both theta and gamma suggesting that the DA-mediated inhibition of oscillatory power is by action at other sites other than classical DA receptors. Application of amphetamine, which promotes endogenous amine neurotransmitter release, or the adrenergic α1-selective agonist phenylephrine mimicked the action of DA and reduced gamma power, a result unaffected by prior co-application of D1 and D2 receptor antagonists SCH23390 and sulpiride. Finally, application of the α1-adrenergic receptor antagonist prazosin blocked the action of DA on gamma power suggestive of interaction between α1 and DA receptors. These results show that DA mediates complex actions acting at dopamine D1-like and D2-like receptors, α1 adrenergic receptors and possibly DA/α1 heteromultimeric receptors to differentially modulate theta and gamma activity in M1.

  12. Age- and region-specific imbalances of basal amino acids and monoamine metabolism in limbic regions of female Fmr1 knock-out mice.

    PubMed

    Gruss, Michael; Braun, Katharina

    2004-07-01

    The Fragile X syndrome, a common form of mental retardation in humans, originates from the loss of expression of the Fragile X mental retardation gene leading to the absence of the encoded Fragile X mental retardation protein 1 (FMRP). A broad pattern of morphological and behavioral abnormalities is well described for affected humans as well as Fmr1 knock-out mice, a transgenic animal model for the human Fragile X syndrome. In the present study, we examined neurochemical differences between female Fmr1 knock-out and wildtype mice with particular focus on neurotransmission. Significant age- and region-specific differences of basal tissue neurotransmitter and metabolite levels measured by high performance liquid chromatography were found. Those differences were more numerous in juvenile animals (postnatal day (PND) 28-31) compared to adults (postnatal day 209-221). In juvenile female knock-out mice, especially aspartate and taurine were increased in cortical regions, striatum, cerebellum, and brainstem. Furthermore, compared to the wildtype animals, the juvenile knock-out mice displayed an increased level of neuronal inhibition in the hippocampus and brainstem reflected by decreased ratios of (aspartate + glutamate)/(taurine + GABA), as well as an increased dopamine (DA) turnover in cortical regions, striatum, and hippocampus. These results provide the first evidence that the lack of FMRP expression in female Fmr1 knock-out mice is accompanied by age-dependent, region-specific alterations in brain amino acids, and monoamine turnover, which might be related to the reported synaptical and behavioural alterations in these animals.

  13. Subthalamic and Cortical Local Field Potentials Associated with Pilocarpine-Induced Oral Tremor in the Rat

    PubMed Central

    Long, Lauren L.; Podurgiel, Samantha J.; Haque, Aileen F.; Errante, Emily L.; Chrobak, James J.; Salamone, John D.

    2016-01-01

    Tremulous jaw movements (TJMs) are rapid vertical deflections of the lower jaw that resemble chewing but are not directed at any particular stimulus. In rodents, TJMs are induced by neurochemical conditions that parallel those seen in human Parkinsonism, including neurotoxic or pharmacological depletion of striatal dopamine (DA), DA antagonism, and cholinomimetic administration. Moreover, TJMs in rodents can be attenuated by antiparkinsonian agents, including levodopa (L-DOPA), DA agonists, muscarinic antagonists, and adenosine A2A antagonists. In human Parkinsonian patients, exaggerated physiological synchrony is seen in the beta frequency band in various parts of the cortical/basal ganglia/thalamic circuitry, and activity in the tremor frequency range (3–7 Hz) also has been recorded. The present studies were undertaken to determine if tremor-related local field potential (LFP) activity could be recorded from motor cortex (M1) or subthalamic nucleus (STN) during the TJMs induced by the muscarinic agonist pilocarpine, which is a well-known tremorogenic agent. Pilocarpine induced a robust TJM response that was marked by rhythmic electromyographic (EMG) activity in the temporalis muscle. Compared to periods with no tremor activity, TJM epochs were characterized by increased LFP activity in the tremor frequency range in both neocortex and STN. Tremor activity was not associated with increased synchrony in the beta frequency band. These studies identified tremor-related LFP activity in parts of the cortical/basal ganglia circuitry that are involved in the pathophysiology of Parkinsonism. This research may ultimately lead to identification of the oscillatory neural mechanisms involved in the generation of tremulous activity, and promote development of novel treatments for tremor disorders. PMID:27378874

  14. Highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite and nafion composite modified screen printed carbon electrode.

    PubMed

    Ku, Shuhao; Palanisamy, Selvakumar; Chen, Shen-Ming

    2013-12-01

    Herein, we report a highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite/nafion composite modified screen printed carbon (SPC) electrode. Electrochemically activated graphite/nafion composite was prepared by using a simple electrochemical method. Scanning electron microscope (SEM) used to characterize the surface morphology of the fabricated composite electrode. The SEM result clearly indicates that the graphitic basal planes were totally disturbed and leads to the formation of graphite nanosheets. The composite modified electrode showed an enhanced electrocatalytic activity toward the oxidation of DA when compared with either electrochemical pretreated graphite or nafion SPC electrodes. The fabricated composite electrode exhibits a good electrocatalytic oxidation toward DA in the linear response range from 0.5 to 70 μM with the detection limit of 0.023 μM. The proposed sensor also exhibits very good selectivity and stability, with the appreciable sensitivity. In addition, the proposed sensor showed satisfactory recovery results toward the commercial pharmaceutical DA samples. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Basal testosterone, leadership and dominance: A field study and meta-analysis.

    PubMed

    van der Meij, Leander; Schaveling, Jaap; van Vugt, Mark

    2016-10-01

    This article examines the role of basal testosterone as a potential biological marker of leadership and hierarchy in the workplace. First, we report the result of a study with a sample of male employees from different corporate organizations in the Netherlands (n=125). Results showed that employees with higher basal testosterone levels reported a more authoritarian leadership style, but this relationship was absent among those who currently held a real management position (i.e., they had at least one subordinate). Furthermore, basal testosterone levels were not different between managers and non-managers, and testosterone was not associated with various indicators of status and hierarchy such as number of subordinates, income, and position in the organizational hierarchy. In our meta-analysis (second study), we showed that basal testosterone levels were not associated with leadership in men nor in women (9 studies, n=1103). Taken together, our findings show that basal testosterone is not associated with having a leadership position in the corporate world or related to leadership styles in leaders. We suggest that basal testosterone could play a role in acquiring leadership positions through dominant and authoritarian behavior. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Beronaphaenops paphlagonicus, a new anophthalmous genus and species of Trechini (Coleoptera, Carabidae) from Turkey

    PubMed Central

    Guéorguiev, Borislav V.

    2012-01-01

    Abstract Beronaphaenops gen. n. paphlagonicus sp. n., a new remarkable, eyeless species of Trechini is described from Asian Turkey (type locality: cave Eşek Çukuru Mağarası 2, Milli Park Küre Dağlari, Pinarbasi District, Kastamonu Province). This specialized, troglobite species is characterized by a very peculiar combination of features, including several autapotypic features: mentum tooth large, long and porrect, at distal position reaching or slightly exceeding the level of epilobes, rather slanting ventrally, deeply bifid at the tip; short and fragile paraglossae, hardly surpassing the anterior margin of ligula; absence of posterolateral setae of the pronotum; absence of posterior discal pore in elytral stria 3; apical stylomere shortened, with basal part unusually broadened. The systematic position of the genus amongst the trechine beetles from the peri-Pontic area is discussed. A key to the Anatolian genera of the tribe is prepared. PMID:23459597

  17. BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis

    PubMed Central

    Jiang, Ming; Ku, Wei-Yao; Zhou, Zhongren; Dellon, Evan S.; Falk, Gary W.; Nakagawa, Hiroshi; Wang, Mei-Lun; Liu, Kuancan; Wang, Jun; Katzka, David A.; Peters, Jeffrey H.; Lan, Xiaopeng; Que, Jianwen

    2015-01-01

    Tissue homeostasis requires balanced self-renewal and differentiation of stem/progenitor cells, especially in tissues that are constantly replenished like the esophagus. Disruption of this balance is associated with pathological conditions, including eosinophilic esophagitis (EoE), in which basal progenitor cells become hyperplastic upon proinflammatory stimulation. However, how basal cells respond to the inflammatory environment at the molecular level remains undetermined. We previously reported that the bone morphogenetic protein (BMP) signaling pathway is critical for epithelial morphogenesis in the embryonic esophagus. Here, we address how this pathway regulates tissue homeostasis and EoE development in the adult esophagus. BMP signaling was specifically activated in differentiated squamous epithelium, but not in basal progenitor cells, which express the BMP antagonist follistatin. Previous reports indicate that increased BMP activity promotes Barrett’s intestinal differentiation; however, in mice, basal progenitor cell–specific expression of constitutively active BMP promoted squamous differentiation. Moreover, BMP activation increased intracellular ROS levels, initiating an NRF2-mediated oxidative response during basal progenitor cell differentiation. In both a mouse EoE model and human biopsies, reduced squamous differentiation was associated with high levels of follistatin and disrupted BMP/NRF2 pathways. We therefore propose a model in which normal squamous differentiation of basal progenitor cells is mediated by BMP-driven NRF2 activation and basal cell hyperplasia is promoted by disruption of BMP signaling in EoE. PMID:25774506

  18. Widespread reduction of dopamine cell bodies and terminals in adult rats exposed to a low dose regimen of MDMA during adolescence.

    PubMed

    Cadoni, Cristina; Pisanu, Augusta; Simola, Nicola; Frau, Lucia; Porceddu, Pier Francesca; Corongiu, Silvia; Dessì, Christian; Sil, Annesha; Plumitallo, Antonio; Wardas, Jadwiga; Di Chiara, Gaetano

    2017-09-01

    Although MDMA (3,4-methylendioxymethamphetamine, ecstasy) neurotoxicity in serotonin neurons is largely recognized in a wide variety of species including man, neurotoxicity in dopamine (DA) neurons is thought to be species-specific. MDMA is mainly consumed by adolescents, often in conjunction with caffeine (Energy Drinks) and this association has been reported to exacerbate MDMA toxic effects. In order to model these aspects of MDMA use, vis-à-vis their impact on DA neurons, we investigated the effects of adolescent exposure to low doses of MDMA (5 mg/kg for 10 days), alone or in combination with caffeine (10 mg/kg) on neuronal and functional DA indices and on recognition memory in adult rats. MDMA reduced density of tyrosine hydroxylase (TH) positive neurons in the ventral tegmental area and in the substantia nigra pars compacta, and immunoreactivity of TH and DA transporter in the nucleus accumbens (NAc) shell and core, and caudate-putamen. This same treatment caused a reduction of basal dialysate DA in the NAc core. MDMA-pretreated rats also showed behavioral sensitization to a MDMA challenge at adulthood and potentiation of MDMA-induced increase of dialysate DA in the NAc core, but not in the NAc shell. In addition, MDMA-treated rats displayed a deficit in recognition memory. Caffeine co-administration did not affect the above outcomes. Our results show that adolescent exposure of rats to low doses of MDMA induces long-lasting and widespread reduction of DA neurons indicative of a neurotoxic effect on DA neurons and suggestive of a degeneration of the same neurons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A plastic corticostriatal circuit model of adaptation in perceptual decision making

    PubMed Central

    Hsiao, Pao-Yueh; Lo, Chung-Chuan

    2013-01-01

    The ability to optimize decisions and adapt them to changing environments is a crucial brain function that increase survivability. Although much has been learned about the neuronal activity in various brain regions that are associated with decision making, and about how the nervous systems may learn to achieve optimization, the underlying neuronal mechanisms of how the nervous systems optimize decision strategies with preference given to speed or accuracy, and how the systems adapt to changes in the environment, remain unclear. Based on extensive empirical observations, we addressed the question by extending a previously described cortico-basal ganglia circuit model of perceptual decisions with the inclusion of a dynamic dopamine (DA) system that modulates spike-timing dependent plasticity (STDP). We found that, once an optimal model setting that maximized the reward rate was selected, the same setting automatically optimized decisions across different task environments through dynamic balancing between the facilitating and depressing components of the DA dynamics. Interestingly, other model parameters were also optimal if we considered the reward rate that was weighted by the subject's preferences for speed or accuracy. Specifically, the circuit model favored speed if we increased the phasic DA response to the reward prediction error, whereas the model favored accuracy if we reduced the tonic DA activity or the phasic DA responses to the estimated reward probability. The proposed model provides insight into the roles of different components of DA responses in decision adaptation and optimization in a changing environment. PMID:24339814

  20. Inflammation Effects on Motivation and Motor Activity: Role of Dopamine

    PubMed Central

    Felger, Jennifer C; Treadway, Michael T

    2017-01-01

    Motivational and motor deficits are common in patients with depression and other psychiatric disorders, and are related to symptoms of anhedonia and motor retardation. These deficits in motivation and motor function are associated with alterations in corticostriatal neurocircuitry, which may reflect abnormalities in mesolimbic and mesostriatal dopamine (DA). One pathophysiologic pathway that may drive changes in DAergic corticostriatal circuitry is inflammation. Biomarkers of inflammation such as inflammatory cytokines and acute-phase proteins are reliably elevated in a significant proportion of psychiatric patients. A variety of inflammatory stimuli have been found to preferentially target basal ganglia function to lead to impaired motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal neural responses to reward anticipation, decreased DA and DA metabolites in cerebrospinal fluid, and decreased availability, and release of striatal DA, all of which correlated with symptoms of reduced motivation and/or motor retardation. Importantly, inflammation-associated symptoms are often difficult to treat, and evidence suggests that inflammation may decrease DA synthesis and availability, thus circumventing the efficacy of standard pharmacotherapies. This review will highlight the impact of administration of inflammatory stimuli on the brain in relation to motivation and motor function. Recent data demonstrating similar relationships between increased inflammation and altered DAergic corticostriatal circuitry and behavior in patients with major depressive disorder will also be presented. Finally, we will discuss the mechanisms by which inflammation affects DA neurotransmission and relevance to novel therapeutic strategies to treat reduced motivation and motor symptoms in patients with high inflammation. PMID:27480574

  1. Pertussis toxin treatment attenuates some effects of insulin in BC3H-1 murine myocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luttrell, L.M.; Hewlett, E.L.; Romero, G.

    1988-05-05

    The effects of pertussis toxin (PT) treatment on insulin-stimulated myristoyl-diacylglycerol (DAG) generation, hexose transport, and thymidine incorporation were studied in differentiated BC3H-1 mycocytes. Insulin treatment caused a biphasic increase in myristoyl-DAG production which was abolished in myocytes treated with PT. There was no effect of PT treatment on basal (nonstimulated) myristoyl-DAG production. Insulin-stimulated hydrolysis of a membrane phosphatidylinositol glycan was blocked by PT treatment. ADP-ribosylation of BC3H-1 plasma membranes with (/sup 32/P)NAD revealed a 40-kDa protein as the major PT substrate in vivo and in vitro. The time course and dose dependence of the effects of PT on diacylglycerol generationmore » correlated with the in vivo ADP-ribosylation of the 40-kDa substrate. Pertussis toxin treatment resulted in a 71% attenuation of insulin-stimulated hexose uptake without effect on either basal or phorbol ester-stimulated uptake. The stimulatory effects of insulin and fetal calf serum on (/sup 3/H)thymidine incorporation into quiescent myocytes were attenuated by 61 and 59%, respectively, when PT was added coincidently with the growth factors. Nonstimulated and EGF-stimulated (/sup 3/H)thymidine incorporation was unaffected by PT treatment. These data suggest that a PT-sensitive G protein is involved in the cellular signaling mechanisms of insulin.« less

  2. Fetuin-A levels in hyperthyroidism.

    PubMed

    Pamuk, Bariş Onder; Yilmaz, Hamiyet; Topcuoglu, Tugba; Bilgir, Oktay; Çalan, Ozlem; Pamuk, Gulseren; Ertugrul, Derun Taner

    2013-01-01

    Fetuin-A is a protein secreted from the liver that inhibits arterial calcification deposition and can contribute to insulin resistance. Hyperthyroidism is also associated with insulin resistance. It is not known whether hyperthyroidism has an effect on fetuin-A levels. We measured fetuin-A levels and homeostasis model of assessment-insulin resistance before hyperthyroidism treatment was initiated and after euthyroidism was achieved. A total of 42 patients diagnosed with hyperthyroidism were enrolled in this study. Fetuin-A, insulin, high-sensitivity C-reactive protein, fasting blood glucose, free T3 (fT3), free T4 (fT4), and thyrotropin were measured before and after euthyroidism was established. Basal fasting blood glucose, high-sensitivity C-reactive protein, insulin, c-peptide, homeostasis model of assessment-insulin resistance, fT3, fT4 and fetuin-A levels were significantly decreased after euthyroidism was achieved (Table 1). Basal fasting blood glucose (r:0.407, p:0.008), high-sensitivity C-reactive protein (r:0.523, p<0.0001), insulin (r:0.479, p:0.001), homeostasis model of assessment-insulin resistance (r:0.541, p<0.0001), fT3 (r:0.492, p:0.001) and fT4 (r:0.473, p:0.002) were positively correlated with basal fetuin-A levels. Basal thyrotropin levels were significantly negatively correlated (r:-0.553, p<0.0001) with basal fetuin-A levels. Our findings suggest that hyperthyroidism influences fetuin-A levels.

  3. Diagnostic accuracy of basal TSH determinations based on the intravenous TRH stimulation test: an evaluation of 2570 tests and comparison with the literature.

    PubMed

    Moncayo, Helga; Dapunt, Otto; Moncayo, Roy

    2007-08-02

    Basal TSH levels reflect the metabolic status of thyroid function, however the definition and interpretation of the basal levels of TSH is a matter of controversial debate. The aim of this study was to evaluate basal TSH levels in relation to the physiological response to i.v. TRH stimulation. A series of 2570 women attending a specialized endocrine unit were evaluated. A standardized i.v. TRH stimulation test was carried out by applying 200 mug of TRH. TSH levels were measured both in the basal and the 30 minute blood sample. The normal response to TRH stimulation had been previously determined to be an absolute value lying between 2.5 and 20 mIU/l. Both TSH values were analyzed by cross tabulation. In addition the results were compared to reference values taken from the literature. Basal TSH values were within the normal range (0.3 to 3.5 mIU/l) in 91,5% of cases, diminished in 3,8% and elevated in 4.7%. Based on the response to TRH, 82.4% were considered euthyroid, 3.3% were latent hyperthyroid, and 14.3% were latent hypothyroid. Combining the data on basal and stimulated TSH levels, latent hypothyroidism was found in the following proportions for different TSH levels: 5.4% for TSH < 2.0 mIU/l, 30.2% for TSH between 2.0 and 3.0 mIU/l, 65,5% for TSH between 3.0 and 3.50 mIU/l, 87.5% for TSH between 3.5 and 4.0 mIU/l, and 88.2% for TSH between 4 and 5 mIU/l. The use of an upper normal range for TSH of 2.5 mIU/l, as recommended in the literature, misclassified 7.7% of euthyroid cases. Our analysis strategy allows us to delineate the predictive value of basal TSH levels in relation to latent hypothyroidism. A grey area can be identified for values between 3.0 and 3.5 mIU/l.

  4. Role of aberrant striatal dopamine D1 receptor/cAMP/protein kinase A/DARPP32 signaling in the paradoxical calming effect of amphetamine.

    PubMed

    Napolitano, Francesco; Bonito-Oliva, Alessandra; Federici, Mauro; Carta, Manolo; Errico, Francesco; Magara, Salvatore; Martella, Giuseppina; Nisticò, Robert; Centonze, Diego; Pisani, Antonio; Gu, Howard H; Mercuri, Nicola B; Usiello, Alessandro

    2010-08-18

    Attention deficit/hyperactivity disorder (ADHD) is characterized by inattention, impulsivity, and motor hyperactivity. Several lines of research support a crucial role for the dopamine transporter (DAT) gene in this psychiatric disease. Consistently, the most commonly prescribed medications in ADHD treatment are stimulant drugs, known to preferentially act on DAT. Recently, a knock-in mouse [DAT-cocaine insensitive (DAT-CI)] has been generated carrying a cocaine-insensitive DAT that is functional but with reduced dopamine uptake function. DAT-CI mutants display enhanced striatal extracellular dopamine levels and basal motor hyperactivity. Herein, we showed that DAT-CI animals present higher striatal dopamine turnover, altered basal phosphorylation state of dopamine and cAMP-regulated phosphoprotein 32 kDa (DARPP32) at Thr75 residue, but preserved D(2) receptor (D(2)R) function. However, although we demonstrated that striatal D(1) receptor (D(1)R) is physiologically responsive under basal conditions, its stimulus-induced activation strikingly resulted in paradoxical electrophysiological, behavioral, and biochemical responses. Indeed, in DAT-CI animals, (1) striatal LTP was completely disrupted, (2) R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF 81297) treatment induced paradoxical motor calming effects, and (3) SKF 81297 administration failed to increase cAMP/protein kinase A (PKA)/DARPP32 signaling. Such biochemical alteration selectively affected dopamine D(1)Rs since haloperidol, by blocking the tonic inhibition of D(2)R, unmasked a normal activation of striatal adenosine A(2A) receptor-mediated cAMP/PKA/DARPP32 cascade in mutants. Most importantly, our studies highlighted that amphetamine, nomifensine, and bupropion, through increased striatal dopaminergic transmission, are able to revert motor hyperactivity of DAT-CI animals. Overall, our results suggest that the paradoxical motor calming effect induced by these drugs in DAT-CI mutants depends on selective aberrant phasic activation of D(1)R/cAMP/PKA/DARPP32 signaling in response to increased striatal extracellular dopamine levels.

  5. Proinflammatory cytokines and response to molds in mononuclear cells of patients with Meniere disease.

    PubMed

    Frejo, Lidia; Gallego-Martinez, Alvaro; Requena, Teresa; Martin-Sanz, Eduardo; Amor-Dorado, Juan Carlos; Soto-Varela, Andres; Santos-Perez, Sofia; Espinosa-Sanchez, Juan Manuel; Batuecas-Caletrio, Angel; Aran, Ismael; Fraile, Jesus; Rossi-Izquierdo, Marcos; Lopez-Escamez, Jose Antonio

    2018-04-13

    Epidemiological studies have found a higher prevalence of allergic symptoms and positive prick tests in patients with Meniere's disease (MD); however the effect of allergenic extracts in MD has not been established. Thus, this study aims to determine the effect of Aspergillus and Penicillium stimulation in cytokine release and gene expression profile in MD. Patients with MD showed higher basal levels of IL-1β, IL-1RA, IL-6 and TNF-α when compared to healthy controls. We observed that IL-1β levels had a bimodal distribution suggesting two different subgroups of patients, with low and high basal levels of cytokines. Gene expression profile in peripheral blood mononuclear cells (PBMC) showed significant differences in patients with high and low basal levels of IL-1β. We found that both mold extracts triggered a significant release of TNF-α in MD patients, which were not found in controls. Moreover, after mold stimulation, MD patients showed a different gene expression profile in PBMC, according to the basal levels of IL-1β. The results indicate that a subset of MD patients have higher basal levels of proinflammatory cytokines and the exposure to Aspergillus and Penicillium extracts may trigger additional TNF-α release and contribute to exacerbate inflammation.

  6. Intracochlear Position of Cochlear Implants Determined Using CT Scanning versus Fitting Levels: Higher Threshold Levels at Basal Turn.

    PubMed

    van der Beek, Feddo B; Briaire, Jeroen J; van der Marel, Kim S; Verbist, Berit M; Frijns, Johan H M

    2016-01-01

    In this study, the effects of the intracochlear position of cochlear implants on the clinical fitting levels were analyzed. A total of 130 adult subjects who used a CII/HiRes 90K cochlear implant with a HiFocus 1/1J electrode were included in the study. The insertion angle and the distance to the modiolus of each electrode contact were determined using high-resolution CT scanning. The threshold levels (T-levels) and maximum comfort levels (M-levels) at 1 year of follow-up were determined. The degree of speech perception of the subjects was evaluated during routine clinical follow-up. The depths of insertion of all the electrode contacts were determined. The distance to the modiolus was significantly smaller at the basal and apical cochlear parts compared with that at the middle of the cochlea (p < 0.05). The T-levels increased toward the basal end of the cochlea (3.4 dB). Additionally, the M-levels, which were fitted in our clinic using a standard profile, also increased toward the basal end, although with a lower amplitude (1.3 dB). Accordingly, the dynamic range decreased toward the basal end (2.1 dB). No correlation was found between the distance to the modiolus and the T-level or the M-level. Furthermore, the correlation between the insertion depth and stimulation levels was not affected by the duration of deafness, age at implantation or the time since implantation. Additionally, the T-levels showed a significant correlation with the speech perception scores (p < 0.05). The stimulation levels of the cochlear implants were affected by the intracochlear position of the electrode contacts, which were determined using postoperative CT scanning. Interestingly, these levels depended on the insertion depth, whereas the distance to the modiolus did not affect the stimulation levels. The T-levels increased toward the basal end of the cochlea. The level profiles were independent of the overall stimulation levels and were not affected by the biographical data of the patients, such as the duration of deafness, age at implantation or time since implantation. Further research is required to elucidate how fitting using level profiles with an increase toward the basal end of the cochlea benefits speech perception. Future investigations may elucidate an explanation for the effects of the intracochlear electrode position on the stimulation levels and might facilitate future improvements in electrode design. © 2016 S. Karger AG, Basel.

  7. The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression.

    PubMed

    Heuchel, R; Radtke, F; Georgiev, O; Stark, G; Aguet, M; Schaffner, W

    1994-06-15

    We have described and cloned previously a factor (MTF-1) that binds specifically to heavy metal-responsive DNA sequence elements in the enhancer/promoter region of metallothionein genes. MTF-1 is a protein of 72.5 kDa that contains six zinc fingers and multiple domains for transcriptional activation. Here we report the disruption of both alleles of the MTF-1 gene in mouse embryonic stem cells by homologous recombination. The resulting null mutant cell line fails to produce detectable amounts of MTF-1. Moreover, due to the loss of MTF-1, the endogenous metallothionein I and II genes are silent, indicating that MTF-1 is required for both their basal and zinc-induced transcription. In addition to zinc, other heavy metals, including cadmium, copper, nickel and lead, also fail to activate metal-responsive promoters in null mutant cells. However, cotransfection of an MTF-1 expression vector and metal-responsive reporter genes yields strong basal transcription that can be further boosted by zinc treatment of cells. These results demonstrate that MTF-1 is essential for metallothionein gene regulation. Finally, we present evidence that MTF-1 itself is a zinc sensor, which exhibits increased DNA binding activity upon zinc treatment.

  8. Basal C-peptide Level as a Surrogate Marker of Subclinical Atherosclerosis in Type 2 Diabetic Patients

    PubMed Central

    Kim, Sung-Tae; Kim, Byung-Joon; Song, In-Geol; Jung, Jang-Han; Lee, Kang-Woo; Park, Keun-Young; Cho, Youn-Zoo; Lee, Dae-Ho; Koh, Gwan-Pyo

    2011-01-01

    Background Recent studies have revealed that C-peptide induces smooth muscle cell proliferation and causes human atherosclerotic lesions in diabetic patients. The present study was designed to examine whether the basal C-peptide levels correlate with cardiovascular risk in type 2 diabetes mellitus (T2DM) patients. Methods Data was obtained from 467 patients with T2DM from two institutions who were followed for four years. The medical findings of all patients were reviewed, and patients with creatinine >1.4 mg/dL, any inflammation or infection, hepatitis, or type 1 DM were excluded. The relationships between basal C-peptide and other clinical values were statistically analyzed. Results A simple correlation was found between basal C-peptide and components of metabolic syndrome (MS). Statistically basal C-peptide levels were significantly higher than the three different MS criteria used in the present study, the Adult Treatment Panel III (ATP III) of the National Cholesterol Education Program's (NCEP's), World Health Organization (WHO), and the International Diabetes Federation (IDF) criteria (NCEP-ATP III, P=0.001; IDF, P<0.001; WHO, P=0.029). The multiple regression analysis between intima-media thickness (IMT) and clinical values showed that basal C-peptide significantly correlated with IMT (P=0.043), while the analysis between the 10-year coronary heart disease risk by the United Kingdom Prospective Diabetes Study risk engine and clinical values showed that basal C-peptide did not correlate with IMT (P=0.226). Conclusion Basal C-peptide is related to cardiovascular predictors (IMT) of T2DM, suggesting that basal C-peptide does provide a further indication of cardiovascular disease. PMID:21537412

  9. The Michelin red guide of the brain: role of dopamine in goal-oriented navigation.

    PubMed

    Retailleau, Aude; Boraud, Thomas

    2014-01-01

    Spatial learning has been recognized over the years to be under the control of the hippocampus and related temporal lobe structures. Hippocampal damage often causes severe impairments in the ability to learn and remember a location in space defined by distal visual cues. Such cognitive disabilities are found in Parkinsonian patients. We recently investigated the role of dopamine in navigation in the 6-Hydroxy-dopamine (6-OHDA) rat, a model of Parkinson's disease (PD) commonly used to investigate the pathophysiology of dopamine depletion (Retailleau et al., 2013). We demonstrated that dopamine (DA) is essential to spatial learning as its depletion results in spatial impairments. Our results showed that the behavioral effect of DA depletion is correlated with modification of the neural encoding of spatial features and decision making processes in hippocampus. However, the origin of these alterations in the neural processing of the spatial information needs to be clarified. It could result from a local effect: dopamine depletion disturbs directly the processing of relevant spatial information at hippocampal level. Alternatively, it could result from a more distributed network effect: dopamine depletion elsewhere in the brain (entorhinal cortex, striatum, etc.) modifies the way hippocampus processes spatial information. Recent experimental evidence in rodents, demonstrated indeed, that other brain areas are involved in the acquisition of spatial information. Amongst these, the cortex-basal ganglia (BG) loop is known to be involved in reinforcement learning and has been identified as an important contributor to spatial learning. In particular, it has been shown that altered activity of the BG striatal complex can impair the ability to perform spatial learning tasks. The present review provides a glimpse of the findings obtained over the past decade that support a dialog between these two structures during spatial learning under DA control.

  10. 50 Hz hippocampal stimulation in refractory epilepsy: Higher level of basal glutamate predicts greater release of glutamate.

    PubMed

    Cavus, Idil; Widi, Gabriel A; Duckrow, Robert B; Zaveri, Hitten; Kennard, Jeremy T; Krystal, John; Spencer, Dennis D

    2016-02-01

    The effect of electrical stimulation on brain glutamate release in humans is unknown. Glutamate is elevated at baseline in the epileptogenic hippocampus of patients with refractory epilepsy, and increases during spontaneous seizures. We examined the effect of 50 Hz stimulation on glutamate release and its relationship to interictal levels in the hippocampus of patients with epilepsy. In addition, we measured basal and stimulated glutamate levels in a subset of these patients where stimulation elicited a seizure. Subjects (n = 10) were patients with medically refractory epilepsy who were undergoing intracranial electroencephalography (EEG) evaluation in an epilepsy monitoring unit. Electrical stimulation (50 Hz) was delivered through implanted hippocampal electrodes (n = 11), and microdialysate samples were collected every 2 min. Basal glutamate, changes in glutamate efflux with stimulation, and the relationships between peak stimulation-associated glutamate concentrations, basal zero-flow levels, and stimulated seizures were examined. Stimulation of epileptic hippocampi in patients with refractory epilepsy caused increases in glutamate efflux (p = 0.005, n = 10), and 4 of ten patients experienced brief stimulated seizures. Stimulation-induced increases in glutamate were not observed during the evoked seizures, but rather were related to the elevation in interictal basal glutamate (R(2) = 0.81, p = 0.001). The evoked-seizure group had lower basal glutamate levels than the no-seizure group (p = 0.04), with no stimulation-induced change in glutamate efflux (p = 0.47, n = 4). Conversely, increased glutamate was observed following stimulation in the no-seizure group (p = 0.005, n = 7). Subjects with an atrophic hippocampus had higher basal glutamate levels (p = 0.03, n = 7) and higher stimulation-induced glutamate efflux. Electrical stimulation of the epileptic hippocampus either increased extracellular glutamate efflux or induced seizures. The magnitude of stimulated glutamate increase was related to elevation in basal interictal glutamate, suggesting a common mechanism, possibly impaired glutamate metabolism. Divergent mechanisms may exist for seizure induction and increased glutamate in patients with epilepsy. These data highlight the potential risk of 50 Hz stimulation in patients with epilepsy. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  11. Fetuin-A levels in hyperthyroidism

    PubMed Central

    Pamuk, Barış Onder; Yılmaz, Hamiyet; Topcuoglu, Tugba; Bilgir, Oktay; Çalan, Ozlem; Pamuk, Gulseren; Ertugrul, Derun Taner

    2013-01-01

    OBJECTIVE: Fetuin-A is a protein secreted from the liver that inhibits arterial calcification deposition and can contribute to insulin resistance. Hyperthyroidism is also associated with insulin resistance. It is not known whether hyperthyroidism has an effect on fetuin-A levels. METHODS: We measured fetuin-A levels and homeostasis model of assessment-insulin resistance before hyperthyroidism treatment was initiated and after euthyroidism was achieved. A total of 42 patients diagnosed with hyperthyroidism were enrolled in this study. Fetuin-A, insulin, high-sensitivity C-reactive protein, fasting blood glucose, free T3 (fT3), free T4 (fT4), and thyrotropin were measured before and after euthyroidism was established. RESULTS: Basal fasting blood glucose, high-sensitivity C-reactive protein, insulin, c-peptide, homeostasis model of assessment-insulin resistance, fT3, fT4 and fetuin-A levels were significantly decreased after euthyroidism was achieved (Table 1. Basal fasting blood glucose (r:0.407, p:0.008), high-sensitivity C-reactive protein (r:0.523, p<0.0001), insulin (r:0.479, p:0.001), homeostasis model of assessment-insulin resistance (r:0.541, p<0.0001), fT3 (r:0.492, p:0.001) and fT4 (r:0.473, p:0.002) were positively correlated with basal fetuin-A levels. Basal thyrotropin levels were significantly negatively correlated (r:-0.553, p<0.0001) with basal fetuin-A levels. CONCLUSION: Our findings suggest that hyperthyroidism influences fetuin-A levels. PMID:23644859

  12. Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses.

    PubMed

    Scott, David J; Stohler, Christian S; Egnatuk, Christine M; Wang, Heng; Koeppe, Robert A; Zubieta, Jon-Kar

    2008-02-01

    Placebo and nocebo effects, the therapeutic and adverse effects, respectively, of inert substances or sham procedures, represent serious confounds in the evaluation of therapeutic interventions. They are also an example of cognitive processes, particularly expectations, capable of influencing physiology. To examine the contribution of 2 different neurotransmitters, the endogenous opioid and the dopaminergic (DA) systems, to the development of placebo and nocebo effects. Using a within-subject design, subjects twice underwent a 20-minute standardized pain challenge, in the absence and presence of a placebo with expected analgesic properties. Studies were conducted in a university hospital setting. Twenty healthy men and women aged 20 to 30 years recruited by advertisement. Activation of DA and opioid neurotransmission by a pain stressor with and without placebo (changes in the binding potential of carbon 11 [11C]-labeled raclopride and [11C] carfentanil with positron emission tomography) and ratings of pain, affective state, and anticipation and perception of analgesia. Placebo-induced activation of opioid neurotransmission was detected in the anterior cingulate, orbitofrontal and insular cortices, nucleus accumbens, amygdala, and periaqueductal gray matter. Dopaminergic activation was observed in the ventral basal ganglia, including the nucleus accumbens. Regional DA and opioid activity were associated with the anticipated and subjectively perceived effectiveness of the placebo and reductions in continuous pain ratings. High placebo responses were associated with greater DA and opioid activity in the nucleus accumbens. Nocebo responses were associated with a deactivation of DA and opioid release. Nucleus accumbens DA release accounted for 25% of the variance in placebo analgesic effects. Placebo and nocebo effects are associated with opposite responses of DA and endogenous opioid neurotransmission in a distributed network of regions. The brain areas involved in these phenomena form part of the circuit typically implicated in reward responses and motivated behavior.

  13. Three-year efficacy of complex insulin regimens in type 2 diabetes.

    PubMed

    Holman, Rury R; Farmer, Andrew J; Davies, Melanie J; Levy, Jonathan C; Darbyshire, Julie L; Keenan, Joanne F; Paul, Sanjoy K

    2009-10-29

    Evidence supporting the addition of specific insulin regimens to oral therapy in patients with type 2 diabetes mellitus is limited. In this 3-year open-label, multicenter trial, we evaluated 708 patients who had suboptimal glycated hemoglobin levels while taking metformin and sulfonylurea therapy. Patients were randomly assigned to receive biphasic insulin aspart twice daily, prandial insulin aspart three times daily, or basal insulin detemir once daily (twice if required). Sulfonylurea therapy was replaced by a second type of insulin if hyperglycemia became unacceptable during the first year of the study or subsequently if glycated hemoglobin levels were more than 6.5%. Outcome measures were glycated hemoglobin levels, the proportion of patients with a glycated hemoglobin level of 6.5% or less, the rate of hypoglycemia, and weight gain. Median glycated hemoglobin levels were similar for patients receiving biphasic (7.1%), prandial (6.8%), and basal (6.9%) insulin-based regimens (P=0.28). However, fewer patients had a level of 6.5% or less in the biphasic group (31.9%) than in the prandial group (44.7%, P=0.006) or in the basal group (43.2%, P=0.03), with 67.7%, 73.6%, and 81.6%, respectively, taking a second type of insulin (P=0.002). [corrected] Median rates of hypoglycemia per patient per year were lowest in the basal group (1.7), higher in the biphasic group (3.0), and highest in the prandial group (5.7) (P<0.001 for the overall comparison). The mean weight gain was higher in the prandial group than in either the biphasic group or the basal group. Other adverse event rates were similar in the three groups. Patients who added a basal or prandial insulin-based regimen to oral therapy had better glycated hemoglobin control than patients who added a biphasic insulin-based regimen. Fewer hypoglycemic episodes and less weight gain occurred in patients adding basal insulin. (Current Controlled Trials number, ISRCTN51125379.) 2009 Massachusetts Medical Society

  14. Identification of symplasmic domains in the embryo and seed of Sedum acre L. (Crassulaceae).

    PubMed

    Wróbel-Marek, Justyna; Kurczyńska, Ewa; Płachno, Bartosz J; Kozieradzka-Kiszkurno, Małgorzata

    2017-03-01

    Our study demonstrated that symplasmic communication between Sedum acre seed compartments and the embryo proper is not uniform. The presence of plasmodesmata (PD) constitutes the structural basis for information exchange between cells, and symplasmic communication is involved in the regulation of cell differentiation and plant development. Most recent studies concerning an analysis of symplasmic communication between seed compartments and the embryo have been predominantly performed on Arabidopsis thaliana. The results presented in this paper describe the analysis of symplasmic communication on the example of Sedum acre seeds, because the ultrastructure of the seed compartments and the embryo proper, including the PD, have already been described, and this species represents an embryonic type of development different to Arabidopsis. Moreover, in this species, an unusual electron-dense dome associated with plasmodesmata on the border between the basal cell/chalazal suspensor cells and the basal cell/the endosperm has been described. This prompted the question as to whether these plasmodesmata are functional. Thus, the aim of this study was to describe the movement of symplasmic transport fluorochromes between different Sedum seed compartments, with particular emphasis on the movement between the basal cell and the embryo proper and endosperm, to answer the following questions: (1) are seeds divided into symplasmic domains; (2) if so, are they stable or do they change with the development? The results have shown that symplasmic tracers movement: (a) from the external integument to internal integument is restricted; (b) from the basal cell to the other part of the embryo proper and from the basal cell to the endosperm is also restricted; (c) the embryo is a single symplasmic domain with respect to molecules of a molecular weight below 0.5 kDa.

  15. Effects of phenylalanine, histidine, and leucine on basal and GHRH-stimulated GH secretion and on PRL, insulin, and glucose levels in short children. Comparison with the effects of arginine.

    PubMed

    Bellone, J; Valetto, M R; Aimaretti, G; Segni, M; Volta, C; Cardimale, G; Baffoni, C; Pasquino, A M; Bernasconi, S; Bartolotta, E; Mucci, M; Ghigo, E

    1996-01-01

    Of the amino acids arginine is the most potent GH secretagogue in man. It potentiates the GH response to GHRH, exerts a weaker PRL-releasing effect, stimulates insulin and glucagon and induces a biphasic glucose variation. The potency and effects of other amino acids on pituitary and pancreatic hormones need to be clarified. In 43 children with normal short stature (5.3-14.0 yr; 30 M and 13 F) the effects of the infusion of phenylalanine (Phe, 0.08 g/kg), histidine (His, 0.1 g/kg), and leucine (Leu, 0.08 g/kg) on basal and GHRH-stimulated GH secretion and on PRL, insulin and glucose levels were studied and compared with those of arginine at high (hArg, 0.5 g/kg) or low dose (lArg, 0.2 g/kg). Phe increased basal (p < 0.05) but not GHRH-stimulated GH levels, induced PRL and insulin rises (p < 0.03 and p < 0.03), and did not change glycemia. Though a trend toward an increase in basal GH levels was found after His, His and Leu did not significantly modify either basal or GHRH-induced GH secretion nor basal PRL, insulin and glucose levels. Both hArg and lArg increased basal (p < 0.0001 and p < 0.05, respectively) and GHRH-stimulated GH levels (p < 0.006 and p < 0.006). hArg increased both PRL (p < 0.002) and insulin levels (p < 0.005) more (p < 0.0005 and p < 0.004) than lArg (p < 0.005 and p < 0.005), while glucose levels showed a similar increase followed by a similar decrease. We conclude that in childhood: a) Phe significantly increases GH secretion but, differently from Arg, does not potentiate the response to GHRH, suggesting different mechanisms of action of these amino acids; b) differently from His and Leu, Phe is a PRL and insulin secretagogue but is less potent than Arg; c) Arg has the highest stimulatory effect on pituitary and pancreatic hormones.

  16. Modeling Parkinson's disease falls associated with brainstem cholinergic systems decline.

    PubMed

    Kucinski, Aaron; Sarter, Martin

    2015-04-01

    In addition to the primary disease-defining symptoms, approximately half of patients with Parkinson's disease (PD) suffer from postural instability, impairments in gait control and a propensity for falls. Consistent with evidence from patients, we previously demonstrated that combined striatal dopamine (DA) and basal forebrain (BF) cholinergic cell loss causes falls in rats traversing dynamic surfaces. Because evidence suggests that degeneration of brainstem cholinergic neurons arising from the pedunculopontine nucleus (PPN) also contributes to impaired gait and falls, here we assessed the effects of selective cholinergic PPN lesions in combination with striatal DA loss or BF cholinergic cells loss as well as losses in all 3 regions. Results indicate that all combination losses that included the BF cholinergic system slowed traversal and increased slips and falls. However, the performance of rats with losses in all 3 regions (PPN, BF, and DA) was not more severely impaired than following combined BF cholinergic and striatal DA lesions. These results confirm the hypothesis that BF cholinergic-striatal disruption of attentional-motor interactions is a primary source of falls. Additional losses of PPN cholinergic neurons may worsen posture and gait control in situations not captured by the current testing conditions. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  17. Cholinergic depletion in nucleus accumbens impairs mesocortical dopamine activation and cognitive function in rats.

    PubMed

    Laplante, François; Zhang, Zi-Wei; Huppé-Gourgues, Frédéric; Dufresne, Marc M; Vaucher, Elvire; Sullivan, Ron M

    2012-11-01

    In rats, selective depletion of the cholinergic interneurons in the ventral striatum (nucleus accumbens or N.Acc.) results in heightened behavioural sensitivity to amphetamine and impaired sensorimotor gating processes, suggesting a hyper-responsiveness to dopamine (DA) activity in the N.Acc. We hypothesized that local cholinergic depletion may also trigger distal functional alterations, particularly in prefrontal cortex (PFC). Adult male Sprague-Dawley rats were injected bilaterally in the N.Acc. with an immunotoxin targeting choline acetyltransferase. Two weeks later, cognitive function was assessed using the delayed alternation paradigm in the T-maze. The rats were then implanted with voltammetric recording electrodes in the ventromedial PFC to measure in vivo extracellular DA release in response to mild tail pinch stress. The PFC was also examined for density of tyrosine hydroxylase (TH)-labelled varicosities. In another cohort of control and lesioned rats, we measured post mortem tissue content of DA. Depletion of cholinergic neurons (restricted to N.Acc.) significantly impaired delayed alternation performance across delay intervals. While (basal) post mortem indices of PFC DA function were unaffected by N.Acc. lesions, in vivo mesocortical DA activation was markedly reduced; this deficit correlated significantly with cognitive impairments. TH-labelled varicosities however, were unaffected in cortical layer V relative to controls. These data suggest that selective depletion of cholinergic interneurons in N.Acc. triggers widespread functional impairments in mesocorticolimbic DA function and cognition. The possible relevance of these findings is also discussed in relation to schizophrenia, where reduced density of cholinergic neurons in ventral striatum has been reported. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Vascular and renal effects of dopamine during extracellular volume expansion: Role of nitric oxide pathway.

    PubMed

    Costa, María A; Elesgaray, Rosana; Loria, Analía; Balaszczuk, Ana María; Arranz, Cristina

    2006-02-28

    The aim of the study was to determine the possible role of NO-system activation in vascular and renal effects of the dopaminergic system and the probable interaction between both systems during acute volume expansion in rats. Expanded (10% bw) and non-expanded anaesthetized male Wistar rats were treated with haloperidol, a DA receptor antagonist (3 mg/kg bw, ip). Mean arterial pressure, diuresis, natriuresis, renal plasma flow, glomerular filtration rate, nitrites and nitrates excretion (NOx) were determined. NADPH diaphorase activity was measured using a histochemistry technique in kidney, aorta and renal arteries. NOS activity in kidney and aorta from expanded and non-expanded animals was determined with L-[U14C]-arginine substrate, in basal conditions and after DA (1 microM) administration. The hypotensive effect of L-arg and hypertension induced by L-NAME were not modified by haloperidol. This blocker reverted the increase in diuresis, natriuresis and RPF induced by L-arg in both groups. Dopaminergic blockade induced a decrease in NOx excretion and in NADPH-diaphorase activity in glomeruli, proximal tubule and medullar collecting duct and in endothelium and vascular smooth muscle of renal arteries. DA induced an increase in NOS activity in renal medulla and cortex in both groups, but no changes in the aorta were observed. Our results suggest that renal DA would be associated with the renal response induced by NO during extracellular volume expansion. NO-system activation would be one of the mechanisms involved in renal DA activity during saline load, but NO appears not to be involved in DA vascular effects.

  19. Impaired glucocorticoid-mediated HPA axis negative feedback induced by juvenile social isolation in male rats.

    PubMed

    Boero, Giorgia; Pisu, Maria Giuseppina; Biggio, Francesca; Muredda, Laura; Carta, Gianfranca; Banni, Sebastiano; Paci, Elena; Follesa, Paolo; Concas, Alessandra; Porcu, Patrizia; Serra, Mariangela

    2018-05-01

    We previously demonstrated that socially isolated rats at weaning showed a significant decrease in corticosterone and adrenocorticotropic hormone (ACTH) levels, associated with an enhanced response to acute stressful stimuli. Here we shown that social isolation decreased levels of total corticosterone and of its carrier corticosteroid-binding globulin, but did not influence the availability of the free active fraction of corticosterone, both under basal conditions and after acute stress exposure. Under basal conditions, social isolation increased the abundance of glucocorticoid receptors, while it decreased that of mineralocorticoid receptors. After acute stress exposure, socially isolated rats showed long-lasting corticosterone, ACTH and corticotrophin releasing hormone responses. Moreover, while in the hippocampus and hypothalamus of group-housed rats glucocorticoid receptors expression increased with time and reached a peak when corticosterone levels returned to basal values, in socially isolated rats expression of glucocorticoid receptors did not change. Finally, social isolation also affected the hypothalamic endocannabinoid system: compared to group-housed rats, basal levels of anandamide and cannabinoid receptor type 1 were increased, while basal levels of 2-arachidonoylglycerol were decreased in socially isolated rats and did not change after acute stress exposure. The present results show that social isolation in male rats alters basal HPA axis activity and impairs glucocorticoid-mediated negative feedback after acute stress. Given that social isolation is considered an animal model of several neuropsychiatric disorders, such as generalized anxiety disorder, depression, post-traumatic stress disorder and schizophrenia, these data could contribute to better understand the alterations in HPA axis activity observed in these disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Dynamic thiol/disulphide homeostasis in patients with basal cell carcinoma.

    PubMed

    Demirseren, Duriye Deniz; Cicek, Cagla; Alisik, Murat; Demirseren, Mustafa Erol; Aktaş, Akın; Erel, Ozcan

    2017-09-01

    The aim of this study is to measure and compare the dynamic thiol/disulphide homeostasis of patients with basal cell carcinoma and healthy subjects with a newly developed and original method. Thirty four patients attending our outpatient clinic and clinically and histopathologically diagnosed as nodular basal cell carcinoma, and age and gender matched 30 healthy individuals have been involved in the study. Thiol/disulphide homeostasis tests have been measured with a novel automatic spectrophotometric method developed and the results have been compared statistically. Serum native thiol and disulphide levels in the patient and control group show a considerable variance statistically (p = 0.028, 0.039, respectively). Total thiol levels do not reveal a considerable variation (p = 0.094). Disulphide/native thiol ratios and native thiol/total thiol ratios also show a considerable variance statistically (p = 0.012, 0.013, 0.010, respectively). Thiol disulphide homeostasis in patients with basal cell carcinoma alters in the way that disulphide gets lower and thiols get higher. Thiol/disulphide level is likely to have a role in basal cell carcinoma pathogenesis.

  1. Identification and characterization of a gibberellin-regulated protein, which is ASR5, in the basal region of rice leaf sheaths.

    PubMed

    Takasaki, Hironori; Mahmood, Tariq; Matsuoka, Makoto; Matsumoto, Hiroshi; Komatsu, Setsuko

    2008-04-01

    Gibberellins (GAs) regulate growth and development in higher plants. To identify GA-regulated proteins during rice leaf sheath elongation, a proteomic approach was used. Proteins from the basal region of leaf sheath in rice seedling treated with GA(3) were analyzed by fluorescence two-dimensional difference gel electrophoresis. The levels of abscisic acid-stress-ripening-inducible 5 protein (ASR5), elongation factor-1 beta, translationally controlled tumor protein, fructose-bisphosphate aldolase and a novel protein increased; whereas the level of RuBisCO subunit binding-protein decreased by GA(3) treatment. ASR5 out of these six proteins was significantly regulated by GA(3) at the protein level but not at the mRNA level in the basal region of leaf sheaths. Since this protein is regulated not only by abscisic acid but also by GA(3), these results indicate that ASR5 might be involved in plant growth in addition to stress in the basal regions of leaf sheaths.

  2. Endocannabinergic modulation of interleukin-1β in mouse hippocampus under basal conditions and after in vivo systemic lipopolysaccharide stimulation.

    PubMed

    Csölle, Cecília; Sperlágh, Beáta

    2011-01-01

    Cannabinoids play an important role in the suppression of proinflammatory cytokine production in the periphery and brain. In this study, we explored whether endogenous activation of cannabinoid (CB) 1 receptors (CB1Rs) affects interleukin (IL)-1β levels in the mouse hippocampus under basal conditions and following stimulation with in vivo bacterial lipopolysaccharide (LPS, 250 μg/kg i.p.). IL-1β levels were determined in the hippocampi of wild-type (WT), CB1R-/- and P2X₇ receptor (P2X₇R)-/- mice using an ELISA kit. Basal but not LPS-induced IL-1β levels were downregulated when CB1R function was abrogated by genetic deletion, suggesting that endocannabinoids contributed to basal IL-1β content in the mouse hippocampus. AM251 (3 mg/kg i.p.), an antagonist of CB1Rs, also inhibited basal IL-1β protein in WT but not in CB1R-/- mice. In the absence of P2X₇R, LPS-induced IL-1β production was lower, while the inhibitory effect of CB1R antagonists on basal IL-1β was significantly attenuated. The LPS-induced elevation in IL-1β production was decreased in the presence of AM251 and AM281, with no significant difference between WT and P2X₇R-/- mice. CB1Rs are responsible for the modulation of basal IL-1β levels in the hippocampus, while the effects of CB1 antagonists on systemic LPS-induced IL-1β concentrations are independent of CB1Rs. Copyright © 2011 S. Karger AG, Basel.

  3. Regular exercise prevents the development of hyperglucocorticoidemia via adaptations in the brain and adrenal glands in male Zucker diabetic fatty rats.

    PubMed

    Campbell, Jonathan E; Király, Michael A; Atkinson, Daniel J; D'souza, Anna M; Vranic, Mladen; Riddell, Michael C

    2010-07-01

    We determined the effects of voluntary wheel running on the hypothalamic-pituitary-adrenal (HPA) axis, and the peripheral determinants of glucocorticoids action, in male Zucker diabetic fatty (ZDF) rats. Six-week-old euglycemic ZDF rats were divided into Basal, Sedentary, and Exercise groups (n = 8-9 per group). Basal animals were immediately killed, whereas Sedentary and Exercising rats were monitored for 10 wk. Basal (i.e., approximately 0900 AM in the resting state) glucocorticoid levels increased 2.3-fold by week 3 in Sedentary rats where they remained elevated for the duration of the study. After an initial elevation in basal glucocorticoid levels at week 1, Exercise rats maintained low glucocorticoid levels from week 3 through week 10. Hyperglycemia was evident in Sedentary animals by week 7, whereas Exercising animals maintained euglycemia throughout. At the time of death, the Sedentary group had approximately 40% lower glucocorticoid receptor (GR) content in the hippocampus, compared with the Basal and Exercise groups (P < 0.05), suggesting that the former group had impaired negative feedback regulation of the HPA axis. Both Sedentary and Exercise groups had elevated ACTH compared with Basal rats, indicating that central drive of the axis was similar between groups. However, Sedentary, but not Exercise, animals had elevated adrenal ACTH receptor and steroidogenic acute regulatory protein content compared with the Basal animals, suggesting that regular exercise protects against elevations in glucocorticoids by a downregulation of adrenal sensitivity to ACTH. GR and 11beta-hydroxysteroid dehydrogenase type 1 content in skeletal muscle and liver were similar between groups, however, GR content in adipose tissue was elevated in the Sedentary groups compared with the Basal and Exercise (P < 0.05) groups. Thus, the gradual elevations in glucocorticoid levels associated with the development of insulin resistance in male ZDF rats can be prevented with regular exercise, likely because of adaptations that occur primarily in the adrenal glands.

  4. Changes of poststimulatory plasma renin activity in women with hyperthyroidism or hypothyroidism in relation to therapy.

    PubMed

    Marcisz, Czeslaw; Kucharz, Eugene J; Marcisz-Orzel, Magdalena; Poręba, Ryszard; Orzel, Arkadiusz; Sioma-Markowska, Urszula

    2011-01-01

    The influence of thyroid hormones upon renin-angiotensin-aldosterone system is poorly understood. Under basal conditions, individuals belong to normal, low or high plasma renin activity (PRA) subjects. The study was designed to evaluate basal and poststimulatory PRA and serum aldosterone (Aldo) level in patients with hyperthyroidism or hypothyroidism during therapy. We examined 73 women with hyperthyroidism, 27 women with hypothyroidism and 36 healthy controls. The patients were investigated before initiation of therapy and after attainment of euthyroid state. All subjects were investigated under basal conditions (normal-sodium diet) and after application of a low-sodium diet for three days and upright position for 3 hr. PRA, serum Aldo level, blood pressure, serum sodium, potassium and thyroid hormone levels were determined in all subjects. The subjects were classified as low PRA (<1.0 ng/ml/h), normal PRA (1.0-4.0 ng/ml/h) and high PRA (>4.0 ng/ml/h) individuals according to results obtained under basal conditions. Relatively higher poststimulatory enhancement in PRA was found in patients with hyperthyroidism, especially those with low basal PRA, than in those with hypothyroidism. In women with thyroid dysfunctions poststimulatory increase in Aldo were relative lower than poststimulatory enhancement of PRA. After therapy these difference disappeared. The poststimulatory changes in PRA depended on the basal PRA. Poststimulatory PRA is higher in hyperthyroid women, especially those with low basal PRA. In women with hypothyroidism, basal and poststimulatory PRA is low. Blood pressure and severity of thyroid dysfunction was found to be similar in the patients with low, normal or high basic PRA. In women with thyroid dysfunctions, serum Aldo level and its relative poststimulatory increments are inadequate to changes of PRA; it is suggested that the dissociation in the renin-angiotensin-aldosterone system occurs in hyperthyroid and hypothyroid women.

  5. High-frequency stimulation of the subthalamic nucleus modifies the expression of vesicular glutamate transporters in basal ganglia in a rat model of Parkinson's disease.

    PubMed

    Favier, Mathieu; Carcenac, Carole; Drui, Guillaume; Boulet, Sabrina; El Mestikawy, Salah; Savasta, Marc

    2013-12-05

    It has been suggested that glutamatergic system hyperactivity may be related to the pathogenesis of Parkinson's disease (PD). Vesicular glutamate transporters (VGLUT1-3) import glutamate into synaptic vesicles and are key anatomical and functional markers of glutamatergic excitatory transmission. Both VGLUT1 and VGLUT2 have been identified as definitive markers of glutamatergic neurons, but VGLUT 3 is also expressed by non glutamatergic neurons. VGLUT1 and VGLUT2 are thought to be expressed in a complementary manner in the cortex and the thalamus (VL/VM), in glutamatergic neurons involved in different physiological functions. Chronic high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the neurosurgical therapy of choice for the management of motor deficits in patients with advanced PD. STN-HFS is highly effective, but its mechanisms of action remain unclear. This study examines the effect of STN-HFS on VGLUT1-3 expression in different brain nuclei involved in motor circuits, namely the basal ganglia (BG) network, in normal and 6-hydroxydopamine (6-OHDA) lesioned rats. Here we report that: 1) Dopamine(DA)-depletion did not affect VGLUT1 and VGLUT3 expression but significantly decreased that of VGLUT2 in almost all BG structures studied; 2) STN-HFS did not change VGLUT1-3 expression in the different brain areas of normal rats while, on the contrary, it systematically induced a significant increase of their expression in DA-depleted rats and 3) STN-HFS reversed the decrease in VGLUT2 expression induced by the DA-depletion. These results show for the first time a comparative analysis of changes of expression for the three VGLUTs induced by STN-HFS in the BG network of normal and hemiparkinsonian rats. They provide evidence for the involvement of VGLUT2 in the modulation of BG cicuits and in particular that of thalamostriatal and thalamocortical pathways suggesting their key role in its therapeutic effects for alleviating PD motor symptoms.

  6. The Indosinian orogeny: A perspective from sedimentary archives of north Vietnam

    NASA Astrophysics Data System (ADS)

    Rossignol, Camille; Bourquin, Sylvie; Hallot, Erwan; Poujol, Marc; Dabard, Marie-Pierre; Martini, Rossana; Villeneuve, Michel; Cornée, Jean-Jacques; Brayard, Arnaud; Roger, Françoise

    2018-06-01

    The Triassic stratigraphic framework for the Song Da and the Sam Nua basins, north Vietnam, suffers important discrepancies regarding both the depositional environments and ages of the main formations they contain. Using sedimentological analyses and dating (foraminifer biostratigraphy and U-Pb dating on detrital zircon), we provide an improved stratigraphic framework for both basins. A striking feature in the Song Da Basin, located on the southern margin of the South China Block, is the diachronous deposition, over a basal unconformity, of terrestrial and marine deposits. The sedimentary succession of the Song Da Basin points to a foreland setting during the late Early to the Middle Triassic, which contrasts with the commonly interpreted rift setting. On the northern margin of the Indochina Block, the Sam Nua basin recorded the activity of a proximal magmatic arc during the late Permian up to the Anisian. This arc resulted from the subduction of a southward dipping oceanic slab that separated the South China block from the Indochina block. During the Middle to the Late Triassic, the Song Da and Sam Nua basins underwent erosion that led to the formation of a major unconformity, resulting from the erosion of the Middle Triassic Indosinian mountain belt, built after an ongoing continental collision between the South China and the Indochina blocks. Later, during the Late Triassic, as syn- to post-orogenic foreland basins in a terrestrial setting, the Song Da and Sam Nua basins experienced the deposition of very coarse detrital material representing products of the mountain belt erosion.

  7. Dynamics of Nampt/visfatin and high molecular weight adiponectin in response to oral glucose load in obese and lean women.

    PubMed

    Unlütürk, Uğur; Harmanci, Ayla; Yildiz, Bülent Okan; Bayraktar, Miyase

    2010-04-01

    High molecular weight adiponectin (HMWA) is the active circulating form of adiponectin. Nampt/visfatin is the enzyme secreted from adipocytes in an active form and is one of the putative regulators of insulin secretion. To investigate the dynamics of total adiponectin (TA), HMWA and Nampt/visfatin in obese and lean women during oral glucose tolerance test (OGTT). We studied normal glucose-tolerant (NGT), age-matched, 30 obese and 30 lean women. All subjects underwent a standard 75 g, 2-h OGTT, and area under the curve (AUC) during OGTT for glucose, insulin, Nampt/visfatin, TA and HMWA was calculated. Body fat mass was assessed by bioimpedance analysis. Results Obese women had significantly higher basal and AUC values for insulin and Nampt/visfatin, whereas basal and AUC-HMWA were significantly lower in this group. Alternatively, obese and lean groups had similar basal and AUC values for glucose and TA. Basal insulin levels were negatively correlated with HMWA levels, but not with basal Nampt/visfatin. AUC-insulin was correlated positively with AUC-visfatin, and negatively with AUC-HMWA. Total and truncal body fat mass showed positive correlation with basal and AUC-visfatin, and negative correlation with basal and AUC-HMWA. In the NGT state, obese women have higher Nampt/visfatin and lower HMWA levels, both basally and in response to oral glucose challenge. The dynamics of Nampt/visfatin and HMWA during OGTT appear to be linked with insulin and adiposity. Counter-regulatory adaptations in HMWA and Nampt/visfatin might have an impact on suggested adipoinsular axis, contributing to maintenance of normal glucose tolerance.

  8. Mollusc C-reactive protein crosses species barrier and reverses hepatotoxicity of lead in rodent models.

    PubMed

    Mukherjee, Sandip; Chatterjee, Sarmishtha; Sarkar, Shuvasree; Agarwal, Soumik; Kundu, Rakesh; Maitra, Sudipta; Bhattacharya, Shelley

    2013-08-01

    Achatina fulica C-reactive protein (ACRP) reversed the toxic effects of lead nitrate both in vivo in mice and in vitro in rat hepatocytes restoring the basal level of cell viability, lipid peroxidation, reduced glutathione and superoxides. Cytotoxicity was also significantly ameliorated in rat hepatocytes by in vitro pre-treatments with individual subunits (60, 62, 90 and 110 kDa) of ACRP. Annexin V-Cy3/CFDA dual staining showed significant reduction in the number of apoptotic hepatocytes pre-treated with ACRP. ACRP induced restoration of mitochondrial membrane potential was remarkable. ACRP pre-treatment prevented Pb-induced apoptosis mediated by caspase activation. The antagonistic effect of ACRP may be due to scavenging of reactive oxygen species which maintained the homeostasis of cellular redox potential as well as reduced glutathione status. The results suggest that ACRP crosses the species barrier and it may be utilized as a viable exogenous agent of cytoprotection against heavy metal related toxicity.

  9. Studies on the mechanism of salicylate-induced increase of insulin secretion in man.

    PubMed

    Giugliano, D; Cozzolino, D; Ceriello, A; Cerciello, T; Varano, R; Saccomanno, F; Torella, R

    1988-01-01

    Salicylate compounds are known to increase basal and stimulated insulin secretion in man. In our studies, infusion of lysine acetylsalicylate (72 mg/min) increased basal insulin levels and amplified insulin responses to glucose (5 g i.v.), arginine (5 g i.v.) and tolbutamide (1 g i.v.). Verapamil, an organic calcium antagonist, did not modify LAS-induced increase of basal insulin levels, but reduced the effect of LAS on glucose-induced insulin secretion. Calcitonin and somatostatin, two agents that inhibit basal and glucose-stimulated insulin secretion, inhibited the insulin response to glucose in presence of LAS infusion. The ability of salicylate compounds to augment insulin secretion might be due to multiple sites of action in the Beta-cells.

  10. DA1 receptors modulation in rat isolated trachea.

    PubMed

    Cabezas, Gloria A; Velasco, Manuel

    2010-01-01

    We have previously demonstrated that low dose of inhaled dopamine (0.5-2 microg kg(-1) min(-1)) induces broncodilatacion in patients with acute asthma attack, suggesting that this dopamine effect is mediated by dopaminergic rather than by adrenergic receptors. To understand better these dopamine effect, rat tracheal smooth muscle was used as a model to evaluate the responses of beta2-, alpha1-, alpha2-adrenergic and DA1 and DA2 dopaminergic antagonists. Tracheal rings from male Sprague-Dawley rats (n = 90) were excised and placed in an organ bath containing modified Krebs-Ringer bicarbonate buffer at 37 degrees C, and gassed with O2 (95%) and CO2 (5%). Contractile responses were recorded with an isometric transducer in a polygraph (Letica, Spain). Contraction was induced by accumulative doses of acetylcholine (0.1, 0.3, 1, 3, 10 mM) or by electric field stimulation (10 Hz at 2 milliseconds), and accumulative doses of dopamine were added to the bath. Low concentration (0.1-0.3 mM) elicited a small initial contraction, followed by a marked relaxation. Cholinergic contraction was completely reversed at 6 mM of dopamine. This biphasic dopaminergic response was not blocked by incubation with beta2-adrenergic antagonist propranolol (0.1 microM), alpha1-antagonist, terazosin (0.1 mM), alpha2-antagonist, yohimbine (0.1 mM), or by DA2 antagonist metoclopramide (1-8 mM); DA1 antagonist SCH23390 (0.1 microM) produced a sustained increase of basal tone but did not block initial dopaminergic contraction and partially inhibited bronchodilator effect of dopamine. Dopaminergic relaxation in rat trachea is mediated by DA1 rather than by DA2 receptors; and adrenergic receptors are not involved in such dopamine-induced response. Finally, DA1 antagonist SCH23390 exerts intrinsic contractile activity on airway smooth muscle that deserves further research.

  11. Plasma catecholamine levels before and after paroxetine treatment in patients with panic disorder.

    PubMed

    Oh, Jae-Young; Yu, Bum-Hee; Heo, Jung-Yoon; Yoo, Ikki; Song, Hyemin; Jeon, Hong Jin

    2015-02-28

    Catecholamines such as norepinephrine, epinephrine, and dopamine are closely related to the autonomic nervous system, suggesting that panic disorder may involve elevated catecholamine levels. This study investigated basal and posttreatment catecholamine levels in patients with panic disorder. A total of 29 patients with panic disorder and 23 healthy controls participated in the study. Panic disorder patients received paroxetine treatment for 12 weeks after clinical tests and examination had been conducted. We investigated the difference in basal levels of catecholamine and measured the changes in catecholamine levels before and after drug treatment in panic disorder patients. The basal plasma epinephrine (48.87±6.18 pg/ml) and dopamine (34.87±3.57 pg/ml) levels of panic disorder patients were significantly higher than those (34.79±4.72 pg/ml and 20.40±3.53 pg/ml) of the control group. However, basal plasma norepinephrine levels did not show statistically significant differences between patients and controls. After drug therapy, plasma catecholamine levels were nonsignificantly decreased and norepinephrine levels showed a tendency toward a decrease that did not reach significance. In conclusion, this study suggests the possibility of a baseline increase of plasma catecholamine levels and activation of sympathetic nervous systems in patients with panic disorder which may normalize after treatment with paroxetine. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Sustained expression of PGC-1α in the rat nigrostriatal system selectively impairs dopaminergic function

    PubMed Central

    Ciron, C.; Lengacher, S.; Dusonchet, J.; Aebischer, P.; Schneider, B.L.

    2012-01-01

    Mitochondrial dysfunction and oxidative stress have been implicated in the etiology of Parkinson's disease. Therefore, pathways controlling mitochondrial activity rapidly emerge as potential therapeutic targets. Here, we explore the neuronal response to prolonged overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), a transcriptional regulator of mitochondrial function, both in vitro and in vivo. In neuronal primary cultures from the ventral midbrain, PGC-1α induces mitochondrial biogenesis and increases basal respiration. Over time, we observe an increasing proportion of the oxygen consumed by neurons which are dedicated to adenosine triphosphate production. In parallel to enhanced oxidative phosphorylation, PGC-1α progressively leads to a decrease in mitochondrial polarization. In the adult rat nigrostriatal system, adeno-associated virus (AAV)-mediated overexpression of PGC-1α induces the selective loss of dopaminergic markers and increases dopamine (DA) catabolism, leading to a reduction in striatal DA content. In addition, PGC-1α prevents the labeling of nigral neurons following striatal injection of the fluorogold retrograde tracer. When PGC-1α is expressed at higher levels following intranigral AAV injection, it leads to overt degeneration of dopaminergic neurons. Finally, PGC-1α overexpression does not prevent nigrostriatal degeneration in pathologic conditions induced by α-synuclein overexpression. Overall, we find that lasting overexpression of PGC-1α leads to major alterations in the metabolic activity of neuronal cells which dramatically impair dopaminergic function in vivo. These results highlight the central role of PGC-1α in the function and survival of dopaminergic neurons and the critical need for maintaining physiological levels of PGC-1α activity. PMID:22246294

  13. Basal exon skipping and genetic pleiotropy: A predictive model of disease pathogenesis.

    PubMed

    Drivas, Theodore G; Wojno, Adam P; Tucker, Budd A; Stone, Edwin M; Bennett, Jean

    2015-06-10

    Genetic pleiotropy, the phenomenon by which mutations in the same gene result in markedly different disease phenotypes, has proven difficult to explain with traditional models of disease pathogenesis. We have developed a model of pleiotropic disease that explains, through the process of basal exon skipping, how different mutations in the same gene can differentially affect protein production, with the total amount of protein produced correlating with disease severity. Mutations in the centrosomal protein of 290 kDa (CEP290) gene are associated with a spectrum of phenotypically distinct human diseases (the ciliopathies). Molecular biologic examination of CEP290 transcript and protein expression in cells from patients carrying CEP290 mutations, measured by quantitative polymerase chain reaction and Western blotting, correlated with disease severity and corroborated our model. We show that basal exon skipping may be the mechanism underlying the disease pleiotropy caused by CEP290 mutations. Applying our model to a different disease gene, CC2D2A (coiled-coil and C2 domains-containing protein 2A), we found that the same correlations held true. Our model explains the phenotypic diversity of two different inherited ciliopathies and may establish a new model for the pathogenesis of other pleiotropic human diseases. Copyright © 2015, American Association for the Advancement of Science.

  14. DIETARY MANAGEMENT FOR DYSLIPIDEMIA IN LIVER TRANSPLANT RECIPIENTS.

    PubMed

    Pinto, Andressa S; Chedid, Marcio F; Guerra, Léa T; Cabeleira, Daiane D; Kruel, Cleber D P

    2016-01-01

    Dyslipidemia occurs in approximately 70% of all liver transplant (LT) recipients, and no prior control studies have demonstrated any dietary intervention to change it. To analyze the effects of a dietary intervention on the lipid profile of dyslipidemic LT recipients. All LT recipients with dyslipidemia on clinical follow-up were enrolled. Anthropometric evaluation, food history, body composition (bioimpedance) and assessment of basal metabolism through indirect calorimetry were performed. Patients met with a dietitian and an individualized diet based on estimate of basal metabolism and consisting of 25% of the total energy value in total fat and <200 mg/day of cholesterol was prescribed. Total cholesterol (TC), HDL-cholesterol (HDL), LDL-cholesterol (LDL), triglycerides (TG) and anthropometric measures were measured at baseline and six months after intervention. Fifty-thee out of 56 patients concluded follow-up; age was 59±10 years; 29 were men (51.8%). The analysis pre- and post-intervention were, respectively: TC 238.9±30 and 165.1±35, p<0.001; LDL 154±33 and 90±29, p<0.001; and TG 168 (IQR=51-200) and 137 (IQR=94-177), p=<0.001. They were all modified at six months following intervention. At baseline, none of the patients had normal TC, and only 12 (22.7%) had optimal/near optimal LDL. Following dietary intervention, 45 patients (84.9%) reached normal TC and 50 (94.4%) had optimal/near optimal LDL. HDL and anthropometric measures were not modified. Dietary counseling with prescription of individualized diet based on estimate of basal metabolism through indirect calorimetry was able to manage dyslipidemia in most LT recipients; so, all dyslipidemic LT recipients must be enrolled on a dietary program. A dislipidemia ocorre em aproximadamente 70% de todos os pacientes transplantados de fígado em acompanhamento ambulatorial. Não há relato prévio de qualquer intervenção dietética que houvesse controlado a dislipidemia nesse grupo de pacientes. Analisar os efeitos de uma intervenção dietética no perfil lipídico de pacientes transplantados hepáticos dislipidêmicos em acompanhamento ambulatorial. Foram incluídos todos os pacientes adultos transplantados hepáticos com dislipidemia e em acompanhamento ambulatorial em nossa instituição. Avaliação antropométrica, anamnese alimentar, composição corporal (bioimpedância) e cálculo do metabolismo basal (calorimetria indireta) foram realizados. Pacientes foram atendidos por uma nutricionista e uma dieta individualizada baseada no metabolismo basal e consistindo de 25% do valor energético em gorduras totais e menos de 200 mg/dia de colesterol foi prescrita. Colesterol total (CT), HDL-colesterol (HDL), LDL-colesterol (LDL), triglicerídeos (TG) e medidas antropométricas foram medidos antes do início da dieta, sendo repetidos seis meses após o início da intervenção dietética. Cinquenta e três pacientes concluíram o seguimento e tinham idade 59±10 anos e 29 eram homens (51,8%). CT pré-intervenção=238,9±30; pós-intervenção=165,1±35, p<0.001; LDL pré-intervenção=154±33; pós-intervenção=90±29, p<0.001 e TG pré-intervenção=168, IQR=151-200; pós-intervenção=137, IQR=94-177, p=<0.001 sofreram modificações significativas seis meses após a intervenção. Antes do estudo, nenhum dos pacientes apresentava níveis séricos normais para o CT, e apenas 12 pacientes (22,7%) tinham níveis séricos ótimo ou quase ótimos para o LDL. Seis meses após o início da intervenção, 45 pacientes (84,9%) alcançaram níveis séricos normais de CT e 50 (94,4%) níveis séricos ótimos ou quase ótimos de LDL. Os níveis séricos de HDL e as medidas antropométricas não sofreram modificações significativas. Aconselhamento dietético com prescrição de dieta individualizada baseada no cálculo do metabolismo basal mostrou-se efetivo no manejo da dislipidemia em pacientes transplantados hepáticos em seguimento ambulatorial. Assim, todos os pacientes transplantados hepáticos com dislipidemia devem ser incluídos em um programa de intervenção dietética sob orientação de nutricionista.

  15. Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine.

    PubMed

    Ares-Santos, S; Granado, N; Oliva, I; O'Shea, E; Martin, E D; Colado, M I; Moratalla, R

    2012-02-01

    Methamphetamine (METH) is a potent, highly addictive psychostimulant consumed worldwide. In humans and experimental animals, repeated exposure to this drug induces persistent neurodegenerative changes. Damage occurs primarily to dopaminergic neurons, accompanied by gliosis. The toxic effects of METH involve excessive dopamine (DA) release, thus DA receptors are highly likely to play a role in this process. To define the role of D(1) receptors in the neurotoxic effects of METH we used D(1) receptor knock-out mice (D(1)R(-/-)) and their WT littermates. Inactivation of D(1)R prevented METH-induced dopamine fibre loss and hyperthermia, and increases in gliosis and pro-inflammatory molecules such as iNOS in the striatum. In addition, D(1)R inactivation prevented METH-induced loss of dopaminergic neurons in the substantia nigra. To explore the relationship between hyperthermia and neurotoxicity, METH was given at high ambient temperature (29 °C). In this condition, D(1)R(-/-) mice developed hyperthermia following drug delivery and the neuroprotection provided by D(1)R inactivation at 23 °C was no longer observed. However, reserpine, which empties vesicular dopamine stores, blocked hyperthermia and strongly potentiated dopamine toxicity in D(1)R(-/-) mice, suggesting that the protection afforded by D(1)R inactivation is due to both hypothermia and higher stored vesicular dopamine. Moreover, electrical stimulation evoked higher DA overflow in D(1)R(-/-) mice as demonstrated by fast scan cyclic voltammetry despite their lower basal DA content, suggesting higher vesicular DA content in D(1)R(-/-) than in WT mice. Altogether, these results indicate that the D(1)R plays a significant role in METH-induced neurotoxicity by mediating drug-induced hyperthermia and increasing the releasable cytosolic DA pool. Copyright © 2011. Published by Elsevier Inc.

  16. The Readability Levels of the 1981 Scott, Foresman and Co. Basal Texts and Their Comparison with the 1978 Edition.

    ERIC Educational Resources Information Center

    Ackerman, Bonnie

    Fry's Readability Graph was used to determine the readability levels of the 1981 Scott, Foresman and Co. basal textbook series for grades one through six. The readability levels were then compared to those established for the 1978 edition. In the 1981 edition, all stories were handscored. Poems, skill lessons, and plays were not examined in order…

  17. O1.3. A COMPUTATIONAL TRIAL-BY-TRIAL EEG ANALYSIS OF HIERARCHICAL PRECISION-WEIGHTED PREDICTION ERRORS

    PubMed Central

    Tomiello, Sara; Schöbi, Dario; Weber, Lilian; Haker, Helene; Sandra, Iglesias; Stephan, Klaas Enno

    2018-01-01

    Abstract Background Action optimisation relies on learning about past decisions and on accumulated knowledge about the stability of the environment. In Bayesian models of learning, belief updating is informed by multiple, hierarchically related, precision-weighted prediction errors (pwPEs). Recent work suggests that hierarchically different pwPEs may be encoded by specific neurotransmitters such as dopamine (DA) and acetylcholine (ACh). Abnormal dopaminergic and cholinergic modulation of N-methyl-D-aspartate (NMDA) receptors plays a central role in the dysconnection hypothesis, which considers impaired synaptic plasticity a central mechanisms in the pathophysiology of schizophrenia. Methods To probe the dichotomy between DA and ACh and to investigate timing parameters of pwPEs, we tested 74 healthy male volunteers performing a probabilistic reward associative learning task in which the contingency between cues and rewards changed over 160 trials between 0.8 and 0.2. Furthermore, the current study employed pharmacological interventions (amisulpride / biperiden / placebo) and genetic analyses (COMT and ChAT) to probe DA and ACh modulation of these computational quantities. The study was double-blind and between-subject. We inferred, from subject-specific behavioural data, a low-level choice PE about the reward outcome, a high-level PE about the probability of the outcome as well as the respective precision-weights (uncertainties) and used them, in a trial-by-trial analysis, to explain electroencephalogram (EEG) signals (64 channels). Behavioural data was modelled implementing three versions of the Hierarchical Gaussian Filter (HGF), a Rescorla-Wagner model, and a Sutton model with a dynamic learning rate. The computational trajectories of the winning model were used as regressors in single-subject trial-by-trial GLM analyses at the sensor level. The resulting parameter estimates were entered into 2nd-level ANOVAs. The reported results were family-wise error corrected at the peak-level (p<0.05) across the whole brain and time window (outcome phase: 0 - 500ms). Results A three-level HGF best explained the data and was used to compute the computational regressors for EEG analyses. We found a significant interaction between pharmacology and COMT for the high-level precision-weight (uncertainty). Specifically: - At 276 ms after outcome presentation the difference between Met/Met and Val/Met was more positive for amisulpride than for biperiden over occipital electrodes. - At 274ms and 278 ms after outcome presentation the difference between Met/Met and Val/Met was more negative over fronto-temporal electrodes for amisulpride than for placebo, and for amisulpride than for biperiden, respectively. No significant results were detected for the other computational quantities or for the ChAT gene. Discussion The differential effects of pharmacology on the processing of high-level precision-weight (uncertainty) were modulated by the DA-related gene COMT. Previous results linked high-level PEs to the cholinergic basal forebrain. One possible explanation for the current results is that high-level computational quantities are represented in cholinergic regions, which in turn are influenced by dopaminergic projections. In order to disentangle dopaminergic and cholinergic effects on synaptic plasticity further analyses will concentrate on biophysical models (e.g. DCM). This may prove useful in detecting pathophysiological subgroups and might therefore be of high relevance in a clinical setting.

  18. Determination of Domoic Acid in Plankton Net Samples from Golden Horn Estuary, Turkey, Using HPLC with Fluorescence Detection.

    PubMed

    Dursun, Fuat; Ünlü, Selma; Yurdun, Türkan

    2018-03-01

    This study focused on the fluctuations of domoic acid (DA) levels in plankton net samples collected from the Golden Horn Estuary (GHE), Turkey, between August 2011 and July 2012. DA concentrations were determined by high-performance liquid chromatography (HPLC), using a fluorenylmethoxycarbonyl (FMOC) derivatization technique. Monthly and biweekly data were evaluated with environmental variables, and their influence on DA production is discussed. DA levels in plankton net samples varied between 0.36 and 94.34 µg L - 1 . DA levels showed remarkable seasonal variation and they were generally higher in May, 2012, but no DA was detected between February and April, 2012. DA production was mostly controlled by temperature, with nitrate and silicate limitations being secondary factors that influenced DA concentrations.

  19. Members of the Oral Microbiota Are Associated with IL-8 Release by Gingival Epithelial Cells in Healthy Individuals

    PubMed Central

    Schueller, Katharina; Riva, Alessandra; Pfeiffer, Stefanie; Berry, David; Somoza, Veronika

    2017-01-01

    The triggers for the onset of oral diseases are still poorly understood. The aim of this study was to characterize the oral bacterial community in healthy humans and its association with nutrition, oral hygiene habits, and the release of the inflammatory marker IL-8 from gingival epithelial cells (GECs) with and without stimulation by bacterial endotoxins to identify possible indicator operational taxonomic units (OTUs) associated with inflammatory marker status. GECs from 21 healthy participants (13 females, 8 males) were incubated with or without addition of bacterial lipopolysaccharides (LPSs), and the oral microbiota was profiled using 16S rRNA gene-targeted sequencing. The basal IL-8 release after 6 h was between 9.9 and 98.2 pg/ml, and bacterial communities were characteristic for healthy oral microbiota. The composition of the oral microbiota was associated with basal IL-8 levels, the intake of meat, tea, white wine, sweets and the use of chewing gum, as well as flossing habits, allergies, gender and body mass index. Additionally, eight OTUs were associated with high basal levels of IL-8 and GEC response to LPS, with high basal levels of IL-8, and 1 with low basal levels of IL8. The identification of indicator bacteria in healthy subjects with high levels of IL-8 release is of importance as they may be promising early warning indicators for the possible onset of oral diseases. PMID:28360899

  20. Functional Anatomy of the Human Microprocessor.

    PubMed

    Nguyen, Tuan Anh; Jo, Myung Hyun; Choi, Yeon-Gil; Park, Joha; Kwon, S Chul; Hohng, Sungchul; Kim, V Narry; Woo, Jae-Sung

    2015-06-04

    MicroRNA (miRNA) maturation is initiated by Microprocessor composed of RNase III DROSHA and its cofactor DGCR8, whose fidelity is critical for generation of functional miRNAs. To understand how Microprocessor recognizes pri-miRNAs, we here reconstitute human Microprocessor with purified recombinant proteins. We find that Microprocessor is an ∼364 kDa heterotrimeric complex of one DROSHA and two DGCR8 molecules. Together with a 23-amino acid peptide from DGCR8, DROSHA constitutes a minimal functional core. DROSHA serves as a "ruler" by measuring 11 bp from the basal ssRNA-dsRNA junction. DGCR8 interacts with the stem and apical elements through its dsRNA-binding domains and RNA-binding heme domain, respectively, allowing efficient and accurate processing. DROSHA and DGCR8, respectively, recognize the basal UG and apical UGU motifs, which ensure proper orientation of the complex. These findings clarify controversies over the action mechanism of DROSHA and allow us to build a general model for pri-miRNA processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Linopirdine. A depolarization-activated releaser of transmitters for treatment of dementia.

    PubMed

    Tam, S W; Zaczek, R

    1995-01-01

    Linopirdine (DuP 996, AVIVA), currently in Phase III clinical trial for the treatment of Alzheimer's disease, is a representative of a class of novel molecules which enhances the stimulus-evoked but not basal release of several neurotransmitters including ACh, DA, 5-HT and Glu. Linopiridine has been shown to enhance ACh release in the hippocampus in vivo. In addition, linopiridine produces a number of effects including EEG patterns of enhanced vigilance, induction of c-fos expression in cerebral cortex, reduction of the increase of cerebral glucose utilization induced by hypoxia, and improved performance in animal models of learning and memory. The specific action of linopiridine on depolarized neurons but not on basal release suggests that compounds of this class will enhance normal brain activity and not lead to a non-specific activation. Furthermore, the effect of linopiridine on multiple neurotransmitter systems that are deficient in Alzheimer's disease suggests that this class of agents may be more efficacious in the treatment of dementia than therapies aimed at individual neurotransmitters systems.

  2. Informed decision making before prostate-specific antigen screening: Initial results using the American Cancer Society (ACS) Decision Aid (DA) among medically underserved men.

    PubMed

    Gökce, Mehmet I; Wang, Xuemei; Frost, Jacqueline; Roberson, Pamela; Volk, Robert J; Brooks, Durado; Canfield, Steven E; Pettaway, Curtis A

    2017-02-15

    The American Cancer Society (ACS) recommends men have the opportunity to make an informed decision about screening for prostate cancer (PCa). The ACS developed a unique decision aid (ACS-DA) for this purpose. However, to date, studies evaluating the efficacy of the ACS-DA are lacking. The authors evaluated the ACS-DA among a cohort of medically underserved men (MUM). A multiethnic cohort of MUM (n = 285) was prospectively included between June 2010 and December 2014. The ACS-DA was presented in a group format. Levels of knowledge on PCa were evaluated before and after the presentation. Participants' decisional conflict and thoughts about the presentation also were evaluated. Logistic regression analyses were performed to determine factors associated with having an adequate level of knowledge. Before receiving the ACS-DA, 33.1% of participants had adequate knowledge on PCa, and this increased to 77% after the DA (P < .0001). On multivariate analysis, higher education level (odds ratio, 11.19; P = .001) and history of another cancer (odds ratio, 7.45; P = .03) were associated with having adequate knowledge after receiving the DA. Levels of decisional conflict were low and were correlated with levels of knowledge after receiving the DA. The majority of men also rated the presentation as favorable and would recommend the ACS-DA to others. Use of the ACS-DA was feasible among MUM and led to increased PCa knowledge. This also correlated with low levels of decisional conflict. The ACS-DA presented to groups of men may serve as a feasible tool for informed decision making in a MUM population. Cancer 2017;123:583-591. © 2016 American Cancer Society. © 2016 American Cancer Society.

  3. Feeding Jerusalem artichoke reduced skatole level and changed intestinal microbiota in the gut of entire male pigs.

    PubMed

    Vhile, S G; Kjos, N P; Sørum, H; Overland, M

    2012-05-01

    Different levels of dried Jerusalem artichoke were fed to entire male pigs 1 week before slaughter. The objective was to investigate the effect on skatole level in the hindgut and in adipose tissue, as well as the effect on microflora and short-chain fatty acids (SCFA) in the hindgut. Five experimental groups (n = 11) were given different dietary treatments 7 days before slaughtering: negative control (basal diet), positive control (basal diet + 9% chicory-inulin), basal diet + 4.1% Jerusalem artichoke, basal diet + 8.1% Jerusalem artichoke and basal diet + 12.2% Jerusalem artichoke. Samples from colon, rectum, faeces and adipose tissue were collected. Effect of dietary treatment on skatole, indole and androstenone levels in adipose tissue and on skatole, indole, pH, dry matter (DM), microbiota and SCFA in the hindgut was evaluated. Feeding increasing levels of Jerusalem artichoke to entire male pigs reduced skatole in digesta from colon and in faeces (linear, P < 0.01). There was also a tendency towards a decreased level of skatole in adipose tissue (linear, P = 0.06). Feeding Jerusalem artichoke decreased DM content in colon and faeces and pH in colon (linear, P < 0.01). Increasing levels of Jerusalem artichoke resulted in a reduced level of Clostridium perfringens in both colon and rectum (linear, P < 0.05) and a tendency towards decreased levels of enterobacteria in colon (linear, P = 0.05). Further, there was an increase in total amount of SCFA (linear, P < 0.05), acetic acid (linear, P < 0.05) and valerianic acid (linear, P < 0.01) in faeces. In conclusion, adding dried Jerusalem artichoke to diets for entire male pigs 1 week before slaughter resulted in a dose-dependent decrease in skatole levels in the hindgut and adipose tissue. The reduced skatole levels might be related to the decrease in C. perfringens and the increase in SCFA with subsequent reduction in pH.

  4. [Motivation and Emotional States: Structural Systemic, Neurochemical, Molecular and Cellular Mechanisms].

    PubMed

    Bazyan, A S

    2016-01-01

    The structural, systemic, neurochemical, molecular and cellular mechanisms of organization and coding motivation and emotional states are describe. The GABA and glutamatergic synaptic systems of basal ganglia form a neural network and participate in the implementation of voluntary behavior. Neuropeptides, neurohormones and paracrine neuromodulators involved in the organization of motivation and emotional states, integrated with synaptic systems, controlled by neural networks and organizing goal-directed behavior. Structural centers for united and integrated of information in voluntary and goal-directed behavior are globus pallidus. Substantia nigra pars reticulata switches the information from corticobasal networks to thalamocortical networks, induces global dopaminergic (DA) signal and organize interaction of mesolimbic and nigostriatnoy DA systems controlled by prefrontal and motor cortex. Together with the motor cortex, substantia nigra displays information in the brainstem and spinal cord to implementation of behavior. Motivation states are formed in the interaction of neurohormonal and neuropeptide systems by monoaminergic systems of brain. Emotional states are formed by monoaminergic systems of the mid-brain, where the leading role belongs to the mesolimbic DA system. The emotional and motivation state of the encoded specific epigenetic molecular and chemical pattern of neuron.

  5. Genomic position affects the expression of tobacco mosaic virus movement and coat protein genes.

    PubMed Central

    Culver, J N; Lehto, K; Close, S M; Hilf, M E; Dawson, W O

    1993-01-01

    Alterations in the genomic position of the tobacco mosaic virus (TMV) genes encoding the 30-kDa cell-to-cell movement protein or the coat protein greatly affected their expression. Higher production of 30-kDa protein was correlated with increased proximity of the gene to the viral 3' terminus. A mutant placing the 30-kDa open reading frame 207 nucleotides nearer the 3' terminus produced at least 4 times the wild-type TMV 30-kDa protein level, while a mutant placing the 30-kDa open reading frame 470 nucleotides closer to the 3' terminus produced at least 8 times the wild-type TMV 30-kDa protein level. Increases in 30-kDa protein production were not correlated with the subgenomic mRNA promoter (SGP) controlling the 30-kDa gene, since mutants with either the native 30-kDa SGP or the coat protein SGP in front of the 30-kDa gene produced similar levels of 30-kDa protein. Lack of coat protein did not affect 30-kDa protein expression, since a mutant with the coat protein start codon removed did not produce increased amounts of 30-kDa protein. Effects of gene positioning on coat protein expression were examined by using a mutant containing two different tandemly positioned tobamovirus (TMV and Odontoglossum ringspot virus) coat protein genes. Only coat protein expressed from the gene positioned nearest the 3' viral terminus was detected. Analysis of 30-kDa and coat protein subgenomic mRNAs revealed no proportional increase in the levels of mRNA relative to the observed levels of 30-kDa and coat proteins. This suggests that a translational mechanism is primarily responsible for the observed effect of genomic position on expression of 30-kDa movement and coat protein genes. Images Fig. 2 Fig. 3 Fig. 4 PMID:8446627

  6. Increased nitric oxide production in platelets from severe chronic renal failure patients.

    PubMed

    Siqueira, Mariana Alves de Sá; Brunini, Tatiana M C; Pereira, Natália Rodrigues; Martins, Marcela Anjos; Moss, Monique Bandeira; Santos, Sérgio F; Lugon, Jocemir R; Mendes-Ribeiro, Antônio C

    2011-02-01

    Nitric oxide (NO) production occurs through oxidation of the amino acid L-arginine by NO synthase (NOS). NO inhibits platelet activation by increasing the levels of cyclic guanosine monophosphate (cGMP), thus maintaining vascular homeostasis. Our group previously demonstrated (da Silva et al. 2005) an enhancement of the L-arginine-NO-cGMP pathway in platelets taken from chronic renal failure (CRF) patients on haemodialysis associated with reduced platelet aggregation. We investigate the platelet L-arginine-NO-cGMP pathway, platelet function, and inflammation from patients in CRF on conservative treatment. A total of 42 CRF patients and 42 controls (creatinine clearance = 27 ± 3 vs. 93 ± 1 mL per min per 1.73 m2, respectively) participated in this study. NOS activity and expression and cGMP concentration were measured in platelets. Platelet aggregation induced by collagen or ADP was evaluated and plasma levels of fibrinogen were determined by the Clauss method. A marked increase in basal NOS activity was seen in undialysed CRF patients compared with controls, accompanied by an elevation of fibrinogen plasma levels. There were no differences in expression of NOS and in cGMP levels. In this context, platelet aggregation was not affected. We provide the first evidence of increased intraplatelet NO biosynthesis in undialysed CRF patients, which can be an early marker of future haemostatic abnormalities during dialysis treatment.

  7. Effects of grazing management treatment on grassland plant communities and prairie grouse habitat

    Treesearch

    Llewellyn L. Manske; William T. Barker; Mario E. Biondini

    1988-01-01

    Seasonlong grazing treatments show no benefit to grass basal cover and visual obstruction is not adequate. Pastures with one grazing period in mid season show no positive change in grass basal cover but have better visual obstruction than seasonlong. Deferred grazing decreases basal cover of warm season grasses and visual obstruction reduced to inadequate levels the...

  8. Stress-induced Cdk5 activity enhances cytoprotective basal autophagy in Drosophila melanogaster by phosphorylating acinus at serine437.

    PubMed

    Nandi, Nilay; Tyra, Lauren K; Stenesen, Drew; Krämer, Helmut

    2017-12-11

    Cdk5 is a post-mitotic kinase with complex roles in maintaining neuronal health. The various mechanisms by which Cdk5 inhibits and promotes neurodegeneration are still poorly understood. Here, we show that in Drosophila melanogaster Cdk5 regulates basal autophagy, a key mechanism suppressing neurodegeneration. In a targeted screen, Cdk5 genetically interacted with Acinus (Acn), a primarily nuclear protein, which promotes starvation-independent, basal autophagy. Loss of Cdk5, or its required cofactor p35, reduces S437-Acn phosphorylation, whereas Cdk5 gain-of-function increases pS437-Acn levels. The phospho-mimetic S437D mutation stabilizes Acn and promotes basal autophagy. In p35 mutants, basal autophagy and lifespan are reduced, but restored to near wild-type levels in the presence of stabilized Acn S437D . Expression of aggregation-prone polyQ-containing proteins or the Amyloid-β42 peptide, but not alpha-Synuclein, enhances Cdk5-dependent phosphorylation of S437-Acn. Our data indicate that Cdk5 is required to maintain the protective role of basal autophagy in the initial responses to a subset of neurodegenerative challenges.

  9. Complex Dynamics in the Basal Ganglia: Health and Disease Beyond the Motor System.

    PubMed

    Andres, Daniela S; Darbin, Olivier

    2018-01-01

    The rate and oscillatory hypotheses are the two main current frameworks of basal ganglia pathophysiology. Both hypotheses have emerged from research on movement disorders sharing similar conceptualizations. These pathological conditions are classified either as hypokinetic or hyperkinetic, and the electrophysiological hallmarks of basal ganglia dysfunction are categorized as prokinetic or antikinetic. Although nonmotor symptoms, including neurobehavioral symptoms, are a key manifestation of basal ganglia dysfunction, they are uncommonly accounted for in these models. In patients with Parkinson's disease, the broad spectrum of motor symptoms and neurobehavioral symptoms challenges the concept that basal ganglia disorders can be classified into two categories. The profile of symptoms of basal ganglia dysfunction is best characterized by a breakdown of information processing, accompanied at an electrophysiological level by complex alterations of spiking activity from basal ganglia neurons. The authors argue that the dynamics of the basal ganglia circuit cannot be fully characterized by linear properties such as the firing rate or oscillatory activity. In fact, the neuronal spiking stream of the basal ganglia circuit is irregular but has temporal structure. In this context, entropy was introduced as a measure of probabilistic irregularity in the temporal organization of neuronal activity of the basal ganglia, giving place to the entropy hypothesis of basal ganglia pathology. Obtaining a quantitative characterization of irregularity of spike trains from basal ganglia neurons is key to elaborating a new framework of basal ganglia pathophysiology.

  10. Differential effects of dopamine and opioid receptor blockade on motivated Coca-Cola drinking behavior and associated changes in brain, skin and muscle temperatures

    PubMed Central

    Kiyatkin, Eugene A.

    2010-01-01

    Although pharmacological blockade of both dopamine (DA) and opiate receptors has an inhibiting effect on appetitive motivated behaviors, it is still unclear which physiological mechanisms affected by these treatments underlie the behavioral deficit. To clarify this issue, we examined how pharmacological blockade of either DA (SCH23390 + eticlopride at 0.2 mg/kg each) or opioid receptors (naloxone 1 mg/kg) affects motor activity and temperature fluctuations in the nucleus acumens (NAcc), temporal muscle, and facial skin associated with motivated Coca-Cola drinking behavior in rats. In drug-free conditions, presentation of a cup containing 5 ml of Coca-Cola induced locomotor activation and rapid NAcc temperature increases, which both transiently decreased during drinking, and phasically increased again after the cup was emptied. Muscle temperatures followed this pattern, but increases were weaker and more delayed than those in the NAcc. Skin temperature rapidly dropped after cup presentation, remained at low levels during consumption, and slowly restored during post-consumption behavioral activation. By itself, DA receptor blockade induced robust decrease in spontaneous locomotion, moderate increases in brain and muscle temperatures, and a relative increase in skin temperatures, suggesting metabolic activation coupled with adynamia. Following this treatment (∼180 min), motor activation to cup presentation and Coca-Cola consumption were absent, but rats showed NAcc and muscle temperature increases following cup presentation comparable to control. Therefore, DA receptor blockade does not affect significantly central and peripheral autonomic responses to appetitive stimuli, but eliminates their behavior-activating effects, thus disrupting appetitive behavior and blocking consumption. Naloxone alone slightly decreased brain and muscle temperatures and increased skin temperatures, pointing at the enhanced heat loss and possible minor inhibition of basal metabolic activity. This treatment (∼60 min) had minimal effects on the latencies of drinking, but increased its total duration, with licking interrupted by pauses and retreats. This behavioral attenuation was coupled with weaker than in control locomotor activation and diminished temperature fluctuations in each recording location. Therefore, attenuation of normal behavioral and physiological responses to appetitive stimuli appears to underlie modest inhibiting effects of opiate receptor blockade on motivated behavior and consumption. PMID:20167257

  11. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium. PMID:21572528

  12. Striatal dopamine neurotransmission: regulation of release and uptake

    PubMed Central

    Sulzer, David; Cragg, Stephanie J.; Rice, Margaret E.

    2016-01-01

    Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients. PMID:27141430

  13. Identification of the G protein-coupled estrogen receptor (GPER) in human prostate: expression site of the estrogen receptor in the benign and neoplastic gland.

    PubMed

    Rago, V; Romeo, F; Giordano, F; Ferraro, A; Carpino, A

    2016-01-01

    Estrogens are involved in growth, differentiation and pathogenesis of human prostate through the mediation of the classical estrogen receptors ERα and ERβ. The G protein-coupled estrogen receptor (GPER) is a 'novel' mediator of estrogen signaling which has been recently recognized in some human reproductive tissues, but its expression in the prostate gland is still unknown. Here, we investigated GPER in benign (from 5 patients) and neoplastic prostatic tissues (from 50 patients) by immunohistochemical analysis and Western blotting. Normal areas of benign prostates revealed a strong GPER immunoreactivity in the basal epithelial cells while luminal epithelial cells were unreactive and stromal cells were weakly immunostained. GPER was also immunolocalized in adenocarcinoma samples but the immunoreactivity of tumoral areas decreased from Gleason pattern 2 to Gleason pattern 4. Furthermore, a strong GPER immunostaining was also revealed in cells of pre-neoplastic lesions (high-grade prostatic intra-epithelial neoplasia). Western blot analysis of benign and tumor protein extracts showed the presence of a ~42 kDa band, consistent with the GPER molecular weight. An increase in both pAkt and p cAMP-response-binding protein (pCREB) levels was also observed in poorly differentiated PCa samples. Finally, this work identified GPER in the epithelial basal cells of benign human prostate, with a different localization with respect to the classical estrogen receptors. Furthermore, the expression of GPER in prostatic adenocarcinoma cells was also observed but with a modulation of the immunoreactivity according to tumor cell arrangements. © 2015 American Society of Andrology and European Academy of Andrology.

  14. Estimating parameters for tree basal area growth with a system of equations and seemingly unrelated regressions

    Treesearch

    Charles E. Rose; Thomas B. Lynch

    2001-01-01

    A method was developed for estimating parameters in an individual tree basal area growth model using a system of equations based on dbh rank classes. The estimation method developed is a compromise between an individual tree and a stand level basal area growth model that accounts for the correlation between trees within a plot by using seemingly unrelated regression (...

  15. Relation of snowpack Accumulation to Red Pine Stocking

    Treesearch

    Edward A. Hansen

    1969-01-01

    A snow accumulation study was conducted in a 33-year-old red pine plantation thinned to different stocking levels. Snowpack water content increased an average of 2 percent for each 10 square feet of basal area reduction, within the range of 60 to 180 square feet of basal area. Reducing plantation stocking from 180 to 60 square feet of basal area per acre would result...

  16. Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2

    PubMed Central

    Lindroos, Robert; Dorst, Matthijs C.; Du, Kai; Filipović, Marko; Keller, Daniel; Ketzef, Maya; Kozlov, Alexander K.; Kumar, Arvind; Lindahl, Mikael; Nair, Anu G.; Pérez-Fernández, Juan; Grillner, Sten; Silberberg, Gilad; Hellgren Kotaleski, Jeanette

    2018-01-01

    The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors. The striatal microstructure is also divided into striosomes and matrix compartments, based on the differential expression of several proteins. Dopaminergic afferents from the midbrain and local cholinergic interneurons play crucial roles for basal ganglia function, and striatal signaling via the striosomes in turn regulates the midbrain dopaminergic system directly and via the lateral habenula. Consequently, abnormal functions of the basal ganglia neuromodulatory system underlie many neurological and psychiatric disorders. Neuromodulation acts on multiple structural levels, ranging from the subcellular level to behavior, both in health and disease. For example, neuromodulation affects membrane excitability and controls synaptic plasticity and thus learning in the basal ganglia. However, it is not clear on what time scales these different effects are implemented. Phosphorylation of ion channels and the resulting membrane effects are typically studied over minutes while it has been shown that neuromodulation can affect behavior within a few hundred milliseconds. So how do these seemingly contradictory effects fit together? Here we first briefly review neuromodulation of the basal ganglia, with a focus on dopamine. We furthermore use biophysically detailed multi-compartmental models to integrate experimental data regarding dopaminergic effects on individual membrane conductances with the aim to explain the resulting cellular level dopaminergic effects. In particular we predict dopaminergic effects on Kv4.2 in D1-MSNs. Finally, we also explore dynamical aspects of the onset of neuromodulation effects in multi-scale computational models combining biochemical signaling cascades and multi-compartmental neuron models. PMID:29467627

  17. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state

    PubMed Central

    Galvan, Adriana; Devergnas, Annaelle; Wichmann, Thomas

    2015-01-01

    In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials (LFPs), electroencephalograms (EEGs) or electrocorticograms (ECoGs). Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation (DBS) therapy. PMID:25698937

  18. Dynamic Assessment for 3- and 4-Year-Old Children Who Use Augmentative and Alternative Communication: Evaluating Expressive Syntax.

    PubMed

    Binger, Cathy; Kent-Walsh, Jennifer; King, Marika

    2017-07-12

    The developmental readiness to produce early sentences with an iPad communication application was assessed with ten 3- and 4-year-old children with severe speech disorders using graduated prompting dynamic assessment (DA) techniques. The participants' changes in performance within the DA sessions were evaluated, and DA performance was compared with performance during a subsequent intervention. Descriptive statistics were used to examine patterns of performance at various cueing levels and mean levels of cueing support. The Wilcoxon signed-ranks test was used to measure changes within the DA sessions. Correlational data were calculated to determine how well performance in DA predicted performance during a subsequent intervention. Participants produced targets successfully in DA at various cueing levels, with some targets requiring less cueing than others. Performance improved significantly within the DA sessions-that is, the level of cueing required for accurate productions of the targets decreased during DA sessions. Last, moderate correlations existed between DA scores and performance during the intervention for 3 out of 4 targets, with statistically significant findings for 2 of 4 targets. DA offers promise for examining the developmental readiness of young children who use augmentative and alternative communication to produce early expressive language structures.

  19. Dynamic Assessment for 3- and 4-Year-Old Children Who Use Augmentative and Alternative Communication: Evaluating Expressive Syntax

    PubMed Central

    Kent-Walsh, Jennifer; King, Marika

    2017-01-01

    Purpose The developmental readiness to produce early sentences with an iPad communication application was assessed with ten 3- and 4-year-old children with severe speech disorders using graduated prompting dynamic assessment (DA) techniques. The participants' changes in performance within the DA sessions were evaluated, and DA performance was compared with performance during a subsequent intervention. Method Descriptive statistics were used to examine patterns of performance at various cueing levels and mean levels of cueing support. The Wilcoxon signed-ranks test was used to measure changes within the DA sessions. Correlational data were calculated to determine how well performance in DA predicted performance during a subsequent intervention. Results Participants produced targets successfully in DA at various cueing levels, with some targets requiring less cueing than others. Performance improved significantly within the DA sessions—that is, the level of cueing required for accurate productions of the targets decreased during DA sessions. Last, moderate correlations existed between DA scores and performance during the intervention for 3 out of 4 targets, with statistically significant findings for 2 of 4 targets. Conclusion DA offers promise for examining the developmental readiness of young children who use augmentative and alternative communication to produce early expressive language structures. PMID:28614580

  20. Hypothalamic amenorrhea with normal body weight: ACTH, allopregnanolone and cortisol responses to corticotropin-releasing hormone test.

    PubMed

    Meczekalski, B; Tonetti, A; Monteleone, P; Bernardi, F; Luisi, S; Stomati, M; Luisi, M; Petraglia, F; Genazzani, A R

    2000-03-01

    Hypothalamic amenorrhea (HA) is a functional disorder caused by disturbances in gonadotropin-releasing hormone (GnRH) pulsatility. The mechanism by which stress alters GnRH release is not well known. Recently, the role of corticotropin-releasing hormone (CRH) and neurosteroids in the pathophysiology of HA has been considered. The aim of the present study was to explore further the role of the hypothalamic-pituitary-adrenal axis in HA. We included 8 patients (aged 23.16+/-1.72 years) suffering from hypothalamic stress-related amenorrhea with normal body weight and 8 age-matched healthy controls in the follicular phase of the menstrual cycle. We measured basal serum levels of FSH, LH, and estradiol and evaluated ACTH, allopregnanolone and cortisol responses to CRH test in both HA patients and healthy women. Serum basal levels of FSH, LH, and estradiol as well as basal levels of allopregnanolone were significantly lower in HA patients than in controls (P<0.001) while basal ACTH and cortisol levels were significantly higher in amenorrheic patients with respect to controls (P<0.001). The response (area under the curve) of ACTH, allopregnanolone and cortisol to CRH was significantly lower in amenorrheic women compared with controls (P<0.001, P<0.05, P<0.05 respectively). In conclusion, women with HA, despite the high ACTH and cortisol levels and, therefore, hypothalamus-pituitary-adrenal axis hyperactivity, are characterized by low allopregnanolone basal levels, deriving from an impairment of both adrenal and ovarian synthesis. The blunted ACTH, allopregnanolone and cortisol responses to CRH indicate that, in hypothalamic amenorrhea, there is a reduced sensitivity and expression of CRH receptor. These results open new perspectives on the role of neurosteroids in the pathogenesis of hypothalamic amenorrhea.

  1. An autocrine ATP release mechanism regulates basal ciliary activity in airway epithelium.

    PubMed

    Droguett, Karla; Rios, Mariana; Carreño, Daniela V; Navarrete, Camilo; Fuentes, Christian; Villalón, Manuel; Barrera, Nelson P

    2017-07-15

    Extracellular ATP, in association with [Ca 2+ ] i regulation, is required to maintain basal ciliary beat frequency. Increasing extracellular ATP levels increases ciliary beating in airway epithelial cells, maintaining a sustained response by inducing the release of additional ATP. Extracellular ATP levels in the millimolar range, previously associated with pathophysiological conditions of the airway epithelium, produce a transient arrest of ciliary activity. The regulation of ciliary beat frequency is dependent on ATP release by hemichannels (connexin/pannexin) and P2X receptor activation, the blockage of which may even stop ciliary movement. The force exerted by cilia, measured by atomic force microscopy, is reduced following extracellular ATP hydrolysis. This result complements the current understanding of the ciliary beating regulatory mechanism, with special relevance to inflammatory diseases of the airway epithelium that affect mucociliary clearance. Extracellular nucleotides, including ATP, are locally released by the airway epithelium and stimulate ciliary activity in a [Ca 2+ ] i -dependent manner after mechanical stimulation of ciliated cells. However, it is unclear whether the ATP released is involved in regulating basal ciliary activity and mediating changes in ciliary activity in response to chemical stimulation. In the present study, we evaluated ciliary beat frequency (CBF) and ciliary beating forces in primary cultures from mouse tracheal epithelium, using videomicroscopy and atomic force microscopy (AFM), respectively. Extracellular ATP levels and [Ca 2+ ] i were measured by luminometric and fluorimetric assays, respectively. Uptake of ethidium bromide was measured to evaluate hemichannel functionality. We show that hydrolysis of constitutive extracellular ATP levels with apyrase (50 U ml -1 ) reduced basal CBF by 45% and ciliary force by 67%. The apyrase effect on CBF was potentiated by carbenoxolone, a hemichannel inhibitor, and oxidized ATP, an antagonist used to block P2X7 receptors, which reduced basal CBF by 85%. Additionally, increasing extracellular ATP levels (0.1-100 μm) increased CBF, maintaining a sustained response that was suppressed in the presence of carbenoxolone. We also show that high levels of ATP (1 mm), associated with inflammatory conditions, lowered basal CBF by reducing [Ca 2+ ] i and hemichannel functionality. In summary, we provide evidence indicating that airway epithelium ATP release is the molecular autocrine mechanism regulating basal ciliary activity and is also the mediator of the ciliary response to chemical stimulation. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  2. Study of adrenal function in patients with tuberculosis.

    PubMed

    Sarin, Bipan Chander; Sibia, Keerat; Kukreja, Sahiba

    2018-07-01

    Although subclinical adrenal insufficiency has been documented in tuberculosis but it has been neglected in mainstream management of TB due to inconclusive data on its prevalence in TB. The fact that adrenal insufficiency may result not only in poor general condition of the patient but also sudden death due to adrenal crisis, makes it all the more important to address this issue seriously. In this non-randomized interventional study comprising of 100 cases of TB, our aim was to assess the adreno-cortical functions in patients with pulmonary TB (50 cases) and extra-pulmonary TB (50 cases) in an attempt to determine if there is any compromise of adrenal function. In this study, 100 cases of active TB were investigated for adrenal insufficiency by measuring morning fasting basal serum cortisol levels, followed by low dose ACTH stimulation test using 1μg synacthen (synthetic ACTH analog). The post-stimulation serum cortisol levels were estimated. Basal serum cortisol levels<220nmol/L or post-stimulation test serum cortisol level increment<200nmol/L or post-stimulation serum cortisol levels<500nmol/L were suggestive of adrenal insufficiency. Basal serum cortisol level was low in 16% cases and after low dose ACTH stimulation test, cortisol response was subnormal in 76% cases. Incidence of adrenal insufficiency in pulmonary TB (74%) and extra-pulmonary TB (78%) were comparable. The number of females having adrenal insufficiency in both the groups was higher than the males (67.3% males and 83.3% females) but the difference was statistically significant only in extra-pulmonary TB group (p=0.011). On analysing the data, the sensitivity of basal serum cortisol level estimation in diagnosing adrenal insufficiency was observed to be 21.05% and its specificity was 100%. Positive predictive value was 100% and negative predictive value was 28.57%. Diagnostic accuracy of basal serum cortisol level estimation was observed to be 40%. The incidence of subclinical adrenal insufficiency in TB cases attending chest department at a tertiary care hospital was significantly high but comparable in both pulmonary and extra-pulmonary type of TB. Females in general and particularly those with extra-pulmonary TB were observed to be at increased risk of adrenal insufficiency. The low dose ACTH stimulation test was able to identify cases with adrenal insufficiency which had normal basal serum cortisol levels. Screening all TB cases for adrenal insufficiency by measuring both morning basal serum cortisol levels and low dose ACTH stimulation test can help identify cases at risk of fatal adrenal crisis and institute timely management, thus improving disease prognosis. Copyright © 2017 Tuberculosis Association of India. Published by Elsevier B.V. All rights reserved.

  3. A Comparison of Difficulty Levels of Vocabulary in First Grade Basal Readers for Preschool Dual Language Learners and Monolingual English Learners

    ERIC Educational Resources Information Center

    Leung, Cynthia B.; Silverman, Rebecca; Nandakumar, Ratna; Qian, Xiaoyu; Hines, Sara

    2011-01-01

    The present study investigated preschoolers' knowledge of vocabulary that appears in first grade basal readers by applying Rasch modeling to data from a researcher-developed receptive picture vocabulary assessment administered to 238 children. Levels of word difficulty for dual language learners (DLLs) and monolingual English learners (MELs) were…

  4. Monoaminc and metabolite levels in the cerebrospinal fluid of hibernating and euthermic marmots.

    PubMed

    Reid; Kilduff; Romero; Florant; Dement; Heller

    1992-03-01

    Cerebrospinal fluid from yellow-bellied marmots, Marmota flaviventris, was analysed for monoamine and monoamine metabolite content during euthermia and deep hibernation. Dopamine (DA) levels were decreased, while DA metabolite levels, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), were dramatically increased in hibernating marmots. Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5HIAA) levels were also greatly enhanced during hibernation while norepinephrine (NE) levels were only moderately increased. These findings demonstrate that cerebrospinal monoamine levels are dynamically altered during hibernation, such that DA versus 5-HT and NE levels undergo opposite changes. Therefore, these data indicate that DA, 5-HT and NE neuronal systems are differentially altered during hibernation in mammals.

  5. Personalized intensification of insulin therapy in type 2 diabetes - does a basal-bolus regimen suit all patients?

    PubMed

    Giugliano, D; Sieradzki, J; Stefanski, A; Gentilella, R

    2016-08-01

    Many patients with type 2 diabetes mellitus (T2DM) require insulin therapy. If basal insulin fails to achieve glycemic control, insulin intensification is one possible treatment intensification strategy. We summarized clinical data from randomized clinical trials designed to compare the efficacy and safety of basal-bolus and premixed insulin intensification regimens. We defined a between-group difference of ≥0.3% in end-of-study glycated hemoglobin (HbA1c) as clinically meaningful. A PubMed database search supplemented by author-identified papers yielded 15 trials which met selection criteria: randomized design, patients with T2DM receiving basal-bolus (bolus injection ≤3 times/day) vs. premixed (≤3 injections/day) insulin regimens, primary/major endpoint(s) HbA1c- and/or hypoglycemia-related, and trial duration ≥12 weeks. Glycemic control improved with both basal-bolus and premixed insulin regimens with - in most cases - acceptable levels of weight gain and hypoglycemia. A clinically meaningful difference between regimens in glycemic control was recorded in only four comparisons, all of which favored basal-bolus therapy. The incidence of hypoglycemia was significantly different between regimens in only three comparisons, one of which favored premixed insulin and two basal-bolus therapy. Of the four trials that reported a significant difference between regimens in bodyweight change, two favored basal-bolus therapy and two favored premixed insulin. Thus, on a population level, neither basal-bolus therapy nor premixed insulin showed a consistent advantage in terms of glycemic control, hypoglycemic risk, or bodyweight gain. It is therefore recommended that clinicians should adopt an individualized approach to insulin intensification - taking into account the benefits and risks of each treatment approach and the attitude and preferences of each patient - in the knowledge that both basal-bolus and premixed regimens may be successful.

  6. Children's externalizing and internalizing symptoms over time: the role of individual differences in patterns of RSA responding.

    PubMed

    Hinnant, James Benjamin; El-Sheikh, Mona

    2009-11-01

    We examined associations between basal respiratory sinus arrhythmia (RSA) in conjunction with RSA regulation with the hypothesis that their interaction would explain unique variability in children's prospective adjustment 2 years later. Participants were 176 children (98 girls; 78 boys) in middle childhood. RSA regulation was assessed through social and problem-solving challenges. Parents reported on children's internalizing and externalizing symptoms. Interactions between RSA baseline and regulation to the social stressor predicted children's later internalizing symptoms. Interactions between RSA baseline and responding to the problem-solving stressor predicted children's externalizing symptoms. The highest levels of internalizing symptoms were predicted for children with both lower basal RSA and higher RSA suppression. The highest levels of externalizing symptoms were predicted for children who demonstrated lower basal RSA in conjunction with RSA augmentation. Findings highlight the importance of the contemporaneous consideration of basal RSA and RSA regulation in the prediction of developmental psychopathology symptomology.

  7. Detection of basal acetylcholine release in the microdialysis of rat frontal cortex by high-performance liquid chromatography using a horseradish peroxidase-osmium redox polymer electrode with pre-enzyme reactor.

    PubMed

    Kato, T; Liu, J K; Yamamoto, K; Osborne, P G; Niwa, O

    1996-06-28

    To determine the basal acetylcholine level in the dialysate of rat frontal cortex, a horseradish peroxidase-osmium redox polymer-modified glassy carbon electrode (HRP-GCE) was employed instead of the conventional platinum electrode used in high-performance liquid chromatography-electrochemical detection (HPLC-ED). In initial experiments, an oxidizable unknown compound interfered with the detection of basal acetylcholine release on HPLC-HRP-GCE. An immobilized peroxidase-choline oxidase precolumn (pre-reactor) was included in the HPLC system, to eliminate the interference from the unknown compound. This combination could detect less than 10 fmol of standard acetylcholine and basal acetylcholine levels in the dialysate from a conventional concentric design microdialysis probe, without the use of cholinesterase inhibitor, and may facilitate physiological investigation of cholinergic neuronal activity in the central nervous system.

  8. Effect of basal ganglia injury on central dopamine activity in Gulf War syndrome: correlation of proton magnetic resonance spectroscopy and plasma homovanillic acid levels.

    PubMed

    Haley, R W; Fleckenstein, J L; Marshall, W W; McDonald, G G; Kramer, G L; Petty, F

    2000-09-01

    Many complaints of Gulf War veterans are compatible with a neurologic illness involving the basal ganglia. In 12 veterans with Haley Gulf War syndrome 2 and in 15 healthy control veterans of similar age, sex, and educational level, we assessed functioning neuronal mass in both basal ganglia by measuring the ratio of N-acetyl-aspartate to creatine with proton magnetic resonance spectroscopy. Central dopamine activity was assessed by measuring the ratio of plasma homovanillic acid (HVA) and 3-methoxy-4-hydroxyphenlyglycol (MHPG). The logarithm of the age-standardized HVA/MHPG ratio was inversely associated with functioning neuronal mass in the left basal ganglia (R(2) = 0.56; F(1,27) = 33.82; P<.001) but not with that in the right (R(2) = 0. 04; F(1,26) = 1.09; P =.30). Controlling for age, renal clearances of creatinine and weak organic anions, handedness, and smoking did not substantially alter the associations. The reduction in functioning neuronal mass in the left basal ganglia of these veterans with Gulf War syndrome seems to have altered central dopamine production in a lateralized pattern. This finding supports the theory that Gulf War syndrome is a neurologic illness, in part related to injury to dopaminergic neurons in the basal ganglia.

  9. On the Origin of Tremor in Parkinson’s Disease

    PubMed Central

    Dovzhenok, Andrey; Rubchinsky, Leonid L.

    2012-01-01

    The exact origin of tremor in Parkinson’s disease remains unknown. We explain why the existing data converge on the basal ganglia-thalamo-cortical loop as a tremor generator and consider a conductance-based model of subthalamo-pallidal circuits embedded into a simplified representation of the basal ganglia-thalamo-cortical circuit to investigate the dynamics of this loop. We show how variation of the strength of dopamine-modulated connections in the basal ganglia-thalamo-cortical loop (representing the decreasing dopamine level in Parkinson’s disease) leads to the occurrence of tremor-like burst firing. These tremor-like oscillations are suppressed when the connections are modulated back to represent a higher dopamine level (as it would be the case in dopaminergic therapy), as well as when the basal ganglia-thalamo-cortical loop is broken (as would be the case for ablative anti-parkinsonian surgeries). Thus, the proposed model provides an explanation for the basal ganglia-thalamo-cortical loop mechanism of tremor generation. The strengthening of the loop leads to tremor oscillations, while the weakening or disconnection of the loop suppresses them. The loop origin of parkinsonian tremor also suggests that new tremor-suppression therapies may have anatomical targets in different cortical and subcortical areas as long as they are within the basal ganglia-thalamo-cortical loop. PMID:22848541

  10. External pancreatic secretion after bombesin infusion in man.

    PubMed

    Basso, N; Giri, S; Improta, G; Lezoche, E; Melchiorri, P; Percoco, M; Speranza, V

    1975-12-01

    The effect of bombesin on external pancreatic secretion was studied in seven healthy volunteers and intwo patients with a two-thirds gastrectomy and a pancreatic fistula. After bombesin infusion (15 ng/kg/min), gastrin levels were significantly raised in all volunteers, but remained at basal levels in the gastrectomized patients. Bombesin was effective in stimulating pancreatic secretion in all patients. The volume of secretion increased tow-fold when compared with basal volume. Amylase and trypsin concentrations and outputs in the duodenal juice were greatly agumented (amylase concentration: basal, 70 dye U/ml; post-bombesin, 620 dye U/ml. Amylase output: basal, 1000 dye U/15 min; post-bombesin, 15,800 dye U/15 min). Secretin, when administered in conjunction with bombesin, partially inhibited its secretory effect. Bicarbonate secretion was slightly stimulated by bombesin, but at a very low level. A similar pattern of results was obtained in the two gastrectomized patients. In man, bombesin exerts an effect on pancreatic secretion that mimics the effect of CCK-PZ, thus confirming the results obtained in the experimental animal. Gastrin does not play a fundamental role in this phenomenon.

  11. External pancreatic secretion after bombesin infusion in man.

    PubMed Central

    Basso, N; Giri, S; Improta, G; Lezoche, E; Melchiorri, P; Percoco, M; Speranza, V

    1975-01-01

    The effect of bombesin on external pancreatic secretion was studied in seven healthy volunteers and intwo patients with a two-thirds gastrectomy and a pancreatic fistula. After bombesin infusion (15 ng/kg/min), gastrin levels were significantly raised in all volunteers, but remained at basal levels in the gastrectomized patients. Bombesin was effective in stimulating pancreatic secretion in all patients. The volume of secretion increased tow-fold when compared with basal volume. Amylase and trypsin concentrations and outputs in the duodenal juice were greatly agumented (amylase concentration: basal, 70 dye U/ml; post-bombesin, 620 dye U/ml. Amylase output: basal, 1000 dye U/15 min; post-bombesin, 15,800 dye U/15 min). Secretin, when administered in conjunction with bombesin, partially inhibited its secretory effect. Bicarbonate secretion was slightly stimulated by bombesin, but at a very low level. A similar pattern of results was obtained in the two gastrectomized patients. In man, bombesin exerts an effect on pancreatic secretion that mimics the effect of CCK-PZ, thus confirming the results obtained in the experimental animal. Gastrin does not play a fundamental role in this phenomenon. PMID:1218823

  12. Correlation of catecholamine levels in the bed nucleus of the stria terminalis and reduced sexual behavior in middle-aged male rats.

    PubMed

    Chen, Joyce C; Tsai, Houng-Wei; Yeh, Kuei-Ying; Tai, Mei-Yun; Tsai, Yuan-Feen

    2008-07-01

    The correlation between dopamine (DA) and norepinephrine (NE) levels in the bed nucleus of the stria terminalis (BNST) and male sexual behavior was examined in middle-aged rats. Male rats (18-19 months) were divided into: (a) Group MIE, consisting of rats showing mounts, intromissions, and ejaculations; (b) Group MI, composed of rats showing mounts and intromissions, but no ejaculation; and (c) Group NC, consisting of noncopulators. Young adult rats (4-5 months) displaying complete copulatory behavior were used as the control. Tissue levels of DA, NE, and DA metabolites in the BNST were measured by high-pressure liquid chromatography. DA, but not NE, levels in MIE rats were significantly lower than those in young controls. DA and NE levels in MIE rats were significantly higher than those in NC rats. These results suggest that DA and NE in the BNST might play an important role in the control of male sexual behavior in middle-aged rats.

  13. Parkinson's disease as a system-level disorder.

    PubMed

    Caligiore, Daniele; Helmich, Rick C; Hallett, Mark; Moustafa, Ahmed A; Timmermann, Lars; Toni, Ivan; Baldassarre, Gianluca

    2016-01-01

    Traditionally, the basal ganglia have been considered the main brain region implicated in Parkinson's disease. This single area perspective gives a restricted clinical picture and limits therapeutic approaches because it ignores the influence of altered interactions between the basal ganglia and other cerebral components on Parkinsonian symptoms. In particular, the basal ganglia work closely in concert with cortex and cerebellum to support motor and cognitive functions. This article proposes a theoretical framework for understanding Parkinson's disease as caused by the dysfunction of the entire basal ganglia-cortex-cerebellum system rather than by the basal ganglia in isolation. In particular, building on recent evidence, we propose that the three key symptoms of tremor, freezing, and impairments in action sequencing may be explained by considering partially overlapping neural circuits including basal ganglia, cortical and cerebellar areas. Studying the involvement of this system in Parkinson's disease is a crucial step for devising innovative therapeutic approaches targeting it rather than only the basal ganglia. Possible future therapies based on this different view of the disease are discussed.

  14. Effect of dietary vitamin C on the growth performance and innate immunity of juvenile cobia (Rachycentron canadum).

    PubMed

    Zhou, Qicun; Wang, Ligai; Wang, Hualang; Xie, Fengjun; Wang, Tuo

    2012-06-01

    This study was conducted to evaluate the effects of dietary vitamin C on growth performance, hematologic parameters and innate immune responses in juvenile cobia, Rachycentron canadum. Seven practical diets were formulated to contain 0.0 (as the basal diet), 13.6, 27.2, 54.4, 96.6, 193.4 and 386.5 mg ascorbic acid equivalent kg(-1) diet. Each diet was fed to triplicate groups of juvenile cobia with initial body weight of 5.5 g in 500-L cylindrical fiberglass tank. The results of 8 weeks feeding trial showed that typical vitamin C-deficient signs such as spinal deformation and body nigrescence were observed in the fish fed the basal diet. Fish fed the basal diet had significantly lower weight gain, specific growth rate (SGR), protein efficiency ratio (PER) and feed efficiency (FE) than those fed the diets supplemented with vitamin C, but no significant differences were observed among diets supplemented with vitamin C. However, survival rate was significantly affected by the dietary vitamin C levels, fish fed the basal diet had lower survival rate than those fed the diets supplemented with vitamin C. The ascorbic acid concentration in liver was correlated positively with the dietary vitamin C levels, however, the thiobarbituric acid reactive substances (TBARS) concentrations in liver was not significantly affected by the dietary vitamin C levels, although, fish fed the basal diet had the highest TBARS values among all treatments. The activities of serum lysozyme, superoxide dismutase (SOD), alkaline phophatase (AKP) and total immunoglobulin (Ig) were significantly influenced by the dietary vitamin C levels, fish fed the basal diet had lower lysozyme, SOD, AKP and total Ig than those fed diets supplemented with vitamin C. The serum glucose and triglyceride concentrations were significantly affected by the dietary vitamin C levels. Fish fed the basal diet had lower red blood cell and hemoglobin values than those fed the vitamin C supplemented diets. The challenge experiment with Vibrio harveyi showed that lower cumulative survival was in fish fed the unsupplemented diet, the cumulative survival were significantly increased with increase of the dietary ascorbic acid levels from 13.6 to 96.6 mg kg(-1), while the cumulative survival reached plateau when dietary ascorbic acid levels increased from 96.6 to 386.5 mg kg(-1). These results indicated that dietary vitamin C did significantly influence on growth performance and immune response of juvenile cobia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. [Walking abnormalities in children].

    PubMed

    Segawa, Masaya

    2010-11-01

    Walking is a spontaneous movement termed locomotion that is promoted by activation of antigravity muscles by serotonergic (5HT) neurons. Development of antigravity activity follows 3 developmental epochs of the sleep-wake (S-W) cycle and is modulated by particular 5HT neurons in each epoch. Activation of antigravity activities occurs in the first epoch (around the age of 3 to 4 months) as restriction of atonia in rapid eye movement (REM) stage and development of circadian S-W cycle. These activities strengthen in the second epoch, with modulation of day-time sleep and induction of crawling around the age of 8 months and induction of walking by 1 year. Around the age of 1 year 6 months, absence of guarded walking and interlimb cordination is observed along with modulation of day-time sleep to once in the afternoon. Bipedal walking in upright position occurs in the third epoch, with development of a biphasic S-W cycle by the age of 4-5 years. Patients with infantile autism (IA), Rett syndrome (RTT), or Tourette syndrome (TS) show failure in the development of the first, second, or third epoch, respectively. Patients with IA fail to develop interlimb coordination; those with RTT, crawling and walking; and those with TS, walking in upright posture. Basic pathophysiology underlying these condition is failure in restricting atonia in REM stage; this induces dysfunction of the pedunculopontine nucleus and consequently dys- or hypofunction of the dopamine (DA) neurons. DA hypofunction in the developing brain, associated with compensatory upward regulation of the DA receptors causes psychobehavioral disorders in infancy (IA), failure in synaptogenesis in the frontal cortex and functional development of the motor and associate cortexes in late infancy through the basal ganglia (RTT), and failure in functional development of the prefrontal cortex through the basal ganglia (TS). Further, locomotion failure in early childhood causes failure in development of functional specialization of the cortex through the spinal stepping generator-fastigial nucleus-thalamus-cortex pathway. Early detection of locomotion failure and early adjustment of this condition through environmental factors can prevent the development of higher cortical dysfunction.

  16. The Orosirian-Statherian banded iron formation-bearing sequences of the southern border of the Espinhaço Range, Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Rolim, Vassily Khoury; Rosière, Carlos A.; Santos, João Orestes Schneider; McNaughton, Neal J.

    2016-01-01

    The Serra da Serpentina and the Serra de São José groups are two distinct banded iron formation-bearing metasedimentary sequences along the eastern border of the southern Espinhaço Range that were deposited on the boundary between the Orosirian and Statherian periods. The Serra da Serpentina Group (SSG) has an Orosirian maximum depositional age (youngest detrital zircon grain age = 1990 ± 16 Ma) and consists of fine clastic metasediments at the base and chemical sediments, including banded iron formations (BIFs), on the top, corresponding to the Meloso and Serra do Sapo formations, respectively, and correlating with the pre-Espinhaço Costa Sena Group. The SSG represents sedimentary deposition on an epicontinental-epeiric, slow downwarping sag basin with little tectonic activity. The younger Serra de São José Group (SJG) is separated from the older SSG by an erosional unconformity and was deposited in a tectonically active continental rift-basin in the early stages of the opening of the Espinhaço Trough. The Serra do São José sediments stretch along the north-south axis of the rift and comprise a complete cycle of transgressive sedimentary deposits, which were subdivided, from base to top, into the Lapão, Itapanhoacanga, Jacém and Canjica formations. The Itapanhoacanga Formation has a maximum depositional age of 1666 ± 32 Ma (Statherian), which coincides with the maximum depositional age (i.e., 1683 ± 11 Ma) of the São João da Chapada Formation, one of the Espinhaço Supergroup's basal units. The Serra de São José Rift and the Espinhaço Rift likely represent the same system, with basal units that are facies variations of the same sequence. The supracrustal rocks have undergone two stages of deformation during the west-verging Brasiliano orogeny that affected the eastern margin of the São Francisco Craton and generated a regional-scale, foreland N-S trending fold-thrust belt, which partially involved the crystalline basement. Thrust faults have segmented the terrain into a large number of tectonic blocks, where the stratigraphic sequence was nevertheless well preserved.

  17. Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome

    PubMed Central

    Arbib, Michael A.; Baldassarre, Gianluca

    2017-01-01

    Motor tics are a cardinal feature of Tourette syndrome and are traditionally associated with an excess of striatal dopamine in the basal ganglia. Recent evidence increasingly supports a more articulated view where cerebellum and cortex, working closely in concert with basal ganglia, are also involved in tic production. Building on such evidence, this article proposes a computational model of the basal ganglia-cerebellar-thalamo-cortical system to study how motor tics are generated in Tourette syndrome. In particular, the model: (i) reproduces the main results of recent experiments about the involvement of the basal ganglia-cerebellar-thalamo-cortical system in tic generation; (ii) suggests an explanation of the system-level mechanisms underlying motor tic production: in this respect, the model predicts that the interplay between dopaminergic signal and cortical activity contributes to triggering the tic event and that the recently discovered basal ganglia-cerebellar anatomical pathway may support the involvement of the cerebellum in tic production; (iii) furnishes predictions on the amount of tics generated when striatal dopamine increases and when the cortex is externally stimulated. These predictions could be important in identifying new brain target areas for future therapies. Finally, the model represents the first computational attempt to study the role of the recently discovered basal ganglia-cerebellar anatomical links. Studying this non-cortex-mediated basal ganglia-cerebellar interaction could radically change our perspective about how these areas interact with each other and with the cortex. Overall, the model also shows the utility of casting Tourette syndrome within a system-level perspective rather than viewing it as related to the dysfunction of a single brain area. PMID:28358814

  18. Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome.

    PubMed

    Caligiore, Daniele; Mannella, Francesco; Arbib, Michael A; Baldassarre, Gianluca

    2017-03-01

    Motor tics are a cardinal feature of Tourette syndrome and are traditionally associated with an excess of striatal dopamine in the basal ganglia. Recent evidence increasingly supports a more articulated view where cerebellum and cortex, working closely in concert with basal ganglia, are also involved in tic production. Building on such evidence, this article proposes a computational model of the basal ganglia-cerebellar-thalamo-cortical system to study how motor tics are generated in Tourette syndrome. In particular, the model: (i) reproduces the main results of recent experiments about the involvement of the basal ganglia-cerebellar-thalamo-cortical system in tic generation; (ii) suggests an explanation of the system-level mechanisms underlying motor tic production: in this respect, the model predicts that the interplay between dopaminergic signal and cortical activity contributes to triggering the tic event and that the recently discovered basal ganglia-cerebellar anatomical pathway may support the involvement of the cerebellum in tic production; (iii) furnishes predictions on the amount of tics generated when striatal dopamine increases and when the cortex is externally stimulated. These predictions could be important in identifying new brain target areas for future therapies. Finally, the model represents the first computational attempt to study the role of the recently discovered basal ganglia-cerebellar anatomical links. Studying this non-cortex-mediated basal ganglia-cerebellar interaction could radically change our perspective about how these areas interact with each other and with the cortex. Overall, the model also shows the utility of casting Tourette syndrome within a system-level perspective rather than viewing it as related to the dysfunction of a single brain area.

  19. K(+)- and temperature-evoked taurine efflux from hypothalamic astrocytes.

    PubMed

    Tigges, G A; Philibert, R A; Dutton, G R

    1990-10-30

    Hypothalamic astrocytes in culture released taurine, a suspected inhibitory amino acid neurotransmitter/neuromodulator/osmoregulator, in response to isoosmotically increasing extracellular K+ in a dose-dependent fashion. In the absence of added Ca2+, basal release levels rose to approach those obtained after exposure to 60 mM K+ in the presence of 2.5 mM Ca2+, and were only partially lowered by the addition of 10 mM Mg2+. Stimulation with K+ (60 mM) did not further increase taurine efflux above the high basal levels seen in the absence of Ca2+. Under standard conditions complete replacement of Na+ with choline Cl had little effect on basal taurine release, but reduced K(+)-evoked (60 mM) efflux by 60%. The temperature dependence of the basal levels of taurine released from hypothalamic astrocytes was similar to that seen for cultured cerebellar astrocytes and neurons over the range 5-50 degrees C. Taurine release increased from 5 to 15 degrees C, remained constant between 15 and 33 degrees C, decreased between 33 and 37 degrees C and increased thereafter. The infection point of increased basal taurine release seen around 37 degrees C (most prominent in astrocytes), may be of physiological significance. Results presented also show that the ion (Na+, Ca2+ and K+) sensitivities of taurine efflux for cultured hypothalamic astrocytes are similar to those previously reported for cultured astrocytes from the cerebellum.

  20. Basal and dynamic relationships between implicit power motivation and estradiol in women.

    PubMed

    Stanton, Steven J; Schultheiss, Oliver C

    2007-12-01

    This study investigated basal and reciprocal relationships between implicit power motivation (n Power), a preference for having impact and dominance over others, and both salivary estradiol and testosterone in women. 49 participants completed the Picture Story Exercise, a measure of n Power. During a laboratory contest, participants competed in pairs on a cognitive task and contest outcome (win vs. loss) was experimentally varied. Estradiol and testosterone levels were determined in saliva samples collected at baseline and several times post-contest, including 1 day post-contest. n Power was positively associated with basal estradiol concentrations. The positive correlation between n Power and basal estradiol was stronger in single women, women not taking oral contraceptives, or in women with low-CV estradiol samples than in the overall sample of women. Women's estradiol responses to a dominance contest were influenced by the interaction of n Power and contest outcome: estradiol increased in power-motivated winners but decreased in power-motivated losers. For power-motivated winners, elevated levels of estradiol were still present the day after the contest. Lastly, n Power and estradiol did not correlate with self-reported dominance and correlated negatively with self-reported aggression. Self-reported dominance and aggression did not predict estradiol changes as a function of contest outcome. Overall, n Power did not predict basal testosterone levels or testosterone changes as a function of dominance contest outcome.

  1. The effect of stress-inducible extracellular Hsp72 on human neutrophil chemotaxis: a role during acute intense exercise.

    PubMed

    Ortega, Eduardo; Hinchado, M D; Martín-Cordero, L; Asea, A

    2009-05-01

    We studied the physiological role of the 72 kDa extracellular heat shock protein (Hsp72, a stress-inducible protein) in modulating neutrophil chemotaxis during a single bout of intense exercise performed by sedentary women, together with various cell mechanisms potentially involved in the modulation. For each volunteer, we evaluated neutrophil chemotaxis and serum Hsp72 concentration before and immediately after a single bout of exercise (1 h on a cycle ergometer at 70% VO(2) max), and 24 h later. Both parameters were found to be stimulated by the exercise, and had returned to basal values 24 h later. In vitro, there was a dose-dependent increase in chemotaxis when neutrophils were incubated both with physiological Hsp72 concentrations and with a 100 x greater concentration. The chemotaxis was greater when the neutrophils were incubated with the post-exercise Hsp72 concentration than with the basal concentration, suggesting a physiological role for this protein in the context of the stimulation of neutrophil chemotaxis by intense exercise. The 100 x Hsp72 concentration stimulated chemotaxis even more strongly. In addition, Hsp72 was found to have chemoattractant and chemokinetic effects on the neutrophils at physiological concentrations, with these effects being significantly greater with the post-exercise than with the basal Hsp72 concentration. The Hsp72-induced stimulation of neutrophil chemotaxis disappeared when the toll-like receptor 2 (TLR-2) was blocked, and phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), and nuclear transcription factor kappa B (NF-kappaB) were also found to be involved in the signaling process. No changes were observed, however, in neutrophil intracellular calcium levels in response to Hsp72. In conclusion, physiological concentrations of the stress protein Hsp72 stimulate human neutrophil chemotaxis through TLR-2 with its cofactor CD14, involving ERK, NF-kappaB, and PI3K, but not iCa(2 + ), as intracellular messengers. In addition, Hsp72 seems to participate in the stimulation of chemotaxis induced by a single bout of intense exercise performed by sedentary women.

  2. Testosterone-induced increase of insulin-like growth factor I levels depends upon normal levels of growth hormone.

    PubMed

    Saggese, G; Cesaretti, G; Franchi, G; Startari, L

    1996-08-01

    Pubertal development is associated with a rise in plasma insulin-like growth factor I (IGF-I) levels that is related both to the increase in sex steroids and/or to the sex steroid-induced augmentation in endogenous growth hormone (GH) secretion. In order to investigate the relationship between IGF-I, GH and testosterone, we examined 42 male subjects with various clinical conditions (classical GH deficiency (CGHD, N = 5), non-classical GH deficiency (NCGHD, N = 7), short idiopathic stature (N = 6), nutritional obesity (N = 8), GH-treated CGHD (N = 4), GH-treated NCGHD (N = 5) and normal stature (N = 7)) in which , for evaluation of hypogonadism (i.e. the absence of one or both testes from the scrotal sac), human chorionic gonadotropin (hCG) tests were performed. We measured IGF-I, total and free testosterone and dehydroepiandrosterone sulfate (DHEAS) by radioimmunoassays before and 48 and 96 h after the start of the test. The values of IGF-I were lower (0.001 < p < 0.005) in CGHD and NCGHD than in the other groups. In comparison to basal levels, IGF-I values increased (0.005 < p < 0.05) both 48 and 96 h after the start of the hCG test in short idiopathic and normal stature children and in GH-treated subjects with NCGHD, but only 96 h in subjects with untreated NCGHD and GH-treated CGHD. No difference was demonstrated in basal values of total testosterone among any of the groups, while basal free testosterone levels were higher (0.001 < p < 0.05) in GH-treated subjects with NCGHD than in all the other groups except nutritional obesity; furthermore, free testosterone was higher (p < 0.05) in nutritional obesity than in CGHD. The values of total and free testosterone obtained both 48 and 96 h after the start of the hCG test were higher (0.001 < p < 0.05) than basal values in all groups. The DHEAS values did not show any significant change during the hCG test. Basal values were higher (0.01 < p < 0.05) in nutritional obesity than in the other groups. Considering all groups, chronological age, bone age and bone age/chronological age ratio were correlated with basal free testosterone, IGF-I and DHEAS levels (0.001 < p < 0.05), while basal free testosterone and IGF-I values were correlated with DHEAS levels (p < 0.005 and < 0.01, respectively). In conclusion, our study during the hCG test in boys with various clinical conditions demonstrated an increase in IGF-I concentrations only in those boys with sufficient GH secretion or GH replacement therapy. These findings indicate that both sex steroids and GH are necessary to allow for the pubertal increase in IGF-I levels.

  3. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress

    PubMed Central

    Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C.; van Wingen, Guido A.; Fernández, Guillén

    2016-01-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus–pituitary–adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. PMID:26668010

  4. Basal levels and GnRH-induced responses of peripheral testosterone and estrogen in Holstein bulls with poor semen quality.

    PubMed

    Devkota, Bhuminand; Takahashi, Ken-Ichi; Matsuzaki, Shigenori; Matsui, Motozumi; Miyamoto, Akio; Yamagishi, Norio; Osawa, Takeshi; Hashizume, Tsutomu; Izaike, Yoshiaki; Miyake, Yoh-Ichi

    2011-06-01

    The present study investigated the basal levels and GnRH-induced responses of peripheral testosterone and estrogen in Holstein bulls with poor semen quality. On the basis of semen parameters, bulls (n=5) having poor semen quality were selected as experimental bulls, and good semen quality bulls (n=4) were used as control bulls. Both groups were treated intramuscularly once with GnRH (250 µg of fertirelin acetate). Blood samples were collected at -1 day (d), -30 min and 0 h (treatment) followed by every 30 min for 5 h and 1, 3 and 5 d post-GnRH treatment (PGT), and LH, testosterone and estradiol-17β (E(2)) concentrations were measured. The pretreatment concentrations were used as basal levels. The percentage increments based on the 0-h levels were calculated per bull for each sampling time until 5 h PGT, and differences were compared between the experimental and control groups. The PGT concentrations of testosterone and basal and PGT concentrations of E(2) were significantly lower in the experimental group. The testosterone increment in the experimental group was delayed and significantly lower from 1 to 5 h PGT than those in the control group. It can be suggested that bulls with poor semen quality have delayed and lower GnRH-induced testosterone response and may also have lower estrogen levels.

  5. Histamine and thrombin modulate endothelial focal adhesion through centripetal and centrifugal forces.

    PubMed Central

    Moy, A B; Van Engelenhoven, J; Bodmer, J; Kamath, J; Keese, C; Giaever, I; Shasby, S; Shasby, D M

    1996-01-01

    We examined the contribution of actin-myosin contraction to the modulation of human umbilical vein endothelial cell focal adhesion caused by histamine and thrombin. Focal adhesion was measured as the electrical resistance across a cultured monolayer grown on a microelectrode. Actin-myosin contraction was measured as isometric tension of cultured monolayers grown on a collagen gel. Histamine immediately decreased electrical resistance but returned to basal levels within 3-5 min. Histamine did not increase isometric tension. Thrombin also immediately decreased electrical resistance, but, however, resistance did not return to basal levels for 40-60 min. Thrombin also increased isometric tension, ML-7, an inhibitor of myosin light chain kinase, prevented increases in myosin light chain phosphorylation and increases in tension development in cells exposed to thrombin. ML-7 did not prevent a decline in electrical resistance in cells exposed to thrombin. Instead, ML-7 restored the electrical resistance to basal levels in a shorter period of time (20 min) than cells exposed to thrombin alone. Also, histamine subsequently increased electrical resistance to above basal levels, and thrombin initiated an increase in resistance during the time of peak tension development. Hence, histamine and thrombin modulate endothelial cell focal adhesion through centripetal and centrifugal forces. PMID:8613524

  6. Histological distribution of FR-1, a cyclic RGDS-peptide, binding sites during early embryogenesis, and isolation and initial characterization of FR-1 receptor in the sand dollar embryo.

    PubMed

    Katow, H; Yamamoto, Y; Sofuku, S

    1997-04-01

    A fibronectin-related synthetic cyclic H-Cys-Arg-Gly-Asp-Ser-Pro-Ala-Ser-Ser-Cys-OH (RGDSPASS) peptide (FR-1) binding site in the embryo of the sand dollar Clypeaster japonicus was specified using dansyl-labeled FR-1 (Dns-FR-1) and horseradish peroxidase-labeled FR-1, and an FR-1 receptor was isolated using FR-1-affinity column chromatography. The FR-1 introduced to the blastocoel of blastulae inhibited primary mesenchyme cell (PMC) migration in mesenchyme blastulae, and complete gastrulation and spicule differentiation in gastrulae. The Dns-FR-1 bound to the entire basal side of the ectoderm in mesenchyme blastulae, and then restricted to the basal side of the ectoderm at the apical tuft region and the vegetal hemisphere in early gastrulae. The cytoplasm of the archenteron also bound to Dns-FR-1. In PMC, Dns-FR-1 bound to the nucleus and cytoplasmic reticular features. In unfertilized eggs, Dns-FR-1 bound to the entire cytoplasm, particularly to the oval-shaped granules and the nuclear envelope, but only to the cytoplasm after fertilization. Relative molecular mass (Mr) of the FR-1-binding protein was 240 kDa under non-reducing conditions and 57 kDa under reducing conditions. The FR-1 receptor protein bound anti-sea urchin integrin (Spl) betaL subunit antibodies raised against the embryos of Strongylocentrotus purpuratus. Immunohistochemistry showed that the antibody binding site was similar to the histochemical distribution of Dns-FR-1. However, Mr of the FR-1 receptor is distinctively larger than that of the Spl betaL subunit.

  7. Selected Gray Matter Volumes and Gender but Not Basal Ganglia nor Cerebellum Gyri Discriminate Left Versus Right Cerebral Hemispheres: Multivariate Analyses in human Brains at 3T.

    PubMed

    Roldan-Valadez, Ernesto; Suarez-May, Marcela A; Favila, Rafael; Aguilar-Castañeda, Erika; Rios, Camilo

    2015-07-01

    Interest in the lateralization of the human brain is evident through a multidisciplinary number of scientific studies. Understanding volumetric brain asymmetries allows the distinction between normal development stages and behavior, as well as brain diseases. We aimed to evaluate volumetric asymmetries in order to select the best gyri able to classify right- versus left cerebral hemispheres. A cross-sectional study performed in 47 right-handed young-adults healthy volunteers. SPM-based software performed brain segmentation, automatic labeling and volumetric analyses for 54 regions involving the cerebral lobes, basal ganglia and cerebellum from each cerebral hemisphere. Multivariate discriminant analysis (DA) allowed the assembling of a predictive model. DA revealed one discriminant function that significantly differentiated left vs. right cerebral hemispheres: Wilks' λ = 0.008, χ(2) (9) = 238.837, P < 0.001. The model explained 99.20% of the variation in the grouping variable and depicted an overall predictive accuracy of 98.8%. With the influence of gender; the selected gyri able to discriminate between hemispheres were middle orbital frontal gyrus (g.), angular g., supramarginal g., middle cingulum g., inferior orbital frontal g., calcarine g., inferior parietal lobule and the pars triangularis inferior frontal g. Specific brain gyri are able to accurately classify left vs. right cerebral hemispheres by using a multivariate approach; the selected regions correspond to key brain areas involved in attention, internal thought, vision and language; our findings favored the concept that lateralization has been evolutionary favored by mental processes increasing cognitive efficiency and brain capacity. © 2015 Wiley Periodicals, Inc.

  8. Molecular model of the mitochondrial genome segregation machinery in Trypanosoma brucei

    PubMed Central

    Hoffmann, Anneliese; Käser, Sandro; Jakob, Martin; Amodeo, Simona; Peitsch, Camille; Týč, Jiří; Vaughan, Sue; Schneider, André

    2018-01-01

    In almost all eukaryotes, mitochondria maintain their own genome. Despite the discovery more than 50 y ago, still very little is known about how the genome is correctly segregated during cell division. The protozoan parasite Trypanosoma brucei contains a single mitochondrion with a singular genome, the kinetoplast DNA (kDNA). Electron microscopy studies revealed the tripartite attachment complex (TAC) to physically connect the kDNA to the basal body of the flagellum and to ensure correct segregation of the mitochondrial genome via the basal bodies movement, during the cell cycle. Using superresolution microscopy, we precisely localize each of the currently known TAC components. We demonstrate that the TAC is assembled in a hierarchical order from the base of the flagellum toward the mitochondrial genome and that the assembly is not dependent on the kDNA itself. Based on the biochemical analysis, the TAC consists of several nonoverlapping subcomplexes, suggesting an overall size of the TAC exceeding 2.8 mDa. We furthermore demonstrate that the TAC is required for correct mitochondrial organelle positioning but not for organelle biogenesis or segregation. PMID:29434039

  9. Children's Literature in the Basals.

    ERIC Educational Resources Information Center

    O'Brien, Maureen A.

    Three basal reading series, levels kindergarten through grade three, were studied to categorize the types of literature each contained. The following series were analyzed: "The Headway Program" (Open Court Publishing Company), "Series r Macmillan Reading," and "Basics in Reading" (Scott, Foresman and Company). It was…

  10. Effect of acute hyperglycemia on basal and bombesin-stimulated pancreaticobiliary secretion in humans.

    PubMed

    Lam, W F; Masclee, A A; Muller, E S; Souverijn, J H; Lamers, C B

    1998-08-01

    This study was undertaken to investigate the effect of acute hyperglycemia on basal and bombesin-stimulated pancreaticobiliary secretion. Seven healthy subjects participated in two experiments performed in random order during normoglycemia and hyperglycemic clamping at 15 mM. Duodenal outputs of bilirubin, trypsin, amylase, and bicarbonate were measured by aspiration with a recovery marker under basal conditions for 60 min and during continuous infusion of bombesin (1 ng/kg x min) for 60 min. Plasma cholecystokinin (CCK) and pancreatic polypeptide (PP) levels were determined at regular intervals. Compared to normoglycemia, during hyperglycemia basal outputs of bilirubin (17 +/- 3 vs. 0.9 +/- 0.4 micromol/60 min), trypsin (24 +/- 4 vs. 4 +/- 1 U/60 min), amylase (12 +/- 1 vs. 3 +/- 1 kU/60 min), and bicarbonate (2.9 +/- 0.5 vs. 1.2 +/- 0.2 mmol/60 min) were significantly p < 0.05) reduced. Bombesin significantly (p < 0.05) increased pancreaticobiliary output during both normo- and hyperglycemia. During hyperglycemia bombesin-stimulated 60-min outputs of bilirubin, trypsin, amylase, and bicarbonate were not significantly different compared to those during normoglycemia. Basal and bombesin-stimulated plasma PP concentrations were significantly (p < 0.05) reduced during hyperglycemia, but plasma CCK levels were not significantly different. It is concluded that acute hyperglycemia reduces basal but does not affect bombesin-induced pancreaticobiliary secretion.

  11. The difficulty with correlations: Energy expenditure and brain mass in bats.

    PubMed

    McNab, Brian K; Köhler, Meike

    2017-10-01

    Brain mass has been suggested to determine a mammal's energy expenditure. This potential dependence is examined in 48 species of bats. A correlation between characters may be direct or derived from shared correlations with intervening factors without a direct interaction. Basal rate of metabolism in these bats increases with brain mass: large brains are more expensive than small brains, and both brain mass and basal rate increase with body mass. Basal rate and brain mass also correlate with food habits in bats. Mass-independent basal rate weakly correlates with mass-independent brain mass, the correlation only accounting for 12% of the variation in basal rate, which disappears when the combined effects of body mass and food habits are deleted. The correlation between basal rate and brain mass seen in this and other studies usually accounts for <10% of the variation in basal rate and often <4%, even when statistically significant, a minimalist explanation for the level the basal rate. This correlation probably reflects the intermediacy of secondary factors, as occurred with food habits in bats. Most biological correlations are complicated and must be examined in detail before assurance can be given as to their bases. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Manipulation of dopamine metabolism contributes to attenuating innate high locomotor activity in ICR mice.

    PubMed

    Yamaguchi, Takeshi; Nagasawa, Mao; Ikeda, Hiromi; Kodaira, Momoko; Minaminaka, Kimie; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2017-06-15

    Attention-deficit hyperactivity disorder (ADHD) is defined as attention deficiency, restlessness and distraction. The main characteristics of ADHD are hyperactivity, impulsiveness and carelessness. There is a possibility that these abnormal behaviors, in particular hyperactivity, are derived from abnormal dopamine (DA) neurotransmission. To elucidate the mechanism of high locomotor activity, the relationship between innate activity levels and brain monoamines and amino acids was investigated in this study. Differences in locomotor activity between ICR, C57BL/6J and CBA/N mice were determined using the open field test. Among the three strains, ICR mice showed the greatest amount of locomotor activity. The level of striatal and cerebellar DA was lower in ICR mice than in C57BL/6J mice, while the level of L-tyrosine (L-Tyr), a DA precursor, was higher in ICR mice. These results suggest that the metabolic conversion of L-Tyr to DA is lower in ICR mice than it is in C57BL/6J mice. Next, the effects of intraperitoneal injection of (6R)-5, 6, 7, 8-tetrahydro-l-biopterin dihydrochloride (BH 4 ) (a co-enzyme for tyrosine hydroxylase) and L-3,4-dihydroxyphenylalanine (L-DOPA) on DA metabolism and behavior in ICR mice were investigated. The DA level in the brain was increased by BH 4 administration, but the increased DA did not influence behavior. However, L-DOPA administration drastically lowered locomotor activity and increased DA concentration in several parts of the brain. The reduced locomotor activity may have been a consequence of the overproduction of DA. In conclusion, the high level of locomotor activity in ICR mice may be explained by a strain-specific DA metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Dopamine D2 receptor over-expression alters behavior and physiology in Drd2-EGFP mice

    PubMed Central

    Kramer, Paul F.; Christensen, Christine H.; Hazelwood, Lisa A.; Dobi, Alice; Bock, Roland; Sibley, David R.; Mateo, Yolanda; Alvarez, Veronica A.

    2011-01-01

    BAC transgenic mice expressing the fluorescent reporter protein EGFP under the control of the D1 and D2 dopamine receptor promoters (Drd1-EGFP and Drd2-EGFP) have been widely used to study striatal function and have contributed to our understanding of the physiological and pathological function of the basal ganglia. These tools were produced and promptly made available to address questions in a cell-specific manner that has transformed the way we frame hypotheses in neuroscience. However, these mice have not been fully characterized until now. We found that Drd2-EGFP mice display a ~40% increase in membrane expression of the dopamine D2 receptor (D2R) and a two-fold increase in D2R mRNA levels in the striatum when compared to wild-type and Drd1-EGFP mice D2R over-expression was accompanied by behavioral hypersensitivity to D2R-like agonists, as well as enhanced electrophysiological responses to D2R activation in midbrain dopaminergic neurons. DA transients evoked by stimulation in the nucleus accumbens showed slower clearance in Drd2-EGFP mice and cocaine actions on DA clearance were impaired in these mice. Thus, it was not surprising to find that Drd2-EGFP mice were hyperactive when exposed to a novel environment and locomotion was suppressed by acute cocaine administration. All together, this study demonstrates that Drd2-EGFP mice over-express D2R and have altered dopaminergic signaling that fundamentally differentiates them from wild-type and Drd1-EGFP mice. PMID:21209197

  14. Ca2+-regulated-cAMP/PKA signaling in cardiac pacemaker cells links ATP supply to demand.

    PubMed

    Yaniv, Yael; Juhaszova, Magdalena; Lyashkov, Alexey E; Spurgeon, Harold A; Sollott, Steven J; Lakatta, Edward G

    2011-11-01

    In sinoatrial node cells (SANC), Ca(2+) activates adenylate cyclase (AC) to generate a high basal level of cAMP-mediated/protein kinase A (PKA)-dependent phosphorylation of Ca(2+) cycling proteins. These result in spontaneous sarcoplasmic-reticulum (SR) generated rhythmic Ca(2+) oscillations during diastolic depolarization, that not only trigger the surface membrane to generate rhythmic action potentials (APs), but, in a feed-forward manner, also activate AC/PKA signaling. ATP is consumed to pump Ca(2+) to the SR, to produce cAMP, to support contraction and to maintain cell ionic homeostasis. Since feedback mechanisms link ATP-demand to ATP production, we hypothesized that (1) both basal ATP supply and demand in SANC would be Ca(2+)-cAMP/PKA dependent; and (2) due to its feed-forward nature, a decrease in flux through the Ca(2+)-cAMP/PKA signaling axis will reduce the basal ATP production rate. O(2) consumption in spontaneous beating SANC was comparable to ventricular myocytes (VM) stimulated at 3 Hz. Graded reduction of basal Ca(2+)-cAMP/PKA signaling to reduce ATP demand in rabbit SANC produced graded ATP depletion (r(2)=0.96), and reduced O(2) consumption and flavoprotein fluorescence. Neither inhibition of glycolysis, selectively blocking contraction nor specific inhibition of mitochondrial Ca(2+) flux reduced the ATP level. Feed-forward basal Ca(2+)-cAMP/PKA signaling both consumes ATP to drive spontaneous APs in SANC and is tightly linked to mitochondrial ATP production. Interfering with Ca(2+)-cAMP/PKA signaling not only slows the firing rate and reduces ATP consumption, but also appears to reduce ATP production so that ATP levels fall. This distinctly differs from VM, which lack this feed-forward basal cAMP/PKA signaling, and in which ATP level remains constant when the demand changes. Published by Elsevier Ltd.

  15. Development of insulin resistance and endothelin-1 levels in the Zucker fatty rat.

    PubMed

    Berthiaume, Nathalie; Mika, Amanda K; Zinker, Bradley A

    2003-07-01

    In order to determine the effects of increasing insulin resistance on endothelin-1 (ET-1) levels, Zucker lean and fatty rats were studied at basal and during a complete nutrient meal tolerance test (MTT) at 7, 12, and 15 weeks of age. The fatty rats were mildly hyperglycemic, severely hyperinsulinemic and glucose-intolerant at all ages versus lean animals and this progressed with age within groups, as previously published. Basal ET-1 levels, at 7 weeks, were significantly increased in fatty versus lean rats (3.2+/-0.5 v 2.0+/-0.3 pg/mL, respectively; P<.05); however, we did not observe any significant basal difference at 12 or 15 weeks. At 7 weeks, ET-1 levels between fatty and lean rats were not different during the MTT (15 minutes: 2.9+/-0.4 v 2.7+/-0.7; 120 minutes: 6.5+/-0.8 v 6.6+/-0.5 pg/mL, fatty v lean, respectively). At 12 weeks, though there was no difference in basal levels, fatty rats had higher ET-1 levels during the MTT compared to lean animals (15 minutes: 6.9+/-1.4 v 1.8+/-0.4; 120 minutes: 9.4+/-1.7 v 3.2+/-0.5 pg/mL, respectively; P<.01). At 15 weeks, ET-1 levels during the MTT receded to levels similar to those observed at 7 weeks, which were significantly higher in fatty versus lean rats 15 minutes following the challenge (3.4+/-0.4 v 2.4+/-0.2 pg/mL, respectively; P<.05). In conclusion, ET-1 levels in the Zucker fatty rat: (1) were increased in the early stages of the progression of insulin resistance at 7 weeks, but were unchanged under basal conditions with age thereafter, and (2) were increased under nutrient challenge conditions with advanced insulin resistance up to 12 weeks, and were still significantly but to a lesser degree increased at 15 weeks of age. The explanation for these results and their relationship to the observed insulin resistance is unclear and will require further investigation.

  16. EBSD analysis of subgrain boundaries and dislocation slip systems in Antarctic and Greenland ice

    NASA Astrophysics Data System (ADS)

    Weikusat, Ilka; Kuiper, Ernst-Jan N.; Pennock, Gill M.; Kipfstuhl, Sepp; Drury, Martyn R.

    2017-09-01

    Ice has a very high plastic anisotropy with easy dislocation glide on basal planes, while glide on non-basal planes is much harder. Basal glide involves dislocations with the Burgers vector b = 〈a〉, while glide on non-basal planes can involve dislocations with b = 〈a〉, b = [c], and b = 〈c + a〉. During the natural ductile flow of polar ice sheets, most of the deformation is expected to occur by basal slip accommodated by other processes, including non-basal slip and grain boundary processes. However, the importance of different accommodating processes is controversial. The recent application of micro-diffraction analysis methods to ice, such as X-ray Laue diffraction and electron backscattered diffraction (EBSD), has demonstrated that subgrain boundaries indicative of non-basal slip are present in naturally deformed ice, although so far the available data sets are limited. In this study we present an analysis of a large number of subgrain boundaries in ice core samples from one depth level from two deep ice cores from Antarctica (EPICA-DML deep ice core at 656 m of depth) and Greenland (NEEM deep ice core at 719 m of depth). EBSD provides information for the characterization of subgrain boundary types and on the dislocations that are likely to be present along the boundary. EBSD analyses, in combination with light microscopy measurements, are presented and interpreted in terms of the dislocation slip systems. The most common subgrain boundaries are indicative of basal 〈a〉 slip with an almost equal occurrence of subgrain boundaries indicative of prism [c] or 〈c + a〉 slip on prism and/or pyramidal planes. A few subgrain boundaries are indicative of prism 〈a〉 slip or slip of 〈a〉 screw dislocations on the basal plane. In addition to these classical polygonization processes that involve the recovery of dislocations into boundaries, alternative mechanisms are discussed for the formation of subgrain boundaries that are not related to the crystallography of the host grain.The finding that subgrain boundaries indicative of non-basal slip are as frequent as those indicating basal slip is surprising. Our evidence of frequent non-basal slip in naturally deformed polar ice core samples has important implications for discussions on ice about plasticity descriptions, rate-controlling processes which accommodate basal glide, and anisotropic ice flow descriptions of large ice masses with the wider perspective of sea level evolution.

  17. Heterogeneities in Axonal Structure and Transporter Distribution Lower Dopamine Reuptake Efficiency

    PubMed Central

    Block, Ethan R.; Bartol, Tom M.; Sorkin, Alexander

    2018-01-01

    Abstract Efficient clearance of dopamine (DA) from the synapse is key to regulating dopaminergic signaling. This role is fulfilled by DA transporters (DATs). Recent advances in the structural characterization of DAT from Drosophila (dDAT) and in high-resolution imaging of DA neurons and the distribution of DATs in living cells now permit us to gain a mechanistic understanding of DA reuptake events in silico. Using electron microscopy images and immunofluorescence of transgenic knock-in mouse brains that express hemagglutinin-tagged DAT in DA neurons, we reconstructed a realistic environment for MCell simulations of DA reuptake, wherein the identity, population and kinetics of homology-modeled human DAT (hDAT) substates were derived from molecular simulations. The complex morphology of axon terminals near active zones was observed to give rise to large variations in DA reuptake efficiency, and thereby in extracellular DA density. Comparison of the effect of different firing patterns showed that phasic firing would increase the probability of reaching local DA levels sufficiently high to activate low-affinity DA receptors, mainly owing to high DA levels transiently attained during the burst phase. The experimentally observed nonuniform surface distribution of DATs emerged as a major modulator of DA signaling: reuptake was slower, and the peaks/width of transient DA levels were sharper/wider under nonuniform distribution of DATs, compared with uniform. Overall, the study highlights the importance of accurate descriptions of extrasynaptic morphology, DAT distribution, and conformational kinetics for quantitative evaluation of dopaminergic transmission and for providing deeper understanding of the mechanisms that regulate DA transmission. PMID:29430519

  18. Preliminary characterization of IL32 in basal-like/triple negative compared to other types of breast cell lines and tissues

    PubMed Central

    2014-01-01

    Background Triple negative breast cancer (TNBC) and often basal-like cancers are defined as negative for estrogen receptor, progesterone receptor and Her2 gene expression. Over the past few years an incredible amount of data has been generated defining the molecular characteristics of both cancers. The aim of these studies is to better understand the cancers and identify genes and molecular pathways that might be useful as targeted therapies. In an attempt to contribute to the understanding of basal-like/TNBC, we examined the Gene Expression Omnibus (GEO) public datasets in search of genes that might define basal-like/TNBC. The Il32 gene was identified as a candidate. Findings Analysis of several GEO datasets showed differential expression of IL32 in patient samples previously designated as basal and/or TNBC compared to normal and luminal breast samples. As validation of the GEO results, RNA and protein expression levels were examined using MCF7 and MDA MB231 cell lines and tissue microarrays (TMAs). IL32 gene expression levels were higher in MDA MB231 compared to MCF7. Analysis of TMAs showed 42% of TNBC tissues and 25% of the non-TNBC were positive for IL32, while non-malignant patient samples and all but one hyperplastic tissue sample demonstrated lower levels of IL32 protein expression. Conclusion Data obtained from several publically available GEO datasets showed overexpression of IL32 gene in basal-like/TNBC samples compared to normal and luminal samples. In support of these data, analysis of TMA clinical samples demonstrated a particular pattern of IL32 differential expression. Considered together, these data suggest IL32 is a candidate suitable for further study. PMID:25100201

  19. Dopamine and noradrenaline efflux in the prefrontal cortex in the light and dark period: effects of novelty and handling and comparison to the nucleus accumbens.

    PubMed

    Feenstra, M G; Botterblom, M H; Mastenbroek, S

    2000-01-01

    We used on-line microdialysis measurements of dopamine and noradrenaline extracellular concentrations in the medial prefrontal cortex of awake, freely moving rats during the dark and the light period of the day to study whether (i) basal efflux would be higher in the active, dark period than in the inactive, light period; (ii) the activation induced by environmental stimuli would be dependent on these conditions. When determined one day after cannula placement, noradrenaline and dopamine levels were higher during the dark. Maximal relative increases induced by novelty and handling were 150% and 175-200%, respectively, and were very similar in the light and the dark, but the net increases were higher in the dark. Separate groups were tested one week after cannula placement to ensure recovery of possibly disturbed circadian rhythms. While basal levels in the dark were now approximately twice those in the light, the maximal relative and net increases after both novelty and handling were very similar. Basal levels of dopamine in the nucleus accumbens (one day after cannula placement) were not different in the light or dark, but were increased by novelty and handling to about 130% only in the light period, not in the dark. Thus, in the prefrontal cortex, dopamine strongly resembles noradrenaline, in that basal efflux was state dependent, whereas activation by stimuli was not. In the nucleus accumbens, basal dopamine efflux was not state dependent, but activation by stimuli was. These results suggest that there are differential effects of circadian phase on basal activity and responsiveness of the mesolimbic vs the mesocortical dopamine system.

  20. Carbohydrate-to-insulin ratio is estimated from 300-400 divided by total daily insulin dose in type 1 diabetes patients who use the insulin pump.

    PubMed

    Kuroda, Akio; Yasuda, Tetsuyuki; Takahara, Mitsuyoshi; Sakamoto, Fumie; Kasami, Ryuichi; Miyashita, Kazuyuki; Yoshida, Sumiko; Kondo, Eri; Aihara, Ken-ichi; Endo, Itsuro; Matsuoka, Taka-aki; Kaneto, Hideaki; Matsumoto, Toshio; Shimomura, Iichiro; Matsuhisa, Munehide

    2012-11-01

    To optimize insulin dose using insulin pump, basal and bolus insulin doses are widely calculated from total daily insulin dose (TDD). It is recommended that total daily basal insulin dose (TBD) is 50% of TDD and that the carbohydrate-to-insulin ratio (CIR) equals 500 divided by TDD. We recently reported that basal insulin requirement is approximately 30% of TDD. We therefore investigated CIR after adjustment of the proper basal insulin rate. Forty-five Japanese patients with type 1 diabetes were investigated during several weeks of hospitalization. The patients were served standard diabetes meals (25-30 kcal/kg of ideal body weight). Each meal omission was done to confirm basal insulin rate. Target blood glucose level was set at 100 and 150 mg/dL before and 2 h after each meal, respectively. After the basal insulin rate was fixed and target blood glucose levels were achieved, TBD, CIR, TDD, and their products were determined. Mean (±SD) blood glucose levels before and 2 h after meals were 121±47 and 150±61 mg/dL, respectively. TDD was 31.5±9.0 U, and TBD was 27.0±6.5% of TDD. CIR×TDD of breakfast was significantly lower than those of lunch and supper (288±73 vs. 408±92 and 387±83, respectively; P<0.01). CIR has diurnal variance and is estimated from the formula CIR=300/TDD at breakfast or CIR=400/TDD at lunch and supper in type 1 diabetes patients. These results indicate that the insulin dose has been underestimated by using previously established calculations.

  1. RhoA/ROCK pathway is the major molecular determinant of basal tone in intact human internal anal sphincter.

    PubMed

    Rattan, Satish; Singh, Jagmohan

    2012-04-01

    The knowledge of molecular control mechanisms underlying the basal tone in the intact human internal anal sphincter (IAS) is critical for the pathophysiology and rational therapy for a number of debilitating rectoanal motility disorders. We determined the role of RhoA/ROCK and PKC pathways by comparing the effects of ROCK- and PKC-selective inhibitors Y 27632 and Gö 6850 (10(-8) to 10(-4) M), respectively, on the basal tone in the IAS vs. the rectal smooth muscle (RSM). Western blot studies were performed to determine the levels of RhoA/ROCK II, PKC-α, MYPT1, CPI-17, and MLC(20) in the unphosphorylated and phosphorylated forms, in the IAS vs. RSM. Confocal microscopic studies validated the membrane distribution of ROCK II. Finally, to confirm a direct relationship, we examined the enzymatic activities and changes in the basal IAS tone and p-MYPT1, p-CPI-17, and p-MLC(20), before and after Y 27632 and Gö 6850. Data show higher levels of RhoA/ROCK II and related downstream signal transduction proteins in the IAS vs. RSM. In addition, data show a significant correlation between the active RhoA/ROCK levels, ROCK enzymatic activity, downstream proteins, and basal IAS tone, before and after ROCK inhibitor. From these data we conclude 1) RhoA/ROCK and downstream signaling are constitutively active in the IAS, and this pathway (in contrast with PKC) is the critical determinant of the basal tone in intact human IAS; and 2) RhoA and ROCK are potential therapeutic targets for a number of rectoanal motility disorders for which currently there is no satisfactory treatment.

  2. RhoA/ROCK pathway is the major molecular determinant of basal tone in intact human internal anal sphincter

    PubMed Central

    Singh, Jagmohan

    2012-01-01

    The knowledge of molecular control mechanisms underlying the basal tone in the intact human internal anal sphincter (IAS) is critical for the pathophysiology and rational therapy for a number of debilitating rectoanal motility disorders. We determined the role of RhoA/ROCK and PKC pathways by comparing the effects of ROCK- and PKC-selective inhibitors Y 27632 and Gö 6850 (10−8 to 10−4 M), respectively, on the basal tone in the IAS vs. the rectal smooth muscle (RSM). Western blot studies were performed to determine the levels of RhoA/ROCK II, PKC-α, MYPT1, CPI-17, and MLC20 in the unphosphorylated and phosphorylated forms, in the IAS vs. RSM. Confocal microscopic studies validated the membrane distribution of ROCK II. Finally, to confirm a direct relationship, we examined the enzymatic activities and changes in the basal IAS tone and p-MYPT1, p-CPI-17, and p-MLC20, before and after Y 27632 and Gö 6850. Data show higher levels of RhoA/ROCK II and related downstream signal transduction proteins in the IAS vs. RSM. In addition, data show a significant correlation between the active RhoA/ROCK levels, ROCK enzymatic activity, downstream proteins, and basal IAS tone, before and after ROCK inhibitor. From these data we conclude 1) RhoA/ROCK and downstream signaling are constitutively active in the IAS, and this pathway (in contrast with PKC) is the critical determinant of the basal tone in intact human IAS; and 2) RhoA and ROCK are potential therapeutic targets for a number of rectoanal motility disorders for which currently there is no satisfactory treatment. PMID:22241857

  3. Fasting glucose and postprandial glycemia: which is the best target for improving outcomes? The Apollo and 4-T Trials.

    PubMed

    Monnier, Louis; Colette, Claude

    2008-11-01

    Two studies, the Apollo and 4-T Trials, were conducted in order to determine which insulin regimen (basal or prandial) is the most efficient for the treatment of insulin-requiring type 2 diabetic patients. Both trials compared treatments using prandial insulins (aspart or lispro) three times daily with more classical insulin strategies using basal insulin given once daily (glargine or detemir) or twice daily if required (detemir in the 4-T Study). Both studies showed that a therapeutic regimen involving prandial insulin resulted in equal (Apollo Study) or greater (4-T Study) reductions in patients' HbA(1c) levels than basal insulin regimens. However, the prandial insulin strategies were accompanied by higher risks of hypoglycemia and greater weight gain. As a consequence, the investigators of the two studies concluded that basal insulin once daily provides a simple and effective option with less adverse effects than prandial insulin three times a day. Such conclusions are certainly important for guiding strategies in the vast majority of type 2 diabetic patients who require an add-on insulin therapy. However, the authors' opinion is that the choice between either basal or prandial insulin alone and combined insulin regimens with basal and prandial insulin should be tailored according to the patient's clinical status by paying more attention to the respective contributions of basal and prandial hyperglycemia to their overall hyperglycemia. This recommendation seems to be particularly important when insulin treatment is initiated in patients exhibiting HbA(1c) levels between 7.0 and 8.0%.

  4. Nicergoline increases serum substance P levels in patients with an ischaemic stroke.

    PubMed

    Nishiyama, Yasuhiro; Abe, Arata; Ueda, Masayuki; Katsura, Ken-ichiro; Katayama, Yasuo

    2010-01-01

    Aspiration pneumonia is one of the most important complications following ischaemic stroke, and a leading cause of mortality in stroke patients. This is particularly prevalent in patients with involvement of the basal ganglia, which may be due to impaired neurotransmission through lack of production of substance P. Consecutive patients in the chronic stage, 1-3 months after cerebral ischaemic infarction, were assessed for basal ganglia involvement by magnetic resonance imaging. The patients were randomised to 4 weeks of treatment with (n = 25) or without (n = 25) nicergoline (15 mg t.i.d.). Serum concentration of substance P was measured by radioimmunoassay. At entry to the study, mean concentration of substance P was significantly (p < 0.001) lower in patients with bilateral basal ganglia lesions than in patients with no or unilateral basal ganglia involvement. Nicergoline administration caused a significant (p = 0.021) increase from baseline in mean substance P concentration. No significant change was seen in the nicergoline-untreated patients (p = 0.626). Among the patients who received nicergoline, 11 patients had bilateral basal ganglia involvement and there was no significant mean change in substance P in these patients, whereas there was a significant increase (p = 0.032) in the 14 nicergoline-treated patients with no or unilateral basal ganglia involvement. The present study suggests a possible effect of nicergoline to increase substance P level in ischaemic stroke patients with partial damage to basal ganglia, who have a decreased swallowing response and consequent risk of aspiration pneumonia. Further trials of nicergoline treatment in patients at risk for aspiration pneumonia are warranted. (c) 2009 S. Karger AG, Basel.

  5. Potential long-term effects of MDMA on the basal ganglia-thalamocortical circuit: a proton MR spectroscopy and diffusion-tensor imaging study.

    PubMed

    Liu, Hua-Shan; Chou, Ming-Chung; Chung, Hsiao-Wen; Cho, Nai-Yu; Chiang, Shih-Wei; Wang, Chao-Ying; Kao, Hung-Wen; Huang, Guo-Shu; Chen, Cheng-Yu

    2011-08-01

    To investigate the effects of 3,4-methylenedioxymethamphetamine (MDMA, commonly known as "ecstasy") on the alterations of brain metabolites and anatomic tissue integrity related to the function of the basal ganglia-thalamocortical circuit by using proton magnetic resonance (MR) spectroscopy and diffusion-tensor MR imaging. This study was approved by a local institutional review board, and written informed consent was obtained from all subjects. Thirty-one long-term (>1 year) MDMA users and 33 healthy subjects were enrolled. Proton MR spectroscopy from the middle frontal cortex and bilateral basal ganglia and whole-brain diffusion-tensor MR imaging were performed with a 3.0-T system. Absolute concentrations of metabolites were computed, and diffusion-tensor data were registered to the International Consortium for Brain Mapping template to facilitate voxel-based group comparison. The mean myo-inositol level in the basal ganglia of MDMA users (left: 4.55 mmol/L ± 2.01 [standard deviation], right: 4.48 mmol/L ± 1.33) was significantly higher than that in control subjects (left: 3.25 mmol/L ± 1.30, right: 3.31 mmol/L ± 1.19) (P < .001). Cumulative lifetime MDMA dose showed a positive correlation with the levels of choline-containing compounds (Cho) in the right basal ganglia (r = 0.47, P = .02). MDMA users also showed a significant increase in fractional anisotropy (FA) in the bilateral thalami and significant changes in water diffusion in several regions related to the basal ganglia-thalamocortical circuit as compared with control subjects (P < .05; cluster size, >50 voxels). Increased myo-inositol and Cho concentrations in the basal ganglia of MDMA users are suggestive of glial response to degenerating serotonergic functions. The abnormal metabolic changes in the basal ganglia may consequently affect the inhibitory effect of the basal ganglia to the thalamus, as suggested by the increased FA in the thalamus and abnormal changes in water diffusion in the corresponding basal ganglia-thalamocortical circuit. © RSNA, 2011.

  6. Parkinson’s disease as a system-level disorder

    PubMed Central

    Caligiore, Daniele; Helmich, Rick C; Hallett, Mark; Moustafa, Ahmed A; Timmermann, Lars; Toni, Ivan; Baldassarre, Gianluca

    2016-01-01

    Traditionally, the basal ganglia have been considered the main brain region implicated in Parkinson’s disease. This single area perspective gives a restricted clinical picture and limits therapeutic approaches because it ignores the influence of altered interactions between the basal ganglia and other cerebral components on Parkinsonian symptoms. In particular, the basal ganglia work closely in concert with cortex and cerebellum to support motor and cognitive functions. This article proposes a theoretical framework for understanding Parkinson’s disease as caused by the dysfunction of the entire basal ganglia–cortex–cerebellum system rather than by the basal ganglia in isolation. In particular, building on recent evidence, we propose that the three key symptoms of tremor, freezing, and impairments in action sequencing may be explained by considering partially overlapping neural circuits including basal ganglia, cortical and cerebellar areas. Studying the involvement of this system in Parkinson’s disease is a crucial step for devising innovative therapeutic approaches targeting it rather than only the basal ganglia. Possible future therapies based on this different view of the disease are discussed. PMID:28725705

  7. From sanddabs to blue whales: the pervasiveness of domoic acid.

    PubMed

    Lefebvre, Kathi A; Bargu, Sibel; Kieckhefer, Tom; Silver, Mary W

    2002-07-01

    Domoic acid (DA) is a potent food web transferred algal toxin that has caused dramatic mortality events involving sea birds and sea lions. Although no confirmed DA toxicity events have been reported in whales, here we present data demonstrating that humpback and blue whales are exposed to the toxin and consume DA contaminated prey. Whale fecal samples were found to contain DA at levels ranging from 10 to 207microg DA g(-1) feces via HPLC-UV methods. SEM analysis of whale feces containing DA, collected from krill-feeding whales, revealed the presence of diatom frustules identified as Pseudo-nitzschia australis, a known DA producer. Humpback whales were observed feeding on anchovies and sardines that contained DA at levels ranging from 75 to 444microg DA g(-1) viscera. DA contamination of whale feces and fish occurred only during blooms of toxic Pseudo-nitzschia. Additionally, several novel fish species collected during a toxic diatom bloom were tested for DA. Fish as diverse as benthic sanddabs and pelagic albacore were found to contain the neurotoxin, suggesting that DA permeates benthic as well as pelagic communities.

  8. Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats.

    PubMed

    Shachar, Dorit Ben; Kahana, Nava; Kampel, Vladimir; Warshawsky, Abraham; Youdim, Moussa B H

    2004-02-01

    Significant increase in iron occurs in the substantia nigra pars compacta of Parkinsonian subjects, and in 6-hydroxydopamine (6-OHDA) treated rats and monkeys. This increase in iron has been attributed to its release from ferritin and is associated with the generation of reactive oxygen species and the onset of oxidative stress-induced neurodegeneration. Several iron chelators with hydroxyquinoline backbone were synthesized and their ability to inhibit basal as well as iron-induced mitochondrial lipid peroxidation was examined. The neuroprotective potential of the brain permeable iron chelator, VK-28 (5-[4-(2-hydroxyethyl) piperazine-1-ylmethyl]-quinoline-8-ol), injected either intraventricularly (ICV) or intraperitoneally (IP), to 6-OHDA lesioned rats was investigated. VK-28 inhibited both basal and Fe/ascorbate induced mitochondrial membrane lipid peroxidation, with an IC(50) (12.7 microM) value comparable to that of the prototype iron chelator, desferal, which does not cross the blood brain barrier. At an ICV pretreatment dose as low as 1 microg, VK-28 was able to completely protect against ICV 6-OHDA (250 microg) induced striatal dopaminergic lesion, as measured by dopamine (DA), dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) levels. IP injection of rats with VK-28 (1 and 5 mg/kg) daily for 10 and 7 days, respectively, demonstrated significant neuroprotection against ICV 6-OHDA at the higher dose, with 68% protection against loss of dopamine at 5mg/kg dosage of VK-28. The present study is the first to show neuroprotection with a brain permeable iron chelator. The latter can have implications for the treatment of Parkinson's disease and other neurodegenerative diseases (Alzheimer's disease, Friedreich ataxia, aceruloplasminemia, Hallervorden Spatz syndrome) where abnormal iron accumulation in the brain is thought to be associated with the degenerative processes.

  9. Bimodal effect of oxidative stress in internal anal sphincter smooth muscle

    PubMed Central

    Singh, Jagmohan; Kumar, Sumit

    2015-01-01

    Changes in oxidative stress may affect basal tone and relaxation of the internal anal sphincter (IAS) smooth muscle in aging. We examined this issue by investigating the effects of the oxidative stress inducer 6-anilino-5,8-quinolinedione (LY-83583) in basal as well as U-46619-stimulated tone, and nonadrenergic, noncholinergic (NANC) relaxation in rat IAS. LY-83583, which works via generation of reactive oxygen species in living cells, produced a bimodal effect in IAS tone: lower concentrations (0.1 nM to 10 μM) produced a concentration-dependent increase, while higher concentrations (50–100 μM) produced a decrease in IAS tone. An increase in IAS tone by lower concentrations was associated with an increase in RhoA/Rho kinase (ROCK) activity. This was evident by the increase in RhoA/ROCK in the particulate fractions, in ROCK activity, and in the levels of phosphorylated (p) Thr696-myosin phosphatase target subunit 1 and pThr18/Ser19-20-kDa myosin light chain. Conversely, higher concentrations of LY-83583 produced inhibitory effects on RhoA/ROCK. Interestingly, both the excitatory and inhibitory effects of LY-83583 in the IAS were reversed by superoxide dismutase. The excitatory effects of LY-83583 were found to resemble those with neuronal nitric oxide synthase (nNOS) inhibition by l-NNA, since it produced a significant increase in the IAS tone and attenuated NANC relaxation. These effects of LY-83583 and l-NNA were reversible by l-arginine. This suggests the role of nNOS inhibition and RhoA/ROCK activation in the increase in IAS tone by LY-83583. These data have important implications in the pathophysiology and therapeutic targeting of rectoanal disorders, especially associated with IAS dysfunction. PMID:26138467

  10. Maintenance of basal levels of autophagy in Huntington's disease mouse models displaying metabolic dysfunction.

    PubMed

    Baldo, Barbara; Soylu, Rana; Petersén, Asa

    2013-01-01

    Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin protein. Neuropathology in the basal ganglia and in the cerebral cortex has been linked to the motor and cognitive symptoms whereas recent work has suggested that the hypothalamus might be involved in the metabolic dysfunction. Several mouse models of HD that display metabolic dysfunction have hypothalamic pathology, and expression of mutant huntingtin in the hypothalamus has been causally linked to the development of metabolic dysfunction in mice. Although the pathogenic mechanisms by which mutant huntingtin exerts its toxic functions in the HD brain are not fully known, several studies have implicated a role for the lysososomal degradation pathway of autophagy. Interestingly, changes in autophagy in the hypothalamus have been associated with the development of metabolic dysfunction in wild-type mice. We hypothesized that expression of mutant huntingtin might lead to changes in the autophagy pathway in the hypothalamus in mice with metabolic dysfunction. We therefore investigated whether there were changes in basal levels of autophagy in a mouse model expressing a fragment of 853 amino acids of mutant huntingtin selectively in the hypothalamus using a recombinant adeno-associate viral vector approach as well as in the transgenic BACHD mice. We performed qRT-PCR and Western blot to investigate the mRNA and protein expression levels of selected autophagy markers. Our results show that basal levels of autophagy are maintained in the hypothalamus despite the presence of metabolic dysfunction in both mouse models. Furthermore, although there were no major changes in autophagy in the striatum and cortex of BACHD mice, we detected modest, but significant differences in levels of some markers in mice at 12 months of age. Taken together, our results indicate that overexpression of mutant huntingtin in mice do not significantly perturb basal levels of autophagy.

  11. Delayed peak response of cortisol to insulin tolerance test in patients with Prader-Willi syndrome.

    PubMed

    Oto, Yuji; Matsubara, Keiko; Ayabe, Tadayuki; Shiraishi, Masahisa; Murakami, Nobuyuki; Ihara, Hiroshi; Matsubara, Tomoyo; Nagai, Toshiro

    2018-06-01

    Deaths among children with Prader-Willi syndrome (PWS) are often related to only mild or moderate upper respiratory tract infections, and many causes of death remain unexplained. Several reports have hypothesized that patients with PWS may experience latent central adrenal insufficiency. However, whether PWS subjects suffer from alteration of the hypothalamus-pituitary-adrenal (HPA) axis remains unclear. This study aimed to explore the HPA axis on PWS. We evaluated the HPA axis in 36 PWS patients (24 males, 12 females; age range, 7 months to 12 years; median age 2.0 years; interquartile range [IQR], 1.5-3.4 years) using an insulin tolerance test (ITT) in the morning between 08:00 and 11:00. For comparison, ITT results in 37 age-matched healthy children evaluated for short stature were used as controls. In PWS patients, basal levels of adrenocorticotropic hormone (ACTH) were 13.5 pg/ml (IQR, 8.3-27.5 pg/ml) and basal levels of cortisol were 18.0 μg/dl (IQR, 14.2-23.7 μg/dl). For all patients, cortisol levels at 60 min after stimulation were within the reference range (>18.1 μg/dl), with a median peak of 41.5 μg/dl (IQR, 32.3-48.6 μg/dl). Among control children, basal level of ACTH and basal and peak levels of cortisol were 10.9 (IQR, 8.5-22.0 pg/ml), 15.6 (IQR, 11.9-21.6 μg/dl), and 27.8 μg/dl (IQR, 23.7-30.5 μg/dl), respectively. Basal and peak levels of cortisol were all within normal ranges, but peak response of cortisol to ITT was delayed in the majority of PWS patients (64%). Although the mechanism remains unclear, this delay may signify the existence of central obstacle in adjustment of the HPA axis. © 2018 Wiley Periodicals, Inc.

  12. Investigating the microstructural and neurochemical environment within the basal ganglia of current methamphetamine abusers.

    PubMed

    Lin, Joanne C; Jan, Reem K; Kydd, Rob R; Russell, Bruce R

    2015-04-01

    Methamphetamine is a highly addictive psychostimulant and the medical, social, and economic consequences associated with its use have become a major international problem. Current evidence has shown methamphetamine to be particularly neurotoxic to dopamine neurons and striatal structures within the basal ganglia. A previous study from our laboratory demonstrated larger putamen volumes in actively using methamphetamine-dependent participants. The purpose of this current study was to determine whether striatal structures in the same sample of participants also exhibit pathology on the microstructural and molecular level. Diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) were carried out in current methamphetamine users (n = 18) and healthy controls (n = 22) to investigate diffusion indices and neurometabolite levels in the basal ganglia. Contrary to findings from previous DTI and MRS studies, no significant differences in diffusion indices or metabolite levels were observed in the basal ganglia regions of current methamphetamine users. These findings differ from those reported in abstinent users and the absence of diffusion and neurochemical abnormalities may suggest that striatal enlargement in current methamphetamine use may be due to mechanisms other than edema and glial proliferation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Basal Cell Carcinoma Arising in a Breast Augmentation Scar.

    PubMed

    Edwards, Lisa R; Cresce, Nicole D; Russell, Mark A

    2017-04-01

    We report a case of a 46-year-old female who presented with a persistent lesion on the inferior right breast. The lesion was located within the scar from a breast augmentation procedure 12 years ago. The lesion had been treated as several conditions with no improvement. Biopsy revealed a superficial and nodular basal cell carcinoma, and the lesion was successfully removed with Mohs micrographic surgery. Basal cell carcinoma arising in a surgical scar is exceedingly rare with only 13 reported cases to date. This is the first reported case of basal cell carcinoma arising in a breast augmentation scar. We emphasize the importance of biopsy for suspicious lesions or those refractory to treatment, particularly those lesions that form within a scar. Level of Evidence V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  14. Transient hypogonadotropic hypogonadism in an amateur kickboxer after head trauma.

    PubMed

    Tanriverdi, F; Unluhizarci, K; Selcuklu, A; Casanueva, F F; Kelestimur, F

    2007-02-01

    Traumatic brain injury (TBI) is a frequent health problem and increased prevalence of neurendocrine dysfunction in patients with TBI has been reported. Sports injuries and particularly boxing may result in pituitary dysfunction. However, transient hypogonadotropic hypogonadism after an acute head trauma due to boxing and/or kickboxing has not been defined yet. We describe the case of a 20-yr-old male amateur kickboxer who was admitted to hospital complaining of decreased libido and impotence 2 weeks after an intensive bout. Basal hormone levels were compatible with mild hyperprolactinemia and hypogonadotpopic hypogonadism. GH axis was evaluated by GHRH+GHRP-6 test and peak GH level was within normal reference range. Three months later his complaints improved and abnormalities in basal hormone levels normalized. He was also re-evaluated 9 months after the first evaluation; basal hormone levels were within normal ranges and he had no complaints. In conclusion acute head trauma due to kickboxing may cause transient gonadotropin deficiency. Therefore, screening the pituitary functions of sportsmen dealing with combative sports is crucial.

  15. Hypothalamic stimulation and baroceptor reflex interaction on renal nerve activity.

    NASA Technical Reports Server (NTRS)

    Wilson, M. F.; Ninomiya, I.; Franz, G. N.; Judy, W. V.

    1971-01-01

    The basal level of mean renal nerve activity (MRNA-0) measured in anesthetized cats was found to be modified by the additive interaction of hypothalamic and baroceptor reflex influences. Data were collected with the four major baroceptor nerves either intact or cut, and with mean aortic pressure (MAP) either clamped with a reservoir or raised with l-epinephrine. With intact baroceptor nerves, MRNA stayed essentially constant at level MRNA-0 for MAP below an initial pressure P1, and fell approximately linearly to zero as MAP was raised to P2. Cutting the baroceptor nerves kept MRNA at MRNA-0 (assumed to represent basal central neural output) independent of MAP. The addition of hypothalamic stimulation produced nearly constant increments in MRNA for all pressure levels up to P2, with complete inhibition at some level above P2. The increments in MRNA depended on frequency and location of the stimulus. A piecewise linear model describes MRNA as a linear combination of hypothalamic, basal central neural, and baroceptor reflex activity.

  16. Changes of brain monoamine levels and physiological indexes during heat acclimation in rats.

    PubMed

    Nakagawa, Hikaru; Matsumura, Takeru; Suzuki, Kota; Ninomiya, Chisa; Ishiwata, Takayuki

    2016-05-01

    Brain monoamines, such as noradrenaline (NA), dopamine (DA), and serotonin (5-HT), regulate many important physiological functions including thermoregulation. The purpose of this study was to clarify changes in NA, DA, and 5-HT levels in several brain regions in response to heat acclimation while also recording body temperature (Tb), heart rate (HR), and locomotor activity (Act). Rats were exposed to a heated environment (32°C) for 3h (3H), 1 day (1D), 7 days, 14 days (14D), 21 days, or 28 days (28D). After heat exposure, each of the following brain regions were immediately extracted and homogenized: the caudate putamen (CPu), preoptic area (PO), dorsomedial hypothalamus (DMH), frontal cortex (FC), and hippocampus (Hip). NA, DA, and 5-HT levels in the extract were measured by high performance liquid chromatography. Although Tb increased immediately after heat exposure, it decreased about 14D later. HR was maintained at a low level throughout heat exposure, and Act tended to increase near the end of heat exposure. After 3H, we observed a marked increase in NA level in the CPu. Although this response vanished after 1D, the level increased again after 28D. DA level in the CPu decreased significantly from 1D to 28D. 5-HT level in the PO and DMH decreased from 1D to 14D. It returned to control levels after 28D with increment of DA level. 5-HT level in the FC decreased at the start of heat exposure, but recovered after 28D; a time point at which DA level also increased. Monoamine levels in the Hip were unchanged after early heat exposure, but both 5-HT and DA levels increased after 28D. These results provide definitive evidence of changes in monoamines in individual brain regions involved in thermoregulation and behavioral, cognitive, and memory function during both acute and chronic heat exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Heat shock protein-27 protects human bronchial epithelial cells against oxidative stress–mediated apoptosis: possible implication in asthma

    PubMed Central

    Merendino, Anna M.; Paul, Catherine; Vignola, Antonio M.; Costa, Maria A.; Melis, Mario; Chiappara, Giuseppina; Izzo, V.; Bousquet, J.; Arrigo, André-Patrick

    2002-01-01

    Inflammation of the human bronchial epithelium, as observed in asthmatics, is characterized by the selective death of the columnar epithelial cells, which desquamate from the basal cells. Tissue repair initiates from basal cells that resist inflammation. Here, we have evaluated the extent of apoptosis as well as the Hsp27 level of expression in epithelial cells from bronchial biopsy samples taken from normal and asthmatic subjects. Hsp27 is a chaperone whose expression protects against oxidative stress. We report that in asthmatic subjects the basal epithelium cells express a high level of Hsp27 but no apoptotic morphology. In contrast, apoptotic columnar cells are devoid of Hsp27 expression. Moreover, we observed a decreased resistance to hydrogen peroxide–induced apoptosis in human bronchial epithelial 16–HBE cells when they were genetically modified to express reduced levels of Hsp27. PMID:12482203

  18. The Oncogenic Role of RhoGAPs in Basal-Like Breast Cancer

    DTIC Science & Technology

    2015-02-01

    cell lines, and mouse models . c) In vivo tumorigenesis and metastasis assays. Milestones: Identify whether ArhGAP11A and RacGAP1 can promote tumor growth...also upregulated in basal (C3(I)-Tag) but not luminal (MMTV-Neu) genetically- engineered mouse models (Fig. 1B). At the protein level, RacGAP1 was...hypothesis that these RhoGAPs are indeed playing an oncogenic role in these cells. Human Tumors Mouse Model Tumors Normal Luminal A Basal-like Normal

  19. A potential vector of domoic acid: the swimming crab Polybius henslowii Leach (Decapoda-brachyura).

    PubMed

    Costa, Pedro R; Rodrigues, Susana M; Botelho, Maria J; Sampayo, Maria Antónia de M

    2003-08-01

    The swimming crab Polybius henslowii may play an important role in the movement of the amnesic shellfish toxin, domoic acid (DA), through the marine food chain. High DA concentrations have been determined in crab samples harvested along the Portuguese coast during the summer of 2002, reaching a level of 323.1 microg DA/g crab tissue. Toxin distribution in the different crab organs showed levels as high as 571.6 microg DA/g in the visceral tissues. Levels of toxin 4-12 times lower were detected in the remaining tissues. This crab might be a prominent vector of the toxin to higher trophic levels, including fishes, sea birds and even humans. In Portugal P. henslowii is commercialised during the summer in some local markets. DA concentrations were found close to the legal limit of 20 microg/g in samples purchased at Figueira da Foz market. The crabs are boiled prior to reaching the consumers. The cooking process was evaluated. Determination of toxin losses during the cooking process showed a toxin reduction higher than 50%. DA was determined by HPLC-UV and confirmed by spectra acquired with diode-array detector.

  20. House dust mite-specific immunotherapy alters the basal expression of T regulatory and FcεRI pathway genes.

    PubMed

    Pevec, Branko; Radulovic Pevec, Mira; Stipic Markovic, Asja; Batista, Irena; Rijavec, Matija; Silar, Mira; Kosnik, Mitja; Korosec, Peter

    2012-01-01

    Regulatory T (Treg) cells and IgE-mediated signaling pathways could play important roles in the induction of allergen tolerance during house dust mite-specific subcutaneous immunotherapy (HDM-SCIT). Our aim was to compare the basal expression levels of Treg, T helper 1 (Th1) and Th2 transcription factors and components involved in IgE-mediated signaling in healthy subjects with those in HDM-allergic patients both untreated and successfully treated with HDM-SCIT. Thirty-nine HDM-allergic patients who completed a 3- to 5-year course of mite extract SCIT, 20 mite-allergic controls and 25 healthy controls participated in this study. The efficacy of SCIT was monitored using skin-prick tests (SPTs), total immunoglobulin E (tIgE), specific IgE (sIgE), sIgG(4), nasal challenge and visual analog scale (VAS) scores at several time points. The mRNA levels of forkhead box protein 3 (FOXP3), T-BET, GATA-3, FcεRI, spleen tyrosine kinase (Syk), phosphatidylinositol 3 kinase (PI3K) and SH2 domain-containing inositol phosphatase (SHIP) were quantified by real-time RT-PCR using nonstimulated whole blood samples. Decreased wheal sizes and VAS scores, negative challenges and increased sIgG(4) levels indicated that SCIT was effective in the treated patients. Basal expression levels of FOXP3 and GATA-3 decreased and T-BET levels increased in both treated patients and in healthy controls compared to untreated patients. The IgE-mediated pathway kinases Syk and PI3K exhibited reduced expression, whereas SHIP phosphatase levels were elevated in both treated patients and healthy controls relative to untreated patients. The expression levels of FcεRI were not significantly altered. Immunotherapy using HDM extracts results in a modification of the basal expression levels of several IgE-related signaling factors and induces a highly significant upregulation of Th1-response and downregulation of Th2-response transcription factors. Interestingly, this therapy also appears to reduce the basal expression of FOXP3. Copyright © 2012 S. Karger AG, Basel.

  1. Serologic control against hepatitis B virus among dental students of the University of Granada, Spain.

    PubMed

    Arias-Moliz, M-T; Rojas, L; Liébana-Cabanillas, F; Bernal, C; Castillo, F; Rodríguez-Archilla, A; Castillo, A; Liébana, J

    2015-09-01

    To evaluate the immunological situation against hepatitis B virus (HBV) of a cohort of dentistry students, to analyze the behavior of the levels of hepatitis B surface antigen (anti-HBs) after the administration of one or three vaccine doses, and to determine the influence of age and sex on the immune response. This retrospective cohort study included students attending the School of Dentistry of the institution where the study was performed from 2005 to 2012 who had completed the public health vaccination calendar for HBV at the age of 12-13. Data on age, sex, basal anti-HBs levels, post-vaccination anti-HBs results and final anti-HBs levels were collected. Comparisons of the basal and final levels, as well as associations regarding age and sex, were performed by means of the Student t and Chi-square tests. Of the 359 students, 97 (27.02%) had basal antibody concentrations <10 mIU/ml, whereas in 262 the levels of anti-HBs were ≥10 mIU/ml (72.98%). Of the 288 participating students who completed the School's protocol for immunization, 287 (99.65%) attained a level of protection ≥10 mIU/ml. Globally, there were statistically significant differences between the basal antibody levels and those achieved after administration of the vaccine and booster, but no association with age or sex was observed. About 70% of dental students vaccinated as pre-adolescents had serologic evidence of protection against HBV. Administering a booster is associated with the presence of an excellent immune memory. There is clearly a need to reinforce control of the antibody levels in groups at risk, such as Dentistry students.

  2. Polyunsaturated fatty acids reduce insulin and very low density lipoprotein levels in broiler chickens.

    PubMed

    Crespo, N; Esteve-Garcia, E

    2003-07-01

    An experiment was conducted to study the effect of different dietary fatty acid profiles on plasma levels of insulin, very low density lipoproteins (VLDL), cholesterol, and glucose. Diets with four types of fat (tallow, olive, sunflower, and linseed oils) at an inclusion level of 10% and a basal diet without additional fat were administered to female broiler chickens. Serum insulin, cholesterol, and plasma VLDL were affected by the different treatments; however, glucose concentrations were similar among treatments. In the fasted state, broilers fed diets with sunflower or linseed oil presented lower levels of insulin and cholesterol with respect to those fed tallow or olive oil (P < 0.05). VLDL in the fasted state was reduced in broilers fed sunflower and linseed oils (P < 0.05) with respect to those fed tallow, olive oil, or the basal diet. Plasma levels of VLDL were only significantly correlated with abdominal fat in birds fed the basal diet, in the fed and in the fasted state, and in those fed linseed oil in the fed state (P < 0.05). Results of this experiment suggest that higher insulin levels in broilers fed diets rich in saturated fatty acids could be related to higher fat deposition. Fat deposition in birds fed high fat diets was not correlated with circulating VLDL, which suggested direct dietary fat deposition, except for birds fed linseed oil diets. Although birds fed linseed oil diets presented lower levels of VLDL than those fed tallow, olive oil, or the basal diet, the higher correlation with abdominal fat suggests that in these birds, fat deposition is more dependent on hepatic VLDL secretion, despite the high dietary fat level.

  3. Metabolic biomarkers for response to PI3K inhibition in basal-like breast cancer

    PubMed Central

    2013-01-01

    Introduction The phosphatidylinositol 3-kinase (PI3K) pathway is frequently activated in cancer cells through numerous mutations and epigenetic changes. The recent development of inhibitors targeting different components of the PI3K pathway may represent a valuable treatment alternative. However, predicting efficacy of these drugs is challenging, and methods for therapy monitoring are needed. Basal-like breast cancer (BLBC) is an aggressive breast cancer subtype, frequently associated with PI3K pathway activation. The objectives of this study were to quantify the PI3K pathway activity in tissue sections from xenografts representing basal-like and luminal-like breast cancer before and immediately after treatment with PI3K inhibitors, and to identify metabolic biomarkers for treatment response. Methods Tumor-bearing animals (n = 8 per treatment group) received MK-2206 (120 mg/kg/day) or BEZ235 (50 mg/kg/day) for 3 days. Activity in the PI3K/Akt/mammalian target of rapamycin pathway in xenografts and human biopsies was evaluated using a novel method for semiquantitative assessment of Aktser473 phosphorylation. Metabolic changes were assessed by ex vivo high-resolution magic angle spinning magnetic resonance spectroscopy. Results Using a novel dual near-infrared immunofluorescent imaging method, basal-like xenografts had a 4.5-fold higher baseline level of pAktser473 than luminal-like xenografts. Following treatment, basal-like xenografts demonstrated reduced levels of pAktser473 and decreased proliferation. This correlated with metabolic changes, as both MK-2206 and BEZ235 reduced lactate concentration and increased phosphocholine concentration in the basal-like tumors. BEZ235 also caused increased glucose and glycerophosphocholine concentrations. No response to treatment or change in metabolic profile was seen in luminal-like xenografts. Analyzing tumor sections from five patients with BLBC demonstrated that two of these patients had an elevated pAktser473 level. Conclusion The activity of the PI3K pathway can be determined in tissue sections by quantitative imaging using an antibody towards pAktser473. Long-term treatment with MK-2206 or BEZ235 resulted in significant growth inhibition in basal-like, but not luminal-like, xenografts. This indicates that PI3K inhibitors may have selective efficacy in basal-like breast cancer with increased PI3K signaling, and identifies lactate, phosphocholine and glycerophosphocholine as potential metabolic biomarkers for early therapy monitoring. In human biopsies, variable pAktser473 levels were observed, suggesting heterogeneous PI3K signaling activity in BLBC. PMID:23448424

  4. Sensitive determination of dopamine levels via surface-enhanced Raman scattering of Ag nanoparticle dimers.

    PubMed

    Yu, Xiantong; He, XiaoXiao; Yang, Taiqun; Zhao, Litao; Chen, Qichen; Zhang, Sanjun; Chen, Jinquan; Xu, Jianhua

    2018-01-01

    Dopamine (DA) is an important neurotransmitter in the hypothalamus and pituitary gland, which can produce a direct influence on mammals' emotions in midbrain. Additionally, the level of DA is highly related with some important neurologic diseases such as schizophrenia, Parkinson, and Huntington's diseases, etc. In light of the important roles that DA plays in the disease modulation, it is of considerable significance to develop a sensitive and reproducible approach for monitoring DA. The objective of this study was to develop an efficient approach to quantitatively monitor the level of DA using Ag nanoparticle (NP) dimers and enhanced Raman spectroscopy. Ag NP dimers were synthesized for the sensitive detection of DA via surface-enhanced Raman scattering (SERS). Citrate was used as both the capping agent of NPs and sensing agent to DA, which is self-assembled on the surface of Ag NP dimers by reacting with the surface carboxyl group to form a stable amide bond. To improve accuracy and precision, the multiplicative effects model for surface-enhanced Raman spectroscopy was utilized to analyze the SERS assays. A low limits of detection (LOD) of 20 pM and a wide linear response range from 30 pM to 300 nM were obtained for DA quantitative detection. The SERS enhancement factor was theoretically valued at approximately 10 7 by discrete dipole approximation. DA was self-assembled on the citrate capped surface of Ag NPs dimers through the amide bond. The adsorption energy was estimated to be 256 KJ/mol using the Langmuir isotherm model. The density functional theory was used to simulate the spectral characteristics of SERS during the adsorption of DA on the surface of the Ag dimers. Furthermore, to improve the accuracy and precision of quantitative analysis of SERS assays with a multiplicative effects model for surface-enhanced Raman spectroscopy. A LOD of 20 pM DA-level was obtained, and the linear response ranged from 30 pM to 300 nM for quantitative DA detection. The absolute relative percentage error was 4.22% between the real and predicted DA concentrations. This detection scheme is expected to have good applications in the prevention and diagnosis of certain diseases caused by disorders in the DA level.

  5. Sensitive determination of dopamine levels via surface-enhanced Raman scattering of Ag nanoparticle dimers

    PubMed Central

    Yu, Xiantong; He, XiaoXiao; Yang, Taiqun; Zhao, Litao; Chen, Qichen; Zhang, Sanjun; Chen, Jinquan; Xu, Jianhua

    2018-01-01

    Background Dopamine (DA) is an important neurotransmitter in the hypothalamus and pituitary gland, which can produce a direct influence on mammals’ emotions in midbrain. Additionally, the level of DA is highly related with some important neurologic diseases such as schizophrenia, Parkinson, and Huntington’s diseases, etc. In light of the important roles that DA plays in the disease modulation, it is of considerable significance to develop a sensitive and reproducible approach for monitoring DA. Purpose The objective of this study was to develop an efficient approach to quantitatively monitor the level of DA using Ag nanoparticle (NP) dimers and enhanced Raman spectroscopy. Methods Ag NP dimers were synthesized for the sensitive detection of DA via surface-enhanced Raman scattering (SERS). Citrate was used as both the capping agent of NPs and sensing agent to DA, which is self-assembled on the surface of Ag NP dimers by reacting with the surface carboxyl group to form a stable amide bond. To improve accuracy and precision, the multiplicative effects model for surface-enhanced Raman spectroscopy was utilized to analyze the SERS assays. Results A low limits of detection (LOD) of 20 pM and a wide linear response range from 30 pM to 300 nM were obtained for DA quantitative detection. The SERS enhancement factor was theoretically valued at approximately 107 by discrete dipole approximation. DA was self-assembled on the citrate capped surface of Ag NPs dimers through the amide bond. The adsorption energy was estimated to be 256 KJ/mol using the Langmuir isotherm model. The density functional theory was used to simulate the spectral characteristics of SERS during the adsorption of DA on the surface of the Ag dimers. Furthermore, to improve the accuracy and precision of quantitative analysis of SERS assays with a multiplicative effects model for surface-enhanced Raman spectroscopy. Conclusion A LOD of 20 pM DA-level was obtained, and the linear response ranged from 30 pM to 300 nM for quantitative DA detection. The absolute relative percentage error was 4.22% between the real and predicted DA concentrations. This detection scheme is expected to have good applications in the prevention and diagnosis of certain diseases caused by disorders in the DA level. PMID:29713165

  6. Mechanisms for Cellular NO Oxidation and Nitrite Formation in Lung Epithelial Cells

    PubMed Central

    Zhao, Xue-Jun; Wang, Ling; Shiva, Sruti; Tejero, Jesus; Wang, Jun; Frizzell, Sam; Gladwin, Mark T.

    2013-01-01

    Airway lining fluid contains relatively high concentrations of nitrite and arterial blood levels of nitrite are higher than venous levels, suggesting the lung epithelium may represent an important source of nitrite in vivo. To investigate whether lung epithelial cells possess the ability to convert NO to nitrite by oxidation, and the effect of oxygen reactions on nitrite formation, the NO donor DETA NONOate was incubated with or without A549 cells or primary human bronchial epithelial (HBE) cells for 24 hrs under normoxic (21% O2) and hypoxic (1% O2) conditions. Nitrite production was significantly increased under all conditions in the presence of A549 or HBE cells, suggesting that both A549 and HBE cells have the capacity to oxidize NO to nitrite even under low oxygen conditions. The addition of oxy-hemoglobin (oxy-Hb) to the A549 cell media decreased the production of nitrite, consistent with NO scavenging limiting nitrite formation. Heat-denatured A549 cells produced much lower nitrite and bitrate, suggesting an enzymatic activity is required. This NO oxidation activity was found to be highest in membrane bound proteins with molecular sizes < 100 kDa. In addition, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one] (ODQ) and cyanide inhibited formation of nitrite in A549 cells. It has been shown that ceruloplasmin (Cp) possesses an NO oxidase and nitrite synthase activity in plasma based on NO oxidation to nitrosonium cation (NO+). We observed that Cp is expressed intracellularly in lung epithelial A549 cells and secreted into medium under basal conditions and during cytokine stimulation. However, an analysis of Cp expression level and activity measured via ρ-phenylenediamine oxidase activity assay revealed very low activity compared with plasma, suggesting that there is insufficient Cp to contribute to detectable NO oxidation to nitrite in A549 cells. Additionally, Cp levels were knocked down using siRNA by more than 75% in A549 cells, with no significant change in either nitrite or cellular S-nitrosothiol (SNO) formation compared to scrambled siRNA control under basal conditions or cytokine stimulation. These data suggest that lung epithelial cells possess NO oxidase activity, which is enhanced in cell membrane associated proteins and not regulated by intracellular or secreted Cp, indicating that alternative NO oxidases determine hypoxic and normoxic nitrite formation from NO in human lung epithelial cells. PMID:23639566

  7. Institution of basal-bolus therapy at diagnosis for children with type 1 diabetes mellitus.

    PubMed

    Adhikari, Soumya; Adams-Huet, Beverley; Wang, Yu-Chi A; Marks, James F; White, Perrin C

    2009-04-01

    We studied whether the institution of basal-bolus therapy immediately after diagnosis improved glycemic control in the first year after diagnosis for children with newly diagnosed type 1 diabetes mellitus. We reviewed the charts of 459 children > or =6 years of age who were diagnosed as having type 1 diabetes between July 1, 2002, and June 30, 2006 (212 treated with basal-bolus therapy and 247 treated with a more-conventional neutral protamine Hagedorn regimen). We abstracted data obtained at diagnosis and at quarterly clinic visits and compared groups by using repeated-measures, mixed-linear model analysis. We also reviewed the records of 198 children with preexisting type 1 diabetes mellitus of >1-year duration who changed from the neutral protamine Hagedorn regimen to a basal-bolus regimen during the review period. Glargine-treated subjects with newly diagnosed diabetes had lower hemoglobin A1c levels at 3, 6, 9, and 12 months after diagnosis than did neutral protamine Hagedorn-treated subjects (average hemoglobin A1c levels of 7.05% with glargine and 7.63% with neutral protamine Hagedorn, estimated across months 3, 6, 9, and 12, according to repeated-measures models adjusted for age at diagnosis and baseline hemoglobin A1c levels; treatment difference: 0.58%). Children with long-standing diabetes had no clinically important changes in their hemoglobin A1c levels in the first year after changing regimens. The institution of basal-bolus therapy with insulin glargine at the time of diagnosis of type 1 diabetes was associated with improved glycemic control, in comparison with more-conventional neutral protamine Hagedorn regimens, during the first year after diagnosis.

  8. Cost-effectiveness analysis of IDegLira versus basal-bolus insulin for patients with type 2 diabetes in the Slovak health system

    PubMed Central

    Psota, Marek; Psenkova, Maria Bucek; Racekova, Natalia; Ramirez de Arellano, Antonio; Vandebrouck, Tom; Hunt, Barnaby

    2017-01-01

    Aims To investigate the cost-effectiveness of once-daily insulin degludec/liraglutide (IDegLira) versus basal-bolus therapy in patients with type 2 diabetes not meeting glycemic targets on basal insulin from a healthcare payer perspective in Slovakia. Methods Long-term clinical and economic outcomes for patients receiving IDegLira and basal-bolus therapy were estimated using the IMS CORE Diabetes Model based on a published pooled analysis of patient-level data. Results IDegLira was associated with an improvement in quality-adjusted life expectancy of 0.29 quality-adjusted life years (QALYs) compared with basal-bolus therapy. The average lifetime cost per patient in the IDegLira arm was EUR 2,449 higher than in the basal-bolus therapy arm. Increased treatment costs with IDegLira were partially offset by cost savings from avoided diabetes-related complications. IDegLira was highly cost-effective versus basal-bolus therapy with an incremental cost-effectiveness ratio of EUR 8,590 per QALY gained, which is well below the cost-effectiveness threshold set by the law in Slovakia. Conclusion IDegLira is cost-effective in Slovakia, providing a simple option for intensification of basal insulin therapy without increasing the risk of hypoglycemia or weight gain and with fewer daily injections than a basal-bolus regimen. PMID:29276398

  9. Diagnosis of aggressive subtypes of eyelid basal cell carcinoma by 2-mm punch biopsy: prospective and comparative study.

    PubMed

    Rossato, Luiz Angelo; Carneiro, Rachel Camargo; Macedo, Erick Marcet Santiago de; Lima, Patrícia Picciarelli de; Miyazaki, Ahlys Ayumi; Matayoshi, Suzana

    2016-01-01

    : to compare the accuracy of preoperative 2-mm punch biopsy at one site and at two sites in the diagnosis of aggressive subtypes of eyelid basal cell carcinoma (BCC). : we randomly assigned patients to Group 1 (biopsy at one site) and Group 2 (biopsy at two sites). We compared the biopsy results to the gold standard (pathology of the surgical specimen). We calculated the sensitivity, specificity, positive predictive value, negative predictive value, accuracy and Kappa coefficient to determine the level of agreement in both groups. : we analyzed 105 lesions (Group 1: n = 44; Group 2: n = 61). The agreement was 54.5% in Group 1 and 73.8% in Group 2 (p = 0.041). There was no significant difference between the groups regarding the distribution of quantitative and qualitative variables (gender, age, disease duration, tumor larger diameter, area and commitment of margins). Biopsy at two sites was two times more likely to agree with the gold standard than the biopsy of a single site. : the accuracy and the performance indicators were better for 2-mm punch biopsy in two sites than in one site for the diagnosis of aggressive subtypes of eyelid BCC. comparar a acurácia da biópsia pré-operatória por trépano de 2mm em um sítio e em dois sítios no diagnóstico dos subtipos agressivos de carcinoma basocelular (CBC) palpebral. os pacientes foram distribuídos aleatoriamente em Grupo 1 (biópsia em um sítio) e Grupo 2 (biópsia em dois sítios). Os resultados das biópsias foram comparados com o padrão-ouro (exame anatomopatológico da peça cirúrgica). A sensibilidade, especificidade, valor preditivo positivo, valor preditivo negativo, precisão e coeficiente Kappa foram calculados para determinar o nível de concordância nos dois grupos. foram analisadas 105 lesões (Grupo 1: n = 44; Grupo 2: n = 61). A concordância foi de 54,5% no Grupo 1 e 73,8% no Grupo 2 (p-valor = 0,041). Não houve diferença significativa entre os grupos quanto à distribuição das variáveis quantitativas e qualitativas (sexo, idade, duração da doença, maior diâmetro do tumor, área e comprometimento de margens). A biópsia em dois sítios mostrou duas vezes mais chance de concordar com o padrão-ouro do que a biópsia de um sítio. a acurácia e os indicadores de desempenho foram melhores para a biópsia por trépano de 2 mm em dois sítios do que em um sítio para o diagnóstico dos subtipos agressivos de CBC palpebral.

  10. Differential effects of dopamine and opioid receptor blockade on motivated Coca-Cola drinking behavior and associated changes in brain, skin and muscle temperatures.

    PubMed

    Kiyatkin, E A

    2010-05-05

    Although pharmacological blockade of both dopamine (DA) and opiate receptors has an inhibiting effect on appetitive motivated behaviors, it is still unclear which physiological mechanisms affected by these treatments underlie the behavioral deficit. To clarify this issue, we examined how pharmacological blockade of either DA (SCH23390+eticlopride at 0.2 mg/kg each) or opioid receptors (naloxone 1 mg/kg) affects motor activity and temperature fluctuations in the nucleus accumbens (NAcc), temporal muscle, and facial skin associated with motivated Coca-Cola drinking behavior in rats. In drug-free conditions, presentation of a cup containing 5 ml of Coca-Cola induced locomotor activation and rapid NAcc temperature increases, which both transiently decreased during drinking, and phasically increased again after the cup was emptied. Muscle temperatures followed this pattern, but increases were weaker and more delayed than those in the NAcc. Skin temperature rapidly dropped after cup presentation, remained at low levels during consumption, and slowly restored during post-consumption behavioral activation. By itself, DA receptor blockade induced robust decrease in spontaneous locomotion, moderate increases in brain and muscle temperatures, and a relative increase in skin temperatures, suggesting metabolic activation coupled with adynamia. Following this treatment (approximately 180 min), motor activation to cup presentation and Coca-Cola consumption were absent, but rats showed NAcc and muscle temperature increases following cup presentation comparable to control. Therefore, DA receptor blockade does not affect significantly central and peripheral autonomic responses to appetitive stimuli, but eliminates their behavior-activating effects, thus disrupting appetitive behavior and blocking consumption. Naloxone alone slightly decreased brain and muscle temperatures and increased skin temperatures, pointing at the enhanced heat loss and possible minor inhibition of basal metabolic activity. This treatment (approximately 60 min) had minimal effects on the latencies of drinking, but increased its total duration, with licking interrupted by pauses and retreats. This behavioral attenuation was coupled with weaker than in control locomotor activation and diminished temperature fluctuations in each recording location. Therefore, attenuation of normal behavioral and physiological responses to appetitive stimuli appears to underlie modest inhibiting effects of opiate receptor blockade on motivated behavior and consumption. (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress.

    PubMed

    Henckens, Marloes J A G; Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C; van Wingen, Guido A; Fernández, Guillén

    2016-04-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus-pituitary-adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Peripheral Administration of Ethanol Results in a Correlated Increase in Dopamine and Serotonin Within the Posterior Ventral Tegmental Area

    PubMed Central

    Deehan, Gerald A.; Knight, Christopher P.; Waeiss, R. Aaron; Engleman, Eric A.; Toalston, Jamie E.; McBride, William J.; Hauser, Sheketha R.; Rodd, Zachary A.

    2016-01-01

    Aims Two critical neurotransmitter systems regulating ethanol (EtOH) reward are serotonin (5-HT) and dopamine (DA). Within the posterior ventral tegmental area (pVTA), 5-HT receptors have been shown to regulate DA neuronal activity. Increased pVTA neuronal activity has been linked to drug reinforcement. The current experiment sought to determine the effect of EtOH on 5-HT and DA levels within the pVTA. Methods Wistar rats were implanted with cannula aimed at the pVTA. Neurochemical levels were determined using standard microdialysis procedures with concentric probes. Rats were randomly assigned to one of the five groups (n = 41; 7–9 per group) that were treated with 0–3.0 g/kg EtOH (intraperitoneally). Results Ethanol produced increased extracellular DA levels in the pVTA that resembled an inverted U-shape dose–response curve with peak levels (~200% of baseline) at the 2.25 g/kg dose. The increase in DA levels was observed for an extended period of time (~100 minutes). The effects of EtOH on extracellular 5-HT levels in the pVTA also resembled an inverted U-shape dose–response curve. However, increased 5-HT levels were only observed during the initial post-injection sample. The increases in extracellular DA and 5-HT levels were significantly correlated. Conclusion The data indicate intraperitoneal EtOH administration stimulated the release of both 5-HT and DA within the pVTA, the levels of which were significantly correlated. Overall, the current findings suggest that the ability of EtOH to stimulate DA activity within the mesolimbic system may be modulated by increases in 5-HT release within the pVTA. Short summary Two critical neurotransmitter systems regulating ethanol reward are serotonin and dopamine. The current experiment determined that intraperitoneal ethanol administration increased serotonin and dopamine levels within the pVTA (levels were significantly correlated). The current findings suggest the ability of EtOH to stimulate serotonin and dopamine activity within the mesolimbic system. PMID:27307055

  13. Exercise-Induced Neuroprotection of the Nigrostriatal Dopamine System in Parkinson's Disease

    PubMed Central

    Hou, Lijuan; Chen, Wei; Liu, Xiaoli; Qiao, Decai; Zhou, Fu-Ming

    2017-01-01

    Epidemiological studies indicate that physical activity and exercise may reduce the risk of developing Parkinson's disease (PD), and clinical observations suggest that physical exercise can reduce the motor symptoms in PD patients. In experimental animals, a profound observation is that exercise of appropriate timing, duration, and intensity can reduce toxin-induced lesion of the nigrostriatal dopamine (DA) system in animal PD models, although negative results have also been reported, potentially due to inappropriate timing and intensity of the exercise regimen. Exercise may also minimize DA denervation-induced medium spiny neuron (MSN) dendritic atrophy and other abnormalities such as enlarged corticostriatal synapse and abnormal MSN excitability and spiking activity. Taken together, epidemiological studies, clinical observations, and animal research indicate that appropriately dosed physical activity and exercise may not only reduce the risk of developing PD in vulnerable populations but also benefit PD patients by potentially protecting the residual DA neurons or directly restoring the dysfunctional cortico-basal ganglia motor control circuit, and these benefits may be mediated by exercise-triggered production of endogenous neuroprotective molecules such as neurotrophic factors. Thus, exercise is a universally available, side effect-free medicine that should be prescribed to vulnerable populations as a preventive measure and to PD patients as a component of treatment. Future research needs to establish standardized exercise protocols that can reliably induce DA neuron protection, enabling the delineation of the underlying cellular and molecular mechanisms that in turn can maximize exercise-induced neuroprotection and neurorestoration in animal PD models and eventually in PD patients. PMID:29163139

  14. A local circuit model of learned striatal and dopamine cell responses under probabilistic schedules of reward.

    PubMed

    Tan, Can Ozan; Bullock, Daniel

    2008-10-01

    Recently, dopamine (DA) neurons of the substantia nigra pars compacta (SNc) were found to exhibit sustained responses related to reward uncertainty, in addition to the phasic responses related to reward-prediction errors (RPEs). Thus, cue-dependent anticipations of the timing, magnitude, and uncertainty of rewards are learned and reflected in components of DA signals. Here we simulate a local circuit model to show how learned uncertainty responses are generated, along with phasic RPE responses, on single trials. Both types of simulated DA responses exhibit the empirically observed dependencies on conditional probability, expected value of reward, and time since onset of the reward-predicting cue. The model's three major pathways compute expected values of cues, timed predictions of reward magnitudes, and uncertainties associated with these predictions. The first two pathways' computations refine those modeled by Brown et al. (1999). The third, newly modeled, pathway involves medium spiny projection neurons (MSPNs) of the striatal matrix, whose axons corelease GABA and substance P, both at synapses with GABAergic neurons in the substantia nigra pars reticulata (SNr) and with distal dendrites (in SNr) of DA neurons whose somas are located in ventral SNc. Corelease enables efficient computation of uncertainty responses that are a nonmonotonic function of the conditional probability of reward, and variability in striatal cholinergic transmission can explain observed individual differences in the amplitudes of uncertainty responses. The involvement of matricial MSPNs and cholinergic transmission within the striatum implies a relation between uncertainty in cue-reward contingencies and action-selection functions of the basal ganglia.

  15. Impact of Basal Conditions on Grounding-Line Retreat

    NASA Astrophysics Data System (ADS)

    Koellner, S. J.; Parizek, B. R.; Alley, R. B.; Muto, A.; Holschuh, N.; Nowicki, S.

    2017-12-01

    An often-made assumption included in ice-sheet models used for sea-level projections is that basal rheology is constant throughout the domain of the simulation. The justification in support of this assumption is that physical data for determining basal rheology is limited and a constant basal flow law can adequately approximate current as well as past behavior of an ice-sheet. Prior studies indicate that beneath Thwaites Glacier (TG) there is a ridge-and-valley bedrock structure which likely promotes deformation of soft tills within the troughs and sliding, more akin to creep, over the harder peaks; giving rise to a spatially variable basal flow law. Furthermore, it has been shown that the stability of an outlet glacier varies with the assumed basal rheology, so accurate projections almost certainly need to account for basal conditions. To test the impact of basal conditions on grounding-line evolution forced by ice-shelf perturbations, we modified the PSU 2-D flowline model to enable the inclusion of spatially variable basal rheology along an idealized bedrock profile akin to TG. Synthetic outlet glacier "data" were first generated under steady-state conditions assuming a constant basal flow law and a constant basal friction coefficient field on either a linear or bumpy sloping bed. In following standard procedures, a suite of models were then initialized by assuming different basal rheologies and then determining the basal friction coefficients that produce surface velocities matching those from the synthetic "data". After running each of these to steady state, the standard and full suite of models were forced by drastically reducing ice-shelf buttressing through side-shear and prescribed basal-melting perturbations. In agreement with previous findings, results suggest a more plastic basal flow law enhances stability in response to ice-shelf perturbations by flushing ice from farther upstream to sustain the grounding-zone mass balance required to prolong the current grounding-line position. Mixed rheology beds tend to mimic the retreat of the higher-exponent bed, a behavior enhanced over bumps as the stabilizing ridges tap into ice from local valleys. Thus, accounting for variable basal conditions in ice-sheet model projections is critical for improving both the timing and magnitude of retreat.

  16. Survey of Basal Stem Rot Disease on Oil Palms (Elaeis guineensis Jacq.) in Kebun Bukit Kijang,North Sumatera, Indonesia

    NASA Astrophysics Data System (ADS)

    Lisnawita; Hanum, H.; Tantawi, A. R.

    2016-08-01

    Basal stem rot disease caused by Ganoderma sp. is a significant disease on oil palm plantations in Indonesia, especially in North Sumatera. Currently, the pathogen does not only attack the plants that have produced (old plants) but also attacks the plants that have not produced in the first generation yet. A survey of the distribution of the basal stem rot disease in the plantation of the community has been completed in order to illustrate the distribution and the incidence of the basal stem rot disease in 5 locations of the oil palm plantation of the community in Desa Bukit Kijang, Region of Asahan, North Sumatera, Indonesia. From the research, it is revealed that the basal stem rot disease has spread to all of the observed locations with the level of disease incidence between 0.71% in Kebun Bukit Kijang 3 to 50% in the 17 years old oil palm in Kebun Bukit Kijang 4 and Bukit Kijang 5. The observable symptoms of the basal stem rot disease are chlorotic leaves, the appearance of fruiting body, collapsed plants, and the existence of holes on the basal stem. The incidence of basal stem rot disease is higher on land due to a high sand content (>50%).

  17. Relationship between Increase in Astrocytic GLT-1 Glutamate Transport and Late-LTP

    ERIC Educational Resources Information Center

    Pita-Almenar, Juan D.; Zou, Shengwei; Colbert, Costa M.; Eskin, Arnold

    2012-01-01

    Na[superscript +]-dependent high-affinity glutamate transporters have important roles in the maintenance of basal levels of glutamate and clearance of glutamate during synaptic transmission. Interestingly, several studies have shown that basal glutamate transport displays plasticity. Glutamate uptake increases in hippocampal slices during early…

  18. Anti-diabetic effects of DA-11004, a synthetic IDPc inhibitor in high fat high sucrose diet-fed C57BL/6J mice.

    PubMed

    Shin, Chang Yell; Jung, Mi Young; Lee, In Ki; Son, Miwon; Kim, Dong Sung; Lim, Joong In; Kim, Soon Hoe; Yoo, Moohi; Huh, Tae Lin; Sohn, Young Taek; Kim, Won Bae

    2004-01-01

    DA-11004 is a synthetic, potent NADP-dependent isocitrate dehydrogenase (IDPc) inhibitor where IC50 for IDPc is 1.49 microM. The purpose of this study was to evaluate the effects of DA-11004 on the high fat high sucrose (HF)-induced obesity in male C57BL/6J mice. After completing a 8-week period of experimentation, the mice were sacrificed 1 hr after the last DA-11004 treatment and their blood, liver, and adipose tissues (epididymal and retroperitoneal fat) were collected. There was a significant difference in the pattern of increasing body weight between the HF control and the DA-11004 group. In the DA-11004 (100 mg/kg) treated group the increase in body weight significantly declined and a content of epididymal fat and retroperitoneal fat was also significantly decreased as opposed to the HF control. DA-11004 (100 mg/ kg) inhibited the IDPc activity, and thus, NADPH levels in plasma and the levels of free fatty acid (FFA) or glucose in plasma were less than the levels of the HF control group. In conclusion, DA-11004 inhibited the fatty acid synthesis in adipose tissues via IDPc inhibition, and it decreased the plasma glucose levels and FFA in HF diet-induced obesity of C57BL/6J mice.

  19. Gap junctions and other mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet.

    PubMed

    Benninger, R K P; Head, W Steven; Zhang, Min; Satin, Leslie S; Piston, David W

    2011-11-15

    Cell-cell communication in the islet of Langerhans is important for the regulation of insulin secretion. Gap-junctions coordinate oscillations in intracellular free-calcium ([Ca(2+)](i)) and insulin secretion in the islet following elevated glucose. Gap-junctions can also ensure that oscillatory [Ca(2+)](i) ceases when glucose is at a basal levels. We determine the roles of gap-junctions and other cell-cell communication pathways in the suppression of insulin secretion under basal conditions. Metabolic, electrical and insulin secretion levels were measured from islets lacking gap-junction coupling following deletion of connexion36 (Cx36(-/-)), and these results were compared to those obtained using fully isolated β-cells. K(ATP) loss-of-function islets provide a further experimental model to specifically study gap-junction mediated suppression of electrical activity. In isolated β-cells or Cx36(-/-) islets, elevations in [Ca(2+)](i) persisted in a subset of cells even at basal glucose. Isolated β-cells showed elevated insulin secretion at basal glucose; however, insulin secretion from Cx36(-/-) islets was minimally altered. [Ca(2+)](i) was further elevated under basal conditions, but insulin release still suppressed in K(ATP) loss-of-function islets. Forced elevation of cAMP led to PKA-mediated increases in insulin secretion from islets lacking gap-junctions, but not from islets expressing Cx36 gap junctions. We conclude there is a redundancy in how cell-cell communication in the islet suppresses insulin release. Gap junctions suppress cellular heterogeneity and spontaneous [Ca(2+)](i) signals, while other juxtacrine mechanisms, regulated by PKA and glucose, suppress more distal steps in exocytosis. Each mechanism is sufficiently robust to compensate for a loss of the other and still suppress basal insulin secretion.

  20. Monoaminergic Psychomotor Stimulants: Discriminative Stimulus Effects and Dopamine Efflux

    PubMed Central

    Desai, Rajeev I.; Paronis, Carol A.; Martin, Jared; Desai, Ramya

    2010-01-01

    The present studies were conducted to investigate the relationship between discriminative stimulus effects of indirectly acting monoaminergic psychostimulants and their ability to increase extracellular levels of dopamine (DA) in the nucleus accumbens (NAcb) shell. First, the behavioral effects of methamphetamine (MA), cocaine (COC), 1-[2-[bis(4-fluorophenyl-)methoxy]ethyl]-4-(3-phenylpropyl)piperazine (GBR 12909), d-amphetamine, and methylphenidate were established in rats trained to discriminate intraperitoneal injections of 0.3 mg/kg MA from saline. In other studies, in vivo microdialysis was used to determine the effects of MA, COC, and GBR 12909 on extracellular DA levels in the NAcb shell. Results show that all drugs produced dose-related and full substitution for the discriminative stimulus effects of 0.3 mg/kg MA. In microdialysis studies, cumulatively administered MA (0.3–3 mg/kg), COC (3–56 mg/kg), and GBR 12909 (3–30 mg/kg) produced dose-dependent increases in DA efflux in the NAcb shell to maxima of approximately 1200 to 1300% of control values. The increase in DA levels produced by MA and COC was rapid and short-lived, whereas the effect of GBR 12909 was slower and longer lasting. Dose-related increases in MA lever selection produced by MA, COC, and GBR 12909 corresponded with graded increases in DA levels in the NAcb shell. Doses of MA, COC, and GBR 12909 that produced full substitution increased DA levels to approximately 200 to 400% of control values. Finally, cumulatively administered MA produced comparable changes in DA levels in both naive and 0.3 mg/kg MA-trained rats. These latter results suggest that sensitization of DA release does not play a prominent role in the discriminative stimulus effects of psychomotor stimulants. PMID:20190012

  1. Adverse effects of bisphenol A (BPA) on the dopamine system in two distinct cell models and corpus striatum of the Sprague-Dawley rat.

    PubMed

    Nowicki, Brittney A; Hamada, Matt A; Robinson, Gina Y; Jones, Douglas C

    2016-01-01

    The aim of this study was to examine the effects of bisphenol A (BPA) on the brain dopamine (DA) system utilizing both in vitro models (GH3 cells, a rat pituitary cell line, and SH-SY5Y cells, a human neuroblastoma cell line) and an animal model such as Sprague-Dawley (SD) rats. First, cellular DA uptake was measured 2 or 8 h following BPA exposure (0.1-400 μM) in SH-SY5Y cells, where a significant increase in DA uptake was noted. BPA exerted no marked effect on dopamine active transporter levels in GH3 cells exposed for 8 or 24 h. However, SH-SY5Y cells displayed an increase in dopamine transporter (DAT) levels following 24 h of exposure to BPA. In contrast to DAT levels, BPA exposure produced no marked effect on DA D1 receptor levels in SH-SY5Y cells, yet a significant decrease in GH3 cells following both 8- and 24-h exposure periods was noted, suggesting that BPA exerts differential effects dependent upon cell type. BPA produced no significant effects on prolactin levels at 2 h, but a marked fall occurred at 24 h of exposure in GH3 cells. Finally, to examine the influence of dietary developmental exposure to BPA on brain DA levels in F1 offspring, SD rats were exposed to BPA (0.5-20 mg/kg) through maternal transfer and/or diet and striatal DA levels were measured on postnatal day (PND) 60 using high-performance liquid chromatography (HPLC). Data demonstrated that chronic exposure to BPA did not significantly alter striatal DA levels in the SD rat.

  2. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons

    PubMed Central

    Linehan, Victoria; Trask, Robert B.; Briggs, Chantalle; Rowe, Todd M.; Hirasawa, Michiru

    2017-01-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups, where orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying DA action on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using whole cell patch clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration dependent, bidirectional manner. Low (1 μM) and high concentrations (100 μM) of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors, whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. PMID:26036709

  3. ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in Arabidopsis.

    PubMed

    Cecchini, Nicolás M; Jung, Ho Won; Engle, Nancy L; Tschaplinski, Timothy J; Greenberg, Jean T

    2015-04-01

    Robust immunity requires basal defense machinery to mediate timely responses and feedback cycles to amplify defenses against potentially spreading infections. AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1) is needed for the accumulation of the plant defense signal salicylic acid (SA) during the first hours after infection with the pathogen Pseudomonas syringae and is also upregulated by infection and SA. ALD1 is an aminotransferase with multiple substrates and products in vitro. Pipecolic acid (Pip) is an ALD1-dependent bioactive product induced by P. syringae. Here, we addressed roles of ALD1 in mediating defense amplification as well as the levels and responses of basal defense machinery. ALD1 needs immune components PAD4 and ICS1 (an SA synthesis enzyme) to confer disease resistance, possibly through a transcriptional amplification loop between them. Furthermore, ALD1 affects basal defense by controlling microbial-associated molecular pattern (MAMP) receptor levels and responsiveness. Vascular exudates from uninfected ALD1-overexpressing plants confer local immunity to the wild type and ald1 mutants yet are not enriched for Pip. We infer that, in addition to affecting Pip accumulation, ALD1 produces non-Pip metabolites that play roles in immunity. Thus, distinct metabolite signals controlled by the same enzyme affect basal and early defenses versus later defense responses, respectively.

  4. Effects of irradiated Ergosan on the growth performance and mucus biological components of rainbow trout Oncorhynchus mykiss

    NASA Astrophysics Data System (ADS)

    Sheikhzadeh, Najmeh; Chehrara, Fatemeh; Heidarieh, Marzieh; Nofouzi, Katayoon; Baradaran, Behzad

    2016-01-01

    Effects of irradiated and non-irradiated Ergosan extract (alginic acid) on rainbow trout growth performance and skin mucosal immunity were compared. Ergosan was irradiated at 30 kGy in a cobalt-60 irradiator. A total of 252 fish (128.03±9.4 g) were randomly divided into four equal groups, given the basal diet either unsupplemented with Ergosan (control group) or supplemented with crude Ergosan (5 g/kg), ethanol-extracted Ergosan (0.33 g/kg) or irradiated Ergosan (0.33 g/kg) according to this protocol: basal diet for 15 days, treatment diet for 15 days, basal diet for 10 days and treatment diet for 15 days. Highest growth performance was observed in fish fed irradiated Ergosan ( P <0.05). Dietary administration of different Ergosan types did not cause any changes in mucus protein level, but improved alkaline phosphatase level and hemagglutination titer compared with the control (basal diet without Ergosan) on day 55 of feeding trial ( P <0.05). Furthermore, the highest value of lysozyme activity was observed in gamma-irradiated Ergosan on day 55. In conclusion, gamma-irradiated Ergosan at 0.33 g/kg was found to improve growth performance and mucus biological components significantly in comparison with the control group (basal diet without Ergosan).

  5. SLC20A2 DEFICIENCY IN MICE LEADS TO ELEVATED PHOSPHATE LEVELS IN CEREBROSPINAL FLUID AND GLYMPHATIC PATHWAY-ASSOCIATED ARTERIOLAR CALCIFICATION, AND RECAPITULATES HUMAN IDIOPATHIC BASAL GANGLIA CALCIFICATION

    PubMed Central

    Wallingford, MC; Chia, J; Leaf, EM; Borgeia, S; Chavkin, NW; Sawangmake, C; Marro, K; Cox, TC; Speer, MY; Giachelli, CM

    2016-01-01

    Idiopathic basal ganglia calcification is a brain calcification disorder that has been genetically linked to autosomal dominant mutations in the sodium-dependent phosphate co-transporter, SLC20A2. The mechanisms whereby deficiency of Slc20a2 leads to basal ganglion calcification are unknown. In the mouse brain, we found that Slc20a2 was expressed in tissues that produce and/or regulate cerebrospinal fluid, including choroid plexus, ependyma and arteriolar smooth muscle cells. Haploinsufficient Slc20a2 +/− mice developed age-dependent basal ganglia calcification that formed in glymphatic pathway-associated arterioles. Slc20a2 deficiency uncovered phosphate homeostasis dysregulation characterized by abnormally high cerebrospinal fluid phosphate levels and hydrocephalus, in addition to basal ganglia calcification. Slc20a2 siRNA knockdown in smooth muscle cells revealed increased susceptibility to high phosphate-induced calcification. These data suggested that loss of Slc20a2 led to dysregulated phosphate homeostasis and enhanced susceptibility of arteriolar smooth muscle cells to elevated phosphate-induced calcification. Together, dysregulated cerebrospinal fluid phosphate and enhanced smooth muscle cell susceptibility may predispose to glymphatic pathway-associated arteriolar calcification. PMID:26822507

  6. Repression of endogenous Smad7 by Ski.

    PubMed

    Denissova, Natalia G; Liu, Fang

    2004-07-02

    The Ski protein has been proposed to serve as a corepressor for Smad4 to maintain a transforming growth factor-beta (TGF-beta)-responsive promoter at a repressed, basal level. However, there have been no reports so far that it indeed acts on a natural promoter. We have previously cloned the human Smad7 promoter and shown that it contains the 8-base pair palindromic Smad-binding element (SBE) necessary for TGF-beta induction. In this report, we have characterized the negative regulation of Smad7 promoter basal activity by Ski. We show that Ski inhibits the Smad7 promoter basal activity in a SBE-dependent manner. Mutation of the SBE abrogates the inhibitory effect of Ski on the Smad7 promoter. Moreover, mutation of the SBE increases the Smad7 promoter basal activity. Using the chromatin immunoprecipitation assay, we further show that Ski together with Smad4 binds to the endogenous Smad7 promoter. Finally, we show that RNAi knockdown of Ski increases Smad7 reporter gene activity in transient transfection assays as well as elevating the endogenous level of Smad7 mRNA. Taken together, our results provide the first evidence that Ski is indeed a corepressor for Smad4, which can inhibit a natural TGF-beta responsive gene at the basal state.

  7. The effect of extra virgin olive oil and soybean on DNA, cytogenicity and some antioxidant enzymes in rats.

    PubMed

    El-Kholy, Thanaa A; Abu Hilal, Mohammad; Al-Abbadi, Hatim Ali; Serafi, Abdulhalim Salim; Al-Ghamdi, Ahmad K; Sobhy, Hanan M; Richardson, John R C

    2014-06-23

    We investigated the effect of extra virgin (EV) olive oil and genetically modified (GM) soybean on DNA, cytogenicity and some antioxidant enzymes in rodents. Forty adult male albino rats were used in this study and divided into four groups. The control group of rodents was fed basal ration only. The second group was given basal ration mixed with EV olive oil (30%). The third group was fed basal ration mixed with GM (15%), and the fourth group survived on a combination of EV olive oil, GM and the basal ration for 65 consecutive days. On day 65, blood samples were collected from each rat for antioxidant enzyme analysis. In the group fed on basal ration mixed with GM soyabean (15%), there was a significant increase in serum level of lipid peroxidation, while glutathione transferase decreased significantly. Interestingly, GM soyabean increased not only the percentage of micronucleated polychromatic erythrocytes (MPCE), but also the ratio of polychromatic erythrocytes to normochromatic erythrocytes (PEC/NEC); however, the amount of DNA and NCE were significantly decreased. Importantly, the combination of EV olive oil and GM soyabean significantly altered the tested parameters towards normal levels. This may suggest an important role for EV olive oil on rodents' organs and warrants further investigation in humans.

  8. Male sexual behavior and catecholamine levels in the medial preoptic area and arcuate nucleus in middle-aged rats.

    PubMed

    Chen, Joyce C; Tsai, Houng-Wei; Yeh, Kuei-Ying; Tai, Mei-Yun; Tsai, Yuan-Feen

    2007-12-12

    The correlation between male sexual behavior and catecholamine levels in the medial preoptic area (MPOA) and arcuate nucleus (ARN) was studied in middle-aged rats. Male rats (18-19 months) were assigned to three groups: (1) Group MIE, consisting of rats showing mounts, intromissions, and ejaculations; (2) Group MI, consisting of rats showing mounts and intromissions, but no ejaculation; and (3) Group NC, consisting of non-copulators showing no sexual behavior. Young adult rats (4-5 months) displaying complete copulatory behavior were used as the control group. Dopamine (DA) and norepinephrine (NE) tissue levels in the MPOA and ARN were measured by high pressure liquid chromatography with electrochemical detection. There were no differences between MIE rats and young controls in DA or NE tissue levels in these two brain areas. Furthermore, no differences were found between the MI and NC groups in DA or NE tissue levels in either the MPOA or ARN. DA tissue levels in the MPOA and ARN in the MI and NC groups were significantly lower than those in the MIE group. NE tissue levels in the MPOA of the NC group were significantly lower than those in the MIE group, but no differences in NE tissue levels in the ARN were seen between the four groups. These results suggest that, in male rats, complete male sexual performance is related to tissue levels of DA, but not of NE, in the MPOA and/or ARN. Furthermore, ejaculatory behavior might be associated with critical DA tissue levels in the MPOA and/or ARN in middle-aged rats.

  9. The effect of an adverse psychological environment on salivary cortisol levels in the elderly differs by 5-HTTLPR genotype.

    PubMed

    Ancelin, Marie-Laure; Scali, Jacqueline; Norton, Joanna; Ritchie, Karen; Dupuy, Anne-Marie; Chaudieu, Isabelle; Ryan, Joanne

    2017-12-01

    An adverse psychological environment (e.g. stressful events or depression) has been shown to influence basal cortisol levels and cortisol response to stress. This differs depending on the adverse stimuli, but also varies across individuals and may be influenced by genetic predisposition. An insertion/deletion polymorphism in the serotonin transporter gene ( 5-HTTLPR ) is a strong candidate in this regard. To investigate how stressful life events and depression are associated with diurnal cortisol levels in community-dwelling elderly and determine whether this varies according to genetic variability in the 5-HTTLPR . This population-based study included 334 subjects aged 65 and older (mean (SD) = 76.5 (6.3)). Diurnal cortisol was measured on two separate days, under quiet (basal) and stressful conditions. The number of recent major stressful events experienced during the past year was assessed from a 12-item validated questionnaire as an index of cumulative recent stressful events. Lifetime trauma was evaluated using the validated Watson's PTSD inventory, which evaluates the most severe traumatic or frightening experience according to DSM criteria. Depression was defined as having a Mini-International Neuropsychiatric Interview (MINI) diagnosis of current major depressive disorder or high levels of depressive symptoms (Center for Epidemiologic Studies-Depression Scale ≥16). 5-HTTLPR genotyping was performed on blood samples. Exposure to stressful life events was associated with lower basal evening cortisol levels overall, and in the participants with the 5-HTTLPR L allele but not the SS genotype. The greatest effects (over 50% decrease, p < 0.001) were observed for the LL participants having experienced multiple recent stressful events or severe lifetime traumas. Participants with the L allele also had higher evening cortisol stress response. Conversely, depression tended to be associated with a 42% higher basal morning cortisol in the SS participants specifically, but did not modify the association between stressful events and cortisol levels. An adverse psychological environment is associated with basal cortisol levels and cortisol stress response, but this differs according to 5-HTTLPR genotype.

  10. Essential basal cytonemes take up Hedgehog in the Drosophila wing imaginal disc.

    PubMed

    Chen, Weitao; Huang, Hai; Hatori, Ryo; Kornberg, Thomas B

    2017-09-01

    Morphogen concentration gradients that extend across developmental fields form by dispersion from source cells. In the Drosophila wing disc, Hedgehog (Hh) produced by posterior compartment cells distributes in a concentration gradient to adjacent cells of the anterior compartment. We monitored Hh:GFP after pulsed expression, and analyzed the movement and colocalization of Hh, Patched (Ptc) and Smoothened (Smo) proteins tagged with GFP or mCherry and expressed at physiological levels from bacterial artificial chromosome transgenes. Hh:GFP moved to basal subcellular locations prior to release from posterior compartment cells that express it, and was taken up by basal cytonemes that extend to the source cells. Hh and Ptc were present in puncta that moved along the basal cytonemes and formed characteristic apical-basal distributions in the anterior compartment cells. The basal cytonemes required diaphanous , SCAR , N euroglian and S ynaptobrevin , and both the Hh gradient and Hh signaling declined under conditions in which the cytonemes were compromised. These findings show that in the wing disc, Hh distributions and signaling are dependent upon basal release and uptake, and on cytoneme-mediated movement. No evidence for apical dispersion was obtained. © 2017. Published by The Company of Biologists Ltd.

  11. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity

    USGS Publications Warehouse

    Lefebvre, Kathi A.; Frame, Elizabeth R.; Gulland, Frances; Hansen, John D.; Kendrick, Preston S.; Beyer, Richard P.; Bammler, Theo K.; Farin, Frederico M.; Hiolski, Emma M.; Smith, Donald R.; Marcinek, David J.

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.

  12. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity.

    PubMed

    Lefebvre, Kathi A; Frame, Elizabeth R; Gulland, Frances; Hansen, John D; Kendrick, Preston S; Beyer, Richard P; Bammler, Theo K; Farin, Frederico M; Hiolski, Emma M; Smith, Donald R; Marcinek, David J

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.

  13. Real-world clinical responses in patients with type 2 diabetes mellitus adding exenatide BID (EBID) or mealtime insulin to basal insulin: a retrospective study using electronic medical record data.

    PubMed

    Lang, Kathleen; Nguyen, Hiep; Huang, Huan; Bauer, Elise; Levin, Philip

    2018-06-01

    Exenatide twice daily (EBID) and mealtime insulin are effective add-on therapies to basal insulin for type 2 diabetes patients in clinical trials. This study used electronic medical record (EMR) data to evaluate analogous real-world clinical responses. Adult patients initiating EBID or mealtime insulin as add-on to basal insulin during January 2008-March 2013 were identified in a US EMR database. EBID patients were propensity score matched 1:1 to mealtime insulin patients. Cohorts were followed for 12 months before (baseline) and 6 months after the index. A1C, hypoglycemic events, change in weight, and other clinical measures were evaluated by A1C attainment level (<6.5, < 7, < 7.5, <8, <9%) and baseline A1C. In total, 1249 EBID patients were matched to 1249 mealtime insulin patients. During follow-up, the percentage reaching A1C levels was similar for EBID vs mealtime insulin cohorts for all attainment levels (<7%: 27.8% vs 24.2%; < 9%: 79.7% vs 79.2%; p = NS). The percentage reaching A1C < 7% was similar for both cohorts with different baseline A1C. EBID patients had less hypoglycemia at all attainment levels (3.1% vs 11.1% [<6.5%]; 2.5% vs 4.7% [<9%]; all p < .03) and more weight loss (-9.0 vs -3.2 lb [<6.5%]; -3.4 vs +0.8 lb [<9%]; all p < .01). EBID added to basal insulin was as effective in a real-world setting as mealtime insulin added to basal insulin in reducing A1C, with less weight gain and less hypoglycemia for a wide range of A1C attainment levels and baseline values.

  14. Evaluating the influence of National Research Council levels of copper, iron, manganese, and zinc using organic (Bioplex) minerals on resulting tissue mineral concentrations, metallothionein, and liver antioxidant enzymes in grower-finisher swine diets.

    PubMed

    Gowanlock, D W; Mahan, D C; Jolliff, J S; Hill, G M

    2015-03-01

    Graded levels of a trace mineral premix containing an organic (Bioplex) source of Cu, Fe, Mn, and Zn was evaluated with additional treatments containing organic Zn or Fe. Grower-finisher pigs were fed from 25 to 115 kg BW. The number of pigs in the experiment, the breeding/genetics of the pigs, the management, and the average age of the pigs were previously reported. The experiment was conducted as a randomized complete block design in 7 replicates. Treatments were 1) basal diet without supplemental Cu, Fe, Mn, and Zn; 2) basal diet + 2.5 mg/kg Cu, 50 mg/kg Fe, 1.5 mg/kg Mn, and 40 mg/kg Zn (50% NRC); 3) basal diet + 5 mg/kg Cu, 100 mg/kg Fe, 3 mg/kg Mn, and 80 mg/kg Zn (100% NRC); 4) basal diet + 25 mg Zn/kg; 5) basal diet + 50 mg Zn/kg; and 6) basal diet + 50 mg Fe/kg. Selenium and I were added to all diets at 0.3 and 0.14 mg/kg, respectively. Diets were composed of corn-soybean meal, dicalcium phosphate, and limestone with phytase added to enhance mineral availability. Three pigs per pen were bled at 55, 80, and 115 kg BW and plasma was analyzed for microminerals. When the average replicate BW was 115 kg, 3 pigs per pen of an equal gender ratio were killed. The liver, kidney, and heart were removed and analyzed for microminerals. Liver, duodenum, and jejunal metallothionein and the antioxidant enzymes in the liver containing these microminerals were determined. The results demonstrated that plasma minerals were unaffected at the 3 BW intervals. Liver and duodenum metallothionein protein were greater ( < 0.05) as dietary micromineral levels increased but jejunum metallothionein did not change as microminerals increased. The activity of Cu/Zn superoxide dismutase (SOD) was not affected as the levels of the micromineral increased, whereas the activity of Mn SOD increased slightly ( < 0.05) to the 50% NRC treatment level. Liver Zn (relative and total) increased ( < 0.05) as dietary micromineral levels increased and also when Zn was added singly to the diet. Liver, kidney, and heart Cu and Mn concentrations were similar at the various micromineral levels. The activities of liver enzymes containing graded levels of Zn were not affected by dietary microminerals at 115 kg BW. These results indicate that the supplemental levels of Cu, Fe, and Mn were not necessary for grower-finisher pigs and that these innate microminerals in a corn-soybean meal diet were adequate, whereas a need for supplemental Zn was demonstrated.

  15. p53 and PCNA Expression in Keratocystic Odontogenic Tumors Compared with Selected Odontogenic Cysts

    PubMed Central

    Seyedmajidi, Maryam; Nafarzadeh, Shima; Siadati, Sepideh; Shafaee, Shahryar; Bijani, Ali; Keshmiri, Nazanin

    2013-01-01

    p53 and PCNA expression in keratocystic odontogenic tumors compared with selected odontogenic cysts Summary: The aim of this study was to evaluate p53 and PCNA expression in different odontogenic lesions regarding their different clinical behaviors. Slices prepared from 94 paraffin-embedded tissue blocks (25 radicular cysts (RC), 23 dentigerous cysts (DC), 23 keratocystic odontogenic tumors (KCOT) and 23 calcifying cystic odontogenic tumors (CCOT)) were stained with p53 and PCNA antibodies using immunohistochemistry procedure. The highest level of p53 expression was in the basal layer of RC, and the highest level of PCNA expression was in the suprabasal layer of KCOT. The differences of p53 expression in basal and suprabasal layers as well as PCNA expression in the suprabasal layer were significant but there was no significant difference in PCNA expression in the basal layer of these lesions. The expression of p53 in the basal layer of RC was higher than in other cysts. This may be due to intensive inflammatory infiltration. Also, the high level of PCNA expression in the suprabasal layer of KCOT may justify its neoplastic nature and tendency to recurrence. KCOT and calcifying cystic odontogenic tumors did not show similar expression of studied biomarkers. PMID:24551811

  16. Light Effects on Behavioural Performance Depend on the Individual State of Vigilance

    PubMed Central

    Barba, Antonio; Padilla, Francisca

    2016-01-01

    Research has shown that exposure to bright white light or blue-enriched light enhances alertness, but this effect is not consistently observed in tasks demanding high-level cognition (e.g., Sustained Attention to Response Task—SART, which measures inhibitory control). Individual differences in sensitivity to light effects might be mediated by variations in the basal level of arousal. We tested this hypothesis by measuring the participants’ behavioural state of vigilance before light exposure, through the Psychomotor Vigilance Task. Then we compared the effects of a blue-enriched vs. dim light at nighttime on the performance of the auditory SART, by controlling for individual differences in basal arousal. The results replicated the alerting effects of blue-enriched light, as indexed by lower values of both proximal temperature and distal-proximal gradient. The main finding was that lighting effects on SART performance were highly variable across individuals and depended on their prior state of vigilance. Specifically, participants with higher levels of basal vigilance before light exposure benefited most from blue-enriched lighting, responding faster in the SART. These results highlight the importance of considering basal vigilance to define the boundary conditions of light effects on cognitive performance. Our study adds to current research delineating the complex and reciprocal interactions between lighting effects, arousal, cognitive task demands and behavioural performance. PMID:27820822

  17. Light Effects on Behavioural Performance Depend on the Individual State of Vigilance.

    PubMed

    Correa, Ángel; Barba, Antonio; Padilla, Francisca

    2016-01-01

    Research has shown that exposure to bright white light or blue-enriched light enhances alertness, but this effect is not consistently observed in tasks demanding high-level cognition (e.g., Sustained Attention to Response Task-SART, which measures inhibitory control). Individual differences in sensitivity to light effects might be mediated by variations in the basal level of arousal. We tested this hypothesis by measuring the participants' behavioural state of vigilance before light exposure, through the Psychomotor Vigilance Task. Then we compared the effects of a blue-enriched vs. dim light at nighttime on the performance of the auditory SART, by controlling for individual differences in basal arousal. The results replicated the alerting effects of blue-enriched light, as indexed by lower values of both proximal temperature and distal-proximal gradient. The main finding was that lighting effects on SART performance were highly variable across individuals and depended on their prior state of vigilance. Specifically, participants with higher levels of basal vigilance before light exposure benefited most from blue-enriched lighting, responding faster in the SART. These results highlight the importance of considering basal vigilance to define the boundary conditions of light effects on cognitive performance. Our study adds to current research delineating the complex and reciprocal interactions between lighting effects, arousal, cognitive task demands and behavioural performance.

  18. Distinct effects of ketamine and acetyl l-carnitine on the dopamine system in zebrafish

    PubMed Central

    Robinson, Bonnie L.; Dumas, Melanie; Cuevas, Elvis; Gu, Qiang; Paule, Merle G.; Ali, Syed F.; Kanungo, Jyotshna

    2016-01-01

    Ketamine, a noncompetitive N-methyl-d-aspartic acid (NMDA) receptor antagonist is commonly used as a pediatric anesthetic. We have previously shown that acetyl L-carnitine (ALCAR) prevents ketamine toxicity in zebrafish embryos. In mammals, ketamine is known to modulate the dopaminergic system. NMDA receptor antagonists are considered as promising anti-depressants, but the exact mechanism of their function is unclear. Here, we measured the levels of dopamine (DA) and its metabolites, 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the zebrafish embryos exposed to ketamine in the presence and absence of 0.5 mM ALCAR. Ketamine, at lower doses (0.1–0.3 mM), did not produce significant changes in DA, DOPAC or HVA levels in 52 h post-fertilization embryos treated for 24 h. In these embryos, tyrosine hydroxylase (TH) mRNA expression remained unchanged. However, 2 mM ketamine (internal embryo exposure levels equivalent to human anesthetic plasma concentration) significantly reduced DA level and TH mRNA indicating that DA synthesis was adversely affected. In the presence or absence of 2 mM ketamine, ALCAR showed similar effects on DA level and TH mRNA, but increased DOPAC level compared to control. ALCAR reversed 2 mM ketamine-induced reduction in HVA levels. With ALCAR alone, the expression of genes encoding the DA metabolizing enzymes, MAO (monoamine oxidase) and catechol-O-methyltransferase (COMT), was not affected. However, ketamine altered MAO mRNA expression, except at the 0.1 mM dose. COMT transcripts were reduced in the 2 mM ketamine-treated group. These distinct effects of ketamine and ALCAR on the DA system may shed some light on the mechanism on how ketamine can work as an anti-depressant, especially at sub-anesthetic doses that do not affect DA metabolism and suppress MAO gene expression. PMID:26898327

  19. Measurement of Lactate Content and Amide Proton Transfer Values in the Basal Ganglia of a Neonatal Piglet Hypoxic-Ischemic Brain Injury Model Using MRI.

    PubMed

    Zheng, Y; Wang, X-M

    2017-04-01

    As amide proton transfer imaging is sensitive to protein content and intracellular pH, it has been widely used in the nervous system, including brain tumors and stroke. This work aimed to measure the lactate content and amide proton transfer values in the basal ganglia of a neonatal piglet hypoxic-ischemic brain injury model by using MR spectroscopy and amide proton transfer imaging. From 58 healthy neonatal piglets (3-5 days after birth; weight, 1-1.5 kg) selected initially, 9 piglets remained in the control group and 43 piglets, in the hypoxic-ischemic brain injury group. Single-section amide proton transfer imaging was performed at the coronal level of the basal ganglia. Amide proton transfer values of the bilateral basal ganglia were measured in all piglets. The ROI of MR spectroscopy imaging was the right basal ganglia, and the postprocessing was completed with LCModel software. After hypoxic-ischemic insult, the amide proton transfer values immediately decreased, and at 0-2 hours, they remained at their lowest level. Thereafter, they gradually increased and finally exceeded those of the control group at 48-72 hours. After hypoxic-ischemic insult, the lactate content increased immediately, was maximal at 2-6 hours, and then gradually decreased to the level of the control group. The amide proton transfer values were negatively correlated with lactate content ( r = -0.79, P < .05). This observation suggests that after hypoxic-ischemic insult, the recovery of pH was faster than that of lactate homeostasis. © 2017 by American Journal of Neuroradiology.

  20. Endocrine Secretory Reserve and Proinsulin Processing in Recipients of Islet of Langerhans Versus Whole Pancreas Transplants

    PubMed Central

    Elkhafif, Nabeel M.; Borot, Sophie; Morel, Philippe; Demuylder-Mischler, Sandrine; Giovannoni, Laurianne; Toso, Christian; Bosco, Domenico; Berney, Thierry

    2013-01-01

    OBJECTIVE β-Cells have demonstrated altered proinsulin processing after islet transplantation. We compare β-cell metabolic responses and proinsulin processing in pancreas and islet transplant recipients with respect to healthy control subjects. RESEARCH DESIGN AND METHODS We studied 15 islet and 32 pancreas transplant recipients. Islet subjects were subdivided into insulin-requiring (IR-ISL, n = 6) and insulin-independent (II-ISL, n = 9) groups. Ten healthy subjects served as control subjects. Subjects were administered an intravenous arginine stimulation test, and insulin, C-peptide, total proinsulin, intact proinsulin, and proinsulin fragment levels were determined from serum samples. Acute insulin response (AIR) and proinsulin processing rates were calculated. RESULTS We found that basal insulin and C-peptide levels were higher in the pancreas group than in all other groups. II-ISL patients had basal insulin and C-peptide levels similar to healthy control subjects. The IR-ISL group had significantly lower AIRs than all other groups. Basal processing rates were higher in the pancreas and II-ISL groups than in healthy control subjects and the IR-ISL group. After arginine stimulation, all groups had elevated processing rates, with the exception of the IR-ISL group. CONCLUSIONS Our data suggest that II-ISL transplant recipients can maintain basal metabolic parameters similar to healthy control subjects at the cost of a higher rate of proinsulin processing. IR-ISL transplant recipients, on the other hand, demonstrate both lower insulin response and lower basal rates of proinsulin processing even after arginine stimulation. PMID:24041681

  1. Does systemic steroid deficiency affect inner ear functions?

    PubMed

    Dogan, Remzi; Merıc, Ayşenur; Gedık, Ozge; Tugrul, Selahattin; Eren, Sabri Baki; Ozturan, Orhan

    2015-01-01

    Today corticosteroids are employed for the treatment of various inner ear disorders. In this study we have investigated probable changes in hearing functions resulting from a deficiency of systemic steroid secretions. Twenty four healthy female rats were used in our study, allocated into three groups (medical adrenalectomy, medical adrenalectomy+dexamethasone, no treatment). Audiological evaluations were conducted at the beginning of the study and on days 7, 14 and 21. Blood samples were taken at the beginning and at the end of the study and blood corticosterone levels were determined. While there were no significant differences between the basal, 7th, 14th and 21st day DPOAE values of group 1, their ABR threshold values showed significant increases. In group 2, there were no significant differences between the basal, 7th, 14th and 21st day DPOAE values. ABR thresholds of group 2 showed significant increases on days 7 and 14 as compared to their basal values, but there were no significant differences between the 21st day and basal ABR threshold values. There were no significant differences between the basal cortisol levels of the three groups. The mean cortisol level of group 1 on day 21 was found to be significantly lower than those of groups 2 and 3. The results of the study demonstrated that there were no significant changes in DPOAE values with the cessation of cortisol secretion, while there was a progressive increase in ABR thresholds, which could be overcome with cortisone replacement. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex.

    PubMed

    Caligiore, Daniele; Pezzulo, Giovanni; Baldassarre, Gianluca; Bostan, Andreea C; Strick, Peter L; Doya, Kenji; Helmich, Rick C; Dirkx, Michiel; Houk, James; Jörntell, Henrik; Lago-Rodriguez, Angel; Galea, Joseph M; Miall, R Chris; Popa, Traian; Kishore, Asha; Verschure, Paul F M J; Zucca, Riccardo; Herreros, Ivan

    2017-02-01

    Despite increasing evidence suggesting the cerebellum works in concert with the cortex and basal ganglia, the nature of the reciprocal interactions between these three brain regions remains unclear. This consensus paper gathers diverse recent views on a variety of important roles played by the cerebellum within the cerebello-basal ganglia-thalamo-cortical system across a range of motor and cognitive functions. The paper includes theoretical and empirical contributions, which cover the following topics: recent evidence supporting the dynamical interplay between cerebellum, basal ganglia, and cortical areas in humans and other animals; theoretical neuroscience perspectives and empirical evidence on the reciprocal influences between cerebellum, basal ganglia, and cortex in learning and control processes; and data suggesting possible roles of the cerebellum in basal ganglia movement disorders. Although starting from different backgrounds and dealing with different topics, all the contributors agree that viewing the cerebellum, basal ganglia, and cortex as an integrated system enables us to understand the function of these areas in radically different ways. In addition, there is unanimous consensus between the authors that future experimental and computational work is needed to understand the function of cerebellar-basal ganglia circuitry in both motor and non-motor functions. The paper reports the most advanced perspectives on the role of the cerebellum within the cerebello-basal ganglia-thalamo-cortical system and illustrates other elements of consensus as well as disagreements and open questions in the field.

  3. Interaction of basal foliage removal and late season fungicide applications in management of Hop powdery mildew

    USDA-ARS?s Scientific Manuscript database

    Experiments were conducted over three years to evaluate whether fungicide applications could be ceased after the most susceptible stages of cone development (late July) without unduly affecting crop yield and quality when disease pressure was moderated with varying levels of basal foliage removal. I...

  4. Endogenous 17β-estradiol is required for activity-dependent long-term potentiation in the striatum: interaction with the dopaminergic system

    PubMed Central

    Tozzi, Alessandro; de Iure, Antonio; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Giampà, Carmela; Di Mauro, Michela; Mazzocchetti, Petra; Costa, Cinzia; Di Filippo, Massimiliano; Grassi, Silvarosa; Pettorossi, Vito Enrico; Calabresi, Paolo

    2015-01-01

    17β-estradiol (E2), a neurosteroid synthesized by P450-aromatase (ARO), modulates various brain functions. We characterized the role of the locally synthesized E2 on striatal long-term synaptic plasticity and explored possible interactions between E2 receptors (ERs) and dopamine (DA) receptors in the dorsal striatum of adult male rats. Inhibition of E2 synthesis or antagonism of ERs prevented the induction of long-term potentiation (LTP) in both medium spiny neurons (MSNs) and cholinergic interneurons (ChIs). Activation of a D1-like DA receptor/cAMP/PKA-dependent pathway restored LTP. In MSNs exogenous E2 reversed the effect of ARO inhibition. Also antagonism of M1 muscarinic receptors prevented the D1-like receptor-mediated restoration of LTP confirming a role for ChIs in controlling the E2-mediated LTP of MSNs. A novel striatal interaction, occurring between ERs and D1-like receptors in both MSNs and ChIs, might be critical to regulate basal ganglia physiology and to compensate synaptic alterations in Parkinson’s disease. PMID:26074768

  5. Endogenous 17β-estradiol is required for activity-dependent long-term potentiation in the striatum: interaction with the dopaminergic system.

    PubMed

    Tozzi, Alessandro; de Iure, Antonio; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Giampà, Carmela; Di Mauro, Michela; Mazzocchetti, Petra; Costa, Cinzia; Di Filippo, Massimiliano; Grassi, Silvarosa; Pettorossi, Vito Enrico; Calabresi, Paolo

    2015-01-01

    17β-estradiol (E2), a neurosteroid synthesized by P450-aromatase (ARO), modulates various brain functions. We characterized the role of the locally synthesized E2 on striatal long-term synaptic plasticity and explored possible interactions between E2 receptors (ERs) and dopamine (DA) receptors in the dorsal striatum of adult male rats. Inhibition of E2 synthesis or antagonism of ERs prevented the induction of long-term potentiation (LTP) in both medium spiny neurons (MSNs) and cholinergic interneurons (ChIs). Activation of a D1-like DA receptor/cAMP/PKA-dependent pathway restored LTP. In MSNs exogenous E2 reversed the effect of ARO inhibition. Also antagonism of M1 muscarinic receptors prevented the D1-like receptor-mediated restoration of LTP confirming a role for ChIs in controlling the E2-mediated LTP of MSNs. A novel striatal interaction, occurring between ERs and D1-like receptors in both MSNs and ChIs, might be critical to regulate basal ganglia physiology and to compensate synaptic alterations in Parkinson's disease.

  6. Salt Marsh Formation in the Lower Hudson River Estuary

    NASA Technical Reports Server (NTRS)

    Merley, Michael; Peteet, Dorothy; Hansen, James E. (Technical Monitor)

    2001-01-01

    Salt marshes are constant depositional environments and as a result contain accurate indicators of past relative sea level rise and salinity. The Hudson River marshes are at least twice as deep when compared to coastal marshes on either side of the mouth of the Hudson. The reason for this difference in sedimentation is unclear. This study uses macrofossil data as well as sediment stratigraphy in order to understand the formation and evolution of these marshes. The composition of seeds, roots, shoots and foraminifera, are used to indicate past sea levels. The four sites involved in this study are, from south to north, the Arthur Kill Marsh in Staten Island (40 36 N, 74 77W), Piermont marsh (N 4100; 73 55W) Croton Point (41 14 N; 73 50W) and Iona Island (41 18N, 73 58W). These are all tidally influenced but with increasing distances from the New York Bight, which gives a good spectrum of tidal influence. AMS-C14 dates on basal macrofossils will document the time of each marsh formation. Basal material from Arthur Kill (8 m) includes freshwater seeds such as Viola, Potomageton and Alnus along with Salix buds. Basal material from Croton Point (10 m) includes fibrous woody material, foraminifera and Zanichellia seeds and other brackish vegetational components. The basal material from Piermont (13.77 m) is lacking any identifiable macrofossils between 150 and 500 microns. The basal material from Iona Island (10 m) has vegetation such as Scirpus and Cyperus seeds, probably implying a brackish environment. The freshwater origin of the Arthur Kill marsh in Staten Island is significant because it predates either sea level rise or the western channel incision. Additional implications for this study include evidence for changes in river channel geomorphology. Reasons for the relatively deeper river marshes include possible basal clay compaction, high production due to river and marine nutrients as well as tectonic activity. This study provides the groundwork for more high-resolution studies of these marshes to understand the fluctuations in salinity caused by relative sea level rise, tectonic faulting and/or changes in precipitation/evaporation.

  7. Altered cellular magnesium responsiveness to hyperglycemia in hypertensive subjects.

    PubMed

    Barbagallo, M; Dominguez, L J; Bardicef, O; Resnick, L M

    2001-09-01

    Previous studies by our group have identified ionic aspects of insulin resistance in hypertension, in which cellular responses to insulin were influenced by the basal intracellular ionic environment-the lower the cytosolic free magnesium (Mg(i)), the less Mg(i) increased following insulin stimulation. To investigate whether this ionic insulin resistance represents a more general abnormality of cellular responsiveness in hypertension, we studied Mg(i) responses to nonhormonal signals such as hyperglycemia (15 mmol/L) and used (31)P-nuclear magnetic resonance (NMR) spectroscopy to measure Mg(i) in erythrocytes from normal (NL, n=14) and hypertensive (HTN, n=12) subjects before and 30, 60, 120, and 180 minutes after in vitro glucose incubations. Basal Mg(i) levels were significantly lower in HTN subjects than in NL subjects (169+/-10 versus 205+/-8 micromol.L(-1), P<0.01). In NL cells, hyperglycemia significantly lowered Mg(i), from 205+/-8 micromol.L(-1) (basal, T=0) to 181+/-8, 162+/-6, 152+/-7, and 175+/-9 micromol.L(-1) (T=30, 60, 120, and 180, respectively; P<0.005 versus T=0 at all times). In HTN cells, maximal Mg(i) responses to hyperglycemia were blunted, from 169+/-10 micromol.L(-1) (basal, T=0) to 170+/-11, 179+/-12, 181+/-14, and 173+/-15 micromol.L(-1) (T=30, 60, 120, and 180, respectively; P=NS versus T=0 at all times). For all subjects, Mg(i) responses to hyperglycemia were closely related to basal Mg(i) levels: the higher the Mg(i), the greater the response (n=26, r=0.620, P<0.001). Thus, (1) erythrocytes from hypertensive vis-à-vis normotensive subjects are resistant to the ionic effects of extracellular hyperglycemia on Mg(i) levels, and (2) cellular ionic responses to glucose depend on the basal Mg(i) environment. Altogether, these data support a role for altered extracellular glucose levels in regulating cellular magnesium metabolism and also suggest the importance of ionic factors in determining cellular responsiveness to nonhormonal as well as hormonal signals.

  8. Methylphenidate and Cocaine Self-Administration Produce Distinct Dopamine Terminal Alterations

    PubMed Central

    Calipari, Erin S.; Ferris, Mark J.; Melchior, James R.; Bermejo, Kristel; Salahpour, Ali; Roberts, David C. S.; Jones, Sara R.

    2012-01-01

    Methylphenidate (MPH) is a commonly abused psychostimulant prescribed for the treatment of attention deficit hyperactivity disorder. MPH has a mechanism of action similar to cocaine (COC) and is commonly characterized as a dopamine transporter (DAT) blocker. While there has been extensive work aimed at understanding dopamine (DA) nerve terminal changes following COC self-administration, very little is known about the effects of MPH self-administration on the DA system. We used fast scan cyclic voltammetry in nucleus accumbens core slices from animals with a five-day self-administration history of 40 injections/day of either MPH (0.56 mg/kg) or COC (1.5 mg/kg) to explore alterations in baseline DA release and uptake kinetics as well as alterations in the interaction of each compound with the DAT. Although MPH and COC have similar behavioral effects, the consequences of self-administration on DA system parameters were found to be divergent. We show that COC self-administration reduced DAT levels and maximal rates of DA uptake, as well as reducing electrically stimulated release, suggesting decreased DA terminal function. In contrast, MPH self-administration increased DAT levels, DA uptake rates, and DA release, suggesting enhanced terminal function, which was supported by findings of increased metabolite/DA tissue content ratios. Tyrosine hydroxylase mRNA, protein and phosphorylation levels were also assessed in both groups. Additionally, COC self-administration reduced COC-induced DAT inhibition, while MPH self-administration increased MPH-induced DAT inhibition, suggesting opposite pharmacodynamic effects of these two drugs. These findings suggest that the factors governing DA system adaptations are more complicated than simple DA uptake blockade. PMID:22458761

  9. [Calcitonin physiologically regulates the postmenopausal bone loss and possibly inhibits the bone loss in fast losers].

    PubMed

    Chen, J T; Shiraki, M; Katase, K; Kato, T; Hirai, Y; Hasumi, K

    1994-10-01

    To study the correlation between the basal serum calcitonin level and L2-4 bone mineral density (BMD), a cross sectional study of 384 healthy subjects (106 premenopausal, 88 perimenopausal and 109 postmenopausal subjects) and a longitudinal study of 42 oophorectomized subjects were conducted. A positive correlation was found in perimenopause (r = 0.219, p = 0.040) but not in premenopause (r = 0.069, p = 0.4898) and postmenopause (r = 0.141, p = 0.0554) in a cross sectional study. The percent reduction in L2-4BMD compared to the baseline also correlated with preoperative calcitonin levels at 6 months after oophorectomy (r = 0.333, p = 0.0442), but not significantly at 12 months (r = 0.224, p = 0.27). These data suggest that the basal calcitonin level correlates to L2-4BMD only at perimenopause or in the early postoophorectomized period when bone turnover is accelerated and bone resorption seems to be faster than bone formation. In addition the premenopausal basal calcitonin level may be an indicator of the fast loser after menopause.

  10. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons.

    PubMed

    Linehan, Victoria; Trask, Robert B; Briggs, Chantalle; Rowe, Todd M; Hirasawa, Michiru

    2015-08-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Physiological plasticity related to zonation affects hsp70 expression in the reef-building coral Pocillopora verrucosa

    PubMed Central

    Poli, Davide; Fabbri, Elena; Goffredo, Stefano; Airi, Valentina

    2017-01-01

    This study investigates for the first time the transcriptional regulation of a stress-inducible 70-kDa heat shock protein (hsp70) in the scleractinian coral Pocillopora verrucosa sampled at three locations and two depths (3 m and 12 m) in Bangka Island waters (North Sulawesi, Indonesia). Percentage of coral cover indicated reduced habitat suitability with depth and at the Tanjung Husi (TA) site, which also displayed relatively higher seawater temperatures. Expression of the P. verrucosa hsp70 transcript evaluated under field conditions followed a depth-related profile, with relatively higher expression levels in 3-m collected nubbins compared to the 12-m ones. Expression levels of metabolism-related transcripts ATP synthase and NADH dehydrogenase indicated metabolic activation of nubbins to cope with habitat conditions of the TA site at 3 m. After a 14-day acclimatization to common and fixed temperature conditions in the laboratory, corals were subjected for 7 days to an altered thermal regime, where temperature was elevated at 31°C during the light phase and returned to 28°C during the dark phase. Nubbins collected at 12 m were relatively more sensitive to thermal stress, as they significantly over-expressed the selected transcripts. Corals collected at 3 m appeared more resilient, as they showed unaffected mRNA expressions. The results indicated that local habitat conditions may influence transcription of stress-related genes in P. verrucosa. Corals exhibiting higher basal hsp70 levels may display enhanced tolerance towards environmental stressors. PMID:28199351

  12. Thioredoxin-1 promotes survival in cells exposed to S-nitrosoglutathione: Correlation with reduction of intracellular levels of nitrosothiols and up-regulation of the ERK1/2 MAP Kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Roberto J.; Ogata, Fernando T.; Batista, Wagner L.

    2008-12-01

    Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects ofmore » GSNO on decreasing TRX-1 expression, activation of caspase-3, and increasing cell death. The over-expression of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. In cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitrosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases.« less

  13. Metabolite alterations in basal ganglia associated with methamphetamine-related psychiatric symptoms. A proton MRS study.

    PubMed

    Sekine, Yoshimoto; Minabe, Yoshio; Kawai, Masayoshi; Suzuki, Katsuaki; Iyo, Masaomi; Isoda, Haruo; Sakahara, Harumi; Ashby, Charles R; Takei, Nori; Mori, Norio

    2002-09-01

    Following the chronic use of methamphetamine, some individuals experience psychosis and anxiety. One reason may be the persistence of metabolite abnormalities in the brain of currently abstinent former methamphetamine users. In this study, N-acetylaspartate (NAA), creatine plus phosphocreatine (Cr+PCr), and choline-containing compound (Cho) levels were measured in the left and right basal ganglia using proton magnetic resonance spectroscopy (MRS) in 13 abstinent methamphetamine users and 11 healthy comparison subjects with no history of illicit drug use. The methamphetamine users showed a significantly reduced Cr+PCr/Cho ratio in the bilateral basal ganglia compared with the healthy comparison subjects. Furthermore, the reduction in the Cr+PCr/Cho ratio was significantly correlated with the duration of methamphetamine use and with the severity of residual psychiatric symptoms. NAA/Cho ratios in the bilateral basal ganglia did not significantly differ between methamphetamine users and comparison subjects. These findings suggest that protracted use of methamphetamine may cause metabolite alterations in the basal ganglia. Furthermore, residual psychiatric symptoms may be attributable to the metabolite alterations in the basal ganglia.

  14. A Mid-Holocene Relative Sea-Level Stack, New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Horton, B.; Walker, J. S.; Kemp, A.; Shaw, T. J.; Kopp, R. E.

    2017-12-01

    Most high resolution (decimeter- and decadal-scale) relative sea-level (RSL) records using salt-marsh microfossils as a proxy only extend through the Common Era, limiting our understanding of driving mechanisms of RSL change and how sea-level is influenced by changing climate. Records beyond the Common Era are limited by the depth of continuous sequences of salt-marsh peat suitable for high resolution reconstructions, as well as contamination by local processes such as sediment compaction. In contrast, sequences of basal peats have produced compaction-free RSL records through the Holocene, but at a low resolution (meter- and centennial-scale). We devise a new Multi-Proxy Presence/Absence Method (MP2AM) to develop a mid-Holocene RSL stack. We stack a series of 1 m basal peat cores that overlap along a uniform elevational gradient above an incompressible basal sand. We analyzed three sea-level indicators from 14 cores: foraminifera, testate amoebae, and stable carbon isotope geochemistry. To reconstruct RSL, this multi-proxy approach uses the timesaving presence/absence of forams and testates to determine the elevation of the highest occurrence of forams and the lowest occurrence of testates in each basal core. We use stable carbon isotope geochemistry to determine the C3/C4 vegetation boundary in each core. We develop age-depth models for each core using a series of radiocarbon dates. The RSL records from each 1 m basal core are combined to create a stack or, in effect, one long core of salt-marsh material. This method removes the issue of compaction to create a continuous RSL record to address temporal changes and periods of climate and sea-level variability. We reconstruct a southern NJ mid-Holocene RSL record from Edwin B. Forsythe National Wildlife Refuge, where Kemp et al. (2013) completed a 2500 yr RSL record using a foraminifera-based transfer function approach. Preliminary radiocarbon dates suggest the basal sequence is at least 4246-4408 cal yrs BP. Presence/absence of forams and testates and the transition of C3/C4 vegetation is identified in each core and constrained with radiocarbon dating. A short core with full counts of forams and testates is used to test the new method and compare with the traditional foraminifera-based transfer function approach and the local tide gauge record.

  15. Serotonin System Implication in l-DOPA-Induced Dyskinesia: From Animal Models to Clinical Investigations

    PubMed Central

    Carta, Manolo; Tronci, Elisabetta

    2014-01-01

    In the recent years, the serotonin system has emerged as a key player in the induction of l-DOPA-induced dyskinesia (LID) in animal models of Parkinson’s disease. In fact, serotonin neurons possess the enzymatic machinery able to convert exogenous l-DOPA to dopamine (DA), and mediate its vesicular storage and release. However, serotonin neurons lack a feedback control mechanism able to regulate synaptic DA levels. While in a situation of partial DA depletion spared DA terminals can buffer DA released from serotonin neurons, the progression of DA neuron degeneration impairs this protective mechanism, causing swings in synaptic DA levels and pulsatile stimulation of post-synaptic DA receptors. In line with this view, removal of serotonin neurons by selective toxin, or pharmacological silencing of their activity, produced complete suppression of LID in animal models of Parkinson’s disease. In this article, we will revise the experimental evidence pointing to the important role of serotonin neurons in dyskinesia, and we will discuss the clinical implications. PMID:24904522

  16. Tazarotene-induced gene 3 is suppressed in basal cell carcinomas and reversed in vivo by tazarotene application.

    PubMed

    Duvic, Madeleine; Ni, Xiao; Talpur, Rakhashandra; Herne, Kelly; Schulz, Claudia; Sui, Dawen; Ward, Staci; Joseph, Aaron; Hazarika, Parul

    2003-10-01

    Basal cell carcinomas are the most common form of skin cancer. Tazarotene is a retinoic acid receptor selective retinoid that upregulates a tumor suppressor, tazarotene-induced gene 3 (TIG-3), in keratinocytes and psoriasis. Expression of TIG-3 in basal cell carcinomas was studied in an opened-label pilot biomarker study of 22 patients with basal cell carcinomas who applied tazarotene 0.1% gel for up to 12 wk prior to excision. Nineteen paired baseline and treated specimens were compared using immunohistochemistry and in situ hybridization. Compared to overlying normal epidermis, TIG-3 protein and mRNA were decreased in 14 and 18 of 19 basal cell carcinomas (74% and 95%), respectively (p < 0.001). Tazarotene treatment was associated with increased TIG-3 protein and mRNA expression in basal cell carcinomas compared to baseline levels (p < or = 0.001 and p = 0.028, respectively). Sixty percent of basal cell carcinomas treated with tazarotene decreased in size by at least 25%. Ten of 19 lesions improved histologically, including three complete responses. There was a correlation between the increased expression of TIG-3 protein and histologic improvement (p = 0.020), suggesting that suppression of TIG-3 may underlie the development of basal cell carcinomas. This association suggests that reversal of TIG-3 expression may help to explain the mechanism of retinoid action in epidermal differentiation and chemoprevention.

  17. Postnatal handling does not normalize hypothalamic corticotropin-releasing factor mRNA levels in animals prenatally exposed to ethanol.

    PubMed

    Gabriel, Kara I; Glavas, Maria M; Ellis, Linda; Weinberg, Joanne

    2005-06-09

    Postnatal handling has been shown to attenuate some of the deficits in developmental outcome observed following prenatal ethanol exposure (E) although it appears to be ineffective at ameliorating the hypothalamic-pituitary-adrenal (HPA) hyperresponsiveness to stressors that has been observed in adult E animals. However, the effects of postnatal handling on central regulation of HPA activity in E animals, particularly with regard to alterations in steady-state hypothalamic corticotropin-releasing factor (CRF) activity, have not been examined. In the present study, offspring from E, pair-fed (PF), and ad-libitum-fed control (C) groups were exposed to daily handling during the first 2 weeks of life (H) or were left entirely undisturbed until weaning (NH). Basal CRF and arginine vasopressin (AVP) mRNA in the parvocellular portion of the paraventricular nucleus (pPVN) of the hypothalamus were assessed at 90-110 days of age. Prenatal ethanol exposure resulted in elevated basal pPVN CRF mRNA levels compared to those in ad-libitum-fed controls. Handling altered CRF mRNA levels in a sex-specific and prenatal treatment-specific manner. Females showed no significant effects of handling. In contrast, handling decreased CRF mRNA levels in PF and C but not E males compared to their NH counterparts. There were no effects of prenatal ethanol or postnatal handling on AVP mRNA levels. These findings indicate that prenatal ethanol exposure results in elevated basal CRF mRNA levels in adulthood and that handling appears to be ineffective in normalizing those elevations, supporting the suggestion that altered basal HPA regulation in E animals may, at least in part, underlie their HPA hyperresponsiveness to stressors.

  18. Anandamide enhances extracellular levels of adenosine and induces sleep: an in vivo microdialysis study.

    PubMed

    Murillo-Rodriguez, Eric; Blanco-Centurion, Carlos; Sanchez, Cristina; Piomelli, Daniele; Shiromani, Priyattam J

    2003-12-15

    The principal component of marijuana, delta-9-tetrahydrocannabinol increases sleep in humans. Endogenous cannabinoids, such as N-arachidonoylethanolamine (anandamide), also increase sleep. However, the mechanism by which these molecules promote sleep is not known but might involve a sleep-inducing molecule such as adenosine. Microdialysis samples were collected from the basal forebrain in order to detect levels of adenosine before and after injection of anandamide. Rats were implanted for sleep studies, and a cannula was placed in the basal forebrain to collect microdialysis samples. Samples were analyzed using high-performance liquid chromatography. Basic neuroscience research laboratory. Three-month-old male F344 rats. At the start of the lights-on period, animals received systemic injections of dimethyl sulfoxide (vehicle), anandamide, SR141716A (cannabinoid receptor 1 [CB1] antagonist), or SR141716A and anandamide. One hour after injections, microdialysis samples were collected (5 microL) from the basal forebrain every hour over a 20-minute period for 5 hours. The samples were immediately analyzed via high-performance liquid chromatography for adenosine levels. Sleep was also recorded continuously over the same period. Anandamide increased adenosine levels compared to vehicle controls with the peak levels being reached during the third hour after drug injection. There was a significant increase in slow-wave sleep during the third hour. The induction in sleep and the rise in adenosine were blocked by the CB1-receptor antagonist, SR141716A. Anandamide increased adenosine levels in the basal forebrain and also increased sleep. The soporific effects of anandamide were mediated by the CB1 receptor, since the effects were blocked by the CB1-receptor antagonist. These findings identify a potential therapeutic use of endocannabinoids to induce sleep in conditions where sleep may be severely attenuated.

  19. Noradrenaline increases the expression and release of Hsp72 by human neutrophils.

    PubMed

    Giraldo, E; Multhoff, G; Ortega, E

    2010-05-01

    The blood concentration of extracellular 72kDa heat shock protein (eHsp72) increases under conditions of stress, including intense exercise. However, the signal(s), source(s), and secretory pathways in its release into the bloodstream have yet to be clarified. The aim of the present study was to evaluate the role of noradrenaline (NA) as a stress signal on the expression and release of Hsp72 by circulating neutrophils (as a source), all within a context of the immunophysiological regulation during exercise-induced stress in sedentary and healthy young (21-26years) women. The expression of Hsp72 on the surface of isolated neutrophils was determined by flow cytometry, and its release by cultured isolated neutrophils was determined by ELISA. Incubation with cmHsp70-FITC showed that neutrophils express Hsp72 on their surface under basal conditions. In addition, cultured isolated neutrophils (37 degrees C and 5% CO(2)) also released Hsp72 under basal conditions, with this release increasing from 10min to 24h in the absence of cell damage. NA at 10(-9)-10(-5)M doubled the percentage of neutrophils expressing Hsp72 after 60min and 24h incubation. NA also stimulated (by about 20%) the release of Hsp72 after 10min of incubation. (1) Hsp72 is expressed on the surface of isolated neutrophils under basal conditions, and this expression is augmented by NA. (2) Isolated neutrophils can also release Hsp72 under cultured basal conditions in the absence of cell death, and NA can increase this release. These results may contribute to confirming the hypothesis that NA can act as a "stress signal" for the increased eHsp72 in the context of exercise stress, with a role for neutrophils as a source for the expression and, to a lesser degree, the release of Hsp72 after activation by NA. Copyright 2010 Elsevier Inc. All rights reserved.

  20. The oscillatory boundary conditions of different frequency bands in Parkinson's disease.

    PubMed

    Hu, Bing; Shi, Qianqian; Guo, Yu; Diao, Xiyezi; Guo, Heng; Zhang, Jinsong; Yu, Liang; Dai, Hao; Chen, Luonan

    2018-08-14

    Parkinson's disease (PD) is a neurodegenerative disease that is common in the elderly population. The most important pathological change in PD is the degeneration and death of dopaminergic neurons in the substantia nigra of the midbrain, which results in a decrease in the dopamine (DA) content of the striatum. The exact cause of this pathological change is still unknown. Numerous studies have shown that the evolution of PD is associated with abnormal oscillatory activities in the basal ganglia, with different oscillation frequency ranges, such as the typical beta band (13-30 Hz), the alpha band (8-12 Hz), the theta band (4-7 Hz) and the delta band (1-3 Hz). Although some studies have implied that abnormal interactions between the subthalamic nucleus (STN) and globus pallidus (GP) neurons may be a key factor required to induce these oscillations, the relative mechanism is still unclear. The effects of other nerve nuclei in the basal ganglia, such as the striatum, on these oscillations are still unknown. The thalamus and cortex both have close input and output relationships with the basal ganglia, and many previous studies have indicated that they may also exert effects on Parkinson's disease oscillation, but the mechanisms involved are unclear. In this paper, we built a corticothalamic-basal ganglia (CTBG) mean firing-rate model to explore the onset mechanisms of these different oscillation phenomena. We found that, in addition to the STN-GP network, Parkinson's disease oscillations may also be induced by changing the coupling strength and delays in other pathways. Different frequency bands appear in the oscillating region, and various boundary conditions are depicted in parameter diagrams. The onset mechanism is well explained both by the model and by the numerical simulation results. Therefore, this model provides a unifying framework for studying the mechanism of Parkinson's disease oscillations, and we hope that the results obtained in this work can inspire future experimental studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Noninvasive assessment of myocardial mechanics of the left ventricle in rabbits using velocity vector imaging.

    PubMed

    Zhou, Jia; Pu, Da-Rong; Tian, Lei-Qi; Tong, Hai; Liu, Hong-Yu; Tang, Yan; Zhou, Qi-Chang

    2015-05-28

    Our study aimed to investigate the feasibility of velocity vector imaging (VVI) to analyze left ventricular (LV) myocardial mechanics in rabbits at basal state. The animals used in this study were 30 New Zealand white rabbits. All rabbits underwent routine echocardiography under VVI-mode at basal state. The 2-dimensional (2-D) echocardiography images acquired included parasternal left long-axis views and short-axis views at the level of LV mitral valve, papillary muscles, and apex. Images were analyzed by VVI software. At basal state, longitudinal LV velocity decreased from the basal to the apical segment (P<0.05). In the short axis direction, the highest peak myocardial velocity was found between the anterior septum and anterior wall for each segment at the same level; the peak strains and strain rates (SR) were the highest in the anterior and lateral wall compared to other segments (all P<0.05). During systole, LV base rotated in a clockwise direction and LV apex rotated in a counter-clockwise direction, while during diastole, both LV base and apex rotated in the direction opposite to systole. The rotation angle, rotation velocity and unwinding velocity in the apical segment were greater than the basal segment (P<0.05). VVI is a reliable tool for evaluating LV myocardial mechanics in rabbits at basal state, and the LV long-axis short-axis and torsional motions reflect the normal regular patterns. Our study lays the foundation for future experimental approaches in rabbit models and for other applications related to the study of human myocardial mechanics.

  2. Evaluation of Physical Examination Tests for Thumb Basal Joint Osteoarthritis

    PubMed Central

    Model, Zina; Liu, Andrew Y.; Kang, Lana; Wolfe, Scott W.; Burket, Jayme C.; Lee, Steve K.

    2016-01-01

    Background: We compare the ability of 3 diagnostic tests to reproduce the pain of basilar joint arthritis (BJA): the grind test, the lever test (grasping the first metacarpal just distal to the basal joint and shucking back and forth in radial and ulnar directions), and the metacarpophalangeal extension test. Methods: Sixty-two patients with thumb BJA were enrolled. The 3 tests were performed in a random order on both hands of each patient. Prior to testing, patients reported their typical pain level and subsequently rated their pain after each test on a 0 to 10 scale, also specifying the extent to which the test reproduced their thumb pain (fully, partially, not at all). All patients had radiographs that displayed basal joint arthritis. A test was defined as positive for BJA if pain produced was greater than 0. Sensitivity and specificity for each test were calculated using the patients’ history of pain localized to the basal joint and BJA diagnosis on radiographs as the gold standard. Results: The lever test produced the greatest level of pain and best reproduced the presenting pain. The lever test also had the highest sensitivity, high specificity, and the lowest false-negative rate. The grind test had the lowest sensitivity, highest specificity, and highest false-negative rate. Conclusions: The lever test was the diagnostic test that best reproduced the pain caused by thumb basal joint osteoarthritis. We recommend using the lever physical examination test when evaluating the patient with suspected basal joint osteoarthritis. The often-quoted grind test is of limited diagnostic value. PMID:27418899

  3. The influence of CYP1A2 genotype in the blood pressure response to caffeine ingestion is affected by physical activity status and caffeine consumption level.

    PubMed

    Soares, Rogerio Nogueira; Schneider, Augusto; Valle, Sandra Costa; Schenkel, Paulo Cavalheiro

    2018-03-06

    This study aimed to investigate whether the influence of CYP1A2 genotype in the blood pressure (BP) response to caffeine ingestion was affected by physical activity status and habitual caffeine consumption. Thirty-seven participants (19-50 years old) took place in the study and were categorized according to i) genotype: CYP1A2 (AA) "fast metabolizer", and CYP1A2 (AC) "slow metabolizer"; ii) physical activity level: sedentary (S) and physically active (A); and iii) caffeine consumption level: non-habitual caffeine consumer (NC) and habitual heavy caffeine consumer (C). All groups had BP assessed before (basal) and 1 hourh after (post) caffeine ingestion (6 mg·kg -1 ). It was observed that AC genotype individuals had increased basal-DBP and post-caffeine SBP when compared to AA individuals. Additionally, acute caffeine ingestion increased SBP only in the AC group. It was also found that physical activity only modulated the BP responses to acute caffeine ingestion in AC individuals. Furthermore, the results indicated that the habitual heavy caffeine consumers AC individuals had increased basal-DBP when compared to the AA ones. Our results suggest that the influence of CYP1A2 genotype in the basal and post-caffeine BP response to caffeine ingestion is modified by physical activity status and caffeine consumption level. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Giant basal spicule from the deep-sea glass sponge Monorhaphis chuni: synthesis of the largest bio-silica structure on Earth by silicatein

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-hong; Zhang, Xue-hua; Schröder, Heinz C.; Müller, Werner E. G.

    2009-09-01

    Like all sponges (phylum Porifera), the glass sponges (Hexactinellida) are provided with an elaborate and distinct body plan, which relies on a filigree skeleton. It is constructed by an array of morphologically determined elements, the spicules. Schulze described the largest siliceous hexactinellid sponge on Earth, the up to 3 m high Monorhaphis chuni, collected during the German Deep Sea Expedition "Valdivia" (1898-1899). This species develops an equally large bio-silica structure, the giant basal spicule (3 m × 10 mm). Using these spicules as a model, one can obtain the basic knowledge on the morphology, formation, and development of silica skeletal elements. The silica matrix is composed of almost pure silica, endowing it with unusual optophysical properties, which are superior to those of man-made waveguides. Experiments suggest that the spicules function in vivo as a nonocular photoreception system. The spicules are also provided with exceptional mechanical properties. Like demosponges, the hexactinellids synthesize their silica enzymatically via the enzyme silicatein (27 kDa protein). This enzyme is located in/embedded in the silica layers. This knowledge will surely contribute to a further utilization and exploration of silica in biomaterial/biomedical science.

  5. Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs.

    PubMed

    Wang, Yuexiang; Lee, Jang-Won; Oh, Gyeon; Grady, Sharon R; McIntosh, J Michael; Brunzell, Darlene H; Cannon, Jason R; Drenan, Ryan M

    2014-04-01

    α6β2* nicotinic acetylcholine receptors (nAChRs)s in the ventral tegmental area to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9'S mice) that are hypersensitive to nicotine and endogenous acetylcholine. Evoked extracellular dopamine (DA) levels were enhanced in α6L9'S NAc slices compared to control, non-transgenic (non-Tg) slices. Extracellular DA levels in both non-Tg and α6L9'S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by acetylcholine plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9'S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9'S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid, and homovanillic acid compared to non-Tg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid, and norepinephrine (NE) were unchanged in α6L9'S compared to non-Tg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9'S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels. © 2013 International Society for Neurochemistry.

  6. Increased L-DOPA-derived dopamine following selective MAO-A or-B inhibition in rat striatum depleted of dopaminergic and serotonergic innervation

    PubMed Central

    Sader-Mazbar, O; Loboda, Y; Rabey, M J; Finberg, J P M

    2013-01-01

    Background and Purpose Selective MAO type B (MAO-B) inhibitors are effective in potentiation of the clinical effect of L-DOPA in Parkinson's disease, but dopamine (DA) is deaminated mainly by MAO type A (MAO-A) in rat brain. We sought to clarify the roles of MAO-A and MAO-B in deamination of DA formed from exogenous L-DOPA in rat striatum depleted of dopaminergic, or both dopaminergic and serotonergic innervations. We also studied the effect of organic cation transporter-3 (OCT-3) inhibition by decinium-22 on extracellular DA levels following L-DOPA. Experimental Approach Striatal dopaminergic and/or serotonergic neuronal innervations were lesioned by 6-hydroxydopamine or 5,7-dihydroxytryptamine respectively. Microdialysate DA levels after systemic L-DOPA were measured after inhibition of MAO-A or MAO-B by clorgyline or rasagiline respectively. MAO subtype localization in the striatum was determined by immunofluorescence. Key Results Rasagiline increased DA extracellular levels following L-DOPA to a greater extent in double-than in single-lesioned rats (2.8-and 1.8-fold increase, respectively, relative to saline treatment); however, clorgyline elevated DA levels in both models over 10-fold. MAO-A was strongly expressed in medium spiny neurons (MSNs) in intact and lesioned striata, while MAO-B was localized in glia and to a small extent in MSNs. Inhibition of OCT-3 increased DA levels in the double-more than the single-lesion animals. Conclusions and Implications In striatum devoid of dopaminergic and serotonergic inputs, most deamination of L-DOPA-derived DA is mediated by MAO-A in MSN and a smaller amount by MAO-B in both MSN and glia. OCT-3 plays a significant role in uptake of DA from extracellular space. Inhibitors of OCT-3 are potential future targets for anti-Parkinsonian treatments. PMID:23992249

  7. Postnatal iron-induced motor behaviour alterations following chronic neuroleptic administration in mice.

    PubMed

    Fredriksson, A; Eriksson, P; Archer, T

    2006-02-01

    C57/BL6 mice were administered either 7.5 mg Fe(2+)/kg or vehicle (saline) postnatally on days 10-12 after birth. From 61 days of age onwards for 21 days, groups of mice were administered either clozapine (1 or 5 mg/kg, s.c.) or haloperidol (1 mg/kg, s.c.) or vehicle (Tween-80). Twenty-four hours after the final injection of either neuroleptic compound or vehicle, spontaneous motor activity was measured over a 60-min interval. Following this, each animal was removed, injected apomorphine (1 mg/kg, s.c.) and replaced in the same test chamber. It was found that postnatal administration of Fe(2+) at the 7.5 mg/kg dose level reduced activity during the initial 20-min periods (0-20 and 20-40 min) and then induced hyperactivity during the final 20-min period over all three parameters of activity. Subchronic treatment with the higher, 5 mg/kg, dose of clozapine abolished or attenuated the hypoactivity in by postnatal Fe(2+) during the 1(st) two 20-min periods over all three parameters of activity. Subchronic treatment with the higher, 5 mg/kg, dose of clozapine abolished or attenuated the hyperactivity in by postnatal Fe(2+) during the 3(rd) and final 20-min period. Subchronic administration of haloperidol, without postnatal iron, increased the level of both locomotion (1(st) 20 min) and rearing (2(nd) 20 min) activity. Postnatal administration of Fe(2+) at the 7.5 mg/kg dose increased the levels of both locomotion and rearing, but not total activity, following administration of apomorphine (1 mg/kg). Subchronic administration of clozapine, at both the 1 and 5 mg/kg doses, reduced the increased locomotor activity caused by postnatal Fe(2+), whereas clozapine, 5 mg/kg, elevated further the postnatal Fe(2+)-induced increased in rearing. Subchronic administration of clozapine, at both the 1 and 5 mg/kg doses, and haloperidol, 1 mg/kg, increased the level of locomotor following administration of apomorphine (1 mg/kg) in mice treated postnatally with vehicle, whereas only clozapine increased the level of rearing. Correlational analyses indicated that both apomorphine-induced locomotion and rearing were highly correlated with the total iron content in the basal ganglia, thereby offering direct evidence of the linear relationship between iron content in the basal ganglia and the behavioural expression of DA D(2)-receptor supersensitivity in mice.

  8. The activation of metabotropic glutamate 5 receptors in the rat ventral tegmental area increases dopamine extracellular levels.

    PubMed

    Ferrada, Carla; Sotomayor-Zárate, Ramón; Abarca, Jorge; Gysling, Katia

    2017-01-01

    The mesocorticolimbic circuit projects to the prefrontal cortex, hippocampus, amygdala, and nucleus accumbens, among others, and it originates in the dopaminergic neurons of the ventral tegmental area (VTA). The VTA receives glutamatergic inputs from the prefrontal cortex and several subcortical regions. The glutamate released activates dopaminergic neurons and its action depends on the activation of ionotropic and metabotropic glutamate receptors. VTA dopaminergic neurons release dopamine (DA) from axon terminals in the innervated regions and somatodendritically in the VTA itself. DA release in the VTA is directly correlated with the activity of dopaminergic neurons. We hypothesized that metabotropic glutamate 5 receptors (mGlu5) directly regulate the activity of VTA dopaminergic neurons. To test this hypothesis, the extracellular levels of VTA DA and glutamate were studied by in-vivo microdialysis after an intra-VTA perfusion of (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG), selective mGlu5 agonist. We observed that CHPG induced a significant increase in VTA DA and glutamate extracellular levels. To determine whether the effect of CHPG on DA levels is because of the increase in glutamate release, we perfused kynurenic acid, an ionotropic glutamate receptor antagonist, through the probe. Our results showed that kynurenic acid did not block the ability of CHPG to cause DA release. Thus, our results suggest that CHPG acts directly on mGlu5 in dopaminergic neurons to induce the release of DA.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawal, Nina; Corti, Olga; CNRS, UMR 7225, Paris

    Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates {beta}-catenin protein levels in vivo. Stabilization of {beta}-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neuronsmore » in parkin null animals, suggesting that both increased stabilization and decreased degradation of {beta}-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and {beta}-catenin-induced cell death.« less

  10. Cloning and characterization of a cell cycle-regulated gene encoding topoisomerase I from Nicotiana tabacum that is inducible by light, low temperature and abscisic acid.

    PubMed

    Mudgil, Y; Singh, B N; Upadhyaya, K C; Sopory, S K; Reddy, M K

    2002-05-01

    We have cloned a full-length 2874-bp cDNA coding for tobacco topoisomerase I, with an ORF of 2559 bp encoding a protein of 852 amino acids with a calculated molecular mass of 95 kDa and an estimated pI of 9.51. The deduced amino acid sequence shows homology to other eukaryotic topoisomerases I. Tobacco topoisomerase I was over-expressed in Escherichia coli, and the purified recombinant protein was found to relax both positively and negatively super-coiled DNA in the absence of the divalent cation Mg(2+)and ATP. These characteristic features indicate that the tobacco enzyme is a type I topoisomerase. The recombinant protein could be phosphorylated at (a) threonine residue(s) by protein kinase C. However, phosphorylation did not cause any change in its enzymatic activity. The genomic organization of the topoisomerase I gene revealed the presence of 8 exons and 7 introns in the region corresponding to the ORF and one intron in the 3' UTR region. Transcript analysis using RT-PCR showed basal constitutive expression in all organs examined, and the gene was expressed at all stages of the cell cycle--but the level of expression increased during the G1-S phase. The transcript level also increased following exposure to light, low-temperature stress and abscisic acid, a stress hormone.

  11. One-step purification of a functional, constitutively activated form of visual arrestin.

    PubMed

    Huang, Li; Mao, Xiang; Abdulaev, Najmoutin G; Ngo, Tony; Liu, Wei; Ridge, Kevin D

    2012-03-01

    Desensitization of agonist-activated G protein-coupled receptors (GPCRs) requires phosphorylation followed by the binding of arrestin, a ~48 kDa soluble protein. While crystal structures for the inactive, 'basal' state of various arrestins are available, the conformation of 'activated' arrestin adopted upon interaction with activated GPCRs remains unknown. As a first step towards applying high-resolution structural methods to study arrestin conformation and dynamics, we have utilized the subtilisin prodomain/Profinity eXact™ fusion-tag system for the high-level bacterial expression and one-step purification of wild-type visual arrestin (arrestin 1) as well as a mutant form (R175E) of the protein that binds to non-phosphorylated, light-activated rhodopsin (Rho∗). The results show that both prodomain/Profinity eXact™ fusion-tagged wild-type and R175E arrestins can be expressed to levels approaching 2-3 mg/l in Luria-Bertani media, and that the processed, tag-free mature forms can be purified to near homogeneity using a Bio-Scale™ Mini Profinity eXact™ cartridge on the Profinia™ purification system. Functional analysis of R175E arrestin generated using this approach shows that it binds to non-phosphorylated rhodopsin in a light-dependent manner. These findings should facilitate the structure determination of this 'constitutively activated' state of arrestin 1 as well as the monitoring of conformational changes upon interaction with Rho∗. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Effect of dietary taurine supplementation on growth, feed efficiency, and nutrient composition of juvenile sablefish (Anoplopoma fimbria)

    USDA-ARS?s Scientific Manuscript database

    Juvenile sablefish were fed a low taurine, basal feed with seven graded levels of supplemental taurine to determine taurine requirements for growth and feed efficiency. The basal feed was plant based, formulated primarily with soy and corn proteins with a minimal (9%) amount of fishmeal. The unsuppl...

  13. The Stress Model of Chronic Pain: Evidence from Basal Cortisol and Hippocampal Structure and Function in Humans

    ERIC Educational Resources Information Center

    Vachon-Presseau, Etienne; Roy, Mathieu; Martel, Marc-Olivier; Caron, Etienne; Marin, Marie-France; Chen, Jeni; Albouy, Genevieve; Plante, Isabelle; Sullivan, Michael J.; Lupien, Sonia J.; Rainville, Pierre

    2013-01-01

    Recent theories have suggested that chronic pain could be partly maintained by maladaptive physiological responses of the organism facing a recurrent stressor. The present study examined the associations between basal levels of cortisol collected over seven consecutive days, the hippocampal volumes and brain activation to thermal stimulations…

  14. Increasing Dopamine Levels in the Brain Improves Feedback-Based Procedural Learning in Healthy Participants: An Artificial-Grammar-Learning Experiment

    ERIC Educational Resources Information Center

    de Vries, Meinou H.; Ulte, Catrin; Zwitserlood, Pienie; Szymanski, Barbara; Knecht, Stefan

    2010-01-01

    Recently, an increasing number of studies have suggested a role for the basal ganglia and related dopamine inputs in procedural learning, specifically when learning occurs through trial-by-trial feedback (Shohamy, Myers, Kalanithi, & Gluck. (2008). "Basal ganglia and dopamine contributions to probabilistic category learning." "Neuroscience and…

  15. Junior High Basals: Effective Hi/Lo Materials for Remedial High School Readers.

    ERIC Educational Resources Information Center

    Alvermann, Donna E.

    1981-01-01

    Discusses the results of an analysis of the appropriateness of eighth-grade basal reading materials for remedial instruction of ninth- and tenth-grade students who read two to three years below grade level. Readability, interest appeal, and representation of content areas are considered. Three data tables and a 14-item reference list are included.…

  16. Ethanol attracts scolytid beetles to Phytophthora ramorum cankers on coast live oak

    Treesearch

    Rick G. Kelsey; Maia M. Beh; David C. Shaw; Daniel K. Manter

    2013-01-01

    Ethanol in sapwood was analyzed along vertical transects, through small spot cankers and larger basal cankers, of Phytophthora ramorum-infected stems of Quercus agrifolia at three sites in California. Trees with large basal cankers, known to attract scolytid beetles, had a 4.3 times higher ethanol level than trees with spot cankers...

  17. Nonlinear mixed modeling of basal area growth for shortleaf pine

    Treesearch

    Chakra B. Budhathoki; Thomas B. Lynch; James M. Guldin

    2008-01-01

    Mixed model estimation methods were used to fit individual-tree basal area growth models to tree and stand-level measurements available from permanent plots established in naturally regenerated shortleaf pine (Pinus echinata Mill.) even-aged stands in western Arkansas and eastern Oklahoma in the USA. As a part of the development of a comprehensive...

  18. Centrin protein and genes in Trichomonas vaginalis and close relatives.

    PubMed

    Brugerolle, G; Bricheux, G; Coffe, G

    2000-01-01

    Anti-centrin monoclonal antibodies 20H5 and 11B2 produced against Clamydomononas centrin decorated the group of basal bodies as well as very closely attached structures in all trichomonads studied and in the devescovinids Foaina and Devescovina. Moreover, these antibodies decorated the undulating membrane in Trichomonas vaginalis, Trichomitus batrachorum, and Tritrichomonas foetus, and the cresta in Foaina. Centrin was not demonstrated in the dividing spindle and paradesmosis. Immunogold labeling, both in pre- and post-embedding, confirmed that centrin is associated with the basal body cylinder and is a component of the nine anchoring arms between the terminal plate of flagellar bases and the plasma-membrane. Centrin is also associated with the hook-shaped fibers attached to basal bodies (F1, F3), the X-fiber, and along sigmoid fibers (F2) at the pelta-axostyle junction, which is the microtubule organizing center for pelta-axostyle microtubules. There was no labeling on the striated costa and parabasal fibers nor on microtubular pelta-axostyle, but the fibrous structure inside the undulating membrane was labeled in T. vaginalis. Two proteins of 22-20 kDa corresponding to the centrin molecular mass were recognized by immunoblotting using these antibodies in the three trichomonad species examined. By screening a T. vaginalis cDNA library with 20H5 antibody, two genes encoding identical protein sequences were found. The sequence comprises the 4 typical EF-hand Ca++-binding domains present in every known centrin. Trichomonad centrin is closer to the green algal cluster (70% identity) than to the yeast Cdc31 cluster (55% identity) or the Alveolata cluster (46% identity).

  19. An RGDS peptide-binding receptor, FR-1R, localizes to the basal side of the ectoderm and to primary mesenchyme cells in sand dollar embryos.

    PubMed

    Katow, H; Sofuku, S

    2001-10-01

    Immunoblotting using polyclonal antibodies (pAb) raised against an FR-1 receptor (FR-1R), a 57 kDa Arg-Gly-Asp-Ser (RGDS)-binding protein, of the sand dollar Clypeaster japonicus showed that the pAb monospecifically bound to the protein. FR-1R was present in purified plasma membrane, suggesting that the protein is a membrane-bound protein. The molecular structure of FR-1R did not change throughout the early embryogenesis, whereas its expression changed significantly during this period. FR-1R was present in the cortex of unfertilized eggs and was then transferred to the hyaline layer soon after the fertilization. The hyaline layer retained FR-1R immunoreactivity during early embryogenesis. FR-1R appeared on the basal side of the ectoderm at the morula stage and was retained basolaterally, at least, to the early gastrula stage. In mesenchyme blastulae, FR-1R was also present on the surface of primary mesenchyme cells (PMC). FR-1R was localized on the basal side of the ectoderm in early gastrulae, exclusively at the place where PMC formed ventrolateral aggregates, and at the apical tuft ectoderm. In vitro, PMC bound to FR-1R and its binding was inhibited in the presence of a synthetic RGDS peptide or the pAb. The pAb introduced into the blastocoele perturbed PMC migration and gastrulation. FR-1R was weakly recognized by antihuman integrin beta5 subunit pAb.

  20. Basal-topographic control of stationary ponds on a continuously moving landslide

    USGS Publications Warehouse

    Coe, J.A.; McKenna, J.P.; Godt, J.W.; Baum, R.L.

    2009-01-01

    The Slumgullion landslide in the San Juan Mountains of southwestern Colorado has been moving for at least the last few hundred years and has multiple ponds on its surface. We have studied eight ponds during 30 trips to the landslide between July 1998 and July 2007. During each trip, we have made observations on the variability in pond locations and water levels, taken ground-based photographs to document pond water with respect to moving landslide material and vegetation, conducted Global Positioning System surveys of the elevations of water levels and mapped pond sediments on the landslide surface. Additionally, we have used stereo aerial photographs taken in October 1939, October 1940 and July 2000 to measure topographic profiles of the eight pond locations, as well as a longitudinal profile along the approximate centerline of the landslide, to examine topographic changes over a 60- to 61-year period of time. Results from field observations, analyses of photographs, mapping and measurements indicate that all pond locations have remained spatially stationary for 60-300 years while landslide material moves through these locations. Water levels during the observation period were sensitive to changes in the local, spring-fed, stream network, and to periodic filling of pond locations by sediment from floods, hyperconcentrated flows, mud flows and debris flows. For pond locations to remain stationary, the locations must mimic depressions along the basal surface of the landslide. The existence of such depressions indicates that the topography of the basal landslide surface is irregular. These results suggest that, for translational landslides that have moved distances larger than the dimensions of the largest basal topographic irregularities (about 200 m at Slumgullion), landslide surface morphology can be used as a guide to the morphology of the basal slip surface. Because basal slip surface morphology can affect landslide stability, kinematic models and stability analyses of translational landslides should attempt to incorporate irregular basal surface topography. Additional implications for moving landslides where basal topography controls surface morphology include the following: dateable sediments or organic material from basal layers of stationary ponds will yield ages that are younger than the date of landslide initiation, and it is probable that other landslide surface features such as faults, streams, springs and sinks are also controlled by basal topography. The longitudinal topographic profile indicated that the upper part of the Slumgullion landslide was depleted at a mean vertical lowering rate of 5.6 cm/yr between 1939 and 2000, while the toe advanced at an average rate of 1.5 m/yr during the same period. Therefore, during this 61-year period, neither the depletion of material at the head of the landslide nor continued growth of the landslide toe has decreased the overall movement rate of the landslide. Continued depletion of the upper part of the landslide, and growth of the toe, should eventually result in stabilization of the landslide. Copyright ?? 2008 John Wiley & Sons, Ltd.

  1. Influence of Culture Conditions on Expression of the 40-Kilodalton Porin Protein of Vibrio anguillarum Serotype O2

    PubMed Central

    Davey, Michelle L.; Hancock, Robert E. W.; Mutharia, Lucy M.

    1998-01-01

    Vibrio anguillarum serotype O2 strains express a 40-kDa outer membrane porin protein. Immunoblot analysis revealed that antigenic determinants of the V. anguillarum O2 40-kDa porin were conserved within bacterial species of the genus Vibrio. The relative amounts of the V. anguillarum O2 40-kDa porin were enhanced by growth of V. anguillarum O2 in CM9 medium containing 5 to 10% sucrose or 0.1 to 0.5 M NaCl. In contrast, the levels of the porin were significantly reduced when cells were grown at 37°C, and a novel 60-kDa protein was also observed. However, the osmolarity or ionic concentration of the growth medium did not influence expression of the 60-kDa protein. Growth in medium containing greater than 0.6 mM EDTA reduced production of the V. anguillarum O2 40-kDa porin and enhanced levels of a novel 19-kDa protein. Thus, expression of the V. anguillarum O2 40-kDa porin was osmoregulated and possibly coregulated by temperature. The N-terminal amino acid sequence of the V. anguillarum O2 40-kDa protein and the effect of environmental factors on the cellular levels of the porin suggested that the V. anguillarum O2 40-kDa porin was functionally similar to the OmpC porin of Escherichia coli. However, pore conductance assays revealed that the V. anguillarum O2 40-kDa porin was a general diffusion porin with a pore size in the range of that of the OmpF porin of E. coli. PMID:9435071

  2. Effect of parasitic infection on dopamine biosynthesis in dopaminergic cells

    PubMed Central

    Martin, H.L.; Alsaady, I.; Howell, G.; Prandovszky, E.; Peers, C.; Robinson, P.; McConkey, G.A.

    2015-01-01

    Infection by the neurotropic agent Toxoplasma gondii alters rodent behavior and can result in neuropsychiatric symptoms in humans. Little is understood regarding the effects of infection on host neural processes but alterations to dopaminergic neurotransmission are implicated. We have previously reported elevated levels of dopamine (DA) in infected dopaminergic cells however the involvement of the host enzymes and fate of the produced DA were not defined. In order to clarify the effects of infection on host DA biosynthetic enzymes and DA packaging we examined enzyme levels and activity and DA accumulation and release in T. gondii-infected neurosecretory cells. Although the levels of the host tyrosine hydroxylase (TH) and DOPA decarboxylase and AADC (DDC) did not change significantly in infected cultures, DDC was found within the parasitophorous vacuole (PV), the vacuolar compartment where the parasites reside, as well as in the host cytosol in infected dopaminergic cells. Strikingly, DDC was found within the intracellular parasite cysts in infected brain tissue. This finding could provide some explanation for observations of DA within tissue cysts in infected brain as a parasite-encoded enzyme with TH activity was also localized within tissue cysts. In contrast, cellular DA packaging appeared unchanged in single-cell microamperometry experiments and only a fraction of the increased DA was accessible to high potassium-induced release. This study provides some understanding of how this parasite produces elevated DA within dopaminergic cells without the toxic ramifications of free cytosolic DA. The mechanism for synthesis and packaging of DA by T. gondii-infected dopaminergic cells may have important implications for the effects of chronic T. gondii infection on humans and animals. PMID:26297895

  3. HSP90 Inhibition Suppresses Lipopolysaccharide-Induced Lung Inflammation In Vivo

    PubMed Central

    Lilja, Andrew; Weeden, Clare E.; McArthur, Kate; Nguyen, Thao; Donald, Alastair; Wong, Zi Xin; Dousha, Lovisa; Bozinovski, Steve; Vlahos, Ross; Burns, Christopher J.; Asselin-Labat, Marie-Liesse; Anderson, Gary P.

    2015-01-01

    Inflammation is an important component of cancer diathesis and treatment-refractory inflammation is a feature of many chronic degenerative lung diseases. HSP90 is a 90kDa protein which functions as an ATP-dependent molecular chaperone that regulates the signalling conformation and expression of multiple protein client proteins especially oncogenic mediators. HSP90 inhibitors are in clinical development as cancer therapies but the myeleosuppressive and neutropenic effect of first generation geldanamycin-class inhibitors has confounded studies on the effects on HSP90 inhibitors on inflammation. To address this we assessed the ability of Ganetespib, a non-geldanamycin HSP90 blocker, to suppress lipopolysaccharide (LPS)-induced cellular infiltrates, proteases and inflammatory mediator and transcriptional profiles. Ganetespib (10–100mg/kg, i.v.) did not directly cause myelosuppression, as assessed by video micrography and basal blood cell count, but it strongly and dose-dependently suppressed LPS-induced neutrophil mobilization into blood and neutrophil- and mononuclear cell-rich steroid-refractory lung inflammation. Ganetespib also suppressed B cell and NK cell accumulation, inflammatory cytokine and chemokine induction and MMP9 levels. These data identify non-myelosuppresssive HSP90 inhibitors as potential therapies for inflammatory diseases refractory to conventional therapy, in particular those of the lung. PMID:25615645

  4. Rats classified as low or high cocaine locomotor responders: A unique model involving striatal dopamine transporters that predicts cocaine addiction-like behaviors

    PubMed Central

    Yamamoto, Dorothy J.; Nelson, Anna M.; Mandt, Bruce H.; Larson, Gaynor A.; Rorabaugh, Jacki M.; Ng, Christopher M.C.; Barcomb, Kelsey M.; Richards, Toni L.; Allen, Richard M.; Zahniser, Nancy R.

    2013-01-01

    Individual differences are a hallmark of drug addiction. Here, we describe a rat model based on differential initial responsiveness to low dose cocaine. Despite similar brain cocaine levels, individual outbred Sprague-Dawley rats exhibit markedly different magnitudes of acute cocaine-induced locomotor activity and, thereby, can be classified as low or high cocaine responders (LCRs or HCRs). LCRs and HCRs differ in drug-induced, but not novelty-associated, hyperactivity. LCRs have higher basal numbers of striatal dopamine transporters (DATs) than HCRs and exhibit marginal cocaine inhibition of in vivo DAT activity and cocaine-induced increases in extracellular DA. Importantly, lower initial cocaine response predicts greater locomotor sensitization, conditioned place preference and greater motivation to self-administer cocaine following low dose acquisition. Further, outbred Long-Evans rats classified as LCRs, versus HCRs, are more sensitive to cocaine’s discriminative stimulus effects. Overall, results to date with the LCR/HCR model underscore the contribution of striatal DATs to individual differences in initial cocaine responsiveness and the value of assessing the influence of initial drug response on subsequent expression of addiction-like behaviors. PMID:23850581

  5. Dopamine Neurons Change the Type of Excitability in Response to Stimuli

    PubMed Central

    Gutkin, Boris S.; Lapish, Christopher C.; Kuznetsov, Alexey

    2016-01-01

    The dynamics of neuronal excitability determine the neuron’s response to stimuli, its synchronization and resonance properties and, ultimately, the computations it performs in the brain. We investigated the dynamical mechanisms underlying the excitability type of dopamine (DA) neurons, using a conductance-based biophysical model, and its regulation by intrinsic and synaptic currents. Calibrating the model to reproduce low frequency tonic firing results in N-methyl-D-aspartate (NMDA) excitation balanced by γ-Aminobutyric acid (GABA)-mediated inhibition and leads to type I excitable behavior characterized by a continuous decrease in firing frequency in response to hyperpolarizing currents. Furthermore, we analyzed how excitability type of the DA neuron model is influenced by changes in the intrinsic current composition. A subthreshold sodium current is necessary for a continuous frequency decrease during application of a negative current, and the low-frequency “balanced” state during simultaneous activation of NMDA and GABA receptors. Blocking this current switches the neuron to type II characterized by the abrupt onset of repetitive firing. Enhancing the anomalous rectifier Ih current also switches the excitability to type II. Key characteristics of synaptic conductances that may be observed in vivo also change the type of excitability: a depolarized γ-Aminobutyric acid receptor (GABAR) reversal potential or co-activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) leads to an abrupt frequency drop to zero, which is typical for type II excitability. Coactivation of N-methyl-D-aspartate receptors (NMDARs) together with AMPARs and GABARs shifts the type I/II boundary toward more hyperpolarized GABAR reversal potentials. To better understand how altering each of the aforementioned currents leads to changes in excitability profile of DA neuron, we provide a thorough dynamical analysis. Collectively, these results imply that type I excitability in dopamine neurons might be important for low firing rates and fine-tuning basal dopamine levels, while switching excitability to type II during NMDAR and AMPAR activation may facilitate a transient increase in dopamine concentration, as type II neurons are more amenable to synchronization by mutual excitation. PMID:27930673

  6. The effects of nitric oxide-cGMP pathway stimulation on dopamine in the medial preoptic area and copulation in DHT-treated castrated male rats

    PubMed Central

    Sato, Satoru M.; Wersinger, Scott R.; Hull, Elaine M.

    2007-01-01

    Dopamine (DA) in the medial preoptic area (MPOA) provides important facilitative influence on male rat copulation. We have shown that the nitric oxide-cGMP (NO-cGMP) pathway modulates MPOA DA levels and copulation. We have also shown that systemic estradiol (E2) maintains neuronal NO synthase (nNOS) immunoreactivity in the MPOA of castrates, as well as relatively normal DA levels. This effect of E2 on nNOS probably accounts for at least some of the previously demonstrated behavioral facilitation by intra-MPOA E2 administration in castrates. Therefore, we hypothesized that stimulation of the MPOA NO-cGMP pathway in dihydrotestosterone (DHT)-treated castrates should restore DA levels and copulatory behaviors. Reverse-dialysis of a NO donor, sodium nitroprusside (SNP), increased extracellular DA in the MPOA of DHT-treated castrates and restored the ability to copulate to ejaculation in half of the animals. A cGMP analog, 8-Br-cGMP, also increased extracellular DA, though not as robustly, but did not restore copulatory ability. The effectiveness of the NO donor in restoring copulation and MPOA DA levels is consistent with our hypothesis. However, the lack of behavioral effects of 8-Br-cGMP, despite its increase in MPOA DA, suggests that NO may have additional mediators in the MPOA in the regulation of copulation. Furthermore, the suboptimal copulation seen in the NO donor-treated animals suggests the importance of extra-MPOA systems in the regulation of copulation. PMID:17467707

  7. Accumbal strychnine-sensitive glycine receptors: an access point for ethanol to the brain reward system.

    PubMed

    Molander, Anna; Söderpalm, Bo

    2005-01-01

    Ethanol (EtOH), like other drugs of abuse, increases extracellular dopamine (DA) levels in the nucleus accumbens (nAc) of the brain reward system, an effect that may be of importance for alcohol addiction. How this DA increase is produced is not fully understood, although previous studies from the present laboratories indicate that nicotinic acetylcholine receptors in the ventral tegmental area play an important role in mediating this effect. Furthermore, activation of these receptors may be secondary to some priming effect produced by EtOH in the nAc. We recently demonstrated that strychnine-sensitive glycine receptors (GlyRs) are present in the nAc and that they are involved in regulating extracellular DA levels. Here we examine the tentative role of these accumbal GlyRs in the above-mentioned priming mechanism of EtOH. In vivo microdialysis (coupled to high pressure liquid chromatography with electrochemical detection) and reversed microdialysis, in awake, freely moving adult male Wistar rats. Local perfusion of strychnine decreased accumbal DA levels per se and completely prevented the increase of accumbal DA levels after both local and systemic EtOH administration. Accumbal perfusion of the GlyR agonist glycine instead increased DA levels in a subpopulation of rats and prevented the EtOH-induced increase after local but not systemic EtOH in all animals. The present results suggest that GlyRs in the nAc might constitute targets for EtOH in its mesolimbic DA-activating effect. Gene polymorphism and drug developmental studies that focus on this receptor population and its relation to alcohol dependence are warranted.

  8. Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes.

    PubMed

    McDowell, Nate G; Adams, Henry D; Bailey, John D; Hess, Marcey; Kolb, Thomas E

    2006-06-01

    Homeostatic maintenance of gas exchange optimizes carbon gain per water loss. Homeostasis is regulated by short-term physiological and long-term structural mechanisms, both of which may respond to changes in resource availability associated with competition. Therefore, stand density regulation via silvicultural manipulations may facilitate growth and survival through mechanisms operating at both short and long timescales. We investigated the responses of ponderosa pine (Pinus ponderosa) to stand basal area manipulations in Arizona, USA. Stand basal area was manipulated to seven replicated levels in 1962 and was maintained for four decades by decadal thinning. We measured basal area increment (BAI) to assess the response and sustainability of wood growth, carbon isotope discrimination (A) inferred from annual rings to assess the response of crown gas exchange, and ratios of leaf area to sapwood area (A(l):A(s)) to assess longer term structural acclimation. Basal area treatments increased soil water potential (r2 = 0.99) but did not affect photosynthetic capacity. BAI increased within two years of thinning, and the 40-year mean BAI was negatively correlated with stand basal area (r2 = 0.98). delta was negatively correlated with stand basal area for years 5 through 12 after thinning (r2 = 0.90). However, delta was relatively invariant with basal area for the period 13-40 years after initial thinning despite maintenance of treatment basal areas via repeated decadal thinnings. Independent gas exchange measurements verified that the ratio of photosynthesis to stomatal conductance was invariant with basal area, but absolute values of both were elevated at lower basal areas. A(l):A(s) was negatively correlated with basal area (r2 = 0.93). We hypothesize that increased A(l):A(s) is a homeostatic response to increased water availability that maximizes water-use efficiency and whole-tree carbon uptake. Elevated A(l):A(s) of trees at low basal areas was associated with greater resilience to climate, i.e., greater absolute BAI during drought; however, trees with high A(l):A(s) in low basal area stands also exhibited the greatest sensitivity to drought, i.e., greater relative decline in BAI.

  9. Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas.

    PubMed

    Van de Laar, Emily; Clifford, Monica; Hasenoeder, Stefan; Kim, Bo Ram; Wang, Dennis; Lee, Sharon; Paterson, Josh; Vu, Nancy M; Waddell, Thomas K; Keshavjee, Shaf; Tsao, Ming-Sound; Ailles, Laurie; Moghal, Nadeem

    2014-12-31

    The large airways of the lungs (trachea and bronchi) are lined with a pseudostratified mucociliary epithelium, which is maintained by stem cells/progenitors within the basal cell compartment. Alterations in basal cell behavior can contribute to large airway diseases including squamous cell carcinomas (SQCCs). Basal cells have traditionally been thought of as a uniform population defined by basolateral position, cuboidal cell shape, and expression of pan-basal cell lineage markers like KRT5 and TP63. While some evidence suggests that basal cells are not all functionally equivalent, few heterogeneously expressed markers have been identified to purify and study subpopulations. In addition, few signaling pathways have been identified that regulate their cell behavior. The goals of this work were to investigate tracheal basal cell diversity and to identify new signaling pathways that regulate basal cell behavior. We used flow cytometry (FACS) to profile cell surface marker expression at a single cell level in primary human tracheal basal cell cultures that maintain stem cell/progenitor activity. FACS results were validated with tissue staining, in silico comparisons with normal basal cell and lung cancer datasets, and an in vitro proliferation assay. We identified 105 surface markers, with 47 markers identifying potential subpopulations. These subpopulations generally fell into more (~ > 13%) or less abundant (~ < 6%) groups. Microarray gene expression profiling supported the heterogeneous expression of these markers in the total population, and immunostaining of large airway tissue suggested that some of these markers are relevant in vivo. 24 markers were enriched in lung SQCCs relative to adenocarcinomas, with four markers having prognostic significance in SQCCs. We also identified 33 signaling receptors, including the MST1R/RON growth factor receptor, whose ligand MST1/MSP was mitogenic for basal cells. This work provides the largest description to date of molecular diversity among human large airway basal cells. Furthermore, these markers can be used to further study basal cell function in repair and disease, and may aid in the classification and study of SQCCs.

  10. Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats.

    PubMed

    Ventskovska, Olena; Porkka-Heiskanen, Tarja; Karpova, Nina N

    2015-04-01

    Brain-derived neurotrophic factor (Bdnf) regulates neuronal plasticity, slow wave activity and sleep homeostasis. Environmental stimuli control Bdnf expression through epigenetic mechanisms, but there are no data on epigenetic regulation of Bdnf by sleep or sleep deprivation. Here we investigated whether 5-methylcytosine (5mC) DNA modification at Bdnf promoters p1, p4 and p9 influences Bdnf1, Bdnf4 and Bdnf9a expression during the normal inactive phase or after sleep deprivation (SD) (3, 6 and 12 h, end-times being ZT3, ZT6 and ZT12) in rats in two brain areas involved in sleep regulation, the basal forebrain and cortex. We found a daytime variation in cortical Bdnf expression: Bdnf1 expression was highest at ZT6 and Bdnf4 lowest at ZT12. Such variation was not observed in the basal forebrain. Also Bdnf p1 and p9 methylation levels differed only in the cortex, while Bdnf p4 methylation did not vary in either area. Factorial analysis revealed that sleep deprivation significantly induced Bdnf1 and Bdnf4 with the similar pattern for Bdnf9a in both basal forebrain and cortex; 12 h of sleep deprivation decreased 5mC levels at the cortical Bdnf p4 and p9. Regression analysis between the 5mC promoter levels and the corresponding Bdnf transcript expression revealed significant negative correlations for the basal forebrain Bdnf1 and cortical Bdnf9a transcripts in only non-deprived rats, while these correlations were lost after sleep deprivation. Our results suggest that Bdnf transcription during the light phase of undisturbed sleep-wake cycle but not after SD is regulated at least partially by brain site-specific DNA methylation. © 2014 European Sleep Research Society.

  11. Involvement of Endogenous Brain-Derived Neurotrophic Factor in Hypothalamic-Pituitary-Adrenal Axis Activity.

    PubMed

    Naert, G; Zussy, C; Tran Van Ba, C; Chevallier, N; Tang, Y-P; Maurice, T; Givalois, L

    2015-11-01

    Brain-derived neurotrophic factor (BDNF) appears to be highly involved in hypothalamic-pituitary-adrenal (HPA) axis regulation during adulthood, playing an important role in homeostasis maintenance. The present study aimed to determine the involvement of BDNF in HPA axis activity under basal and stress conditions via partial inhibition of this endogenous neurotrophin. Experiments were conducted in rats and mice with two complementary approaches: (i) BDNF knockdown with stereotaxic delivery of BDNF-specific small interfering RNA (siRNA) into the lateral ventricle of adult male rats and (ii) genetically induced knockdown (KD) of BDNF expression specifically in the central nervous system during the first ontogenesis in mice (KD mice). Delivery of siRNA in the rat brain decreased BDNF levels in the hippocampus (-31%) and hypothalamus (-35%) but not in the amygdala, frontal cortex and pituitary. In addition, siRNA induced no change of the basal HPA axis activity. BDNF siRNA rats exhibited decreased BDNF levels and concomitant altered adrenocortoctrophic hormone (ACTH) and corticosterone responses to restraint stress, suggesting the involvement of BDNF in the HPA axis adaptive response to stress. In KD mice, BDNF levels in the hippocampus and hypothalamus were decreased by 20% in heterozygous and by 60% in homozygous animals compared to wild-type littermates. Although, in heterozygous KD mice, no significant change was observed in the basal levels of plasma ACTH and corticosterone, both hormones were significantly increased in homozygous KD mice, demonstrating that robust cerebral BDNF inhibition (60%) is necessary to affect basal HPA axis activity. All of these results in both rats and mice demonstrate the involvement and importance of a robust endogenous pool of BDNF in basal HPA axis regulation and the pivotal function of de novo BDNF synthesis in the establishment of an adapted response to stress. © 2015 British Society for Neuroendocrinology.

  12. Co-release of noradrenaline and dopamine in the cerebral cortex elicited by single train and repeated train stimulation of the locus coeruleus

    PubMed Central

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Fà, Mauro; Gessa, Gian Luigi

    2005-01-01

    Background Previous studies by our group suggest that extracellular dopamine (DA) and noradrenaline (NA) may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC). This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC), occipital cortex (Occ), and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats. Results Twenty min electrical stimulation of the LC, with burst type pattern of pulses, increased NA and DA both in the mPFC and in the Occ. NA in both cortices and DA in the mPFC returned to baseline within 20 min after the end of the stimulation period, while DA in the Occ reached a maximum increase during 20 min post-stimulation and remained higher than baseline values at 220 min post-stimulation. Local perfusion with tetrodotoxin (TTX, 10 μM) markedly reduced baseline NA and DA in the mPFC and Occ and totally suppressed the effect of electrical stimulation in both areas. A sequence of five 20 min stimulations at 20 min intervals were delivered to the LC. Each stimulus increased NA to the same extent and duration as the first stimulus, whereas DA remained elevated at the time next stimulus was delivered, so that baseline DA progressively increased in the mPFC and Occ to reach about 130 and 200% the initial level, respectively. In the presence of the NA transport (NAT) blocker desipramine (DMI, 100 μM), multiple LC stimulation still increased extracellular NA and DA levels. Electrical stimulation of the LC increased NA levels in the homolateral caudate nucleus, but failed to modify DA level. Conclusion The results confirm and extend that LC stimulation induces a concomitant release of DA and NA in the mPFC and Occ. The different time-course of LC-induced elevation of DA and NA suggests that their co-release may be differentially controlled. PMID:15865626

  13. Compilation of basal metabolic and blood perfusion rates in various multi-compartment, whole-body thermoregulation models

    NASA Astrophysics Data System (ADS)

    Shitzer, Avraham; Arens, Edward; Zhang, Hui

    2016-07-01

    The assignments of basal metabolic rates (BMR), basal cardiac output (BCO), and basal blood perfusion rates (BBPR) were compared in nine multi-compartment, whole-body thermoregulation models. The data are presented at three levels of detail: total body, specific body regions, and regional body tissue layers. Differences in the assignment of these quantities among the compared models increased with the level of detail, in the above order. The ranges of variability in the total body BMR was 6.5 % relative to the lowest value, with a mean of 84.3 ± 2 W, and in the BCO, it was 8 % with a mean of 4.70 ± 0.13 l/min. The least variability among the body regions is seen in the combined torso (shoulders, thorax, and abdomen: ±7.8 % BMR and ±5.9 % BBPR) and in the combined head (head, face, and neck ±9.9 % BMR and ±10.9 % BBPR), determined by the ratio of the standard deviation to the mean. Much more variability is apparent in the extremities with the most showing in the BMR of the feet (±117 %), followed by the BBPR in the arms (±61.3 %). In the tissue layers, most of the bone layers were assigned zero BMR and BBPR, except in the shoulders and in the extremities that were assigned non-zero values in a number of models. The next lowest values were assigned to the fat layers, with occasional zero values. Skin basal values were invariably non-zero but involved very low values in certain models, e.g., BBPR in the feet and the hands. Muscle layers were invariably assigned high values with the highest found in the thorax, abdomen, and legs. The brain, lung, and viscera layers were assigned the highest of all values of both basal quantities with those of the brain layers showing rather tight ranges of variability in both basal quantities. Average basal values of the "time-seasoned" models presented in this study could be useful as a first step in future modeling efforts subject to appropriate adjustment of values to conform to most recently available and reliable data.

  14. Nuclear 82-kDa choline acetyltransferase decreases amyloidogenic APP metabolism in neurons from APP/PS1 transgenic mice.

    PubMed

    Albers, Shawn; Inthathirath, Fatima; Gill, Sandeep K; Winick-Ng, Warren; Jaworski, Ewa; Wong, Daisy Y L; Gros, Robert; Rylett, R Jane

    2014-09-01

    Alzheimer disease (AD) is associated with increased amyloidogenic processing of amyloid precursor protein (APP) to β-amyloid peptides (Aβ), cholinergic neuron loss with decreased choline acetyltransferase (ChAT) activity, and cognitive dysfunction. Both 69-kDa ChAT and 82-kDa ChAT are expressed in cholinergic neurons in human brain and spinal cord with 82-kDa ChAT localized predominantly to neuronal nuclei, suggesting potential alternative functional roles for the enzyme. By gene microarray analysis, we found that 82-kDa ChAT-expressing IMR32 neural cells have altered expression of genes involved in diverse cellular functions. Importantly, genes for several proteins that regulate APP processing along amyloidogenic and non-amyloidogenic pathways are differentially expressed in 82-kDa ChAT-containing cells. The predicted net effect based on observed changes in expression patterns of these genes would be decreased amyloidogenic APP processing with decreased Aβ production. This functional outcome was verified experimentally as a significant decrease in BACE1 protein levels and activity and a concomitant reduction in the release of endogenous Aβ1-42 from neurons cultured from brains of AD-model APP/PS1 transgenic mice. The expression of 82-kDa ChAT in neurons increased levels of GGA3, which is involved in trafficking BACE1 to lysosomes for degradation. shRNA-induced decreases in GGA3 protein levels attenuated the 82-kDa ChAT-mediated decreases in BACE1 protein and activity and Aβ1-42 release. Evidence that 82-kDa ChAT can enhance GGA3 gene expression is shown by enhanced GGA3 gene promoter activity in SN56 neural cells expressing this ChAT protein. These studies indicate a novel relationship between cholinergic neurons and APP processing, with 82-kDa ChAT acting as a negative regulator of Aβ production. This decreased formation of Aβ could result in protection for cholinergic neurons, as well as protection of other cells in the vicinity that are sensitive to increased levels of Aβ. Decreasing levels of 82-kDa ChAT due to increasing age or neurodegeneration could alter the balance towards increasing Aβ production, with this potentiating the decline in function of cholinergic neurons. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Switching to insulin glargine 300 U/mL: is duration of prior basal insulin therapy important?

    PubMed

    Bonadonna, Riccardo C; Renard, Eric; Cheng, Alice; Fritsche, Andreas; Cali, Anna; Melas-Melt, Lydie; Umpierrez, Guillermo E

    2018-04-09

    To assess the impact of duration of prior basal insulin therapy on study outcomes in people with type 2 diabetes mellitus receiving insulin glargine 300 U/mL (Gla-300) or insulin glargine 100 U/mL (Gla-100) for 6 months. A post hoc patient-level meta-analysis of data from the EDITION 1 and 2 studies. Outcomes included: HbA 1c , percentage of participants with ≥1 confirmed or severe hypoglycaemic event at night (00:00-05:59 h) or any time (24 h), and body weight change. Data were analysed according to duration of prior basal insulin use: >0-≤2 years, >2-≤5 years, >5 years. This meta-analysis included 1618 participants. HbA 1c change from baseline to month 6 was comparable between Gla-300 and Gla-100 groups, regardless of duration of prior basal insulin therapy. The lower risk with Gla-300 versus Gla-100 of ≥1 confirmed (≤3.9 mmol/L [≤70 mg/dL]) or severe hypoglycaemic event, at night or any time (24 h), was unaffected by duration of prior basal insulin therapy. Similarly, weight change was unaffected by duration of prior basal insulin therapy. Switching to Gla-300 from other basal insulin therapies provided comparable glycaemic control with lower risk of hypoglycaemia versus Gla-100, regardless of duration of prior basal insulin therapy. Copyright © 2018. Published by Elsevier B.V.

  16. Endogenous dopamine (DA) modulates (3H)spiperone binding in vivo in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bischoff, S.; Krauss, J.; Grunenwald, C.

    1991-01-01

    (3H)spiperone (SPI) binding in vivo, biochemical parameters and behavior were measured after modulating DA levels by various drug treatments. DA releasers and uptake inhibitors increased SPI binding in rat striatum. In other brain areas, the effects were variable, but only the pituitary remained unaffected. Surprisingly, nomifensine decreased SPI binding in frontal cortex. The effects of these drugs were monitored by measuring DA, serotonin (5-HT) and their metabolites in the same rats. The increased SPI binding in striatum was parallel to the locomotor stimulation with the following rank order: amfonelic acid greater than nomifensine greater than D-amphetamine greater than or equalmore » to methylphenidate greater than amineptine greater than bupropion. Decreasing DA levels with reserpine or alpha-methyl-para-tyrosine reduced SPI binding by 45% in striatum only when both drugs were combined. In contrast, reserpine enhanced SPI binding in pituitary. Thus, the amount of releasable DA seems to modulate SPI binding characteristics. It is suggested that in vivo, DA receptors are submitted to dynamic regulation in response to changes in intrasynaptic concentrations of DA.« less

  17. Methamphetamine and dopamine neurotoxicity: differential effects of agents interfering with glutamatergic transmission.

    PubMed

    Boireau, A; Bordier, F; Dubédat, P; Doble, A

    1995-07-28

    The effects of riluzole and lamotrigine, two agents which interfere with the release of glutamate (GLU), and MK-801, a blocker of N-methyl-D-aspartate (NMDA) receptors, were compared in the model of methamphetamine-induced depletion of dopamine (DA) levels in mice. Repeated injections with methamphetamine (4 x 5 mg/kg i.p.) markedly decreased levels of DA, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels. When mice were treated with riluzole (2 x 10 mg/kg p.o.), no protection was observed against the decrease in DA and the two metabolites. Lamotrigine (2 x 10 mg/kg p.o.) was also inactive. Treatment with MK-801 (2 x 2.5 mg/kg i.p.) antagonized the decrease in DA, DOPAC and HVA levels induced by the neurotoxin. Thus, unlike an NMDA blocker, drugs that interfere with GLU release did not antagonize the methamphetamine-induced DA neurotoxicity in mice. The consequences of this inactivity are discussed in terms of the reliability of this model to test new drugs with putative efficacy in the treatment of Parkinson's disease.

  18. Oxytocin receptor antagonist treatments alter levels of attachment to mothers and central dopamine activity in pre-weaning mandarin vole pups.

    PubMed

    He, Zhixiong; Hou, Wenjuan; Hao, Xin; Dong, Na; Du, Peirong; Yuan, Wei; Yang, Jinfeng; Jia, Rui; Tai, Fadao

    2017-10-01

    Oxytocin (OT) is known to be important in mother-infant bonding. Although the relationship between OT and filial attachment behavior has been studied in a few mammalian species, the effects on infant social behavior have received little attention in monogamous species. The present study examined the effects of OT receptor antagonist (OTA) treatment on attachment behavior and central dopamine (DA) activity in male and female pre-weaning mandarin voles (Microtus mandarinus). Our data showed that OTA treatments decreased the attachment behavior of pups to mothers, measured using preference tests at postnatal day 14, 16, 18 and 20. OTA treatments reduced serum OT concentration in pre-weaning pups and decreased tyrosine hydroxylase (TH) levels in the ventral tegmental area (VTA), indicating a decrease in central DA activity. In male and female pups, OTA reduced DA levels, DA 1-type receptor (D1R) and DA 2-type receptor (D2R) protein expression in the nucleus accumbens (NAcc). Our results indicate that OTA treatment inhibits the attachment of pre-weaning pups to mothers. This inhibition is possibly associated with central DA activity and levels of two types of dopamine receptor in the NAcc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. [Vesicular and nonvesicular glutamate release in the nucleus accumbens during a forced switch in behavioral strategy].

    PubMed

    Saul'skaia, N B; Mikhaĭlova, M O

    2004-01-01

    By means of in vivo microdialysis combined with HPLC analysis, we have shown that glutamate extracellular level in the rat n. accumbens increases during a forced switch in behavioral strategy. When infused in the n. accumbens, a Na+ channel blocker tetrodotoxin (TTX, 1 microM) completely prevents this increase whereas a potent cystine/glutamate exchanger blocker (S)-4-carboxyphenylglycine ((S)-4-CPG, 5 microM) has no effect. In contrast, TT (1 microM), infused in the n. accumbens, fails to significantly alter basal level of extracellular glutamate in this region whereas (S)-4-CPG (5 microM) produced a significant decrease. Our data suggest that basal and factional glutamate releases in the n. accumbens are differently regulated. The source of basal glutamate release is a non-vesicular release via cystine/glutamate exchanger. Functional glutamate release observed during a forced switch in behavioral strategy derives from vesicular synaptic pool.

  20. Modulation of phosphoinositide turnover by chronic nicergoline in rat brain.

    PubMed

    Carfagna, N; Cavanus, S; Damiani, D; Salmoiraghi, P; Fariello, R; Post, C

    1996-05-17

    Basal and agonist-stimulated phosphoinositide (PI) turnover and inositol 1,4,5 -trisphospate (InsP3) content in rat brain were investigated after chronic nicergoline (SERMION) treatment. Oral administration of nicergoline (5 mg/kg b.i.d. for 7 weeks) enhanced the basal turnover of PI in the cerebral cortex compared to controls. This effect was paralleled by a significant rise of cortical InsP3 levels. No significant changes of noradrenaline- or carbachol-induced accumulation of [3H]-inositol-I-phophate ([3H]-InsP1) were found in cortices from nicergoline-treated rats. On the contrary, in the striatum nicergoline significantly potentiated the responsiveness of noradrenaline- and carbachol-stimulated PI turnover, leaving unchanged the basal production of [3H]-InsP1 and InsP3 levels. The results suggest that the interaction of nicergoline with PI transducing pathway might have relevance to the mechanisms of action of nicergoline.

  1. Load Segmentation for Convergence of Distribution Automation and Advanced Metering Infrastructure Systems

    NASA Astrophysics Data System (ADS)

    Pamulaparthy, Balakrishna; KS, Swarup; Kommu, Rajagopal

    2014-12-01

    Distribution automation (DA) applications are limited to feeder level today and have zero visibility outside of the substation feeder and reaching down to the low-voltage distribution network level. This has become a major obstacle in realizing many automated functions and enhancing existing DA capabilities. Advanced metering infrastructure (AMI) systems are being widely deployed by utilities across the world creating system-wide communications access to every monitoring and service point, which collects data from smart meters and sensors in short time intervals, in response to utility needs. DA and AMI systems convergence provides unique opportunities and capabilities for distribution grid modernization with the DA system acting as a controller and AMI system acting as feedback to DA system, for which DA applications have to understand and use the AMI data selectively and effectively. In this paper, we propose a load segmentation method that helps the DA system to accurately understand and use the AMI data for various automation applications with a suitable case study on power restoration.

  2. MK-801 protection against methamphetamine-induced striatal dopamine terminal injury is associated with attenuated dopamine overflow.

    PubMed

    Weihmuller, F B; O'Dell, S J; Marshall, J F

    1992-06-01

    Repeated administrations of methamphetamine (m-AMPH) produce high extracellular levels of dopamine (DA) and subsequent striatal DA terminal damage. Pharmacological blockade of N-methyl-D-aspartate (NMDA) receptors has been shown previously to prevent m-AMPH-induced striatal DA terminal injury, but the mechanism for this protection is unclear. In the present study, in vivo microdialysis was used to determine the effects of blockade of NMDA receptors with the noncompetitive antagonist MK-801 on m-AMPH-induced striatal DA overflow. Four injections of MK-801 (0.5 mg/kg, ip) alone did not significantly change extracellular striatal DA concentrations from pretreatment values. Four treatments with m-AMPH (4.0 mg/kg, sc at 2-hr intervals) increased striatal DA overflow, and the overflow was particularly extensive following the fourth injection. This m-AMPH regimen produced a 40% reduction in striatal DA tissue content 1 week later. Treatment with MK-801 15 min before each of the four m-AMPH injections or prior to only the last two m-AMPH administrations attenuated the m-AMPH-induced increase in striatal DA overflow and protected completely against striatal DA depletions. Other MK-801 treatment regimens less effectively reduced the m-AMPH-induced striatal DA efflux and were ineffective in protecting against striatal DA depletions. Linear regression analysis indicated that cumulative DA overflow was strongly predictive (r = -.68) of striatal DA tissue levels measured one week later. These findings suggest that the extensive DA overflow seen during a neurotoxic regimen of m-AMPH is a crucial component of the subsequent neurotoxicity.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Racial differences in tumor necrosis factor-α-induced endothelial microparticles and interleukin-6 production

    PubMed Central

    Brown, Michael D; Feairheller, Deborah L; Thakkar, Sunny; Veerabhadrappa, Praveen; Park, Joon-Young

    2011-01-01

    African Americans (AA) tend to have heightened systemic inflammation and endothelial dysfunction. Endothelial microparticles (EMP) are released from activated/apoptotic endothelial cells (EC) when stimulated by inflammation. The purpose of our study was to assess EMP responses to inflammatory cytokine (TNF-α) and antioxidant (superoxide dismutase, SOD) conditions in human umbilical vein ECs (HUVECs) obtained from AA and Caucasians. EMPs were measured under four conditions: control (basal), TNF-α, SOD, and TNF-α + SOD. Culture supernatant was collected for EMP analysis by flow cytometry and IL-6 assay by ELISA. IL-6 protein expression was assessed by Western blot. AA HUVECs had greater EMP levels under the TNF-α condition compared to the Caucasian HUVECs (6.8 ± 1.1 vs 4.7% ± 0.4%, P = 0.04). The EMP level increased by 89% from basal levels in the AA HUVECs under the TNF-α condition (P = 0.01) compared to an 8% increase in the Caucasian HUVECs (P = 0.70). Compared to the EMP level under the TNF-α condition, the EMP level in the AA HUVECs was lower under the SOD only condition (2.9% ± 0.3%, P = 0.005) and under the TNF-α + SOD condition (2.1% ± 0.4%, P = 0.001). Basal IL-6 concentrations were 56.1 ± 8.8 pg/mL/μg in the AA and 30.9 ± 14.9 pg/mL/μg in the Caucasian HUVECs (P = 0.17), while basal IL-6 protein expression was significantly greater (P < 0.05) in the AA HUVECs. These preliminary observational results suggest that AA HUVECs may be more susceptible to the injurious effects of the proinflammatory cytokine, TNF-α. PMID:21966220

  4. Testing ecological and universal models of body shape and child health using a global sample of infants and young children.

    PubMed

    Hadley, Craig; Hruschka, Daniel J

    2017-11-01

    To test whether a risk of child illness is best predicted by deviations from a population-specific growth distribution or a universal growth distribution. Child weight for height and child illness data from 433 776 children (1-59 months) from 47 different low and lower income countries are used in regression models to estimate for each country the child basal weight for height. This study assesses the extent to which individuals within populations deviate from their basal slenderness. It uses correlation and regression techniques to estimate the relationship between child illness (diarrhoea, fever or cough) and basal weight for height, and residual weight for height. In bivariate tests, basal weight for height z-score did not predict the country level prevalence of child illness (r 2  = -0.01, n = 47, p = 0.53), but excess weight for height did (r 2  = 0.14, p < 0.01). At the individual level, household wealth is negatively associated with the odds that a child is reported as ill (beta = -0.04, p < 0.001, n = 433 776) and basal weight for height was not (beta = 0.20, p = 0.27). Deviations from country-specific basal weight for height were negatively associated with the likelihood of illness (beta = -0.13, p < 0.01), indicating a 13% reduction in illness risk for every 0.1 standard deviation increase in residual weight-for-height Conclusion: These results are consistent with the idea that populations may differ in their body slenderness, and that deviations from this body form may predict the risk of childhood illness.

  5. Characterization of basal gene expression trends over a diurnal cycle in Xiphophorus maculatus skin, brain and liver.

    PubMed

    Lu, Yuan; Reyes, Jose; Walter, Sean; Gonzalez, Trevor; Medrano, Geraldo; Boswell, Mikki; Boswell, William; Savage, Markita; Walter, Ronald

    2018-06-01

    Evolutionarily conserved diurnal circadian mechanisms maintain oscillating patterns of gene expression based on the day-night cycle. Xiphophorus fish have been used to evaluate transcriptional responses after exposure to various light sources and it was determined that each source incites distinct genetic responses in skin tissue. However, basal expression levels of genes that show oscillating expression patterns in day-night cycle, may affect the outcomes of such experiments, since basal gene expression levels at each point in the circadian path may influence the profile of identified light responsive genes. Lack of knowledge regarding diurnal fluctuations in basal gene expression patterns may confound the understanding of genetic responses to external stimuli (e.g., light) since the dynamic nature of gene expression implies animals subjected to stimuli at different times may be at very different stages within the continuum of genetic homeostasis. We assessed basal gene expression changes over a 24-hour period in 200 select Xiphophorus gene targets known to transcriptionally respond to various types of light exposure. We identified 22 genes in skin, 36 genes in brain and 28 genes in liver that exhibit basal oscillation of expression patterns. These genes, including known circadian regulators, produced the expected expression patterns over a 24-hour cycle when compared to circadian regulatory genes identified in other species, especially human and other vertebrate animal models. Our results suggest the regulatory network governing diurnal oscillating gene expression is similar between Xiphophorus and other vertebrates for the three Xiphophorus organs tested. In addition, we were able to categorize light responsive gene sets in Xiphophorus that do, and do not, exhibit circadian based oscillating expression patterns. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. COX-1 vs. COX-2 as a determinant of basal tone in the internal anal sphincter

    PubMed Central

    de Godoy, Márcio A. F.; Rattan, Neeru; Rattan, Satish

    2009-01-01

    Prostanoids, produced endogenously via cyclooxygenases (COXs), have been implicated in the sustained contraction of different smooth muscles. The two major types of COXs are COX-1 and COX-2. The COX subtype involved in the basal state of the internal anal sphincter (IAS) smooth muscle tone is not known. To identify the COX subtype, we examined the effect of COX-1- and COX-2-selective inhibitors, SC-560 and rofecoxib, respectively, on basal tone in the rat IAS. We also determined the effect of selective deletion of COX-1 and COX-2 genes (COX-1−/− and COX-2−/− mice) on basal tone in murine IAS. Our data show that SC-560 causes significantly more efficacious and potent concentration-dependent decreases in IAS tone than rofecoxib. In support of these data, significantly higher levels of COX-1 than COX-2 mRNA were found in the IAS. In addition, higher levels of COX-1 mRNA and protein were expressed in rat IAS than rectal smooth muscle. In wild-type mice, IAS tone was decreased 41.4 ± 3.4% (mean ± SE) by SC-560 (1 × 10−5 M) and 5.4 ± 2.2% by rofecoxib (P < 0.05, n = 5). Basal tone was 0.172 ± 0.021 mN//mg in the IAS from wild-type mice and significantly less (0.080 ± 0.015 mN/mg) in the IAS from COX-1−/− mice (P < 0.05, n = 5). However, basal tone in COX-2−/− mice was not significantly different from that in wild-type mice. We conclude that COX-1-related products contribute significantly to IAS tone. PMID:19056763

  7. COX-1 vs. COX-2 as a determinant of basal tone in the internal anal sphincter.

    PubMed

    de Godoy, Márcio A F; Rattan, Neeru; Rattan, Satish

    2009-02-01

    Prostanoids, produced endogenously via cyclooxygenases (COXs), have been implicated in the sustained contraction of different smooth muscles. The two major types of COXs are COX-1 and COX-2. The COX subtype involved in the basal state of the internal anal sphincter (IAS) smooth muscle tone is not known. To identify the COX subtype, we examined the effect of COX-1- and COX-2-selective inhibitors, SC-560 and rofecoxib, respectively, on basal tone in the rat IAS. We also determined the effect of selective deletion of COX-1 and COX-2 genes (COX-1(-/-) and COX-2(-/-) mice) on basal tone in murine IAS. Our data show that SC-560 causes significantly more efficacious and potent concentration-dependent decreases in IAS tone than rofecoxib. In support of these data, significantly higher levels of COX-1 than COX-2 mRNA were found in the IAS. In addition, higher levels of COX-1 mRNA and protein were expressed in rat IAS than rectal smooth muscle. In wild-type mice, IAS tone was decreased 41.4 +/- 3.4% (mean +/- SE) by SC-560 (1 x 10(-5) M) and 5.4 +/- 2.2% by rofecoxib (P < 0.05, n = 5). Basal tone was 0.172 +/- 0.021 mN//mg in the IAS from wild-type mice and significantly less (0.080 +/- 0.015 mN/mg) in the IAS from COX-1(-/-) mice (P < 0.05, n = 5). However, basal tone in COX-2(-/-) mice was not significantly different from that in wild-type mice. We conclude that COX-1-related products contribute significantly to IAS tone.

  8. Effects of Pine and Hardwood Basal Areas After Uneven-Aged Silvicultural Treatments on Wildlife Habitat

    Treesearch

    Darren A. Miller; Bruce D. Leopold; L. Mike Conner; Michael G. Shelton

    1999-01-01

    Uneven-aged management (UEAM) is becoming increasingly popular in the southeastern United States. However, effects of UEAM on wildlife habitat have not been adequately documented. We examined response of habitat within stands of varying levels of pine and hardwood basal area under an uneven-aged managegement regime in southern Mississippi. Summer and winter trends in...

  9. Estimation of crown cover in interior ponderosa pine stands: Effects of thinning and prescribed fire

    Treesearch

    Nicholas Vaughn; Martin W. Ritchie

    2005-01-01

    We evaluated the relationship between crown cover measured with a vertical sight tube and stand basal area per acre in treated (thinned, burned, and thinned and burned) and untreated interior ponderosa pine (Pinus ponderosa P. & C. Lawson) stands in northeastern California. Crown cover was significantly related to basal area at the plot level and...

  10. Heavy thinning of ponderosa pine stands: An Arizona case study

    Treesearch

    Peter F. Ffolliott; Jr. Baker; Gerald J. Gottfried

    2000-01-01

    Growth and structural changes in a mosaic of even-aged ponderosa pine (Pinus ponderosa) stands were studied for 25 years to determine the long-term impacts of a heavy thinning treatment to a basal-area level of 25 ft2/acre. Basal area and volume growth of these stands has increased since thinning and likely will continue to...

  11. Growth of ponderosa pine thinned to different stocking levels in central Oregon: 30-year results.

    Treesearch

    P.H. Cochran; James W. Barrett

    1999-01-01

    Periodic annual increments (PAI) for survivor diameters decreased curvilinearly with increasing stand density. Gross volume and basal areas PAIs increased linearly with increasing stand density. Growth of basal area and volume for the 20 largest trees per acre were reduced curvilinearly with increasing stand density. Bark beetles were the primary cause of mortality. No...

  12. Children's Comprehension of, Reactions to, and Preferences for Basal Reader Stories of Varying Comprehensibility. Technical Report No. 378.

    ERIC Educational Resources Information Center

    Meyer, Linda A.; And Others

    A study examined children's comprehension of and preferences for basal reader stories with differing levels of coherence. The subjects were 58 second grade students who each read orally three stories judged to differ substantially on the number of incoherences in the text. Incoherences were defined as confusing referents, unclear relationships…

  13. Neurotensin receptor binding levels in basal ganglia are not altered in Huntington's chorea or schizophrenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palacios, J.M.; Chinaglia, G.; Rigo, M.

    1991-02-01

    Autoradiographic techniques were used to examine the distribution and levels of neurotensin receptor binding sites in the basal ganglia and related regions of the human brain. Monoiodo ({sup 125}I-Tyr3)neurotensin was used as a ligand. High amounts of neurotensin receptor binding sites were found in the substantia nigra pars compacta. Lower but significant quantities of neurotensin receptor binding sites characterized the caudate, putamen, and nucleus accumbens, while very low quantities were seen in both medial and lateral segments of the globus pallidus. In Huntington's chorea, the levels of neurotensin receptor binding sites were found to be comparable to those of controlmore » cases. Only slight but not statistically significant decreases in amounts of receptor binding sites were detected in the dorsal part of the head and in the body of caudate nucleus. No alterations in the levels of neurotensin receptor binding sites were observed in the substantia nigra pars compacta and reticulata. These results suggest that a large proportion of neurotensin receptor binding sites in the basal ganglia are located on intrinsic neurons and on extrinsic afferent fibers that do not degenerate in Huntington's disease.« less

  14. Systemic Injections of Cannabidiol Enhance Acetylcholine Levels from Basal Forebrain in Rats.

    PubMed

    Murillo-Rodríguez, Eric; Arankowsky-Sandoval, Gloria; Rocha, Nuno Barbosa; Peniche-Amante, Rodrigo; Veras, André Barciela; Machado, Sérgio; Budde, Henning

    2018-06-06

    Cannabis sativa is a plant that contains more than 500 components, of which the most studied are Δ 9 -tetrahydrocannabinol (Δ 9 -THC) and cannabidiol (CBD). Several studies have indicated that CBD displays neurobiological effects, including wake promotion. Moreover, experimental evidence has shown that injections of CBD enhance wake-related compounds, such as monoamines (dopamine, serotonin, epinephrine, and norepinephrine). However, no clear evidence is available regarding the effects of CBD on additional wake-related neurochemicals such as acetylcholine (ACh). Here, we demonstrate that systemic injections of CBD (0, 5, 10 or 30 mg/kg, i.p.) at the beginning of the lights-on period, increase the extracellular levels of ACh collected from the basal forebrain and measured by microdialysis and HPLC means. Moreover, the time course effects on the contents of ACh were present 5 h post-injection of CBD. Altogether, these data demonstrate that CBD increases ACh levels in a brain region related to wake control. This study is the first to show the effects of ACh levels in CBD-treated rats and suggests that the basal forebrain might be a site of action of CBD for wakefulness modulation.

  15. [The changes in renin-angiotensin-aldosterone-system in different subtypes of Cushing's syndrome].

    PubMed

    Cui, Jia; Dou, Jingtao; Yang, Guoqing; Zang, Li; Jin, Nan; Chen, Kang; Du, Jin; Gu, Weijun; Wang, Xianling; Yang, Lijuan; Lyu, Zhaohui; Ba, Jianming; Mu, Yiming; Lu, Juming; Li, Jiangyuan; Pan, Changyu

    2015-07-01

    Cushing's syndrome is a clinical condition resulting from chronic exposure to excess glucocorticoid. As a consequence, long-term hypercortisolism contributes significantly to the development of systemic disorders by direct and/or indirect effects. The present study was to analyze the changes of renin-angiotensin-aldosterone-system in different subtypes of Cushing's syndrome on the standard posture test. We retrospectively reviewed 150 patients with histologically confirmed Cushing's syndrome treated at the PLA General Hospital between 2002 and 2014. Among them, 128 patients were diagnosed as adreno-cortico-tropic-hormone (ACTH)-independent Cushing's syndrome, and 22 were ACTH-dependent Cushing's syndrome. All patients were undertaken the posture test. Plasma renin activity (PRA), angiotensin II, plasma aldosterone concertration (PAC) levels were measured before and after the test. Basal plasma PRA [0.5 (0.2,1.3)µg·L(-1)·h(-1), angiotensin II [(48.9±20.1) ng/L] and PAC [(285.0±128.1) pmol/L] levels were within the normal range in supine position. Compared with the subjects with ACTH-independent Cushing's syndrome, the basal PAC levels were higher in subjects with ACTH-dependent Cushing's syndrome [(348.0±130.4) pmol/L vs (274.2±125.0) pmol/L, P<0.05]. However, the PAC response in subjects with ACTH-dependent Cushing's syndrome [(49.7±26.4)%] was significantly lower than that in those with ACTH-independent Cushing's syndrome [(81.2±69.3)%] upon upright posture stimulation (P<0.05). There were no statistical significances in PRA and angiotensin II levels between the two groups. The basal PAC and PRA levels were positively correlated with ACTH, whereas PAC response was negatively correlated with ACTH. The renin-angiotensin-aldosterone-system activity in subjects with Cushing's syndrome was similar to that in normal control. The basal PAC level and its response to upright posture are differently associated with ACTH level in Cushing's syndrome.

  16. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in treating neurodegenerative disorders.

  17. Proof of mechanism study of a novel serotonin transporter blocker, DA-8031, using [11C]DASB positron emission tomography and in vivo microdialysis.

    PubMed

    Park, Hyun Soo; Jung, In Soon; Lim, Nam Hee; Sung, Ji Hyun; Lee, Sukhyang; Moon, Byung Seok; Lee, Byung Chul; Kang, Kyung Koo; Kim, Sang Eun

    2014-07-01

    To investigate the efficacy of DA-8031, a novel compound for the treatment of premature ejaculation, we measured serotonin transporter (SERT) occupancy by DA-8031, as well as DA-8031-induced changes in extracellular serotonin levels, in the rat brain using positron emission tomography (PET) and 11C-N,N-dimethyl-2-(2-amino-4-cyanophenylthio) benzylamine ([11C]DASB) and in vivo microdialysis, respectively. [11C]DASB PET scans were performed in rats with graded doses of DA-8031 (vehicle: 10, 30, and 100 mg/kg). SERT occupancy in the midbrain was determined using binding potentials for [11C]DASB calculated by the multilinear reference tissue model. Extracellular serotonin levels were monitored in the dorsal raphe nucleus of rats after the administration of DA-8031 (10-100 mg/kg) using in vivo microdialysis. PET data indicated a reduction of [11C]DASB binding to SERTs in the midbrain as a function of DA-8031 dose. SERT occupancy for each DA-8031 dose (10-100 mg/kg) ranged between 31% and 84%. The drug dose required for 50% occupancy of SERT was 13.5 mg/kg in the midbrain, comparable with previous preclinical behavioral data (∼10-30 mg/kg). In vivo microdialysis showed that DA-8031 produced a dose-dependent increase in extracellular serotonin levels in the dorsal raphe nucleus (33%-81% increase for doses of 10-100 mg/kg). These preclinical data provide a proof of mechanism for DA-8031 as a novel compound of targeting the SERT for the treatment of premature ejaculation, warranting further clinical trials. They also offer insight into the optimal drug dose needed to exert therapeutic effects while minimizing adverse effects in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Evaluation of Electronic Cigarette Liquids and Aerosol for the Presence of Selected Inhalation Toxins

    PubMed Central

    Kistler, Kurt A.; Gillman, Gene; Voudris, Vassilis

    2015-01-01

    Introduction: The purpose of this study was to evaluate sweet-flavored electronic cigarette (EC) liquids for the presence of diacetyl (DA) and acetyl propionyl (AP), which are chemicals approved for food use but are associated with respiratory disease when inhaled. Methods: In total, 159 samples were purchased from 36 manufacturers and retailers in 7 countries. Additionally, 3 liquids were prepared by dissolving a concentrated flavor sample of known DA and AP levels at 5%, 10%, and 20% concentration in a mixture of propylene glycol and glycerol. Aerosol produced by an EC was analyzed to determine the concentration of DA and AP. Results: DA and AP were found in 74.2% of the samples, with more samples containing DA. Similar concentrations were found in liquid and aerosol for both chemicals. The median daily exposure levels were 56 μg/day (IQR: 26–278 μg/day) for DA and 91 μg/day (IQR: 20–432 μg/day) for AP. They were slightly lower than the strict NIOSH-defined safety limits for occupational exposure and 100 and 10 times lower compared with smoking respectively; however, 47.3% of DA and 41.5% of AP-containing samples exposed consumers to levels higher than the safety limits. Conclusions: DA and AP were found in a large proportion of sweet-flavored EC liquids, with many of them exposing users to higher than safety levels. Their presence in EC liquids represents an avoidable risk. Proper measures should be taken by EC liquid manufacturers and flavoring suppliers to eliminate these hazards from the products without necessarily limiting the availability of sweet flavors. PMID:25180080

  19. Noise level in a pediatric intensive care unit.

    PubMed

    Carvalho, Werther B; Pedreira, Mavilde L G; de Aguiar, Maria Augusta L

    2005-01-01

    The purpose of this study was to verify the noise level at a PICU. This prospective observational study was performed in a 10 bed PICU at a teaching hospital located in a densely populated district within the city of São Paulo, Brazil. Sound pressure levels (dBA) were measured 24 hours during a 6-day period. Noise recording equipment was placed in the PICU access corridor, nursing station, two open wards with three and five beds, and in isolation rooms. The resulting curves were analyzed. A basal noise level variation between 60 and 70 dBA was identified, with a maximum level of 120 dBA. The most significant noise levels were recorded during the day and were produced by the staff. The basal noise level identified exceeds International Noise Council recommendations. Education regarding the effects of noise on human hearing and its relation to stress is the essential basis for the development of a noise reduction program.

  20. The dopamine-related polymorphisms BDNF, COMT, DRD2, DRD3, and DRD4 are not linked with changes in CSF dopamine levels and frequency of HIV infection.

    PubMed

    Horn, Anne; Scheller, C; du Plessis, S; Burger, R; Arendt, G; Joska, J; Sopper, S; Maschke, C M; Obermann, M; Husstedt, I W; Hain, J; Riederer, P; Koutsilieri, E

    2017-04-01

    We showed previously that higher levels in CSF dopamine in HIV patients are associated with the presence of the dopamine transporter (DAT) 10/10-repeat allele which was also detected more frequently in HIV-infected individuals compared to uninfected subjects. In the current study, we investigated further whether other genetic dopamine (DA)-related polymorphisms may be related with changes in CSF DA levels and frequency of HIV infection in HIV-infected subjects. Specifically, we studied genetic polymorphisms of brain-derived neurotrophic factor, catechol-O-methyltransferase, and dopamine receptors DRD2, DRD3, and DRD4 genetic polymorphisms in uninfected and HIV-infected people in two different ethnical groups, a German cohort (Caucasian, 72 individuals with HIV infection and 22 individuals without HIV infection) and a South African cohort (Xhosan, 54 individuals with HIV infection and 19 individuals without HIV infection). We correlated the polymorphisms with CSF DA levels, HIV dementia score, CD4 + T cell counts, and HIV viral load. None of the investigated DA-related polymorphisms was associated with altered CSF DA levels, CD4 + T cell count, viral load, and HIV dementia score. The respective allele frequencies were equally distributed between HIV-infected patients and controls. Our findings do not show any influence of the studied genetic polymorphisms on CSF DA levels and HIV infection. This is in contrast to what we found previously for the DAT 3'UTR VNTR and highlights the specific role of the DAT VNTR in HIV infection and disease.

  1. Protective effect of DA-9401 in finasteride-induced apoptosis in rat testis: inositol requiring kinase 1 and c-Jun N-terminal kinase pathway.

    PubMed

    Soni, Kiran Kumar; Shin, Yu Seob; Choi, Bo Ram; Karna, Keshab Kumar; Kim, Hye Kyung; Lee, Sung Won; Kim, Chul Young; Park, Jong Kwan

    2017-01-01

    Finasteride is used to treat male pattern baldness and benign prostatic hyperplasia. This study investigated the toxicity of finasteride and recovery by DA-9401 using Sprague Dawley (SD) rats. Forty adult male SD rats were assigned to four groups: control (CTR), finasteride 1 mg/kg/day (F), finasteride 1 mg/kg + DA-9401 100 mg/kg/day (F + DA 100) and finasteride 1 mg/kg + DA-9401 200 mg/kg/day (F + DA 200). Treatments were by oral delivery once daily for 90 consecutive days. The gross anatomical parameters assessed included: genital organ weight; vas deferens sperm count and sperm motility; testosterone, dihydrotestosterone (DHT) and malondialdehyde levels; and histological and terminal deoxynucleotidyl transferase enzyme mediated dUTP nick-end labeling (TUNEL) staining of testis for spermatogenic cell density, Johnsen's score and apoptosis. Testicular tissue was also used for evaluating endoplasmic reticulum (ER) stress and apoptotic proteins. Epididymis weight, seminal vesicle weight, prostate weight, penile weight and vas deferens sperm motility showed significant differences between the F group and the CTR, F + DA 100 and F + DA 200 groups. There was no significant change in the testosterone level. DHT level decreased significantly in the F group compared with the CTR group. Testis tissue revealed significant changes in spermatogenic cell density, Johnsen's score and apoptotic index. Western blot showed significant changes in the ER stress and apoptotic markers. Finasteride resulted in reduced fertility and increased ER stress and apoptotic markers, which were recovered by administration of DA-9401 in the SD rats.

  2. Selective Activation of Basal Forebrain Cholinergic Neurons Attenuates Polymicrobial Sepsis-Induced Inflammation via the Cholinergic Anti-Inflammatory Pathway.

    PubMed

    Zhai, Qian; Lai, Dengming; Cui, Ping; Zhou, Rui; Chen, Qixing; Hou, Jinchao; Su, Yunting; Pan, Libiao; Ye, Hui; Zhao, Jing-Wei; Fang, Xiangming

    2017-10-01

    Basal forebrain cholinergic neurons are proposed as a major neuromodulatory system in inflammatory modulation. However, the function of basal forebrain cholinergic neurons in sepsis is unknown, and the neural pathways underlying cholinergic anti-inflammation remain unexplored. Animal research. University research laboratory. Male wild-type C57BL/6 mice and ChAT-ChR2-EYFP (ChAT) transgenic mice. The cholinergic neuronal activity of the basal forebrain was manipulated optogenetically. Cecal ligation and puncture was produced to induce sepsis. Left cervical vagotomy and 6-hydroxydopamine injection to the spleen were used. Photostimulation of basal forebrain cholinergic neurons induced a significant decrease in the levels of tumor necrosis factor-α and interleukin-6 in the serum and spleen. When cecal ligation and puncture was combined with left cervical vagotomy in photostimulated ChAT mice, these reductions in tumor necrosis factor-α and interleukin-6 were partly reversed. Furthermore, photostimulating basal forebrain cholinergic neurons induced a large increase in c-Fos expression in the basal forebrain, the dorsal motor nucleus of the vagus, and the ventral part of the solitary nucleus. Among them, 35.2% were tyrosine hydroxylase positive neurons. Furthermore, chemical denervation showed that dopaminergic neurotransmission to the spleen is indispensable for the anti-inflammation. These results are the first to demonstrate that selectively activating basal forebrain cholinergic neurons is sufficient to attenuate systemic inflammation in sepsis. Specifically, photostimulation of basal forebrain cholinergic neurons activated dopaminergic neurons in dorsal motor nucleus of the vagus/ventral part of the solitary nucleus, and this dopaminergic efferent signal was further transmitted by the vagus nerve to the spleen. This cholinergic-to-dopaminergic neural circuitry, connecting central cholinergic neurons to the peripheral organ, might have mediated the anti-inflammatory effect in sepsis.

  3. The evolutionary origin of the vertebrate basal ganglia and its role in action selection.

    PubMed

    Grillner, Sten; Robertson, Brita; Stephenson-Jones, Marcus

    2013-11-15

    The group of nuclei within the basal ganglia of the forebrain is central to the control of movement. We present data showing that the structure and function of the basal ganglia have been conserved throughout vertebrate evolution over some 560 million years. The interaction between the different nuclei within the basal ganglia is conserved as well as the cellular and synaptic properties and transmitters. We consider the role of the conserved basal ganglia circuitry for basic patterns of motor behaviour controlled via brainstem circuits. The output of the basal ganglia consists of tonically active GABAergic neurones, which target brainstem motor centres responsible for different patterns of behaviour, such as eye and locomotor movements, posture, and feeding. A prerequisite for activating or releasing a motor programme is that this GABAergic inhibition is temporarily reduced. This can be achieved through activation of GABAergic projection neurons from striatum, the input level of the basal ganglia, given an appropriate synaptic drive from cortex, thalamus and the dopamine system. The tonic inhibition of the motor centres at rest most likely serves to prevent the different motor programmes from becoming active when not intended. Striatal projection neurones are subdivided into one group with dopamine 1 receptors that provides increased excitability of the direct pathway that can initiate movements, while inhibitory dopamine 2 receptors are expressed on neurones that instead inhibit movements and are part of the 'indirect loop' in mammals as well as lamprey. We review the evidence showing that all basic features of the basal ganglia have been conserved throughout vertebrate phylogeny, and discuss these findings in relation to the role of the basal ganglia in selection of behaviour.

  4. Sequential development of apical-basal and planar polarities in aggregating epitheliomuscular cells of Hydra.

    PubMed

    Seybold, Anna; Salvenmoser, Willi; Hobmayer, Bert

    2016-04-01

    Apical-basal and planar cell polarities are hallmarks of metazoan epithelia required to separate internal and external environments and to regulate trans- and intracellular transport, cytoskeletal organization, and morphogenesis. Mechanisms of cell polarization have been intensively studied in bilaterian model organisms, particularly in early embryos and cultured cells, while cell polarity in pre-bilaterian tissues is poorly understood. Here, we have studied apical-basal and planar polarization in regenerating (aggregating) clusters of epitheliomuscular cells of Hydra, a simple representative of the ancestral, pre-bilaterian phylum Cnidaria. Immediately after dissociation, single epitheliomuscular cells do not exhibit cellular polarity, but they polarize de novo during aggregation. Reestablishment of the Hydra-specific epithelial bilayer is a result of short-range cell sorting. In the early phase of aggregation, apical-basal polarization starts with an enlargement of the epithelial apical-basal diameter and by the development of belt-like apical septate junctions. Specification of the basal pole of epithelial cells occurs shortly later and is linked to synthesis of mesoglea, development of hemidesmosome-like junctions, and formation of desmosome-like junctions connecting the basal myonemes of neighbouring cells. Planar polarization starts, while apical-basal polarization is already ongoing. It is executed gradually starting with cell-autonomous formation, parallelization, and condensation of myonemes at the basal end of each epithelial cell and continuing with a final planar alignment of epitheliomuscular cells at the tissue level. Our findings reveal that epithelial polarization in Hydra aggregates occurs in defined steps well accessible by histological and ultrastructural techniques and they will provide a basis for future molecular studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Associations between basal cortisol levels and memory retrieval in healthy young individuals.

    PubMed

    Ackermann, Sandra; Hartmann, Francina; Papassotiropoulos, Andreas; de Quervain, Dominique J F; Rasch, Björn

    2013-11-01

    Cortisol is known to affect memory processes. On the one hand, stress-induced or pharmacologically induced elevations of cortisol levels enhance memory consolidation. On the other hand, such experimentally induced elevations of cortisol levels have been shown to impair memory retrieval. However, the effects of individual differences in basal cortisol levels on memory processes remain largely unknown. Here we tested whether individual differences in cortisol levels predict picture learning and recall in a large sample. A total of 1225 healthy young women and men viewed two different sets of emotional and neutral pictures on two consecutive days. Both sets were recalled after a short delay (10 min). On Day 2, the pictures seen on Day 1 were additionally recalled, resulting in a long-delay (20 hr) recall condition. Cortisol levels were measured three times on Days 1 and 2 via saliva samples before encoding, between encoding and recall as well as after recall testing. We show that stronger decreases in cortisol levels during retrieval testing were associated with better recall performance of pictures, regardless of emotional valence of the pictures or length of the retention interval (i.e., 10 min vs. 20 hr). In contrast, average cortisol levels during retrieval were not related to picture recall. Remarkably during encoding, individual differences in average cortisol levels as well as changes in cortisol did not predict memory recall. Our results support previous findings indicating that higher cortisol levels during retrieval testing hinders recall of episodic memories and extend this view onto interindividual changes in basal cortisol levels.

  6. Music improves dopaminergic neurotransmission: demonstration based on the effect of music on blood pressure regulation.

    PubMed

    Sutoo, Den'etsu; Akiyama, Kayo

    2004-08-06

    The mechanism by which music modifies brain function is not clear. Clinical findings indicate that music reduces blood pressure in various patients. We investigated the effect of music on blood pressure in spontaneously hypertensive rats (SHR). Previous studies indicated that calcium increases brain dopamine (DA) synthesis through a calmodulin (CaM)-dependent system. Increased DA levels reduce blood pressure in SHR. In this study, we examined the effects of music on this pathway. Systolic blood pressure in SHR was reduced by exposure to Mozart's music (K.205), and the effect vanished when this pathway was inhibited. Exposure to music also significantly increased serum calcium levels and neostriatal DA levels. These results suggest that music leads to increased calcium/CaM-dependent DA synthesis in the brain, thus causing a reduction in blood pressure. Music might regulate and/or affect various brain functions through dopaminergic neurotransmission, and might therefore be effective for rectification of symptoms in various diseases that involve DA dysfunction.

  7. Altered adrenal steroid metabolism underlying hypercortisolism in female endurance athletes.

    PubMed

    Lindholm, C; Hirschberg, A L; Carlström, K; von Schoultz, B

    1995-06-01

    To explore possible changes in adrenal steroid metabolism and androgenic-anabolic status in female endurance athletes as a mechanism for their hypercortisolism. Adrenal steroids and androgenic-anabolic factors were studied during basal conditions and in response to ACTH stimulation related to menstrual status. Department of Obstetrics and Gynecology, Karolinska Hospital, Stockholm, Sweden. Thirteen female elite middle to long distance runners (six eumenorrheic, seven oligoamenorrheic) and seven regularly menstruating controls. Blood samples were collected before and after an injection of 250 micrograms IV synthetic ACTH 1-24. Body weight, height, and body fat were measured. Basal serum concentrations of cortisol, androstenedione (A), DHEA, DHEAS, 17 alpha-hydroxyprogesterone (17-OHP), T, steroid-binding proteins, and insulin-like growth factor I and ACTH-induced response (area under the curve) of cortisol, DHEA, and 17-OHP. Oligoamenorrheic athletes had higher basal cortisol and A concentrations compared with healthy controls, whereas basal levels of DHEA and DHEAS were normal. Important findings in the oligoamenorrheic athletes were a significantly lower ratio between the ACTH-induced increments of DHEA and 17-OHP and an increased ratio between basal A and DHEAS. Insulin-like growth factor I was correlated negatively to sex hormone-binding globulin and to the amount of body fat in the combined material. The results indicate a redistribution of adrenal steroid metabolism in favor of glucocorticoid production in female endurance athletes. We suggest that hypercortisolism in female endurance athletes is a physiological adaptation to maintain adequate blood glucose levels during a condition of energy deficiency.

  8. Profile of skin cancer in Pomeranian communities of the State of Espírito Santo.

    PubMed

    Frasson, Patrícia Henriques Lyra; Duque, Danilo Schwab; Pinto, Estanrley Barcelos; Dalvi, Giulia Cerutti; Madalon, Sammy Zogheib; Nunes, Tarcizo Afonso; DE-Vargas, Paulo Roberto Merçon

    2017-01-01

    to evaluate the profile of skin cancer in Pomeranian communities of the State of Espírito Santo, composed of descendants of European immigrants, regarding gender and age at diagnosis, lesion size and histological type. we studied histopathological reports of 3,781 patients operated between 2000 and 2010, with resection of 4,881 lesions. We assessed histological type, lesion size, age and gender of the patients at diagnosis and their correlations in the 11-year period. the histopathological examination revealed basal cell carcinoma in 3,159 patients (83.5%), squamous cell carcinoma in 415 (11%), melanoma in 64 (1.7%), and 143 patients (3.8%) had combined lesions of basal cell carcinoma and squamous cell carcinoma. As to size, 47.1% measured between 5.1 and 10mm. The age group of 61 to 70 years was the one that sustained the largest number of surgical interventions (24.3%). There was a predominance of the female gender (2,027, 53.6%) in relation to the male (1,754, 46.4%). basal cell carcinoma was the most frequent histological type. The prevalences of squamous cell carcinoma and melanoma were below the national estimate of the National Cancer Institute. The diagnosis of tumors occurred at more advanced ages (above 60 years) and there was an increase in the incidence and size of skin tumors in the male population. avaliar o panorama do câncer de pele em comunidades pomeranas do Estado do Espírito Santo, compostas por descendentes de imigrantes europeus, quanto ao sexo e idade ao diagnóstico, tamanho da lesão e tipo histológico. foram avaliados laudos histopatológicos de 3781 pacientes operados entre os anos de 2000 e 2010, com ressecção de 4881 lesões. Foram avaliados tipo histológico, tamanho das lesões, idade e sexo dos pacientes ao diagnóstico e suas correlações no período de 11 anos. o exame histopatológico evidenciou carcinoma basocelular em 3159 pacientes (83,5%), carcinoma espinocelular em 415 (11%), melanoma em 64 (1,7%) e 143 pacientes (3,8%) apresentaram lesões combinadas de carcinoma basocelular e carcinoma espinocelular. Quanto ao tamanho, 47,1% media entre 5,1 e 10 mm. O grupo etário de 61 aos 70 anos foi o que sofreu o maior número de intervenções cirúrgicas (24,3%). Houve predomínio do sexo feminino (53,6%, n=2027) em relação ao masculino (46,4%, n=1754). carcinoma basocelular foi o tipo histológico mais frequente. As prevalências do carcinoma espinocelular e do melanoma se situaram abaixo da estimativa nacional do Instituto Nacional de Câncer. O diagnóstico dos tumores ocorreu em idades mais avançadas (acima de 60 anos) e houve aumento da incidência e dimensões dos tumores de pele na população masculina.

  9. Comparative endocrinological responses to short transportation of Equidae (Equus asinus and Equus caballus).

    PubMed

    Fazio, Esterina; Medica, Pietro; Cravana, Cristina; Aveni, Francesca; Ferlazzo, Adriana

    2013-03-01

    In order to evaluate the effects of short transportation on β-endorphin, adrenocorticotropic hormone (ACTH) and cortisol changes, 12 healthy stallions of Equidae (Equus asinus and Equus caballus) were studied before and after transportation of 50 km. Blood samples were collected 1 week before transportation in basal conditions, immediately before loading and after transportation and unloading, on their arrival at the breeding station. Compared to basal and before values, donkeys showed an increase in circulating ACTH (P < 0.001) and cortisol (P < 0.0005) levels after transportation and higher ACTH (P < 0.01) levels than horses after transportation. A positive and significant correlation (r = 0.885; P < 0.01) between ACTH and cortisol levels after transportation was found. No significant differences were observed for β-endorphin levels. Compared to basal and before values, horses showed higher cortisol (P < 0.005) levels after transportation and no significant differences were observed for ACTH and β-endorphin levels in donkeys. Horses facing forward (direction of travel) showed higher (P < 0.01) β-endorphin levels after transportation than donkeys; horses facing backward (the opposite direction of travel) showed lower (P < 0.05) ACTH levels after transportation. The results indicate that short transportation induces a preferential activation of the hypothalamus-pituitary-axis (HPA), with significant release of ACTH and cortisol in donkeys and only of cortisol in horses, suggesting that transportation for donkeys may be more stressful than horses. © 2012 The Authors Animal Science Journal © 2012 Japanese Society of Animal Science.

  10. The effect of continuous positive airway pressure on middle ear pressure.

    PubMed

    Lin, Fred Y; Gurgel, Richard K; Popelka, Gerald R; Capasso, Robson

    2012-03-01

    While continuous positive airway pressure (CPAP) is commonly used for obstructive sleep apnea treatment, its effect on middle ear pressure is unknown. The purpose of this study was to measure the effect of CPAP on middle ear pressure and describe the correlation between CPAP levels and middle ear pressures. Retrospective review of normal tympanometry values and a prospective cohort evaluation of subjects' tympanometric values while using CPAP at distinct pressure levels. A total of 3,066 tympanograms were evaluated to determine the normal range of middle ear pressures. Ten subjects with no known history of eustachian tube dysfunction or obstructive sleep apnea had standard tympanometry measurements while wearing a CPAP device. Measurements were taken at baseline and with CPAP air pressures of 0, 5, 10, and 15 cm H(2)O. The percentage of normal control patients with middle ear pressures above 40 daPa was 0.03%. In the study population, prior to a swallowing maneuver to open the eustachian tube, average middle ear pressures were 21.67 daPa, 22.63 daPa, 20.42, daPa, and 21.58 daPa with CPAP pressures of 0, 5, 10, and 15 cm H(2) 0, respectively. After swallowing, average middle ear air pressures were 18.83 daPa, 46.75 daPa, 82.17 daPa, and 129.17 daPa with CPAP pressures of 0, 5, 10, and 15 cm H(2)0, respectively. The postswallow Pearson correlation coefficient correlating CPAP and middle ear pressures was 0.783 (P < 0.001). Middle ear air pressure is directly proportional to CPAP air pressure in subjects with normal eustachian tube function. Middle ear pressure reaches supraphysiologic levels at even minimal CPAP levels. Although further investigation is necessary, there may be otologic implications for patients who are chronically CPAP dependent. These findings may also influence the perioperative practice of otologic and skull base surgeons. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  11. Peer Deviance, Parental Divorce, and Genetic Risk in the Prediction of Drug Abuse in a Nationwide Swedish Sample

    PubMed Central

    Kendler, Kenneth S.; Ohlsson, Henrik; Sundquist, Kristina; Sundquist, Jan

    2014-01-01

    IMPORTANCE Peer deviance (PD) strongly predicts externalizing psychopathologic conditions but has not been previously assessable in population cohorts. We sought to develop such an index of PD and to clarify its effects on risk of drug abuse (DA). OBJECTIVES To examine how strongly PD increases the risk of DA and whether this community-level liability indicator interacts with key DA risk factors at the individual and family levels. DESIGN, SETTING, AND PARTICIPANTS Studies of future DA registration in 1 401 698 Swedish probands born from January 1, 1970, through December 31, 1985, and their adolescent peers in approximately 9200 small community areas. Peer deviance was defined as the proportion of individuals born within 5 years of the proband living in the same small community when the proband was 15 years old who eventually were registered for DA. MAIN OUTCOMES AND MEASURES Drug abuse recorded in medical, legal, or pharmacy registry records. RESULTS Peer deviance was associated with future DA in the proband, with rates of DA in older and male peers more strongly predictive than in younger or female peers. The predictive power of PD was only slightly attenuated by adding measures of community deprivation, collective efficacy, or family socioeconomic status. Probands whose parents were divorced were more sensitive to the pathogenic effects of high PD environments. A robust positive interaction was also seen between genetic risk of DA (indexed by rates of DA in first-, second-, and third-degree relatives) and PD exposure. CONCLUSIONS AND RELEVANCE With sufficient data, PD can be measured in populations and strongly predicts DA. In a nationwide sample, risk factors at the level of the individual (genetic vulnerability), family (parental loss), and community (PD) contribute substantially to risk of DA. Individuals at elevated DA risk because of parental divorce or high genetic liability are more sensitive to the pathogenic effects of PD. Although the effect of our PD measure on DA liability cannot be explained by standard measures of community or family risk, we cannot, with available data, discriminate definitively between the effect of true peer effects and other unmeasured risk factors. PMID:24576925

  12. Peer deviance, parental divorce, and genetic risk in the prediction of drug abuse in a nationwide Swedish sample: evidence of environment-environment and gene-environment interaction.

    PubMed

    Kendler, Kenneth S; Ohlsson, Henrik; Sundquist, Kristina; Sundquist, Jan

    2014-04-01

    Peer deviance (PD) strongly predicts externalizing psychopathologic conditions but has not been previously assessable in population cohorts. We sought to develop such an index of PD and to clarify its effects on risk of drug abuse (DA). To examine how strongly PD increases the risk of DA and whether this community-level liability indicator interacts with key DA risk factors at the individual and family levels. Studies of future DA registration in 1,401,698 Swedish probands born from January 1, 1970, through December 31, 1985, and their adolescent peers in approximately 9200 small community areas. Peer deviance was defined as the proportion of individuals born within 5 years of the proband living in the same small community when the proband was 15 years old who eventually were registered for DA. Drug abuse recorded in medical, legal, or pharmacy registry records. Peer deviance was associated with future DA in the proband, with rates of DA in older and male peers more strongly predictive than in younger or female peers. The predictive power of PD was only slightly attenuated by adding measures of community deprivation, collective efficacy, or family socioeconomic status. Probands whose parents were divorced were more sensitive to the pathogenic effects of high PD environments. A robust positive interaction was also seen between genetic risk of DA (indexed by rates of DA in first-, second-, and third-degree relatives) and PD exposure. With sufficient data, PD can be measured in populations and strongly predicts DA. In a nationwide sample, risk factors at the level of the individual (genetic vulnerability), family (parental loss), and community (PD) contribute substantially to risk of DA. Individuals at elevated DA risk because of parental divorce or high genetic liability are more sensitive to the pathogenic effects of PD. Although the effect of our PD measure on DA liability cannot be explained by standard measures of community or family risk, we cannot, with available data, discriminate definitively between the effect of true peer effects and other unmeasured risk factors.

  13. Shortleaf pine reproduction abundance and growth in pine-oak stands in the Missouri Ozarks

    Treesearch

    Elizabeth M. Blizzard; Doyle Henken; John M. Kabrick; Daniel C. Dey; David R. Larsen; David Gwaze

    2007-01-01

    We conducted an operational study to evaluate effect of site preparation treatments on pine reproduction density and the impact of overstory basal area and understory density on pine reproduction height and basal diameter in pine-oak stands in the Missouri Ozarks. Stands were harvested to or below B-level stocking, but patchiness of the oak decline lead to some plots...

  14. Influence of residual basal area on longleaf pine (Pinus palustris Mill.) first year germination and establishment under selection silviculture

    Treesearch

    Ferhat Kara; Edward F. Loewenstein

    2015-01-01

    Even-aged silvicultural methods have been successfully used to manage longleaf pine (Pinus palustris Mill.) forests for wood production; however, successful use of uneven-aged methods to manage this ecosystem is less well documented. In this study, the effects of varying levels of residual basal area (RBA) (9.2, 13.8, and 18.4 m2...

  15. Feeding-associated alterations in striatal neurotransmitter release

    NASA Technical Reports Server (NTRS)

    Acworth, I. N.; Ressler, K.; Wurtman, R. J.

    1989-01-01

    Published evidence suggests a role for dopaminergic (DA) brain pathways in feeding-associated behaviors. Using the novel technique of brain microdialysis of striatal extracellular fluid (ECF) as an index of DA release, Church et al. described increases in levels of DA when animals had limited access to pellets, but not with free access. Dopamine release from the nucleus accumbens did increase with free access to pellets post starvation or after food reward. We used permanently implanted microdialysis probes to measure ECF levels of DA, DOPAC, HVA, and large neutral amino acids (LNAA) for up to 72 hours after implantation among rats experiencing different dietary regimens.

  16. Mechanisms for cellular NO oxidation and nitrite formation in lung epithelial cells.

    PubMed

    Zhao, Xue-Jun; Wang, Ling; Shiva, Sruti; Tejero, Jesus; Myerburg, Mike M; Wang, Jun; Frizzell, Sam; Gladwin, Mark T

    2013-08-01

    Airway lining fluid contains relatively high concentrations of nitrite, and arterial blood levels of nitrite are higher than venous levels, suggesting the lung epithelium may represent an important source of nitrite in vivo. To investigate whether lung epithelial cells possess the ability to convert NO to nitrite by oxidation, and the effect of oxygen reactions on nitrite formation, the NO donor DETA NONOate was incubated with or without A549 cells or primary human bronchial epithelial (HBE) cells for 24 h under normoxic (21% O2) and hypoxic (1% O2) conditions. Nitrite production was significantly increased under all conditions in the presence of A549 or HBE cells, suggesting that both A549 and HBE cells have the capacity to oxidize NO to nitrite even under low-oxygen conditions. The addition of oxyhemoglobin to the A549 cell medium decreased the production of nitrite, consistent with NO scavenging limiting nitrite formation. Heat-denatured A549 cells produced much lower nitrite and nitrate, suggesting an enzymatic activity is required. This NO oxidation activity was highest in membrane-bound proteins with molecular size <100kDa. In addition, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one and cyanide inhibited formation of nitrite in A549 cells. It has been shown that ceruloplasmin (Cp) possesses an NO oxidase and nitrite synthase activity in plasma based on NO oxidation to nitrosonium cation. We observed that Cp is expressed intracellularly in lung epithelial A549 cells and secreted into the medium under basal conditions and during cytokine stimulation. However, an analysis of Cp expression level and activity measured via p-phenylenediamine oxidase activity assay revealed very low activity compared with plasma, suggesting that there is insufficient Cp to contribute to detectable NO oxidation to nitrite in A549 cells. Additionally, Cp levels were knocked down using siRNA by more than 75% in A549 cells, with no significant change in either nitrite or cellular S-nitrosothiol formation compared to scrambled siRNA control under basal conditions or cytokine stimulation. These data suggest that lung epithelial cells possess NO oxidase activity, which is enhanced in cell-membrane-associated proteins and not regulated by intracellular or secreted Cp, indicating that alternative NO oxidases determine hypoxic and normoxic nitrite formation from NO in human lung epithelial cells. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Striatal MPP+ levels do not necessarily correlate with striatal dopamine levels after MPTP treatment in mice.

    PubMed

    Vaglini, F; Fascetti, F; Tedeschi, D; Cavalletti, M; Fornai, F; Corsini, G U

    1996-06-01

    The present study offers confirmation of the fact that an MAO-B inhibitor, (-) deprenyl and a DA uptake blocker, GBR-12909, prevent MPTP-induced striatal DA decrease. This protective effect is accompanied by an almost complete prevention of MPP+ production induced by (-) deprenyl and an accelerated MPP+ clearance induced by GBR-12909 within the striatum. Similarly, the MPTP toxicity enhancers, DDC and acetaldehyde, both increase striatal MPP+ levels, as previously reported. On the contrary, the treatment with MK 801, although uneffective in preventing the long-term MPTP-induced striatal DA decrease, causes an increase in the striatal amount of MPP+. In a similar way, the administration of nicotine in combination with MPTP produces a significant increase in the levels of striatal MPP+, which does not elicit any effect on striatal DA. The effect of clonidine is consistent with these results and in sharp contrast with the current belief that a direct relationship exists between striatal MPP+ concentrations and the degree of MPTP-induced depletion of striatal DA. In this study, using different treatments, we failed to confirm the correlation between MPP+ striatal levels and dopaminergic lesions after MPTP administration in mice. We suggest that this correlation is not a rule and exceptions may depend on a different compartimentalization of the toxic metabolite.

  18. Effects of a Single Bout of Resistance Exercise in Different Volumes on Endothelium Adaptations in Healthy Animals.

    PubMed

    Mota, Marcelo Mendonça; Silva, Tharciano Luiz Teixeira Braga da; Macedo, Fabricio Nunes; Mesquita, Thássio Ricardo Ribeiro; Quintans, Lucindo José; Santana-Filho, Valter Joviniano de; Lauton-Santos, Sandra; Santos, Márcio Roberto Viana

    2017-05-01

    Resistance exercise (RE) has been recommended for patients with cardiovascular diseases. Recently, a few studies have demonstrated that the intensity of a single bout of RE has an effect on endothelial adaptations to exercise. However, there is no data about the effects of different volumes of RE on endothelium function. The aim of the study was to evaluate the effects of different volumes of RE in a single bout on endothelium-dependent vasodilatation and nitric oxide (NO) synthesis in the mesenteric artery of healthy animals. Male Wistar rats were divided into three groups: Control (Ct); low-volume RE (LV, 5 sets x 10 repetitions) and high-volume RE (HV, 15 sets x 10 repetitions). The established intensity was 70% of the maximal repetition test. After the exercise protocol, rings of mesenteric artery were used for assessment of vascular reactivity, and other mesenteric arteries were prepared for detection of measure NO production by DAF-FM fluorescence. Insulin responsiveness on NO synthesis was evaluated by stimulating the vascular rings with insulin (10 nM). The maximal relaxation response to insulin increased in the HV group only as compared with the Ct group. Moreover, the inhibition of nitric oxide synthesis (L-NAME) completely abolished the insulin-induced vasorelaxation in exercised rats. NO production showed a volume-dependent increase in the endothelial and smooth muscle layer. In endothelial layer, only Ct and LV groups showed a significant increase in NO synthesis when compared to their respective group under basal condition. On the other hand, in smooth muscle layer, NO fluorescence increased in all groups when compared to their respective group under basal condition. Our results suggest that a single bout of RE promotes vascular endothelium changes in a volume-dependent manner. The 15 sets x 10 repetitions exercise plan induced the greatest levels of NO synthesis. O exercício resistido (ER) tem sido recomendado para pacientes com doenças cardiovasculares. Recentemente, alguns estudos demonstraram que a intensidade de uma sessão de ER exerce um efeito sobre a disfunção endotelial. No entanto, não há dados sobre os efeitos de diferentes volumes de ER sobre a função endotelial. O objetivo deste estudo foi avaliar os efeitos de diferentes volumes de ER, realizados em uma única sessão, sobre a vasodilatação dependente do endotélio e síntese de óxido nítrico (NO) em artéria mesentérica de animais saudáveis. Ratos Wistar machos foram divididos em três grupos: Controle (Ct); baixo volume (BV, 5 séries x 10 repetições) e alto volume de ER (AV, 15 séries x 10 repetições). Foi estabelecida a intensidade de 70% do teste de repetição máxima. Após o protocolo de exercício, anéis de artéria mesentérica foram utilizados na avaliação da reatividade vascular, e outras artérias mesentéricas foram preparadas para a detecção da produção de NO por fluorescência com para do DAF-FM. A resposta à insulina pela síntese de NO foi avaliada estimulando-se os anéis vasculares com insulina (10nM). A resposta máxima do relaxamento induzido por insulina foi aumentada somente no grupo AV em comparação ao grupo Ct. Além disso, a inibição da síntese do NO (L-NAME), aboliu completamente o relaxamento vascular induzido por insulina em ratos exercitados. A produção de NO mostrou um aumento dependente do volume no endotélio e no músculo liso. No endotélio, apenas os grupos Ct e BV mostraram aumento significativo na síntese de NO quando comparado aos seus respectivos grupos sob condição basal. No entanto, no músculo liso, a fluorescência foi aumentada em todos os grupos quando comparados aos seus respectivos grupos sob a condição basal. Nossos resultados sugerem que uma única sessão de ER foi capaz de promover adaptações no endotélio vascular. Além disso, nós observamos que este efeito é volume-dependente e o volume de 15 séries x10 repetições induziu o maior aumento na síntese de NO.

  19. Sea-Level Projections from the SeaRISE Initiative

    NASA Technical Reports Server (NTRS)

    Nowicki, Sophie; Bindschadler, Robert

    2011-01-01

    SeaRISE (Sea-level Response to Ice Sheet Evolution) is a community organized modeling effort, whose goal is to inform the fifth IPCC of the potential sea-level contribution from the Greenland and Antarctic ice sheets in the 21st and 22nd century. SeaRISE seeks to determine the most likely ice sheet response to imposed climatic forcing by initializing an ensemble of models with common datasets and applying the same forcing to each model. Sensitivity experiments were designed to quantify the sea-level rise associated with a change in: 1) surface mass balance, 2) basal lubrication, and 3) ocean induced basal melt. The range of responses, resulting from the multi-model approach, is interpreted as a proxy of uncertainty in our sea-level projections. http://websrv.cs .umt.edu/isis/index.php/SeaRISE_Assessment.

  20. Effectivity of immunostimulant from Zoothamnium penaei protein membrane for decreasing the mortality rate of white shrimp (Litopenaeus vannamei) in traditional plus pond

    NASA Astrophysics Data System (ADS)

    Mahasri, G.; Kusdarwati, R.; Kismiyati; Rozi; Gustrifandi, H.

    2018-04-01

    The purpose of this research was to analys immunogenic membrane protein as immunostimulant development material to control the mortality of white shrimp in traditional plus pond. This research was designed to use explorative experiment and experimental laboratory methods which used completed random sampling design. Collected data was analyzed with analysis of variance for examination of survival rate (SR), total haemocyte count (THC) and differensial haemocyte Count (DHC). The research divided into 2 part of riset: (1) Identification, cultivation Zoothamnium penaei, analysed of membrane protein by SDS-PAGE, (2) Field test protein membran on Survival Rate level, immune response (THC and/or DHC level) and infestation of Zoothamnium penaei in traditional plus pond. The result showed that there were seven bands membrane protein of Zoothamnium penaei with molecular weight 38 kDa, 48 kDa, 67 kDa, 71 kDa, 77 kDa, 98 kDa dan 104 kDa by using SDS-PAGE. Immunogenicity tested decrease by using ELISA and western blotting there are only found three bands with molecular weight 38 kDa, 48 kDa dan 67 kDa. The membrane protein could increase the immun respons and decrease the mortality, by subsequenly, it could increase the survival rate from 17% until 68% and pressured the parasite infestation of white shrimp.

  1. Dioscorea Extract (DA-9801) Modulates Markers of Peripheral Neuropathy in Type 2 Diabetic db/db Mice.

    PubMed

    Moon, Eunjung; Lee, Sung Ok; Kang, Tong Ho; Kim, Hye Ju; Choi, Sang Zin; Son, Mi-Won; Kim, Sun Yeou

    2014-09-01

    The purpose of this study was to investigate the therapeutic effects of DA-9801, an optimized extract of Dioscorea species, on diabetic peripheral neuropathy in a type 2 diabetic animal model. In this study, db/db mice were treated with DA-9801 (30 and 100 mg/kg, daily, p.o.) for 12 weeks. DA-9801 reduced the blood glucose levels and increased the withdrawal latencies in hot plate tests. Moreover, it prevented nerve damage based on increased nerve conduction velocity and ultrastructural changes. Decrease of nerve growth factor (NGF) may have a detrimental effect on diabetic neuropathy. We previously reported NGF regulatory properties of the Dioscorea genus. In this study, DA-9801 induced NGF production in rat primary astrocytes. In addition, it increased NGF levels in the sciatic nerve and the plasma of type 2 diabetic animals. DA-9801 also increased neurite outgrowth and mRNA expression of Tieg1/Klf10, an NGF target gene, in PC12 cells. These results demonstrated the attenuation of diabetic peripheral neuropathy by oral treatment with DA-9801 via NGF regulation. DA-9801 is currently being evaluated in a phase II clinical study.

  2. Differential dose- and time-dependent effects of molindone on dopamine neurons of rat brain: mediation by irreversible inhibition of monoamine oxidase.

    PubMed

    Meller, E; Friedman, E

    1982-03-01

    The effects of molindone (2.5, 10 and 40 mg/kg) on striatal tyrosine hydroxylase activity and dopamine (DA), 3,4-dihydroxyphenylacetic acid and homovanillic acid levels were measured as a function of time (0-72 hr). Whereas a dose of 2.5 mg/kg produced effects typical of DA receptor blockade (activation of synaptosomal tyrosine hydroxylase, increased DA metabolite levels and unchanged DA levels), a dose of 40 mg/kg produced opposite effects (decreased tyrosine hydroxylase activity and metabolite concentrations and elevated DA levels). A dose of 10 mg/kg elicited intermediate effects. The atypical effects of both higher doses were long-lasting (less than 72 hr). Molindone at doses of 10 or 40 mg/kg, but nor 2.5 mg/kg, selectively, irreversibly and dose-dependently inhibited type A monoamine oxidase. This inhibition appeared to be due to a metabolite, inasmuch as the drug itself inhibited monoamine oxidase (reversibly) only at high concentrations (less than or equal to 10(-4) M). The heretofore unsuspected inhibition of monoamine oxidase by molindone provided a consistent mechanistic interpretation of the differential dose- and time-dependent effects of the drug on dopaminergic neuronal activity. This mechanism may also serve to explain the reported efficacy of molindone in animal tests for antidepressant activity as well as its inability to produce increased DA receptor binding after chronic treatment.

  3. Effect of DA-8031, a novel oral compound for premature ejaculation, on male rat sexual behavior.

    PubMed

    Kang, Kyung Koo; Sung, Ji Hyun; Kim, Soon Hoe; Lee, Sukhyang

    2014-03-01

    DA-8031 is a potent and selective serotonin transporter inhibitor developed for the treatment of premature ejaculation. The aim of the present study was to investigate the effects of DA-8031 on male sexual behavior in a rat model. Sexual behavior was examined after an acute oral administration of 10, 30 or 100 mg/kg of DA-8031 in copulation studies with female rats. Pharmacokinetic parameters were calculated after oral administration of DA-8031 at a dose level of 30 mg/kg. DA-8031 treatment produced a dose-dependent increase in ejaculation latency time and showed statistical significance at 30 and 100 mg/kg dosage levels compared with the vehicle (P < 0.05). In addition, DA-8031 treatment reduced the mean number of ejaculations in a dose-dependent manner. No changes in post-ejaculatory interval, numbers of mounts, intromissions or ejaculations were observed at any dose. In pharmacokinetic study, the blood concentration of DA-8031 peaked at 0.38 ± 0.14 h after oral administration, and then rapidly declined with a half-life of 1.79 ± 0.32 h. Treatment with DA-8031 delays the ejaculation latency time without affecting the initiation of mounting behavior or post-ejaculatory interval in rats. Furthermore, DA-8031 is rapidly absorbed and eliminated after oral administration in rats. These preclinical findings provide a clue for the clinical testing of DA-8031 as an "on-demand" agent for premature ejaculation. © 2013 The Japanese Urological Association.

  4. Activating and optimizing MoS 2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies

    DOE PAGES

    Li, Hong; Tsai, Charlie; Koh, Ai Leen; ...

    2015-11-09

    As a promising non-precious catalyst for the hydrogen evolution reaction, molybdenum disulphide (MoS 2) is known to contain active edge sites and an inert basal plane. Activating the MoS 2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS 2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bindmore » directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔG H) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Furthermore, proper combinations of S-vacancy and strain yield the optimal ΔG H = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.« less

  5. Modeling the Effects of Fire Frequency and Severity on Forests in the Northwestern United States

    USGS Publications Warehouse

    Busing, Richard T.; Solomon, Allen M.

    2006-01-01

    This study used a model of forest dynamics (FORCLIM) and actual forest survey data to demonstrate the effects of various fire regimes on different forest types in the Pacific Northwest. We examined forests in eight ecoregions ranging from wet coastal forests dominated by Pseudotsuga menziesii and other tall conifers to dry interior forests dominated by Pinus ponderosa. Fire effects simulated as elevated mortality of trees based on their species and size did alter forest structure and species composition. Low frequency fires characteristic of wetter forests (return interval >200 yr) had minor effects on composition. When fires were severe, they tended to reduce total basal area with little regard to species differences. High frequency fires characteristic of drier forests (return interval <30 yr) had major effects on species composition and on total basal area. Typically, they caused substantial reductions in total basal area and shifts in dominance toward highly fire tolerant species. With the addition of fire, simulated basal areas averaged across ecoregions were reduced to levels approximating observed basal areas.

  6. Basal body assembly in ciliates: the power of numbers

    PubMed Central

    Pearson, Chad G.; Winey, Mark

    2009-01-01

    Centrioles perform the dual functions of organizing both centrosomes and cilia. The biogenesis of nascent centrioles is an essential cellular event that is tightly coupled to the cell cycle so that each cell contains only two or four centrioles at any given point in the cell cycle. The assembly of centrioles and their analogs, basal bodies, is well characterized at the ultrastructural level whereby structural modules are built into a functional organelle. Genetic studies in model organisms combined with proteomic, bioinformatic, and identifying ciliary disease gene orthologs have revealed a wealth of molecules requiring further analysis to determine their roles in centriole duplication, assembly, and function. Nonetheless, at this stage our understanding of how molecular components interact to build new centrioles and basal bodies is limited. The ciliates, Tetrahymena and Paramecium, historically have been the subject of cytological and genetic study of basal bodies. Recent advances in the ciliate genetic and molecular toolkit have placed these model organisms in a favorable position to study the molecular mechanisms of centriole and basal body assembly. PMID:19192246

  7. Functional Feed Assessment on Litopenaeus vannamei Using 100% Fish Meal Replacement by Soybean Meal, High Levels of Complex Carbohydrates and Bacillus Probiotic Strains

    PubMed Central

    Olmos, Jorge; Ochoa, Leonel; Paniagua-Michel, Jesus; Contreras, Rosalia

    2011-01-01

    Functional feed supplemented with alternative-economic nutrient sources (protein, carbohydrates, lipids) and probiotics are being considered in shrimp/fish aquaculture production systems as an option to increase yield and profits and to reduce water pollution. In this study the probiotic potential to formulate functional feeds have been evaluated using four dietary treatments: Treatment 1 (B + Bs); Bacillus subtilis potential probiotic strain was supplemented to a soybeanmeal (SBM)—carbohydrates (CHO) basal feed. Treatment 2 (B + Bm); Bacillus megaterium potential probiotic strain was supplemented to the same SBM-CHO basal feed. In Treatment 3 (B); SBM-CHO basal feed was not supplemented with probiotic strains. Treatment 4 (C); fishmeal commercial feed (FM) was utilized as positive control. Feeding trials evaluated the survival, growth, and food conversion ratio and stress tolerance of juvenile Litopenaeus vannamei (Boone) Pacific white shrimp. Best overall shrimp performance was observed for animals fed with Treatment 1 (B+Bs); additionally, stress tolerance and hemolymph metabolites also showed the best performance in this treatment. SBM-CHO basal feed not supplemented with probiotic strains (B) presented smaller growth and lower feed conversion ratio (FCR). Shrimps fed with the fishmeal commercial feed (C) presented the lowest stress tolerance to high ammonia and low oxygen levels. Specifically selected B. subtilis strains are recommended to formulate functional and economical feeds containing high levels of vegetable; protein and carbohydrates as main dietary sources in L. vannamei cultures. PMID:21747750

  8. Functional feed assessment on Litopenaeus vannamei using 100% fish meal replacement by soybean meal, high levels of complex carbohydrates and Bacillus probiotic strains.

    PubMed

    Olmos, Jorge; Ochoa, Leonel; Paniagua-Michel, Jesus; Contreras, Rosalia

    2011-01-01

    Functional feed supplemented with alternative-economic nutrient sources (protein, carbohydrates, lipids) and probiotics are being considered in shrimp/fish aquaculture production systems as an option to increase yield and profits and to reduce water pollution. In this study the probiotic potential to formulate functional feeds have been evaluated using four dietary treatments: Treatment 1 (B + Bs); Bacillus subtilis potential probiotic strain was supplemented to a soybeanmeal (SBM)-carbohydrates (CHO) basal feed. Treatment 2 (B + Bm); Bacillus megaterium potential probiotic strain was supplemented to the same SBM-CHO basal feed. In Treatment 3 (B); SBM-CHO basal feed was not supplemented with probiotic strains. Treatment 4 (C); fishmeal commercial feed (FM) was utilized as positive control. Feeding trials evaluated the survival, growth, and food conversion ratio and stress tolerance of juvenile Litopenaeus vannamei (Boone) Pacific white shrimp. Best overall shrimp performance was observed for animals fed with Treatment 1 (B+Bs); additionally, stress tolerance and hemolymph metabolites also showed the best performance in this treatment. SBM-CHO basal feed not supplemented with probiotic strains (B) presented smaller growth and lower feed conversion ratio (FCR). Shrimps fed with the fishmeal commercial feed (C) presented the lowest stress tolerance to high ammonia and low oxygen levels. Specifically selected B. subtilis strains are recommended to formulate functional and economical feeds containing high levels of vegetable; protein and carbohydrates as main dietary sources in L. vannamei cultures.

  9. Experience-Dependent Effects of Cocaine Self-Administration/Conditioning on Prefrontal and Accumbens Dopamine Responses

    PubMed Central

    Ikegami, Aiko; Olsen, Christopher M.; D’Souza, Manoranjan S.; Duvauchelle, Christine L.

    2008-01-01

    Experiments were performed to examine the effects of cocaine self-administration and conditioning experience on operant behavior, locomotor activity, and nucleus accumbens (NAcc) and prefrontal cortex (PFC) dopamine (DA) responses. Sensory cues were paired with alternating cocaine and nonreinforcement during 12 (limited training) or 40 (long-term training) daily operant sessions. After limited training, NAcc DA responses to cocaine were significantly enhanced in the presence of cocaine-associated cues compared with nonreward cues and significantly depressed after cocaine-paired cues accompanied a nonreinforced lever response. PFC DA levels were generally nonresponsive to cues after the same training duration. However, after long-term training, cocaine-associated cues increased the magnitude of cocaine-stimulated PFC DA levels significantly over levels observed with nonreinforcement cues. Conversely, conditioned cues no longer influenced NAcc DA levels after long-term training. In addition, cocaine-stimulated locomotor activity was enhanced by cocaine-paired cues after long-term, but not after limited, training. Findings demonstrate that cue-induced cocaine expectation exerts a significant impact on dopaminergic and behavioral systems, progressing from mesolimbic to mesocortical regions and from latent to patent behaviors as cocaine and associative experiences escalate. PMID:17469929

  10. An Interesting Case of Basal Cell Carcinoma with Raynaud's Phenomenon Following Chronic Arsenic Exposure.

    PubMed

    Gulshan, S; Rahman, M J; Sarkar, R; Ghosh, S; Hazra, R

    2016-01-01

    Arsenic is commonly known to be associated with squamous cell carcinoma. Among the lesser known associations is basal cell carcinoma and even rarer is its effect on blood vessels causing peripheral vascular disease. Here we present a case of a 55 yr old man with ulceroproliferative lesions on scalp and forehead along with several hyperpigmented patches on trunk and extremities. He had symptoms suggestive of Raynaud's phenomenon that eventually led to digital gangrene. FNAC was done which was suggestive of basal cell carcinoma. On further enquiry, he was found to reside in an arsenic endemic zone and was investigated for blood arsenic level which was elevated. Punch biopsy from different lesions from body confirmed nodular basal cell carcinoma. Presently the patient has stopped drinking water from the local tubewell. On follow-up he shows improvement of Raynaud's phenomenon and skin lesions.

  11. Complementary acupuncture in Parkinson's disease: a spect study.

    PubMed

    Huang, Yong; Jiang, Xuemei; Zhuo, Ying; Wik, Gustav

    2010-02-01

    We studied cerebral effects of complementary acupuncture in Parkinson's disease using single photon emission computed tomography (SPECT) measures of 99mTc-ECD and 99mTc-TRODAT-4, before and after five weeks of treatment. Ten patients were randomly assigned to receive levodopa alone (controls) or levodopa and complementary scalp electro-acupuncture. Before treatment, no hemispheric regional cerebral blood flow (rCBF) differences were found, whereas striatal dopamine transporter (DAT) activity was lower in the most affected hemisphere. Treatment with levodopa alone did not change rCBF, whereas it increased basal ganglion DAT activity in the most affected hemisphere. Patients who received levodopa and complementary acupuncture had increased rCBF in the frontal lobe, the occipital lobe, the basal ganglion, and the cerebellum in the most affected hemisphere as compared to baseline, but there were no changes in basal ganglia DAT levels. Thus, complementary acupuncture treatment in Parkinson's disease may affect rCBF but not basal ganglion DAT.

  12. Imbalanced Hemolymph Lipid Levels Affect Feeding Motivation in the Two-Spotted Cricket, Gryllus bimaculatus.

    PubMed

    Konuma, Takahiro; Tsukamoto, Yusuke; Nagasawa, Hiromichi; Nagata, Shinji

    2016-01-01

    Insect feeding behavior is regulated by many intrinsic factors, including hemolymph nutrient levels. Adipokinetic hormone (AKH) is a peptide factor that modulates hemolymph nutrient levels and regulates the nutritional state of insects by triggering the transfer of lipids into the hemolymph. We recently demonstrated that RNA interference (RNAi)-mediated knockdown of the AKH receptor (AKHR) reduces hemolymph lipid levels, causing an increase in the feeding frequency of the two-spotted cricket, Gryllus bimaculatus. This result indicated that reduced hemolymph lipid levels might motivate crickets to feed. In the present study, to elucidate whether hemolymph lipid levels contribute to insect feeding behavior, we attempted to manipulate hemolymph lipid levels via the lipophorin (Lp)-mediated lipid transferring system in G. bimaculatus. Of the constituent proteins in Lp, we focused on apolipophorin-III (GrybiApoLp-III) because of its possible role in facilitating lipid mobilization. First, we used RNAi to reduce the expression of GrybiApoLp-III. RNAi-mediated knockdown of GrybiApoLp-III had little effect on basal hemolymph lipid levels and the amount of food intake. In addition, hemolymph lipid levels remained static even after injecting AKH into GrybiApoLp-IIIRNAi crickets. These observations indicated that ApoLp-III does not maintain basal hemolymph lipid levels in crickets fed ad libitum, but is necessary for mobilizing lipid transfer into the hemolymph following AKH stimulation. Second, Lp (containing lipids) was injected into the hemolymph to induce a temporary increase in hemolymph lipid levels. Consequently, the initiation of feeding was delayed in a dose-dependent manner, indicating that increased hemolymph lipid levels reduced the motivation to feed. Taken together, these data validate the importance of basal hemolymph lipid levels in the control of energy homeostasis and for regulating feeding behavior in crickets.

  13. Imbalanced Hemolymph Lipid Levels Affect Feeding Motivation in the Two-Spotted Cricket, Gryllus bimaculatus

    PubMed Central

    Konuma, Takahiro; Tsukamoto, Yusuke; Nagasawa, Hiromichi; Nagata, Shinji

    2016-01-01

    Insect feeding behavior is regulated by many intrinsic factors, including hemolymph nutrient levels. Adipokinetic hormone (AKH) is a peptide factor that modulates hemolymph nutrient levels and regulates the nutritional state of insects by triggering the transfer of lipids into the hemolymph. We recently demonstrated that RNA interference (RNAi)-mediated knockdown of the AKH receptor (AKHR) reduces hemolymph lipid levels, causing an increase in the feeding frequency of the two-spotted cricket, Gryllus bimaculatus. This result indicated that reduced hemolymph lipid levels might motivate crickets to feed. In the present study, to elucidate whether hemolymph lipid levels contribute to insect feeding behavior, we attempted to manipulate hemolymph lipid levels via the lipophorin (Lp)-mediated lipid transferring system in G. bimaculatus. Of the constituent proteins in Lp, we focused on apolipophorin-III (GrybiApoLp-III) because of its possible role in facilitating lipid mobilization. First, we used RNAi to reduce the expression of GrybiApoLp-III. RNAi-mediated knockdown of GrybiApoLp-III had little effect on basal hemolymph lipid levels and the amount of food intake. In addition, hemolymph lipid levels remained static even after injecting AKH into GrybiApoLp-IIIRNAi crickets. These observations indicated that ApoLp-III does not maintain basal hemolymph lipid levels in crickets fed ad libitum, but is necessary for mobilizing lipid transfer into the hemolymph following AKH stimulation. Second, Lp (containing lipids) was injected into the hemolymph to induce a temporary increase in hemolymph lipid levels. Consequently, the initiation of feeding was delayed in a dose-dependent manner, indicating that increased hemolymph lipid levels reduced the motivation to feed. Taken together, these data validate the importance of basal hemolymph lipid levels in the control of energy homeostasis and for regulating feeding behavior in crickets. PMID:27144650

  14. A20 Regulates Atherogenic Interferon (IFN)-γ Signaling in Vascular Cells by Modulating Basal IFNβ Levels*

    PubMed Central

    Moll, Herwig P.; Lee, Andy; Minussi, Darlan C.; da Silva, Cleide G.; Csizmadia, Eva; Bhasin, Manoj; Ferran, Christiane

    2014-01-01

    IFNγ signaling in endothelial (EC) and smooth muscle cells (SMC) is a key culprit of pathologic vascular remodeling. The impact of NF-κB inhibitory protein A20 on IFNγ signaling in vascular cells remains unknown. In gain- and loss-of-function studies, A20 inversely regulated expression of IFNγ-induced atherogenic genes in human EC and SMC by modulating STAT1 transcription. In vivo, inadequate A20 expression in A20 heterozygote mice aggravated intimal hyperplasia following partial carotid artery ligation. This outcome uniquely associated with increased levels of Stat1 and super-induction of Ifnγ-dependent genes. Transcriptome analysis of the aortic media from A20 heterozygote versus wild-type mice revealed increased basal Ifnβ signaling as the likely cause for higher Stat1 transcription. We confirmed higher basal IFNβ levels in A20-silenced human SMC and showed that neutralization or knockdown of IFNβ abrogates heightened STAT1 levels in these cells. Upstream of IFNβ, A20-silenced EC and SMC demonstrated higher levels of phosphorylated/activated TANK-binding kinase-1 (TBK1), a regulator of IFNβ transcription. This suggested that A20 knockdown increased STAT1 transcription by enhancing TBK1 activation and subsequently basal IFNβ levels. Altogether, these results uncover A20 as a key physiologic regulator of atherogenic IFNγ/STAT1 signaling. This novel function of A20 added to its ability to inhibit nuclear factor-κB (NF-κB) activation solidifies its promise as an ideal therapeutic candidate for treatment and prevention of vascular diseases. In light of recently discovered A20/TNFAIP3 (TNFα-induced protein 3) single nucleotide polymorphisms that impart lower A20 expression or function, these results also qualify A20 as a reliable clinical biomarker for vascular risk assessment. PMID:25217635

  15. Statistical Analysis of Readthrough Levels for Nonsense Mutations in Mammalian Cells Reveals a Major Determinant of Response to Gentamicin

    PubMed Central

    Floquet, Célia; Hatin, Isabelle; Rousset, Jean-Pierre; Bidou, Laure

    2012-01-01

    The efficiency of translation termination depends on the nature of the stop codon and the surrounding nucleotides. Some molecules, such as aminoglycoside antibiotics (gentamicin), decrease termination efficiency and are currently being evaluated for diseases caused by premature termination codons. However, the readthrough response to treatment is highly variable and little is known about the rules governing readthrough level and response to aminoglycosides. In this study, we carried out in-depth statistical analysis on a very large set of nonsense mutations to decipher the elements of nucleotide context responsible for modulating readthrough levels and gentamicin response. We quantified readthrough for 66 sequences containing a stop codon, in the presence and absence of gentamicin, in cultured mammalian cells. We demonstrated that the efficiency of readthrough after treatment is determined by the complex interplay between the stop codon and a larger sequence context. There was a strong positive correlation between basal and induced readthrough levels, and a weak negative correlation between basal readthrough level and gentamicin response (i.e. the factor of increase from basal to induced readthrough levels). The identity of the stop codon did not affect the response to gentamicin treatment. In agreement with a previous report, we confirm that the presence of a cytosine in +4 position promotes higher basal and gentamicin-induced readthrough than other nucleotides. We highlight for the first time that the presence of a uracil residue immediately upstream from the stop codon is a major determinant of the response to gentamicin. Moreover, this effect was mediated by the nucleotide itself, rather than by the amino-acid or tRNA corresponding to the −1 codon. Finally, we point out that a uracil at this position associated with a cytosine at +4 results in an optimal gentamicin-induced readthrough, which is the therapeutically relevant variable. PMID:22479203

  16. The SEEKING mind: primal neuro-affective substrates for appetitive incentive states and their pathological dynamics in addictions and depression.

    PubMed

    Alcaro, Antonio; Panksepp, Jaak

    2011-10-01

    Appetitive motivation and incentive states are essential functions sustained by a common emotional brain process, the SEEKING disposition, which drives explorative and approach behaviors, sustains goal-directed activity, promotes anticipatory cognitions, and evokes feelings of positive excitement which control reward-learning. All such functions are orchestrated by the same "archetypical" neural processes, activated in ancient subcortical areas and transported to the forebrain by the mesolimbic dopamine (ML-DA) system. In mammals, the neurophysiology of the SEEKING urge is expressed by DA-promoted high-frequency oscillations, in the form of transient and synchronized gamma waves (>30Hz) emerging in limbic forebrain and diffusing throughout basal ganglia-thalamocortical (BG-T-C) circuits. These patterns may be considered basic "SEEKING neurodynamic impulses" which represent the primary-process exploratory disposition getting integrated with information relative to the external and the internal environment. Abnormal manifestation of SEEKING and its neural substrates are evident in clinical depression and addiction. Specifically, depression is characterized by reduced recruitment of SEEKING, while addictions reflect re-organizations of the SEEKING disposition around ultra-specific appetitive memories and compulsive activities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Heterotetrameric composition of aquaporin-4 water channels.

    PubMed

    Neely, J D; Christensen, B M; Nielsen, S; Agre, P

    1999-08-24

    Aquaporin (AQP) water channel proteins are tetrameric assemblies of individually active approximately 30 kDa subunits. AQP4 is the predominant water channel protein in brain, but immunoblotting of native tissues has previously yielded multiple poorly resolved bands. AQP4 is known to encode two distinct mRNAs with different translation initiating methionines, M1 or M23. Using SDS-PAGE urea gels and immunoblotting with anti-peptide antibodies, four polypeptides were identified in brain and multiple other rat tissues with the following levels of expression: 32 kDa > 34 kDa > 36 kDa > 38 kDa. The 34 and 38 kDa polypeptides react with an antibody specific for the N-terminus of the M1 isoform, and 32 and 36 kDa correspond to the shorter M23 isoform. Immunogold electron microscopic studies with rat cerebellum cryosections demonstrated that the 34 kDa polypeptide colocalizes in perivascular astrocyte endfeet where the 32 kDa polypeptide is abundantly expressed. Velocity sedimentation, cross-linking, and immunoprecipitation analyses of detergent-solubilized rat brain revealed that the 32 and 34 kDa polypeptides reside within heterotetramers. Immunoprecipitation of AQP4 expressed in Xenopus laevis oocytes demonstrated that heterotetramer formation reflects the relative expression levels of the 32 and 34 kDa polypeptides; however, tetramers containing different compositions of the two polypeptides exhibit similar water permeabilities. These studies demonstrate that AQP4 heterotetramers are formed from two overlapping polypeptides and indicate that the 22-amino acid sequence at the N-terminus of the 34 kDa polypeptide does not influence water permeability but may contribute to membrane trafficking or assembly of arrays.

  18. Inhibition of muscarinic receptor-induced inositol phospholipid hydrolysis by caffeine, beta-adrenoceptors and protein kinase C in intestinal smooth muscle.

    PubMed Central

    Prestwich, S A; Bolton, T B

    1995-01-01

    1. The effects of caffeine, isoprenaline, dibutyryl cyclic AMP, isobutylmethylxanthine (IBMX), 12-O-tetradecanoylphorbol-13-acetate (TPA) or 1-oleoyl-2-acetylglycerol (OAG), (protein kinase C (PKC) activators), 2-methoxy verapamil (D600), thapsigargin and ryanodine on muscarinic acetylcholine receptor (AChR)-stimulated inositol phospholipid hydrolysis were studied in smooth muscle fragments from the longitudinal layer of the small intestine of the guinea-pig. 2. Incubation of the fragments with the muscarinic agonist, carbachol (CCh) (100 microM) resulted in rapid increases in the levels of all the inositol phosphate isomers with maximal increases in the [3H]-inositol (1,4,5) trisphosphate ([3H]-Ins(1,4,5)P3) isomer occurring 10 s following incubation. 3. The beta-adrenoceptor agonist, isoprenaline (10 microM) and dibutyryl cyclic AMP (10 microM), a membrane permeant analogue of cyclic AMP both reduced the CCh stimulation, but not the basal levels of [3H]-inositol phosphates. This inhibition by dibutyryl cyclic AMP was enhanced in the presence of the phosphodiesterase inhibitor, IBMX. CCh inhibited the isoprenaline-induced increases in the levels of cyclic AMP and this was via a pertussi toxin (PTX)-sensitive G-protein mechanism. 4. TPA (1 microM) and OAG (100 microM) a 1,2-diacylglycerol (DAG) analogue both reduced the CCh-induced increases in [3H]-inositol phosphates levels but neither affected basal values nor the basal levels of cyclic AMP. 5. D600 (10 microM), which blocks voltage-dependent Ca2+ channels, also reduced the CCh-stimulated levels of [3H]-inositol phosphates suggesting that some of the agonist-induced increases are due to a potentiating effect of Ca2+ entering the cell. 6. Caffeine (0.5-30 mM) significantly inhibited both the basal and CCh-induced increases in all the [3H]-inositol phosphate isomers. Its inhibitory action was not due to increases in cyclic AMP since caffeine had no effect on the levels of cyclic AMP at concentrations up to 30 mM. 7. Incubation with thapsigargin (1 microM) and ryanodine (10 microM) had no effect on either basal or CCh-induced inositol phospholipid hydrolysis or cyclic AMP levels. 8. The results indicate a reciprocal inhibition by beta-adrenoceptors and muscarinic AChRs of their effects on cyclic AMP and inositol phosphate levels respectively. Ca2+ entering the cell (but not the action of ryanodine or thapsigargin) potentiates while caffeine inhibits muscarinic AChR-induced rises in inositol phosphate levels. Diacylglycerols may exert a negative feedback inhibition on inositol phosphate production. PMID:7537591

  19. Transducing Airway Basal Cells with a Helper-Dependent Adenoviral Vector for Lung Gene Therapy.

    PubMed

    Cao, Huibi; Ouyang, Hong; Grasemann, Hartmut; Bartlett, Claire; Du, Kai; Duan, Rongqi; Shi, Fushan; Estrada, Marvin; Seigel, Kyle E; Coates, Allan L; Yeger, Herman; Bear, Christine E; Gonska, Tanja; Moraes, Theo J; Hu, Jim

    2018-06-01

    A major challenge in developing gene-based therapies for airway diseases such as cystic fibrosis (CF) is sustaining therapeutic levels of transgene expression over time. This is largely due to airway epithelial cell turnover and the host immunogenicity to gene delivery vectors. Modern gene editing tools and delivery vehicles hold great potential for overcoming this challenge. There is currently not much known about how to deliver genes into airway stem cells, of which basal cells are the major type in human airways. In this study, helper-dependent adenoviral (HD-Ad) vectors were delivered to mouse and pig airways via intranasal delivery, and direct bronchoscopic instillation, respectively. Vector transduction was assessed by immunostaining of lung tissue sections, which revealed that airway basal cells of mice and pigs can be targeted in vivo. In addition, efficient transduction of primary human airway basal cells was verified with an HD-Ad vector expressing green fluorescent protein. Furthermore, we successfully delivered the human CFTR gene to airway basal cells from CF patients, and demonstrated restoration of CFTR channel activity following cell differentiation in air-liquid interface culture. Our results provide a strong rationale for utilizing HD-Ad vectors to target airway basal cells for permanent gene correction of genetic airway diseases.

  20. Mitogen-activated protein kinases participate in determination of apical-basal symmetry in Pisum sativum.

    PubMed

    Winnicki, Konrad; Polit, Justyna Teresa; Żabka, Aneta; Maszewski, Janusz

    2017-03-01

    Mitogen-activated protein kinases (MAPKs) are implicated in various processes in plants. Apart from response to biotic and abiotic stresses they are involved in regulation of embryo development. Although MAPKs were found to be indispensable during embryo development it has never been established at which stages of embryogenesis and in which regions of a plant embryo activated MAPKs can be observed. Here, we show that apical and basal regions display activation of the same types of MAPKs and the only difference concerns the level of their phosphorylation and cellular localization. Dually-phosphorylated MAPKs were found in nuclei of the apical region of an embryo both at the early and late cotyledonary stage while no immunofluorescence signals were detected in nuclei of the basal region. However, in this case phosphorylated MAPKs were immunodetected in cytoplasm in the apical domain of cortex cells, indicating their role in auxin transport from the basal to apical region of an embryo. Furthermore, obtained data indicate that nuclear localization of activated MAPKs may result from epigenetic modifications and polar auxin transport. The presented data and previous studies lead to the conclusion that activated MAPKs and their cellular localization define apical and basal regions during formation of an apical-basal axis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. No Significant Increase in the Δ4- and Δ7-Dafachronic Acid Concentration in the Long-Lived glp-1 Mutant, nor in the Mutants Defective in Dauer Formation.

    PubMed

    Li, Tie-Mei; Liu, Weilong; Lu, Shan; Zhang, Yan-Ping; Jia, Le-Mei; Chen, Jie; Li, Xiangke; Lei, Xiaoguang; Dong, Meng-Qiu

    2015-05-12

    The steroid hormone dafachronic acid (DA) regulates dauer formation and lifespan in Caenorhabditis elegans by binding to the nuclear receptor DAF-12. However, little is known about how DA concentrations change under various physiologic conditions and about how DA/DAF-12 signaling interacts with other signaling pathways that also regulate dauer formation and lifespan. Using a sensitive bioanalytical method, we quantified the endogenous DA concentrations in a long-lived germline-less glp-1 mutant and in the Dauer formation-defective (Daf-d) mutants daf-12, daf-16, daf-5, and daf-3. We found that the DA concentration in the glp-1 mutant was similar to that in the wild type (WT). This result is contrary to the long-held belief that germline loss-induced longevity involves increased DA production and suggests instead that this type of longevity involves an enhanced response to DA. We also found evidence suggesting that increased DA sensitivity underlies lifespan extension triggered by exogenous DA. At the L2/L3 stage, the DA concentration in a daf-12 null mutant decreased to 22% of the WT level. This finding is consistent with the previously proposed positive feedback regulation between DAF-12 and DA production. Surprisingly, the DA concentrations in the daf-16, daf-5, and daf-3 mutants were only 19-34% of the WT level at the L2/L3 stage, slightly greater than those in the Dauer formation-constitutive (Daf-c) mutants at the pre-dauer stage (4-15% of the WT L2 control). Our experimental evidence suggested that the positive feedback between DA and DAF-12 was partially induced in the three Daf-d mutants. Copyright © 2015 Li et al.

  2. Attenuated response to methamphetamine sensitization and deficits in motor learning and memory after selective deletion of β-catenin in dopamine neurons.

    PubMed

    Diaz-Ruiz, Oscar; Zhang, Yajun; Shan, Lufei; Malik, Nasir; Hoffman, Alexander F; Ladenheim, Bruce; Cadet, Jean Lud; Lupica, Carl R; Tagliaferro, Adriana; Brusco, Alicia; Bäckman, Cristina M

    2012-07-20

    In the present study, we analyzed mice with a targeted deletion of β-catenin in DA neurons (DA-βcat KO mice) to address the functional significance of this molecule in the shaping of synaptic responses associated with motor learning and following exposure to drugs of abuse. Relative to controls, DA-βcat KO mice showed significant deficits in their ability to form long-term memories and displayed reduced expression of methamphetamine-induced behavioral sensitization after subsequent challenge doses with this drug, suggesting that motor learning and drug-induced learning plasticity are altered in these mice. Morphological analyses showed no changes in the number or distribution of tyrosine hydroxylase-labeled neurons in the ventral midbrain. While electrochemical measurements in the striatum determined no changes in acute DA release and uptake, a small but significant decrease in DA release was detected in mutant animals after prolonged repetitive stimulation, suggesting a possible deficit in the DA neurotransmitter vesicle reserve pool. However, electron microscopy analyses did not reveal significant differences in the content of synaptic vesicles per terminal, and striatal DA levels were unchanged in DA-βcat KO animals. In contrast, striatal mRNA levels for several markers known to regulate synaptic plasticity and DA neurotransmission were altered in DA-βcat KO mice. This study demonstrates that ablation of β-catenin in DA neurons leads to alterations of motor and reward-associated memories and to adaptations of the DA neurotransmitter system and suggests that β-catenin signaling in DA neurons is required to facilitate the synaptic remodeling underlying the consolidation of long-term memories.

  3. Effect of dietary supplementation of l-tryptophan on thermal tolerance and oxygen consumption rate in Cirrhinus mrigala fingerlings under varied stocking density.

    PubMed

    Tejpal, C S; Sumitha, E B; Pal, A K; Shivananda Murthy, H; Sahu, N P; Siddaiah, G M

    2014-04-01

    A 60 day feeding trial was conducted to study the effect of dietary l-tryptophan on thermal tolerance and oxygen consumption rate of freshwater fish, mrigala, Cirrhinus mrigala reared under ambient temperature at low and high stocking density. Four hundred eighty fingerlings were distributed into eight experimental groups. Four groups each of low density group (10 fishes/75L water) and higher density group (30 fishes/75L water) were fed a diet containing 0, 0.68, 1.36 or 2.72% l-tryptophan in the diet, thus forming eight experimental groups namely, Low density control (LC) (basal feed +0% l-tryptophan); LT1 (basal feed+0.68% l-tryptophan); LT2 (basal feed+1.36% l-tryptophan); LT3 (basal feed+2.72% l-tryptophan); high density control (HC) (basal feed+0% l-tryptophan); HT1 (basal feed+0.68% l-tryptophan); HT2 (basal feed+1.36% l-tryptophan); and HT3 (basal feed+2.72% l-tryptophan) were fed at 3% of the body weight. The test diets having crude protein 34.33±0.23 to 35.81±0.18% and lipid 423.49±1.76 to 425.85±0.31KCal/100g were prepared using purified ingredients. The possible role of dietary l-tryptophan on thermal tolerance and oxygen consumption rate was assessed in terms of critical thermal maxima (CTMax), critical thermal minima (CTMin), lethal thermal maxima (LTMax) and lethal thermal minima (LTMin). The CTMax, CTMin, LTMax and LTMin values were found to be significantly higher (p<0.05) in the treatment groups with CTMax 42.94±0.037 (LT2); LT Max 43.18±0.070 (LT2); CTMin 10.47±0.088 (LT2) and LTMin 9.42±0.062 (LT3), whereas the control group showed a lower tolerance level. The same trend was observed in the high density group (CTMax 42.09±0.066 (LT3); LTMax 43 23±0.067 (HT3); CTMin 10.98±0.040 (HT3) and LTMin 9.74±0.037 (HT3). However, gradual supplementation of dietary l-tryptophan in the diet significantly reduced the oxygen consumption rate in both the low density group (Y=-26.74x+222.4, r²=0.915) and the high density group (Y=-32.96x+296.5, r²=0.8923). Dietary supplementation of l-tryptophan at a level of 1.36% improved the thermal tolerance level and reduced the oxygen consumption rate in C. mrigala fingerlings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Calcium-dependent phosphodiesterase 1C inhibits renin release from isolated juxtaglomerular cells

    PubMed Central

    Ortiz-Capisano, M. Cecilia; Liao, Tang-Dong; Ortiz, Pablo A.

    2009-01-01

    Renin release from the juxtaglomerular (JG) cell is stimulated by the second messenger cAMP and inhibited by calcium. We previously showed JG cells contain a calcium sensing receptor (CaSR), which, when stimulated, decreases cAMP formation and inhibits renin release. We hypothesize CaSR activation decreases cAMP and renin release, in part, by stimulating a calcium calmodulin-activated phosphodiesterase 1 (PDE1). We incubated our primary culture of JG cells with two selective PDE1 inhibitors [8-methoxymethil-IBMX (8-MM-IBMX; 20 μM) and vinpocetine (40 μM)] and the calmodulin inhibitor W-7 (10 μM) and measured cAMP and renin release. Stimulation of the JG cell CaSR with the calcimimetic cinacalcet (1 μM) resulted in decreased cAMP from a basal of 1.13 ± 0.14 to 0.69 ± 0.08 pM/mg protein (P < 0.001) and in renin release from 0.89 ± 0.16 to 0.38 ± 0.08 μg ANG I/ml·h−1·mg protein−1 (P < 0.001). However, the addition of 8-MM-IBMX with cinacalcet returned both cAMP (1.10 ± 0.19 pM/mg protein) and renin (0.57 ± 0.16 μg ANG I/ml·h−1·mg protein−1) to basal levels. Similar results were obtained with vinpocetine, and also with W-7. Combining 8-MM-IBMX and W-7 had no additive effect. To determine which PDE1 isoform is involved, we performed Western blot analysis for PDE1A, B, and C. Only Western blot analysis for PDE1C showed a characteristic band apparent at 80 kDa. Immunofluorescence showed cytoplasmic distribution of PDE1C and renin in the JG cells. In conclusion, PDE1C is expressed in isolated JG cells, and contributes to calcium's inhibitory modulation of renin release from JG cells. PMID:19741056

  5. Bioengineered human IAS reconstructs with functional and molecular properties similar to intact IAS

    PubMed Central

    Singh, Jagmohan

    2012-01-01

    Because of its critical importance in rectoanal incontinence, we determined the feasibility to reconstruct internal anal sphincter (IAS) from human IAS smooth muscle cells (SMCs) with functional and molecular attributes similar to the intact sphincter. The reconstructs were developed using SMCs from the circular smooth muscle layer of the human IAS, grown in smooth muscle differentiation media under sterile conditions in Sylgard-coated tissue culture plates with central Sylgard posts. The basal tone in the reconstructs and its changes were recorded following 0 Ca2+, KCl, bethanechol, isoproterenol, protein kinase C (PKC) activator phorbol 12,13-dibutyrate, and Rho kinase (ROCK) and PKC inhibitors Y-27632 and Gö-6850, respectively. Western blot (WB), immunofluorescence (IF), and immunocytochemical (IC) analyses were also performed. The reconstructs developed spontaneous tone (0.68 ± 0.26 mN). Bethanechol (a muscarinic agonist) and K+ depolarization produced contraction, whereas isoproterenol (β-adrenoceptor agonist) and Y-27632 produced a concentration-dependent decrease in the tone. Maximal decrease in basal tone with Y-27632 and Gö-6850 (each 10−5 M) was 80.45 ± 3.29 and 17.76 ± 3.50%, respectively. WB data with the IAS constructs′ SMCs revealed higher levels of RhoA/ROCK, protein kinase C-potentiated inhibitor or inhibitory phosphoprotein for myosin phosphatase (CPI-17), phospho-CPI-17, MYPT1, and 20-kDa myosin light chain vs. rectal smooth muscle. WB, IF, and IC studies of original SMCs and redispersed from the reconstructs for the relative distribution of different signal transduction proteins confirmed the feasibility of reconstruction of IAS with functional properties similar to intact IAS and demonstrated the development of myogenic tone with critical dependence on RhoA/ROCK. We conclude that it is feasible to bioengineer IAS constructs using human IAS SMCs that behave like intact IAS. PMID:22790596

  6. An Imminent Revolution in Modeling Interactions of Ice Sheets With Climate

    NASA Astrophysics Data System (ADS)

    Hughes, T.

    2008-12-01

    Modeling continental ice sheets was inaugurated by meteorologists William Budd and Uwe Radok, with mathematician Richard Jenssen, in 1971. Their model calculated the thermal and mechanical regime using measured surface accumulation rates, temperatures, and elevations, and bed topography. This top-down approach delivered a basal thermal regime of temperatures or melting rates for an assumed basal geothermal heat flux. When Philippe Huybrechts and others incorporated time, largely unknownpast surface conditions had a major effect on present basal thermal conditions. This approach produced ice-sheet models with only a slow response to external forcing, whereas the glacial geological record and climate records from ice and ocean cores show that ice sheets can have rapid changes in size and shape independent of external forcing. These top-down models were wholly inadequate for reconstructing former ice sheets at the LGM for CLIMAP in 1981. Ice-sheet areas,elevations, and volumes provided the albedo, surface topography, and sea-surface area as input to climate models. A bottom-up model based on dated glacial geology was developed to provide the areal extent and basal thermal regime of ice sheets at the LGM. Basal thermal conditions determined ice-bed coupling and therefore the elevation of ice sheets. High convex ice surfaces for slow sheet flow lower about 20 percent when a frozen bed becomes thawed. As further basal melting drowns bedrock bumps that "pin" basal ice, the ice surface becomes concave in fast stream flow that ends as low floating ice shelves at marine ice margins. A revolution in modeling interactions between glaciation, climate, and sea level is driven by new Greenland and Antarctic data from Earth-orbiting satellites, airborne and surface traverses, and deep drilling. We anticipate continuous data acquisition of surface albedo, accumulation/ablation rates, elevations, velocities, and temperatures over a whole ice sheet, mapping basal thermal conditions by radar, seismic, and magnetic profiling, and direct measurement of basal conditions by deep drilling and coring into the ice and the bed. These data allow calculating the geothermal heat flux and mapping flow of basal meltwater from geothermal sources to sinks at the termini of ice streams, which discharge up to 90 percent of the ice. James Fastook has a preliminary solution of the full momentum equation needed to model ice streams. Douglas MacAyeal has pioneered modeling catastrophic ice-shelf disintegration that releases "armadas" of icebergs into the world ocean, to extract heat from ocean surface water and thereby reduce the critical ocean-to-atmosphere heat exchange that drives global climate. Ice sheets are the only component of Earth's climate machine that can destroy itself-- swiftly--and thereby radically and rapidly alter global climate and sea level.

  7. Partial denervation of sub-basal axons persists following debridement wounds to the mouse cornea.

    PubMed

    Pajoohesh-Ganji, Ahdeah; Pal-Ghosh, Sonali; Tadvalkar, Gauri; Kyne, Briana M; Saban, Daniel R; Stepp, Mary Ann

    2015-11-01

    Although sensory reinnervation occurs after injury in the peripheral nervous system, poor reinnervation in the elderly and those with diabetes often leads to pathology. Here we quantify sub-basal axon density in the central and peripheral mouse cornea over time after three different types of injury. The mouse cornea is highly innervated with a dense array of sub-basal nerves that form a spiral called the vortex at the corneal center or apex; these nerves are readily detected within flat mounted corneas. After anesthesia, corneal epithelial cells were removed using either a dulled blade or a rotating burr within an area demarcated centrally with a 1.5 mm trephine. A third wound type, superficial trephination, involved demarcating the area with the 1.5 mm trephine but not removing cells. By 7 days after superficial trephination, sub-basal axon density returns to control levels; by 28 days the vortex reforms. Although axon density is similar to control 14 days after dulled blade and rotating burr wounding, defects in axon morphology at the corneal apex remain. After 14 days, axons retract from the center leaving the sub-basal axon density reduced by 37.2 and 36.8% at 28 days after dulled blade and rotating burr wounding, respectively, compared with control. Assessment of inflammation using flow cytometry shows that persistent inflammation is not a factor in the incomplete reinnervation. Expression of mRNAs encoding 22 regeneration-associated genes involved in axon targeting assessed by QPCR reveals that netrin-1 and ephrin signaling are altered after wounding. Subpopulations of corneal epithelial basal cells at the corneal apex stop expressing ki67 as early as 7 days after injury and by 14 and 28 days after wounding, many of these basal cells undergo apoptosis and die. Although sub-basal axons are restored to their normal density and morphology after superficial trephination, sub-basal axon recovery is partial after debridement wounds. The increase in corneal epithelial basal cell apoptosis at the apex observed at 14 days after corneal debridement may destabilize newly reinnervated sub-basal axons and lead to their retraction toward the periphery.

  8. Hypoglycemia in patients with type 2 diabetes newly initiated on basal insulin in the US in a community setting: impact on treatment discontinuation and hospitalization.

    PubMed

    Dalal, Mehul R; Kazemi, Mahmood R; Ye, Fen

    2017-02-01

    To evaluate the impact of 6 month hypoglycemia on treatment discontinuation and hospitalization of patients initiating basal insulin for type 2 diabetes (T2D) in real-world practice. This was a retrospective cohort study of patient-level data using electronic medical records (EMRs) in the Predictive Health Intelligence diabetes dataset. Data from adult patients with T2D initiating basal insulin glargine, insulin detemir, or Neutral Protamine Hagedorn insulin between January 2008 and March 2014 was analyzed. The date of first basal insulin prescription in an outpatient setting was the index date. A 12 month baseline prior to the index date was established; follow-up was 6-24 months from the index date. Patients were assigned to cohorts by experience of hypoglycemia (International Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM] code or blood glucose test) in the first 6 months following the index date; with hypoglycemia and without hypoglycemia cohorts were compared for basal insulin treatment discontinuation and hospitalization. Overall, 49,062 patients were included; 5159 (10.5%) experienced hypoglycemia in the 6 months following basal insulin initiation. In the first 12 months, 68.1% of patients in the with hypoglycemia cohort discontinued basal insulin versus 53.9% in the without hypoglycemia cohort (p < .0001); more patients in the with hypoglycemia cohort had at least one hospitalization in the first year of follow-up (50.1% vs. 14.6%; p < .0001). Patients with hypoglycemia soon after initiating basal insulin are at greater risk of discontinuation of their basal insulin therapy and hospitalization versus those who did not have hypoglycemic events within the first 6 months of basal insulin initiation. A limitation of this study is that it was a retrospective analysis of EMR data and the study may not be representative of all US patients with T2D on basal insulin and it cannot be assumed that every hypoglycemic event was recorded.

  9. Retinoic acid stimulates interstitial collagenase messenger ribonucleic acid in osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Connolly, T. J.; Clohisy, J. C.; Shilt, J. S.; Bergman, K. D.; Partridge, N. C.; Quinn, C. O.

    1994-01-01

    The rat osteoblastic osteosarcoma cell line UMR 106-01 secretes interstitial collagenase in response to retinoic acid (RA). The present study demonstrates by Northern blot analysis that RA causes an increase in collagenase messenger RNA (mRNA) at 6 h, which is maximal at 24 h (20.5 times basal) and declines toward basal level by 72 h. This stimulation is dose dependent, with a maximal response at 5 x 10(-7) M RA. Nuclear run-on assays show a greater than 20-fold increase in the rate of collagenase mRNA transcription between 12-24 h after RA treatment. Cycloheximide blocks RA stimulation of collagenase mRNA, demonstrating the need for de novo protein synthesis. RA not only causes an increase in collagenase secretion, but is known to decrease collagen synthesis in UMR 106-01 cells. In this study, the increase in collagenase mRNA is accompanied by a concomitant decrease in the level of alpha 1(I) procollagen mRNA, which is maximal at 24 h (70% decrease), with a return to near-control levels by 72 h. Nuclear run-on assays demonstrated that the decrease in alpha 1 (I) procollagen expression does not have a statistically significant transcriptional component. RA did not statistically decrease the stability of alpha 1 (I) procollagen mRNA (calculated t1/2 = 8.06 +/- 0.30 and 9.01 +/- 0.62 h in the presence and absence of RA, respectively). However, transcription and stability together probably contribute to the major decrease in stable alpha 1 (I) procollagen mRNA observed. Cycloheximide treatment inhibits basal level alpha 1 (I) procollagen mRNA accumulation, demonstrating the need for on-going protein synthesis to maintain basal expression of this gene.

  10. Antioxidants Supplementation in Elderly Cardiovascular Patients

    PubMed Central

    Vila, Susana; Azzato, F.; Milei, José

    2013-01-01

    Supplementation with antioxidants and its benefit-risk relationship have been largely discussed in the elderly population. We evaluated whether antioxidants supplementation improved the biochemical profile associated with oxidative metabolism in elderly cardiovascular patients. Patients (n = 112) received daily supplementation with α-TP 400 mg, beta-carotene 40 mg, and vitamin C 1000 mg for 2 months (treatment). Plasma concentrations of alpha-tocopherol (α-TP), β-carotene (βC), ubiquinol-10 (QH-10), glutathione, and thiobarbituric acid reactive substances (TBARS) were determined before and after treatment. Response to treatment was dependent on pretreatment α-TP and βC levels. Increase in α-TP and βC levels was observed only in patients with basal levels <18 μM for α-TP (P < 0.01) and <0.30 μM for βC (P < 0.02). Ubiquinol-10, glutathione, and TBARS were unaffected by treatment: QH-10 (+57%, F 1,110 = 3.611, P < 0.06, and N.S.), glutathione (+21%, F 1,110 = 2.92, P < 0.09, and N.S.), and TBARS (−29%, F 1,110 = 2.26, P < 0.14, and N.S.). Treatment reduced oxidative metabolism: 5.3% versus 14.6% basal value (F 1,110 = 9.21, P < 0.0003). Basal TBARS/α-TP ratio was higher in smokers compared to nonsmokers: 0.11 ± 0.02 versus 0.06 ± 0.01 (F 32,80 = 1.63, P < 0.04). Response to antioxidant supplementation was dependent on basal plasma levels of α-TP and βC. Smoking status was strongly associated with atherosclerotic cardiovascular disease and high TBARS/α-TP ratio (lipid peroxidation). PMID:24489984

  11. Acetylcholine from the mesopontine tegmental nuclei differentially affects methamphetamine induced locomotor activity and neurotransmitter levels in the mesolimbic pathway

    PubMed Central

    Dobbs, Lauren K.; Mark, Gregory P.

    2012-01-01

    Methamphetamine (MA) increases dopamine (DA) levels within the mesolimbic pathway and acetylcholine (ACh), a neurotransmitter known to increase DA cell firing and release and mediate reinforcement, within the ventral tegmental area (VTA). The laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei provide cholinergic input to the VTA; however, the contribution of LDT- and PPT-derived ACh to MA-induced DA and ACh levels and locomotor activation remains unknown. The first experiment examined the role of LDT-derived ACh in MA locomotor activation by reversibly inhibiting these neurons with bilateral intra-LDT microinjections of the M2 receptor agonist oxotremorine (OXO). Male C57BL/6 J mice were given a bilateral 0.1 µl OXO (0, 1, or 10 nM/side) microinjection immediately prior to IP saline or MA (2 mg/kg). The highest OXO concentration significantly inhibited both saline-and MA-primed locomotor activity. In a second set of experiments we characterized the individual contributions of ACh originating in the LDT or pedunculopontine tegmental nucleus (PPT) to MA-induced levels of ACh and DA by administering intra-LDT or PPT OXO and performing in vivo microdialysis in the VTA and NAc. Intra-LDT OXO dose-dependently attenuated the MA-induced increase in ACh within the VTA but had no effect on DA in NAc. Intra-PPT OXO had no effect on ACh or DA levels within the VTA or NAc, respectively. We conclude that LDT, but not PPT, ACh is important in locomotor behavior and the cholinergic, but not dopaminergic, response to systemic MA. PMID:21945297

  12. Vocal learning, prosody, and basal ganglia: don't underestimate their complexity.

    PubMed

    Ravignani, Andrea; Martins, Mauricio; Fitch, W Tecumseh

    2014-12-01

    Ackermann et al.'s arguments in the target article need sharpening and rethinking at both mechanistic and evolutionary levels. First, the authors' evolutionary arguments are inconsistent with recent evidence concerning nonhuman animal rhythmic abilities. Second, prosodic intonation conveys much more complex linguistic information than mere emotional expression. Finally, human adults' basal ganglia have a considerably wider role in speech modulation than Ackermann et al. surmise.

  13. Costs of reducing sapling basal area in thinned cherry-maple stands in West Virginia

    Treesearch

    Gary W. Miller

    1984-01-01

    Unmanaged 60-year-old cherry-maple stands in West Virginia were thinned to three levels of stocking according to the Allegheny hardwoods stocking guide. After the merchantable timber was removed, the basal area in saplings was reduced to less than 10 ft² per acre (2.3 m²/ha), as the guide recommends for stands with dense understories. A detailed time...

  14. Individual-tree basal area growth, survival, and total height models for upland hardwoods in the Boston Mountains of Arkansa

    Treesearch

    Paul A. Murphy; David L. Graney

    1988-01-01

    Models were developed for individual-tree basal area growth, survival, and total heights for different species of upland hardwoods in the Boston Mountains of north Arkansas. Data used were from 87 permanent plots located in an array of different sites and stand ages; the plots were thinned to different stocking levels and included unthinned controls. To test these...

  15. Total and free iodothyronine changes in response to transport of Equidae (Equus asinus and Equus caballus).

    PubMed

    Fazio, Esterina; Medica, Pietro; Cravana, Cristina; Ferlazzo, Adriana

    2017-03-31

    In this study the effects of short distance road transport on total and free iodothyronine changes in 12 stallions (Equus asinus and Equus caballus) were evaluated. Donkeys (n = 6) and horses (n = 6) were transported for a distance of 50 km. Blood samples were collected 1 week before transport in basal conditions, 1 week later immediately before loading, and after transport and unloading. After transport, donkeys showed significant increases in circulating T4 (P≤0.01), fT3 (P≤0.001), and fT4 (P≤0.01) levels; while horses had significant increases in circulating T3, fT3 and fT4 (P≤0.01) levels. Compared to donkeys' values, horses showed lower T4 values in basal condition, before and after transport (P≤0.001); higher fT3 values in basal condition and before (P≤0.001), and lower values (P≤0.001) after transport; higher fT4 values (P≤0.001) in basal condition. The results indicate that short road transport of donkeys and horses induces the activation of the thyroid gland, with the same release of fT3 and fT4 iodothyronines, but with different preferential release of T3 in horses and T4 in donkeys after transport.

  16. Evidence for basal distortion-product otoacoustic emission components.

    PubMed

    Martin, Glen K; Stagner, Barden B; Lonsbury-Martin, Brenda L

    2010-05-01

    Distortion-product otoacoustic emissions (DPOAEs) were measured with traditional DP-grams and level/phase (L/P) maps in rabbits with either normal cochlear function or unique sound-induced cochlear losses that were characterized as either low-frequency or notched configurations. To demonstrate that emission generators distributed basal to the f(2) primary-tone contribute, in general, to DPOAE levels and phases, a high-frequency interference tone (IT) was presented at 1/3 of an octave (oct) above the f(2) primary-tone, and DPOAEs were re-measured as "augmented" DP-grams (ADP-grams) and L/P maps. The vector difference between the control and augmented functions was then computed to derive residual DP-grams (RDP-grams) and L/P maps. The resulting RDP-grams and L/P maps, which described the DPOAEs removed by the IT, supported the notion that basal DPOAE components routinely contribute to the generation of standard measures of DPOAEs. Separate experiments demonstrated that these components could not be attributed to the effects of the 1/3-oct IT on f(2), or DPOAEs generated by the addition of a third interfering tone. These basal components can "fill in" the lesion estimated by the commonly employed DP-gram. Thus, ADP-grams more accurately reveal the pattern of cochlear damage and may eventually lead to an improved DP-gram procedure.

  17. Galectin-8 regulates targeting of Gp135/podocalyxin and lumen formation at the apical surface of renal epithelial cells.

    PubMed

    Lim, HooiCheng; Yu, Chun-Ying; Jou, Tzuu-Shuh

    2017-11-01

    Establishment of apical-basal polarity, through correct targeting of polarity determinants to distinct domains of the plasma membrane, is a fundamental process for the development of functioning epithelial tubules. Here we report that galectin (Gal)-8 regulates apical-basal polarity of Madin-Darby canine kidney (MDCK) cells via apical targeting of 135-kDa glycoprotein (Gp135). Gal-8 interacts with newly synthesized Gp135 in a glycan-dependent manner. Gal-8 knockdown induces aberrant lumens at the lateral domain and mistargeting of Gp135 to this structure, thus disrupting the kidney epithelial polarity of MDCK cells, which organize lumens at the apical surface. The O -glycosylation deletion mutant of Gp135 phenocopies the effect of Gal-8 knockdown, which suggests that Gal-8 is the decoding machinery for the apical sorting signals of Gp135 residing at its O -glycosylation-rich region. Collectively, our results reveal a new role of Gal-8 in the development of luminal organs by regulating targeting of apical polarity protein Gp135.-Lim, H., Yu, C.-Y., Jou, T.-S. Galectin-8 regulates targeting of Gp135/podocalyxin and lumen formation at the apical surface of renal epithelial cells. © FASEB.

  18. Fluorescence excitation-emission matrix (EEM) spectroscopy for rapid identification and quality evaluation of cell culture media components.

    PubMed

    Li, Boyan; Ryan, Paul W; Shanahan, Michael; Leister, Kirk J; Ryder, Alan G

    2011-11-01

    The application of fluorescence excitation-emission matrix (EEM) spectroscopy to the quantitative analysis of complex, aqueous solutions of cell culture media components was investigated. These components, yeastolate, phytone, recombinant human insulin, eRDF basal medium, and four different chemically defined (CD) media, are used for the formulation of basal and feed media employed in the production of recombinant proteins using a Chinese Hamster Ovary (CHO) cell based process. The comprehensive analysis (either identification or quality assessment) of these materials using chromatographic methods is time consuming and expensive and is not suitable for high-throughput quality control. The use of EEM in conjunction with multiway chemometric methods provided a rapid, nondestructive analytical method suitable for the screening of large numbers of samples. Here we used multiway robust principal component analysis (MROBPCA) in conjunction with n-way partial least squares discriminant analysis (NPLS-DA) to develop a robust routine for both the identification and quality evaluation of these important cell culture materials. These methods are applicable to a wide range of complex mixtures because they do not rely on any predetermined compositional or property information, thus making them potentially very useful for sample handling, tracking, and quality assessment in biopharmaceutical industries.

  19. Activation of the JAK-STAT Signaling Pathway after In Vitro Stimulation with IFNß in Multiple Sclerosis Patients According to the Therapeutic Response to IFNß

    PubMed Central

    Hurtado-Guerrero, Isaac; Pinto-Medel, Maria Jesús; Urbaneja, Patricia; Rodriguez- Bada, Jose Luis; León, Antonio; Guerrero, Miguel; Fernández, Óscar

    2017-01-01

    Interferon beta (IFNß) is a common treatment used for multiple sclerosis (MS) which acts through the activation of the JAK-STAT pathway. However, this therapy is not always effective and currently there are no reliable biomarkers to predict therapeutic response. We postulate that the heterogeneity in the response to IFNß therapy could be related to differential activation patterns of the JAK-STAT signaling pathway. Our aim was to evaluate the basal levels and the short term activation of this pathway after IFNß stimulation in untreated and IFNß treated patients, as well as according to therapeutic response. Therefore, cell surface levels of IFNAR subunits (IFNAR1 and IFNAR2) and the activated forms of STAT1 and STAT2 were assessed in peripheral blood mononuclear cells from MS patients by flow cytometry. Basal levels of each of the markers strongly correlated with the expression of the others in untreated patients, but many of these correlations lost significance in treated patients and after short term activation with IFNß. Patients who had undergone IFNß treatment showed higher basal levels of IFNAR1 and pSTAT1, but a reduced response to in vitro exposure to IFNß. Conversely, untreated patients, with lower basal levels, showed a greater ability of short term activation of this pathway. Monocytes from responder patients had lower IFNAR1 levels (p = 0.039) and higher IFNAR2 levels (p = 0.035) than non-responders just after IFNß stimulation. A cluster analysis showed that levels of IFNAR1, IFNAR2 and pSTAT1-2 in monocytes grouped 13 out of 19 responder patients with a similar expression pattern, showing an association of this pattern with the phenotype of good response to IFNß (p = 0.013). Our findings suggest that an activation pattern of the IFNß signaling pathway in monocytes could be associated with a clinical phenotype of good response to IFNß treatment and that a differential modulation of the IFNAR subunits in monocytes could be related with treatment effectiveness. PMID:28103257

  20. Pineal peptides restore the age-related disturbances in hormonal functions of the pineal gland and the pancreas.

    PubMed

    Goncharova, N D; Vengerin, A A; Khavinson, V Kh; Lapin, B A

    2005-01-01

    The purpose of this research was to study age-related changes in functioning of pineal and pancreatic glands of non-human primates, rhesus monkeys, and to elucidate the possibility of their corrections with the help of epitalon, a synthetic analogue of the pharmacopoeia drug epithalamin. In old (20-27 years) animals, the basal plasma levels of glucose and insulin were found to be higher, while the night melatonin level was lower in comparison with (6-8 years) young animals. After the glucose administration to old monkeys, a larger area under the curve of the plasma glucose response, a reduced glucose 'disappearance' rate, and a reduced insulin peak (5 min after the glucose administration) were observed in comparison with young animals in similar experiments. The epitalon administration to old monkeys caused the decrease in the basal levels of glucose and insulin and the increase in the basal night melatonin level. Additionally, in the case of old monkeys, epitalon decreased the area under the plasma glucose response curve, markedly increased the glucose 'disappearance' rate and normalized the plasma insulin dynamics in response to glucose administration. Yet, it has not affected the hormonal and metabolic changes in young animals. Thus, epitalon is a promising factor for restoring the age-related endocrine dysfunctions of primates.

  1. Adult cystic fibrosis: postprandial response of gut regulatory peptides.

    PubMed

    Allen, J M; Penketh, A R; Adrian, T E; Lee, Y C; Sarson, D L; Hodson, M E; Batten, J C; Bloom, S R

    1983-12-01

    Responses of 11 gastrointestinal regulatory peptides to a standard test meal were assessed in 10 adult patients with cystic fibrosis. The basal plasma neurotensin was significantly elevated in patients with cystic fibrosis, being 31.5 +/- 6.1 pmol/L compared with a control value of 10.3 +/- 1.5 pmol/L (p less than 0.005). Plasma neurotensin remained elevated throughout the test period. Basal plasma enteroglucagon was similarly elevated, the patients with fibrocystic disease having levels of 51.3 +/- 4.6 pmol/L compared to controls with levels of 33.2 +/- 6.7 pmol/L (p less than 0.02). There was, however, no significant difference in postprandial levels of plasma enteroglucagon. Postprandial motilin was significantly elevated in the patients with cystic fibrosis; this elevation is in contrast with previous findings in children. Release of gastric inhibitory polypeptide was impaired, while release of cholecystokinin showed no significant difference in control values, although there was a tendency for delay. There was no significant postprandial rise of pancreatic polypeptide in the patients, whose levels were grossly lower than controls. Insulin showed a delayed response. No significant differences were observed between patients and controls in levels of gastrin, pancreatic glucagon, somatostatin, or vasoactive intestinal peptide. The elevation of plasma neurotensin and enteroglucagon in the basal state may reflect an adaptive response and may be part of the improved digestive function in adults compared with children with fibrocystic disease.

  2. Reduced steroidogenesis in patients with PCDH19-female limited epilepsy.

    PubMed

    Trivisano, Marina; Lucchi, Chiara; Rustichelli, Cecilia; Terracciano, Alessandra; Cusmai, Raffaella; Ubertini, Grazia Maria; Giannone, Germana; Bertini, Enrico Silvio; Vigevano, Federico; Gecz, Jozef; Biagini, Giuseppe; Specchio, Nicola

    2017-06-01

    Patients affected by protocadherin 19 (PCDH19)-female limited epilepsy (PCDH19-FE) present a remarkable reduction in allopregnanolone blood levels. However, no information is available on other neuroactive steroids and the steroidogenic response to hormonal stimulation. For this reason, we evaluated allopregnanolone, pregnanolone, and pregnenolone sulfate by liquid chromatographic procedures coupled with electrospray tandem mass spectrometry in 12 unrelated patients and 15 age-matched controls. We also tested cortisol, estradiol, progesterone, and 17OH-progesterone using standard immunoassays. Apart from estradiol and progesterone, all the considered hormones were evaluated in basal condition and after stimulation with adrenocorticotropic hormone (ACTH). A generalized decrease in blood levels of almost all measured neuroactive steroids was found. When considering sexual development, cortisol and pregnenolone sulfate basal levels were significantly reduced in postpubertal girls affected by PCDH19-FE. Of interest, ACTH administration did not recover pregnenolone sulfate serum levels but restored cortisol to control levels. In prepubertal girls with PCDH19-FE, by challenging adrenal function with ACTH we disclosed defects in the production of cortisol, pregnenolone sulfate, and 17OH-progesterone, which were not apparent in basal condition. These findings point to multiple defects in peripheral steroidogenesis associated with and potentially relevant to PCDH19-FE. Some of these defects could be addressed by stimulating adrenocortical activity. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  3. Distortion product otoacoustic emissions upon ear canal pressurization.

    PubMed

    Zebian, Makram; Schirkonyer, Volker; Hensel, Johannes; Vollbort, Sven; Fedtke, Thomas; Janssen, Thomas

    2013-04-01

    The purpose of this study was to quantify the change in distortion product otoacoustic emission (DPOAE) level upon ear canal pressurization. DPOAEs were measured on 12 normal-hearing human subjects for ear canal static pressures between -200 and +200 daPa in (50 ± 5) daPa steps. A clear dependence of DPOAE levels on the pressure was observed, with levels being highest at the maximum compliance of the middle ear, and decreasing on average by 2.3 dB per 50 daPa for lower and higher pressures. Ear canal pressurization can serve as a tool for improving the detectability of DPOAEs in the case of middle-ear dysfunction.

  4. Optimal cutoff value of basal anti-mullerian hormone in iranian infertile women for prediction of ovarian hyper-stimulation syndrome and poor response to stimulation.

    PubMed

    Aghssa, Malek Mansour; Tarafdari, Azam Manshadi; Tehraninejad, Ensieh Shahrokh; Ezzati, Mohammad; Bagheri, Maryam; Panahi, Zahra; Mahdavi, Saeed; Abbasi, Mehrshad

    2015-09-10

    We intended to establish the threshold of Anti-Mullerian Hormone (AMH) for detection of Ovarian Hyper-Stimulation Syndrome (OHSS) and poor response to treatment in Iranian infertile women. Pre-stimulation menstrual cycle day-3 hormonal indices including basal AMH values were measured in 105 infertile women aged 32.5 ± 4.3 years. Patients underwent long GnRH agonist Controlled Ovarian Hyperstimulation (COH) in a referral infertility center (Tehran, Iran). The gonadotropin dose was determined based on the age and basal serum Follicular Stimulating Hormone (FSH) level. The IVF/ICSI cycles were followed and the clinical and sonographic data were recorded. Sixteen cases developed OHSS. The prevalence of PCOS was higher in subjects with OHSS [62.5 % (38.8-86.2) vs. 17 % (9.2-24.9)]. The patients with OHSS had higher ovarian follicular count [23.7 (3.2) vs. 9.1 (0.5); p < 0.05], collected oocytes [13.5 (1.9) vs. 6.9 (0.5); p < 0.05] and AMH level [7.9 (0.7) vs. 3.6 (0.3); p < 0.05]. Basal AMH level and oocyte yields (but not age, BMI, and PCOS) correlated with occurrence of OHSS; and only the AMH levels were associated with poor ovarian response (oocytes yield ≤ 4). The optimal cutoff value for the prediction of OHSS was 6.95 ng/ml (area under the receiver operating characteristics curve: 0.86; CI: 0.78-0.95; sensitivity: 75 %; specificity: 84 %; odds ratio for occurrence of OHSS: 9 and p < 0.001). The optimal cut point to discriminate poor response (oocytes ≤4) was 1.65 ng/ml ( AUC : 0.8; CI: 0.69-0.91; sensitivity: 89 % specificity : 71 %; and OR = 23.8 and P value <0.001). Iranian women with basal AMH level > 6.95 ng/ml are at high risk of developing OHSS and those with AMH level < 1.65 ng/ml are poor responders.

  5. Follicle-stimulating hormone receptor-mediated uptake of sup 45 Ca sup 2+ by cultured rat Sertoli cells does not require activation of cholera toxin- or pertussis toxin-sensitive guanine nucleotide binding proteins or adenylate cyclase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grasso, P.; Reichert, L.E. Jr.

    1990-08-01

    We have previously reported that FSH stimulates flux of 45Ca2+ into cultured Sertoli cells from immature rats via voltage-sensitive and voltage-independent calcium channels. In the present study, we show that this effect of FSH does not require cholera toxin (CT)- or pertussis toxin (PT)-sensitive guanine nucleotide binding (G) protein or activation of adenylate cyclase (AC). Significant stimulation of 45Ca2+ influx was observed within 1 min, and maximal response (3.2-fold over basal levels) was achieved within 2 min after exposure to FSH. FSH-stimulated elevations in cellular cAMP paralleled increases in 45Ca2+ uptake, suggesting a possible coupling of AC activation to 45Ca2+more » influx. (Bu)2cAMP, however, was not able to enhance 45Ca2+ uptake over basal levels at a final concentration of 1000 microM, although a concentration-related increase in androstenedione conversion to estradiol was evident. Exposure of Sertoli cells to CT (10 ng/ml) consistently stimulated basal levels of androstenedione conversion to estradiol but had no effect on basal levels of 45Ca2+ uptake. Similarly, CT had no effect on FSH-induced 45Ca2+ uptake, but potentiated FSH-stimulated estradiol synthesis. PT (10 ng/ml) augmented basal and FSH-stimulated estradiol secretion without affecting 45Ca2+ influx. The adenosine analog N6-phenylisopropyladenosine, which binds to Gi-coupled adenosine receptors on Sertoli cells, inhibited FSH-stimulated androgen conversion to estradiol in a dose-related (1-1000 nM) manner, but FSH-stimulated 45Ca2+ influx remained unchanged. Our results show that in contrast to FSH-stimulated estradiol synthesis, the flux of 45Ca2+ into Sertoli cells in response to FSH is not mediated either directly or indirectly by CT- or PT-sensitive G protein, nor does it require activation of AC. Our data further suggest that the FSH receptor itself may function as a calcium channel.« less

  6. The effects of extreme nutritional conditions on the neurochemistry of reward and addiction

    NASA Astrophysics Data System (ADS)

    Pothos, Emmanuel N.

    2001-08-01

    Weight loss is a frequent problem in space flights. We now claim that it may affect performance and drug-seeking behavior by altering midbrain neurochemistry. In food-deprived rats (20-30% underweight) basal extracellular dopamine levels in the nucleus accumbens decrease to 40-50% of normal and locomotion is depressed. However, amphetamine-induced dopamine release and locomotion are higher than in controls (1825% vs. 595% after a 25 μM d-amphetamine intraaccumbens infusion). The lower basal and the higher stimulated dopamine levels suggest that the neurotransmitter accumulates presynaptically in the accumbens of the underweight rats due to subnormal basal release. Psychostimulants are more rewarding for underweight subjects possibly because they release significantly more dopamine from elevated presynaptic stores into the accumbens. Consequently, weight loss can lead both to depression of performance and propensity to substance abuse. These effects should be considered when providing nutritional resources for space flights so that weight loss is limited.

  7. Hormonal and metabolic effects of neuroglucopenia.

    PubMed

    Molina, P E; Eltayeb, K; Hourani, H; Okamura, K; Nanney, L B; Williams, P; Abumrad, N N

    1993-06-18

    We examined the role of central neuroglucopenia, induced by intracerebroventricular (i.c.v.) administration of 2-deoxyglucose (2-DG), on glucose and amino acid kinetics in conscious dogs. Group 1 received i.c.v. 2-DG at 2.5 mg.kg-1 x min-1 for 15 min. Group 2 received an equal intravenous (i.v.) amount of 2-DG. In the i.c.v. group, plasma glucose levels rose from 106 +/- 4 mg/dl to a peak of 204 +/- 12 mg/dl by 90 min. Blood lactate increased from 689 +/- 1 to 2,812 +/- 5 mumol/l and blood alanine not change from basal (256 +/- 41 mumol/l). The rate of hepatic glucose production, determined isotopically, was increased 2-fold over basal (P < 0.01). Significant increases (P < 0.001) over basal were also noted in plasma epinephrine, norepinephrine, insulin, glucagon and cortisol. Leucine rate of appearance (Ra) showed a 30% decrease from basal to 2.4 +/- 0.05 mumol.kg-1 x min-1 (P < 0.01). In group 2 plasma glucose levels were not altered but plasma cortisol and glucagon showed a modest transient increase above basal (P < 0.05). No significant changes were noted in amino acid kinetics. These findings suggest that periventricular neuroglucopenia, in the absence of peripheral glucose deprivation, is accompanied by hyperglycemia secondary to enhanced hepatic glucose production with decreased glucose utilization and by increased hepatic uptake of gluconeogenic precursors. These, however, were not accompanied by increased whole body proteolysis as was previously seen with generalized glucopenia resulting from insulin-induced hypoglycemia.

  8. Heritabilities of Directional Asymmetry in the Fore- and Hindlimbs of Rabbit Fetuses

    PubMed Central

    Breno, Matteo; Bots, Jessica; Van Dongen, Stefan

    2013-01-01

    Directional asymmetry (DA), where at the population level symmetry differs from zero, has been reported in a wide range of traits and taxa, even for traits in which symmetry is expected to be the target of selection such as limbs or wings. In invertebrates, DA has been suggested to be non-adaptive. In vertebrates, there has been a wealth of research linking morphological asymmetry to behavioural lateralisation. On the other hand, the prenatal expression of DA and evidences for quantitative genetic variation for asymmetry may suggest it is not solely induced by differences in mechanic loading between sides. We estimate quantitative genetic variation of fetal limb asymmetry in a large dataset of rabbits. Our results showed a low but highly significant level of DA that is partially under genetic control for all traits, with forelimbs displaying higher levels of asymmetry. Genetic correlations were positive within limbs, but negative across bones of fore and hind limbs. Environmental correlations were positive for all, but smaller across fore and hind limbs. We discuss our results in light of the existence and maintenance of DA in locomotory traits. PMID:24130770

  9. A measurement error model for physical activity level as measured by a questionnaire with application to the 1999-2006 NHANES questionnaire.

    PubMed

    Tooze, Janet A; Troiano, Richard P; Carroll, Raymond J; Moshfegh, Alanna J; Freedman, Laurence S

    2013-06-01

    Systematic investigations into the structure of measurement error of physical activity questionnaires are lacking. We propose a measurement error model for a physical activity questionnaire that uses physical activity level (the ratio of total energy expenditure to basal energy expenditure) to relate questionnaire-based reports of physical activity level to true physical activity levels. The 1999-2006 National Health and Nutrition Examination Survey physical activity questionnaire was administered to 433 participants aged 40-69 years in the Observing Protein and Energy Nutrition (OPEN) Study (Maryland, 1999-2000). Valid estimates of participants' total energy expenditure were also available from doubly labeled water, and basal energy expenditure was estimated from an equation; the ratio of those measures estimated true physical activity level ("truth"). We present a measurement error model that accommodates the mixture of errors that arise from assuming a classical measurement error model for doubly labeled water and a Berkson error model for the equation used to estimate basal energy expenditure. The method was then applied to the OPEN Study. Correlations between the questionnaire-based physical activity level and truth were modest (r = 0.32-0.41); attenuation factors (0.43-0.73) indicate that the use of questionnaire-based physical activity level would lead to attenuated estimates of effect size. Results suggest that sample sizes for estimating relationships between physical activity level and disease should be inflated, and that regression calibration can be used to provide measurement error-adjusted estimates of relationships between physical activity and disease.

  10. The Role of Basal Channels in Ice Shelf Calving.

    NASA Astrophysics Data System (ADS)

    Dow, C. F.; Lee, W. S.; Greenbaum, J. S.; Greene, C. A.; Blankenship, D. D.; Poinar, K.; Forrest, A.; Young, D. A.; Zappa, C. J.

    2017-12-01

    Increased rates of ice shelf break-up drives acceleration of grounded glacial ice into the ocean, resulting in sea-level rise. Ice shelves are vulnerable to thinning, which make them more susceptible to calving. Here, we examine basal channels under three ice shelves that locally thin the ice and drive formation of transverse ice shelf fractures. The basal channels also cause surface depressions due to hydrostatic buoyancy effects and can draw in surface water to form rivers. These rivers exacerbate thinning by surface melting and hydraulic loading, and can accelerate rifting when they flow into the transverse fractures. Our investigation focuses on Nansen Ice Shelf in the Ross Sea Embayment, East Antarctica. We use ice-sounding radar and single-beam laser altimeter data from two aerogeophysical campaigns conducted in 2011 and 2014, ice surface DEM reconstruction, and satellite imagery analysis, to examine the role of a substantial basal channel in the stability of this ice shelf. Nansen Ice Shelf calved two large icebergs totaling 214 km2 in area in April 2016. The transverse fracture that eventually rifted to form these icebergs initiated directly over the basal channel in 1987. In years when surface water formed on Nansen Ice Shelf, a river flowed into the transverse fracture. In November 2016, we identified a new fracture over the basal channel during in-situ data collection. We compare the Nansen Ice Shelf fractures with those at other vulnerable ice-shelf systems, including Petermann Glacier in Greenland and Totten Glacier in East Antarctica, to evaluate the role that basal channels may play in simultaneous basal and surface weakening and their consequent effect on ice-shelf rifting and stability.

  11. A comparison of basal and eye-flush tears for the analysis of cat tear proteins.

    PubMed

    Petznick, Andrea; Evans, Margaret D M; Madigan, Michele C; Markoulli, Maria; Garrett, Qian; Sweeney, Deborah F

    2011-02-01

    To identify a rapid and effective tear collection method providing sufficient tear volume and total protein content (TPC) for analysis of individual proteins in cats. Domestic adult short-haired cats (12-37 months; 2.7-6.6 kg) were used in the study. Basal tears without stimulation and eye-flush tears after instillation of saline (10 μl) were collected using microcapillary tubes from animal eyes either unwounded control or wounded with 9-mm central epithelial debridement giving four groups with n = 3. Tear comparisons were based on total time and rate for tear collection, TPC using micro bicinchoninic acid (BCA), tear immunoglobulin A (IgA), total matrix-metalloproteinase (MMP)-9 concentration using sandwich enzyme-linked immunosorbent assay (ELISA) and MMP-9 activity. Eye-flush tears were collected significantly faster than basal tears in wounded eyes with higher rates for tear collection in unwounded control and wounded eyes. TPC was significantly lower in eye-flush tears compared to basal tears. The relative proportion of tear IgA normalized to TPC (% IgA of TPC) was not significantly different between basal and eye-flush tears. In unwounded control eyes, MMP-9 was slightly higher in eye-flush than in basal tears; activity of MMP-9 in both tear types was similar. In wounded eyes, eye-flush tears showed highest MMP-9 levels and activity on Day 1, which subsequently decreased to Day 7. MMP-9 activity in basal tears from wounded eyes did not display changes in expression. Eye-flush tears can be collected rapidly providing sufficient tear volume and TPC. This study also indicates that eye-flush tears may be more suitable than basal tears for the analysis of MMPs following corneal wounding. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  12. Morphological evidence and direct estimates of rapid melting beneath Totten Glacier Ice Shelf, East Antarctica

    NASA Astrophysics Data System (ADS)

    Greenbaum, Jamin; Schroeder, Dustin; Grima, Cyril; Habbal, Feras; Dow, Christine; Roberts, Jason; Gwyther, David; van Ommen, Tas; Siegert, Martin; Blankenship, Donald

    2017-04-01

    Totten Glacier drains at least 3.5 meters of eustatic sea level potential from marine-based ice in the Aurora Subglacial Basin (ASB) in East Antarctica, more than the combined total of all glaciers in West Antarctica. Totten Glacier has been the most rapidly thinning glacier in East Antarctica since satellite altimetry time series began and the nature of the thinning suggests that it is driven by enhanced basal melting due to ocean processes. While grounded ice thinning rates have been steady, recent work has shown that Totten's floating ice shelf may not have the same thinning behavior; as a result, it is critical to observe ice shelf and cavity boundary conditions and basal processes to understand this apparent discrepancy. Warm Modified Circumpolar Deep Water (MCDW), which has been linked to glacier retreat in West Antarctica, has been observed in summer and winter on the nearby Sabrina Coast continental shelf and deep depressions in the seafloor provide access for MCDW to reach the ice shelf cavity. Given its northern latitude, numerical ice sheet modeling indicates that Totten Glacier may be prone to retreat caused by hydrofracture in a warming climate, so it is important to understand how intruding MCDW is affecting thinning of Totten Glacier's ice shelf. Here we use post-processed, focused airborne radar observations of the Totten Glacier Ice Shelf to delineate multi-km wide basal channels and flat basal terraces associated with high basal reflectivity and specularity (flatness) anomalies and correspondingly large ice surface depressions that indicate active basal melting. Using a simple temperature-attenuation model, and basal roughness corrections, we present basal melt rates associated with the radar reflection and specularity anomalies and compare them to those derived from numerical ocean circulation modeling and an ice flow divergence calculation. Sub-ice shelf ocean circulation modeling and under-ice robotic observations of Pine Island Glacier Ice Shelf in West Antarctica and the Petermann Glacier Ice Shelf in Greenland have shown that basal terraces associated with large basal channels are an indication of rapidly melting ice shelves. In this context, these new results identify an East Antarctic example of rapid basal melting processes and demonstrate that airborne radar can be used to identify basal characteristics and processes relevant to ice shelf stability.

  13. Role of afferent input and mechanical load for size regulation of rat soleus muscle

    NASA Astrophysics Data System (ADS)

    Kawano, Fuminori; Matsuka, Yoshikazu; Oke, Yoshihiko; Higo, Yoko; Terada, Masahiro; Umemoto, Shiori; Kawabe, Naoko; Wang, Xiao Dong; Shinoda, Yo; Lan, Yong Bo; Fukuda, Hiroyuki; Ohmi, Shinobu; Ohira, Yoshinobu

    2005-08-01

    Effects of deafferentation on the phosphorylation of ribosomal protein S6 (S6), 27 kDa heat shock protein (HSP27) and extracellular signal-regulated kinase (ERK) 1/2 were studied in rat soleus muscle. Adult male Wistar rats were randomly separated into the pre- and post- experimental control, functionally overloaded (FO), sham-operated, deafferentated (DA), FO+DA, and hindlimb-unloaded (U) groups. The distal tendons of left plantaris and gastrocnemius muscles were transected in the FO rats. The left dorsal roots of the spinal cord at the L4-5 segmental levels were transected in the DA rats. The rats in U were tail-suspended. The sampling of the soleus muscle was performed 2 weeks after the treatments shown above. The cytoplasmic fraction of the soleus muscle homogenate was used for the quantitative analyses of the phosphorylation levels of S6, HSP27, and ERK 1/2. The phosphorylation levels of these proteins were up-regulated by FO. On the contrary, the phosphorylation of all of these proteins was down-regulated by U and DA. Further, the FO-related increase of the protein phosphorylation was inhibited by additional treatment with DA. These results indicated that the afferent feedback plays crucial roles in the intramuscular regulation of the soleus muscle mass.

  14. Changes in the brain biogenic monoamines of rats, induced by piracetam and aniracetam.

    PubMed

    Petkov, V D; Grahovska, T; Petkov, V V; Konstantinova, E; Stancheva, S

    1984-01-01

    Single oral dose of 600 mg/kg weight piracetam, respectively 50 mg/kg aniracetam, causes essential changes in the level and turnover of dopamine (DA) and serotonin (5-HT) in some rat cerebral structures. When the animals were killed one hour after the administration of the drugs, piracetam significantly increased the DA level in the cerebral cortex and in the striatum, as well as the 5-HT level in the cortex, reducing the 5-HT level in the striatum, brain stem and hypothalamus. At the same time, under the effect of piracetam the DA turnover was accelerated in the cortex and hypothalamus and delayed in the striatum, the noradrenaline turnover was accelerated in the brain stem, the 5-HT turnover was accelerated in the cortex and delayed in the striatum, stem and hypothalamus. Under the effect of aniracetam the DA level was reduced in the striatum and hypothalamus; the 5-HT level was also decreased in the hypothalamus and increased in the cortex and striatum. Aniracetam delayed the DA turnover in the striatum and the 5-HT turnover in the hypothalamus, accelerating the 5-HT turnover in the cortex, striatum and stem. The results obtained show that the changes induced in the cerebral biogenic monoamines participate in the mechanism of action of piracetam and aniracetam, whereby it seems that the analogies and differences in their effects on the cerebral biogenic monoamines play a definite role for the observed analogies and differences in the behavioural effects of these two "nootropic" compounds.

  15. Reduced prefrontal dopaminergic activity in valproic acid-treated mouse autism model.

    PubMed

    Hara, Yuta; Takuma, Kazuhiro; Takano, Erika; Katashiba, Keisuke; Taruta, Atsuki; Higashino, Kosuke; Hashimoto, Hitoshi; Ago, Yukio; Matsuda, Toshio

    2015-08-01

    Previous studies suggest that dysfunction of neurotransmitter systems is associated with the pathology of autism in humans and the disease model rodents, but the precise mechanism is not known. Rodent offspring exposed prenatally to VPA shows autism-related behavioral abnormalities. The present study examined the effect of prenatal VPA exposure on brain monoamine neurotransmitter systems in male and female mice. The prenatal VPA exposure did not affect the levels of dopamine (DA), noradrenaline (NA), serotonin (5-HT) and their metabolites in the prefrontal cortex and striatum, while it significantly reduced methamphetamine (METH) (1.0 mg/kg)-induced hyperlocomotion in male offspring. In vivo microdialysis study demonstrated that prenatal VPA exposure attenuated METH-induced increases in extracellular DA levels in the prefrontal cortex, while it did not affect those in extracellular NA and 5-HT levels. Prenatal VPA exposure also decreased METH-induced c-Fos expression in the prefrontal cortex and the mRNA levels of DA D1 and D2 receptors in the prefrontal cortex. These effects of VPA were not observed in the striatum. In contrast to male offspring, prenatal VPA exposure did not affect METH-induced increases in locomotor activity and prefrontal DA levels and the D1 and D2 receptor mRNA levels in the prefrontal cortex in female offspring. These findings suggest that prenatal VPA exposure causes hypofunction of prefrontal DA system in a sex-dependent way. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. ESTIMATING BASAL ENERGY EXPENDITURE IN LIVER TRANSPLANT RECIPIENTS: THE VALUE OF THE HARRIS-BENEDICT EQUATION.

    PubMed

    Pinto, Andressa S; Chedid, Marcio F; Guerra, Léa T; Álvares-DA-Silva, Mario R; Araújo, Alexandre de; Guimarães, Luciano S; Leipnitz, Ian; Chedid, Aljamir D; Kruel, Cleber R P; Grezzana-Filho, Tomaz J M; Kruel, Cleber D P

    2016-01-01

    Reliable measurement of basal energy expenditure (BEE) in liver transplant (LT) recipients is necessary for adapting energy requirements, improving nutritional status and preventing weight gain. Indirect calorimetry (IC) is the gold standard for measuring BEE. However, BEE may be estimated through alternative methods, including electrical bioimpedance (BI), Harris-Benedict Equation (HBE), and Mifflin-St. Jeor Equation (MSJ) that carry easier applicability and lower cost. To determine which of the three alternative methods for BEE estimation (HBE, BI and MSJ) would provide most reliable BEE estimation in LT recipients. Prospective cross-sectional study including dyslipidemic LT recipients in follow-up at a 735-bed tertiary referral university hospital. Comparisons of BEE measured through IC to BEE estimated through each of the three alternative methods (HBE, BI and MSJ) were performed using Bland-Altman method and Wilcoxon Rank Sum test. Forty-five patients were included, aged 58±10 years. BEE measured using IC was 1664±319 kcal for males, and 1409±221 kcal for females. Average difference between BEE measured by IC (1534±300 kcal) and BI (1584±377 kcal) was +50 kcal (p=0.0384). Average difference between the BEE measured using IC (1534±300 kcal) and MSJ (1479.6±375 kcal) was -55 kcal (p=0.16). Average difference between BEE values measured by IC (1534±300 kcal) and HBE (1521±283 kcal) was -13 kcal (p=0.326). Difference between BEE estimated through IC and HBE was less than 100 kcal for 39 of all 43patients. Among the three alternative methods, HBE was the most reliable for estimating BEE in LT recipients. Estimativa confiável do metabolismo basal em pacientes transplantados de fígado é necessária para adaptar os requerimentos energéticos, melhorar o estado nutricional e prevenir ganho de peso. Calorimetria indireta (CI) é o padrão-ouro para a medição do metabolismo basal. No entanto, ele pode ser estimado utilizando-se métodos alternativos, incluindo a bioimpedância (BI), a Equação de Harris-Benedict (EHB), e também a Equação de Mifflin-St. Jeor (MSJ). Esses métodos alternativos possuem aplicabilidade mais fácil e custo inferior quando comparados à CI. Determinar qual dos três métodos alternativos para a estimativa do metabolismo basal (EHB, BI e MSJ) seria o mais confiável em pacientes transplantados de fígado. Foi realizado estudo transversal prospectivo incluindo pacientes transplantados de fígado com dislipidemia, em acompanhamento ambulatorial. Comparações dos valores calculados de metabolismo basal via CI aos valores estimados por cada um dos três métodos alternativos (EHB, BI e MSJ) foram realizadas utilizando o de Bland-Altman e o teste de Wilcoxon-Mann-Whitney. Quarenta e cinco pacientes foram incluídos com idade 58±10 anos. O metabolismo basal medido via CI foi 1664±319 kcal para pacientes do gênero masculino, e 1409±221 kcal para o feminino. A diferença média entre a taxa de metabolismo basal aferida por CI (1534±300 kcal) e estimada por BI (1584±377 kcal) foi +50 kcal (p=0.0384). A diferença média entre a taxa de metabolismo basal aferida via CI (1534±300 kcal) e estimada por MSJ (1479.6±375 kcal) foi -55 kcal (p=0.16). A diferença média entre os valores de taxa de metabolismo basal medidos via CI (1534±300 kcal) e estimados por EHB (1521±283 kcal) foi -13 kcal (p=0.326). Além disso, a diferença entre a taxa de metabolismo basal estimada via CI e a aferida por EHB foi menor que 100 kcal para 39 de todos os 43 pacientes avaliados. A EHB foi o mais confiável dos três métodos de estimativa da taxa de metabolismo basal em pacientes transplantados de fígado em acompanhamento ambulatorial.

  17. Constant light affects retinal dopamine levels and blocks deprivation myopia but not lens-induced refractive errors in chickens.

    PubMed

    Bartmann, M; Schaeffel, F; Hagel, G; Zrenner, E

    1994-01-01

    Chickens were raised with either translucent occluders or lenses, both under normal light cycles (12-h light/12-h dark) and in constant light (CL). Under normal light cycles, eyes with occluders became very myopic, and eyes with lenses became either relatively hyperopic (positive lenses) or myopic (negative lenses). After the treatment, retinal dopamine (DA), DOPAC, and serotonin levels were measured by high-pressure liquid chromatography (HPLC-EC). A significant drop in daytime retinal DOPAC (-20%) was observed after 1 week of deprivation, and in both DOPAC (-40%) and DA (-30%) after 2 weeks of deprivation. No changes in retinal serotonin levels were found. Retinal DA or DOPAC content remained unchanged after 2 or 4 days of lens wearing even though the lenses had already exerted their maximal effect on axial eye growth. When the chickens were raised in CL, development of deprivation myopia was reduced (8 days CL) or entirely blocked (13 days CL). Lens-induced changes in eye growth were not different after either 6 or 11 days in CL, compared to animals raised in a normal light cycle. Thirteen days of CL resulted in a dramatic reduction of DA and DOPAC levels, but serotonin levels were also lowered. The results suggest that lens-induced changes in refraction may not be dependent on dopaminergic pathways whereas deprivation myopia requires normal diurnal DA rhythms to develop.

  18. Effects of DA-6034 on aqueous tear fluid secretion and conjunctival goblet cell proliferation.

    PubMed

    Choi, Seul Min; Lee, Yeong Geon; Seo, Mi Jung; Kang, Kyung Koo; Ahn, Byoung Ok; Yoo, Moohi

    2009-06-01

    This study was conducted to evaluate the effect of DA-6034, a potent secretagogue, on aqueous tear fluid secretion and its quality in normal rabbit. We also evaluated, in animal models of experimentally induced dry eye disease, its effectiveness over time to stimulate aqueous tear production by ocular ferning test and goblet cell proliferation. Aqueous tear production, total protein levels, and glycoprotein levels in normal rabbits were evaluated after topical application of DA-6034 (0.3, 1, and 3%). Moreover, time course aqueous tear volume measurement and ocular ferning test in tear fluid were performed in dry eyes of rabbits that had been given 1% atropine sulfate, topically. Altogether, tear fluid production and conjunctival goblet cell numbers were measured in dry eyes of mice that had been given topical scopolamine. Topical application of DA-6034 (0.3, 1, and 3%) significantly increased (P < 0.05) aqueous tear production in a concentration-dependent manner in normal rabbits. There was no change in total protein levels while glycoprotein levels were significantly increased (P < 0.05) at 3% DA-6034. The increase in aqueous tear fluid was significant (P < 0.05) and lasted for 2 h post-instillation in dry eyes of rabbits that had been given 1% atropine sulfate; 10-day repeated instillation of the drug in this model resulted in large and homogeneous fern-like tear patterns. In a mouse model, DA-6034 given as a 3% eyedrop solution significantly increased (P < 0.05) tear fluid production and conjunctival goblet cell number. These results suggest that DA-6034 accelerates not only tear secretion but also mucin production and may be a potential therapeutic agent for the treatment of dry eye disease.

  19. Monitoring Domoic Acid production by Solid Phase Adsorption Toxin Tracking off the Santa Cruz Municipal Warf, Santa Cruz, California

    NASA Astrophysics Data System (ADS)

    Nolan, M.; Ziccarelli, L.; Kudela, R. M.

    2013-12-01

    Certain species of the diatom genus Pseudo-nitzschia are producers of the neurotoxin, domoic acid (DA). DA is known to cause amnesic shellfish poisoning also known as domoic acid poisoning, which can lead to permanent brain damage in humans and marine mammals. DA accumulates at higher trophic levels, generally due to consumption of toxic cells or through trophic transfer, and can potentially cause death of both humans and marine wildlife. The Santa Cruz Municipal Warf experiences periodic rises in DA concentrations, which can reach toxic levels in shellfish, fish, and other marine organisms. While these increases in toxicity often occur during Pseudo-nitzschia blooms, several periods of elevated DA have occurred when diatom abundance is restricted and/or dominated by non-toxic species, and there is increasing evidence that DA dissolved in seawater may be prevalent. One theory suggests that senescent or dead Pseudo-nitzschia cells sink to the benthos while retaining their toxin and are buried in sediment following the death of a bloom. Therefore, DA may accumulate in the benthos, where it is eventually released during storms or wave and tide conditions that disturb the sediment. We sampled DA in situ using Solid Phase Adsorption Toxin Tracking (SPATT) bags SPATT uses a synthetic resin to capture dissolved DA, allowing for the determination of integrated DA concentrations at known time intervals. The alternative method is mussel biotoxin monitoring, but it is less accurate due to uncertainties in the time of DA accumulation within the mussel, and the lack of uptake of dissolved DA by the mussel. We deployed and collected SPATT off the Santa Cruz Municipal Wharf at multiple depths beginning in February 2013. We expect to see increasing DA following the death of a harmful algal bloom. Under pre-bloom conditions, little to no DA has been detected in mussels or surface SPATT, but DA from SPATT is frequently observed at depth, suggesting that the sediment is exposed to (or acts as a reservoir for) DA, and that benthic organisms are chronically exposed to DA.

  20. Autoadjusting-CPAP effect on serum Leptin concentrations in Obstructive Sleep Apnoea patients

    PubMed Central

    Drummond, Marta; Winck, João C; Guimarães, João T; Santos, Ana C; Almeida, João; Marques, José A

    2008-01-01

    Background Leptin is an hormone that regulates body weight. Studies have shown increasing leptin concentrations according to body mass index (BMI) and intermittent hypoxia. Our aim is to evaluate the basal leptin levels in OSA patients and its possible relation to OSA severity, independently of confounders and investigate the Autoadjusting-CPAP effect on leptin values. Methods In ninety eight male patients with moderate to severe OSA leptin serum levels were evaluated before therapy, 9 days and 6 months after therapy. Results In this group mean age was 55.3 years, mean BMI was 33.2 Kg/m2 and mean Apnoea- Hypopnea Index (AHI) was 51.7/h. Mean basal serum leptin value was 12.1 ug/L. Univariate analysis showed a significant correlation between serum leptin values and BMI (R = 0.68; p < 0.001), waist-hip ratio (R = 0.283; p = 0.004) and AHI (R = 0.198; p = 0.048); in stepwise multiple regression analysis only BMI (p < 0.001) was a predictor of serum leptin values. One week after therapy, mean leptin serum level decreased to 11.0 ug/L and 6 months after it was 11.4 ug/L. (p = 0.56 and p = 0.387, respectively) Conclusion Baseline leptin serum levels positively correlate with BMI, fat distributioand OSA severity. BMI is the only predictor of basal leptin levels. Treatment with Autoadjusting-CPAP has a small effect on leptin levels. PMID:18828917

  1. Sexual odor preference and dopamine release in the nucleus accumbens by estrous olfactory cues in sexually naïve and experienced male rats.

    PubMed

    Fujiwara, Masaya; Chiba, Atsuhiko

    2018-03-01

    Sexual behavior is a natural reward that activates mesolimbic dopaminergic system. Microdialysis studies have shown that extracellular level of dopamine (DA) in the nucleus accumbens (NAcc) significantly increases during copulation in male rats. The NAcc DA level is also known to be increased during the presentation of a sexually receptive female before mating. This rise in DA was probably associated with sexual motivation elicited by incentive stimuli from the receptive female. These microdialysis studies, however, did not thoroughly investigated if olfactory stimuli from estrous females could significantly increase the extracellular DA in the NAcc of male rats. The present study was designed to examine systematically the relationship between the expression of preference for the olfactory stimuli from estrous females and the effects of these stimuli on the extracellular DA levels in the NAcc measured by in vivo microdialysis in male Long-Evans (LE) rats. We used two types of olfactory stimuli, either airborne odors (volatile stimuli) or soiled bedding (volatile plus nonvolatile stimuli). The sexually experienced male rats, which experienced six ejaculations, significantly preferred both of these olfactory stimuli from estrous females as opposed to males. Exposure to these female olfactory stimuli gradually increased extracellular DA in the NAcc, which reached significantly higher level above baseline during the period following the removal of the stimuli although not during the 15-min stimulus presentation period. The sexually naïve male rats, on the other hand, showed neither preference for olfactory stimuli from estrous females nor increase in the NAcc DA after exposure to these stimuli. These data suggest that in male LE rats olfactory stimuli from estrous females in and of themselves can be conditional cues that induce both incentive motivation and a significant increase in the NAcc DA probably as a result of being associated with sexual reward through copulatory experience. Copyright © 2017. Published by Elsevier Inc.

  2. Suppression of gastrin release and gastric secretion by gastric inhibitory polypeptide (GIP) and vasoactive intestinal polypeptide (VIP).

    PubMed Central

    Villar, H V; Fender, H R; Rayford, P L; Bloom, S R; Ramus, N I; Thompson, J C

    1976-01-01

    Five dogs prepared with Heidenhain pouches received infusions of saline, GIP and VIP before and after a standard meat meal. Blood samples were obtained under basal conditions and at subsequent intervals for measurement of gastrin, insulin, GIP and VIP by radioimmunoassay. GIP and VIP infusions had no effect on basal levels of gastrin. GIP and VIP (in common with secretin and glucagon) were found to suppress food-stimulated release of gastrin and gastrin-stimulated acid secretion from the Heidenhain pouch. Insulin levels were significantly elevated during GIP and VIP infusions. Food released GIP (and perhaps VIP. PMID:938120

  3. Is applicable thermodynamics of negative temperature for living organisms?

    NASA Astrophysics Data System (ADS)

    Atanasov, Atanas Todorov

    2017-11-01

    During organismal development the moment of sexual maturity can be characterizes by nearly maximum basal metabolic rate and body mass. Once the living organism reaches extreme values of the mass and the basal metabolic rate, it reaches near equilibrium thermodynamic steady state physiological level with maximum organismal complexity. Such thermodynamic systems that reach equilibrium steady state level at maximum mass-energy characteristics can be regarded from the prospective of thermodynamics of negative temperature. In these systems the increase of the internal and free energy is accompanied with decrease of the entropy. In our study we show the possibility the living organisms to regard as thermodynamic system with negative temperature

  4. Effect of perinatal asphyxia and carbamazepine treatment on cortical dopamine and DOPAC levels.

    PubMed

    López-Pérez, Silvia J; Morales-Villagrán, Alberto; Medina-Ceja, Laura

    2015-02-13

    One of the most important manifestations of perinatal asphyxia is the occurrence of seizures, which are treated with antiepileptic drugs, such as carbamazepine. These early seizures, combined with pharmacological treatments, may influence the development of dopaminergic neurotransmission in the frontal cortex. This study aimed to determine the extracellular levels of dopamine and its main metabolite DOPAC in 30-day-old rats that had been asphyxiated for 45 min in a low (8%) oxygen chamber at a perinatal age and treated with daily doses of carbamazepine. Quantifications were performed using microdialysis coupled to a high-performance liquid chromatography (HPLC) system in basal conditions and following the use of the chemical stimulus. Significant decreases in basal and stimulated extracellular dopamine and DOPAC content were observed in the frontal cortex of the asphyxiated group, and these decreases were partially recovered in the animals administered daily doses of carbamazepine. Greater basal dopamine concentrations were also observed as an independent effect of carbamazepine. Perinatal asphyxia plus carbamazepine affects extracellular levels of dopamine and DOPAC in the frontal cortex and stimulated the release of dopamine, which provides evidence for the altered availability of dopamine in cortical brain areas during brain development.

  5. [Effect of acute hypoxia on the intensity of free radical processes in the basal nuclei of the brain, and the rat behaviour in the open field test under conditions of altered photoperiod].

    PubMed

    Sopova, I Iu; Zamorskiĭ, I I

    2011-03-01

    The effect of acute hypoxia on the intensity of free radical processes in the basal nuclei (the nucleus caudatus, globus pallidus. nucleus accumbens. amygdaloid complex) of the brain, and the rat behaviour in the open field test has been studied under conditions of altered photoperiod. It has been shown that constant darkness levels the effect of acute hypoxia on the intensity of lipid peroxidation, preserves the activity of superoxide dismutase and catalase at a higher level, lowers the activity of glutathione peroxidase. Under light, the sensitivity of basal nuclei neurons to acute hypoxia is enhanced, the latter being reflected in intensification of lipid peroxidation at the expense of increased formation of dien conjugates. The activity of catalase at that considerably exceeds the level of even intact rats in all the structures. It has been established that an altered photoperiod modulates the effect of acute hypoxia on the parameters of rat's activity in the open field, the character of their change depending on the nature of a photophase change.

  6. Sarizotan, a serotonin 5-HT1A receptor agonist and dopamine receptor ligand. 1. Neurochemical profile.

    PubMed

    Bartoszyk, G D; Van Amsterdam, C; Greiner, H E; Rautenberg, W; Russ, H; Seyfried, C A

    2004-02-01

    Sarizotan exhibited high affinities only to serotonin 5-HT1A receptors and dopamine DA D4>D3>D2 receptors with the profile of a 5-HT1A agonist and DA antagonist demonstrated by the inhibition of cAMP-stimulation and guinea pig ileum contraction, decreased accumulation of the 5-HT precursor 5-hydroxytryptophan and increased levels of 5-HT metabolites, increased accumulation of DA precursor dihydroxyphenylalanine (DOPA) and the reduced levels of DA metabolites in intact rats. However, sarizotan at higher doses decreased DA precursor accumulation in reserpinized rats and induced contralateral rotational behavior in unilaterally substantia nigra lesioned rats, indicating some intrinsic dopaminergic activity; at D2 receptors sarizotan may act as a partial agonist, depending on the dopaminergic impulse flow. Sarizotan represents a new approach for the treatment of extrapyramidal motor complications such as l-DOPA-induced dyskinesia in Parkinson's disease.

  7. Soft-food diet induces oxidative stress in the rat brain.

    PubMed

    Yoshino, Fumihiko; Yoshida, Ayaka; Hori, Norio; Ono, Yumie; Kimoto, Katsuhiko; Onozuka, Minoru; Lee, Masaichi Chang-il

    2012-02-02

    Decreased dopamine (DA) release in the hippocampus may be caused by dysfunctional mastication, although the mechanisms involved remain unclear. The present study examined the effects of soft- and hard-food diets on oxidative stress in the brain, and the relationship between these effects and hippocampal DA levels. The present study showed that DA release in the hippocampus was decreased in rats fed a soft-food diet. Electron spin resonance studies using the nitroxyl spin probe 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl directly demonstrated a high level of oxidative stress in the rat brain due to soft-food diet feeding. In addition, we confirmed that DA directly react with reactive oxygen species such as hydroxyl radical and superoxide. These observations suggest that soft-food diet feeding enhances oxidative stress, which leads to oxidation and a decrease in the release of DA in the hippocampus of rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Effect of different molecular weight organic components on the increase of microbial growth potential of secondary effluent by ozonation.

    PubMed

    Zhao, Xin; Hu, Hong-Ying; Yu, Tong; Su, Chang; Jiang, Haochi; Liu, Shuming

    2014-11-01

    Ozonation has been widely applied in advanced wastewater treatment. In this study, the effect of ozonation on assimilable organic carbon (AOC) levels in secondary effluents was investigated, and AOC variation of different molecular weight (MW) organic components was analyzed. Although the removal efficiencies were 47%-76% and 94%-100% for UV254 and color at ozone dosage of 10mg/L, dissolved organic carbon (DOC) in secondary effluents was hardly removed by ozonation. The AOC levels increased by 70%-780% at an ozone dosage range of 1-10mg/L. AOC increased significantly in the instantaneous ozone demand phase, and the increase in AOC was correlated to the decrease in UV254 during ozonation. The results of MW distribution showed that, ozonation led to the transformation of larger molecules into smaller ones, but the increase in low MW (<1kDa) fraction did not contribute much to AOC production. The change of high MW (>100kDa and 10-100kDa) fractions itself during ozonation was the main reason for the increase of AOC levels. Furthermore, the oxidation of organic matters with high MWs (>100kDa and 10-100kDa) resulted in more AOC production than those with low MWs (1-10kDa and <1kDa). The results indicated that removing large molecules in secondary effluents could limit the increase of AOC during ozonation. Copyright © 2014. Published by Elsevier B.V.

  9. Altered Effective Connectivity Network of the Basal Ganglia in Low-Grade Hepatic Encephalopathy: A Resting-State fMRI Study with Granger Causality Analysis

    PubMed Central

    Zhong, Jianhui; Zhang, Zhiqiang; Ni, Ling; Jiao, Qing; Liao, Wei; Zheng, Gang; Lu, Guangming

    2013-01-01

    Background The basal ganglia often show abnormal metabolism and intracranial hemodynamics in cirrhotic patients with hepatic encephalopathy (HE). Little is known about how the basal ganglia affect other brain system and is affected by other brain regions in HE. The purpose of this study was to investigate whether the effective connectivity network associated with the basal ganglia is disturbed in HE patients by using resting-state functional magnetic resonance imaging (rs-fMRI). Methodology/Principal Findings Thirty five low-grade HE patients and thirty five age- and gender- matched healthy controls participated in the rs-fMRI scans. The effective connectivity networks associated with the globus pallidus, the primarily affected region within basal ganglia in HE, were characterized by using the Granger causality analysis and compared between HE patients and healthy controls. Pearson correlation analysis was performed between the abnormal effective connectivity and venous blood ammonia levels and neuropsychological performances of all HE patients. Compared with the healthy controls, patients with low-grade HE demonstrated mutually decreased influence between the globus pallidus and the anterior cingulate cortex (ACC), cuneus, bi-directionally increased influence between the globus pallidus and the precuneus, and either decreased or increased influence from and to the globus pallidus in many other frontal, temporal, parietal gyri, and cerebellum. Pearson correlation analyses revealed that the blood ammonia levels in HE patients negatively correlated with effective connectivity from the globus pallidus to ACC, and positively correlated with that from the globus pallidus to precuneus; and the number connectivity test scores in patients negatively correlated with the effective connectivity from the globus pallidus to ACC, and from superior frontal gyrus to globus pallidus. Conclusions/Significance Low-grade HE patients had disrupted effective connectivity network of basal ganglia. Our findings may help to understand the neurophysiological mechanisms underlying the HE. PMID:23326484

  10. Activity of the rat osteocalcin basal promoter in osteoblastic cells is dependent upon homeodomain and CP1 binding motifs.

    PubMed

    Towler, D A; Bennett, C D; Rodan, G A

    1994-05-01

    A detailed analysis of the transcriptional machinery responsible for osteoblast-specific gene expression should provide tools useful for understanding osteoblast commitment and differentiation. We have defined three cis-elements important for basal activity of the rat osteocalcin (OC) promoter, located at about -200 to -180, -170 to -138, and -121 to -64 relative to the transcription initiation site. A motif (TCTGATTGTGT) present in the region between -200 and -170 that binds a multisubunit CP1/NFY/CBF-like CAAT factor complex contributes significantly to high level basal activity and presumably functions as the CAAT box for the rat OC promoter. We show that the region -121 to 32 is sufficient to confer osteoblastic cell type specificity in transient transfection assays of cultured cell lines using luciferase as a reporter. The basal promoter is active in rodent osteoblastic cell lines, but not in rodent fibroblastic or muscle cell lines. Although the rat OC box (-100 to -74) contains a CAAT motif, we could not detect CP1-like CAAT factor binding to this region. In fact, we demonstrate that a Msx-1 (Hox 7.1) homeodomain binding motif (ACTAATTG; bottom strand) in the 3'-end of the rat OC box is necessary for high level activity of the rat OC basal promoter in osteoblastic cells. A nuclear factor that recognizes this motif appears to be present in osteoblastic ROS 17/2.8 cells, which produce OC, but not in fibroblastic ROS 25/1 cells, which fail to express OC. This ROS 17/2.8 nuclear factor also recognizes the A/T-rich DNA cognates of the homeodomain-containing POU family of transcription factors. Taken together, these data suggest that a ubiquitous CP1-like CAAT factor and a cell type-restricted homeodomain containing (Msx or POU family) transcription factor interact with the proximal rat OC promoter to direct appropriate basal OC transcription in osteoblastic cells.

  11. A 10-Year Evaluation of Prescribed Winter Burns in Uneven-Aged Stands of Pinus taeda L. and P. echinata Mill.: Woody Understorey Vegetation Response

    Treesearch

    Michael D. Cain

    1993-01-01

    Abstract.The effects of burning cycles and pine basal area levels were assessed on natural pine regeneration and hardwood development in uneven-aged stands of loblolly andshortleafpines (Pinw taeda L. and P. echinata Mill.). The treatments included an unburned control and prescribed winter burrs at 3-, 6-, and 9-yr intervals. Basal area treatments were 9, 14, 18, and...

  12. Long-Term Citalopram Treatment Alters the Stress Responses of the Cortical Dopamine and Noradrenaline Systems: the Role of Cortical 5-HT1A Receptors

    PubMed Central

    Kaneko, Fumi; Kishikawa, Yuki; Hanada, Yuuki; Yamada, Makiko; Kakuma, Tatsuyuki; Kawahara, Hiroshi; Nishi, Akinori

    2016-01-01

    Background: Cortical dopamine and noradrenaline are involved in the stress response. Citalopram, a selective serotonin reuptake inhibitor, has direct and indirect effects on the serotonergic system. Furthermore, long-term treatment with citalopram affects the dopamine and noradrenaline systems, which could contribute to the therapeutic action of antidepressants. Methods: The effects of long-term treatment with citalopram on the responses of the dopamine and noradrenaline systems in the rat prefrontal cortex to acute handling stress were evaluated using in vivo microdialysis. Results: Acute handling stress increased dopamine and noradrenaline levels in the prefrontal cortex. The dopamine and noradrenaline responses were suppressed by local infusion of a 5-HT1A receptor agonist, 7-(Dipropylamino)-5,6,7,8-tetrahydronaphthalen-1-ol;hydrobromide, into the prefrontal cortex. The dopamine response was abolished by long-term treatment with citalopram, and the abolished dopamine response was reversed by local infusion of a 5-HT1A receptor antagonist, (Z)-but-2-enedioic acid;N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-ylcyclohexanecarboxamide into the prefrontal cortex. On the other hand, long-term treatment with citalopram reduced the basal noradrenaline levels (approximately 40% of the controls), but not the basal dopamine levels. The noradrenaline response was maintained despite the low basal noradrenaline levels. Signaling from the 5-HT1A receptors and α2-adrenoceptors was not involved in the decrease in the basal noradrenaline levels but partially affected the noradrenaline response. Conclusions: Chronic citalopram treatment differentially suppresses the dopamine and noradrenaline systems in the prefrontal cortex, and the dopamine stress response was preferentially controlled by upregulating 5-HT1A receptor signaling. Our findings provide insight into how antidepressants modulate the dopamine and noradrenaline systems to overcome acute stress. PMID:27029212

  13. Single and Combined Effects of Deoxynivalenol Mycotoxin and a Microbial Feed Additive on Lymphocyte DNA Damage and Oxidative Stress in Broiler Chickens

    PubMed Central

    Awad, Wageha A.; Ghareeb, Khaled; Dadak, Agnes; Hess, Michael; Böhm, Josef

    2014-01-01

    The immune and intestinal epithelial cells are particularly sensitive to the toxic effects of deoxynivalenol (DON). The aim of this experiment was to study the effects of DON and/or a microbial feed additive on the DNA damage of blood lymphocytes and on the level of thiobarbituric acid reactive substance (TBARS) as an indicator of lipid peroxidation and oxidative stress in broilers. A total of forty 1-d-old broiler chicks were randomly assigned to 1 of 4 dietary treatments (10 birds per group) for 5 wk. The dietary treatments were 1) basal diet; 2) basal diet contaminated with 10 mg DON/kg feed; 3) basal diet contaminated with 10 mg DON/kg feed and supplemented with 2.5 kg/ton of feed of Mycofix Select; 4) basal diet supplemented with Mycofix Select (2.5 kg/ton of feed). At the end of the feeding trial, blood were collected for measuring the level of lymphocyte DNA damage of blood and the TBARS level was measured in plasma, heart, kidney, duodenum and jejunum. The dietary exposure of DON caused a significant increase (P = 0.001) of DNA damage in blood lymphocytes (31.99±0.89%) as indicated in the tail of comet assay. Interestingly addition of Mycofix Select to DON contaminated diet decreased (P = 0.001) the DNA damage (19.82±1.75%) induced by DON. In order to clarify the involvement of lipid peroxidation in the DNA damage of DON, TBARS levels was measured. A significant increase (P = 0.001) in the level of TBARS (23±2 nmol/mg) was observed in the jejunal tissue suggesting that the lipid peroxidation might be involved in the DNA damage. The results indicate that DON is cytotoxic and genotoxic to the chicken intestinal and immune cells and the feed additive have potential ability to prevent DNA damage induced by DON. PMID:24498242

  14. Hypoxia Induces an Increase in Intracellular Magnesium via Transient Receptor Potential Melastatin 7 (TRPM7) Channels in Rat Hippocampal Neurons in Vitro*

    PubMed Central

    Zhang, Jing; Zhao, Fengbo; Zhao, Yin; Wang, Jing; Pei, Lei; Sun, Ning; Shi, Jing

    2011-01-01

    TRPM7, a divalent cation channel, plays an important role in neurons damaged from cerebral ischemia due to permitting intracellular calcium overload. This study aimed to explore whether magnesium was transported via a TRPM7 channel into the intracellular space of rat hippocampal neurons after 1 h of oxygen-glucose deprivation (OGD) and acute chemical ischemia (CI) by using methods of the Mg2+ fluorescent probe Mag-Fura-2 to detect intracellular magnesium concentration ([Mg2+]i) and flame atomic absorption spectrometry to measure extracellular magnesium concentration ([Mg2+]o). The results showed that the neuronal [Mg2+]i was 1.51-fold higher after 1 h of OGD at a basal level, and the increase of neuronal [Mg2+]i reached a peak after 1 h of OGD and was kept for 60 min with re-oxygenation. Meanwhile, the [Mg2+]o decreased after 1 h of OGD and recovered to the pre-ischemic level within 15 min after re-oxygenation. In the case of CI, the [Mg2+]i peak immediately appeared in hippocampal neurons. This increase of [Mg2+]i declined by removing extracellular magnesium in OGD or CI. Furthermore, by using Gd3+ or 2-aminoethoxydiphenyl borate to inhibit TRPM7 channels, the [Mg2+]i increase, which was induced by OGD or CI, was attenuated without altering the basal level of [Mg2+]i. By silencing TRPM7 with shRNA in hippocampal neurons, it was found that not only was the increase of [Mg2+]i induced by OGD or CI but also the basal levels of [Mg2+]i were attenuated. In contrast, overexpression of TRPM7 in HEK293 cells exaggerated both the basal levels and increased [Mg2+]i after 1 h of OGD/CI. These results suggest that anoxia induced the increase of [Mg2+]i via TRPM7 channels in rat hippocampal neurons. PMID:21487014

  15. Modulating dopamine release by optogenetics in transgenic mice reveals terminal dopaminergic dynamics

    PubMed Central

    Lu, Yao; Driscoll, Nicolette; Ozden, Ilker; Yu, Zeyang; Nurmikko, Arto V.

    2015-01-01

    Abstract. Dopamine (DA) release and uptake dynamics in the nucleus accumbens (NAc) have important implications for neurological diseases and mammalian animal behaviors. We demonstrate here the use of cell-type-specific optogenetic targeting in conjunction with fast-scan cyclic voltammetry applied to brain slices prepared from specifically tailored transgenic mice, which conditionally express channelrhodopsin-2 (ChR2) through dopamine transporter (DAT)-Cre. Terminal dopaminergic dynamics and the direct manipulation of induced DA release level by controlling light intensity, pulse width, and the shape of stimulation waveforms were studied. Effective cell terminal-targeting optogenetic induction of DA release at physiological levels in NAc is demonstrated and discussed. It was found that delivering more light energy by increasing stimulation intensity and length is not the only way to control DA release; the temporal shape of the stimulus waveform at light onset is also critically related to induced DA concentrations. In addition, DA uptake dynamics as well as the recovery of the presynaptic releasable DA pool are studied and modeled. More broadly, our experimental findings provide important further evidence for effectively applying optogenetics to induce neurotransmitter release in the behaviorally relevant region of the brain in a highly cell-type selective context. PMID:26171413

  16. Leptin-induced basal Akt phosphorylation and its implication in exercise-mediated improvement of insulin sensitivity.

    PubMed

    Zheng, Xianjie; Niu, Sen

    2018-01-29

    Physical exercise is an efficient therapeutical tool in the management of insulin resistance (IR) and related metabolic diseases. Leptin, the well-known obesity hormone and the absence of which leads to IR, showed controversial effects on IR as research continues. Thus, in this study, a detailed investigation of the effect of leptin on exercise-mediated improvement of insulin sensitivity and its underlying mechanism was carried out. Using a rat model of chronic or acute swimming exercise training, we found that serum leptin increased 1 h after either acute exercise or the last session of chronic exercise, when impaired insulin action was observed in previous reports. However, chronic exercise reducd basal serum leptin levels and promoted insulin sensitivity compared with sedentary controls or rats subjected to one bout of aerobic exercise. Our animal results indicated the potential linkage between leptin and insulin sensitivity, which is further investigated in the skeletal muscle L6 cells. Leptin treatment in L6 cells promoted the basal levels of insulin signaling as well as glucose uptake, while blocking JAK2 signaling with either pharmacological intervention (JAK2 inhibitor AG490) or genetic manipulation (siRNA knockdown) decreased the basal levels of insulin signaling. Furthermore, leptin treatment inhibited insulin-stimulated insulin signaling and glucose uptake, while blocking JAK2 signaling restored leptin-attenuated insulin sensitivity. Taken together, our results demonstrated that reduced serum leptin, at least in part, contributes to exercise-mediated improvement of insulin sensitivity, indicating JAK2 as a potent therapeutical target of insulin resistance. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Enhanced basal activation of mitogen-activated protein kinases in adipocytes from type 2 diabetes: potential role of p38 in the downregulation of GLUT4 expression.

    PubMed

    Carlson, Christian J; Koterski, Sandra; Sciotti, Richard J; Poccard, German Braillard; Rondinone, Cristina M

    2003-03-01

    Serine and threonine kinases may contribute to insulin resistance and the development of type 2 diabetes. To test the potential for members of the mitogen-activated protein (MAP) kinase family to contribute to type 2 diabetes, we examined basal and insulin-stimulated Erk 1/2, JNK, and p38 phosphorylation in adipocytes isolated from healthy and type 2 diabetic individuals. Maximal insulin stimulation increased the phosphorylation of Erk 1/2 and JNK in healthy control subjects but not type 2 diabetic patients. Insulin stimulation did not increase p38 phosphorylation in either healthy control subjects or type 2 diabetic patients. In type 2 diabetic adipocytes, the basal phosphorylation status of these MAP kinases was significantly elevated and was associated with decreased IRS-1 and GLUT4 in these fat cells. To determine whether MAP kinases were involved in the downregulation of IRS-1 and GLUT4 protein levels, selective inhibitors were used to inhibit these MAP kinases in 3T3-L1 adipocytes treated chronically with insulin. Inhibition of Erk 1/2, JNK, or p38 had no effect on insulin-stimulated reduction of IRS-1 protein levels. However, inhibition of the p38 pathway prevented the insulin-stimulated decrease in GLUT4 protein levels. In summary, type 2 diabetes is associated with an increased basal activation of the MAP kinase family. Furthermore, upregulation of the p38 pathway might contribute to the loss of GLUT4 expression observed in adipose tissue from type 2 diabetic patients.

  18. Ground-Water Availability from the Hawi Aquifer in the Kohala Area, Hawaii

    USGS Publications Warehouse

    Underwood, Mark R.; Meyer, William; Souza, William R.

    1995-01-01

    A ground-water study consisting of test-well drilling, aquifer tests, and numerical simulation was done to investigate ground-water availability in the basal part of the Hawi aquifer between the western drainage divide of Pololu Valley and Upolu Point in Kohala, Hawaii. The test-well drilling provided information on geology, water levels, water quality, vertical extent of the freshwater, and the thickness of the freshwater-saltwater transition zone in that aquifer. A total of 12 test wells were drilled at eight locations. Aquifer tests were done at five locations to estimate the hydraulic conductivity of the aquifer. Using information on the distribution of recharge, vertical extent of freshwater, hydraulic conductivity, and geometry of the basal aquifer, a numerical model was used to simulate the movement of water into, through, and out of the basal aquifer, and the effect of additional pumping on the water levels in the aquifer. Results of the modeling indicate that ground-water withdrawal of 20 million gallons per day above the existing withdrawal of 0.6 million gallons per day from the basal aquifer is hydrologically feasible, but that spacing, depth, and pumping rates of individual wells are important. If pumping is concentrated, the likelihood of saltwater intrusion is increased. The additional withdrawal of 20 million gallons per day would result in a reduction of ground-water discharge to the ocean by an amount equal to pumpage. Although model-calculated declines in water-level outside the area of pumping are small, pumping could cause some reduction of streamflow near the mouth of Pololu Stream.

  19. Neighborhood linking social capital as a predictor of drug abuse: A Swedish national cohort study

    PubMed Central

    Sundquist, Jan; Sjöstedt, Cecilia; Winkleby, Marilyn; Li, Xinjun; Kendler, Kenneth S.; Sundquist, Kristina

    2016-01-01

    Aims This study examines the association between the incidence of drug abuse (DA) and linking (communal) social capital, a theoretical concept describing the amount of trust between individuals and societal institutions. Methods We present results from an 8-year population-based cohort study that followed all residents in Sweden, aged 15–44, from 2003 through 2010, for a total of 1,700,896 men and 1,642,798 women. Linking social capital was conceptualized as the proportion of people in a geographically defined neighborhood who voted in local government elections. Multilevel logistic regression was used to estimate odds ratios (ORs) and between-neighborhood variance. Results We found robust associations between linking social capital and DA in men and women. For men, the OR for DA in the crude model was 2.11 [95% confidence interval (CI) 2.02–2.21] for those living in neighborhoods with the lowest vs. highest level of social capital. After accounting for neighborhood level deprivation, the OR fell to 1.59 (1.51–1-68). The ORs remained significant after accounting for age, family income, marital status, country of birth, education level, and region of residence, and after further accounting for comorbidities and family history of comorbidities and family history of DA. For women, the OR decreased from 2.15 (2.03–2.27) in the crude model to 1.31 (1.22–1.40) in the final model, adjusted for multiple neighborhood-level, individual-level variables, and family history for DA. Conclusions Our study suggests that low linking social capital may have significant independent effects on DA. PMID:27416013

  20. Neighborhood linking social capital as a predictor of drug abuse: A Swedish national cohort study.

    PubMed

    Sundquist, Jan; Sjöstedt, Cecilia; Winkleby, Marilyn; Li, Xinjun; Kendler, Kenneth S; Sundquist, Kristina

    2016-12-01

    This study examines the association between the incidence of drug abuse (DA) and linking (communal) social capital, a theoretical concept describing the amount of trust between individuals and societal institutions. We present results from an 8-year population-based cohort study that followed all residents in Sweden, aged 15-44, from 2003 through 2010, for a total of 1,700,896 men and 1,642,798 women. Linking social capital was conceptualized as the proportion of people in a geographically defined neighborhood who voted in local government elections. Multilevel logistic regression was used to estimate odds ratios (ORs) and between-neighborhood variance. We found robust associations between linking social capital and DA in men and women. For men, the OR for DA in the crude model was 2.11 [95% confidence interval (CI) 2.02-2.21] for those living in neighborhoods with the lowest vs. highest level of social capital. After accounting for neighborhood level deprivation, the OR fell to 1.59 (1.51-1-68). The ORs remained significant after accounting for age, family income, marital status, country of birth, education level, and region of residence, and after further accounting for comorbidities and family history of comorbidities and family history of DA. For women, the OR decreased from 2.15 (2.03-2.27) in the crude model to 1.31 (1.22-1.40) in the final model, adjusted for multiple neighborhood-level, individual-level variables, and family history for DA. Our study suggests that low linking social capital may have significant independent effects on DA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of partial supplementation of sun-dried Azolla as a protein source on the immunity and antioxidant status of commercial broilers.

    PubMed

    Chichilichi, Biswal; Mohanty, G P; Mishra, S K; Pradhan, C R; Behura, N C; Das, A; Behera, K

    2015-09-01

    The present study was conducted to evaluate the effect of partial supplementation of sun-dried Azolla as a protein source on the immunity of commercial broilers in coastal Odisha. A 180 day-old broiler chicks were distributed in six dietary treatments viz. C1: Basal diet, C2: Basal diet + enzyme, T1: Basal diet +5% protein from Azolla, T2: Basal diet + 5% protein from Azolla + enzyme, T3: Basal diet +10% protein from Azolla, and T4: Basal diet + 10% protein from Azolla + enzyme. Cutaneous basophilc hypersensitivity (CBH) and humoral immunity response were determined at the 38(th) day of age. At 42(nd) day, the weight of lymphoid organs, an antioxidant enzyme, and lipid peroxidation activity were determined. The CBH response did not differ significantly among the treated groups, but the sheep red blood cells response was significantly higher in T4. The weight of lymphoid organs or immune organs of all the treated groups did not differ significantly (p>0.05). The erythrocyte catalase level of T4 group was found to be significantly higher than rest of the treated groups except T3. It may be concluded that supplementation of Azolla at 10% of dietary protein requirement along with enzyme supplementation in an isonitrogenous diet showed a better immune response in broilers.

  2. Effect of partial supplementation of sun-dried Azolla as a protein source on the immunity and antioxidant status of commercial broilers

    PubMed Central

    Chichilichi, Biswal; Mohanty, G. P.; Mishra, S. K.; Pradhan, C. R.; Behura, N. C.; Das, A.; Behera, K.

    2015-01-01

    Aim: The present study was conducted to evaluate the effect of partial supplementation of sun-dried Azolla as a protein source on the immunity of commercial broilers in coastal Odisha. Materials and Methods: A 180 day-old broiler chicks were distributed in six dietary treatments viz. C1: Basal diet, C2: Basal diet + enzyme, T1: Basal diet +5% protein from Azolla, T2: Basal diet + 5% protein from Azolla + enzyme, T3: Basal diet +10% protein from Azolla, and T4: Basal diet + 10% protein from Azolla + enzyme. Cutaneous basophilc hypersensitivity (CBH) and humoral immunity response were determined at the 38th day of age. At 42nd day, the weight of lymphoid organs, an antioxidant enzyme, and lipid peroxidation activity were determined. Results: The CBH response did not differ significantly among the treated groups, but the sheep red blood cells response was significantly higher in T4. The weight of lymphoid organs or immune organs of all the treated groups did not differ significantly (p>0.05). The erythrocyte catalase level of T4 group was found to be significantly higher than rest of the treated groups except T3. Conclusion: It may be concluded that supplementation of Azolla at 10% of dietary protein requirement along with enzyme supplementation in an isonitrogenous diet showed a better immune response in broilers. PMID:27047208

  3. A Small Molecule Inverse Agonist for the Human Thyroid-Stimulating Hormone Receptor

    PubMed Central

    Neumann, Susanne; Huang, Wenwei; Eliseeva, Elena; Titus, Steve; Thomas, Craig J.; Gershengorn, Marvin C.

    2010-01-01

    Small molecule inverse agonists for the TSH receptor (TSHR) may be used as probes of the role of basal (or agonist-independent or constitutive) signaling and may have therapeutic potential as orally active drugs to inhibit basal signaling in patients with thyroid cancer and in some patients with hyperthyroidism. We describe the first small-molecule ligand [1;2-(3-((2,6-dimethylphenoxy)methyl)-4-methoxyphenyl)-3-(furan-2-ylmethyl)-2,3-dihydroquinazolin-4(1H)-one] that exhibits inverse agonist properties at TSHR. 1 inhibits basal and TSH-stimulated signaling, measured as cAMP production, by TSHRs in HEK-EM 293 cells stably expressing wild-type TSHRs; the antagonism of TSH-mediated signaling is competitive. 1 also inhibits basal signaling by wild-type TSHRs, and four constitutively active mutants of TSHR expressed transiently in HEK-EM 293 cells. 1 was active under more physiologically relevant conditions in primary cultures of human thyrocytes expressing endogenous TSHRs where it inhibited basal levels of mRNA transcripts for thyroglobulin, thyroperoxidase, sodium iodide symporter, and TSHR. These data serve as proof of principle that small, drug-like molecules can inhibit basal signaling by TSHR. We suggest that this small molecule is a lead compound for the development of higher-potency inverse agonists that can be used as probes of TSHR biology with therapeutic potential. PMID:20427476

  4. Task-phase-specific dynamics of basal forebrain neuronal ensembles

    PubMed Central

    Tingley, David; Alexander, Andrew S.; Kolbu, Sean; de Sa, Virginia R.; Chiba, Andrea A.; Nitz, Douglas A.

    2014-01-01

    Cortically projecting basal forebrain neurons play a critical role in learning and attention, and their degeneration accompanies age-related impairments in cognition. Despite the impressive anatomical and cell-type complexity of this system, currently available data suggest that basal forebrain neurons lack complexity in their response fields, with activity primarily reflecting only macro-level brain states such as sleep and wake, onset of relevant stimuli and/or reward obtainment. The current study examined the spiking activity of basal forebrain neuron populations across multiple phases of a selective attention task, addressing, in particular, the issue of complexity in ensemble firing patterns across time. Clustering techniques applied to the full population revealed a large number of distinct categories of task-phase-specific activity patterns. Unique population firing-rate vectors defined each task phase and most categories of task-phase-specific firing had counterparts with opposing firing patterns. An analogous set of task-phase-specific firing patterns was also observed in a population of posterior parietal cortex neurons. Thus, consistent with the known anatomical complexity, basal forebrain population dynamics are capable of differentially modulating their cortical targets according to the unique sets of environmental stimuli, motor requirements, and cognitive processes associated with different task phases. PMID:25309352

  5. LIPG signaling promotes tumor initiation and metastasis of human basal-like triple-negative breast cancer

    PubMed Central

    Lo, Pang-Kuo; Yao, Yuan; Lee, Ji Shin; Zhang, Yongshu; Huang, Weiliang; Kane, Maureen A

    2018-01-01

    Current understanding of aggressive human basal-like triple-negative breast cancer (TNBC) remains incomplete. In this study, we show endothelial lipase (LIPG) is aberrantly overexpressed in basal-like TNBCs. We demonstrate that LIPG is required for in vivo tumorigenicity and metastasis of TNBC cells. LIPG possesses a lipase-dependent function that supports cancer cell proliferation and a lipase-independent function that promotes invasiveness, stemness and basal/epithelial-mesenchymal transition features of TNBC. Mechanistically, LIPG executes its oncogenic function through its involvement in interferon-related DTX3L-ISG15 signaling, which regulates protein function and stability by ISGylation. We show that DTX3L, an E3-ubiquitin ligase, is required for maintaining LIPG protein levels in TNBC cells by inhibiting proteasome-mediated LIPG degradation. Inactivation of LIPG impairs DTX3L-ISG15 signaling, indicating the existence of DTX3L-LIPG-ISG15 signaling. We further reveal LIPG-ISG15 signaling is lipase-independent. We demonstrate that DTX3L-LIPG-ISG15 signaling is essential for malignancies of TNBC cells. Targeting this pathway provides a novel strategy for basal-like TNBC therapy. PMID:29350614

  6. A role for tight junction-associated MARVEL proteins in larval sea lamprey (Petromyzon marinus) osmoregulation.

    PubMed

    Kolosov, Dennis; Bui, Phuong; Donini, Andrew; Wilkie, Mike P; Kelly, Scott P

    2017-10-15

    This study reports on tight junction-associated MARVEL proteins of larval sea lamprey ( Petromyzon marinus ) and their potential role in ammocoete osmoregulation. Two occludin isoforms (designated Ocln and Ocln-a) and a tricellulin (Tric) were identified. Transcripts encoding ocln , ocln-a and tric were broadly expressed in larval lamprey, with the greatest abundance of ocln in the gut, liver and kidney, ocln-a in the gill and skin, and tric in the kidney. Ocln and Ocln-a resolved as ∼63 kDa and ∼35 kDa MW proteins, respectively, while Tric resolved as a ∼50 kDa protein. Ocln immunolocalized to the gill vasculature and in gill mucous cells while Ocln-a localized to the gill pouch and gill epithelium. Both Ocln and Ocln-a localized in the nephron, the epidermis and the luminal side of the gut. In branchial tissue, Tric exhibited punctate localization, consistent with its presence at regions of tricellular contact. Following ion-poor water (IPW) acclimation of ammocoetes, serum [Na + ] and [Cl - ] decreased, but not [Ca 2+ ], and carcass moisture content increased. In association, Ocln abundance increased in the skin and kidney, but reduced in the gill of IPW-acclimated ammocoetes while Ocln-a abundance reduced in the kidney only. Tric abundance increased in the gill. Region-specific alterations in ocln , ocln-a and tric mRNA abundance were also observed in the gut. Data support a role for Ocln, Ocln-a and Tric in the osmoregulatory strategies of a basal vertebrate. © 2017. Published by The Company of Biologists Ltd.

  7. Effect of acute swim stress on plasma corticosterone and brain monoamine levels in bidirectionally selected DxH recombinant inbred mouse strains differing in fear recall and extinction.

    PubMed

    Browne, Caroline A; Hanke, Joachim; Rose, Claudia; Walsh, Irene; Foley, Tara; Clarke, Gerard; Schwegler, Herbert; Cryan, John F; Yilmazer-Hanke, Deniz

    2014-12-01

    Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites 3,4-dihydroxyphenyacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 min after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or post-traumatic stress disorder.

  8. Effect of Acute Swim Stress on Plasma Corticosterone and Brain Monoamine Levels in Bidirectionally Selected DxH Recombinant Inbred Mouse Strains Differing in Fear Recall and Extinction

    PubMed Central

    Browne, Caroline A.; Hanke, Joachim; Rose, Claudia; Walsh, Irene; Foley, Tara; Clarke, Gerard; Schwegler, Herbert; Cryan, John F.; Yilmazer-Hanke, Deniz

    2015-01-01

    Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus, and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 minutes after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or posttraumatic stress disorder. PMID:25117886

  9. Dopamine inhibits somatolactin gene expression in tilapia pituitary cells through the dopamine D2 receptors.

    PubMed

    Jiang, Quan; Lian, Anji; He, Qi

    2016-07-01

    Dopamine (DA) is an important neurotransmitter in the central nervous system of vertebrates and possesses key hypophysiotropic functions. Early studies have shown that DA has a potent inhibitory effect on somatolactin (SL) release in fish. However, the mechanisms responsible for DA inhibition of SL gene expression are largely unknown. To this end, tilapia DA type-1 (D1) and type-2 (D2) receptor transcripts were examined in the neurointermediate lobe (NIL) of the tilapia pituitary by real-time PCR. In tilapia, DA not only was effective in inhibiting SL mRNA levels in vivo and in vitro, but also could abolish pituitary adenylate cyclase-activating polypeptide (PACAP)- and salmon gonadotropin-releasing hormone (sGnRH)-stimulated SL gene expression at the pituitary level. In parallel studies, the specific D2 receptor agonists quinpirole and bromocriptine could mimic the DA-inhibited SL gene expression. Furthermore, the D2 receptor antagonists domperidone and (-)-sulpiride could abolish the SL response to DA or the D2 agonist quinpirole, whereas D1 receptor antagonists SCH23390 and SKF83566 were not effective in this respect. In primary cultures of tilapia NIL cells, D2 agonist quinpirole-inhibited cAMP production could be blocked by co-treatment with the D2 antagonist domperidone and the ability of forskolin to increase cAMP production was also inhibited by quinpirole. Using a pharmacological approach, the AC/cAMP pathway was shown to be involved in quinpirole-inhibited SL mRNA expression. These results provide evidence that DA can directly inhibit SL gene expression at the tilapia pituitary level via D2 receptor through the AC/cAMP-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Plasma Concentration of Prolactin, Testosterone Might Be Associated with Brain Response to Visual Erotic Stimuli in Healthy Heterosexual Males

    PubMed Central

    Seo, Younghee; Kim, Ji-Woong; Choi, Jeewook

    2009-01-01

    Objective Many studies have showed that excess or lack of sexual hormones, such as prolactin and testosterone, induced the sexual dysfunction in humans. Little, however, is known about the role of sexual hormones showing normal range in, especially, the basal state unexposed to any sexual stimulation. We hypothesized sexual hormones in the basal state may affect sexual behavior. Methods We investigated the association of the sexual hormones level in the basal hormonal state before visual sexual stimulation with the sexual response-related brain activity during the stimulation. Twelve heterosexual men were recorded the functional MRI signals of their brain activation elicited by passive viewing erotic (ERO), happy-faced (HA) couple, food and nature pictures. Both plasma prolacitn and testosterone concentrations were measured before functional MR scanning. A voxel wise regression analyses were performed to investigate the relationship between the concentration of sexual hormones in basal state and brain activity elicited by ERO minus HA, not food minus nature, contrast. Results The plasma concentration of prolactin in basal state showed positive association with the activity of the brain involving cognitive component of sexual behavior including the left middle frontal gyrus, paracingulate/superior frontal/anterior cingulate gyri, bilateral parietal lobule, right angular, bilateral precuneus and right cerebellum. Testosterone in basal state was positively associated with the brain activity of the bilateral supplementary motor area which related with motivational component of sexual behavior. Conclusion Our results suggested sexual hormones in basal state may have their specific target regions or network associated with sexual response. PMID:20046395

  11. Plasma concentration of prolactin, testosterone might be associated with brain response to visual erotic stimuli in healthy heterosexual males.

    PubMed

    Seo, Younghee; Jeong, Bumseok; Kim, Ji-Woong; Choi, Jeewook

    2009-09-01

    Many studies have showed that excess or lack of sexual hormones, such as prolactin and testosterone, induced the sexual dysfunction in humans. Little, however, is known about the role of sexual hormones showing normal range in, especially, the basal state unexposed to any sexual stimulation. We hypothesized sexual hormones in the basal state may affect sexual behavior. We investigated the association of the sexual hormones level in the basal hormonal state before visual sexual stimulation with the sexual response-related brain activity during the stimulation. Twelve heterosexual men were recorded the functional MRI signals of their brain activation elicited by passive viewing erotic (ERO), happy-faced (HA) couple, food and nature pictures. Both plasma prolacitn and testosterone concentrations were measured before functional MR scanning. A voxel wise regression analyses were performed to investigate the relationship between the concentration of sexual hormones in basal state and brain activity elicited by ERO minus HA, not food minus nature, contrast. The plasma concentration of prolactin in basal state showed positive association with the activity of the brain involving cognitive component of sexual behavior including the left middle frontal gyrus, paracingulate/superior frontal/anterior cingulate gyri, bilateral parietal lobule, right angular, bilateral precuneus and right cerebellum. Testosterone in basal state was positively associated with the brain activity of the bilateral supplementary motor area which related with motivational component of sexual behavior. Our results suggested sexual hormones in basal state may have their specific target regions or network associated with sexual response.

  12. Identification of Rice Genes Associated With Enhanced Cold Tolerance by Comparative Transcriptome Analysis With Two Transgenic Rice Plants Overexpressing DaCBF4 or DaCBF7, Isolated From Antarctic Flowering Plant Deschampsia antarctica

    PubMed Central

    Byun, Mi Young; Cui, Li Hua; Lee, Jungeun; Park, Hyun; Lee, Andosung; Kim, Woo Taek; Lee, Hyoungseok

    2018-01-01

    Few plant species can survive in Antarctica, the harshest environment for living organisms. Deschampsia antarctica is the only natural grass species to have adapted to and colonized the maritime Antarctic. To investigate the molecular mechanism of the Antarctic adaptation of this plant, we identified and characterized D. antarctica C-repeat binding factor 4 (DaCBF4), which belongs to monocot CBF group IV. The transcript level of DaCBF4 in D. antarctica was markedly increased by cold and dehydration stress. To assess the roles of DaCBF4 in plants, we generated a DaCBF4-overexpressing transgenic rice plant (Ubi:DaCBF4) and analyzed its abiotic stress response phenotype. Ubi:DaCBF4 displayed enhanced tolerance to cold stress without growth retardation under any condition compared to wild-type plants. Because the cold-specific phenotype of Ubi:DaCBF4 was similar to that of Ubi:DaCBF7 (Byun et al., 2015), we screened for the genes responsible for the improved cold tolerance in rice by selecting differentially regulated genes in both transgenic rice lines. By comparative transcriptome analysis using RNA-seq, we identified 9 and 15 genes under normal and cold-stress conditions, respectively, as putative downstream targets of the two D. antarctica CBFs. Overall, our results suggest that Antarctic hairgrass DaCBF4 mediates the cold-stress response of transgenic rice plants by adjusting the expression levels of a set of stress-responsive genes in transgenic rice plants. Moreover, selected downstream target genes will be useful for genetic engineering to enhance the cold tolerance of cereal plants, including rice. PMID:29774046

  13. Identification of Rice Genes Associated With Enhanced Cold Tolerance by Comparative Transcriptome Analysis With Two Transgenic Rice Plants Overexpressing DaCBF4 or DaCBF7, Isolated From Antarctic Flowering Plant Deschampsia antarctica.

    PubMed

    Byun, Mi Young; Cui, Li Hua; Lee, Jungeun; Park, Hyun; Lee, Andosung; Kim, Woo Taek; Lee, Hyoungseok

    2018-01-01

    Few plant species can survive in Antarctica, the harshest environment for living organisms. Deschampsia antarctica is the only natural grass species to have adapted to and colonized the maritime Antarctic. To investigate the molecular mechanism of the Antarctic adaptation of this plant, we identified and characterized D. antarctica C-repeat binding factor 4 ( DaCBF4 ), which belongs to monocot CBF group IV. The transcript level of DaCBF4 in D. antarctica was markedly increased by cold and dehydration stress. To assess the roles of DaCBF4 in plants, we generated a DaCBF4 -overexpressing transgenic rice plant ( Ubi:DaCBF4 ) and analyzed its abiotic stress response phenotype. Ubi:DaCBF4 displayed enhanced tolerance to cold stress without growth retardation under any condition compared to wild-type plants. Because the cold-specific phenotype of Ubi:DaCBF4 was similar to that of Ubi:DaCBF7 (Byun et al., 2015), we screened for the genes responsible for the improved cold tolerance in rice by selecting differentially regulated genes in both transgenic rice lines. By comparative transcriptome analysis using RNA-seq, we identified 9 and 15 genes under normal and cold-stress conditions, respectively, as putative downstream targets of the two D. antarctica CBFs. Overall, our results suggest that Antarctic hairgrass DaCBF4 mediates the cold-stress response of transgenic rice plants by adjusting the expression levels of a set of stress-responsive genes in transgenic rice plants. Moreover, selected downstream target genes will be useful for genetic engineering to enhance the cold tolerance of cereal plants, including rice.

  14. Cytokine production capacity in depression and anxiety.

    PubMed

    Vogelzangs, N; de Jonge, P; Smit, J H; Bahn, S; Penninx, B W

    2016-05-31

    Recent studies have suggested that immune function may be dysregulated in persons with depressive and anxiety disorders. Few studies examined the expression of cytokines in response to ex vivo stimulation of blood by lipopolysaccharide (LPS) to study the innate production capacity of cytokines in depression and anxiety. To investigate this, baseline data from the Netherlands Study of Depression and Anxiety (NESDA) were used, including persons (18-65 years; 66% women) with current (that is, past month; N=591) or remitted (N=354) DSM-IV depressive or anxiety disorders and healthy controls (N=297). Depressive and anxiety symptoms were measured by means of the Inventory of Depressive Symptomatology (IDS) and the Beck Anxiety Inventory (BAI). Using Multi-Analyte Profiling technology, plasma levels of 13 cytokines were assayed after whole blood stimulation by addition of LPS. Basal plasma levels of C-reactive protein, interleukin-6 and tumor necrosis factor-α were also available. A basal and a LPS summary index were created. Results show that LPS-stimulated inflammation was associated with increased odds of current depressive/anxiety disorders (odds ratio (OR)=1.28, P=0.009), as was the case for basal inflammation (OR=1.28, P=0.001). These associations were no longer significant after adjustment for lifestyle and health (OR=1.13, P=0.21; OR=1.07, P=0.45, respectively). After adjustment for lifestyle and health, interleukin-8 was associated with both remitted (OR=1.25, P=0.02) and current (OR=1.28, P=0.005) disorders. In addition, LPS-stimulated inflammation was associated with more severe depressive (β=0.129, P<0.001) and anxiety (β=0.165, P<0.001) symptoms, as was basal inflammation. Unlike basal inflammation, LPS-stimulated inflammation was still associated with (anxiety) symptom severity after adjustment for lifestyle and health (IDS: interleukin (IL)-8, MCP-1, MMP2; BAI: LPS index, IL-6, IL-8, IL-10, IL-18, MCP-1, MMP2, TNF-β). To conclude, lifestyle and health factors may partly explain higher levels of basal, as well as LPS-stimulated inflammation in persons with depressive and anxiety disorders. However, production capacity of several cytokines was positively associated with severity of depressive and in particular anxiety symptoms, even while taking lifestyle and health factors into account. Elevated IL-8 production capacity in both previously and currently depressed and anxious persons might indicate a genetic vulnerability for these disorders.

  15. SOX2 and PI3K Cooperate to Induce and Stabilize a Squamous-Committed Stem Cell Injury State during Lung Squamous Cell Carcinoma Pathogenesis

    PubMed Central

    Kim, Bo Ram; Van de Laar, Emily; Tarumi, Shintaro; Hasenoeder, Stefan; Wang, Dennis; Virtanen, Carl; Bandarchi, Bizhan; Pham, Nhu An; Lee, Sharon; Keshavjee, Shaf; Tsao, Ming-Sound; Moghal, Nadeem

    2016-01-01

    Although cancers are considered stem cell diseases, mechanisms involving stem cell alterations are poorly understood. Squamous cell carcinoma (SQCC) is the second most common lung cancer, and its pathogenesis appears to hinge on changes in the stem cell behavior of basal cells in the bronchial airways. Basal cells are normally quiescent and differentiate into mucociliary epithelia. Smoking triggers a hyperproliferative response resulting in progressive premalignant epithelial changes ranging from squamous metaplasia to dysplasia. These changes can regress naturally, even with chronic smoking. However, for unknown reasons, dysplasias have higher progression rates than earlier stages. We used primary human tracheobronchial basal cells to investigate how copy number gains in SOX2 and PIK3CA at 3q26-28, which co-occur in dysplasia and are observed in 94% of SQCCs, may promote progression. We find that SOX2 cooperates with PI3K signaling, which is activated by smoking, to initiate the squamous injury response in basal cells. This response involves SOX9 repression, and, accordingly, SOX2 and PI3K signaling levels are high during dysplasia, while SOX9 is not expressed. By contrast, during regeneration of mucociliary epithelia, PI3K signaling is low and basal cells transiently enter a SOX2LoSOX9Hi state, with SOX9 promoting proliferation and preventing squamous differentiation. Transient reduction in SOX2 is necessary for ciliogenesis, although SOX2 expression later rises and drives mucinous differentiation, as SOX9 levels decline. Frequent coamplification of SOX2 and PIK3CA in dysplasia may, thus, promote progression by locking basal cells in a SOX2HiSOX9Lo state with active PI3K signaling, which sustains the squamous injury response while precluding normal mucociliary differentiation. Surprisingly, we find that, although later in invasive carcinoma SOX9 is generally expressed at low levels, its expression is higher in a subset of SQCCs with less squamous identity and worse clinical outcome. We propose that early pathogenesis of most SQCCs involves stabilization of the squamous injury state in stem cells through copy number gains at 3q, with the pro-proliferative activity of SOX9 possibly being exploited in a subset of SQCCs in later stages. PMID:27880766

  16. Inhibition of basal and stimulated release of endothelin-1 from guinea pig tracheal epithelial cells in culture by beta 2-adrenoceptor agonists and cyclic AMP enhancers.

    PubMed

    Yang, Quan; Battistini, Bruno; Pelletier, Stéphane; Sirois, Pierre

    2007-10-01

    The effects of cyclic AMP-related compounds and beta adrenoceptor agonists on the basal and lipopolysaccharide (LPS)-stimulated release of endothelin-1 (ET-1) from guinea-pig tracheal epithelial cells (GPTEpCs) in culture were studied. Forskolin (a potent activator of adenylyl cyclase), 8-bromo-cyclic AMP (a cyclic AMP analogue), salbutamol and salmeterol (two beta 2-adrenoceptor agonists), were used to increase cyclic AMP levels. Cultured GPTEpCs released ET-1 continuously over a 24 h incubation period. The values reached 1,938 +/- 122 pg/mg of total cell proteins after 24 h. LPS (10 microg/ml) significantly stimulated the release of ET-1 by 1.6- to 1.8-fold, up to 1,262 +/- 56 pg/mg total cell proteins after an 8 h incubation period. Compound 8-bromo-cyclic AMP (10(-5), 10(-4) and 10(-3) M) reduced the basal release of ET-1 from GPTEpCs by up to 31% (P < 0.01) and the LPS stimulated release by up to 42% (P < 0.05), after an 8 h incubation period. Forskolin (10(-6), 10(-5) and 10(-4) M) also inhibited the basal release of ET-1 by up to 28% (P < 0.05) and LPS-stimulated release of ET-1 by up to 50% (P < 0.05), after an 8 h incubation period. At the concentration of 10(-5) M, forskolin increased cyclic AMP levels in GPTEpCs by 17-fold (P < 0.001) in the medium, 15 min after the beginning of the incubation. Salbutamol (10(-8) to 10(-6) M) had no effect on the basal production and release of ET-1 after 8 h. Conversely, this short acting beta 2-adrenoceptor agonist significantly reduced LPS-mediated increase of ET-1 production by up to 55% (P < 0.05) after an 8 h incubation period. Salmeterol (10(-9) M to 10(-5) M) inhibited basal and LPS-stimulated production and release of ET-1 after an 8 h incubation period (between 44 and 51%, P < 0.01). Both salbutamol and salmeterol (10(-6) M) increase cyclic AMP levels by five- and twofold, respectively (P < 0.05). In summary, these observations indicate that beta 2-adrenoceptor agonists or cyclic AMP enhancers can modulate both basal and more markedly, the enhanced production of ET-1 from LPS-activated guinea pig airway EpCs. In addition, these compounds increase cyclic AMP levels in the cells. It is suggested that there is a correlation between cyclic AMP increase and inhibition of ET-1 release by guinea pig airway EpCs. Since ET-1 production was shown to be elevated in asthmatic subjects and in patients suffering from other inflammatory lung disorders, the inhibition of its production by beta adrenoceptor agonists, such as salbutamol and salmeterol, could be added to their therapeutical benefits.

  17. Effect of basal forebrain stimulation on extracellular acetylcholine release and blood flow in the olfactory bulb.

    PubMed

    Uchida, Sae; Kagitani, Fusako

    2017-05-12

    The olfactory bulb receives cholinergic basal forebrain input, as does the neocortex; however, the in vivo physiological functions regarding the release of extracellular acetylcholine and regulation of regional blood flow in the olfactory bulb are unclear. We used in vivo microdialysis to measure the extracellular acetylcholine levels in the olfactory bulb of urethane-anesthetized rats. Focal chemical stimulation by microinjection of L-glutamate into the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain, which is the main source of cholinergic input to the olfactory bulb, increased extracellular acetylcholine release in the ipsilateral olfactory bulb. When the regional cerebral blood flow was measured using laser speckle contrast imaging, the focal chemical stimulation of the HDB did not significantly alter the blood flow in the olfactory bulb, while increases were observed in the neocortex. Our results suggest a functional difference between the olfactory bulb and neocortex regarding cerebral blood flow regulation through the release of acetylcholine by cholinergic basal forebrain input.

  18. Presence of negative charge on the basal planes of New York talc.

    PubMed

    Burdukova, E; Becker, M; Bradshaw, D J; Laskowski, J S

    2007-11-01

    Potentiometric titration measurements as well as rheological measurements of talc aqueous suspensions indicate that the behavior of the New York talc particles is consistent with the presence of a negative charge on their basal planes. The possibility of the presence of a negative electrical charge on the basal planes of talc particles is analyzed in this paper. Samples of New York talc were studied using electron microprobe analysis and dehydration techniques and the exact chemical formula of New York talc was determined. It was found that there exists a deficiency of protons in the tetrahedral layers of talc, resulting from substitution of Si(4+) ions with Al(3+) and Ti(3+) ions. The comparison of the level of substitution of Si(4+) ions with ions of a lower valency was found to be of a similar order of magnitude as that found in other talc deposits. This strongly points to the presence of a negative charge on the talc basal planes.

  19. Correlations of hair level with salivary level in cortisol and cortisone.

    PubMed

    Zhang, Quan; Chen, Zheng; Chen, Shenghuo; Yu, Tian; Wang, Juxia; Wang, Weiwen; Deng, Huihua

    2018-01-15

    Contrary findings exist on the consistency between hair cortisol and salivary cortisol in assessing the basal activity of the hypothalamic-pituitary-adrenal (HPA) axis. The mismatches in temporal characteristic and the indices of hair and salivary cortisol might be potential reasons for the inconsistency. The aim of this study was to investigate the consistency between hair and salivary levels in cortisol and cortisone by directly examining the correlation between hair level and salivary level with different temporal characteristics (acute, short-term and long-term levels) and reflecting different HPA functions (basal level and reactivity level) in the well-matched time span. A longitudinal design within a five-week period was conducted in a sample of 44 healthy female college students (mean age: 18.8yrs.; age range: 18-22yrs) of Han nationality with the exclusion criteria, such as use of oral contraceptives or glucocorticoids and bleached hairs, etc. Four saliva samples (awakening, awakening+30min, awakening+4h and awakening+9h) were collected from an identical participant on three separate days with an interval of one week and 1-cm hair segment nearest to the scalp was collected two weeks later after completing saliva collection. Cortisol and cortisone in saliva and hair were simultaneously measured with high performance liquid chromatography tandem mass spectrometry. There were significantly moderate correlations in cortisol and cortisone between hair level and three-day average of single-day salivary level, but low to moderate correlations between hair level and single-point and single-day salivary level. Hair cortisol and cortisone were unrelated to single-day level and three-day average of diurnal slope and cortisol awakening response of salivary cortisol and cortisone, respectively. The considerable consistency between hair level and long-term salivary level in cortisol and cortisone implies that cortisol and cortisone in hair are valid biomarkers of cumulative exposure of cortisol and cortisone to retrospectively reflect long-term basal activity of the HPA system. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Intranasal Dopamine Reduces In Vivo [(123)I]FP-CIT Binding to Striatal Dopamine Transporter: Correlation with Behavioral Changes and Evidence for Pavlovian Conditioned Dopamine Response.

    PubMed

    de Souza Silva, Maria A; Mattern, Claudia; Decheva, Cvetana; Huston, Joseph P; Sadile, Adolfo G; Beu, Markus; Müller, H-W; Nikolaus, Susanne

    2016-01-01

    Dopamine (DA), which does not cross the blood-brain barrier, has central and behavioral effects when administered via the nasal route. Neither the mechanisms of central action of intranasal dopamine (IN-DA), nor its mechanisms of diffusion and transport into the brain are well understood. We here examined whether IN-DA application influences dopamine transporter (DAT) binding in the dorsal striatum and assessed the extent of binding in relation to motor and exploratory behaviors. We hypothesized that, based on the finding of increased extracellular DA in the striatum induced by application of IN-DA, binding of [(123)I]FP-CIT to the DAT should be decreased due to competition at the receptor. Rats were administered 3 mg/kg IN-DA and vehicle (VEH), with IN-DA injection either preceding or following VEH. Then motor and exploratory behaviors (traveled distance, velocity, center time, sitting, rearing, head-shoulder motility, grooming) were assessed for 30 min in an open field prior to administration of [(123)I]FP-CIT. DAT binding after IN-DA and VEH was measured with small animal SPECT 2 h following administration of the radioligand. (1) After IN-DA application, striatal DAT binding was significantly lower as compared to VEH, indicating that the nasally delivered DA had central action and increased DA levels comparable to that found previously with L-DOPA administration; and (2) DAT binding in response to intranasal VEH was lower when IN-DA application preceded VEH treatment. This finding is suggestive of Pavlovian conditioning of DA at the level of the DAT, since the DA treatment modified (decreased) the binding in response to the subsequent VEH treatment. VEH treatment also reduced motor and exploratory behaviors more when applied before, as compared to when it followed IN-DA application, also indicative of behavioral Pavlovian conditioning akin to that found upon application of various psychostimulant drugs. (a) demonstrate a direct central action of intranasally applied DA on the DAT in the dorsal striatum, indicating enhanced DA availability; and (b) provide first evidence of a Pavlovian conditioned DA response at the DAT. The latter results have relevance to understanding neurochemical mechanisms that underlie placebo action in the treatment of Parkinsonian patients.

  1. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism

    PubMed Central

    Zhao-Shea, Rubing; Cohen, Bruce N.; Just, Herwig; McClure-Begley, Tristan; Whiteaker, Paul; Grady, Sharon R.; Salminen, Outi; Gardner, Paul D.; Lester, Henry A.; Tapper, Andrew R.

    2010-01-01

    Recent studies suggest that high-affinity neuronal nicotinic acetylcholine receptors (nAChRs) containing α4 and β2 subunits (α4β2*) functionally interact with G-protein-coupled dopamine (DA) D2 receptors in basal ganglia. We hypothesized that if a functional interaction between these receptors exists, then mice expressing an M2 point mutation (Leu9′Ala) rendering α4 nAChRs hypersensitive to ACh may exhibit altered sensitivity to a D2-receptor agonist. When challenged with the D2R agonist, quinpirole (0.5–10 mg/kg), Leu9′Ala mice, but not wild-type (WT) littermates, developed severe, reversible motor impairment characterized by rigidity, catalepsy, akinesia, and tremor. While striatal DA tissue content, baseline release, and quinpirole-induced DA depletion did not differ between Leu9′Ala and WT mice, quinpirole dramatically increased activity of cholinergic striatal interneurons only in mutant animals, as measured by increased c-Fos expression in choline acetyltransferase (ChAT)-positive interneurons. Highlighting the importance of the cholinergic system in this mouse model, inhibiting the effects of ACh by blocking muscarinic receptors, or by selectively activating hypersensitive nAChRs with nicotine, rescued motor symptoms. This novel mouse model mimics the imbalance between striatal DA/ACh function associated with severe motor impairment in disorders such as Parkinson’s disease, and the data suggest that a D2R–α4*-nAChR functional interaction regulates cholinergic interneuron activity.—Zhao-Shea, R., Cohen, B. N., Just, H., McClure-Begley, T., Whiteaker, P., Grady, S. R., Salminen, O., Gardner, P. D., Lester, H. A., Tapper, A. R. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism. PMID:19720621

  2. Regulation of Dab2 expression in intestinal and renal epithelia by development.

    PubMed

    Vázquez-Carretero, María D; García-Miranda, Pablo; Calonge, María L; Peral, María J; Ilundáin, Anunciación A

    2011-01-01

    Disabled-2 (Dab2) is an intracellular adaptor protein proposed to function in endocytosis. Here, we investigate the intestinal and renal Dab2 expression versus maturation. Dab2 mRNA levels measured by RT-PCR are greater in the small than in the large intestine. Immunological studies localize Dab2 to the terminal web domain of the enterocytes and reveal the presence of a 96-kDa Dab2 isoform in the apical membrane of the jejunum, ileum, and renal cortex of the suckling and adult rat. A 69-kDa Dab2 isoform is only observed in the apical membranes of the suckling ileum. During the suckling period, the Dab2 mRNA levels measured in the enterocytes and crypts and those of the 96-kDa Dab2 isoform are greater in the ileum than in the jejunum. No segmental differences are observed in the adult intestine. In the intestine, the levels of Dab2 mRNA and those of the 96-kDa Dab2 isoform decrease to adult values at weaning, whereas in the kidney they increase with development. Weaning the pups on a commercial milk diet slows the periweaning decline in the levels of Dab2 mRNA in the crypts and of those of the 96-kDa isoform. This is the first report showing that the 96-kDa Dab2 isoform is expressed at the apical domain of rat small intestine, that ontogeny regulates Dab2 gene expression in intestine and kidney and that retarding weaning affects intestinal Dab2 gene expression.

  3. Reduced blood levels of reelin as a vulnerability factor in pathophysiology of autistic disorder.

    PubMed

    Fatemi, S Hossein; Stary, Joel M; Egan, Elizabeth Ann

    2002-04-01

    1. Autism is a severe neurodevelopmental disorder with potential genetic and environmental etiologies. Recent genetic linkage reports and biochemical analysis of postmortem autistic cerebellum point to Reelin, an important secretory extracellular protein, as being involved in the pathology of autism. 2. We hypothesized that blood levels of Reelin and its isoforms would be altered in autistic twins, and their first degree relatives versus normal controls. 3. We measured blood levels of unprocessed Reelin (410 kDa) and its proteolytic cleavage products (Reelins 330 and 180 kDa) as well as albumin and ceruloplasmin in 28 autistic individuals, their parents (13 fathers, 13 mothers), 6 normal siblings, and 8 normal controls using SDS-PAGE and western blotting. 4. Results indicated significant reductions in 410 kDa Reelin species in autistic twins (-70%, p < 0.01), their fathers (-62%, p < 0.01), their mothers (-72%, p < 0.01), and their phenotypically normal siblings (-70%, p < 0.01) versus controls. Reelin 330 kDa values did not vary significantly from controls. Reelin 180 kDa values for parents (fathers -32% p < 0.05 vs. controls, mothers -34%) declined when compared to controls. In contrast autistic Reelin 180 kDa increased, albeit nonsignificantly versus controls. Albumin and ceruloplasmin values for autistics and their first degree relatives did not vary significantly from controls. There were no significant meaningful correlations between Reelin, albumin and ceruloplasmin levels, age, sex, ADI scores, or age of onset. 5. These results suggest that Reelin 410 deficiency may be a vulnerability factor in the pathology of autism.

  4. Neuroprotection and aging of the cholinergic system: a role for the ergoline derivative nicergoline (Sermion).

    PubMed

    Giardino, L; Giuliani, A; Battaglia, A; Carfagna, N; Aloe, L; Calza', L

    2002-01-01

    The aging brain is characterized by selective neurochemical changes involving several neural populations. A deficit in the cholinergic system of the basal forebrain is thought to contribute to the development of cognitive symptoms of dementia. Attempts to prevent age-associated cholinergic vulnerability and deterioration therefore represent a crucial point for pharmacotherapy in the elderly. In this paper we provide evidence for the protective effect of nicergoline (Sermion) on the degeneration of cholinergic neurons induced by nerve growth factor deprivation. Nerve growth factor deprivation was induced by colchicine administration in rats 13 and 18 months old. Colchicine induces a rapid and substantial down-regulation of choline acetyltransferase messenger RNA level in the basal forebrain in untreated adult, middle-aged and old rats. Colchicine failed to cause these effects in old rats treated for 120 days with nicergoline 10 mg/kg/day, orally. Moreover, a concomitant increase of both nerve growth factor and brain-derived neurotrophic factor content was measured in the basal forebrain of old, nicergoline-treated rats. Additionally, the level of messenger RNA for the brain isoform of nitric oxide synthase in neurons of the basal forebrain was also increased in these animals. Based on the present findings, nicergoline proved to be an effective drug for preventing neuronal vulnerability due to experimentally induced nerve growth factor deprivation.

  5. The diagnosis of nonclassic congenital adrenal hyperplasia due to 21-hydroxylase deficiency, based on serum basal or post-ACTH stimulation 17-hydroxyprogesterone, can lead to false-positive diagnosis.

    PubMed

    Ambroziak, Urszula; Kępczyńska-Nyk, Anna; Kuryłowicz, Alina; Małunowicz, Ewa Maria; Wójcicka, Anna; Miśkiewicz, Piotr; Macech, Magdalena

    2016-01-01

    As nonclassic congenital adrenal hyperplasia (NCCAH) needs to be taken into account in women with hyperandrogenism, we aimed to assess whether the recommended level of poststimulated 17OHP ≥30 nmol/l confirms NCCAH. Forty, consecutive women with biochemical and/or clinical hyperandrogenism (aged 25·4, 18-38) suspected of having NCCAH were recruited to the study. In patients with 17OHP level between 5·1 and 29·9 nmol/l an ACTH stimulation test was performed. In patients with basal or poststimulated 17OHP ≥30 nmol/l, twenty-four-hour urinary steroid profile (USP) analysis was performed and CYP21A2 mutation was assessed. In selected patients with poststimulated 17OHP <30 nmol/l USP was also performed. The group was divided into two subgroups with basal or poststimulated 17OHP ≥30 nmol/l (group A) and with poststimulated 17OHP <30 nmol/l (group B). Among 40 patients, basal or poststimulated 17OHP ≥30 nmol/l was found in 21, but NCCAH was confirmed by USP followed by genetic testing only in 5 (24%). Four patients were diagnosed as heterozygotes, and in twelve, no CYP21A2 mutation was detected. The diagnosis of NCCAH based only on serum 17OHP measurements (basal or poststimulated) may lead to false-positive diagnosis when performed by immunoassay with a cut-off value of ≥30 nmol/l. The definitive diagnosis can be established based on USP and/or genetic testing. © 2015 John Wiley & Sons Ltd.

  6. Preliminary evidence that acute stress moderates basal testosterone's association with retaliatory behavior.

    PubMed

    Prasad, Smrithi; Narayanan, Jayanth; Lim, Vivien K G; Koh, Gerald C H; Koh, David S Q; Mehta, Pranjal H

    2017-06-01

    A contribution to a special issue on Hormones and Human Competition. Testosterone is theorized to increase retaliation after social provocation. However, empirical evidence in support of these theories is mixed. The present research investigated whether acute stress causally suppresses testosterone's association with retaliation. We also explored sex differences in behavioral responses to acute stress. Thirty-nine participants (51.28% male) were randomly assigned to a high- or low-stress condition. Then participants engaged in 20 one-shot rounds of the ultimatum game, which was used to assess retaliatory behavioral responses to unfair treatment. Participants provided two saliva samples to measure testosterone and cortisol concentrations - one sample before the stress manipulation, and the second after the ultimatum game (20minutes post-stressor). Results revealed a positive association between basal testosterone and retaliation in the low-stress condition, but not in the high-stress condition. Further, cortisol concentrations increased in the high- compared to the low-stress condition, and these cortisol changes moderated the association between basal testosterone and retaliation. The associations between basal testosterone and retaliation under varying levels of stress were similar in men and women. However, there was a sex difference in behavioral responses to the stress manipulation that was independent of testosterone. In women, the high-stress condition reduced retaliation compared to the low-stress condition, whereas in men the opposite pattern emerged. Collectively, this study (i) provides preliminary evidence that experimentally manipulated stress blocks basal testosterone's association with retaliation, and (ii) reveals a sex difference in retaliation under varying levels of stress. Discussion focuses on mechanisms, limitations, and the need for follow-up studies with larger sample sizes. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Basal expression of insulin-like growth factor 1 receptor determines intrinsic resistance of cancer cells to a phosphatidylinositol 3-kinase inhibitor ZSTK474

    PubMed Central

    Isoyama, Sho; Kajiwara, Gensei; Tamaki, Naomi; Okamura, Mutsumi; Yoshimi, Hisashi; Nakamura, Naoki; Kawamura, Kento; Nishimura, Yumiko; Namatame, Nachi; Yamori, Takao; Dan, Shingo

    2015-01-01

    Drug resistance often critically limits the efficacy of molecular targeted drugs. Although pharmacological inhibition of phosphatidylinositol 3-kinase (PI3K) is an attractive therapeutic strategy for cancer therapy, molecular determinants for efficacy of PI3K inhibitors (PI3Kis) remain unclear. We previously identified that overexpression of insulin-like growth factor 1 receptor (IGF1R) contributed to the development of drug resistance after long-term exposure to PI3Kis. In this study, we examined the involvement of basal IGF1R expression in intrinsic resistance of drug-naïve cancer cells to PI3Kis and whether inhibition of IGF1R overcomes the resistance. We found that cancer cells highly expressing IGF1R showed resistance to dephosphorylation of Akt and subsequent antitumor effect by ZSTK474 treatment. Knockdown of IGF1R by siRNAs facilitated the dephosphorylation and enhanced the drug efficacy. These cells expressed tyrosine-phosphorylated insulin receptor substrate 1 at high levels, which was dependent on basal IGF1R expression. In these cells, the efficacy of ZSTK474 in vitro and in vivo was improved by its combination with the IGF1R inhibitor OSI-906. Finally, we found a significant correlation between the basal expression level of IGF1R and the inefficacy of ZSTK474 in an in vivo human cancer panel, as well as in vitro. These results suggest that basal IGF1R expression affects intrinsic resistance of cancer cells to ZSTK474, and IGF1R is a promising target to improve the therapeutic efficacy. The current results provide evidence of combination therapy of PI3Kis with IGF1R inhibitors for treating IGF1R-positive human cancers. PMID:25483727

  8. Neuroprotective effect of the carnosine - α-lipoic acid nanomicellar complex in a model of early-stage Parkinson's disease.

    PubMed

    Kulikova, Olga I; Berezhnoy, Daniil S; Stvolinsky, Sergey L; Lopachev, Alexander V; Orlova, Valentina S; Fedorova, Tatiana N

    2018-06-01

    In a model of early-stage Parkinson's disease induced by a single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to Wistar rats, a neuroprotective effect of a new derivative of carnosine and α-lipoic acid (C/LA nanomicellar complex) was demonstrated. Acute intraperitoneal administration of carnosine, α-lipoic acid and C/LA complex following MPTP administration normalized the total antioxidant activity in the brain tissue. Of all the compounds tested only C/LA complex normalized the metabolism of dopamine (DA) and serotonin (5-HT), while its components did not show similar effects when used separately. C/LA complex effectively restored the level of DA metabolites: the level of DOPAC was increased by 24.7 ± 5.6% compared to the animals that had received MPTP only, and the level of HVA was restored to the values observed in the intact animals. Integral metabolic indices of DA (DOPAC/DA and HVA/DA ratios) and 5-HT turnover (5-HIAA/5-HT ratio) in the striatum tended to increase in case of C/LA complex administration. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The Process and Procedures Used for Job Preparation; Field Artillery and Infantry Officers and NCOS

    DTIC Science & Technology

    1980-01-01

    professional development system." ( DA Pamphlet 600-3) DA Pamphlet 600-3 has identified environmental factors affecting the OPMS which require frequent...Medical Department, Chaplains and Judge Advocate General’s Corps except in terms of promotion policies and professionalism issues ( DA Pamphlet 600-3...lower levels, and without an opportunity to utilize previous education. ( DA Pamphlet 600-3) The OPMS is designed to take advantage of the many

  10. Assessment of fatigue using the Identity-Consequence Fatigue Scale in patients with lung cancer.

    PubMed

    Nogueira, Ingrid Correia; Araújo, Amanda Souza; Morano, Maria Tereza; Cavalcante, Antonio George; Bruin, Pedro Felipe de; Paddison, Johana Susan; Silva, Guilherme Pinheiro da; Pereira, Eanes Delgado

    2017-01-01

    To evaluate the properties of the Identity-Consequence Fatigue Scale (ICFS) in patients with lung cancer (LC), assessing the intensity of fatigue and associated factors. This was a cross-sectional study involving LC patients, treated at a teaching hospital in Brazil, who completed the ICFS. Patients with chronic heart disease (CHD) and healthy controls, matched for age and gender, also completed the scale. Initially, a Brazilian Portuguese-language version of the ICFS was administered to 50 LC patients by two independent interviewers; to test for reproducibility, it was readministered to those same patients. At baseline, the LC patients were submitted to spirometry and the six-minute walk test, as well as completing the Epworth Sleepiness Scale (ESS), Hospital Anxiety and Depression Scale (HADS), Medical Outcomes Study 36-item Short-Form Health Survey (SF-36), and Fatigue Severity Scale (FSS). Inflammatory status was assessed by blood C-reactive protein (CRP) levels. To validate the ICFS, we assessed the correlations of its scores with those variables. The sample comprised 50 patients in each group (LC, CHD, and control). In the LC group, the intraclass correlation coefficients for intra-rater and inter-rater reliability regarding ICFS summary variables ranged from 0.94 to 0.76 and from 0.94 to 0.79, respectively. The ICFS presented excellent internal consistency, and Bland-Altman plots showed good test-retest reliability. The ICFS correlated significantly with FSS, HADS, and SF-36 scores, as well as with CRP levels. Mean ICFS scores in the LC group differed significantly from those in the CHD and control groups. The ICFS is a valid, reliable instrument for evaluating LC patients, in whom depression, quality of life, and CRP levels seem to be significantly associated with fatigue. Avaliar as propriedades da Escala de Identificação e Consequências da Fadiga (EICF) em pacientes com câncer de pulmão (CP), analisando a intensidade da fadiga e fatores associados. Estudo transversal com pacientes com CP, atendidos em um hospital-escola no Brasil, que preencheram a EICF. Pacientes com doenças cardíacas crônicas (DCC) e controles saudáveis, pareados por idade e sexo, também preencheram a escala. Inicialmente, uma versão brasileira da escala foi aplicada a 50 pacientes com CP por dois entrevistadores independentes; para testar a reprodutibilidade, ela foi reaplicada aos mesmos pacientes. No momento basal, os pacientes com CP realizaram espirometria e teste de caminhada de seis minutos, bem como preencheram a Epworth Sleepiness Scale (ESS), Hospital Anxiety and Depression Scale (HADS), Medical Outcomes Study 36-item Short-Form Health Survey (SF-36) e Fatigue Severity Scale (FSS). O estado inflamatório foi avaliado pelos níveis de proteína C reativa (PCR) no sangue. Para validar a EICF, avaliamos as correlações entre as pontuações na mesma e essas variáveis. A amostra foi composta por 50 pacientes em cada grupo (CP, DCC e controle). No grupo CP, os coeficientes de correlação intraclasse para confiabilidade intra e interobservador para as variáveis resumidas da EICF variaram de 0,94 a 0,76 e de 0,94 a 0,79, respectivamente. A EICF apresentou excelente consistência interna, e as disposições gráficas de Bland-Altman demonstraram boa confiabilidade teste-reteste. A EICF apresentou correlações significativas com as pontuações na FSS, HADS e SF-36, bem como com os níveis de PCR. As médias das pontuações na EICF do grupo CP diferiram significativamente das dos grupos DCC e controle. A EICF é um instrumento válido e confiável para a avaliação de pacientes com CP, nos quais depressão, qualidade de vida e níveis de PCR parecem estar significativamente associados à fadiga.

  11. Importance of serum basal tryptase levels in children with insect venom allergy.

    PubMed

    Yavuz, S T; Sackesen, C; Sahiner, U M; Buyuktiryaki, B; Arik Yilmaz, E; Sekerel, B E; Soyer, O U; Tuncer, A

    2013-03-01

    The importance of serum basal tryptase (sBT) levels on patients with venom allergy is highlighted in recent adulthood studies. The aim of this study was to evaluate the sBT levels of venom-allergic children with varying severity of clinical reactions. We also aimed to document the association between sBT levels and severe systemic reactions (SR). Serum basal tryptase levels were estimated by UniCAP (Pharmacia & Upjohn, Uppsala, Sweden). Children who suffered from large local reaction (LLR) or SR after insect stings were included along with healthy control subjects without a history of any local or SR after insect stings. A total of 128 children (55 with SR, 18 with LLR, and 55 age and sex-matched control subjects) with a median age of 8.9 years (range 3.2-17.4) were enrolled. Severe SR was encountered in 24 (44%) patients with SRs. The median level of sBT in children with SRs (median, interquartile range) [4.2 μg/l (3.6-4.9)] was significantly higher than in children with LLRs [3.1 μg/l (2.5-4.0)] and healthy control subjects [2.9 μg/l (2.3-3.4)] (P < 0.001). Logistic regression analysis revealed sBT ≥ 4.8 μg/l as a significant risk factor for severe SR (5.7 [1.5-21.4]; P = 0.01) in children with venom allergy. Our results indicate that sBT levels are associated with a higher risk of severe SR in children with insect venom hypersensitivity. Determination of sBT levels may help clinicians to identify patients under risk of severe SRs and optimal and timely use of therapeutic interventions in children with venom allergy. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  12. Regulatory peptides in the plasma of patients with chronic cardiac failure at rest and during exercise.

    PubMed

    Nicholls, D P; Riley, M; Elborn, J S; Stanford, C F; Shaw, C; McKillop, J M; Buchanan, K D

    1992-10-01

    The levels of several regulatory peptides were measured in peripheral plasma samples from individuals with chronic cardiac failure (CCF) and matched controls in both the resting state and during a short period of maximal exercise. Basal levels of noradrenaline (NA; 705 +/- 114 vs 195 +/- 54 ng.l-1; mean +/- SEM; P < 0.05), plasma renin activity (PRA; 12.9 +/- 2.9 vs 2.1 +/- 0.3 ng AI ml-1.h-1; P < 0.05) and aldosterone (ALDO; 325 +/- 49 vs 87 +/- 8 ng.l-1; P < 0.05) were all raised in the patients with CCF, and increased further with exercise. Basal circulating levels of atrial natriuretic peptide (ANP) were also significantly higher in the CCF group compared to controls (136 +/- 35 vs 27 +/- 5 ng.l-1; P < 0.01), but the response to exercise was attenuated, so that at peak exercise, no significant difference was observed. Basal circulating levels of gastrin-releasing peptide (GRP) (29 +/- 4 vs 40 +/- 4 ng.l-1; P < 0.05) and secretin (13 +/- 1 vs 32 +/- 4 ng.l-1; P < 0.05) were significantly lower in the CCF group when compared to controls and there was no significant change in the levels of either peptide with exercise. Levels of neurokinin A (NKA), neuropeptide Y (NPY) and neurotensin (NT) were somewhat higher in patients, but the differences were not significant, and there were no changes during exercise. There were also no significant differences in the levels of vasoactive intestinal peptide (VIP), glucose-dependent insulinotropic polypeptide (GIP), insulin or glucagon in either experimental group both before and during exercise. We have therefore identified different circulating levels of certain regulatory peptides in patients with CCF, but the significance of these remains unclear.

  13. Fetal programming of adrenal androgen excess: lessons from a nonhuman primate model of polycystic ovary syndrome.

    PubMed

    Abbott, David H; Zhou, Rao; Bird, Ian M; Dumesic, Daniel A; Conley, Alan J

    2008-01-01

    Adrenal androgen excess is found in adult female rhesus monkeys previously exposed to androgen treatment during early gestation. In adulthood, such prenatally androgenized female monkeys exhibit elevated basal circulating levels of dehydroepiandrosterone sulfate (DHEAS), typical of polycystic ovary syndrome (PCOS) women with adrenal androgen excess. Further androgen and glucocorticoid abnormalities in PA female monkeys are revealed by acute ACTH stimulation: DHEA, androstenedione and corticosterone responses are all elevated compared to responses in controls. Pioglitazone treatment, however, diminishes circulating DHEAS responses to ACTH in both prenatally androgenized and control female monkeys, while increasing the 17-hydroxyprogesterone response and reducing the DHEA to 17-hydroxyprogesterone ratio. Since 60-min post-ACTH serum values for 17-hydroxyprogesterone correlate negatively with basal serum insulin levels (all female monkeys on pioglitazone and placebo treatment combined), while similar DHEAS values correlate positively with basal serum insulin levels, circulating insulin levels may preferentially support adrenal androgen biosynthesis in both prenatally androgenized and control female rhesus monkeys. Overall, our findings suggest that differentiation of the monkey adrenal cortex in a hyperandrogenic fetal environment may permanently upregulate adult adrenal androgen biosynthesis through specific elevation of 17,20-lyase activity in the zona fasciculata-reticularis. As adult prenatally androgenized female rhesus monkeys closely emulate PCOS-like symptoms, excess fetal androgen programming may contribute to adult adrenal androgen excess in women with PCOS.

  14. Fetal programming of adrenal androgen excess: lessons from a nonhuman primate model of polycystic ovary syndrome

    PubMed Central

    Abbott, David H; Zhou, Rao; Bird, Ian M; Dumesic, Daniel A; Conley, Alan J

    2008-01-01

    Adrenal androgen excess is found in adult female rhesus monkeys previously exposed to androgen treatment during early gestation. In adulthood, such prenatally androgenized female monkeys exhibit elevated basal circulating levels of DHEAS, typical of PCOS women with adrenal androgen excess. Further androgen and glucocorticoid abnormalities in PA female monkeys are revealed by acute ACTH stimulation: DHEA, androstenedione and corticosterone responses are all elevated compared to responses in controls. Pioglitazone treatment, however, diminishes circulating DHEAS responses to ACTH in both prenatally androgenized and control female monkeys, while increasing the 17-hydroxyprogesterone response and reducing the DHEA to 17-hydroxyprogesterone ratio. Since 60-min post-ACTH serum values for 17-hydroxyprogesterone correlate negatively with basal serum insulin levels (all female monkeys on pioglitazone and placebo treatment combined), while similar DHEAS values correlate positively with basal serum insulin levels, circulating insulin levels may preferentially support adrenal androgen biosynthesis in both prenatally androgenized and control female rhesus monkeys. Overall, our findings suggest that differentiation of the monkey adrenal cortex in a hyperandrogenic fetal environment may permanently upregulate adult adrenal androgen biosynthesis through specific elevation of 17,20-lyase activity in the zona fasciculata-reticularis. As adult prenatally androgenized female rhesus monkeys closely emulate PCOS-like symptoms, excess fetal androgen programming may contribute to adult adrenal androgen excess in women with PCOS. PMID:18493139

  15. Effects of the tricothecene mycotoxin diacetoxyscirpenol on egg production of broiler breeders.

    PubMed

    Brake, J; Hamilton, P B; Kittrell, R S

    2002-12-01

    Three experiments were conducted to determine the effects of 4,15-diacetoxyscirpenol (DAS) on egg quality and egg production of broiler breeders. In Experiment 1, feed containing 0, 1.25, 2.5, or 5.0 mg DAS/ kg was fed from 67 to 69 wk of age followed by a 3-wk recovery period on a slat-litter floor. In Experiment 2, individually caged broiler breeder females were studied from 23 to 31 wk of age. The basal diet containing 0, 5, 10, or 20 mg DAS/kg was fed from 25 to 27 wk of age. In Experiment 3, individually caged broiler breeder hens were studied from 23 to 32 wk of age. DAS was fed at levels of 0 (basal), 5, 10, and 20 mg DAS/kg for 2 wk beginning at Week 24, followed by the basal breeder diet for 7 wk. Egg production was not affected by levels of up to 5 mg DAS/kg in the older hens of Experiment 1. When fed from 25 to 27 wk of age in Experiment 2, DAS decreased egg production at the 20 mg/kg level only. When fed from 24 to 25 wk of age in Experiment 3, DAS had no significant effect on egg production or egg quality. Short-term consumption of DAS at levels that might naturally occur appears to have little effect on broiler breeder egg production.

  16. Protection but maintained dysfunction of nigral dopaminergic nerve cell bodies and striatal dopaminergic terminals in MPTP-lesioned mice after acute treatment with the mGluR5 antagonist MPEP.

    PubMed

    Aguirre, Jose A; Kehr, Jan; Yoshitake, Takashi; Liu, Fang-Ling; Rivera, Alicia; Fernandez-Espinola, Sergio; Andbjer, Beth; Leo, Giuseppina; Medhurst, Andrew D; Agnati, Luigi F; Fuxe, Kjell

    2005-02-08

    The mGluR5 antagonist MPEP was used to study the role of mGluR5 in MPTP-induced injury of the nigrostriatal DA neurons. The findings indicate that acute blockade of mGluR5 may result in neuroprotective actions against MPTP neurotoxicity on nigral DA cell bodies and striatal DA terminals using stereological analysis of TH immunoreactivity and microdensitometry. Biochemical analysis showed no restoration of DA levels and metabolism indicating a maintained reduction of DA transmission.

  17. Role of c-Src in cellular events associated with colony-stimulating factor-1-induced spreading in osteoclasts.

    PubMed

    Insogna, K; Tanaka, S; Neff, L; Horne, W; Levy, J; Baron, R

    1997-01-01

    We and others have observed that in response to treatment with Colony Stimulating Factor-1 (CSF-1) neonatal rat osteoclasts demonstrate rapid cytoplasmic spreading. The receptor for CSF-1, c-Fms, is expressed in osteoclasts, possesses intrinsic tyrosine-kinase activity, and signals via rapid phosphorylation of selected proteins. It has been reported previously that c-Src becomes tyrosine phosphorylated following CSF-1 treatment of fibroblasts overexpressing c-Fms. We therefore examined the cellular events associated with CSF-1-induced spreading in osteoclasts and what role, if any, c-Src played in these processes. Confocal microscopic studies using phosphotyrosine (P-tyr) monoclonal antibodies demonstrated that CSF-1 induced a significant dose- and time-dependent increase in P-tyr labeling of neonatal rat osteoclasts. Phalloidin staining was consistent with partial to complete disassembly of the actin attachment ring with redistribution of actin to the spreading cytoplasmic edge of the cell. Quantitation of cellular F-actin using NBD-phallicidin confirmed a decrease in polymerized actin following exposure to CSF-1. In contrast, CSF-1 failed to induce any cytoplasmic spreading in osteoclasts isolated from mice with targeted disruption of the src gene. Further, in src- osteoclasts no well defined attachment ring could be identified. To investigate cell-signaling events associated with osteoclast spreading, detergent lysates were made from purified multinucleated osteoclast-like cells (OCLs) obtained by coculturing murine bone marrow and osteoblasts with calcitriol. Western blot analyses of lysates from control and CSF-1-treated normal cells indicated that several proteins were specifically phosphorylated in response to CSF-1, most notably proteins of 165, 60, and 85-90 kDa. Immunoprecipitation studies revealed that the 165 and 60 kDa proteins were, respectively, c-Fms and c-Src. The c-Src kinase activity was increased 2.9-fold following CSF-1 treatment. The 85-90 kDa protein is as yet unidentified. Since activated receptor tyrosine kinases may induce spreading in part by reducing phosphoinositol 4,5-bisphosphate (PIP2) binding to actin-associated proteins, a monoclonal antibody to PIP2 was used to assess the nature of PIP2 binding proteins in OCLs. Proteins of 85-90 kDa, 43 kDa, and 30 kDa were consistently demonstrated to bind PIP2. Further, the PIP2 content of the 85-90 kDa protein appeared to decrease with CSF-1 treatment. Whether this protein represents the phosphoprotein of the same M.W. is unclear. We also examined the effect of CSF-1 on the PIP2 content of alpha-actinin. Alpha-actinin showed low-level PIP2 binding, which was demonstrable only after immuno-precipitation and did not change with CSF-1 treatment. However, CSF-1 did cause a significant decline in the phosphotyrosine content of alpha-actinin. In contrast, in src- OCLs, CSF-1 induced more prolonged phosphorylation of c-Fms, and the 85-90 kDa protein was markedly hypophosphorylated. Further, alpha-actinin did not dephosphorylate in src- cells. We conclude that CSF-1-induced osteoclast spreading is accompanied by rapid reorganization of the actin cytoskeleton and phosphorylation of several cellular substrates, including c-Fms and c-Src. PIP2 binding to at least one protein appears to decrease with CSF-1 treatment, which may favor actin depolymerization. The reduced tyrosine phosphorylation of alpha-actinin could effect its ability to bind to actin. Thus c-Src may play an important role in these cellular events since in its absence, osteoclasts do not spread and signaling events downstream are altered. Whether these changes relate in part to the basal abnormalities in the cytoskeletal organization of src- osteoclasts remains to be determined.

  18. Short term response of insulin, glucose, growth hormone and corticosterone to acute vibration in rats.

    NASA Technical Reports Server (NTRS)

    Dolkas, C. B.; Leon, H. A.; Chackerian, M.

    1971-01-01

    Study carried out to obtain some notion of the initial phasing and interactive effects among some hormones known to be responsive to vibration stress. Sprague-Dawley derived rats were exposed to the acute effects of confinement and confinement with lateral (plus or minus G sub y) vibration. The coincident monitoring of glucose, insulin, growth hormone, and corticosterone plasma levels, during and immediately subsequent to exposure to brief low level vibration, exhibits the effects of inhibition of insulin release by epinephrine. The ability of insulin (IRI) to return rapidly to basal levels, from appreciably depressed levels during vibration, in the face of elevated levels of glucose is also shown. Corticosterone responds with almost equal rapidity, but in opposite phase to the IRI. The immuno-assayable growth hormone (IGH) dropped from a basal level of 32 ng/ml to 7.3 ng/ml immediately subsequent to vibration and remained at essentially that level throughout the experiment (60 min). Whether these levels represent a real fall in the rat or whether they merely follow the immuno-logically deficient form is still in question.

  19. Inverse correlation between morning plasma cortisol levels and MMPI psychasthenia and depression scale scores in victims of mobbing with adjustment disorders.

    PubMed

    Rocco, Antonio; Martocchia, Antonio; Frugoni, Patrizia; Baldini, Rossella; Sani, Gabriele; Di Simone Di Giuseppe, Barbara; Vairano, Andrea; Girardi, Paolo; Monaco, Edoardo; Tatarelli, Roberto; Falaschi, Paolo

    2007-10-01

    Evidence in the literature suggests stress-related changes of hypothalamus-pituitary-adrenal (HPA) axis in mobbing. We investigated the association between HPA activity and psychological profiles in mobbing, using a multidisciplinary approach. Forty-eight victims of mobbing were evaluated by a working group of the Departments of Occupational Medicine, Psychiatry and Internal Medicine. After an informed consent, a detailed occupational history, a psychiatric interview with Minnesota Multiphasic Personality Inventory 2 (MMPI-2) administration and a blood sample (8:00 AM) for the determination of basal adrenocorticotropin (ACTH), cortisol and dehydroepiandrosterone sulphate (DHEAS) plasma levels were collected. Twenty-six patients received an overnight dexamethasone (dex) test. Mean ACTH, cortisol and DHEAS levels were within normal ranges. The dex-test response was normal, with a significant hormone suppression (ACTH p<0.001, cortisol p<0.001, DHEAS p<0.001). The correlations between basal hormones and the psychometric scales of MMPI-2 revealed that cortisol was significantly and negatively related to Psychasthenia (Pt, p=0.003) and Depression (D, p=0.006), while DHEAS showed a significant negative correlation to Hysteria (Hy, p=0.008). Basal ACTH levels were not significantly related to psychometric scales. A significant inverse correlation between morning plasma cortisol levels and psychometric parameters in victims of mobbing with adjustment disorders was observed. A larger group of patients is necessary to identify and validate a cut-off cortisol level that may become an innovative biological parameter for the diagnosis and follow-up in victims of mobbing.

  20. Serotonin2C receptors in the nucleus accumbens are involved in enhanced alcohol-drinking behavior

    PubMed Central

    Yoshimoto, Kanji; Watanabe, Yoshihisa; Tanaka, Masaki; Kimura, Minoru

    2012-01-01

    Dopamine and serotonin (5-HT) in the nucleus accumbens (ACC) and ventral tegmental area of the mesoaccumbens reward pathways have been implicated in the mechanisms underlying development of alcohol dependence. We used a C57BL/6J mouse model with increased voluntary alcohol-drinking behavior by exposing the mice to alcohol vapor for 20 consecutive days. In the alcohol-exposed mice, the expression of 5-HT2C receptor mRNA increased in the ACC, caudate nucleus and putamen, dorsal raphe nucleus (DRN), hippocampus and lateral hypothalamus, while the protein level of 5-HT2C receptor significantly increased in the ACC. The expression of 5-HT7 receptor mRNA increased in the ACC and DRN. Contents of 5-HT decreased in the ACC shell (ACCS) and DRN of the alcohol-exposed mice. The basal extracellular releases of dopamine (DA) and 5-HT in the ACCS increased more in the alcohol-exposed mice than in alcohol-naïve mice. The magnitude of the alcohol-induced ACCS DA and 5-HT release in the alcohol-exposed mice was increased compared with the control mice. Intraperitoneal (i.p.) administration or local injection into ACCS of the 5-HT2C receptor antagonist, SB-242084, suppressed voluntary alcohol-drinking behavior in the alcohol-exposed mice. But the i.p. administration of the 5-HT7 receptor antagonist, SB-258719, did not have significant effects on alcohol-drinking behavior in the alcohol-exposed mice. The effects of the 5-HT2C receptor antagonist were not observed in the air-exposed control mice. These results suggest that adaptations of the 5-HT system, especially the upregulation of 5-HT2C receptors in the ACCS, are involved in the development of enhanced voluntary alcohol-drinking behavior. PMID:22512261

Top