Brown, Ritchie E.; Hussain Shuler, Marshall G.; Petersen, Carl C.H.; Kepecs, Adam
2015-01-01
The basal forebrain (BF) houses major ascending projections to the entire neocortex that have long been implicated in arousal, learning, and attention. The disruption of the BF has been linked with major neurological disorders, such as coma and Alzheimer's disease, as well as in normal cognitive aging. Although it is best known for its cholinergic neurons, the BF is in fact an anatomically and neurochemically complex structure. Recent studies using transgenic mouse lines to target specific BF cell types have led to a renaissance in the study of the BF and are beginning to yield new insights about cell-type-specific circuit mechanisms during behavior. These approaches enable us to determine the behavioral conditions under which cholinergic and noncholinergic BF neurons are activated and how they control cortical processing to influence behavior. Here we discuss recent advances that have expanded our knowledge about this poorly understood brain region and laid the foundation for future cell-type-specific manipulations to modulate arousal, attention, and cortical plasticity in neurological disorders. SIGNIFICANCE STATEMENT Although the basal forebrain is best known for, and often equated with, acetylcholine-containing neurons that provide most of the cholinergic innervation of the neocortex, it is in fact an anatomically and neurochemically complex structure. Recent studies using transgenic mouse lines to target specific cell types in the basal forebrain have led to a renaissance in this field and are beginning to dissect circuit mechanisms in the basal forebrain during behavior. This review discusses recent advances in the roles of basal forebrain cholinergic and noncholinergic neurons in cognition via their dynamic modulation of cortical activity. PMID:26468190
Basal forebrain neuronal inhibition enables rapid behavioral stopping
Mayse, Jeffrey D.; Nelson, Geoffrey M.; Avila, Irene; Gallagher, Michela; Lin, Shih-Chieh
2015-01-01
Cognitive inhibitory control, the ability to rapidly suppress responses inappropriate for the context, is essential for flexible and adaptive behavior. While most studies on inhibitory control have focused on the fronto-basal-ganglia circuit, here we explore a novel hypothesis and show that rapid behavioral stopping is enabled by neuronal inhibition in the basal forebrain (BF). In rats performing the stop signal task, putative noncholinergic BF neurons with phasic bursting responses to the go signal were inhibited nearly completely by the stop signal. The onset of BF neuronal inhibition was tightly coupled with and temporally preceded the latency to stop, the stop signal reaction time. Artificial inhibition of BF activity in the absence of the stop signal was sufficient to reproduce rapid behavioral stopping. These results reveal a novel subcortical mechanism of rapid inhibitory control by the BF, which provides bidirectional control over the speed of response generation and inhibition. PMID:26368943
Calcium Imaging of Basal Forebrain Activity during Innate and Learned Behaviors
Harrison, Thomas C.; Pinto, Lucas; Brock, Julien R.; Dan, Yang
2016-01-01
The basal forebrain (BF) plays crucial roles in arousal, attention, and memory, and its impairment is associated with a variety of cognitive deficits. The BF consists of cholinergic, GABAergic, and glutamatergic neurons. Electrical or optogenetic stimulation of BF cholinergic neurons enhances cortical processing and behavioral performance, but the natural activity of these cells during behavior is only beginning to be characterized. Even less is known about GABAergic and glutamatergic neurons. Here, we performed microendoscopic calcium imaging of BF neurons as mice engaged in spontaneous behaviors in their home cages (innate) or performed a go/no-go auditory discrimination task (learned). Cholinergic neurons were consistently excited during movement, including running and licking, but GABAergic and glutamatergic neurons exhibited diverse responses. All cell types were activated by overt punishment, either inside or outside of the discrimination task. These findings reveal functional similarities and distinctions between BF cell types during both spontaneous and task-related behaviors. PMID:27242444
A frontal cortex event-related potential driven by the basal forebrain
Nguyen, David P; Lin, Shih-Chieh
2014-01-01
Event-related potentials (ERPs) are widely used in both healthy and neuropsychiatric conditions as physiological indices of cognitive functions. Contrary to the common belief that cognitive ERPs are generated by local activity within the cerebral cortex, here we show that an attention-related ERP in the frontal cortex is correlated with, and likely generated by, subcortical inputs from the basal forebrain (BF). In rats performing an auditory oddball task, both the amplitude and timing of the frontal ERP were coupled with BF neuronal activity in single trials. The local field potentials (LFPs) associated with the frontal ERP, concentrated in deep cortical layers corresponding to the zone of BF input, were similarly coupled with BF activity and consistently triggered by BF electrical stimulation within 5–10 msec. These results highlight the important and previously unrecognized role of long-range subcortical inputs from the BF in the generation of cognitive ERPs. DOI: http://dx.doi.org/10.7554/eLife.02148.001 PMID:24714497
Cell type-specific long-range connections of basal forebrain circuit.
Do, Johnny Phong; Xu, Min; Lee, Seung-Hee; Chang, Wei-Cheng; Zhang, Siyu; Chung, Shinjae; Yung, Tyler J; Fan, Jiang Lan; Miyamichi, Kazunari; Luo, Liqun; Dan, Yang
2016-09-19
The basal forebrain (BF) plays key roles in multiple brain functions, including sleep-wake regulation, attention, and learning/memory, but the long-range connections mediating these functions remain poorly characterized. Here we performed whole-brain mapping of both inputs and outputs of four BF cell types - cholinergic, glutamatergic, and parvalbumin-positive (PV+) and somatostatin-positive (SOM+) GABAergic neurons - in the mouse brain. Using rabies virus -mediated monosynaptic retrograde tracing to label the inputs and adeno-associated virus to trace axonal projections, we identified numerous brain areas connected to the BF. The inputs to different cell types were qualitatively similar, but the output projections showed marked differences. The connections to glutamatergic and SOM+ neurons were strongly reciprocal, while those to cholinergic and PV+ neurons were more unidirectional. These results reveal the long-range wiring diagram of the BF circuit with highly convergent inputs and divergent outputs and point to both functional commonality and specialization of different BF cell types.
Zant, Janneke C; Kim, Tae; Prokai, Laszlo; Szarka, Szabolcs; McNally, James; McKenna, James T; Shukla, Charu; Yang, Chun; Kalinchuk, Anna V; McCarley, Robert W; Brown, Ritchie E; Basheer, Radhika
2016-02-10
Understanding the control of sleep-wake states by the basal forebrain (BF) poses a challenge due to the intermingled presence of cholinergic, GABAergic, and glutamatergic neurons. All three BF neuronal subtypes project to the cortex and are implicated in cortical arousal and sleep-wake control. Thus, nonspecific stimulation or inhibition studies do not reveal the roles of these different neuronal types. Recent studies using optogenetics have shown that "selective" stimulation of BF cholinergic neurons increases transitions between NREM sleep and wakefulness, implicating cholinergic projections to cortex in wake promotion. However, the interpretation of these optogenetic experiments is complicated by interactions that may occur within the BF. For instance, a recent in vitro study from our group found that cholinergic neurons strongly excite neighboring GABAergic neurons, including the subset of cortically projecting neurons, which contain the calcium-binding protein, parvalbumin (PV) (Yang et al., 2014). Thus, the wake-promoting effect of "selective" optogenetic stimulation of BF cholinergic neurons could be mediated by local excitation of GABA/PV or other non-cholinergic BF neurons. In this study, using a newly designed opto-dialysis probe to couple selective optical stimulation with simultaneous in vivo microdialysis, we demonstrated that optical stimulation of cholinergic neurons locally increased acetylcholine levels and increased wakefulness in mice. Surprisingly, the enhanced wakefulness caused by cholinergic stimulation was abolished by simultaneous reverse microdialysis of cholinergic receptor antagonists into BF. Thus, our data suggest that the wake-promoting effect of cholinergic stimulation requires local release of acetylcholine in the basal forebrain and activation of cortically projecting, non-cholinergic neurons, including the GABAergic/PV neurons. Optogenetics is a revolutionary tool to assess the roles of particular groups of neurons in behavioral functions, such as control of sleep and wakefulness. However, the interpretation of optogenetic experiments requires knowledge of the effects of stimulation on local neurotransmitter levels and effects on neighboring neurons. Here, using a novel "opto-dialysis" probe to couple optogenetics and in vivo microdialysis, we report that optical stimulation of basal forebrain (BF) cholinergic neurons in mice increases local acetylcholine levels and wakefulness. Reverse microdialysis of cholinergic antagonists within BF prevents the wake-promoting effect. This important result challenges the prevailing dictum that BF cholinergic projections to cortex directly control wakefulness and illustrates the utility of "opto-dialysis" for dissecting the complex brain circuitry underlying behavior. Copyright © 2016 the authors 0270-6474/16/362058-11$15.00/0.
Zant, Janneke C.; Kim, Tae; Prokai, Laszlo; Szarka, Szabolcs; McNally, James; McKenna, James T.; Shukla, Charu; Yang, Chun; Kalinchuk, Anna V.; McCarley, Robert W.; Brown, Ritchie E.
2016-01-01
Understanding the control of sleep–wake states by the basal forebrain (BF) poses a challenge due to the intermingled presence of cholinergic, GABAergic, and glutamatergic neurons. All three BF neuronal subtypes project to the cortex and are implicated in cortical arousal and sleep–wake control. Thus, nonspecific stimulation or inhibition studies do not reveal the roles of these different neuronal types. Recent studies using optogenetics have shown that “selective” stimulation of BF cholinergic neurons increases transitions between NREM sleep and wakefulness, implicating cholinergic projections to cortex in wake promotion. However, the interpretation of these optogenetic experiments is complicated by interactions that may occur within the BF. For instance, a recent in vitro study from our group found that cholinergic neurons strongly excite neighboring GABAergic neurons, including the subset of cortically projecting neurons, which contain the calcium-binding protein, parvalbumin (PV) (Yang et al., 2014). Thus, the wake-promoting effect of “selective” optogenetic stimulation of BF cholinergic neurons could be mediated by local excitation of GABA/PV or other non-cholinergic BF neurons. In this study, using a newly designed opto-dialysis probe to couple selective optical stimulation with simultaneous in vivo microdialysis, we demonstrated that optical stimulation of cholinergic neurons locally increased acetylcholine levels and increased wakefulness in mice. Surprisingly, the enhanced wakefulness caused by cholinergic stimulation was abolished by simultaneous reverse microdialysis of cholinergic receptor antagonists into BF. Thus, our data suggest that the wake-promoting effect of cholinergic stimulation requires local release of acetylcholine in the basal forebrain and activation of cortically projecting, non-cholinergic neurons, including the GABAergic/PV neurons. SIGNIFICANCE STATEMENT Optogenetics is a revolutionary tool to assess the roles of particular groups of neurons in behavioral functions, such as control of sleep and wakefulness. However, the interpretation of optogenetic experiments requires knowledge of the effects of stimulation on local neurotransmitter levels and effects on neighboring neurons. Here, using a novel “opto-dialysis” probe to couple optogenetics and in vivo microdialysis, we report that optical stimulation of basal forebrain (BF) cholinergic neurons in mice increases local acetylcholine levels and wakefulness. Reverse microdialysis of cholinergic antagonists within BF prevents the wake-promoting effect. This important result challenges the prevailing dictum that BF cholinergic projections to cortex directly control wakefulness and illustrates the utility of “opto-dialysis” for dissecting the complex brain circuitry underlying behavior. PMID:26865627
Leopold, David A.; Hikosaka, Okihide
2015-01-01
It has been suggested that the basal forebrain (BF) exerts strong influences on the formation of memory and behavior. However, what information is used for the memory-behavior formation is unclear. We found that a population of neurons in the medial BF (medial septum and diagonal band of Broca) of macaque monkeys encodes a unique combination of information: reward uncertainty, expected reward value, anticipation of punishment, and unexpected reward and punishment. The results were obtained while the monkeys were expecting (often with uncertainty) a rewarding or punishing outcome during a Pavlovian procedure, or unexpectedly received an outcome outside the procedure. In vivo anterograde tracing using manganese-enhanced MRI suggested that the major recipient of these signals is the intermediate hippocampal formation. Based on these findings, we hypothesize that the medial BF identifies various contexts and outcomes that are critical for memory processing in the hippocampal formation. PMID:25972172
Sharma, Rishi; Engemann, Samuel; Sahota, Pradeep; Thakkar, Mahesh M
2010-11-01
Insomnia is a severe symptom of alcohol withdrawal; however, the underlying neuronal mechanism is yet unknown. We hypothesized that chronic ethanol exposure will impair basal forebrain (BF) adenosinergic mechanism resulting in insomnia-like symptoms. We performed a series of experiments in Sprague-Dawley rats to test our hypothesis. We used Majchrowicz's chronic binge ethanol protocol to induce ethanol dependency. Our first experiment verified the effects of ethanol withdrawal on sleep-wakefulness. Significant increase in wakefulness was observed during ethanol withdrawal. Next, we examined c-Fos expression (marker of neuronal activation) in BF wake-promoting neurons during ethanol withdrawal. There was a significant increase in the number of BF wake-promoting neurons with c-Fos immunoreactivity. Our third experiment examined the effects of ethanol withdrawal on sleep deprivation induced increase in BF adenosine levels. Sleep deprivation did not increase BF adenosine levels in ethanol dependent rats. Our last experiment examined the effects of ethanol withdrawal on equilibrative nucleoside transporter 1 and A1 receptor expression in the BF. There was a significant reduction in A1 receptor and equilibrative nucleoside transporter 1 expression in the BF of ethanol dependent rats. Based on these results, we suggest that insomnia observed during ethanol withdrawal is caused because of impaired adenosinergic mechanism in the BF. © 2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.
Glycinergic Input to the Mouse Basal Forebrain Cholinergic Neurons
Bardóczi, Zsuzsanna; Pál, Balázs; Kőszeghy, Áron; Wilheim, Tamás; Záborszky, László; Liposits, Zsolt
2017-01-01
The basal forebrain (BF) receives afferents from brainstem ascending pathways, which has been implicated first by Moruzzi and Magoun (1949) to induce forebrain activation and cortical arousal/waking behavior; however, it is very little known about how brainstem inhibitory inputs affect cholinergic functions. In the current study, glycine, a major inhibitory neurotransmitter of brainstem neurons, and gliotransmitter of local glial cells, was tested for potential interaction with BF cholinergic (BFC) neurons in male mice. In the BF, glycine receptor α subunit-immunoreactive (IR) sites were localized in choline acetyltransferase (ChAT)-IR neurons. The effect of glycine on BFC neurons was demonstrated by bicuculline-resistant, strychnine-sensitive spontaneous IPSCs (sIPSCs; 0.81 ± 0.25 × 10−1 Hz) recorded in whole-cell conditions. Potential neuronal as well as glial sources of glycine were indicated in the extracellular space of cholinergic neurons by glycine transporter type 1 (GLYT1)- and GLYT2-IR processes found in apposition to ChAT-IR cells. Ultrastructural analyses identified synapses of GLYT2-positive axon terminals on ChAT-IR neurons, as well as GLYT1-positive astroglial processes, which were localized in the vicinity of synapses of ChAT-IR neurons. The brainstem raphe magnus was determined to be a major source of glycinergic axons traced retrogradely from the BF. Our results indicate a direct effect of glycine on BFC neurons. Furthermore, the presence of high levels of plasma membrane glycine transporters in the vicinity of cholinergic neurons suggests a tight control of extracellular glycine in the BF. SIGNIFICANCE STATEMENT Basal forebrain cholinergic (BFC) neurons receive various activating inputs from specific brainstem areas and channel this information to the cortex via multiple projections. So far, very little is known about inhibitory brainstem afferents to the BF. The current study established glycine as a major regulator of BFC neurons by (1) identifying glycinergic neurons in the brainstem projecting to the BF, (2) showing glycine receptor α subunit-immunoreactive (IR) sites in choline acetyltransferase (ChAT)-IR neurons, (3) demonstrating glycine transporter type 2 (GLYT2)-positive axon terminals synapsing on ChAT-IR neurons, and (4) localizing GLYT1-positive astroglial processes in the vicinity of synapses of ChAT-IR neurons. The effect of glycine on BFC neurons was demonstrated by bicuculline-resistant, strychnine-sensitive spontaneous IPSCs recorded in whole-cell conditions. PMID:28874448
Anaclet, Christelle; De Luca, Roberto; Venner, Anne; Malyshevskaya, Olga; Lazarus, Michael; Arrigoni, Elda; Fuller, Patrick M
2018-05-07
Recent studies have identified an especially important role for basal forebrain GABAergic (BF VGAT ) neurons in the regulation of behavioral waking and fast cortical rhythms associated with cognition. However, BF VGAT neurons comprise several neurochemically and anatomically distinct sub-populations, including parvalbumin- and somatostatin-containing BF VGAT neurons (BF Parv and BF SOM ), and it was recently reported that optogenetic activation of BF SOM neurons increases the probability of a wakefulness to non-rapid-eye movement (NREM) sleep transition when stimulated during the animal's rest period. This finding was unexpected given that most BF SOM neurons are not NREM sleep active and that central administration of the synthetic SOM analog, octreotide, suppresses NREM sleep or increases REM sleep. Here we employed a combination of genetically-driven chemogenetic and optogenetic activation, chemogenetic inhibition and ablation approaches to further explore the in vivo role of BF SOM neurons in arousal control. Our findings indicate that acute activation or inhibition of BF SOM neurons is neither wakefulness- nor NREM sleep-promoting, is without significant effect on the EEG, and that chronic loss of these neurons is without effect on total 24h sleep amounts, although a small but significant increase in waking was observed in the lesioned mice during the early active period. Our in vitro cell recordings further reveal electrophysiological heterogeneity in BF SOM neurons, specifically suggesting at least two distinct sub-populations. Taken together our data support the more nuanced view that BF SOM are electrically heterogeneous and are not NREM sleep- or wake-promoting per se , but may exert, in particular during the early active period, a modest inhibitory influence on arousal circuitry. SIGNIFICANCE STATEMENT The cellular basal forebrain (BF) is a highly complex area of the brain that is implicated in a wide-range of higher-level neurobiological processes, including regulating and maintaining normal levels of electrocortical and behavioral arousal. The respective in vivo roles of BF cell populations and their neurotransmitter systems in the regulation of electrocortical and behavioral arousal remains incompletely understood. Here we seek to define the neurobiological contribution of GABAergic somatostanin-containing BF neurons to arousal control. Understanding the respective contribution of BF cell populations to arousal control may provide critical insight into the pathogenesis of a host of neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, schizophrenia and the cognitive impairments of normal aging. Copyright © 2018 the authors.
Sharma, Rishi; Lodhi, Shafi; Sahota, Pradeep; Thakkar, Mahesh M
2015-10-01
Nicotine and alcohol co-abuse is highly prevalent, although the underlying causes are unclear. It has been suggested that nicotine enhances pleasurable effects of alcohol while reducing aversive effects. Recently, we reported that nicotine acts via the basal forebrain (BF) to activate nucleus accumbens and increase alcohol consumption. Does nicotine suppress alcohol-induced aversive effects via the BF? We hypothesized that nicotine may act via the BF to suppress sleep-promoting effects of alcohol. To test this hypothesis, adult male Sprague-Dawley rats were implanted with sleep-recording electrodes and bilateral guides targeted toward the BF. Nicotine (75 pmol/500 nL/side) or artificial cerebrospinal fluid (ACSF; 500 nL/side) was microinjected into the BF followed by intragastric alcohol (ACSF + EtOH and NiC + EtOH groups; 3 g/kg) or water (NiC + W and ACSF + W groups; 10 mL/kg) administration. On completion, rats were killed and processed to localize injection sites in the BF. The statistical analysis revealed a significant effect of treatment on sleep-wakefulness. While rats exposed to alcohol (ACSF + EtOH) displayed strong sleep promotion, nicotine pre-treatment in the BF (NiC + EtOH) attenuated alcohol-induced sleep and normalized sleep-wakefulness. These results suggest that nicotine acts via the BF to suppress the aversive, sleep-promoting effects of alcohol, further supporting the role of BF in alcohol-nicotine co-use. © 2015 International Society for Neurochemistry.
The amygdala and basal forebrain as a pathway for motivationally guided attention.
Peck, Christopher J; Salzman, C Daniel
2014-10-08
Visual stimuli associated with rewards attract spatial attention. Neurophysiological mechanisms that mediate this process must register both the motivational significance and location of visual stimuli. Recent neurophysiological evidence indicates that the amygdala encodes information about both of these parameters. Furthermore, the firing rate of amygdala neurons predicts the allocation of spatial attention. One neural pathway through which the amygdala might influence attention involves the intimate and bidirectional connections between the amygdala and basal forebrain (BF), a brain area long implicated in attention. Neurons in the rhesus monkey amygdala and BF were therefore recorded simultaneously while subjects performed a detection task in which the stimulus-reward associations of visual stimuli modulated spatial attention. Neurons in BF were spatially selective for reward-predictive stimuli, much like the amygdala. The onset of reward-predictive signals in each brain area suggested different routes of processing for reward-predictive stimuli appearing in the ipsilateral and contralateral fields. Moreover, neurons in the amygdala, but not BF, tracked trial-to-trial fluctuations in spatial attention. These results suggest that the amygdala and BF could play distinct yet inter-related roles in influencing attention elicited by reward-predictive stimuli. Copyright © 2014 the authors 0270-6474/14/3413757-11$15.00/0.
Activation of the Basal Forebrain by the Orexin/Hypocretin Neurons: Orexin International Symposium
Arrigoni, Elda; Mochizuki, Takatoshi; Scammell, Thomas E.
2010-01-01
The orexin neurons play an essential role in driving arousal and in maintaining normal wakefulness. Lack of orexin neurotransmission produces a chronic state of hypoarousal characterized by excessive sleepiness, frequent transitions between wake and sleep, and episodes of cataplexy. A growing body of research now suggests that the basal forebrain (BF) may be a key site through which the orexin-producing neurons promote arousal. Here we review anatomical, pharmacological and electrophysiological studies on how the orexin neurons may promote arousal by exciting cortically-projecting neurons of the BF. Orexin fibers synapse on BF cholinergic neurons and orexin-A is released in the BF during waking. Local application of orexins excites BF cholinergic neurons, induces cortical release of acetylcholine, and promotes wakefulness. The orexin neurons also contain and probably co-release the inhibitory neuropeptide dynorphin. We found that orexin-A and dynorphin have specific effects on different classes of BF neurons that project to the cortex. Cholinergic neurons were directly excited by orexin-A, but did not respond to dynorphin. Non-cholinergic BF neurons that project to the cortex seem to comprise at least two populations with some directly excited by orexin that may represent wake-active, GABAergic neurons, whereas others did not respond to orexin but were inhibited by dynorphin and may be sleep-active, GABAergic neurons. This evidence suggests that the BF is a key site through which orexins activate the cortex and promotes behavioral arousal. In addition, orexins and dynorphin may act synergistically in the BF to promote arousal and improve cognitive performance. PMID:19723027
Cholinergic Neurons Excite Cortically Projecting Basal Forebrain GABAergic Neurons
Yang, Chun; McKenna, James T.; Zant, Janneke C.; Winston, Stuart; Basheer, Radhika
2014-01-01
The basal forebrain (BF) plays an important role in the control of cortical activation and attention. Understanding the modulation of BF neuronal activity is a prerequisite to treat disorders of cortical activation involving BF dysfunction, such as Alzheimer's disease. Here we reveal the interaction between cholinergic neurons and cortically projecting BF GABAergic neurons using immunohistochemistry and whole-cell recordings in vitro. In GAD67-GFP knock-in mice, BF cholinergic (choline acetyltransferase-positive) neurons were intermingled with GABAergic (GFP+) neurons. Immunohistochemistry for the vesicular acetylcholine transporter showed that cholinergic fibers apposed putative cortically projecting GABAergic neurons containing parvalbumin (PV). In coronal BF slices from GAD67-GFP knock-in or PV-tdTomato mice, pharmacological activation of cholinergic receptors with bath application of carbachol increased the firing rate of large (>20 μm diameter) BF GFP+ and PV (tdTomato+) neurons, which exhibited the intrinsic membrane properties of cortically projecting neurons. The excitatory effect of carbachol was blocked by antagonists of M1 and M3 muscarinic receptors in two subpopulations of BF GABAergic neurons [large hyperpolarization-activated cation current (Ih) and small Ih, respectively]. Ion substitution experiments and reversal potential measurements suggested that the carbachol-induced inward current was mediated mainly by sodium-permeable cation channels. Carbachol also increased the frequency of spontaneous excitatory and inhibitory synaptic currents. Furthermore, optogenetic stimulation of cholinergic neurons/fibers caused a mecamylamine- and atropine-sensitive inward current in putative GABAergic neurons. Thus, cortically projecting, BF GABAergic/PV neurons are excited by neighboring BF and/or brainstem cholinergic neurons. Loss of cholinergic neurons in Alzheimer's disease may impair cortical activation, in part, through disfacilitation of BF cortically projecting GABAergic/PV neurons. PMID:24553925
Descending projections from the basal forebrain to the orexin neurons in mice.
Agostinelli, Lindsay J; Ferrari, Loris L; Mahoney, Carrie E; Mochizuki, Takatoshi; Lowell, Bradford B; Arrigoni, Elda; Scammell, Thomas E
2017-05-01
The orexin (hypocretin) neurons play an essential role in promoting arousal, and loss of the orexin neurons results in narcolepsy, a condition characterized by chronic sleepiness and cataplexy. The orexin neurons excite wake-promoting neurons in the basal forebrain (BF), and a reciprocal projection from the BF back to the orexin neurons may help promote arousal and motivation. The BF contains at least three different cell types (cholinergic, glutamatergic, and γ-aminobutyric acid (GABA)ergic neurons) across its different regions (medial septum, diagonal band, magnocellular preoptic area, and substantia innominata). Given the neurochemical and anatomical heterogeneity of the BF, we mapped the pattern of BF projections to the orexin neurons across multiple BF regions and neuronal types. We performed conditional anterograde tracing using mice that express Cre recombinase only in neurons producing acetylcholine, glutamate, or GABA. We found that the orexin neurons are heavily apposed by axon terminals of glutamatergic and GABAergic neurons of the substantia innominata (SI) and magnocellular preoptic area, but there was no innervation by the cholinergic neurons. Channelrhodopsin-assisted circuit mapping (CRACM) demonstrated that glutamatergic SI neurons frequently form functional synapses with the orexin neurons, but, surprisingly, functional synapses from SI GABAergic neurons were rare. Considering their strong reciprocal connections, BF and orexin neurons likely work in concert to promote arousal, motivation, and other behaviors. J. Comp. Neurol. 525:1668-1684, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Miki, Takanori; Kusaka, Takashi; Yokoyama, Toshifumi; Ohta, Ken-ichi; Suzuki, Shingo; Warita, Katsuhiko; Jamal, Mostofa; Wang, Zhi-Yu; Ueki, Masaaki; Liu, Jun-Qian; Yakura, Tomiko; Tamai, Motoki; Sumitani, Kazunori; Hosomi, Naohisa; Takeuchi, Yoshiki
2014-02-01
Alcohol ingestion affects both motor and cognitive functions. One brain system that is influenced by ethanol is the basal forebrain (BF) cholinergic projection system, which projects to diverse neocortical and limbic areas. The BF is associated with memory and cognitive function. Our primary interest is the examination of how regions that receive BF cholinergic projections are influenced by short-term ethanol exposure through alterations in the mRNA levels of neurotrophic factors [nerve growth factor/TrkA, brain-derived neurotrophic factor/TrkB, and glial-derived neurotrophic factor (GDNF)/GDNF family receptor α1]. Male BALB/C mice were fed a liquid diet containing 5 % (v/v) ethanol. Pair-fed control mice were maintained on an identical liquid diet, except that the ethanol was isocalorically substituted with sucrose. Mice exhibiting signs of ethanol intoxication (stages 1-2) were used for real-time reverse transcription-polymerase chain reaction analyses. Among the BF cholinergic projection regions, decreased levels of GDNF mRNA and increased levels of TrkB mRNA were observed in the basal nucleus, and increased levels of TrkB mRNA were observed in the cerebral cortex. There were no significant alterations in the levels of expression of relevant neurotrophic factors in the septal nucleus and hippocampus. Given that neurotrophic factors function in retrograde/anterograde or autocrine/paracrine mechanisms and that BF cholinergic projection regions are neuroanatomically connected, these findings suggested that an imbalanced allocation of neurotrophic factor ligands and receptors is an initial phenomenon in alcohol addiction. The exact mechanisms underlying this phenomenon in the BF cholinergic system are unknown. However, our results provide a novel notion for the understanding of the initial processes in alcohol addiction.
Kalinchuk, Anna V; Porkka-Heiskanen, Tarja; McCarley, Robert W; Basheer, Radhika
2015-01-01
The tight coordination of biochemical and electrophysiological mechanisms underlies the homeostatic sleep pressure (HSP) produced by sleep deprivation (SD). We have reported that during SD the levels of inducible nitric oxide synthase (iNOS), extracellular nitric oxide (NO), adenosine [AD]ex , lactate [Lac]ex and pyruvate [Pyr]ex increase in the basal forebrain (BF). However, it is not clear whether all of them contribute to HSP leading to increased electroencephalogram (EEG) delta activity during non-rapid eye movement (NREM) recovery sleep (RS) following SD. Previously, we showed that NREM delta increase evident during RS depends on the presence of BF cholinergic (ChBF) neurons. Here, we investigated the role of ChBF cells in coordination of biochemical and EEG changes seen during SD and RS in the rat. Increases in low-theta power (5-7 Hz), but not high-theta (7-9 Hz), during SD correlated with the increase in NREM delta power during RS, and with the changes in nitrate/nitrite [NOx ]ex and [AD]ex . Lesions of ChBF cells using IgG 192-saporin prevented increases in [NOx ]ex , [AD]ex and low-theta activity, during SD, but did not prevent increases in [Lac]ex and [Pyr]ex . Infusion of NO donor DETA NONOate into the saporin-treated BF failed to increase NREM RS and delta power, suggesting ChBF cells are important for mediating NO homeostatic effects. Finally, SD-induced iNOS was mostly expressed in ChBF cells, and the intensity of iNOS induction correlated with the increase in low-theta activity. Together, our data indicate ChBF cells are important in regulating the biochemical and EEG mechanisms that contribute to HSP. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Kalinchuk, Anna V.; Porkka-Heiskanen, Tarja; McCarley, Robert W.; Basheer, Radhika
2015-01-01
The tight coordination of biochemical and electrophysiological mechanisms underlies the homeostatic sleep pressure (HSP) produced by sleep deprivation (SD). We have reported that during SD the levels of inducible nitric oxide synthase (iNOS), extracellular nitric oxide (NO), adenosine [AD]ex, lactate [Lac]ex and pyruvate [Pyr]ex increase in the basal forebrain (BF). However, it is not clear whether all of them contribute to HSP leading to increased electroencephalogram (EEG) delta activity during non-rapid eye movement (NREM) recovery sleep (RS) following SD. Previously, we showed that NREM delta increase evident during RS depends on the presence of BF cholinergic (ChBF) neurons. Here, we investigated the role of ChBF cells in coordination of biochemical and EEG changes seen during SD and RS in the rat. Increases in low theta power (5–7Hz), but not high theta (7–9Hz), during SD correlated with the increase in NREM delta power during RS, and with the changes in nitrate/nitrite [NOx]ex and [AD]ex. Lesions of ChBF cells using IgG 192-saporin prevented increases in [NOx]ex, [AD]ex and low theta activity, during SD, but did not prevent increases in [Lac]ex and [Pyr]ex. Infusion of NO donor DETA NONOate into the saporin-treated BF failed to increase NREM RS and delta power, suggesting ChBF cells are important for mediating NO homeostatic effects. Finally, SD-induced iNOS was mostly expressed in ChBF cells, and the intensity of iNOS induction correlated with the increase in low theta activity. Together, our data indicate ChBF cells are important in regulating the biochemical and EEG mechanisms that contribute to HSP. PMID:25369989
Hermanstyne, Tracey O.; Subedi, Kalpana; Le, Wei Wei; Hoffman, Gloria E.; Meredith, Andrea L.; Mong, Jessica A.; Misonou, Hiroaki
2013-01-01
Study Objectives: The basal forebrain (BF) has been implicated as an important brain region that regulates the sleep-wake cycle of animals. Gamma-aminobutyric acidergic (GABAergic) neurons are the most predominant neuronal population within this region. However, due to the lack of specific molecular tools, the roles of the BF GABAergic neurons have not been fully elucidated. Previously, we have found high expression levels of the Kv2.2 voltage-gated potassium channel on approximately 60% of GABAergic neurons in the magnocellular preoptic area and horizontal limb of the diagonal band of Broca of the BF and therefore proposed it as a potential molecular target to study this neuronal population. In this study, we sought to determine the functional roles of the Kv2.2-expressing neurons in the regulation of the sleep-wake cycle. Design: Sleep analysis between two genotypes and within each genotype before and after sleep deprivation. Setting: Animal sleep research laboratory. Participants: Adult mice. Wild-type and Kv2.2 knockout mice with C57/BL6 background. Interventions: EEG/EMG recordings from the basal state and after sleep-deprivation which was induced by mild aggitation for 6 h. Results: Immunostaining of a marker of neuronal activity indicates that these Kv2.2-expressing neurons appear to be preferentially active during the wake state. Therefore, we tested whether Kv2.2-expressing neurons in the BF are involved in arousal using Kv2.2-deficient mice. BF GABAergic neurons exhibited augmented expression of c-Fos. These knockout mice exhibited longer consolidated wake bouts than wild-type littermates, and that phenotype was further exacerbated by sleep deprivation. Moreover, in-depth analyses of their cortical electroencephalogram revealed a significant decrease in the delta-frequency activity during the nonrapid eye movement sleep state. Conclusions: These results revealed the significance of Kv2.2-expressing neurons in the regulation of the sleep-wake cycle. Citation: Hermanstyne TO; Subedi K; Le WW; Hoffman GE; Meredith AL; Mong JA; Misonou H. Kv2.2: a novel molecular target to study the role of basal forebrain GABAergic neurons in the sleep-wake cycle. SLEEP 2013;36(12):1839-1848. PMID:24293758
Atrophy and structural covariance of the cholinergic basal forebrain in primary progressive aphasia.
Teipel, Stefan; Raiser, Theresa; Riedl, Lina; Riederer, Isabelle; Schroeter, Matthias L; Bisenius, Sandrine; Schneider, Anja; Kornhuber, Johannes; Fliessbach, Klaus; Spottke, Annika; Grothe, Michel J; Prudlo, Johannes; Kassubek, Jan; Ludolph, Albert; Landwehrmeyer, Bernhard; Straub, Sarah; Otto, Markus; Danek, Adrian
2016-10-01
Primary progressive aphasia (PPA) is characterized by profound destruction of cortical language areas. Anatomical studies suggest an involvement of cholinergic basal forebrain (BF) in PPA syndromes, particularly in the area of the nucleus subputaminalis (NSP). Here we aimed to determine the pattern of atrophy and structural covariance as a proxy of structural connectivity of BF nuclei in PPA variants. We studied 62 prospectively recruited cases with the clinical diagnosis of PPA and 31 healthy older control participants from the cohort study of the German consortium for frontotemporal lobar degeneration (FTLD). We determined cortical and BF atrophy based on high-resolution magnetic resonance imaging (MRI) scans. Patterns of structural covariance of BF with cortical regions were determined using voxel-based partial least square analysis. We found significant atrophy of total BF and BF subregions in PPA patients compared with controls [F(1, 82) = 20.2, p < .001]. Atrophy was most pronounced in the NSP and the posterior BF, and most severe in the semantic variant and the nonfluent variant of PPA. Structural covariance analysis in healthy controls revealed associations of the BF nuclei, particularly the NSP, with left hemispheric predominant prefrontal, lateral temporal, and parietal cortical areas, including Broca's speech area (p < .001, permutation test). In contrast, the PPA patients showed preserved structural covariance of the BF nuclei mostly with right but not with left hemispheric cortical areas (p < .001, permutation test). Our findings agree with the neuroanatomically proposed involvement of the cholinergic BF, particularly the NSP, in PPA syndromes. We found a shift from a structural covariance of the BF with left hemispheric cortical areas in healthy aging towards right hemispheric cortical areas in PPA, possibly reflecting a consequence of the profound and early destruction of cortical language areas in PPA. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Avila, Irene; Lin, Shih-Chieh
2014-03-01
The survival of animals depends critically on prioritizing responses to motivationally salient stimuli. While it is generally believed that motivational salience increases decision speed, the quantitative relationship between motivational salience and decision speed, measured by reaction time (RT), remains unclear. Here we show that the neural correlate of motivational salience in the basal forebrain (BF), defined independently of RT, is coupled with faster and also more precise decision speed. In rats performing a reward-biased simple RT task, motivational salience was encoded by BF bursting response that occurred before RT. We found that faster RTs were tightly coupled with stronger BF motivational salience signals. Furthermore, the fraction of RT variability reflecting the contribution of intrinsic noise in the decision-making process was actively suppressed in faster RT distributions with stronger BF motivational salience signals. Artificially augmenting the BF motivational salience signal via electrical stimulation led to faster and more precise RTs and supports a causal relationship. Together, these results not only describe for the first time, to our knowledge, the quantitative relationship between motivational salience and faster decision speed, they also reveal the quantitative coupling relationship between motivational salience and more precise RT. Our results further establish the existence of an early and previously unrecognized step in the decision-making process that determines both the RT speed and variability of the entire decision-making process and suggest that this novel decision step is dictated largely by the BF motivational salience signal. Finally, our study raises the hypothesis that the dysregulation of decision speed in conditions such as depression, schizophrenia, and cognitive aging may result from the functional impairment of the motivational salience signal encoded by the poorly understood noncholinergic BF neurons.
McKenna, James T.; Yang, Chun; Franciosi, Serena; Winston, Stuart; Abarr, Kathleen K.; Rigby, Matthew S.; Yanagawa, Yuchio; McCarley, Robert W.; Brown, Ritchie E.
2013-01-01
The basal forebrain (BF) strongly regulates cortical activation, sleep homeostasis, and attention. Many BF neurons involved in these processes are GABAergic, including a subpopulation of projection neurons containing the calcium-binding protein, parvalbumin (PV). However, technical difficulties in identification have prevented a precise mapping of the distribution of GABAergic and GABA/PV+ neurons in the mouse or a determination of their intrinsic membrane properties. Here we used mice expressing fluorescent proteins in GABAergic (GAD67-GFP knock-in mice) or PV+ neurons (PV-Tomato mice) to study these neurons. Immunohistochemical staining for GABA in GAD67-GFP mice confirmed that GFP selectively labeled BF GABAergic neurons. GFP+ neurons and fibers were distributed throughout the BF, with the highest density in the magnocellular preoptic area (MCPO). Immunohistochemistry for PV indicated that the majority of PV+ neurons in the BF were large (>20 μm) or medium-sized (15–20 μm) GFP+ neurons. Most medium and large-sized BF GFP+ neurons, including those retrogradely labeled from the neocortex, were fast-firing and spontaneously active in vitro. They exhibited prominent hyperpolarization-activated inward currents and subthreshold “spikelets,” suggestive of electrical coupling. PV+ neurons recorded in PV-Tomato mice had similar properties but had significantly narrower action potentials and a higher maximal firing frequency. Another population of smaller GFP+ neurons had properties similar to striatal projection neurons. The fast firing and electrical coupling of BF GABA/PV+ neurons, together with their projections to cortical interneurons and the thalamic reticular nucleus, suggest a strong and synchronous control of the neocortical fast rhythms typical of wakefulness and REM sleep. PMID:23254904
Avila, Irene; Lin, Shih-Chieh
2014-01-01
The survival of animals depends critically on prioritizing responses to motivationally salient stimuli. While it is generally believed that motivational salience increases decision speed, the quantitative relationship between motivational salience and decision speed, measured by reaction time (RT), remains unclear. Here we show that the neural correlate of motivational salience in the basal forebrain (BF), defined independently of RT, is coupled with faster and also more precise decision speed. In rats performing a reward-biased simple RT task, motivational salience was encoded by BF bursting response that occurred before RT. We found that faster RTs were tightly coupled with stronger BF motivational salience signals. Furthermore, the fraction of RT variability reflecting the contribution of intrinsic noise in the decision-making process was actively suppressed in faster RT distributions with stronger BF motivational salience signals. Artificially augmenting the BF motivational salience signal via electrical stimulation led to faster and more precise RTs and supports a causal relationship. Together, these results not only describe for the first time, to our knowledge, the quantitative relationship between motivational salience and faster decision speed, they also reveal the quantitative coupling relationship between motivational salience and more precise RT. Our results further establish the existence of an early and previously unrecognized step in the decision-making process that determines both the RT speed and variability of the entire decision-making process and suggest that this novel decision step is dictated largely by the BF motivational salience signal. Finally, our study raises the hypothesis that the dysregulation of decision speed in conditions such as depression, schizophrenia, and cognitive aging may result from the functional impairment of the motivational salience signal encoded by the poorly understood noncholinergic BF neurons. PMID:24642480
The Role Of Basal Forebrain Cholinergic Neurons In Fear and Extinction Memory
Knox, Dayan
2016-01-01
Cholinergic input to the neocortex, dorsal hippocampus (dHipp), and basolateral amygdala (BLA) is critical for neural function and synaptic plasticity in these brain regions. Synaptic plasticity in the neocortex, dHipp, ventral Hipp (vHipp), and BLA has also been implicated in fear and extinction memory. This finding raises the possibility that basal forebrain (BF) cholinergic neurons, the predominant source of acetylcholine in these brain regions, have an important role in mediating fear and extinction memory. While empirical studies support this hypothesis, there are interesting inconsistencies among these studies that raise questions about how best to define the role of BF cholinergic neurons in fear and extinction memory. Nucleus basalis magnocellularis (NBM) cholinergic neurons that project to the BLA are critical for fear memory and contextual fear extinction memory. NBM cholinergic neurons that project to the neocortex are critical for cued and contextual fear conditioned suppression, but are not critical for fear memory in other behavioral paradigms and in the inhibitory avoidance paradigm may even inhibit contextual fear memory formation. Medial septum and diagonal band of Broca cholinergic neurons are critical for contextual fear memory and acquisition of cued fear extinction. Thus, even though the results of previous studies suggest BF cholinergic neurons modulate fear and extinction memory, inconsistent findings among these studies necessitates more research to better define the neural circuits and molecular processes through which BF cholinergic neurons modulate fear and extinction memory. Furthermore, studies determining if BF cholinergic neurons can be manipulated in such a manner so as to treat excessive fear in anxiety disorders are needed. PMID:27264248
Basal forebrain projections to the lateral habenula modulate aggression reward.
Golden, Sam A; Heshmati, Mitra; Flanigan, Meghan; Christoffel, Daniel J; Guise, Kevin; Pfau, Madeline L; Aleyasin, Hossein; Menard, Caroline; Zhang, Hongxing; Hodes, Georgia E; Bregman, Dana; Khibnik, Lena; Tai, Jonathan; Rebusi, Nicole; Krawitz, Brian; Chaudhury, Dipesh; Walsh, Jessica J; Han, Ming-Hu; Shapiro, Matt L; Russo, Scott J
2016-06-30
Maladaptive aggressive behaviour is associated with a number of neuropsychiatric disorders and is thought to result partly from the inappropriate activation of brain reward systems in response to aggressive or violent social stimuli. Nuclei within the ventromedial hypothalamus, extended amygdala and limbic circuits are known to encode initiation of aggression; however, little is known about the neural mechanisms that directly modulate the motivational component of aggressive behaviour. Here we established a mouse model to measure the valence of aggressive inter-male social interaction with a smaller subordinate intruder as reinforcement for the development of conditioned place preference (CPP). Aggressors develop a CPP, whereas non-aggressors develop a conditioned place aversion to the intruder-paired context. Furthermore, we identify a functional GABAergic projection from the basal forebrain (BF) to the lateral habenula (lHb) that bi-directionally controls the valence of aggressive interactions. Circuit-specific silencing of GABAergic BF-lHb terminals of aggressors with halorhodopsin (NpHR3.0) increases lHb neuronal firing and abolishes CPP to the intruder-paired context. Activation of GABAergic BF-lHb terminals of non-aggressors with channelrhodopsin (ChR2) decreases lHb neuronal firing and promotes CPP to the intruder-paired context. Finally, we show that altering inhibitory transmission at BF-lHb terminals does not control the initiation of aggressive behaviour. These results demonstrate that the BF-lHb circuit has a critical role in regulating the valence of inter-male aggressive behaviour and provide novel mechanistic insight into the neural circuits modulating aggression reward processing.
Hermanstyne, Tracey O; Subedi, Kalpana; Le, Wei Wei; Hoffman, Gloria E; Meredith, Andrea L; Mong, Jessica A; Misonou, Hiroaki
2013-12-01
The basal forebrain (BF) has been implicated as an important brain region that regulates the sleep-wake cycle of animals. Gamma-aminobutyric acidergic (GABAergic) neurons are the most predominant neuronal population within this region. However, due to the lack of specific molecular tools, the roles of the BF GABAergic neurons have not been fully elucidated. Previously, we have found high expression levels of the Kv2.2 voltage-gated potassium channel on approximately 60% of GABAergic neurons in the magnocellular preoptic area and horizontal limb of the diagonal band of Broca of the BF and therefore proposed it as a potential molecular target to study this neuronal population. In this study, we sought to determine the functional roles of the Kv2.2-expressing neurons in the regulation of the sleep-wake cycle. Sleep analysis between two genotypes and within each genotype before and after sleep deprivation. Animal sleep research laboratory. Adult mice. Wild-type and Kv2.2 knockout mice with C57/BL6 background. EEG/EMG recordings from the basal state and after sleep-deprivation which was induced by mild agitation for 6 h. Immunostaining of a marker of neuronal activity indicates that these Kv2.2-expressing neurons appear to be preferentially active during the wake state. Therefore, we tested whether Kv2.2-expressing neurons in the BF are involved in arousal using Kv2.2-deficient mice. BF GABAergic neurons exhibited augmented expression of c-Fos. These knockout mice exhibited longer consolidated wake bouts than wild-type littermates, and that phenotype was further exacerbated by sleep deprivation. Moreover, in-depth analyses of their cortical electroencephalogram revealed a significant decrease in the delta-frequency activity during the nonrapid eye movement sleep state. These results revealed the significance of Kv2.2-expressing neurons in the regulation of the sleep-wake cycle.
The role of basal forebrain cholinergic neurons in fear and extinction memory.
Knox, Dayan
2016-09-01
Cholinergic input to the neocortex, dorsal hippocampus (dHipp), and basolateral amygdala (BLA) is critical for neural function and synaptic plasticity in these brain regions. Synaptic plasticity in the neocortex, dHipp, ventral Hipp (vHipp), and BLA has also been implicated in fear and extinction memory. This finding raises the possibility that basal forebrain (BF) cholinergic neurons, the predominant source of acetylcholine in these brain regions, have an important role in mediating fear and extinction memory. While empirical studies support this hypothesis, there are interesting inconsistencies among these studies that raise questions about how best to define the role of BF cholinergic neurons in fear and extinction memory. Nucleus basalis magnocellularis (NBM) cholinergic neurons that project to the BLA are critical for fear memory and contextual fear extinction memory. NBM cholinergic neurons that project to the neocortex are critical for cued and contextual fear conditioned suppression, but are not critical for fear memory in other behavioral paradigms and in the inhibitory avoidance paradigm may even inhibit contextual fear memory formation. Medial septum and diagonal band of Broca cholinergic neurons are critical for contextual fear memory and acquisition of cued fear extinction. Thus, even though the results of previous studies suggest BF cholinergic neurons modulate fear and extinction memory, inconsistent findings among these studies necessitates more research to better define the neural circuits and molecular processes through which BF cholinergic neurons modulate fear and extinction memory. Furthermore, studies determining if BF cholinergic neurons can be manipulated in such a manner so as to treat excessive fear in anxiety disorders are needed. Copyright © 2016 Elsevier Inc. All rights reserved.
Substantia Nigra Volume Loss Before Basal Forebrain Degeneration in Early Parkinson Disease
Ziegler, David A.; Wonderlick, Julien S.; Ashourian, Paymon; Hansen, Leslie A.; Young, Jeremy C.; Murphy, Alex J.; Koppuzha, Cecily K.; Growdon, John H.; Corkin, Suzanne
2017-01-01
Objective To test the hypothesis that degeneration of the substantia nigra pars compacta (SNc) precedes that of the cholinergic basal forebrain (BF) in Parkinson disease (PD) using new multispectral structural magnetic resonance (MR) imaging tools to measure the volumes of the SNc and BF. Design Matched case-control study. Setting The Athinoula A. Martinos Imaging Center at the McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), and the Massachusetts General Hospital/MIT Morris Udall Center of Excellence in Parkinson Disease Research. Patients Participants included 29 patients with PD (Hoehn and Yahr [H&Y] stages 1–3) and 27 matched healthy control subjects. Main Outcome Measures We acquired multiecho T1-weighted, multiecho proton density, T2-weighted, and T2-weighted fluid-attenuated inversion recovery (FLAIR) sequences from each participant. For the SNc, we created a weighted mean of the multiple echoes, yielding a single volume with a high ratio of contrast to noise. We visualized the BF using T2-weighted FLAIR images. For each participant, we manually labeled the 2 structures and calculated their volumes. Results Relative to the controls, 13 patients with H&Y stage 1 PD had significantly decreased SNc volumes. Sixteen patients with H&Y stage 2 or 3 PD showed little additional volume loss. In contrast, the BF volume loss occurred later in the disease, with a significant decrease apparent in patients having H&Y stage 2 or 3 PD compared with the controls and the patients having H&Y stage 1 PD. The latter group did not differ significantly from the controls. Conclusion Our results support the proposed neuropathological trajectory in PD and establish novel multispectral methods as MR imaging biomarkers for tracking the degeneration of the SNc and BF. PMID:23183921
Teipel, Stefan J; Keller, Felix; Thyrian, Jochen R; Strohmaier, Urs; Altiner, Attila; Hoffmann, Wolfgang; Kilimann, Ingo
2017-01-01
Once a patient or a knowledgeable informant has noticed decline in memory or other cognitive functions, initiation of early dementia assessment is recommended. Hippocampus and cholinergic basal forebrain (BF) volumetry supports the detection of prodromal and early stages of Alzheimer's disease (AD) dementia in highly selected patient populations. To compare effect size and diagnostic accuracy of hippocampus and BF volumetry between patients recruited in highly specialized versus primary care and to assess the effect of white matter lesions as a proxy for cerebrovascular comorbidity on diagnostic accuracy. We determined hippocampus and BF volumes and white matter lesion load from MRI scans of 71 participants included in a primary care intervention trial (clinicaltrials.gov identifier: NCT01401582) and matched 71 participants stemming from a memory clinic. Samples included healthy controls and people with mild cognitive impairment (MCI), AD dementia, mixed dementia, and non-AD related dementias. Volumetric measures reached similar effect sizes and cross-validated levels of accuracy in the primary care and the memory clinic samples for the discrimination of AD and mixed dementia cases from healthy controls. In the primary care MCI cases, volumetric measures reached only random guessing levels of accuracy. White matter lesions had only a modest effect on effect size and diagnostic accuracy. Hippocampus and BF volumetry may usefully be employed for the identification of AD and mixed dementia, but the detection of MCI does not benefit from the use of these volumetric markers in a primary care setting.
Effect of a Hypocretin/Orexin Antagonist on Neurocognitive Performance
2012-09-01
cells are more strongly activated by ZOL (Task 4a). Lesions of the basal forebrain (BF), a wakefulness-promoting area, potentiated the hypnotic ...receptor antagonist with a novel mechanism of action that has shown promise as an effective hypnotic . Preclinical data demonstrate that animals...results are consistent with the hypothesis that, although both ALM and ZOL are effective hypnotic medications, rats would show less functional impairment
Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel
2016-01-01
Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated pools of neurons that may modulate specific cortical areas. PMID:27147975
Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel
2016-01-01
Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated pools of neurons that may modulate specific cortical areas.
Sleep and Behavior in Cross-Fostering Rats: Developmental and Sex Aspects.
Santangeli, Olena; Lehtikuja, Henna; Palomäki, Eeva; Wigren, Henna-Kaisa; Paunio, Tiina; Porkka-Heiskanen, Tarja
2016-12-01
Adverse early-life events induce behavioral psychopathologies and sleep changes in adulthood. In order to understand the molecular level mechanisms by which the maltreatment modifies sleep, valid animal models are needed. Changing pups between mothers at early age (cross-fostering) may satisfyingly model adverse events in human childhood. Cross-fostering (CF) was used to model mild early-life stress in male and female Wistar rats. Behavior and BDNF gene expression in the basal forebrain (BF), cortex, and hypothalamus were assessed during adolescence and adulthood. Spontaneous sleep, sleep homeostasis, and BF extracellular adenosine levels were assessed in adulthood. CF rats demonstrated increased number of REM sleep onsets in light and dark periods of the day. Total REM and NREM sleep duration was also increased during the light period. While sleep homeostasis was not severely affected, basal level of adenosine in the BF of both male and female CF rats was lower than in controls. CF did not lead to considerable changes in behavior. Even when the consequences of adverse early-life events are not observed in tests for anxiety and depression, they leave a molecular mark in the brain, which can act as a vulnerability factor for psychopathologies in later life. Sleep is a sensitive indicator for even mild early-life stress. © 2016 Associated Professional Sleep Societies, LLC.
Modeling Parkinson's disease falls associated with brainstem cholinergic systems decline.
Kucinski, Aaron; Sarter, Martin
2015-04-01
In addition to the primary disease-defining symptoms, approximately half of patients with Parkinson's disease (PD) suffer from postural instability, impairments in gait control and a propensity for falls. Consistent with evidence from patients, we previously demonstrated that combined striatal dopamine (DA) and basal forebrain (BF) cholinergic cell loss causes falls in rats traversing dynamic surfaces. Because evidence suggests that degeneration of brainstem cholinergic neurons arising from the pedunculopontine nucleus (PPN) also contributes to impaired gait and falls, here we assessed the effects of selective cholinergic PPN lesions in combination with striatal DA loss or BF cholinergic cells loss as well as losses in all 3 regions. Results indicate that all combination losses that included the BF cholinergic system slowed traversal and increased slips and falls. However, the performance of rats with losses in all 3 regions (PPN, BF, and DA) was not more severely impaired than following combined BF cholinergic and striatal DA lesions. These results confirm the hypothesis that BF cholinergic-striatal disruption of attentional-motor interactions is a primary source of falls. Additional losses of PPN cholinergic neurons may worsen posture and gait control in situations not captured by the current testing conditions. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Kerbler, Georg M.; Nedelska, Zuzana; Fripp, Jurgen; Laczó, Jan; Vyhnalek, Martin; Lisý, Jiří; Hamlin, Adam S.; Rose, Stephen; Hort, Jakub; Coulson, Elizabeth J.
2015-01-01
The basal forebrain degenerates in Alzheimer’s disease (AD) and this process is believed to contribute to the cognitive decline observed in AD patients. Impairment in spatial navigation is an early feature of the disease but whether basal forebrain dysfunction in AD is responsible for the impaired navigation skills of AD patients is not known. Our objective was to investigate the relationship between basal forebrain volume and performance in real space as well as computer-based navigation paradigms in an elderly cohort comprising cognitively normal controls, subjects with amnestic mild cognitive impairment and those with AD. We also tested whether basal forebrain volume could predict the participants’ ability to perform allocentric- vs. egocentric-based navigation tasks. The basal forebrain volume was calculated from 1.5 T magnetic resonance imaging (MRI) scans, and navigation skills were assessed using the human analog of the Morris water maze employing allocentric, egocentric, and mixed allo/egocentric real space as well as computerized tests. When considering the entire sample, we found that basal forebrain volume correlated with spatial accuracy in allocentric (cued) and mixed allo/egocentric navigation tasks but not the egocentric (uncued) task, demonstrating an important role of the basal forebrain in mediating cue-based spatial navigation capacity. Regression analysis revealed that, although hippocampal volume reflected navigation performance across the entire sample, basal forebrain volume contributed to mixed allo/egocentric navigation performance in the AD group, whereas hippocampal volume did not. This suggests that atrophy of the basal forebrain contributes to aspects of navigation impairment in AD that are independent of hippocampal atrophy. PMID:26441643
Lelkes, Zoltán; Abdurakhmanova, Shamsiiat; Porkka-Heiskanen, Tarja
2017-09-18
The cholinergic basal forebrain contributes to cortical activation and receives rich innervations from the ascending activating system. It is involved in the mediation of the arousing actions of noradrenaline and histamine. Glutamatergic stimulation in the basal forebrain results in cortical acetylcholine release and suppression of sleep. However, it is not known to what extent the cholinergic versus non-cholinergic basal forebrain projection neurones contribute to the arousing action of glutamate. To clarify this question, we administered N-methyl-D-aspartate (NMDA), a glutamate agonist, into the basal forebrain in intact rats and after destruction of the cholinergic cells in the basal forebrain with 192 immunoglobulin (Ig)G-saporin. In eight Han-Wistar rats with implanted electroencephalogram/electromyogram (EEG/EMG) electrodes and guide cannulas for microdialysis probes, 0.23 μg 192 IgG-saporin was administered into the basal forebrain, while the eight control animals received artificial cerebrospinal fluid. Two weeks later, a microdialysis probe targeted into the basal forebrain was perfused with cerebrospinal fluid on the baseline day and for 3 h with 0.3 mmNMDA on the subsequent day. Sleep-wake activity was recorded for 24 h on both days. NMDA exhibited a robust arousing effect in both the intact and the lesioned rats. Wakefulness was increased and both non-REM and REM sleep were decreased significantly during the 3-h NMDA perfusion. Destruction of the basal forebrain cholinergic neurones did not abolish the wake-enhancing action of NMDA. Thus, the cholinergic basal forebrain structures are not essential for the mediation of the arousing action of glutamate. © 2017 European Sleep Research Society.
Grothe, Michel; Heinsen, Helmut; Teipel, Stefan J.
2013-01-01
Background The basal forebrain cholinergic system (BFCS) is known to undergo moderate neurodegenerative changes during normal aging as well as severe atrophy in Alzheimer´s disease (AD). However, there is a controversy on how the cholinergic lesion in AD relates to early and incipient stages of the disease. In-vivo imaging studies on the structural integrity of the BFCS in normal and pathological aging are still rare. Methods We applied automated morphometry techniques in combination with high-dimensional image warping and a cytoarchitectonic map of BF cholinergic nuclei to a large cross-sectional dataset of high-resolution MRI scans, covering the whole adult age-range (20–94 years; N=211) as well as patients with very mild AD (vmAD; CDR=0.5; N=69) and clinically manifest AD (AD; CDR=1; N=28). For comparison, we investigated hippocampus volume using automated volumetry. Results Volume of the BFCS declined from early adulthood on and atrophy aggravated in advanced age. Volume reductions in vmAD were most pronounced in posterior parts of the nucleus basalis Meynert, while in AD atrophy was more extensive and included the whole BFCS. In clinically manifest AD, the diagnostic accuracy of BFCS volume reached the diagnostic accuracy of hippocampus volume. Conclusions Our findings indicate that cholinergic degeneration in AD occurs against a background of age-related atrophy and that exacerbated atrophy in AD can be detected at earliest stages of cognitive impairment. Automated in-vivo morphometry of the BFCS may become a useful tool to assess BF cholinergic degeneration in normal and pathological aging. PMID:21816388
Zhai, Qian; Lai, Dengming; Cui, Ping; Zhou, Rui; Chen, Qixing; Hou, Jinchao; Su, Yunting; Pan, Libiao; Ye, Hui; Zhao, Jing-Wei; Fang, Xiangming
2017-10-01
Basal forebrain cholinergic neurons are proposed as a major neuromodulatory system in inflammatory modulation. However, the function of basal forebrain cholinergic neurons in sepsis is unknown, and the neural pathways underlying cholinergic anti-inflammation remain unexplored. Animal research. University research laboratory. Male wild-type C57BL/6 mice and ChAT-ChR2-EYFP (ChAT) transgenic mice. The cholinergic neuronal activity of the basal forebrain was manipulated optogenetically. Cecal ligation and puncture was produced to induce sepsis. Left cervical vagotomy and 6-hydroxydopamine injection to the spleen were used. Photostimulation of basal forebrain cholinergic neurons induced a significant decrease in the levels of tumor necrosis factor-α and interleukin-6 in the serum and spleen. When cecal ligation and puncture was combined with left cervical vagotomy in photostimulated ChAT mice, these reductions in tumor necrosis factor-α and interleukin-6 were partly reversed. Furthermore, photostimulating basal forebrain cholinergic neurons induced a large increase in c-Fos expression in the basal forebrain, the dorsal motor nucleus of the vagus, and the ventral part of the solitary nucleus. Among them, 35.2% were tyrosine hydroxylase positive neurons. Furthermore, chemical denervation showed that dopaminergic neurotransmission to the spleen is indispensable for the anti-inflammation. These results are the first to demonstrate that selectively activating basal forebrain cholinergic neurons is sufficient to attenuate systemic inflammation in sepsis. Specifically, photostimulation of basal forebrain cholinergic neurons activated dopaminergic neurons in dorsal motor nucleus of the vagus/ventral part of the solitary nucleus, and this dopaminergic efferent signal was further transmitted by the vagus nerve to the spleen. This cholinergic-to-dopaminergic neural circuitry, connecting central cholinergic neurons to the peripheral organ, might have mediated the anti-inflammatory effect in sepsis.
Cykowski, Matthew D; Takei, Hidehiro; Van Eldik, Linda J; Schmitt, Frederick A; Jicha, Gregory A; Powell, Suzanne Z; Nelson, Peter T
2016-05-01
Transactivating responsive sequence (TAR) DNA-binding protein 43-kDa (TDP-43) pathology has been described in various brain diseases, but the full anatomical distribution and clinical and biological implications of that pathology are incompletely characterized. Here, we describe TDP-43 neuropathology in the basal forebrain, hypothalamus, and adjacent nuclei in 98 individuals (mean age, 86 years; median final mini-mental state examination score, 27). On examination blinded to clinical and pathologic diagnoses, we identified TDP-43 pathology that most frequently involved the ventromedial basal forebrain in 19 individuals (19.4%). As expected, many of these brains had comorbid pathologies including those of Alzheimer disease (AD), Lewy body disease (LBD), and/or hippocampal sclerosis of aging (HS-Aging). The basal forebrain TDP-43 pathology was strongly associated with comorbid HS-Aging (odds ratio = 6.8, p = 0.001), whereas there was no significant association between basal forebrain TDP-43 pathology and either AD or LBD neuropathology. In this sample, there were some cases with apparent preclinical TDP-43 pathology in the basal forebrain that may indicate that this is an early affected area in HS-Aging. We conclude that TDP-43 pathology in the basal forebrain is strongly associated with HS-Aging. These results raise questions about a specific pathogenetic relationship between basal forebrain TDP-43 and non-HS-Aging comorbid diseases (AD and LBD). © 2016 American Association of Neuropathologists, Inc. All rights reserved.
Takei, Hidehiro; Van Eldik, Linda J.; Schmitt, Frederick A.; Jicha, Gregory A.; Powell, Suzanne Z.; Nelson, Peter T.
2016-01-01
Transactivating responsive sequence (TAR) DNA-binding protein 43-kDa (TDP-43) pathology has been described in various brain diseases, but the full anatomical distribution and clinical and biological implications of that pathology are incompletely characterized. Here, we describe TDP-43 neuropathology in the basal forebrain, hypothalamus, and adjacent nuclei in 98 individuals (mean age, 86 years; median final mini-mental state examination score, 27). On examination blinded to clinical and pathologic diagnoses, we identified TDP-43 pathology that most frequently involved the ventromedial basal forebrain in 19 individuals (19.4%). As expected, many of these brains had comorbid pathologies including those of Alzheimer disease (AD), Lewy body disease (LBD), and/or hippocampal sclerosis of aging (HS-Aging). The basal forebrain TDP-43 pathology was strongly associated with comorbid HS-Aging (odds ratio = 6.8, p = 0.001), whereas there was no significant association between basal forebrain TDP-43 pathology and either AD or LBD neuropathology. In this sample, there were some cases with apparent preclinical TDP-43 pathology in the basal forebrain that may indicate that this is an early affected area in HS-Aging. We conclude that TDP-43 pathology in the basal forebrain is strongly associated with HS-Aging. These results raise questions about a specific pathogenetic relationship between basal forebrain TDP-43 and non-HS-Aging comorbid diseases (AD and LBD). PMID:26971127
Basal Forebrain Gating by Somatostatin Neurons Drives Prefrontal Cortical Activity.
Espinosa, Nelson; Alonso, Alejandra; Morales, Cristian; Espinosa, Pedro; Chávez, Andrés E; Fuentealba, Pablo
2017-11-17
The basal forebrain provides modulatory input to the cortex regulating brain states and cognitive processing. Somatostatin-expressing neurons constitute a heterogeneous GABAergic population known to functionally inhibit basal forebrain cortically projecting cells thus favoring sleep and cortical synchronization. However, it remains unclear if somatostatin cells can regulate population activity patterns in the basal forebrain and modulate cortical dynamics. Here, we demonstrate that somatostatin neurons regulate the corticopetal synaptic output of the basal forebrain impinging on cortical activity and behavior. Optogenetic inactivation of somatostatin neurons in vivo rapidly modified neural activity in the basal forebrain, with the consequent enhancement and desynchronization of activity in the prefrontal cortex, reflected in both neuronal spiking and network oscillations. Cortical activation was partially dependent on cholinergic transmission, suppressing slow waves and potentiating gamma oscillations. In addition, recruitment dynamics was cell type-specific, with interneurons showing similar temporal profiles, but stronger responses than pyramidal cells. Finally, optogenetic stimulation of quiescent animals during resting periods prompted locomotor activity, suggesting generalized cortical activation and increased arousal. Altogether, we provide physiological and behavioral evidence indicating that somatostatin neurons are pivotal in gating the synaptic output of the basal forebrain, thus indirectly controlling cortical operations via both cholinergic and non-cholinergic mechanisms. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ferreira, G; Meurisse, M; Tillet, Y; Lévy, F
2001-01-01
The basal forebrain cholinergic system is involved in different forms of memory. To study its role in social memory in sheep, an immunotoxin, ME20.4 immunoglobulin G (IgG)-saporin, was developed that is specific to basal forebrain cholinergic neurons bearing the p75 neurotrophin receptor. The distribution of sheep cholinergic neurons was mapped with an antibody against choline acetyltransferase. To assess the localization of the p75 receptor on basal forebrain cholinergic neurons, the distribution of p75 receptor-immunoreactive neurons with ME20.4 IgG was examined, and a double-labeling study with antibodies against choline acetyltransferase and p75 receptor was undertaken. The loss of basal forebrain cholinergic neurons and acetylcholinesterase fibers in basal forebrain projection areas was assessed in ewes that had received intracerebroventricular injections of the immunotoxin (50, 100 or 150 microg) alone, as well as, in some of the ewes treated with the highest dose, with bilateral immunotoxin injections in the nucleus basalis (11 microg/side). Results indicated that choline acetyltransferase- and p75 receptor-immunoreactive cells had similar distributions in the medial septum, the vertical and horizontal limbs of the band of Broca, and the nucleus basalis. The double-labeling procedure revealed that 100% of the cholinergic neurons are also p75 receptor positive in the medial septum and in the vertical and horizontal limbs of the band of Broca, and 82% in the nucleus basalis. Moreover, 100% of the p75 receptor-immunoreactive cells of these four nuclei were cholinergic. Combined immunotoxin injections into ventricles and the nucleus basalis produced a near complete loss (80-95%) of basal forebrain cholinergic neurons and acetylcholinesterase-positive fibers in the hippocampus, olfactory bulb and entorhinal cortex. This study provides the first anatomical data concerning the basal forebrain cholinergic system in ungulates. The availability of a selective cholinergic immunotoxin effective in sheep provides a new tool to probe the involvement of basal forebrain cholinergic neurons in cognitive processes in this species.
1993-05-28
1993 Dissertation and Abstract Approved: Commit tee Chairperson . ,a..w ember ~tee Member tli:u., ;2 9" PQ3 bate Date bate The author...1982; Mesulam et al., 1983; Rye et al., 1984; Saper, 1984). I will refer to the region of the basal forebrain that supplies cholinergic innervation to...topographical organization has been observed for cholinergic projection patterns, with more rostral and medial basal forebrain cell groups supplying
Zhang, Ying; Cao, Shu-Xia; Sun, Peng; He, Hai-Yang; Yang, Ci-Hang; Chen, Xiao-Juan; Shen, Chen-Jie; Wang, Xiao-Dong; Chen, Zhong; Berg, Darwin K; Duan, Shumin; Li, Xiao-Ming
2016-01-01
Mutations in the X-linked MECP2 gene cause Rett syndrome (RTT), an autism spectrum disorder characterized by impaired social interactions, motor abnormalities, cognitive defects and a high risk of epilepsy. Here, we showed that conditional deletion of Mecp2 in cholinergic neurons caused part of RTT-like phenotypes, which could be rescued by re-expressing Mecp2 in the basal forebrain (BF) cholinergic neurons rather than in the caudate putamen of conditional knockout (Chat-Mecp2−/y) mice. We found that choline acetyltransferase expression was decreased in the BF and that α7 nicotine acetylcholine receptor signaling was strongly impaired in the hippocampus of Chat-Mecp2−/y mice, which is sufficient to produce neuronal hyperexcitation and increase seizure susceptibility. Application of PNU282987 or nicotine in the hippocampus rescued these phenotypes in Chat-Mecp2−/y mice. Taken together, our findings suggest that MeCP2 is critical for normal function of cholinergic neurons and dysfunction of cholinergic neurons can contribute to numerous neuropsychiatric phenotypes. PMID:27103432
Zhang, Ying; Cao, Shu-Xia; Sun, Peng; He, Hai-Yang; Yang, Ci-Hang; Chen, Xiao-Juan; Shen, Chen-Jie; Wang, Xiao-Dong; Chen, Zhong; Berg, Darwin K; Duan, Shumin; Li, Xiao-Ming
2016-06-01
Mutations in the X-linked MECP2 gene cause Rett syndrome (RTT), an autism spectrum disorder characterized by impaired social interactions, motor abnormalities, cognitive defects and a high risk of epilepsy. Here, we showed that conditional deletion of Mecp2 in cholinergic neurons caused part of RTT-like phenotypes, which could be rescued by re-expressing Mecp2 in the basal forebrain (BF) cholinergic neurons rather than in the caudate putamen of conditional knockout (Chat-Mecp2(-/y)) mice. We found that choline acetyltransferase expression was decreased in the BF and that α7 nicotine acetylcholine receptor signaling was strongly impaired in the hippocampus of Chat-Mecp2(-/y) mice, which is sufficient to produce neuronal hyperexcitation and increase seizure susceptibility. Application of PNU282987 or nicotine in the hippocampus rescued these phenotypes in Chat-Mecp2(-/y) mice. Taken together, our findings suggest that MeCP2 is critical for normal function of cholinergic neurons and dysfunction of cholinergic neurons can contribute to numerous neuropsychiatric phenotypes.
Myer, Catherine E; Bryant, Deborah; DeLuca, John; Gluck, Mark A
2002-01-01
In humans, anterograde amnesia can result from damage to the medial temporal (MT) lobes (including hippocampus), as well as to other brain areas such as basal forebrain. Results from animal classical conditioning studies suggest that there may be qualitative differences in the memory impairment following MT vs. basal forebrain damage. Specifically, delay eyeblink conditioning is spared after MT damage in animals and humans, but impaired in animals with basal forebrain damage. Recently, we have likewise shown delay eyeblink conditioning impairment in humans with amnesia following anterior communicating artery (ACoA) aneurysm rupture, which damages the basal forebrain. Another associative learning task, a computer-based concurrent visual discrimination, also appears to be spared in MT amnesia while ACoA amnesics are slower to learn the discriminations. Conversely, animal and computational models suggest that, even though MT amnesics may learn quickly, they may learn qualitatively differently from controls, and these differences may result in impaired transfer when familiar information is presented in novel combinations. Our initial data suggests such a two-phase learning and transfer task may provide a double dissociation between MT amnesics (spared initial learning but impaired transfer) and ACoA amnesics (slow initial learning but spared transfer). Together, these emerging data suggest that there are subtle but dissociable differences in the amnesic syndrome following damage to the MT lobes vs. basal forebrain, and that these differences may be most visible in non-declarative tasks such as eyeblink classical conditioning and simple associative learning.
Reiner, Anton; Del Mar, Nobel; Zagvazdin, Yuri; Li, Chunyan; Fitzgerald, Malinda E C
2011-09-14
Choroidal vessels compensate for changes in systemic blood pressure (BP) so that choroidal blood flow (ChBF) remains stable over a BP range of approximately 40 mm Hg above and below basal. Because of the presumed importance of ChBF regulation for maintenance of retinal health, we investigated if ChBF compensation for BP fluctuation in pigeons fails with age. Transcleral laser Doppler flowmetry was used to measure ChBF during spontaneous BP fluctuation in anesthetized pigeons ranging in age from 0.5 to 17 years (pigeons can live approximately 20 years in captivity). ChBF in <8-year-old pigeons remained near 100% of basal ChBF at BPs ranging 40 mm Hg above and below basal BP (95 mm Hg). Baroregulation failed below approximately 50 mm Hg BP. In ≥8-year-old pigeons, ChBF compensation was absent at >90 mm Hg BP, with ChBF linearly following BP. Over the 60 to 90 mm Hg range, ChBF in ≥8-year-old pigeons was maintained at 60-70% of young basal ChBF. Below approximately 55 mm Hg, baroregulation again followed BP linearly. Age-related ChBF baroregulatory impairment occurs in pigeons, with ChBF linear with above-basal BP, and ChBF failing to adequately maintain ChBF during below-basal BP. Defective autonomic sympathetic and parasympathetic neurogenic control, or defective myogenic control, may cause these baroregulatory defects. In either case, overperfusion during high BP may cause oxidative injury to the outer retina, whereas underperfusion during low BP may result in deficient nutrient supply and waste removal, with both abnormalities contributing to age-related retinal pathology and vision loss.
Task-phase-specific dynamics of basal forebrain neuronal ensembles
Tingley, David; Alexander, Andrew S.; Kolbu, Sean; de Sa, Virginia R.; Chiba, Andrea A.; Nitz, Douglas A.
2014-01-01
Cortically projecting basal forebrain neurons play a critical role in learning and attention, and their degeneration accompanies age-related impairments in cognition. Despite the impressive anatomical and cell-type complexity of this system, currently available data suggest that basal forebrain neurons lack complexity in their response fields, with activity primarily reflecting only macro-level brain states such as sleep and wake, onset of relevant stimuli and/or reward obtainment. The current study examined the spiking activity of basal forebrain neuron populations across multiple phases of a selective attention task, addressing, in particular, the issue of complexity in ensemble firing patterns across time. Clustering techniques applied to the full population revealed a large number of distinct categories of task-phase-specific activity patterns. Unique population firing-rate vectors defined each task phase and most categories of task-phase-specific firing had counterparts with opposing firing patterns. An analogous set of task-phase-specific firing patterns was also observed in a population of posterior parietal cortex neurons. Thus, consistent with the known anatomical complexity, basal forebrain population dynamics are capable of differentially modulating their cortical targets according to the unique sets of environmental stimuli, motor requirements, and cognitive processes associated with different task phases. PMID:25309352
Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok
2016-01-01
Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by ¹⁸F-2-fluoro-2-deoxyglucose positron emission tomography. During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.
Hur, E E; Edwards, R H; Rommer, E; Zaborszky, L
2009-12-29
The basal forebrain (BF) comprises morphologically and functionally heterogeneous cell populations, including cholinergic and non-cholinergic corticopetal neurons that are implicated in sleep-wake modulation, learning, memory and attention. Several studies suggest that glutamate may be among inputs affecting cholinergic corticopetal neurons but such inputs have not been demonstrated unequivocally. We examined glutamatergic axon terminals in the sublenticular substantia innominata in rats using double-immunolabeling for vesicular glutamate transporters (Vglut1 and Vglut2) and choline acetyltransferase (ChAT) at the electron microscopic level. In a total surface area of 30,000 microm(2), we classified the pre- and postsynaptic elements of 813 synaptic boutons. Vglut1 and Vglut2 boutons synapsed with cholinergic dendrites, and occasionally Vglut2 axon terminals also synapsed with cholinergic cell bodies. Vglut1 terminals formed synapses with unlabeled dendrites and spines with equal frequency, while Vglut2 boutons were mainly in synaptic contact with unlabeled dendritic shafts and occasionally with unlabeled spines. In general, Vglut1 boutons contacted more distal dendritic compartments than Vglut2 boutons. About 21% of all synaptic boutons (n=347) detected in tissue that was stained for Vglut1 and ChAT were positive for Vglut1, and 14% of the Vglut1 synapses were made on cholinergic profiles. From separate cases stained for Vglut2 and ChAT, 35% of all synaptic boutons (n=466) were positive for Vglut2, and 23% of the Vglut2 synapses were made on cholinergic profiles. On average, Vglut1 boutons were significantly smaller than Vglut2 synaptic boutons. The Vglut2 boutons that synapsed cholinergic profiles tended to be larger than the Vglut2 boutons that contacted unlabeled, non-cholinergic postsynaptic profiles. The presence of two different subtypes of Vgluts, the size differences of the Vglut synaptic boutons, and their preference for different postsynaptic targets suggest that the action of glutamate on BF neurons is complex and may arise from multiple afferent sources.
Hur, Elizabeth E.; Edwards, Robert H.; Rommer, Erzsebet; Zaborszky, Laszlo
2009-01-01
The basal forebrain (BF) comprises morphologically and functionally heterogeneous cell populations, including cholinergic and non-cholinergic corticopetal neurons that are implicated in sleep-wake modulation, learning, memory and attention. Several studies suggest that glutamate may be among inputs affecting cholinergic corticopetal neurons but such inputs have not been demonstrated unequivocally. We examined glutamatergic axon terminals in the sublenticular substantia innominata in rats using double-immunolabeling for vesicular glutamate transporters (Vglut1 and Vglut2) and choline acetyltransferase (ChAT) at the electron microscopic level. In a total surface area of 30,000 μm2, we classified the pre- and postsynaptic elements of 813 synaptic boutons. Vglut1 and Vglut2 boutons synapsed with cholinergic dendrites, and occasionally Vglut2 axon terminals also synapsed with cholinergic cell bodies. Vglut1 terminals formed synapses with unlabeled dendrites and spines with equal frequency, while Vglut2 boutons were mainly in synaptic contact with unlabeled dendritic shafts and occasionally with unlabeled spines. In general, Vglut1 boutons contacted more distal dendritic compartments than Vglut2 boutons. About 21% of all synaptic boutons (n=347) detected in tissue that was stained for Vglut1 and ChAT were positive for Vglut1, and 14% of the Vglut1 synapses were made on cholinergic profiles. From separate cases stained for Vglut2 and ChAT, 35% of all synaptic boutons (n=466) were positive for Vglut2, and 23% of the Vglut2 synapses were made on cholinergic profiles. On average, Vglut1 boutons were significantly smaller than Vglut2 synaptic boutons. The Vglut2 boutons that synapsed cholinergic profiles tended to be larger than the Vglut2 boutons that contacted unlabeled, non-cholinergic postsynaptic profiles. The presence of two different subtypes of Vgluts, the size differences of the Vglut synaptic boutons, and their preference for different postsynaptic targets suggest that the action of glutamate on BF neurons is complex and may arise from multiple afferent sources. PMID:19778580
Uchida, Sae; Kagitani, Fusako
2017-05-12
The olfactory bulb receives cholinergic basal forebrain input, as does the neocortex; however, the in vivo physiological functions regarding the release of extracellular acetylcholine and regulation of regional blood flow in the olfactory bulb are unclear. We used in vivo microdialysis to measure the extracellular acetylcholine levels in the olfactory bulb of urethane-anesthetized rats. Focal chemical stimulation by microinjection of L-glutamate into the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain, which is the main source of cholinergic input to the olfactory bulb, increased extracellular acetylcholine release in the ipsilateral olfactory bulb. When the regional cerebral blood flow was measured using laser speckle contrast imaging, the focal chemical stimulation of the HDB did not significantly alter the blood flow in the olfactory bulb, while increases were observed in the neocortex. Our results suggest a functional difference between the olfactory bulb and neocortex regarding cerebral blood flow regulation through the release of acetylcholine by cholinergic basal forebrain input.
Vu, Michael T.; Du, Guizhi; Bayliss, Douglas A.
2015-01-01
Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K+ (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K+ current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASKf/f mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30–50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30–50 Hz activity in ChAT-Cre:TASKf/f mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. SIGNIFICANCE STATEMENT Attentive states and cognitive function are associated with the generation of γ EEG activity. Basal forebrain cholinergic neurons are important modulators of cortical arousal and γ activity, and in this study we investigated the mechanism by which these neurons are activated by the wake-active neurotransmitter histamine. We found that histamine inhibited a class of K+ leak channels called TASK channels and that deletion of TASK channels selectively on cholinergic neurons modulated baseline EEG activity as well as histamine-induced changes in γ activity. By identifying a discrete brain circuit where TASK channels can influence γ activity, these results represent new knowledge that enhances our understanding of how subcortical arousal systems may contribute to the generation of attentive states. PMID:26446210
Bañuelos, C.; LaSarge, C. L.; McQuail, J. A.; Hartman, J. J.; Gilbert, R. J.; Ormerod, B. K.; Bizon, J. L.
2013-01-01
Both cholinergic and GABAergic projections from the rostral basal forebrain have been implicated in hippocampal function and mnemonic abilities. While dysfunction of cholinergic neurons has been heavily implicated in age-related memory decline, significantly less is known regarding how age-related changes in co-distributed GABAergic projection neurons contribute to a decline in hippocampal-dependent spatial learning. In the current study, confocal stereology was used to quantify cholinergic (choline acetyltransferase (ChAT) immunopositive) neurons, GABAergic projection (glutamic decarboxylase 67 (GAD67) immunopositive) neurons, and total (NeuN immunopositive) neurons in the rostral basal forebrain of young and aged rats that were first characterized on a spatial learning task. ChAT immunopositive neurons were significantly but modestly reduced in aged rats. Although ChAT immunopositive neuron number was strongly correlated with spatial learning abilities among young rats, the reduction of ChAT immunopositive neurons was not associated with impaired spatial learning in aged rats. In contrast, the number of GAD67 immunopositive neurons was robustly and selectively elevated in aged rats that exhibited impaired spatial learning. Interestingly, the total number of rostral basal forebrain neurons was comparable in young and aged rats, regardless of their cognitive status. These data demonstrate differential effects of age on phenotypically distinct rostral basal forebrain projection neurons, and implicate dysregulated cholinergic and GABAergic septohippocampal circuitry in age-related mnemonic decline. PMID:22817834
Baxter, Mark G; Bucci, David J
2013-10-01
The advent of the selective cholinergic toxin, 192 IgG-saporin, dramatically shaped subsequent research on the role of the basal forebrain in learning and memory. In particular, several articles (including the authors' 1995 Behavioral Neuroscience paper; M. G. Baxter, D. J. Bucci, L. K., Gorman, R. G. Wiley, & M. Gallagher, 1995) revealed that selective removal of basal forebrain cholinergic neurons had surprisingly little effect on spatial learning and memory. Here, as part of the series commemorating the 30th anniversary of Behavioral Neuroscience, we describe how our earlier findings prompted a reconsideration of the cholinergic contribution to cognitive function and also led to several new research directions, including renewed interest in basal forebrain GABA-ergic neurons and cholinergic contributions to neurocognitive development. The authors also describe how the successful use of 192 IgG-saporin led to the development and popularity of a wide range of selective new neurotoxic agents. Finally, they consider the utility of the permanent lesion approach in the wake of new transgenic and optogenetic methods. 2013 APA, all rights reserved
Kang, Jun Il; Groleau, Marianne; Dotigny, Florence; Giguère, Hugo; Vaucher, Elvire
2014-07-01
The cholinergic afferents from the basal forebrain to the primary visual cortex play a key role in visual attention and cortical plasticity. These afferent fibers modulate acute and long-term responses of visual neurons to specific stimuli. The present study evaluates whether this cholinergic modulation of visual neurons results in cortical activity and visual perception changes. Awake adult rats were exposed repeatedly for 2 weeks to an orientation-specific grating with or without coupling this visual stimulation to an electrical stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze before and after the exposure to the orientation-specific grating, was increased in the group of trained rats with simultaneous basal forebrain/visual stimulation. The increase in visual acuity was not observed when visual training or basal forebrain stimulation was performed separately or when cholinergic fibers were selectively lesioned prior to the visual stimulation. The visual evoked potentials show a long-lasting increase in cortical reactivity of the primary visual cortex after coupled visual/cholinergic stimulation, as well as c-Fos immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with visual training, the cholinergic system improves visual performance for the trained orientation probably through enhancement of attentional processes and cortical plasticity in V1 related to the ratio of excitatory/inhibitory inputs. This study opens the possibility of establishing efficient rehabilitation strategies for facilitating visual capacity.
Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory
ERIC Educational Resources Information Center
Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.
2004-01-01
A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…
ERP-based detection of brain pathology in rat models for preclinical Alzheimer's disease
NASA Astrophysics Data System (ADS)
Nouriziabari, Seyed Berdia
Early pathological features of Alzheimer's disease (AD) include the accumulation of hyperphosphorylated tau protein (HP-tau) in the entorhinal cortex and progressive loss of basal forebrain (BF) cholinergic neurons. These pathologies are known to remain asymptomatic for many years before AD is clinically diagnosed; however, they may induce aberrant brain processing which can be captured as an abnormality in event-related potentials (ERPs). Here, we examined cortical ERPs while a differential associative learning paradigm was applied to adult male rats with entorhinal HP-tau, pharmacological blockade of muscarinic acetylcholine receptors, or both conditions. Despite no impairment in differential associative and reversal learning, each pathological feature induced distinct abnormality in cortical ERPs to an extent that was sufficient for machine classifiers to accurately detect a specific type of pathology based on these ERP features. These results highlight a potential use of ERPs during differential associative learning as a biomarker for asymptomatic AD pathology.
Cholinergic Inputs from Basal Forebrain Add an Excitatory Bias to Odor Coding in the Olfactory Bulb
Rothermel, Markus; Carey, Ryan M.; Puche, Adam; Shipley, Michael T.
2014-01-01
Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment. PMID:24672011
Depboylu, Candan; Weihe, Eberhard; Eiden, Lee E.
2011-01-01
The simian immunodeficiency virus (SIV) macaque model resembles human HIV-AIDS and associated brain dysfunction. Altered expression of synaptic markers and transmitters in neuro-AIDS has been reported, but limited data exist for the cholinergic system and lipid mediators such as prostaglandins. Here, we analyzed cholinergic basal forebrain neurons with their telencephalic projections and the rate-limiting enzymes for prostaglandin synthesis, cyclooxygenases 1 and 2 (COX1 and 2) in brains of SIV-infected macaques with and without encephalitis and antiretroviral therapy, and uninfected controls. COX1 but not COX2 was co-expressed with markers of cholinergic phenotype, i.e. choline acetyltransferase and vesicular acetylcholine transporter (VAChT), in basal forebrain neurons of monkey, as well as human samples. COX1 was decreased in basal forebrain neurons in macaques with AIDS vs. uninfected and asymptomatic SIV-infected macaques. VAChT-positive fiber density was reduced in frontal, parietal and hippocampal-entorhinal cortex. Although brain SIV burden and associated COX1- and COX2-positive mononuclear and endothelial inflammatory reactions were mostly reversed in AIDS-diseased macaques that received 6-chloro-2′,3′-dideoxyguanosine treatment, decreased VAChT-positive terminal density and reduced cholinergic COX1 expression were not. Thus, COX1 expression is a feature of primate cholinergic basal forebrain neurons; it may be functionally important and a critical biomarker of cholinergic dysregulation accompanying lentiviral encephalopathy. These results imply that insufficiently prompt initiation of antiretroviral therapy in lentiviral infection may lead to neurostructurally unremarkable but neurochemically prominent, irreversible brain damage. PMID:22157616
Ouchi, Y; Kakiuchi, T; Okada, H; Nishiyama, S; Tsukada, H
1999-03-15
To evaluate the effect of aniracetam, a potent modulator of the glutamatergic and cholinergic systems, on the altered cerebral glucose metabolism after lesioning of the basal forebrain, we measured the cerebral metabolic rate of glucose (CMRGlc) with positron emission tomography and the choline acetyltransferase (ChAT) activity in the frontal cortex of the lesioned rats after treating them with aniracetam. Continuous administration of aniracetam for 7 days after the surgery prevented CMRGlc reduction in the frontal cortex ipsilateral to the lesion while the lesioned rats without aniracetam showed significant CMRGlc reduction in the frontal cortex. The level of CMRGlc in the lesion-side basal forebrain was lower in all rats regardless of the aniracetam treatment. Biochemical studies showed that aniracetam did not alter the reduction in the frontal ChAT activity. These results showed that aniracetam prevents glucose metabolic reduction in the cholinergically denervated frontal cortex with little effect on the cortical cholinergic system. The present study suggested that a neurotransmitter system other than the cholinergic system, e.g. the glutamatergic system, plays a central role in the cortical metabolic recovery after lesioning of the basal forebrain.
Espinosa-Raya, Judith; Plata-Cruz, Noemí; Neri-Gómez, Teresa; Camacho-Arroyo, Ignacio; Picazo, Ofir
2011-02-23
It has been proposed that sex steroid hormones improve performance in some cognitive tasks by regulating the basal forebrain cholinergic function. However, the molecular basis of such influence still remains unknown. Current study analyzed the performance of ovariectomized rats in an autoshaping learning task after a short-term treatment with 17β-estradiol (E2: 4 and 40μg/kg) and/or progesterone (P4: 4mg/kg). These results were correlated with basal forebrain choline acetyltransferase (ChAT) and TrkA protein content. The high dose of E2 enhanced both acquisition in the autoshaping task and the content of ChAT and TrkA. P4 treatment increased ChAT and TrkA content without affecting performance of rats in the autoshaping learning task. Interestingly, the continuous and simultaneous administration of E2 plus P4 did not significantly modify behavioral and biochemical evaluated parameters. These results address the influence of both E2 and P4 on cholinergic and TrkA activity and suggest that the effects of ovarian hormones on cognitive performance involve basal forebrain cholinergic neurons. Copyright © 2010 Elsevier B.V. All rights reserved.
Coleman, Leon G.; He, Jun; Lee, Joohwi; Styner, Martin; Crews, Fulton T.
2013-01-01
Background Binge-drinking is common in human adolescents. The adolescent brain is undergoing structural maturation and has a unique sensitivity to alcohol neurotoxicity. Therefore, adolescent binge ethanol may have long-term effects on the adult brain that alter brain structure and behaviors that are relevant to alcohol use disorders. Methods In order to determine if adolescent ethanol binge drinking alters the adult brain, male C57BL/6 mice were treated with either water or ethanol during adolescence (5g/kg/day i.g., post-natal days P28-37) and assessed during adulthood (P60-P88). An array of neurotransmitter-specific genes, behavioral tests (i.e. reversal learning, prepulse inhibition, and open field), and post-mortem brain structure using MRI and immunohistochemistry, were employed to assess persistent alterations in adult brain. Results At P38, 24 hours after adolescent ethanol (AE) binge, many neurotransmitter genes, particularly cholinergic and dopaminergic, were reduced by ethanol treatment. Interestingly, dopamine receptor type 4 mRNA was reduced and confirmed using immunohistochemistry. Normal control maturation (P38-P88) resulted in decreased neurotransmitter mRNA, e.g. an average decrease of 56%. Following adolescent ethanol treatment, adults showed greater gene expression reductions than controls, averaging 73%. Adult spatial learning assessed in the Morris water maze was not changed by adolescent ethanol treatment, but reversal learning experiments revealed deficits. Assessment of adult brain region volumes using MRI indicated that the olfactory bulb and basal forebrain were smaller in adults following adolescent ethanol. Immunohistochemical analyses found reduced basal forebrain area and fewer basal forebrain cholinergic neurons. Conclusions Adolescent binge ethanol treatment reduces adult neurotransmitter gene expression, particularly cholinergic genes, reduces basal forebrain and olfactory bulb volumes, and causes a reduction in the density of basal forebrain acetylcholine neurons. Loss of cholinergic neurons and forebrain structure could underlie adult reversal learning deficits following adolescent binge drinking. PMID:21223304
Depboylu, Candan; Weihe, Eberhard; Eiden, Lee E
2012-01-01
The simian immunodeficiency virus (SIV) macaque model resembles human immunodeficiency virus-acquired immunodeficiency syndrome (AIDS) and associated brain dysfunction. Altered expression of synaptic markers and transmitters in neuro-AIDS has been reported, but limited data exist for the cholinergic system and lipid mediators such as prostaglandins. Here, we analyzed cholinergic basal forebrain neurons with their telencephalic projections and the rate-limiting enzymes for prostaglandin synthesis, cyclooxygenase isotypes 1 and 2 (COX1 and COX2) in the brains of SIV-infected macaques with or without encephalitis and antiretroviral therapy and uninfected controls.Cyclooxygenase isotype 1, but not COX2, was coexpressed with markers of cholinergic phenotype, that is, choline acetyltransferase and vesicular acetylcholine transporter (VAChT), in basal forebrain neurons of monkey, as well as human, brain. Cyclooxygenase isotype 1 was decreased in basal forebrain neurons in macaques with AIDS versus uninfected and asymptomatic SIV-infected macaques. The VAChT-positive fiber density was reduced in frontal, parietal, and hippocampal-entorhinal cortex. Although brain SIV burden and associated COX1- and COX2-positive mononuclear and endothelial inflammatory reactions were mostly reversed in AIDS-diseased macaques that received 6-chloro-2',3'-dideoxyguanosine treatment, decreased VAChT-positive terminal density and reduced cholinergic COX1 expression were not. Thus, COX1 expression is a feature of primate cholinergic basal forebrain neurons; it may be functionally important and a critical biomarker of cholinergic dysregulation accompanying lentiviral encephalopathy. These results further imply that insufficiently prompt initiation of antiretroviral therapy in lentiviral infection may lead to neurostructurally unremarkable but neurochemically prominent irreversible brain damage.
Lee, Yoon-Bok; Lee, Hyong Joo; Won, Moo Ho; Hwang, In Koo; Kang, Tae-Cheon; Lee, Jae-Yong; Nam, Sang-Yoon; Kim, Kang-Sung; Kim, Eugene; Cheon, Sang-Hee; Sohn, Heon-Soo
2004-07-01
To investigate the protective activity of soy isoflavones on neurons, the effects of isoflavones on cholinergic enzyme activity, immunoreactivities of cholinergic enzyme, and delayed matching-to-place (DMP) performance were measured in normal elderly rats. Male Sprague-Dawley rats (n = 48; 10 mo old) were assigned to 3 groups: CD (control diet), ISO 0.3 (0.3 g/kg soy isoflavones diet), and ISO 1.2 (1.2 g/kg soy isoflavones diet). After 16 wk of consuming these diets, choline acetyltransferase (ChAT) activity in the ISO 0.3 group was greater in cortex and basal forebrain (BF; P < 0.05) than in controls. In BF, ChAT activity was also significantly greater in the ISO 1.2 group than in control rats. Acetylcholine esterase (AChE) activity in the ISO 0.3 group was significantly inhibited in cortex, BF, and hippocampus and in the ISO 1.2 group in cortex and hippocampus. Choline acetyltransferase immunoreactivity (ChAT-IR) in the ISO 1.2 group was significantly greater than in controls in the medial septum area. ChAT-IR in the ISO 0.3 and ISO 1.2 groups was significantly higher than in the CD group in the hippocampus CA1 area. Spatial DMP performance by the ISO 0.3 group showed significantly shorter swimming time than by the CD group. These findings show that soy isoflavones can influence the brain cholinergic system and reduce age-related neuron loss and cognition decline in male rats.
Endoplasmic Reticulum Stress as a Mediator of Neurotoxin-Induced Dopamine Neuron Death
2006-07-01
reversible reduction in choline acetyl- transferase concentration in rat hypoglossal nucleus after hypoglossal nerve transection. Nature 275, 324–325...cally, analogs were evaluated for their ability to enhance choline acetyltransferase (ChAT) activity in embryonic rat spinal cord and basal forebrain...of ibotenate, CEP1347 protected basal forebrain cholinergic neurons.102 In a model of apoptosis induced in auditory hair cells by noise trauma, CEP1347
Disconnection of the Ascending Arousal System in Traumatic Coma
Edlow, Brian L.; Haynes, Robin L.; Takahashi, Emi; Klein, Joshua P.; Cummings, Peter; Benner, Thomas; Greer, David M.; Greenberg, Steven M.; Wu, Ona; Kinney, Hannah C.; Folkerth, Rebecca D.
2013-01-01
Traumatic coma is associated with disruption of axonal pathways throughout the brain but the specific pathways involved in humans are incompletely understood. In this study, we used high angular resolution diffusion imaging (HARDI) to map the connectivity of axonal pathways that mediate the 2 critical components of consciousness – arousal and awareness – in the postmortem brain of a 62-year-old woman with acute traumatic coma and in 2 control brains. HARDI tractography guided tissue sampling in the neuropathological analysis. HARDI tractography demonstrated complete disruption of white matter pathways connecting brainstem arousal nuclei to the basal forebrain and thalamic intralaminar and reticular nuclei. In contrast, hemispheric arousal pathways connecting the thalamus and basal forebrain to the cerebral cortex were only partially disrupted, as were the cortical “awareness pathways.” Neuropathologic examination, which utilized β-amyloid precursor protein and fractin immunomarkers, revealed axonal injury in the white matter of the brainstem and cerebral hemispheres that corresponded to sites of HARDI tract disruption. Axonal injury was also present within the grey matter of the hypothalamus, thalamus, basal forebrain, and cerebral cortex. We propose that traumatic coma may be a subcortical disconnection syndrome related to the disconnection of specific brainstem arousal nuclei from the thalamus and basal forebrain. PMID:23656993
Grison, Alice; Gaiser, Carine; Bieder, Andrea; Baranek, Constanze; Atanasoski, Suzana
2018-03-23
Little is known about the molecular players driving proliferation of neural progenitor cells (NPCs) during embryonic mouse development. Here, we demonstrate that proliferation of NPCs in the developing forebrain depends on a particular combination of cell cycle regulators. We have analyzed the requirements for members of the cyclin-dependent kinase (cdk) family using cdk-deficient mice. In the absence of either cdk4 or cdk6, which are both regulators of the G1 phase of the cell cycle, we found no significant effects on the proliferation rate of cortical progenitor cells. However, concomitant loss of cdk4 and cdk6 led to a drastic decrease in the proliferation rate of NPCs, specifically the basal progenitor cells of both the dorsal and ventral forebrain at embryonic day 13.5 (E13.5). Moreover, basal progenitors in the forebrain of Cdk4;Cdk6 double mutant mice exhibited altered cell cycle characteristics. Cdk4;cdk6 deficiency led to an increase in cell cycle length and cell cycle exit of mutant basal progenitor cells in comparison to controls. In contrast, concomitant ablation of cdk2 and cdk6 had no effect on the proliferation of NCPs. Together, our data demonstrate that the expansion of the basal progenitor pool in the developing telencephalon is dependent on the presence of distinct combinations of cdk molecules. Our results provide further evidence for differences in the regulation of proliferation between apical and basal progenitors during cortical development. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018. © 2018 Wiley Periodicals, Inc.
Reassessment of the structural basis of the ascending arousal system
Fuller, Patrick M.; Sherman, David; Pedersen, Nigel P.; Saper, Clifford B.; Lu, Jun
2011-01-01
The “ascending reticular activating system” theory proposed that neurons in the upper brainstem reticular formation projected to forebrain targets that promoted wakefulness. More recent formulations have emphasized that most neurons at the pontomesencepahlic junction that participate in these pathways are actually in monoaminergic and cholinergic cell groups. However, cell-specific lesions of these cell groups have never been able to reproduce the deep coma seen after acute paramedian midbrain lesions that transect ascending axons at the caudal midbrain level. To determine whether the cortical afferents from the thalamus or the basal forebrain were more important in maintaining arousal, we first place large cell-body specific lesions in these targets. Surprisingly, extensive thalamic lesions had little effect on EEG or behavioral measures of wakefulness or on c-Fos expression by cortical neurons during wakefulness. In contrast, animals with large basal forebrain lesions were behaviorally unresponsive, had a monotonous sub-1 Hz EEG, and little cortical c-Fos expression during continuous gentle handling. We then retrogradely labeled inputs to the basal forebrain from the upper brainstem, and found a substantial input from glutamatergic neurons in the parabrachial nucleus and adjacent pre-coeruleus area. Cell specific lesions of the parabrachial-precoeruleus complex produced behavioral unresponsiveness, a monotonous sub-1Hz cortical EEG, and loss of cortical c-Fos expression during gentle handling. These experiments indicate that in rats the reticulo-thalamo-cortical pathway may play a very limited role in behavioral or electrocortical arousal, while the projection from the parabrachial nucleus and precoeruleus region, relayed by the basal forebrain to the cerebral cortex, may be critical for this process. PMID:21280045
Obál, F; Benedek, G; Szikszay, M; Obál, F
1979-01-01
A study was made of the effects of high mesencephalic transection (cerveau isolé) and low doses of pentobarbital on the cortical synchronizations elicited in acute immobilized cats by (a) low frequency stimulation of the lateral hypothalamus (HL) and nucleus ventralis anterior thalami (VA) and (b) by low and high frequency stimulation of the laterobasal preoptic region (RPO) and olfactory tubercle (TbOf). The results obtained were as follows: (1) The synchronizations induced by basal forebrain stimulations were found to survive in acute cerveau isolé cats, moreover, even a facilitation of the synchronizing effect were observed. (2) A gradual facilitation was observed upon TbOf and RPO stimulation, while in the case of VA and HL stimulations, the facilitation appeared immediately after the transection. (3) Low doses of pentobarbital depressed the cortical effects of TbOf stimulation, while an increase of the synchronizing effect of low frequency VA and HL stimulation was found. The observations suggested that (i) the synchronizing mechanism in the ventral part of the basal forebrain (RPO and TbOf) differs from that of the thalamus and HL; (ii) the basal forebrain synchronizing mechanism is effective without the contribution of the brain stem; (iii) the mechanism responsible for the synchronizing effect of low frequency HL stimulation is similar as that described for the thalamus.
Giardino, L; Giuliani, A; Battaglia, A; Carfagna, N; Aloe, L; Calza', L
2002-01-01
The aging brain is characterized by selective neurochemical changes involving several neural populations. A deficit in the cholinergic system of the basal forebrain is thought to contribute to the development of cognitive symptoms of dementia. Attempts to prevent age-associated cholinergic vulnerability and deterioration therefore represent a crucial point for pharmacotherapy in the elderly. In this paper we provide evidence for the protective effect of nicergoline (Sermion) on the degeneration of cholinergic neurons induced by nerve growth factor deprivation. Nerve growth factor deprivation was induced by colchicine administration in rats 13 and 18 months old. Colchicine induces a rapid and substantial down-regulation of choline acetyltransferase messenger RNA level in the basal forebrain in untreated adult, middle-aged and old rats. Colchicine failed to cause these effects in old rats treated for 120 days with nicergoline 10 mg/kg/day, orally. Moreover, a concomitant increase of both nerve growth factor and brain-derived neurotrophic factor content was measured in the basal forebrain of old, nicergoline-treated rats. Additionally, the level of messenger RNA for the brain isoform of nitric oxide synthase in neurons of the basal forebrain was also increased in these animals. Based on the present findings, nicergoline proved to be an effective drug for preventing neuronal vulnerability due to experimentally induced nerve growth factor deprivation.
Sleep Loss and the Inflammatory Response in Mice Under Chronic Environmental Circadian Disruption
Castanon-Cervantes, Oscar; Natarajan, Divya; Delisser, Patrick; Davidson, Alec J.; Paul, Ketema N.
2013-01-01
Shift work and trans-time zone travel lead to insufficient sleep and numerous pathologies. Here, we examined sleep/wake dynamics during chronic exposure to environmental circadian disruption (ECD), and if chronic partial sleep loss associated with ECD influences the induction of shift-related inflammatory disorder. Sleep and wakefulness were telemetrically recorded across three months of ECD, in which the dark-phase of a light-dark cycle was advanced weekly by 6 h. A three month regimen of ECD caused a temporary reorganization of sleep (NREM and REM) and wake processes across each week, resulting in an approximately 10% net loss of sleep each week relative to baseline levels. A separate group of mice were subjected to ECD or a regimen of imposed wakefulness (IW) aimed to mimic sleep amounts under ECD for one month. Fos-immunoreactivity (IR) was quantified in sleep-wake regulatory areas: the nucleus accumbens (NAc), basal forebrain (BF), and medial preoptic area (MnPO). To assess the inflammatory response, trunk blood was treated with lipopolysaccharide (LPS) and subsequent release of IL-6 was measured. Fos-IR was greatest in the NAc, BF, and MnPO of mice subjected to IW. The inflammatory response to LPS was elevated in mice subjected to ECD, but not mice subjected to IW. Thus, the net sleep loss that occurs under ECD is not associated with a pathological immune response. PMID:23696854
Ventskovska, Olena; Porkka-Heiskanen, Tarja; Karpova, Nina N
2015-04-01
Brain-derived neurotrophic factor (Bdnf) regulates neuronal plasticity, slow wave activity and sleep homeostasis. Environmental stimuli control Bdnf expression through epigenetic mechanisms, but there are no data on epigenetic regulation of Bdnf by sleep or sleep deprivation. Here we investigated whether 5-methylcytosine (5mC) DNA modification at Bdnf promoters p1, p4 and p9 influences Bdnf1, Bdnf4 and Bdnf9a expression during the normal inactive phase or after sleep deprivation (SD) (3, 6 and 12 h, end-times being ZT3, ZT6 and ZT12) in rats in two brain areas involved in sleep regulation, the basal forebrain and cortex. We found a daytime variation in cortical Bdnf expression: Bdnf1 expression was highest at ZT6 and Bdnf4 lowest at ZT12. Such variation was not observed in the basal forebrain. Also Bdnf p1 and p9 methylation levels differed only in the cortex, while Bdnf p4 methylation did not vary in either area. Factorial analysis revealed that sleep deprivation significantly induced Bdnf1 and Bdnf4 with the similar pattern for Bdnf9a in both basal forebrain and cortex; 12 h of sleep deprivation decreased 5mC levels at the cortical Bdnf p4 and p9. Regression analysis between the 5mC promoter levels and the corresponding Bdnf transcript expression revealed significant negative correlations for the basal forebrain Bdnf1 and cortical Bdnf9a transcripts in only non-deprived rats, while these correlations were lost after sleep deprivation. Our results suggest that Bdnf transcription during the light phase of undisturbed sleep-wake cycle but not after SD is regulated at least partially by brain site-specific DNA methylation. © 2014 European Sleep Research Society.
Basal forebrain amnesia: does the nucleus accumbens contribute to human memory?
Goldenberg, G.; Schuri, U.; Gromminger, O.; Arnold, U.
1999-01-01
OBJECTIVE—To analyse amnesia caused by basal forebrain lesions. METHODS—A single case study of a patient with amnesia after bleeding into the anterior portion of the left basal ganglia. Neuropsychological examination included tests of attention, executive function, working memory, recall, and recognition of verbal and non-verbal material, and recall from remote semantic and autobiographical memory. The patient's MRI and those of other published cases of basal forebrain amnesia were reviewed to specify which structures within the basal forebrain are crucial for amnesia. RESULTS—Attention and executive function were largely intact. There was anterograde amnesia for verbal material which affected free recall and recognition. With both modes of testing the patient produced many false positive responses and intrusions when lists of unrelated words had been memorised. However, he confabulated neither on story recall nor in day to day memory, nor in recall from remote memory. The lesion affected mainly the nucleus accumbens, but encroached on the inferior limb of the capsula interna and the most ventral portion of the nucleus caudatus and globus pallidus, and there was evidence of some atrophy of the head of the caudate nucleus. The lesion spared the nucleus basalis Meynert, the diagnonal band, and the septum, which are the sites of cholinergic cell concentrations. CONCLUSIONS—It seems unlikely that false positive responses were caused by insufficient strategic control of memory retrieval. This speaks against a major role of the capsular lesion which might disconnect the prefrontal cortex from the thalamus. It is proposed that the lesion of the nucleus accumbens caused amnesia. PMID:10406982
Luine, V N
1985-08-01
Administration of estradiol to gonadectomized female, but not male rats, is associated with increased activity of choline acetyltransferase in the medial aspect of the horizontal diagonal band nucleus, the frontal cortex, and CA1 of the dorsal hippocampus. Four other basal forebrain cholinergic nuclei did not show changes in choline acetyltransferase activity after estradiol. These data have implications for possible benefits of estradiol administration to patients with senile dementia of the Alzheimer's type.
Kimura, Rui; Safari, Mir-Shahram; Mirnajafi-Zadeh, Javad; Kimura, Rie; Ebina, Teppei; Yanagawa, Yuchio; Sohya, Kazuhiro; Tsumoto, Tadaharu
2014-07-23
Visual responsiveness of cortical neurons changes depending on the brain state. Neural circuit mechanism underlying this change is unclear. By applying the method of in vivo two-photon functional calcium imaging to transgenic rats in which GABAergic neurons express fluorescent protein, we analyzed changes in visual response properties of cortical neurons when animals became awakened from anesthesia. In the awake state, the magnitude and reliability of visual responses of GABAergic neurons increased whereas the decay of responses of excitatory neurons became faster. To test whether the basal forebrain (BF) cholinergic projection is involved in these changes, we analyzed effects of electrical and optogenetic activation of BF on visual responses of mouse cortical neurons with in vivo imaging and whole-cell recordings. Electrical BF stimulation in anesthetized animals induced the same direction of changes in visual responses of both groups of neurons as awakening. Optogenetic activation increased the frequency of visually evoked action potentials in GABAergic neurons but induced the delayed hyperpolarization that ceased the late generation of action potentials in excitatory neurons. Pharmacological analysis in slice preparations revealed that photoactivation-induced depolarization of layer 1 GABAergic neurons was blocked by a nicotinic receptor antagonist, whereas non-fast-spiking layer 2/3 GABAergic neurons was blocked only by the application of both nicotinic and muscarinic receptor antagonists. These results suggest that the effect of awakening is mediated mainly through nicotinic activation of layer 1 GABAergic neurons and mixed nicotinic/muscarinic activation of layer 2/3 non-fast-spiking GABAergic neurons, which together curtails the visual responses of excitatory neurons. Copyright © 2014 the authors 0270-6474/14/3410122-12$15.00/0.
Baxter, Mark G; Bucci, David J; Gorman, Linda K; Wiley, Ronald G; Gallagher, Michela
2013-10-01
Male Long-Evans rats were given injections of either 192 IgG-saporin, an apparently selective toxin for basal forebrain cholinergic neurons (LES), or vehicle (CON) into either the medial septum and vertical limb of the diagonal band (MS/VDB) or bilaterally into the nucleus basalis magnocellularis and substantia innominata (nBM/SI). Place discrimination in the Morris water maze assessed spatial learning, and a trial-unique matching-to-place task in the water maze assessed memory for place information over varying delays. MS/VDB-LES and nBM/SI-LES rats were not impaired relative to CON rats in acquisition of the place discrimination, but were mildly impaired relative to CON rats in performance of the memory task even at the shortest delay, suggesting a nonmnemonic deficit. These results contrast with effects of less selective lesions, which have been taken to support a role for basal forebrain cholinergic neurons in learning and memory. 2013 APA, all rights reserved
Keimpema, Erik; Zheng, Kang; Barde, Swapnali Shantaram; Berghuis, Paul; Dobszay, Márton B; Schnell, Robert; Mulder, Jan; Luiten, Paul G M; Xu, Zhiqing David; Runesson, Johan; Langel, Ülo; Lu, Bai; Hökfelt, Tomas; Harkany, Tibor
2014-12-01
The distribution and (patho-)physiological role of neuropeptides in the adult and aging brain have been extensively studied. Galanin is an inhibitory neuropeptide that can coexist with γ-aminobutyric acid (GABA) in the adult forebrain. However, galanin's expression sites, mode of signaling, impact on neuronal morphology, and colocalization with amino acid neurotransmitters during brain development are less well understood. Here, we show that galaninergic innervation of cholinergic projection neurons, which preferentially express galanin receptor 2 (GalR2) in the neonatal mouse basal forebrain, develops by birth. Nerve growth factor (NGF), known to modulate cholinergic morphogenesis, increases GalR2 expression. GalR2 antagonism (M871) in neonates reduces the in vivo expression and axonal targeting of the vesicular acetylcholine transporter (VAChT), indispensable for cholinergic neurotransmission. During cholinergic neuritogenesis in vitro, GalR2 can recruit Rho-family GTPases to induce the extension of a VAChT-containing primary neurite, the prospective axon. In doing so, GalR2 signaling dose-dependently modulates directional filopodial growth and antagonizes NGF-induced growth cone differentiation. Galanin accumulates in GABA-containing nerve terminals in the neonatal basal forebrain, suggesting its contribution to activity-driven cholinergic development during the perinatal period. Overall, our data define the cellular specificity and molecular complexity of galanin action in the developing basal forebrain. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Volume of the human septal forebrain region is a predictor of source memory accuracy.
Butler, Tracy; Blackmon, Karen; Zaborszky, Laszlo; Wang, Xiuyuan; DuBois, Jonathan; Carlson, Chad; Barr, William B; French, Jacqueline; Devinsky, Orrin; Kuzniecky, Ruben; Halgren, Eric; Thesen, Thomas
2012-01-01
Septal nuclei, components of basal forebrain, are strongly and reciprocally connected with hippocampus, and have been shown in animals to play a critical role in memory. In humans, the septal forebrain has received little attention. To examine the role of human septal forebrain in memory, we acquired high-resolution magnetic resonance imaging scans from 25 healthy subjects and calculated septal forebrain volume using recently developed probabilistic cytoarchitectonic maps. We indexed memory with the California Verbal Learning Test-II. Linear regression showed that bilateral septal forebrain volume was a significant positive predictor of recognition memory accuracy. More specifically, larger septal forebrain volume was associated with the ability to recall item source/context accuracy. Results indicate specific involvement of septal forebrain in human source memory, and recall the need for additional research into the role of septal nuclei in memory and other impairments associated with human diseases.
Levels of BDNF Impact Oligodendrocyte Lineage Cells Following a Cuprizone Lesion
VonDran, Melissa W.; Singh, Harmandeep; Honeywell, Jean Z.; Dreyfus, Cheryl F.
2011-01-01
Previous work in culture has shown that basal forebrain (BF) oligodendrocyte (OLG) lineage cells respond to BDNF by increasing DNA synthesis and differentiation. Further, in the BF in vivo, reduced levels of BDNF as seen in BDNF +/− mice result in reduced numbers of NG2+ cells and deficits in myelin proteins throughout development and in the adult, suggesting that BDNF impacts the proliferating population of OLGs as well as differentiation in vivo. In this study, to investigate roles BDNF may play in the repair of a demyelinating lesion, the cuprizone model was used and the corpus callosum was examined. BDNF protein levels were reduced after cuprizone, suggesting that the demyelinating lesion, itself, elicits a decrease in BDNF. To analyze effects of a further reduction of BDNF on OLG lineage cells following cuprizone, BDNF +/− mice were evaluated. These mice exhibited a blunted increase in the NG2 response at 4 and 5 weeks of cuprizone. In addition, BDNF +/− mice exhibited decreased levels of myelin proteins during the demyelination and remyelination processes with no change in the total number of OLGs. These effects appear to be relatively specific to OLG lineage cells as comparable changes in CD11b+ microglia, GFAP+ astrocytes, and SMI32+ injured axons were not observed. These data indicate that BDNF may play a role following a demyelinating lesion, by regulating numbers of progenitors and the abilities of demyelinating and differentiating cells to express myelin proteins. PMID:21976503
Ray, Nicola J; Bradburn, Steven; Murgatroyd, Christopher; Toseeb, Umar; Mir, Pablo; Kountouriotis, George K; Teipel, Stefan J; Grothe, Michel J
2018-01-01
See Gratwicke and Foltynie (doi:10.1093/brain/awx333) for a scientific commentary on this article.Cognitive impairments are a prevalent and disabling non-motor complication of Parkinson's disease, but with variable expression and progression. The onset of serious cognitive decline occurs alongside substantial cholinergic denervation, but imprecision of previously available techniques for in vivo measurement of cholinergic degeneration limit their use as predictive cognitive biomarkers. However, recent developments in stereotactic mapping of the cholinergic basal forebrain have been found useful for predicting cognitive decline in prodromal stages of Alzheimer's disease. These methods have not yet been applied to longitudinal Parkinson's disease data. In a large sample of people with de novo Parkinson's disease (n = 168), retrieved from the Parkinson's Progressive Markers Initiative database, we measured cholinergic basal forebrain volumes, using morphometric analysis of T1-weighted images in combination with a detailed stereotactic atlas of the cholinergic basal forebrain nuclei. Using a binary classification procedure, we defined patients with reduced basal forebrain volumes (relative to age) at baseline, based on volumes measured in a normative sample (n = 76). Additionally, relationships between the basal forebrain volumes at baseline, risk of later cognitive decline, and scores on up to 5 years of annual cognitive assessments were assessed with regression, survival analysis and linear mixed modelling. In patients, smaller volumes in a region corresponding to the nucleus basalis of Meynert were associated with greater change in global cognitive, but not motor scores after 2 years. Using the binary classification procedure, patients classified as having smaller than expected volumes of the nucleus basalis of Meynert had ∼3.5-fold greater risk of being categorized as mildly cognitively impaired over a period of up to 5 years of follow-up (hazard ratio = 3.51). Finally, linear mixed modelling analysis of domain-specific cognitive scores revealed that patients classified as having smaller than expected nucleus basalis volumes showed more severe and rapid decline over up to 5 years on tests of memory and semantic fluency, but not on tests of executive function. Thus, we provide the first evidence that volumetric measurement of the nucleus basalis of Meynert can predict early cognitive decline. Our methods therefore provide the opportunity for multiple-modality biomarker models to include a cholinergic biomarker, which is currently lacking for the prediction of cognitive deterioration in Parkinson's disease. Additionally, finding dissociated relationships between nucleus basalis status and domain-specific cognitive decline has implications for understanding the neural basis of heterogeneity of Parkinson's disease-related cognitive decline. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
A Novel Ex Vivo Model to Investigate the Underlying Mechanisms in Alzheimer’s Disease
Brai, Emanuele; Stuart, Skye; Badin, Antoine-Scott; Greenfield, Susan A.
2017-01-01
Currently there is no widely accepted animal model reproducing the full pathological profile of Alzheimer’s disease (AD), since the basic mechanisms of neurodegeneration are still poorly understood. We have proposed that the interaction between the α7 nicotinic acetylcholine receptor (α7-nAChR) and a recently discovered toxic peptide, cleaved from the acetylcholinesterase (AChE) C-terminus, could account for the aberrant processes occurring in AD. In this article we describe a new application on ex vivo model procedure, which combines the advantages of both in vivo and in vitro preparations, to study the effects of the AChE-derived peptide on the rat basal forebrain (BF). Western blot analysis showed that the levels of α7-nAChR, p-Tau and Aβ are differentially expressed upon the AChE-peptide administration, in a selective site-dependent manner. In conclusion, this methodology demonstrates the action of a novel peptide in triggering an AD-like phenotype and proposes a new ex vivo approach for manipulating and monitoring neurochemical processes contributing to neurodegeneration, in a time-dependent and site-specific manner. PMID:29033787
Murillo-Rodriguez, Eric; Blanco-Centurion, Carlos; Sanchez, Cristina; Piomelli, Daniele; Shiromani, Priyattam J
2003-12-15
The principal component of marijuana, delta-9-tetrahydrocannabinol increases sleep in humans. Endogenous cannabinoids, such as N-arachidonoylethanolamine (anandamide), also increase sleep. However, the mechanism by which these molecules promote sleep is not known but might involve a sleep-inducing molecule such as adenosine. Microdialysis samples were collected from the basal forebrain in order to detect levels of adenosine before and after injection of anandamide. Rats were implanted for sleep studies, and a cannula was placed in the basal forebrain to collect microdialysis samples. Samples were analyzed using high-performance liquid chromatography. Basic neuroscience research laboratory. Three-month-old male F344 rats. At the start of the lights-on period, animals received systemic injections of dimethyl sulfoxide (vehicle), anandamide, SR141716A (cannabinoid receptor 1 [CB1] antagonist), or SR141716A and anandamide. One hour after injections, microdialysis samples were collected (5 microL) from the basal forebrain every hour over a 20-minute period for 5 hours. The samples were immediately analyzed via high-performance liquid chromatography for adenosine levels. Sleep was also recorded continuously over the same period. Anandamide increased adenosine levels compared to vehicle controls with the peak levels being reached during the third hour after drug injection. There was a significant increase in slow-wave sleep during the third hour. The induction in sleep and the rise in adenosine were blocked by the CB1-receptor antagonist, SR141716A. Anandamide increased adenosine levels in the basal forebrain and also increased sleep. The soporific effects of anandamide were mediated by the CB1 receptor, since the effects were blocked by the CB1-receptor antagonist. These findings identify a potential therapeutic use of endocannabinoids to induce sleep in conditions where sleep may be severely attenuated.
Effects of lateral fluid percussion injury on cholinergic markers in the newborn piglet brain.
Donat, Cornelius K; Walter, Bernd; Kayser, Tanja; Deuther-Conrad, Winnie; Schliebs, Reinhard; Nieber, Karen; Bauer, Reinhard; Härtig, Wolfgang; Brust, Peter
2010-02-01
Traumatic brain injury is a leading cause of death and disability in children. Studies using adult animal models showed alterations of the central cholinergic neurotransmission as a result of trauma. However, there is a lack of knowledge about consequences of brain trauma on cholinergic function in the immature brain. It is hypothesized that trauma affects the relative acetylcholine esterase activity and causes a loss of cholinergic neurons in the immature brain. Severe fluid percussion trauma (FP-TBI, 3.8+/-0.3atm) was induced in 15 female newborn piglets, monitored for 6h and compared with 12 control animals. The hemispheres ipsilateral to FP-TBI obtained from seven piglets were used for acetylcholine esterase histochemistry on frozen sagittal slices, while regional cerebral blood flow and oxygen availability was determined in the remaining eight FP-TBI animals. Post-fixed slices were immunohistochemically labelled for choline acetyltransferase as well as for low-affinity neurotrophin receptor in order to characterize cholinergic neurons in the basal forebrain. Regional cerebral blood flow and brain oxygen availability were reduced during the first 2h after FP-TBI (P<0.05). In addition, acetylcholine esterase activity was significantly increased in the neocortex, basal forebrain, hypothalamus and medulla after trauma (P<0.05), whereas the number of choline acetyltransferase and low-affinity neurotrophin receptor positive cells in the basal forebrain were unaffected by the injury. Thus, traumatic brain injury evoked an increased relative activity of the acetylcholine esterase in the immature brain early after injury, without loss of cholinergic neurons in the basal forebrain. These changes may contribute to developmental impairments after immature traumatic brain injury. Copyright 2009 ISDN. Published by Elsevier Ltd. All rights reserved.
Moyano, Paula; Frejo, María Teresa; Anadon, María José; García, José Manuel; Díaz, María Jesús; Lobo, Margarita; Sola, Emma; García, Jimena; Del Pino, Javier
2018-06-01
Chlorpyrifos (CPF) is an organophosphate insecticide described to induce cognitive disorders, both after acute and repeated administration. However, the mechanisms through which it induces these effects are unknown. CPF has been reported to produce basal forebrain cholinergic neuronal cell death, involved on learning and memory regulation, which could be the cause of such cognitive disorders. Neuronal cell death was partially mediated by oxidative stress generation, P75 NTR and α 7 -nAChRs gene expression alteration triggered through acetylcholinesterase (AChE) variants disruption, suggesting other mechanisms are involved. In this regard, CPF induces Aβ and tau proteins production and activation of GSK3β enzyme and alters glutamatergic transmission, which have been related with basal forebrain cholinergic neuronal cell death and development of cognitive disorders. According to these data, we hypothesized that CPF induces basal forebrain cholinergic neuronal cell death through induction of Aβ and tau proteins production, activation of GSK-3β enzyme and disruption of glutamatergic transmission. We evaluated this hypothesis in septal SN56 basal forebrain cholinergic neurons, after 24 h and 14 days CPF exposure. This study shows that CPF increases glutamate levels, upregulates GSK-3β gene expression, and increases the production of Aβ and phosphorylated tau proteins and all these effects reduced cell viability. CPF increases glutaminase activity and upregulates the VGLUT1 gene expression, which could mediate the disruption of glutamatergic transmission. Our present results provide new understanding of the mechanisms contributing to the harmful effects of CPF, and its possible relevance in the pathogenesis of neurodegenerative diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
Cholinergic degeneration and memory loss delayed by vitamin E in a Down syndrome mouse model
Lockrow, Jason; Prakasam, Annamalai; Huang, Peng; Bimonte-Nelson, Heather; Sambamurti, Kumar; Granholm, Ann-Charlotte
2009-01-01
Down syndrome (DS) individuals develop several neuropathological hallmarks seen in Alzheimer's disease, including cognitive decline and the early loss of cholinergic markers in the basal forebrain. These deficits are replicated in the Ts65Dn mouse, which contains a partial trisomy of murine chromosome 16, the orthologous genetic segment to human chromosome 21. Oxidative stress levels are elevated early in DS, and may contribute to the neurodegeneration seen in these individuals. We evaluated oxidative stress in Ts65Dn mice, and assessed the efficacy of long-term antioxidant supplementation on memory and basal forebrain pathology. We report that oxidative stress was elevated in the adult Ts65Dn brain, and that supplementation with the antioxidant vitamin E effectively reduced these markers. Also, Ts65Dn mice receiving vitamin E exhibited improved performance on a spatial working memory task and showed an attenuation of cholinergic neuron pathology in the basal forebrain. This study provides evidence that vitamin E delays onset of cognitive and morphological abnormalities in a mouse model of DS, and may represent a safe and effective treatment early in the progression of DS neuropathology. PMID:19135442
Systemic Injections of Cannabidiol Enhance Acetylcholine Levels from Basal Forebrain in Rats.
Murillo-Rodríguez, Eric; Arankowsky-Sandoval, Gloria; Rocha, Nuno Barbosa; Peniche-Amante, Rodrigo; Veras, André Barciela; Machado, Sérgio; Budde, Henning
2018-06-06
Cannabis sativa is a plant that contains more than 500 components, of which the most studied are Δ 9 -tetrahydrocannabinol (Δ 9 -THC) and cannabidiol (CBD). Several studies have indicated that CBD displays neurobiological effects, including wake promotion. Moreover, experimental evidence has shown that injections of CBD enhance wake-related compounds, such as monoamines (dopamine, serotonin, epinephrine, and norepinephrine). However, no clear evidence is available regarding the effects of CBD on additional wake-related neurochemicals such as acetylcholine (ACh). Here, we demonstrate that systemic injections of CBD (0, 5, 10 or 30 mg/kg, i.p.) at the beginning of the lights-on period, increase the extracellular levels of ACh collected from the basal forebrain and measured by microdialysis and HPLC means. Moreover, the time course effects on the contents of ACh were present 5 h post-injection of CBD. Altogether, these data demonstrate that CBD increases ACh levels in a brain region related to wake control. This study is the first to show the effects of ACh levels in CBD-treated rats and suggests that the basal forebrain might be a site of action of CBD for wakefulness modulation.
The dopaminergic projection system, basal forebrain macrosystems, and conditioned stimuli
Zahm, Daniel S.
2011-01-01
This review begins with a description of some problems that in recent years have beset an influential circuit model of fear-conditioning and goes on to look at neuroanatomy that might subserve conditioning viewed in a broader perspective, including not only fear, but also appetitive, conditioning. The paper then focuses on basal forebrain functional-anatomical systems, or macrosystems, as they have come to be called, which Lennart Heimer and colleagues described beginning in the 1970’s. Yet more specific attention is then given to the relationships of the dorsal and ventral striatopallidal systems and extended amygdala with the dopaminergic mesotelencephalic projection systems, culminating with the hypothesis that all macrosystems contribute to behavioral conditioning. PMID:18204412
Sekiguchi, Toshio; Kuwasako, Kenji; Ogasawara, Michio; Takahashi, Hiroki; Matsubara, Shin; Osugi, Tomohiro; Muramatsu, Ikunobu; Sasayama, Yuichi; Suzuki, Nobuo; Satake, Honoo
2016-01-29
The calcitonin (CT)/CT gene-related peptide (CGRP) family is conserved in vertebrates. The activities of this peptide family are regulated by a combination of two receptors, namely the calcitonin receptor (CTR) and the CTR-like receptor (CLR), and three receptor activity-modifying proteins (RAMPs). Furthermore, RAMPs act as escort proteins by translocating CLR to the cell membrane. Recently, CT/CGRP family peptides have been identified or inferred in several invertebrates. However, the molecular characteristics and relevant functions of the CTR/CLR and RAMPs in invertebrates remain unclear. In this study, we identified three CT/CGRP family peptides (Bf-CTFPs), one CTR/CLR-like receptor (Bf-CTFP-R), and three RAMP-like proteins (Bf-RAMP-LPs) in the basal chordate amphioxus (Branchiostoma floridae). The Bf-CTFPs were shown to possess an N-terminal circular region typical of the CT/CGRP family and a C-terminal Pro-NH2. The Bf-CTFP genes were expressed in the central nervous system and in endocrine cells of the midgut, indicating that Bf-CTFPs serve as brain and/or gut peptides. Cell surface expression of the Bf-CTFP-R was enhanced by co-expression with each Bf-RAMP-LP. Furthermore, Bf-CTFPs activated Bf-CTFP-R·Bf-RAMP-LP complexes, resulting in cAMP accumulation. These results confirmed that Bf-RAMP-LPs, like vertebrate RAMPs, are prerequisites for the function and translocation of the Bf-CTFP-R. The relative potencies of the three peptides at each receptor were similar. Bf-CTFP2 was a potent ligand at all receptors in cAMP assays. Bf-RAMP-LP effects on ligand potency order were distinct to vertebrate CGRP/adrenomedullin/amylin receptors. To the best of our knowledge, this is the first molecular and functional characterization of an authentic invertebrate CT/CGRP family receptor and RAMPs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
McMillan, Pamela J; LeMaster, Ann M; Dorsa, Daniel M
2002-06-30
Novel estrogen-like molecules known as SERMs (selective estrogen receptor modulators) produce many of the beneficial estrogen-like actions without the detrimental side-effects. The SERM, tamoxifen, an estrogen-like molecule with both agonist and antagonist properties, is widely prescribed for the treatment of breast cancer. While the effects of tamoxifen are being evaluated in many peripheral tissues, its effects in the central nervous system (CNS) have been largely ignored. In the present study, we begin to evaluate the effects of tamoxifen in the rat basal forebrain, a region known to be highly responsive to estrogen. We compared the effects of short-term (24 h) tamoxifen treatment to that of estrogen on ChAT mRNA expression in cholinergic neurons. In addition, we examined the effect of tamoxifen in the presence and absence of estrogen. Our results indicate that tamoxifen enhances ChAT expression in a manner similar to that of estrogen in several basal forebrain regions. In contrast, tamoxifen exhibits antagonist properties with respect to estrogen-induction of progesterone receptor mRNA in the medial preoptic nucleus. These results indicate tamoxifen has estrogenic properties with respect to cholinergic neurons, suggesting a previously unidentified effect of this agent in the CNS. Copyright 2002 Elsevier Science B.V.
Fortress, Ashley M.; Buhusi, Mona; Helke, Kris L.; Granholm, Ann-Charlotte E.
2011-01-01
Learning and memory impairments occurring with Alzheimer's disease (AD) are associated with degeneration of the basal forebrain cholinergic neurons (BFCNs). BFCNs extend their axons to the hippocampus where they bind nerve growth factor (NGF) which is retrogradely transported to the cell body. While NGF is necessary for BFCN survival and function via binding to the high-affinity receptor TrkA, its uncleaved precursor, pro-NGF has been proposed to induce neurodegeneration via binding to the p75NTR and its coreceptor sortilin. Basal forebrain TrkA and NGF are downregulated with aging while pro-NGF is increased. Given these data, the focus of this paper was to determine a mechanism for how pro-NGF accumulation may induce BFCN degeneration. Twenty-four hours after a single injection of pro-NGF into hippocampus, we found increased hippocampal p75NTR levels, decreased hippocampal TrkA levels, and cholinergic degeneration. The data suggest that the increase in p75NTR with AD may be mediated by elevated pro-NGF levels as a result of decreased cleavage, and that pro-NGF may be partially responsible for age-related degenerative changes observed in the basal forebrain. This paper is the first in vivo evidence that pro-NGF can affect BFCNs and may do so by regulating expression of p75NTR neurotrophin receptors. PMID:21785728
Nunez-Parra, Alexia; Maurer, Robert K; Krahe, Krista; Smith, Richard S; Araneda, Ricardo C
2013-09-03
Granule cells (GCs) are the most abundant inhibitory neuronal type in the olfactory bulb and play a critical role in olfactory processing. GCs regulate the activity of principal neurons, the mitral cells, through dendrodendritic synapses, shaping the olfactory bulb output to other brain regions. GC excitability is regulated precisely by intrinsic and extrinsic inputs, and this regulation is fundamental for odor discrimination. Here, we used channelrhodopsin to stimulate GABAergic axons from the basal forebrain selectively and show that this stimulation generates reliable inhibitory responses in GCs. Furthermore, selective in vivo inhibition of GABAergic neurons in the basal forebrain by targeted expression of designer receptors exclusively activated by designer drugs produced a reversible impairment in the discrimination of structurally similar odors, indicating an important role of these inhibitory afferents in olfactory processing.
Mufson, Elliott J.; Perez, Sylvia E.; Nadeem, Muhammad; Mahady, Laura; Kanaan, Nicholas M.; Abrahamson, Eric E.; Ikonomovic, Milos D.; Crawford, Fiona; Alvarez, Victor; Stein, Thor; McKee, Ann C.
2017-01-01
Objective To test the hypothesis that the nucleus basalis of Meynert (nbM), a cholinergic basal forebrain (CBF) cortical projection system, develops neurofibrillary tangles (NFTs) during the progressive pathological stages of chronic traumatic encephalopathy (CTE) in the brain of athletes. Method To characterize NFT pathology we used tau- antibodies marking early, intermediate, and late stages of NFT development in cholinergic basal forebrain tissue obtained at autopsy from eighteen former athletes and veterans with a history of repetitive mild traumatic brain injury (TBI). Results We found evidence that cholinergic nbM neurons develop intracellular tau-immunoreactive changes progressively across the pathological stages of CTE. In particular, there was an increase in pretangle (phosphorylated pS422) and oligomeric (TOC1 and TNT1) forms of tau in stage IV compared to stage II CTE cases. The nbM neurons also displayed pathologic TDP-43 inclusions and diffuse extracellular and vascular amyloid-β (Aβ) deposits in CTE. A higher percent of pS422/p75NTR, pS422 and TNT1 labeled neurons were significantly correlated with age at symptom onset, interval between symptom onset and death and age at death. Conclusion The development of NFTs within the nbM neurons could contribute to the basal forebrain cortical cholinergic disconnection in CTE. Further studies are needed to determine the mechanism driving NFT formation in the nbM neurons and its relation to chronic cognitive dysfunction in CTE. PMID:27834536
Kwakowsky, Andrea; Milne, Michael R; Waldvogel, Henry J; Faull, Richard L
2016-12-17
The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer's disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer's disease.
Kwakowsky, Andrea; Milne, Michael R.; Waldvogel, Henry J.; Faull, Richard L.
2016-01-01
The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer’s disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer’s disease. PMID:27999310
The cholinergic basal forebrain in the ferret and its inputs to the auditory cortex
Bajo, Victoria M; Leach, Nicholas D; Cordery, Patricia M; Nodal, Fernando R; King, Andrew J
2014-01-01
Cholinergic inputs to the auditory cortex can modulate sensory processing and regulate stimulus-specific plasticity according to the behavioural state of the subject. In order to understand how acetylcholine achieves this, it is essential to elucidate the circuitry by which cholinergic inputs influence the cortex. In this study, we described the distribution of cholinergic neurons in the basal forebrain and their inputs to the auditory cortex of the ferret, a species used increasingly in studies of auditory learning and plasticity. Cholinergic neurons in the basal forebrain, visualized by choline acetyltransferase and p75 neurotrophin receptor immunocytochemistry, were distributed through the medial septum, diagonal band of Broca, and nucleus basalis magnocellularis. Epipial tracer deposits and injections of the immunotoxin ME20.4-SAP (monoclonal antibody specific for the p75 neurotrophin receptor conjugated to saporin) in the auditory cortex showed that cholinergic inputs originate almost exclusively in the ipsilateral nucleus basalis. Moreover, tracer injections in the nucleus basalis revealed a pattern of labelled fibres and terminal fields that resembled acetylcholinesterase fibre staining in the auditory cortex, with the heaviest labelling in layers II/III and in the infragranular layers. Labelled fibres with small en-passant varicosities and simple terminal swellings were observed throughout all auditory cortical regions. The widespread distribution of cholinergic inputs from the nucleus basalis to both primary and higher level areas of the auditory cortex suggests that acetylcholine is likely to be involved in modulating many aspects of auditory processing. PMID:24945075
The cholinergic forebrain arousal system acts directly on the circadian pacemaker
Yamakawa, Glenn R.; Basu, Priyoneel; Cortese, Filomeno; MacDonnell, Johanna; Whalley, Danica; Smith, Victoria M.
2016-01-01
Sleep and wake states are regulated by a variety of mechanisms. One such important system is the circadian clock, which provides temporal structure to sleep and wake. Conversely, changes in behavioral state, such as sleep deprivation (SD) or arousal, can phase shift the circadian clock. Here we demonstrate that the level of wakefulness is critical for this arousal resetting of the circadian clock. Specifically, drowsy animals with significant power in the 7- to 9-Hz band of their EEGs do not exhibit phase shifts in response to a mild SD procedure. We then show that treatments that both produce arousal and reset the phase of circadian clock activate (i.e., induce Fos expression in) the basal forebrain. Many of the activated cells are cholinergic. Using retrograde tract tracing, we demonstrate that cholinergic cells activated by these arousal procedures project to the circadian clock in the suprachiasmatic nuclei (SCN). We then demonstrate that arousal-induced phase shifts are blocked when animals are pretreated with atropine injections to the SCN, demonstrating that cholinergic activity at the SCN is necessary for arousal-induced phase shifting. Finally, we demonstrate that electrical stimulation of the substantia innominata of the basal forebrain phase shifts the circadian clock in a manner similar to that of our arousal procedures and that these shifts are also blocked by infusions of atropine to the SCN. These results establish a functional link between the major forebrain arousal center and the circadian system. PMID:27821764
Soelaiman, I N; Merican, Z; Mohamed, J; Kadir, K B
1996-12-01
We determined the relative atherogenicity of two saturated fats by studying their effects on lipid peroxidation (LP), by way of malonaldehyde (MDA) and conjugated dienes (CD) and glutathione peroxidase (GSHPx) activity in serum, liver and heart; and on serum lipid profile after 4 months and 9 months of feeding. Male Rattus norwegicus rats were fed a basal diet (control) or basal diet fortified with 20% weight/weight butterfat (ghee) (BF) or coconut oil (CO). Serum high-density-lipoprotein-cholesterol (HDL-chol) and HDL-chol:LDL-chol ratio was lower in the BF group compared to CO after both feeding periods. Conjugated dienes (CDs) were higher in the serum and liver after 4 months, and heart after 9 months, of the rats fed BF compared to CO. Serum low-density-lipoprotein-cholesterol (LDL-chol) was higher, but CD were lower at 9 months than at 4 months feeding for all three groups. Liver and heart MDA and CD were higher in both groups after 9 months compared to 4 months. Liver GSHPx activity was higher after 9 months compared to 4 months in the BF group. Heart GSHPx activity was lower after 9 months compared to 4 months for both BF and CO groups. In conclusion, BF is potentially more atherogenic than CO in terms of serum lipids and LP. The unfavourable responses in serum lipids, with the exception of triglycerides, and LP were exaggerated with the longer duration of feeding with both oils.
Galanin antagonizes acetylcholine on a memory task in basal forebrain-lesioned rats.
Mastropaolo, J; Nadi, N S; Ostrowski, N L; Crawley, J N
1988-12-01
Galanin coexists with acetylcholine in medial septal neurons projecting to the ventral hippocampus, a projection thought to modulate memory functions. Neurochemical lesions of the nucleus basalis-medial septal area in rats impaired choice accuracy on a delayed alternation t-maze task. Acetylcholine (7.5 or 10 micrograms intraventricularly or 1 micrograms micro-injected into the ventral hippocampus) significantly improved performance in the lesioned rats. Atropine (5 mg/kg intraperitoneally or 10 micrograms intraventricularly), but not mecamylamine (3 mg/kg intraperitoneally or 20 micrograms intraventricularly), blocked this action of acetylcholine, suggesting involvement of a muscarinic receptor. Galanin (100-500 ng intraventricularly or 200 ng into the ventral hippocampus) attenuated the ability of acetylcholine to reverse the deficit in working memory in the lesioned rats. The antagonistic interaction between galanin and acetylcholine suggests that endogenous galanin may inhibit cholinergic function in memory processes, particularly in pathologies such as Alzheimer disease that involve degeneration of basal forebrain neurons.
Gelfo, Francesca; Cutuli, Debora; Nobili, Annalisa; De Bartolo, Paola; D'Amelio, Marcello; Petrosini, Laura; Caltagirone, Carlo
2017-01-01
Alzheimer's disease (AD) is an age-related neurodegenerative disorder with multifactorial etiopathogenesis, characterized by progressive loss of memory and other cognitive functions. A fundamental neuropathological feature of AD is the early and severe brain cholinergic neurodegeneration. Lithium is a monovalent cation classically utilized in the treatment of mood disorders, but recent evidence also advances a beneficial potentiality of this compound in neurodegeneration. Interestingly, lithium acts on several processes whose alterations characterize the brain cholinergic impairment at short and long term. On this basis, the aim of the present research was to evaluate the potential beneficial effects of a chronic lithium treatment in preventing the damage that a basal forebrain cholinergic neurodegeneration provokes, by investigating memory functions and neurodegeneration correlates. Adult male rats were lesioned by bilateral injections of the immunotoxin 192 IgG-Saporin into the basal forebrain. Starting 7 days before the surgery, the animals were exposed to a 30-day lithium treatment, consisting of a 0.24% Li2CO3 diet. Memory functions were investigated by the open field test with objects, the sociability and preference for social novelty test, and the Morris water maze. Hippocampal and neocortical choline acetyltransferase (ChAT) levels and caspase-3 activity were determined. Cholinergic depletion significantly impaired spatial and social recognition memory, decreased hippocampal and neocortical ChAT levels and increased caspase-3 activity. The chronic lithium treatment significantly rescued memory performances but did not modulate ChAT availability and caspase-3 activity. The present findings support the lithium protective effects against the cognitive impairment that characterizes the brain cholinergic depletion.
The cholinergic basal forebrain in the ferret and its inputs to the auditory cortex.
Bajo, Victoria M; Leach, Nicholas D; Cordery, Patricia M; Nodal, Fernando R; King, Andrew J
2014-09-01
Cholinergic inputs to the auditory cortex can modulate sensory processing and regulate stimulus-specific plasticity according to the behavioural state of the subject. In order to understand how acetylcholine achieves this, it is essential to elucidate the circuitry by which cholinergic inputs influence the cortex. In this study, we described the distribution of cholinergic neurons in the basal forebrain and their inputs to the auditory cortex of the ferret, a species used increasingly in studies of auditory learning and plasticity. Cholinergic neurons in the basal forebrain, visualized by choline acetyltransferase and p75 neurotrophin receptor immunocytochemistry, were distributed through the medial septum, diagonal band of Broca, and nucleus basalis magnocellularis. Epipial tracer deposits and injections of the immunotoxin ME20.4-SAP (monoclonal antibody specific for the p75 neurotrophin receptor conjugated to saporin) in the auditory cortex showed that cholinergic inputs originate almost exclusively in the ipsilateral nucleus basalis. Moreover, tracer injections in the nucleus basalis revealed a pattern of labelled fibres and terminal fields that resembled acetylcholinesterase fibre staining in the auditory cortex, with the heaviest labelling in layers II/III and in the infragranular layers. Labelled fibres with small en-passant varicosities and simple terminal swellings were observed throughout all auditory cortical regions. The widespread distribution of cholinergic inputs from the nucleus basalis to both primary and higher level areas of the auditory cortex suggests that acetylcholine is likely to be involved in modulating many aspects of auditory processing. © 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Mennenga, Sarah E; Gerson, Julia E; Koebele, Stephanie V; Kingston, Melissa L; Tsang, Candy W S; Engler-Chiurazzi, Elizabeth B; Baxter, Leslie C; Bimonte-Nelson, Heather A
2015-04-01
Ethinyl Estradiol (EE), a synthetic, orally bio-available estrogen, is the most commonly prescribed form of estrogen in oral contraceptives, and is found in at least 30 different contraceptive formulations currently prescribed to women as well as hormone therapies prescribed to menopausal women. Thus, EE is prescribed clinically to women at ages ranging from puberty to reproductive senescence. Here, in two separate studies, the cognitive effects of cyclic or tonic EE administration following ovariectomy (Ovx) were evaluated in young female rats. Study I assessed the cognitive effects of low and high doses of EE, delivered tonically via a subcutaneous osmotic pump. Study II evaluated the cognitive effects of low, medium, and high doses of EE administered via a daily subcutaneous injection, modeling the daily rise and fall of serum EE levels with oral regimens. Study II also investigated the impact of low, medium and high doses of EE on the basal forebrain cholinergic system. The low and medium doses utilized here correspond to the range of doses currently used in clinical formulations, and the high dose corresponds to doses prescribed to a generation of women between 1960 and 1970, when oral contraceptives first became available. We evaluate cognition using a battery of maze tasks tapping several domains of spatial learning and memory as well as basal forebrain cholinergic integrity using immunohistochemistry and unbiased stereology to estimate the number of choline acetyltransferase (ChAT)-producing cells in the medial septum and vertical/diagonal bands. At the highest dose, EE treatment impaired multiple domains of spatial memory relative to vehicle treatment, regardless of administration method. When given cyclically at the low and medium doses, EE did not impact working memory, but transiently impaired reference memory during the learning phase of testing. Of the doses and regimens tested here, only EE at the highest dose impaired several domains of memory; tonic delivery of low EE, a dose that corresponds to the most popular doses used in the clinic today, did not impact cognition on any measure. Both medium and high injection doses of EE reduced the number of ChAt-immunoreactive cells in the basal forebrain, and cell population estimates in the vertical/diagonal bands negatively correlated with working memory errors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oelschläger, H A; Northcutt, R G
1992-01-15
Little is known about the immunohistochemistry of the nervous system in bats. This is particularly true of the nervus terminalis, which exerts strong influence on the reproductive system during ontogeny and in the adult. Luteinizing hormone-releasing hormone (LHRH) was visualized immunocytochemically in the nervus terminalis and brain of juvenile and adult big brown bats (Eptesicus fuscus). The peripheral LHRH-immunoreactive (ir) cells and fibers (nervus terminalis) are dispersed along the basal surface of the forebrain from the olfactory bulbs to the prepiriform cortex and the interpeduncular fossa. A concentration of peripheral LHRH-ir perikarya and fibers was found at the caudalmost part of the olfactory bulbs, near the medioventral forebrain sulcus; obviously these cells mediate between the bulbs and the remaining forebrain. Within the central nervous system (CNS), LHRH-ir perikarya and fibers were distributed throughout the olfactory tubercle, diagonal band, preoptic area, suprachiasmatic and supraoptic nuclei, the bed nuclei of stria terminalis and stria medullaris, the anterior lateral and posterior hypothalamus, and the tuber cinereum. The highest concentration of cells was found within the arcuate nucleus. Fibers were most concentrated within the median eminence, infundibular stalk, and the medial habenula. The data obtained suggest that this distribution of LHRH immunoreactivity may be characteristic for microchiropteran (insectivorous) bats. The strong projections of LHRH-containing nuclei in the basal forebrain (including the arcuate nucleus) to the habenula, may indicate close functional contact between these brain areas via feedback loops, which could be important for the processing of thermal and other environmental stimuli correlated with hibernation.
Stopa, E G; Koh, E T; Svendsen, C N; Rogers, W T; Schwaber, J S; King, J C
1991-06-01
Immunocytochemistry performed on 80-microns unembedded tissue sections was used to study the localization of GnRH-containing neurons and fibers in the basal forebrain and amygdala of six adult (four male, two female) human brains. Sections from one of the female brains were subjected to computer-assisted microscopic mapping to generate a three-dimensional analysis of immunoreactive structures. In all six brains examined, cell bodies were concentrated in the preoptic area and basal hypothalamus, but were also evident in the septal region, anterior olfactory area, and cortical and medial amygdaloid nuclei. GnRH-containing fibers were observed within the hypothalamus (predominantly infundibular region and preoptic area), septum, stria terminalis, ventral pallidum, dorsomedial thalamus, olfactory stria, and anterior olfactory area. Many fibers could also be seen coursing along the base of the brain between the hypothalamus and cortical and medial amygdaloid nuclei. The localization of GnRH-containing cells and fibers in several of these areas represents new observations in the human brain and suggests a role for the amygdaloid complex in the regulation of gonadotropin secretion. The comprehensive view provided by these data may be useful in the clinical application of novel transplantation strategies.
Alcohol disrupts sleep homeostasis.
Thakkar, Mahesh M; Sharma, Rishi; Sahota, Pradeep
2015-06-01
Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired sleep homeostasis. In conclusion, we suggest that alcohol may disrupt sleep homeostasis to cause sleep disruptions. Published by Elsevier Inc.
Ionic mechanisms of action of prion protein fragment PrP(106-126) in rat basal forebrain neurons.
Alier, Kwai; Li, Zongming; Mactavish, David; Westaway, David; Jhamandas, Jack H
2010-08-01
Prion diseases are neurodegenerative disorders that are characterized by the presence of the misfolded prion protein (PrP). Neurotoxicity in these diseases may result from prion-induced modulation of ion channel function, changes in neuronal excitability, and consequent disruption of cellular homeostasis. We therefore examined PrP effects on a suite of potassium (K(+)) conductances that govern excitability of basal forebrain neurons. Our study examined the effects of a PrP fragment [PrP(106-126), 50 nM] on rat neurons using the patch clamp technique. In this paradigm, PrP(106-126) peptide, but not the "scrambled" sequence of PrP(106-126), evoked a reduction of whole-cell outward currents in a voltage range between -30 and +30 mV. Reduction of whole-cell outward currents was significantly attenuated in Ca(2+)-free external media and also in the presence of iberiotoxin, a blocker of calcium-activated potassium conductance. PrP(106-126) application also evoked a depression of the delayed rectifier (I(K)) and transient outward (I(A)) potassium currents. By using single cell RT-PCR, we identified the presence of two neuronal chemical phenotypes, GABAergic and cholinergic, in cells from which we recorded. Furthermore, cholinergic and GABAergic neurons were shown to express K(v)4.2 channels. Our data establish that the central region of PrP, defined by the PrP(106-126) peptide used at nanomolar concentrations, induces a reduction of specific K(+) channel conductances in basal forebrain neurons. These findings suggest novel links between PrP signalling partners inferred from genetic experiments, K(+) channels, and PrP-mediated neurotoxicity.
Acosta, Jazmin I; Mayer, Loretta; Talboom, Joshua S; Zay, Cynthia; Scheldrup, Melissa; Castillo, Jonathan; Demers, Laurence M; Enders, Craig K; Bimonte-Nelson, Heather A
2009-03-01
Conjugated equine estrogen (CEE) is the most commonly prescribed estrogen therapy, and is the estrogen used in the Women's Health Initiative study. While in-vitro studies suggest that CEE is neuroprotective, no study has evaluated CEE's effects on a cognitive battery and brain immunohistochemistry in an animal model. The current experiment tested whether CEE impacted: I) spatial learning, reference memory, working memory and long-term retention, as well as ability to handle mnemonic delay and interference challenges; and, II) the cholinergic system, via pharmacological challenge during memory testing and ChAT-immunoreactive cell counts in the basal forebrain. Middle-aged ovariectomized (Ovx) rats received chronic cyclic injections of either Oil (vehicle), CEE-Low (10 microg), CEE-Medium (20 microg) or CEE-High (30 microg) treatment. Relative to the Oil group, all three CEE groups showed less overnight forgetting on the spatial reference memory task, and the CEE-High group had enhanced platform localization during the probe trial. All CEE groups exhibited enhanced learning on the spatial working memory task, and CEE dose-dependently protected against scopolamine-induced amnesia with every rat receiving the highest CEE dose maintaining zero errors after scopolamine challenge. CEE also increased number of ChAT-immunoreactive neurons in the vertical diagonal band of the basal forebrain. Neither the ability to remember after a delay nor interference, nor long-term retention, was influenced by the CEE regimen used in this study. These findings are similar to those reported previously for 17 beta-estradiol, and suggest that CEE can provide cognitive benefits on spatial learning, reference and working memory, possibly through cholinergic mechanisms.
Zahm, Daniel S.; Parsley, Kenneth P.; Schwartz, Zachary M.; Cheng, Anita Y.
2014-01-01
Peciña and Berridge (2005; J Neurosci 25:11777–11786) observed that an injection of the μ-opioid receptor agonist DAMGO (D-ala2-N-Me-Phe4-Glycol5-enkephalin) into the rostrodorsal part of the accumbens shell (rdAcbSh) enhances expression of hedonic “liking” responses to the taste of an appetitive sucrose solution. Insofar as the connections of this hedonic “hotspot” were not singled out for special attention in the earlier neuroanatomical literature, we undertook to examine them. We observed that the patterns of inputs and outputs of the rdAcbSh are not qualitatively different from those of the rest of the Acb, except that outputs from the rdAcbSh to the lateral preoptic area and anterior and lateral hypothalamic areas are anomalously robust and overlap extensively with those of the lateral septum. We also detected reciprocal interconnections between the rdAcbSh and lateral septum. Whether and how these connections subserve hedonic impact remains to be learned, but these observations lead us to hypothesize that the rdAcbSh represents a basal forebrain transition area, in the sense that it is invaded by neurons of the lateral septum, or possibly transitional neuronal forms sharing properties of both structures. We note that the proposed transition zone between lateral septum and rdAcbSh would be but one of many in the basal forebrain and conclude by reiterating the longstanding argument that the transitional nature of such boundary areas has functional importance, of which the precise nature will remain elusive until the neurophysiological and neuropharmacological implications of such zones of transition are more generally acknowledged and better addressed. PMID:22628122
Forsayeth, John; Mirek, Hanna; Munson, Keith; Bringas, John; Pivirotto, Phil; McBride, Jodi L; Davidson, Beverly L.; Bankiewicz, Krystof S.
2009-01-01
Abstract We used convection-enhanced delivery (CED) to characterize gene delivery mediated by adeno-associated virus type 1 (AAV1) by tracking expression of hrGFP (humanized green fluorescent protein from Renilla reniformis) into the striatum, basal forebrain, and corona radiata of monkey brain. Four cynomolgus monkeys received single infusions into corona radiata, putamen, and caudate. The other group (n = 4) received infusions into basal forebrain. Thirty days after infusion animals were killed and their brains were processed for immunohisto-chemical evaluation. Volumetric analysis of GFP-positive brain areas was performed. AAV1-hrGFP infusions resulted in approximately 550, 700, and 73 mm3 coverage after infusion into corona radiata, striatum, and basal forebrain, respectively. Aside from targeted regions, other brain structures also showed GFP signal (internal and external globus pallidus, subthalamic nucleus), supporting the idea that AAV1 is actively trafficked to regions distal from the infusion site. In addition to neuronal transduction, a significant nonneuronal cell population was transduced by AAV1 vector; for example, oligodendrocytes in corona radiata and astrocytes in the striatum. We observed a strong humoral and cell-mediated response against AAV1-hrGFP in transduced monkeys irrespective of the anatomic location of the infusion, as evidenced by induction of circulating anti-AAV1 and anti-hrGFP antibodies, as well as infiltration of CD4+ lymphocytes and upregulation of MHC-II in regions infused with vector. We conclude that transduction of antigen-presenting cells within the CNS is a likely cause of this response and that caution is warranted when foreign transgenes are used as reporters in gene therapy studies with vectors with broader tropism than AAV2. PMID:19292604
Control of cerebral cortical blood flow by stimulation of basal forebrain cholinergic areas in mice.
Hotta, Harumi; Uchida, Sae; Kagitani, Fusako; Maruyama, Naoki
2011-05-01
We examined whether activity of the nucleus basalis of Meynert (NBM) regulates regional cerebral cortical blood flow (rCBF) in mice, using laser speckle and laser Doppler flowmetry. In anesthetized mice, unilateral focal stimulation, either electrical or chemical, of the NBM increased rCBF of the ipsilateral cerebral cortex in the frontal, parietal and occipital lobes, independent of changes in systemic blood pressure. Most of vasodilative responses to low intensity stimuli (2 times threshold intensity: 2T) were abolished by atropine (a muscarinic cholinergic blocker), whereas responses to higher intensity stimuli (3T) were abolished by atropine and mecamylamine (a nicotinic cholinergic blocker). Blood flow changes were largest when the tip of the electrode was located within the area containing cholinergic neurons shown by choline acetyltransferase-immunocytochemistry. These results suggest that cholinergic projections from basal forebrain neurons in mice cause vasodilation in the ipsilateral cerebral cortex by a combination of muscarinic and nicotinic mechanisms, as previously found in rats and cats.
Teipel, Stefan J; Cavedo, Enrica; Lista, Simone; Habert, Marie-Odile; Potier, Marie-Claude; Grothe, Michel J; Epelbaum, Stephane; Sambati, Luisa; Gagliardi, Geoffroy; Toschi, Nicola; Greicius, Michael; Dubois, Bruno; Hampel, Harald
2018-05-21
Cognitive change in people at risk of Alzheimer's disease (AD) such as subjective memory complainers is highly variable across individuals. We used latent class growth modeling to identify distinct classes of nonlinear trajectories of cognitive change over 2 years follow-up from 265 subjective memory complainers individuals (age 70 years and older) of the INSIGHT-preAD cohort. We determined the effect of cortical amyloid load, hippocampus and basal forebrain volumes, and education on the cognitive trajectory classes. Latent class growth modeling identified distinct nonlinear cognitive trajectories. Education was associated with higher performing trajectories, whereas global amyloid load and basal forebrain atrophy were associated with lower performing trajectories. Distinct classes of cognitive trajectories were associated with risk and protective factors of AD. These associations support the notion that the identified cognitive trajectories reflect different risk for AD that may be useful for selecting high-risk individuals for intervention trials. Copyright © 2018. Published by Elsevier Inc.
Forebrain pathway for auditory space processing in the barn owl.
Cohen, Y E; Miller, G L; Knudsen, E I
1998-02-01
The forebrain plays an important role in many aspects of sound localization behavior. Yet, the forebrain pathway that processes auditory spatial information is not known for any species. Using standard anatomic labeling techniques, we used a "top-down" approach to trace the flow of auditory spatial information from an output area of the forebrain sound localization pathway (the auditory archistriatum, AAr), back through the forebrain, and into the auditory midbrain. Previous work has demonstrated that AAr units are specialized for auditory space processing. The results presented here show that the AAr receives afferent input from Field L both directly and indirectly via the caudolateral neostriatum. Afferent input to Field L originates mainly in the auditory thalamus, nucleus ovoidalis, which, in turn, receives input from the central nucleus of the inferior colliculus. In addition, we confirmed previously reported projections of the AAr to the basal ganglia, the external nucleus of the inferior colliculus (ICX), the deep layers of the optic tectum, and various brain stem nuclei. A series of inactivation experiments demonstrated that the sharp tuning of AAr sites for binaural spatial cues depends on Field L input but not on input from the auditory space map in the midbrain ICX: pharmacological inactivation of Field L eliminated completely auditory responses in the AAr, whereas bilateral ablation of the midbrain ICX had no appreciable effect on AAr responses. We conclude, therefore, that the forebrain sound localization pathway can process auditory spatial information independently of the midbrain localization pathway.
Herawati, Elisa; Kanoh, Hatsuho
2016-01-01
Multiciliated cells (MCCs) promote fluid flow through coordinated ciliary beating, which requires properly organized basal bodies (BBs). Airway MCCs have large numbers of BBs, which are uniformly oriented and, as we show here, align linearly. The mechanism for BB alignment is unexplored. To study this mechanism, we developed a long-term and high-resolution live-imaging system and used it to observe green fluorescent protein–centrin2–labeled BBs in cultured mouse tracheal MCCs. During MCC differentiation, the BB array adopted four stereotypical patterns, from a clustering “floret” pattern to the linear “alignment.” This alignment process was correlated with BB orientations, revealed by double immunostaining for BBs and their asymmetrically associated basal feet (BF). The BB alignment was disrupted by disturbing apical microtubules with nocodazole and by a BF-depleting Odf2 mutation. We constructed a theoretical model, which indicated that the apical cytoskeleton, acting like a viscoelastic fluid, provides a self-organizing mechanism in tracheal MCCs to align BBs linearly for mucociliary transport. PMID:27573463
Dietary polyunsaturated fatty acids improve cholinergic transmission in the aged brain
USDA-ARS?s Scientific Manuscript database
The cholinergic theory of aging states that dysfunction of cholinergic neurons arising from the basal forebrain and terminating in the cortex and hippocampus may be involved in the cognitive decline that occurs during aging and Alzheimer’s disease. Despite years of research, pharmacological interven...
Nabieva, T N
1993-01-01
Behavioral experiments were carried out in cats following methodology which simulates complexly organized, nonautomatized behavior with elements of generalization and abstraction. A conclusion was reached regarding the participation of this formation in the structural-functional support of complex integrative forms of activity, cognitive and gnostic processes, was reached on the basis of the results of the performance of test tasks by the animals with partial destruction of the magnocellular basal nucleus. The proposed mechanism of the involvement of the basal nucleus in gnostic and cognitive processes is the nonspecific support of the system of structures which participate directly in thinking and learning.
Colchicine and ibotenic acid were compared for their ability to roduce neurodegeneration and cognitive deficit after bilateral infusions into the nucleus basalis magnocellularis of male Long-Evans rats. our weeks post-lesion, there was no difference in locomotor activity followin...
Casas-Torremocha, Diana; Clascá, Francisco; Núñez, Ángel
2017-01-01
Rodents move rhythmically their facial whiskers and compute differences between signals predicted and those resulting from the movement to infer information about objects near their head. These computations are carried out by a large network of forebrain structures that includes the thalamus and the primary somatosensory (S1BF) and motor (M1wk) cortices. Spatially and temporally precise mechanorreceptive whisker information reaches the S1BF cortex via the ventroposterior medial thalamic nucleus (VPM). Other whisker-related information may reach both M1wk and S1BF via the axons from the posterior thalamic nucleus (Po). However, Po axons may convey, in addition to direct sensory signals, the dynamic output of computations between whisker signals and descending motor commands. It has been proposed that this input may be relevant for adjusting cortical responses to predicted vs. unpredicted whisker signals, but the effects of Po input on M1wk and S1BF function have not been directly tested or compared in vivo. Here, using electrophysiology, optogenetics and pharmacological tools, we compared in adult rats M1wk and S1BF in vivo responses in the whisker areas of the motor and primary somatosensory cortices to passive multi-whisker deflection, their dependence on Po activity, and their changes after a brief intense activation of Po axons. We report that the latencies of the first component of tactile-evoked local field potentials in M1wk and S1BF are similar. The evoked potentials decrease markedly in M1wk, but not in S1BF, by injection in Po of the GABAA agonist muscimol. A brief high-frequency electrical stimulation of Po decreases the responsivity of M1wk and S1BF cells to subsequent whisker stimulation. This effect is prevented by the local application of omega-agatoxin, suggesting that it may in part depend on GABA release by fast-spiking parvalbumin (PV)-expressing cortical interneurons. Local optogenetic activation of Po synapses in different cortical layers also diminishes M1wk and S1BF responses. This effect is most pronounced in the superficial layers of both areas, known to be the main source and target of their reciprocal cortico-cortical connections. PMID:29021744
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szigethy, E.; Quirion, R.; Beaudet, A.
1990-07-22
The distribution of 125I-neurotensin binding sites was compared with that of acetylcholinesterase reactivity in the human basal forebrain by using combined light microscopic radioautography/histochemistry. High 125I-neurotensin binding densities were observed in the bed nucleus of the stria terminalis, islands of Calleja, claustrum, olfactory tubercle, and central nucleus of the amygdala; lower levels were seen in the caudate, putamen, medial septum, diagonal band nucleus, and nucleus basalis of Meynert. Adjacent sections processed for cholinesterase histochemistry demonstrated a regional overlap between the distribution of labeled neurotensin binding sites and that of intense acetylcholinesterase staining in all of the above regions, except inmore » the bed nucleus of the stria terminalis, claustrum, and central amygdaloid nucleus, where dense 125I-neurotensin labeling was detected over areas containing only weak to moderate cholinesterase staining. At higher magnification, 125I-neurotensin-labeled binding sites in the islands of Calleja, supraoptic nucleus of the hypothalamus, medial septum, diagonal band nucleus, and nucleus basalis of Meynert were selectively associated with neuronal perikarya found to be cholinesterase-positive in adjacent sections. Moderate 125I-neurotensin binding was also apparent over the cholinesterase-reactive neuropil of these latter three regions. These data suggest that neurotensin (NT) may directly influence the activity of magnocellular cholinergic neurons in the human basal forebrain, and may be involved in the physiopathology of dementing disorders such as Alzheimer's disease, in which these neurons have been shown to be affected.« less
Noradrenaline and dopamine levels in acute cerveau isolé in the cat.
Szikszay, M; Benedek, G; Obál, F; Obál, F
1980-01-01
Noradrenaline (NA) and dopamine (DA) levels were studied in the forebrain of acute immobilized cats and in cerveau isolé preparations. A gradual decrease in NA and DA was observed one and two hours after high mesencephalic transection, while the amount of NA increased in acute immobilized cats after the cessation of ether anaesthesia. These changes in NA level are consistent with the observations suggesting an inverse relationship between NA and cortical deactivation. The decrease of DA with an exaggeration of spindle activity and increased synchronizing effect of basal forebrain stimulation indicate that the spindle-increasing effect of DA suggested by several authors requires the contribution of the brain stem.
The Basal Ganglia and Adaptive Motor Control
NASA Astrophysics Data System (ADS)
Graybiel, Ann M.; Aosaki, Toshihiko; Flaherty, Alice W.; Kimura, Minoru
1994-09-01
The basal ganglia are neural structures within the motor and cognitive control circuits in the mammalian forebrain and are interconnected with the neocortex by multiple loops. Dysfunction in these parallel loops caused by damage to the striatum results in major defects in voluntary movement, exemplified in Parkinson's disease and Huntington's disease. These parallel loops have a distributed modular architecture resembling local expert architectures of computational learning models. During sensorimotor learning, such distributed networks may be coordinated by widely spaced striatal interneurons that acquire response properties on the basis of experienced reward.
NASA Astrophysics Data System (ADS)
Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.
1987-05-01
Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.
Hewer, Ekkehard; Beck, Jürgen; Kellner-Weldon, Frauke; Vajtai, Istvan
2015-07-01
Chordoid glioma of the third ventricle is a rare neuroepithelial tumor characterized by a unique histomorphology and exclusive association with the suprasellar/third ventricular compartment. Variously interpreted as either astrocytic- or ependymal-like, and speculatively ascribed to the lamina terminalis/subcommissural organ, its histogenesis remains, nevertheless, unsettled. Here, we report on a suprasellar chordoid glioma occurring in a 52-year-old man. Although displaying otherwise typical morphological features, the tumor was notable for expression of thyroid transcription factor 1, a marker of tumors of pituicytic origin in the context of the sellar region. We furthermore found overlapping immunoprofiles of this example of chordoid glioma and pituicytic tumors (pituicytoma and spindle cell oncocytoma), respectively. Specifically, phosphorylated ribosomal protein S6, a marker of mTOR pathway activation, was expressed in both groups. Based on these findings, we suggest that chordoid glioma and pituicytic tumors may form part of a spectrum of lineage-related neoplasms of the basal forebrain. Copyright © 2015 Elsevier Inc. All rights reserved.
Poreh, Amir; Winocur, Gordon; Moscovitch, Morris; Backon, Matti; Goshen, Elinor; Ram, Zvi; Feldman, Zeev
2006-01-01
AD, a 45-year-old man, presented with a severe and global anterograde amnesia following surgery for removal of a colloid cyst. Structural neuroimaging confirmed bilateral lesions to the fornix and a small lesion in the basal forebrain. Testing for remote episodic memory of autobiographical events, and for remote semantic memory of personal and public events, and of famous people, revealed that AD had a severe retrograde amnesia for autobiographical episodes that covered his entire lifetime, and a time-limited retrograde amnesia for semantic memory. Because the fornix and basal forebrain lesions disrupted major afferent and efferent pathways of the hippocampus, it was concluded that the integrity of the hippocampus and its projections are needed to retain and/or recover autobiographical memories no matter how old they are. By contrast, hippocampal contribution to semantic memory is time-limited. These findings were interpreted as consistent with Multiple Trace Theory, which holds that the hippocampal system is essential for recovering contextually rich memories no matter how old they are, but is not needed for recovering semantic memories.
Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory.
Okada, Kana; Nishizawa, Kayo; Kobayashi, Tomoko; Sakata, Shogo; Kobayashi, Kazuto
2015-08-06
Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer's disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory.
Espinosa-Raya, Judith; Cruz-Raya, Ulises; López-Martínez, Margarita; Picazo, Ofir
2018-01-09
Treatment with 17-β estradiol and progesterone improves the performance of ovariectomized rats in an autoshaping learning task, representing cognitive improvement. To test whether this is attributable to genomic mechanisms, the antiestrogen ICI 182 780 or antiprogesterone RU486 was injected into ovariectomized animals primed previously with estrogen or progesterone, respectively. Compared with the vehicle control, each hormone administered alone produced an elevated expression of choline acetyltransferase and TrkA, along with an improvement in performance on the behavioral test. E2+ICI reverted the increase in these two proteins. However, RU alone elicited higher ChAT expression. With this exception, there was a clear linear regression between the number of conditioned responses and the level of ChAT and TrkA in the basal forebrain. The results suggest that TrkA may be more important than ChAT for regulating autoshaping learning tasks, and that genomic mechanisms in the basal forebrain could possibly underlie hormonal improvement of cognition.
Nikonova, Elena V; Gilliland, Jason DA; Tanis, Keith Q; Podtelezhnikov, Alexei A; Rigby, Alison M; Galante, Raymond J; Finney, Eva M; Stone, David J; Renger, John J; Pack, Allan I; Winrow, Christopher J
2017-06-01
To assess differences in gene expression in cholinergic basal forebrain cells between sleeping and sleep-deprived mice sacrificed at the same time of day. Tg(ChAT-eGFP)86Gsat mice expressing enhanced green fluorescent protein (eGFP) under control of the choline acetyltransferase (Chat) promoter were utilized to guide laser capture of cholinergic cells in basal forebrain. Messenger RNA expression levels in these cells were profiled using microarrays. Gene expression in eGFP(+) neurons was compared (1) to that in eGFP(-) neurons and to adjacent white matter, (2) between 7:00 am (lights on) and 7:00 pm (lights off), (3) between sleep-deprived and sleeping animals at 0, 3, 6, and 9 hours from lights on. There was a marked enrichment of ChAT and other markers of cholinergic neurons in eGFP(+) cells. Comparison of gene expression in these eGFP(+) neurons between 7:00 am and 7:00 pm revealed expected differences in the expression of clock genes (Arntl2, Per1, Per2, Dbp, Nr1d1) as well as mGluR3. Comparison of expression between spontaneous sleep and sleep-deprived groups sacrificed at the same time of day revealed a number of transcripts (n = 55) that had higher expression in sleep deprivation compared to sleep. Genes upregulated in sleep deprivation predominantly were from the protein folding pathway (25 transcripts, including chaperones). Among 42 transcripts upregulated in sleep was the cold-inducible RNA-binding protein. Cholinergic cell signatures were characterized. Whether the identified genes are changing as a consequence of differences in behavioral state or as part of the molecular regulatory mechanism remains to be determined. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Oh, J D; Butcher, L L; Woolf, N J
1991-04-24
Hyperthyroidism, induced in rat pups by the daily intraperitoneal administration of 1 microgram/g body weight triiodothyronine, facilitated the development of ChAT fiber plexuses in brain regions innervated by basal forebrain cholinergic neurons, leading to an earlier and increased expression of cholinergic markers in those fibers in the cortex, hippocampus and amygdala. A similar enhancement was seen in the caudate-putamen complex. This histochemical profile was correlated with an accelerated appearance of ChAT-positive telencephalic puncta, as well as with a larger total number of cholinergic terminals expressed, which persisted throughout the eight postnatal week, the longest time examined in the present study. Hypothyroidism was produced in rat pups by adding 0.5% propylthiouracil to the dams' diet beginning the day after birth. This dietary manipulation resulted in the diminished expression of ChAT in forebrain fibers and terminals. Hypothyroid treatment also reduced the quantity of ChAT puncta present during postnatal weeks 2 and 3, and, from week 4 and continuing through week 6, the number of ChAT-positive terminals in the telencephalic regions examined was actually less than the amount extant during the former developmental epoch. Immunostaining for nerve growth factor receptor (NGF-R), which is associated almost exclusively with ChAT-positive somata and fibers in the basal forebrain, demonstrated a different time course of postnatal development. Forebrain fibers and terminals demonstrating NGF-R were maximally visualized 1 week postnatally, a time at which these same neuronal elements evinced minimal ChAT-like immunopositivity. Thereafter and correlated with increased immunoreactivity for ChAT, fine details of NGF-R stained fibers were observed less frequently. Although propylthiouracil administration decreased NGF-R immunodensity, no alteration in the development of that receptor was observed as a function of triiodothyronine treatment. Cholinergic terminals in the ventrobasal thalamus, which derive from ChAT-positive neurons in the pedunculopontine and laterodorsal tegmental nucleus, were unaffected by either hyperthyroid or hypothyroid conditions. These cells also do not demonstrate NGF-R. We conclude from these experiments (1) that cholinergic fiber plexuses eventually exhibiting ChAT positivity in the telencephalon demonstrate NGF-R prior to the cholinergic synthetic enzyme, (2) that susceptibility to thyroid hormone manipulations may involve sensitivity to NGF, at least in some forebrain cholinergic systems and (3) that the effects of thyroid hormone imbalances on brain cholinergic neurons are regionally selective.
Thalamic and extrathalamic mechanisms of consciousness after severe brain injury.
Lutkenhoff, Evan S; Chiang, Jeffrey; Tshibanda, Luaba; Kamau, Evelyn; Kirsch, Murielle; Pickard, John D; Laureys, Steven; Owen, Adrian M; Monti, Martin M
2015-07-01
What mechanisms underlie the loss and recovery of consciousness after severe brain injury? We sought to establish, in the largest cohort of patients with disorders of consciousness (DOC) to date, the link between gold standard clinical measures of awareness and wakefulness, and specific patterns of local brain pathology-thereby possibly providing a mechanistic framework for patient diagnosis, prognosis, and treatment development. Structural T1-weighted magnetic resonance images were collected, in a continuous sample of 143 severely brain-injured patients with DOC (and 96 volunteers), across 2 tertiary expert centers. Brain atrophy in subcortical regions (bilateral thalamus, basal ganglia, hippocampus, basal forebrain, and brainstem) was assessed across (1) healthy volunteers and patients, (2) clinical entities (eg, vegetative state, minimally conscious state), (3) clinical measures of consciousness (Coma Recovery Scale-Revised), and (4) injury etiology. Compared to volunteers, patients exhibited significant atrophy across all structures (p < 0.05, corrected). Strikingly, we found almost no significant differences across clinical entities. Nonetheless, the clinical measures of awareness and wakefulness upon which differential diagnosis rely were systematically associated with tissue atrophy within thalamic and basal ganglia nuclei, respectively; the basal forebrain was atrophied in proportion to patients' response to sensory stimulation. In addition, nontraumatic injuries exhibited more extensive thalamic atrophy. These findings provide, for the first time, a grounding in pathology for gold standard behavior-based clinical measures of consciousness, and reframe our current models of DOC by stressing the different links tying thalamic mechanisms to willful behavior and extrathalamic mechanisms to behavioral (and electrocortical) arousal. © 2015 American Neurological Association.
ERIC Educational Resources Information Center
Oros, Nicolas; Chiba, Andrea A.; Nitz, Douglas A.; Krichmar, Jeffrey L.
2014-01-01
Learning to ignore irrelevant stimuli is essential to achieving efficient and fluid attention, and serves as the complement to increasing attention to relevant stimuli. The different cholinergic (ACh) subsystems within the basal forebrain regulate attention in distinct but complementary ways. ACh projections from the substantia innominata/nucleus…
Turnbull, Marion T; Coulson, Elizabeth J
2017-01-01
Alzheimer's disease (AD) is a progressive, irreversible neurodegenerative disease that destroys memory and cognitive function. Aggregates of hyperphosphorylated tau protein are a prominent feature in the brain of patients with AD, and are a major contributor to neuronal toxicity and disease progression. However, the factors that initiate the toxic cascade that results in tau hyperphosphorylation in sporadic AD are unknown. Here we investigated whether degeneration of basal forebrain cholinergic neurons (BFCNs) and/or a resultant decrease in neurotrophin signaling cause aberrant tau hyperphosphorylation. Our results reveal that the loss of BFCNs in pre-symptomatic pR5 (P301L) tau transgenic mice results in a decrease in hippocampal brain-derived neurotrophic factor levels and reduced TrkB receptor activation. However, there was no exacerbation of the levels of phosphorylated tau or its aggregation in the hippocampus of susceptible mice. Furthermore the animals' performance in a hippocampal-dependent learning and memory task was unaltered, and no changes in hippocampal synaptic markers were observed. This suggests that tau pathology is likely to be regulated independently of BFCN degeneration and the corresponding decrease in hippocampal neurotrophin levels, although these features may still contribute to disease etiology.
Acetylcholinesterase inhibitors rapidly activate Trk neurotrophin receptors in the mouse hippocampus
Autio, Henri; Mätlik, Kert; Rantamäki, Tomi; Lindemann, Lothar; Hoener, Marius C; Chao, Moses; Arumäe, Urmas; Castrén, Eero
2014-01-01
Acetylcholinesterase inhibitors are first-line therapies for Alzheimer's disease. These drugs increase cholinergic tone in the target areas of the cholinergic neurons of the basal forebrain. Basal forebrain cholinergic neurons are dependent upon trophic support by nerve growth factor (NGF) through its neurotrophin receptor, TrkA. In the present study, we investigated whether the acetylcholinesterase inhibitors donepezil and galantamine could influence neurotrophin receptor signaling in the brain. Acute administration of donepezil (3 mg/kg, i.p.) led to the rapid autophosphorylation of TrkA and TrkB neurotrophin receptors in the adult mouse hippocampus. Similarly, galantamine dose-dependently (3, 9 mg/kg, i.p.) increased TrkA and TrkB phosphorylation in the mouse hippocampus. Both treatments also increased the phosphorylation of transcription factor CREB and tended to increase the phosphorylation of AKT kinase but did not alter the activity of MAPK42/44. Chronic treatment with galantamine (3 mg/kg, i.p., 14 days), did not induce changes in hippocampal NGF and BDNF synthesis or protein levels. Our findings show that acetylcholinesterase inhibitors are capable of rapidly activating hippocampal neurotrophin signaling and thus suggest that therapies targeting Trk signaling may already be in clinical use in the treatment of AD. PMID:21820453
Powers, Brian E.; Velazquez, Ramon; Kelley, Christy M.; Ash, Jessica A.; Strawderman, Myla S.; Alldred, Melissa J.; Ginsberg, Stephen D.; Mufson, Elliott J.
2016-01-01
Individuals with Down syndrome (DS) exhibit intellectual disability and develop Alzheimer's disease-like neuropathology during the third decade of life. The Ts65Dn mouse model of DS exhibits key features of both disorders, including impairments in learning, attention and memory, as well as atrophy of basal forebrain cholinergic neurons (BFCNs). The present study evaluated attentional function in relation to BFCN morphology in young (3 months) and middle-aged (12 months) Ts65Dn mice and disomic (2N) controls. Ts65Dn mice exhibited attentional dysfunction at both ages, with greater impairment in older trisomics. Density of BFCNs was significantly lower for Ts65Dn mice independent of age, which may contribute to attentional dysfunction since BFCN density was positively associated with performance on an attention task. BFCN volume decreased with age in 2N but not Ts65Dn mice. Paradoxically, BFCN volume was greater in older trisomic mice, suggestive of a compensatory response. In sum, attentional dysfunction occurred in both young and middle-aged Ts65Dn mice, which may in part reflect reduced density and/or phenotypic alterations in BFCNs. PMID:26719290
Siegel, Jessica A.; Park, Byung S.; Raber, Jacob
2013-01-01
Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males. PMID:21824143
Powers, Brian E; Velazquez, Ramon; Kelley, Christy M; Ash, Jessica A; Strawderman, Myla S; Alldred, Melissa J; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J
2016-12-01
Individuals with Down syndrome (DS) exhibit intellectual disability and develop Alzheimer's disease-like neuropathology during the third decade of life. The Ts65Dn mouse model of DS exhibits key features of both disorders, including impairments in learning, attention and memory, as well as atrophy of basal forebrain cholinergic neurons (BFCNs). The present study evaluated attentional function in relation to BFCN morphology in young (3 months) and middle-aged (12 months) Ts65Dn mice and disomic (2N) controls. Ts65Dn mice exhibited attentional dysfunction at both ages, with greater impairment in older trisomics. Density of BFCNs was significantly lower for Ts65Dn mice independent of age, which may contribute to attentional dysfunction since BFCN density was positively associated with performance on an attention task. BFCN volume decreased with age in 2N but not Ts65Dn mice. Paradoxically, BFCN volume was greater in older trisomic mice, suggestive of a compensatory response. In sum, attentional dysfunction occurred in both young and middle-aged Ts65Dn mice, which may in part reflect reduced density and/or phenotypic alterations in BFCNs.
Neuroregulatory and neuroendocrine GnRH pathways in the hypothalamus and forebrain of the baboon.
Marshall, P E; Goldsmith, P C
1980-07-14
The distribution of neurons containing gonadotropin-releasing hormone (GnRH) in the baboon hypothalamus and forebrain was studied immunocytochemically by light and electron microscopy. GnRH was present in the perikarya, axonal and dendritic processes of immunoreactive neurons. Three populations of GnRH neurons could be distinguished. Most of the GnRH neurons which are assumed to directly influence the anterior pituitary were in the medial basal hypothalamus. Other cells that projected to the median eminence were found scattered throughout the hypothalamus. A second, larger population of neurons apparently was not involved with control of the anterior pituitary. These neurons were generally found within afferent and efferent pathways of the hypothalamus and forebrain, and may receive external information affecting reproduction. A few neurons projecting to the median eminence were also observed sending collaterals to other brain areas. Thus, in addition to their neuroendocrine role, these cells possibly have neuroregulatory functions. The inference is made that these bifunctional neurons, together with the widely observed GnRH-GnRH cellular interactions may help to synchronize ovulation and sexual behavior.
Morton, C A; Dominicus, R; Radny, P; Dirschka, T; Hauschild, A; Reinhold, U; Aschoff, R; Ulrich, M; Keohane, S; Ekanayake-Bohlig, S; Ibbotson, S; Ostendorf, R; Berking, C; Gröne, D; Schulze, H J; Ockenfels, H M; Jasnoch, V; Kurzen, H; Sebastian, M; Stege, H; Staubach, P; Gupta, G; Hübinger, F; Ziabreva, I; Schmitz, B; Gertzmann, A; Lübbert, H; Szeimies, R-M
2018-02-12
Basal cell carcinoma (BCC) represents the most common nonmelanoma skin cancer worldwide, affecting mainly adult, fair-skinned individuals. The World Health Organization distinguishes aggressive and nonaggressive forms, of which prototypical variants of the latter are primary nodular and superficial BCC. To demonstrate noninferiority of BF-200 ALA (a nanoemulsion gel containing 5-aminolaevulinic acid) compared with MAL (a cream containing methyl aminolaevulinate) in the treatment of nonaggressive BCC with photodynamic therapy (PDT). Noninferiority of the primary efficacy variable (overall patient complete response 12 weeks after last PDT) would be declared if the mean response for BF-200 ALA was no worse than that for MAL, within a statistical margin of Δ = -15%. The study was a randomized, phase III trial performed in Germany and the U.K. with ongoing 5-year follow-up. Of 281 randomized patients, 138 were treated with BF-200 ALA and 143 with MAL. Patients received two PDT sessions 1 week apart. Remaining lesions 12 weeks after the second PDT were retreated. Illumination was performed with a red light source (635 nm, 37 J cm -2 ). The results shown include clinical end points and patients' reassessment 12 months after the last PDT. The study was registered with EudraCT (number 2013-003241-42). Of the BF-200 ALA-treated patients, 93·4% were complete responders compared with 91·8% in the MAL group. The difference of means was 1·6, with a one-sided 97·5% confidence interval of -6·5, establishing noninferiority (P < 0·0001). The results for secondary efficacy parameters were in line with the primary outcome. Recurrence rates 12 months after the last treatment were ≤ 10%. Treatment of nonaggressive BCC with BF-200 ALA-PDT is highly effective and well tolerated with proven noninferiority to MAL-PDT. It demonstrates low recurrence rates after 1 year of follow-up. © 2018 The Authors. British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.
McKeon-O'Malley, Catherine; Siwek, Donald; Lamoureux, Jeffrey A; Williams, Christina L; Kowall, Neil W
2003-07-11
Levels of dietary choline in utero influence postnatal cognitive performance. To better understand this phenomenon, forebrain cholinergic neurons were studied in the 8-9 month old offspring of dams fed a control or choline-deficient diet from EDs 11-17. Serial sections were immunostained with antibodies against p75, a cholinergic marker. Neuronal morphology was analyzed in the basal forebrain, a heterogeneous area composed of several structures including the medial septal nucleus (MSN), nucleus of the diagonal band (DB), and the nucleus basalis of Meynert (NB). Neuronal cross-sectional areas were selectively reduced in the MSN of choline-deficient animals, compared to controls, but cell counts were not altered. Our findings suggest that cholinergic medial septal neurons may be selectively vulnerable to in utero choline deficiency.
Nerve growth factor metabolic dysfunction in Down’s syndrome brains
Iulita, M. Florencia; Do Carmo, Sonia; Ower, Alison K.; Fortress, Ashley M.; Aguilar, Lisi Flores; Hanna, Michael; Wisniewski, Thomas; Granholm, Ann-Charlotte; Buhusi, Mona; Busciglio, Jorge
2014-01-01
Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer’s disease and Down’s syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer’s disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF’s extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down’s syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down’s syndrome and age-matched controls (age range 31–68 years). We further examined primary cultures of human foetal Down’s syndrome cortex (17–21 gestational age weeks) and brains from Ts65Dn mice (12–22 months), a widely used animal model of Down’s syndrome. We report a significant increase in proNGF levels in human and mouse Down’s syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down’s syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down’s syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic neurons. The alterations in proNGF and MMP9 were also present in cultures of Down’s syndrome foetal cortex; suggesting that this trophic compromise may be amenable to rescue, before frank dementia onset. Our study thus provides a novel paradigm for cholinergic neuroprotection in Alzheimer’s disease and Down’s syndrome. PMID:24519975
Decreased Retinal-Choroidal Blood Flow in Retinitis Pigmentosa as measured by MRI
Zhang, Yi; Harrison, Joseph M; Nateras, Oscar San Emeterio; Chalfin, Steven; Duong, Timothy Q
2013-01-01
Purpose To evaluate retinal and choroidal blood flow (BF) using high-resolution magnetic resonance imaging (MRI) as well as visual function measured by the electroretinogram (ERG) in patients with retinitis pigmentosa (RP). Methods MRI studies were performed in 6 RP patients (29-67 years) and 5 healthy volunteers (29-64 years) on a 3-Tesla scanner with a custom-made surface coil. Quantitative BF was measured using the pseudo-continuous arterial-spin-labeling technique at 0.5x0.8x6.0mm. Full-field ERGs of all patients were recorded. Amplitudes and implicit times of standard ERGs were analyzed. Results Basal BF in the posterior retinal-choroid was 142±16 ml/100ml/min (or 1.14±0.13 μl/mm2/min) in the control group and was 70±19 ml/100ml/min (or 0.56±0.15 μl/mm2/min) in the RP group. Retinal-choroidal BF was significantly reduced by 52±8% in RP patients compared to controls (P<0.05). ERG a- and b-wave amplitudes of RP patients were reduced and b-wave implicit times were delayed. There were statistically significant correlations between a-wave amplitude and BF value (r=0.9, P<0.05) but not between b-wave amplitude and BF value (r =0.7, P=0.2). Conclusions This study demonstrates a novel non-invasive MRI approach to measure quantitative retinal and choroidal BF in RP patients. We found that retinal-choroidal BF was markedly reduced and significantly correlated with reduced amplitudes of the a-wave of the standard combined ERG. PMID:23408312
ERIC Educational Resources Information Center
Chudasama, Yogita; Dalley, Jeffrey W.; Nathwani, Falgyni; Bouger, Pascale; Robbins, Trevor W.
2004-01-01
Two experiments examined the effects of reductions in cortical cholinergic function on performance of a novel task that allowed for the simultaneous assessment of attention to a visual stimulus and memory for that stimulus over a variable delay within the same test session. In the first experiment, infusions of the muscarinic receptor antagonist…
Cortical Proteins are Chemokinetic to Cells from the Medial Ganglionic Eminence
2011-05-28
et al., 2009). Disruption of interneuron migration can lead to improper distribution within the cortex and is associated with schizophrenia, autism ...include the neurotrophins; the growth factors NRG1 and GDNF, the chemokine, SDF-1 and neurotransmitters, glutamate, GABA, and dopamine (Stumm et al...Bhide PG ( Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex. J Neurosci 27:3813-3822.2007
Pillay, Siveshigan; Liu, Xiping; Baracskay, Péter; Hudetz, Anthony G
2014-09-01
Brain states and cognitive-behavioral functions are precisely controlled by subcortical neuromodulatory networks. Manipulating key components of the ascending arousal system (AAS), via deep-brain stimulation, may help facilitate global arousal in anesthetized animals. Here we test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) under light isoflurane anesthesia, associated with loss of consciousness, leads to cortical desynchronization and specific changes in blood-oxygenation-level-dependent (BOLD) functional connectivity (FC) of the brain. BOLD signals were acquired simultaneously with frontal epidural electroencephalogram before and after PnO stimulation. Whole-brain FC was mapped using correlation analysis with seeds in major centers of the AAS. PnO stimulation produced cortical desynchronization, a decrease in δ- and θ-band power, and an increase in approximate entropy. Significant increases in FC after PnO stimulation occurred between the left nucleus Basalis of Meynert (NBM) as seed and numerous regions of the paralimbic network. Smaller increases in FC were present between the central medial thalamic nucleus and retrosplenium seeds and the left caudate putamen and NBM. The results suggest that, during light anesthesia, PnO stimulation preferentially modulates basal forebrain-paralimbic networks. We speculate that this may be a reflection of disconnected awareness.
Greco, M A; McCarley, R W; Shiromani, P J
1999-01-01
The present study examined whether the expression of the messenger RNA encoding the protein responsible for acetylcholine synthesis is associated with sleep-wakefulness. Choline acetyltransferase messenger RNA levels were analysed using a semi-quantitative assay in which reverse transcription was coupled to complementary DNA amplification using the polymerase chain reaction. To examine the relationship between steady-state messenger RNA and behavioral activity, rats were killed during the day (4.00 p.m.) or night (4.00 a.m.), and tissue from the vertical and horizontal limbs of the diagonal bands of Broca was analysed. Choline acetyltransferase messenger RNA levels were higher during the day than during the night. The second study examined more closely the association between choline acetyltransferase messenger RNA levels and individual bouts of wakefulness, slow-wave sleep or rapid eye movement sleep. Choline acetyltransferase messenger RNA levels were low during wakefulness, intermediate in slow-wave sleep and high during rapid eye movement sleep. In contrast, protein activity, measured at a projection site of cholinergic neurons of the basal forebrain, was higher during wakefulness than during sleep. These findings suggest that choline acetyltransferase protein and messenger RNA levels exhibit an inverse relationship during sleep and wakefulness. The increased messenger RNA expression during sleep is consistent with a restorative function of sleep.
Schilter, David; Rauchfuss, Thomas B.; Stein, Matthias
2012-01-01
A series of mixed-valence iron-nickel dithiolates is described that exhibits structures similar to those of mixed-valence diiron dithiolates. Interaction of tricarbonyl salt [(dppe)Ni(pdt)Fe(CO)3]BF4 ([1]BF4, dppe = Ph2PCH2CH2PPh2, pdtH2 = HSCH2CH2CH2SH) with P-donor ligands (L) afforded the substituted derivatives [(dppe)Ni(pdt)Fe(CO)2L]BF4 incorporating L = PHCy2 ([1a]BF4), PPh(NEt2)2 ([1b]BF4), P(NMe2)3 ([1c]BF4), P(i-Pr)3 ([1d]BF4) and PCy3 ([1e]BF4). The related precursor [(dcpe)Ni(pdt)Fe(CO)3]BF4 ([2]BF4, dcpe = Cy2PCH2CH2PCy2) gave the more electron-rich family of compounds [(dcpe)Ni(pdt)Fe(CO)2L]BF4 for L = PPh2(2-pyridyl) ([2a]BF4), PPh3 ([2b]BF4) and PCy3 ([2c]BF4). For bulky and strongly basic monophosphorus ligands, the salts feature distorted Fe coordination geometries: crystallographic analyses of [1e]BF4 and [2c]BF4 showed they adopt ‘rotated’ Fe(I) centers, in which PCy3 occupies a basal site and one CO ligand partially bridges the Ni and Fe centers. Like the undistorted mixed-valence derivatives, the new class of complexes are described as Ni(II)Fe(I) (S = ½) systems according to EPR spectroscopy, although with attenuated 31P hyperfine interactions. DFT calculations using the BP86, B3LYP, and PBE0 exchange-correlation functionals agree with the structural and spectroscopic data, suggesting that the spin for [1e]+ is localized in a Fe(I)-centered d(z2) orbital, orthogonal to the Fe-P bond. The PCy3 complexes, rare examples of species featuring ‘rotated’ Fe centers, both structurally and spectroscopically resemble mixed-valence diiron dithiolates. Also reproducing the NiS2Fe core of the [NiFe]-H2ase active site, the hybrid models incorporate key features of the two major classes of H2ase. Furthermore, cyclic voltammetry experiments suggest that the highly basic phosphine ligands enable a second oxidation corresponding to the couple [(dxpe)Ni(pdt)Fe(CO)2L]+/2+. The resulting unsaturated 32e− dications represent the closest approach to modeling the highly electrophilic Ni-SIa state. In the case of L = PPh2(2-pyridyl) chelation of this ligand accompanies the second oxidation. PMID:22838645
Knyihár-Csillik, E; Boncz, I; Sáry, G; Nemcsók, J; Csillik, B
1999-06-01
Meynert's basal nucleus is innervated by calcitonin gene-related peptide (CGRP)-immunoreactive axons synapsing with cholinergic principal cells. Origin of CGRP-immunopositive axons was studied in the albino rat. Since beaded axons containing the nicotinic acetylcholine receptor (nAChR) are also present in the basal nucleus, the microstructural arrangement raises the question whether or not an interaction between CGRP and nAChR exists like in the neuromuscular junction. We found that electrolytic lesion of the parabrachial nucleus results in degeneration of CGRP-immunoreactive axons in the ipsilateral nucleus basalis and induces shrinkage of principal cholinergic neurons while the contralateral nucleus basalis remains intact. Electrolytic lesions in the thalamus, caudate-putamen, and hippocampus did not induce alterations in Meynert's basal nucleus. Disappearance of CGRP after lesions of the parabrachial nucleus does not impair presynaptic nAChR in the basal nucleus, suggesting that, unlike in the neuromuscular junction, CGRP is not involved in the maintenance of nAChR in the basal forebrain. It is concluded that the parabrachial nucleus is involved in the activation of the nucleus basalis-prefrontal cortex system, essential in gnostic and mnemonic functions. Copyright 1999 Academic Press.
Effects of cashew nut testa levels as an alternative to wheat bran in gestating sow diets.
Fang, Lin Hu; Hong, Young Gi; Hong, Jin Su; Jeong, Jae Hark; Han, Young Geol; Kwon, In Hyuk; Kim, Yoo Yong
2018-06-01
This study was conducted to evaluate the effects of dietary cashew nut testa (CNT) as an alternative feed ingredient to wheat bran on reproductive performance, litter performance, milk composition, and blood profiles of gestating sows. Forth multiparous sows (Yorkshire×Landrace) were fed experimental diets starting at 35 days of pregnancy and an initial average body weight (BW) of 211.53±8.86 kg. Each sow was assigned to a treatment based on BW, backfat thickness (BF) and parity with 10 sows per treatment. Treatments were as follows: i) corn-soybean meal based diet with 6% of wheat bran (C0); ii) basal diet with 2% of CNT and 4% of wheat bran (C2); iii) basal diet with 4% of CNT and 2% of wheat bran (C4); and iv) basal diet with 6% of CNT (C6). There were no statistically significant differences in BW and BF of gestating sows throughout the experimental period. However, changes in BF (p = 0.09) and the daily feed intake of sows (p = 0.09) tended to linearly increase during the lactation period. The weaning to estrus interval (WEI) showed a quadratic response to CNT treatment (p = 0.02), and the C2 diet showed the shortest WEI. Litter birth weight (p = 0.04) and piglet birth weight (p = 0.06) were linearly decreased with increase in CNT. Furthermore, there had no significant differences in piglet weight and litter weight in 21 day. Insulin concentration at day 70 of gestation was linearly reduced with increasing CNT level in diets (p = 0.03). When 6% CNT replaced wheat bran in gestating sow diets, there were no negative effects on sow performance, but litter birth weight and piglet birth weight were decreased when CNT level increased in gestating sow diets.
Furious Frederich: Nietzsche's neurosyphilis diagnosis and new hypotheses.
André, Charles; Rios, André Rangel
2015-12-01
The causes of Friedrich Nietzsche's mental breakdown in early 1889 and of the subsequent slow decay to end-stage dementia along ten years will possibly remain open to debate. The diagnosis of syphilitic dementia paralytica, based only on medical anamnesis and physical examination, was considered indisputable by Otto Binswanger. On the other hand, taking into account recently described diseases, selectively collected evidence lend some support to alternative hypotheses: basal forebrain meningioma, CADASIL, MELAS and frontotemporal dementia.
Pondiki, S; Stamatakis, A; Fragkouli, A; Philippidis, H; Stylianopoulou, F
2006-10-13
Neonatal handling is an early experience which results in improved function of the hypothalamic-pituitary-adrenal axis, increased adaptability and coping as a response to stress, as well as better cognitive abilities. In the present study, we investigated the effect of neonatal handling on the basal forebrain cholinergic system, since this system is known to play an important role in cognitive processes. We report that neonatal handling results in increased number of choline-acetyl transferase immunopositive cells in the septum/diagonal band, in both sexes, while no such effect was observed in the other cholinergic nuclei, such as the magnocellular preoptic nucleus and the nucleus basalis of Meynert. In addition, neonatal handling resulted in increased M1 and M2 muscarinic receptor binding sites in the cingulate and piriform cortex of both male and female rats. A handling-induced increase in M1 muscarinic receptor binding sites was also observed in the CA3 and CA4 (fields 3 and 4 of Ammon's horn) areas of the hippocampus. Furthermore, a handling-induced increase in acetylcholinesterase staining was found only in the hippocampus of females. Our results thus show that neonatal handling acts in a sexually dimorphic manner on one of the cholinergic parameters, and has a beneficial effect on BFCS function, which could be related to the more efficient and adaptive stress response and the superior cognitive abilities of handled animals.
Prusty, Ashisa K.; PaniPrasad, Kurchetti; Mohanta, Kedar N.
2014-01-01
Probiotics play an important role in growth increment, immune enhancement and stress mitigation in fish. Increasing temperature is a major concern in present aquaculture practices as it markedly deteriorates the health condition and reduces the growth in fish. In order to explore the possibilities of using probiotics as a counter measure for temperature associated problems, a 30 days feeding trial was conducted to study the hemato-immunological and apoptosis response of Labeo rohita (8.3±0.4 g) reared at different water temperatures, fed with or without dietary supplementation of a probiotic mixture (PM) consisting of Bacillus subtilis, Lactococcus lactis and Saccharomyces cerevisiae) (1011 cfu kg−1). Three hundred and sixty fish were randomly distributed into eight treatment groups in triplicates, namely, T1(28°C+BF(Basal feed)+PM), T2(31°C+BF+PM), T3(34°C+BF+PM), T4(37°C+BF+PM), T5(28°C+BF), T6(31°C+BF), T7(34°C+BF) and T8(37°C+BF). A significant increase (P<0.01) in weight gain percentage was observed in the probiotic fed fish even when reared at higher water temperature (34–37°C). Respiratory burst assay, blood glucose, erythrocyte count, total serum protein, albumin, alkaline phosphatase and acid phosphatase were significantly higher (P<0.01) in the probiotic fed groups compared to the non-probiotic fed groups. A significant (P<0.01) effect of rearing temperature and dietary probiotic mixture on serum myeloperoxidase activity, HSP70 level and immunoglobulin production was observed. Degree of apoptosis in different tissues was also significantly reduced in probiotic-supplemented groups. Hence, the present results show that a dietary PM could be beneficial in enhancing the immune status of the fish and also help in combating the stress caused to the organism by higher rearing water temperature. PMID:24979660
Boucherie, C; Boutin, C; Jossin, Y; Schakman, O; Goffinet, A M; Ris, L; Gailly, P; Tissir, F
2018-03-01
The development of the cerebral cortex is a tightly regulated process that relies on exquisitely coordinated actions of intrinsic and extrinsic cues. Here, we show that the communication between forebrain meninges and apical neural progenitor cells (aNPC) is essential to cortical development, and that the basal compartment of aNPC is key to this communication process. We found that Celsr1, a cadherin of the adhesion G protein coupled receptor family, controls branching of aNPC basal processes abutting the meninges and thereby regulates retinoic acid (RA)-dependent neurogenesis. Loss-of-function of Celsr1 results in a decreased number of endfeet, modifies RA-dependent transcriptional activity and biases aNPC commitment toward self-renewal at the expense of basal progenitor and neuron production. The mutant cortex has a reduced number of neurons, and Celsr1 mutant mice exhibit microcephaly and behavioral abnormalities. Our results uncover an important role for Celsr1 protein and for the basal compartment of neural progenitor cells in fate decision during the development of the cerebral cortex.
Boucherie, C; Boutin, C; Jossin, Y; Schakman, O; Goffinet, A M; Ris, L; Gailly, P; Tissir, F
2018-01-01
The development of the cerebral cortex is a tightly regulated process that relies on exquisitely coordinated actions of intrinsic and extrinsic cues. Here, we show that the communication between forebrain meninges and apical neural progenitor cells (aNPC) is essential to cortical development, and that the basal compartment of aNPC is key to this communication process. We found that Celsr1, a cadherin of the adhesion G protein coupled receptor family, controls branching of aNPC basal processes abutting the meninges and thereby regulates retinoic acid (RA)-dependent neurogenesis. Loss-of-function of Celsr1 results in a decreased number of endfeet, modifies RA-dependent transcriptional activity and biases aNPC commitment toward self-renewal at the expense of basal progenitor and neuron production. The mutant cortex has a reduced number of neurons, and Celsr1 mutant mice exhibit microcephaly and behavioral abnormalities. Our results uncover an important role for Celsr1 protein and for the basal compartment of neural progenitor cells in fate decision during the development of the cerebral cortex. PMID:29257130
Effect of a Hypocretin/Orexin Antagonist on Neurocognitive Performance
2013-09-01
Calibration curves were constructed using Chromeleon 6.8.0 software (Dionex, Corp). Amino acids , glutamate and GABA were assayed using HPLC-EC. The...mobile phase consisted of 100 mM Na2HPO4, 22% MEOH, and 3.5% acetonitrile, pH 6.75 and set to a flow rate of 0.4 mL/min. The amino acids were detected...the basal forebrain are affected by ALM and ZOL, neurons that express choline acetyltransferase (ChAT), a marker for ACh, were scored for Fos co
Role of NO in the control of choroidal blood flow during a decrease in ocular perfusion pressure.
Simader, Christian; Lung, Solveig; Weigert, Günther; Kolodjaschna, Julia; Fuchsjäger-Mayrl, Gabriele; Schmetterer, Leopold; Polska, Elzbieta
2009-01-01
The study was conducted to investigate whether the L-arginine/nitric oxide system plays a role in choroidal blood flow (ChBF) regulation during a decrease in ocular perfusion pressure (OPP). Experiments were performed on 3 days in a randomized double-masked, placebo-controlled, three-way crossover design. On different study days, subjects received intravenous infusions of N(G)-monomethyl-L-arginine (L-NMMA), phenylephrine, or placebo. Intraocular pressure was raised in stepwise increments using the suction cup Choroidal blood flow (ChBF, laser Doppler flowmetry), mean arterial blood pressure (MAP), and IOP were assessed. Ocular perfusion pressure was calculated as OPP = 23(MAP - IOP). For correlation analysis all OPP/ChBF data pairs from all subjects were pooled independent of time point of measurement. Then, the pooled data were sorted according to OPP, and correlation analyses were performed. L-NMMA and phenylephrine increased resting OPP by +17% +/- 18% and +14% +/- 21%, respectively (P < 0.05). L-NMMA reduced resting ChBF by -21% +/- 17% (P < 0.05). The relative decrease in OPP during suction cup application was comparable with all drugs administered. The decrease in OPP was paralleled by a significant decrease in ChBF (maximum between -39% and -47%), which was less pronounced, however, than the decrease in OPP (maximum between -69% and -74%). Neither placebo nor L-NMMA, nor phenylephrine, influenced the OPP/ChBF relationship. The data confirm previously published observations that the choroid shows some regulatory capacity during reduced OPP. The L-arginine/nitric oxide-system plays a role in the maintenance of basal vascular tone but seems not to be involved in the choroidal vasodilator response when IOP is increased.
Bobkova, Natalia; Vorobyov, Vasily; Medvinskaya, Natalia; Nesterova, Inna; Tatarnikova, Olga; Nekrasov, Pavel; Samokhin, Alexander; Deev, Alexander; Sengpiel, Frank; Koroev, Dmitry; Volpina, Olga
2016-01-01
Alzheimer’s disease (AD) is characterized by progressive cognitive impairment associated with marked cholinergic neuron loss and amyloid-β (Aβ) peptide accumulation in the brain. The cytotoxicity in AD is mediated, at least in part, by Aβ binding with the extracellular domain of the p75 neurotrophin receptor (p75NTR), localized predominantly in the membranes of acetylcholine-producing neurons in the basal forebrain. Hypothesizing that an open unstructured loop of p75NTR might be the effective site for Aβ binding, we have immunized both olfactory bulbectomized (OBX) and sham-operated (SO) mice (n = 82 and 49, respectively) with synthetic peptides, structurally similar to different parts of the loops, aiming to block them by specific antibodies. OBX-mice have been shown in previous studies, and confirmed in the present one, to be characterized by typical behavioral, morphological, and biochemical AD hallmarks, including cholinergic deficits in forebrain neurons. Immunization of OBX- or SO-mice with KLH conjugated fragments of p75NTR induced high titers of specific serum antibodies for each of nine chosen fragments. However, maximal protective effects on spatial memory, evaluated in a Morris water maze, and on activity of choline acetyltransferase in forebrain neurons, detected by immunoreactivity to specific antibodies, were revealed only for peptides with amino acid residue sequences of 155–164 and 167–176. We conclude that the approach based on immunological blockade of specific p75NTR sites, linked with the cytotoxicity, is a useful and effective tool for study of AD-associated mechanisms and for development of highly selective therapy of cholinergic malfunctioning in AD patients. PMID:27163825
Transcriptional Networks Controlled by NKX2-1 in the Development of Forebrain GABAergic Neurons
Sandberg, Magnus; Flandin, Pierre; Silberberg, Shanni; ...
2016-09-21
The embryonic basal ganglia generates multiple projection neurons and interneuron subtypes from distinct progenitor domains. Combinatorial interactions of transcription factors and chromatin are thought to regulate gene expression. In the medial ganglionic eminence, the NKX2-1 transcription factor controls regional identity and, with LHX6, is necessary to specify pallidal projection neurons and forebrain interneurons. Here, we dissected the molecular functions of NKX2-1 by defining its chromosomal binding, regulation of gene expression, and epigenetic state. NKX2-1 binding at distal regulatory elements led to a repressed epigenetic state and transcriptional repression in the ventricular zone. Conversely, NKX2-1 is required to establish a permissivemore » chromatin state and transcriptional activation in the sub-ventricular and mantle zones. Moreover, combinatorial binding of NKX2-1 and LHX6 promotes transcriptionally permissive chromatin and activates genes expressed in cortical migrating interneurons. Our integrated approach gives a foundation for elucidating transcriptional networks guiding the development of the MGE and its descendants.« less
Vetreno, Ryan P.; Broadwater, Margaret; Liu, Wen; Spear, Linda P.; Crews, Fulton T.
2014-01-01
During the adolescent transition from childhood to adulthood, notable maturational changes occur in brain neurotransmitter systems. The cholinergic system is composed of several distinct nuclei that exert neuromodulatory control over cognition, arousal, and reward. Binge drinking and alcohol abuse are common during this stage, which might alter the developmental trajectory of this system leading to long-term changes in adult neurobiology. In Experiment 1, adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55) treatment led to persistent, global reductions of choline acetyltransferase (ChAT) expression. Administration of the Toll-like receptor 4 agonist lipopolysaccharide to young adult rats (P70) produced a reduction in ChAT+IR that mimicked AIE. To determine if the binge ethanol-induced ChAT decline was unique to the adolescent, Experiment 2 examined ChAT+IR in the basal forebrain following adolescent (P28–P48) and adult (P70–P90) binge ethanol exposure. Twenty-five days later, ChAT expression was reduced in adolescent, but not adult, binge ethanol-exposed animals. In Experiment 3, expression of ChAT and vesicular acetylcholine transporter expression was found to be significantly reduced in the alcoholic basal forebrain relative to moderate drinking controls. Together, these data suggest that adolescent binge ethanol decreases adult ChAT expression, possibly through neuroimmune mechanisms, which might impact adult cognition, arousal, or reward sensitivity. PMID:25405505
Vetreno, Ryan P; Broadwater, Margaret; Liu, Wen; Spear, Linda P; Crews, Fulton T
2014-01-01
During the adolescent transition from childhood to adulthood, notable maturational changes occur in brain neurotransmitter systems. The cholinergic system is composed of several distinct nuclei that exert neuromodulatory control over cognition, arousal, and reward. Binge drinking and alcohol abuse are common during this stage, which might alter the developmental trajectory of this system leading to long-term changes in adult neurobiology. In Experiment 1, adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55) treatment led to persistent, global reductions of choline acetyltransferase (ChAT) expression. Administration of the Toll-like receptor 4 agonist lipopolysaccharide to young adult rats (P70) produced a reduction in ChAT+IR that mimicked AIE. To determine if the binge ethanol-induced ChAT decline was unique to the adolescent, Experiment 2 examined ChAT+IR in the basal forebrain following adolescent (P28-P48) and adult (P70-P90) binge ethanol exposure. Twenty-five days later, ChAT expression was reduced in adolescent, but not adult, binge ethanol-exposed animals. In Experiment 3, expression of ChAT and vesicular acetylcholine transporter expression was found to be significantly reduced in the alcoholic basal forebrain relative to moderate drinking controls. Together, these data suggest that adolescent binge ethanol decreases adult ChAT expression, possibly through neuroimmune mechanisms, which might impact adult cognition, arousal, or reward sensitivity.
Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer's disease
Kar, Satyabrata; Slowikowski, Stephen P.M.; Westaway, David; Mount, Howard T.J.
2004-01-01
Alzheimer's disease is an age-related neurodegenerative disorder that is characterized by a progressive loss of memory and deterioration of higher cognitive functions. The brain of an individual with Alzheimer's disease exhibits extracellular plaques of aggregated β-amyloid protein (Aβ), intracellular neurofibrillary tangles that contain hyperphosphorylated tau protein and a profound loss of basal forebrain cholinergic neurons that innervate the hippocampus and the neocortex. Aβ accumulation may trigger or contribute to the process of neurodegeneration. However, the mechanisms whereby Aβ induces basal forebrain cholinergic cell loss and cognitive impairment remain obscure. Physiologically relevant concentrations of Aβ-related peptides have acute, negative effects on multiple aspects of acetylcholine (ACh) synthesis and release, without inducing toxicity. These data suggest a neuromodulatory influence of the peptides on central cholinergic functions. Long-term exposure to micromolar Aβ induces cholinergic cell toxicity, possibly via hyperphosphorylation of tau protein. Conversely, activation of selected cholinergic receptors has been shown to alter the processing of the amyloid precursor protein as well as phosphorylation of tau protein. A direct interaction between Aβ and nicotinic ACh receptors has also been demonstrated. This review addresses the role of Aβ-related peptides in regulating the function and survival of central cholinergic neurons and the relevance of these effects to cholinergic deficits in Alzheimer's disease. Understanding the functional interrelations between Aβ peptides, cholinergic neurons and tau phosphorylation will unravel the biologic events that precede neurodegeneration and may lead to the development of more effective pharmacotherapies for Alzheimer's disease. PMID:15644984
Schliebs, R; Liebmann, A; Bhattacharya, S K; Kumar, A; Ghosal, S; Bigl, V
1997-02-01
Although some promising results have been achieved by acetylcholinesterase inhibitors, an effective therapeutic intervention in Alzheimer's disease still remains an important goal. Sitoindosides VII-X, and withaferin-A, isolated from aqueous methanol extract from the roots of cultivated varieties of Withania somnifera (known as Indian Ginseng), as well as Shilajit, a pale-brown to blackish brown exudation from steep rocks of the Himalaya mountain, are used in Indian medicine to attenuate cerebral functional deficits, including amnesia, in geriatric patients. The present investigation was conducted to assess whether the memory-enhancing effects of plant extracts from Withania somnifera and Shilajit are owing to neurochemical alterations of specific transmitter systems. Therefore, histochemistry to analyse acetylcholinesterase activity as well as receptor autoradiography to detect cholinergic, glutamatergic and GABAergic receptor subtypes were performed in brain slices from adult male Wistar rats, injected intraperitoneally daily with an equimolar mixture of sitoindosides VII-X and withaferin-A (prepared from Withania somnifera) or with Shilajit, at doses of 40 mg/kg of body weight for 7 days. Administration of Shilajit led to reduced acetylcholinesterase staining, restricted to the basal forebrain nuclei including medial septum and the vertical limb of the diagonal band. Systemic application of the defined extract from Withania somnifera, however, led to differential effects on AChE activity in basal forebrain nuclei: slightly enhanced AChE activity was found in the lateral septum and globus pallidus, whereas in the vertical diagonal band AChE activity was reduced following treatment with sitoindosides VII-X and withaferin-A. These changes were accompanied by enhanced M1-muscarinic cholinergic receptor binding in lateral and medial septum as well as in frontal cortices, whereas the M2-muscarinic receptor binding sites were increased in a number of cortical regions including cingulate, frontal, piriform, parietal and retrosplenial cortex. Treatment with Shilajit or the defined extract from Withania somnifera affected neither GABAA and benzodiazepine receptor binding nor NMDA and AMPA glutamate receptor subtypes in any of the cortical or subcortical regions studied. The data suggest that Shilajit and the defined extract from Withania somnifera affect preferentially events in the cortical and basal forebrain cholinergic signal transduction cascade. The drug-induced increase in cortical muscarinic acetylcholine receptor capacity might partly explain the cognition-enhancing and memory-improving effects of extracts from Withania somnifera observed in animals and humans.
Mastronardi, Claudio; Smiley, Gregory G; Raber, Jacob; Kusakabe, Takashi; Kawaguchi, Akio; Matagne, Valerie; Dietzel, Anja; Heger, Sabine; Mungenast, Alison E; Cabrera, Ricardo; Kimura, Shioko; Ojeda, Sergio R
2006-12-20
Thyroid transcription factor 1 (TTF1) [also known as Nkx2.1 (related to the NK-2 class of homeobox genes) and T/ebp (thyroid-specific enhancer-binding protein)], a homeodomain gene required for basal forebrain morphogenesis, remains expressed in the hypothalamus after birth, suggesting a role in neuroendocrine function. Here, we show an involvement of TTF1 in the control of mammalian puberty and adult reproductive function. Gene expression profiling of the nonhuman primate hypothalamus revealed that TTF1 expression increases at puberty. Mice in which the Ttf1 gene was ablated from differentiated neurons grew normally and had normal basal ganglia/hypothalamic morphology but exhibited delayed puberty, reduced reproductive capacity, and a short reproductive span. These defects were associated with reduced hypothalamic expression of genes required for sexual development and deregulation of a gene involved in restraining puberty. No extrapyramidal impairments associated with basal ganglia dysfunction were apparent. Thus, although TTF1 appears to fulfill only a morphogenic function in the ventral telencephalon, once this function is satisfied in the hypothalamus, TTF1 remains active as part of the transcriptional machinery controlling female sexual development.
Brain state-dependence of electrically evoked potentials monitored with head-mounted electronics.
Richardson, Andrew G; Fetz, Eberhard E
2012-11-01
Inferring changes in brain connectivity is critical to studies of learning-related plasticity and stimulus-induced conditioning of neural circuits. In addition, monitoring spontaneous fluctuations in connectivity can provide insight into information processing during different brain states. Here, we quantified state-dependent connectivity changes throughout the 24-h sleep-wake cycle in freely behaving monkeys. A novel, head-mounted electronic device was used to electrically stimulate at one site and record evoked potentials at other sites. Electrically evoked potentials (EEPs) revealed the connectivity pattern between several cortical sites and the basal forebrain. We quantified state-dependent changes in the EEPs. Cortico-cortical EEP amplitude increased during slow-wave sleep, compared to wakefulness, while basal-cortical EEP amplitude decreased. The results demonstrate the utility of using portable electronics to document state-dependent connectivity changes in freely behaving primates.
Poole, Angela Z.; Kitchen, Sheila A.; Weis, Virginia M.
2016-01-01
The complement system is an innate immune pathway that in vertebrates, is responsible for initial recognition and ultimately phagocytosis and destruction of microbes. Several complement molecules including C3, Factor B, and mannose binding lectin associated serine proteases (MASP) have been characterized in invertebrates and while most studies have focused on their conserved role in defense against pathogens, little is known about their role in managing beneficial microbes. The purpose of this study was to (1) characterize complement pathway genes in the symbiotic sea anemone Aiptasia pallida, (2) investigate the evolution of complement genes in invertebrates, and (3) examine the potential dual role of complement genes Factor B and MASP in the onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge using qPCR based studies. The results demonstrate that A. pallida has multiple Factor B genes (Ap_Bf-1, Ap_Bf-2a, and Ap_Bf-2b) and one MASP gene (Ap_MASP). Phylogenetic analysis indicates that the evolutionary history of complement genes is complex, and there have been many gene duplications or gene loss events, even within members of the same phylum. Gene expression analyses revealed a potential role for complement in both onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge. Specifically, Ap_Bf-1 and Ap_MASP are significantly upregulated in the light at the onset of symbiosis and in response to challenge with the pathogen Serratia marcescens suggesting that they play a role in the initial recognition of both beneficial and harmful microbes. Ap_Bf-2b in contrast, was generally downregulated during the onset and maintenance of symbiosis and in response to challenge with S. marcescens. Therefore, the exact role of Ap_Bf-2b in response to microbes remains unclear, but the results suggest that the presence of microbes leads to repressed expression. Together, these results indicate functional divergence between Ap_Bf-1 and Ap_Bf-2b, and that Ap_Bf-1 and Ap_MASP may be functioning together in an ancestral hybrid of the lectin and alternative complement pathways. Overall, this study provides information on the role of the complement system in a basal metazoan and its role in host-microbe interactions. PMID:27148208
Poole, Angela Z; Kitchen, Sheila A; Weis, Virginia M
2016-01-01
The complement system is an innate immune pathway that in vertebrates, is responsible for initial recognition and ultimately phagocytosis and destruction of microbes. Several complement molecules including C3, Factor B, and mannose binding lectin associated serine proteases (MASP) have been characterized in invertebrates and while most studies have focused on their conserved role in defense against pathogens, little is known about their role in managing beneficial microbes. The purpose of this study was to (1) characterize complement pathway genes in the symbiotic sea anemone Aiptasia pallida, (2) investigate the evolution of complement genes in invertebrates, and (3) examine the potential dual role of complement genes Factor B and MASP in the onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge using qPCR based studies. The results demonstrate that A. pallida has multiple Factor B genes (Ap_Bf-1, Ap_Bf-2a, and Ap_Bf-2b) and one MASP gene (Ap_MASP). Phylogenetic analysis indicates that the evolutionary history of complement genes is complex, and there have been many gene duplications or gene loss events, even within members of the same phylum. Gene expression analyses revealed a potential role for complement in both onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge. Specifically, Ap_Bf-1 and Ap_MASP are significantly upregulated in the light at the onset of symbiosis and in response to challenge with the pathogen Serratia marcescens suggesting that they play a role in the initial recognition of both beneficial and harmful microbes. Ap_Bf-2b in contrast, was generally downregulated during the onset and maintenance of symbiosis and in response to challenge with S. marcescens. Therefore, the exact role of Ap_Bf-2b in response to microbes remains unclear, but the results suggest that the presence of microbes leads to repressed expression. Together, these results indicate functional divergence between Ap_Bf-1 and Ap_Bf-2b, and that Ap_Bf-1 and Ap_MASP may be functioning together in an ancestral hybrid of the lectin and alternative complement pathways. Overall, this study provides information on the role of the complement system in a basal metazoan and its role in host-microbe interactions.
The evolutionary origin of the vertebrate basal ganglia and its role in action selection.
Grillner, Sten; Robertson, Brita; Stephenson-Jones, Marcus
2013-11-15
The group of nuclei within the basal ganglia of the forebrain is central to the control of movement. We present data showing that the structure and function of the basal ganglia have been conserved throughout vertebrate evolution over some 560 million years. The interaction between the different nuclei within the basal ganglia is conserved as well as the cellular and synaptic properties and transmitters. We consider the role of the conserved basal ganglia circuitry for basic patterns of motor behaviour controlled via brainstem circuits. The output of the basal ganglia consists of tonically active GABAergic neurones, which target brainstem motor centres responsible for different patterns of behaviour, such as eye and locomotor movements, posture, and feeding. A prerequisite for activating or releasing a motor programme is that this GABAergic inhibition is temporarily reduced. This can be achieved through activation of GABAergic projection neurons from striatum, the input level of the basal ganglia, given an appropriate synaptic drive from cortex, thalamus and the dopamine system. The tonic inhibition of the motor centres at rest most likely serves to prevent the different motor programmes from becoming active when not intended. Striatal projection neurones are subdivided into one group with dopamine 1 receptors that provides increased excitability of the direct pathway that can initiate movements, while inhibitory dopamine 2 receptors are expressed on neurones that instead inhibit movements and are part of the 'indirect loop' in mammals as well as lamprey. We review the evidence showing that all basic features of the basal ganglia have been conserved throughout vertebrate phylogeny, and discuss these findings in relation to the role of the basal ganglia in selection of behaviour.
Ash, Jessica A; Velazquez, Ramon; Kelley, Christy M; Powers, Brian E; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J
2014-10-01
Down syndrome (DS) is marked by intellectual disability (ID) and early-onset of Alzheimer's disease (AD) neuropathology, including basal forebrain cholinergic neuron (BFCN) degeneration. The present study tested the hypothesis that maternal choline supplementation (MCS) improves spatial mapping and protects against BFCN degeneration in the Ts65Dn mouse model of DS and AD. During pregnancy and lactation, dams were assigned to either a choline sufficient (1.1g/kg choline chloride) or choline supplemented (5.0g/kg choline chloride) diet. Between 13 and 17months of age, offspring were tested in the radial arm water maze (RAWM) to examine spatial mapping followed by unbiased quantitative morphometry of BFCNs. Spatial mapping was significantly impaired in unsupplemented Ts65Dn mice relative to normal disomic (2N) littermates. Additionally, a significantly lower number and density of medial septum (MS) hippocampal projection BFCNs was also found in unsupplemented Ts65Dn mice. Notably, MCS significantly improved spatial mapping and increased number, density, and size of MS BFCNs in Ts65Dn offspring. Moreover, the density and number of MS BFCNs correlated significantly with spatial memory proficiency, providing support for a functional relationship between these behavioral and morphometric effects of MCS for trisomic offspring. Thus, increasing maternal choline intake during pregnancy may represent a safe and effective treatment approach for expectant mothers carrying a DS fetus, as well as a possible means of BFCN neuroprotection during aging for the population at large. Copyright © 2014 Elsevier Inc. All rights reserved.
Wrenn, C C; Lappi, D A; Wiley, R G
1999-11-20
The cholinergic basal forebrain (CBF) degenerates in Alzheimer's Disease (AD), and the degree of this degeneration correlates with the degree of dementia. In the present study we have modeled this degeneration in the rat by injecting various doses of the highly selective immunotoxin 192 IgG-saporin (192-sap) into the ventricular system. The ability of 192-sap-treated rats to perform in a previously learned radial maze working memory task was then tested. We report here that 192-sap created lesions of the CBF and, to a lesser extent, cerebellar Purkinje cells in a dose-dependent fashion. Furthermore, we found that rats harboring lesions of the entire CBF greater than 75% had impaired spatial working memory in the radial maze. Correlational analysis of working memory impairment and lesion extent of the component parts of the CBF revealed that high-grade lesions of the hippocampal-projecting neurons of the CBF were not sufficient to impair working memory. Only rats with high-grade lesions of the hippocampal and cortical projecting neurons of the CBF had impaired working memory. These data are consistent with other 192-sap reports that found behavioral deficits only with high-grade CBF lesions and indicate that the relationship between CBF lesion extent and working memory impairment is a threshold relationship in which a high degree of neuronal loss can be tolerated without detectable consequences. Additionally, the data suggest that the CBF modulates spatial working memory via its connections to both the hippocampus and cortex.
Friedrich, Victor L.; Martinelli, Giorgio P.; Prell, George D.; Holstein, Gay R.
2007-01-01
Imidazoleacetic acid-ribotide (IAA-RP) is a putative neurotransmitter/modulator recently discovered in mammalian brain. The present study examines the distribution of IAA-RP in the rat CNS using a highly specific antiserum raised in rabbit against IAA-RP with immunostaining of aldehyde-fixed rat CNS. IAA-RP-immunoreactive neurons were present throughout the neuraxis; neuroglia were not labeled. In each region, only a subset of the neuronal pool was immunostained. In the forebrain, ribotide-immunolabeled neurons were common in neocortex, in hippocampal formation, and in subcortical structures including basal ganglia, thalamus and hypothalamus. Labeling was prominent limbic areas including olfactory bulb, basal forebrain, pyriform cortex and amygdala. In the mid- and hindbrain, immunolabled neurons were concentrated in specific nuclei and, in some areas, in specific subregions of those nuclei. Structures of the motor system, including cranial nerve motor nuclei, precerebellar nuclei, the substantia nigra, and the red nucleus were clearly labeled. Staining was intense in cells and/or puncta in the rostral and caudal ventrolateral medullary reticular formation, nucleus tractus solitarius and the caudal vestibular nuclear complex. Within neurons, the ribotide was found predominantly in somata and dendrites; some myelinated axons and occasional synaptic terminals were also immunostained. These data indicate that IAA-RP contributes to the neurochemical phenotype of many neuronal populations further support our suggestion that, in autonomic structures, the IAA-RP may serve as a chemical mediator in complex circuits involved in blood pressure regulation and, more generally, sympathetic drive. PMID:17210242
Hampton, Cara M.; Sakata, Jon T.; Brainard, Michael S.
2009-01-01
Behavioral variability is important for motor skill learning but continues to be present and actively regulated even in well-learned behaviors. In adult songbirds, two types of song variability can persist and are modulated by social context: variability in syllable structure and variability in syllable sequencing. The degree to which the control of both types of adult variability is shared or distinct remains unknown. The output of a basal ganglia-forebrain circuit, LMAN (the lateral magnocellular nucleus of the anterior nidopallium), has been implicated in song variability. For example, in adult zebra finches, neurons in LMAN actively control the variability of syllable structure. It is unclear, however, whether LMAN contributes to variability in adult syllable sequencing because sequence variability in adult zebra finch song is minimal. In contrast, Bengalese finches retain variability in both syllable structure and syllable sequencing into adulthood. We analyzed the effects of LMAN lesions on the variability of syllable structure and sequencing and on the social modulation of these forms of variability in adult Bengalese finches. We found that lesions of LMAN significantly reduced the variability of syllable structure but not of syllable sequencing. We also found that LMAN lesions eliminated the social modulation of the variability of syllable structure but did not detect significant effects on the modulation of sequence variability. These results show that LMAN contributes differentially to syllable versus sequence variability of adult song and suggest that these forms of variability are regulated by distinct neural pathways. PMID:19357331
Changes in the neural control of a complex motor sequence during learning
Otchy, Timothy M.; Goldberg, Jesse H.; Aronov, Dmitriy; Fee, Michale S.
2011-01-01
The acquisition of complex motor sequences often proceeds through trial-and-error learning, requiring the deliberate exploration of motor actions and the concomitant evaluation of the resulting performance. Songbirds learn their song in this manner, producing highly variable vocalizations as juveniles. As the song improves, vocal variability is gradually reduced until it is all but eliminated in adult birds. In the present study we examine how the motor program underlying such a complex motor behavior evolves during learning by recording from the robust nucleus of the arcopallium (RA), a motor cortex analog brain region. In young birds, neurons in RA exhibited highly variable firing patterns that throughout development became more precise, sparse, and bursty. We further explored how the developing motor program in RA is shaped by its two main inputs: LMAN, the output nucleus of a basal ganglia-forebrain circuit, and HVC, a premotor nucleus. Pharmacological inactivation of LMAN during singing made the song-aligned firing patterns of RA neurons adultlike in their stereotypy without dramatically affecting the spike statistics or the overall firing patterns. Removing the input from HVC, on the other hand, resulted in a complete loss of stereotypy of both the song and the underlying motor program. Thus our results show that a basal ganglia-forebrain circuit drives motor exploration required for trial-and-error learning by adding variability to the developing motor program. As learning proceeds and the motor circuits mature, the relative contribution of LMAN is reduced, allowing the premotor input from HVC to drive an increasingly stereotyped song. PMID:21543758
Ash, Jessica A.; Velazquez, Ramon; Kelley, Christy M.; Powers, Brian E.; Ginsberg, Stephen D.; Mufson, Elliott J.; Strupp, Barbara J.
2014-01-01
Down syndrome (DS) is marked by intellectual disability (ID) and early-onset of Alzheimer’s disease (AD) neuropathology, including basal forebrain cholinergic neuron (BFCN) degeneration. The present study tested the hypothesis that maternal choline supplementation (MCS) lessens hippocampal dysfunction and protects against BFCN degeneration in the Ts65Dn mouse model of DS and AD. During pregnancy and lactation, dams were assigned to either a choline sufficient (1.1 g/kg choline chloride) or choline supplemented (5.0 g/kg choline chloride) diet. Between 13 and 17 months of age, offspring were tested in the radial arm water maze (RAWM) to examine spatial learning and memory followed by unbiased quantitative morphometry of BFCNs. Spatial mapping was significantly impaired in unsupplemented Ts65Dn mice relative to normal disomic (2N) littermates. Additionally, a significantly lower number and density of medial septum (MS) hippocampal projection BFCNs was also found in unsupplemented Ts65Dn mice. Notably, MCS significantly improved spatial mapping and increased number, density, and size of MS BFCNs in Ts65Dn offspring. Moreover, the density and number of MS BFCNs correlated significantly with spatial memory proficiency, providing powerful support for a functional relationship between these behavioral and morphometric effects of MCS for the trisomic offspring. Thus, increasing maternal choline intake during pregnancy may represent a safe and effective treatment approach for expectant mothers carrying a DS fetus, as well as a possible means of BFCN neuroprotection during aging for the population at large. PMID:24932939
NASA Technical Reports Server (NTRS)
Yamada, Atsuko; Martindale, Mark Q.
2002-01-01
Ctenophores are thoroughly modern animals whose ancestors are derived from a separate evolutionary branch than that of other eumetazoans. Their major longitudinal body axis is the oral-aboral axis. An apical sense organ, called the apical organ, is located at the aboral pole and contains a highly innervated statocyst and photodetecting cells. The apical organ integrates sensory information and controls the locomotory apparatus of ctenophores, the eight longitudinal rows of ctene/comb plates. In an effort to understand the developmental and evolutionary organization of axial properties of ctenophores we have isolated a forkhead gene from the Brain Factor 1 (BF-1) family. This gene, ctenoBF-1, is the first full-length nuclear gene reported from ctenophores. This makes ctenophores the most basal metazoan (to date) known to express definitive forkhead class transcription factors. Orthologs of BF-1 in vertebrates, Drosophila, and Caenorhabditis elegans are expressed in anterior neural structures. Surprisingly, in situ hybridizations with ctenoBF-1 antisense riboprobes show that this gene is not expressed in the apical organ of ctenophores. CtenoBF-1 is expressed prior to first cleavage. Transcripts become localized to the aboral pole by the 8-cell stage and are inherited by ectodermal micromeres generated from this region at the 16- and 32-cell stages. Expression in subsets of these cells persists and is seen around the edge of the blastopore (presumptive mouth) and in distinct ectodermal regions along the tentacular poles. Following gastrulation, stomodeal expression begins to fade and intense staining becomes restricted to two distinct domains in each tentacular feeding apparatus. We suggest that the apical organ is not homologous to the brain of bilaterians but that the oral pole of ctenophores corresponds to the anterior pole of bilaterian animals.
Yu, Yanyan; Liu, Xiaoqian; Jiang, Dawei; Sun, Qian; Zhou, Tianshu; Zhu, Min; Jin, Litong; Shi, Guoyue
2011-03-15
A new type of hydroxyl functionalized room temperature ionic liquid (RTIL), [C(3)(OH)(2)mim][BF(4)], was synthesized herein and a novel H(2)O(2) biosensor is fabricated with [C(3)(OH)(2)mim][BF(4)] as the substrate and electrodepositing bimetallic Au/Pt nanoparticles (NPs) onto the [C(3)(OH)(2)mim][BF(4)] film. The functionalization of RTIL with hydroxyl groups provided an appropriate environment for the preparation of more uniform and smaller Au/Pt NPs with the diameter of 2.5 nm±0.2 nm. Immobilized with glutamate oxidase (GlutaOx), the resulting GlutaOx-[C(3)(OH)(2)mim][BF(4)]-Au/Pt-Nafion biosensor displayed excellent electrocatalytic response to glutamate at a potential of -200 mV. An effective on-line microdialysis system, which was powered by a microdialysis pump, was set up and used for the detection of glutamate successively in the striatum of rats. The glutamate biosensor in on-line microdialysis system showed good linear range from 0.5 μM to 20.0 μM with the detection limit of 0.17 μM (S/N=3). The basal level of glutamate in the striatum of anaesthetic rats was calculated to be 3.01±0.67 μM (n=3). The application of the GlutaOx-[C(3)(OH)(2)mim][BF(4)]-Au/Pt-Nafion electrode is further demonstrated for in vivo sensing of the variation of glutamate level in the striatum when rats received intraperitoneal (i.p.) injection of 100 mM KCl and brain electrical stimulation of the subthalamic nucleus area (STN). Both of the two kinds of stimulation resulted in an increase in the extracellular concentration of glutamate. This method has proved to be sensitive and reproducible, which enables its promising application in physiology and pathology. Copyright © 2010 Elsevier B.V. All rights reserved.
Jia, Jun; Li, Bo; Sun, Zuo-Li; Yu, Fen; Wang, Xuan; Wang, Xiao-Min
2010-04-01
The role of electro-acupuncture (EA) stimulation on motor symptoms in Parkinson's disease (PD) has not been well studied. In a rat hemiparkinsonian model induced by unilateral transection of the medial forebrain bundle (MFB), EA stimulation improved motor impairment in a frequency-dependent manner. Whereas EA stimulation at a low frequency (2 Hz) had no effect, EA stimulation at a high frequency (100 Hz) significantly improved motor coordination. However, neither low nor high EA stimulation could significantly enhance dopamine levels in the striatum. EA stimulation at 100 Hz normalized the MFB lesion-induced increase in midbrain GABA content, but it had no effect on GABA content in the globus pallidus. These results suggest that high-frequency EA stimulation improves motor impairment in MFB-lesioned rats by increasing GABAergic inhibition in the output structure of the basal ganglia.
1984-10-10
OF REPORT 6 PERIOD COEREC All !lVL-tiVc"lt in) 0! I ntt rcu t r, ill Cat Technical Report 00 !ti t ( lt: . ,h , -in c , I lcho l n t e ra ,- ( H iSto...8217 Report) I0 SUPPLEMENTARY NOTES 19 K EY WORDS (Continue on reveree old* it n~coeeary and Identify by block number) Ac Ltv VIc C11 i e Visual Cortex...Basal Forebrain 20. ADSTRPACT (Continue an revere. eld* it necessary and identl fy by block number) Iicor’anization of cholinergic inputs to cat striate
Yamamoto, Shigeyuki; Nishiyama, Shingo; Kawamata, Masahiro; Ohba, Hiroyuki; Wakuda, Tomoyasu; Takei, Nori; Tsukada, Hideo; Domino, Edward F
2011-01-01
The muscarinic cholinergic receptor (mAChR) antagonist scopolamine was used to induce transient cognitive impairment in monkeys trained in a delayed matching to sample task. The temporal relationship between the occupancy level of central mAChRs and cognitive impairment was determined. Three conscious monkeys (Macaca mulatta) were subjected to positron emission tomography (PET) scans with the mAChR radioligand N-[11C]methyl-3-piperidyl benzilate ([11C](+)3-MPB). The scan sequence was pre-, 2, 6, 24, and 48 h post-intramuscular administration of scopolamine in doses of 0.01 and 0.03 mg/kg. Occupancy levels of mAChR were maximal 2 h post-scopolamine in cortical regions innervated primarily by the basal forebrain, thalamus, and brainstem, showing that mAChR occupancy levels were 43–59 and 65–89% in doses of 0.01 and 0.03 mg/kg, respectively. In addition, dose-dependent impairment of working memory performance was measured 2 h after scopolamine. A positive correlation between the mAChR occupancy and cognitive impairment 2 and 6 h post-scopolamine was the greatest in the brainstem (P<0.00001). Although cognitive impairment was not observed 24 h post-scopolamine, sustained mAChR occupancy (11–24%) was found with both doses in the basal forebrain and thalamus, but not in the brainstem. These results indicate that a significant degree of mAChRs occupancy is needed to produce cognitive impairment by scopolamine. Furthermore, the importance of the brainstem cholinergic system in working memory in monkey is described. PMID:21430646
Lockrow, Jason; Boger, Heather; Bimonte-Nelson, Heather; Granholm, Ann-Charlotte
2010-01-01
Memantine is a partial NMDA receptor antagonist that has been shown to improve learning and memory in several animal models, and is approved for the treatment of Alzheimer’s disease. Chronic treatments using memantine in animal models of Alzheimer’s disease show disease-modifying effects and suggest a potential neuroprotective function. The present study assessed the effects of both short- and long-term memantine treatment in a mouse model of Down syndrome, the Ts65Dn mouse. The Ts65Dn mouse contains a partial trisomy of murine chromosome 16, and exhibits hippocampal-dependent memory deficits, as well as progressive degeneration of basal forebrain cholinergic neurons. Ts65Dn mice were treated with memantine for a period of six months, beginning at four months of age. At the end of treatment the mice underwent memory testing using novel object recognition and water radial arm maze tasks, and then histologically analyzed for markers of neurodegeneration. Memantine treatment improved spatial and recognition memory performance in the Ts65Dn mice, though not to the level of normosomic littermate controls. Despite these memory improvements, histological analysis found no morphological signs of neuroprotection of basal forebrain cholinergic or locus coeruleus neurons in memantine-treated Ts65Dn mice. However, memantine treatment of Ts65Dn mice gave rise to elevated brain-derived neurotrophic factor expression in the hippocampus and frontal cortex, suggesting a mechanism of behavioral modification. Thus, our findings provide further evidence for memory facilitation of memantine, but suggest pharmacological rather than neuroprotective effects of memantine both after acute and chronic treatment in this mouse model. PMID:20363261
Kelley, Christy M; Powers, Brian E; Velazquez, Ramon; Ash, Jessica A; Ginsberg, Stephen D; Strupp, Barbara J; Mufson, Elliott J
2014-04-15
Down syndrome (DS), trisomy 21, is a multifaceted condition marked by intellectual disability and early presentation of Alzheimer's disease (AD) neuropathological lesions including degeneration of the basal forebrain cholinergic neuron (BFCN) system. Although DS is diagnosable during gestation, there is no treatment option for expectant mothers or DS individuals. Using the Ts65Dn mouse model of DS that displays age-related degeneration of the BFCN system, we investigated the effects of maternal choline supplementation on the BFCN system in adult Ts65Dn mice and disomic (2N) littermates at 4.3-7.5 months of age. Ts65Dn dams were maintained on a choline-supplemented diet (5.1 g/kg choline chloride) or a control, unsupplemented diet with adequate amounts of choline (1 g/kg choline chloride) from conception until weaning of offspring; post weaning, offspring were fed the control diet. Mice were transcardially perfused with paraformaldehyde, and brains were sectioned and immunolabeled for choline acetyltransferase (ChAT) or p75-neurotrophin receptor (p75(NTR) ). BFCN number and size, the area of the regions, and the intensity of hippocampal labeling were determined. Ts65Dn-unsupplemented mice displayed region- and immunolabel-dependent increased BFCN number, larger areas, smaller BFCNs, and overall increased hippocampal ChAT intensity compared with 2N unsupplemented mice. These effects were partially normalized by maternal choline supplementation. Taken together, the results suggest a developmental imbalance in the Ts65Dn BFCN system. Early maternal-diet choline supplementation attenuates some of the genotype-dependent alterations in the BFCN system, suggesting this naturally occurring nutrient as a treatment option for pregnant mothers with knowledge that their offspring is trisomy 21. Copyright © 2013 Wiley Periodicals, Inc.
Daulatzai, Mak Adam
2016-10-01
Sporadic Alzheimer's disease (AD) is a devastating neurodegenerative disorder. It is essential to unravel its etiology and pathogenesis. This should enable us to study the presymptomatic stages of the disease and to analyze and reverse the antemortem behavioral, memory, and cognitive dysfunction. Prima facie, an ongoing chronic vulnerability involving neural insult may lead normal elderly to mild cognitive impairment (MCI) and then to AD. Development of effective preventive and therapeutic strategies to thwart the disease pathology obviously requires a thorough delineation of underlying disruptive neuropathological processes. Our sensory capacity for touch, smell, taste, hearing, and vision declines with advancing age. Declines in different sensory attributes are considered here to be the primary "first-tier pathologies." Olfactory loss is among the first clinical signs of neurodegenerative diseases including AD and Parkinson's disease (PD). Sensory dysfunction in the aged promotes pathological disturbances in the locus coeruleus, basal forebrain, entorhinal cortex, hippocampus, and several key areas of neocortex and brainstem. Hence, sensory dysfunction is the pivotal factor that may upregulate cognitive and memory dysfunction. The age-related constellation of comorbid pathological factors may include apolipoprotein E (APOE) genotype, obesity, diabetes, hypertension, alcohol abuse, head trauma, and obstructive sleep apnea. The concepts and trajectories delineated here are the dynamic pillars of the current hypothesis presented-it postulates that the sensory decline, in conjunction with the above pathologies, is crucial in triggering neurodegeneration and promoting cognitive/memory dysfunction in aging and AD. The application of this thesis can be important in formulating new multifactorial preventive and treatment strategies (suggested here) in order to attenuate cognitive and memory decline and ameliorate pathological dysfunction in aging, MCI, and AD.
Liu, Zhong-Wu; Gao, Xiao-Bing
2006-01-01
Neurons in the lateral hypothalamus (LH) that contain hypocretin/orexin have been established as important promoters of arousal. Deficiencies in the hypocretin/orexin system lead to narcolepsy. The inhibition of hypocretin/orexin neurons by sleep-promoting neurotransmitters has been suggested as one part of the sleep regulation machinery. Adenosine has been identified as a sleep promoter and its role in sleep regulation in the basal forebrain has been well documented. However, the effect of adenosine on arousal-promoting hypocretin/orexin neurons has not been addressed, despite recent evidence that immunocytochemical visualization of adenosine receptors was detected in these neurons. In this study, we examined the hypothesis that adenosine inhibits the activity of hypocretin/orexin neurons by using electrophysiological methods in brain slices from mice expressing green fluorescent protein in hypocretin/orexin neurons. We found that adenosine significantly attenuated the frequency of action potentials without a change in membrane potential in hypocretin/orexin neurons. The adenosine-mediated inhibition is due to depression of excitatory synaptic transmission to hypocretin/orexin neurons, since adenosine depresses the amplitude of evoked excitatory postsynaptic potential and the frequency of spontaneous and miniature excitatory postsynaptic currents in these neurons. At the cell body of the hypocretin/orexin neurons, adenosine inhibits voltage-dependent calcium currents without the induction of GIRK current. The inhibitory effect of adenosine is dose-dependent, pertussis toxin-sensitive and mediated via A1 receptors. In summary, our data suggest that in addition to its effect in the basal forebrain, adenosine exerts its sleep-promoting effect in the LH via inhibition of hypocretin/orexin neurons. PMID:17093123
Kawahata, Ichiro; Suzuki, Tatsuya; Rico, Evelyn Gutiérrez; Kusano, Shuichi; Tamura, Hiroshi; Mimaki, Yoshihiro; Yamakuni, Tohru
2017-10-01
A previous study reported biotransformation of a citrus peel polymethoxyflavone, nobiletin, by Aspergillus enabling production of 4'-demethylnobiletin, and the product's antimutagenic activity. However, the effects of fermented citrus peel on the basal forebrain-hippocampal system remain unidentified. Citrus reticulata (ponkan) fruit squeezed draffs are generated as mass waste in beverage factories. In this study using PC12D cells and cultured central nervous system neurons, we therefore examined whether Aspergillus kawachii-fermented citrus fruit squeezed draff could affect cAMP response element (CRE)- and choline acetyltransferase gene (ChAT) promoter region-mediated transcriptional activities relevant to memory formation and cholinergic function. Our current fermentation yielded approximately 80% nobiletin bioconversion, and a sample of hot-water extract of the fermented fruit squeezed draff was stronger than that of the unfermented one in facilitating CRE-mediated transcription in cultured hippocampal neurons as well as in PC12D cells. A sample of 0-80% ethanol-eluted fraction of Diaion HP-20 column-adsorbed components of the preparation obtained by the fermentation concentration-dependently and more strongly facilitated CRE-mediated transcription than did the fraction of the unfermented one in both cell culture systems. In a separate study, this polymethoxyflavone-rich fraction of the fermented fruit squeezed draff showed a potent ability to facilitate CRE-mediated and ChAT transcription in a co-culture of hippocampal neurons and basal forebrain neurons. Repeated oral gavage of mice with the fermented fraction sample prevented MK801-impaired memory formation in mice. These findings suggest that the 4'-demethylnobiletin-rich fraction prepared from the Aspergillus-fermented ponkan squeezed draff has a potential anti-dementia effect.
Kelley, Christy M.; Powers, Brian E.; Velazquez, Ramon; Ash, Jessica A.; Ginsberg, Stephen D.; Strupp, Barbara J.; Mufson, Elliott J.
2014-01-01
Down syndrome (DS), trisomy 21, is a multifaceted condition marked by intellectual disability and early presentation of Alzheimer’s disease (AD) neuropathological lesions including degeneration of the basal forebrain cholinergic neuron (BFCN) system. While DS is diagnosable during gestation, there is no treatment option for expectant mothers or DS individuals. Using the Ts65Dn mouse model of DS that displays age-related degeneration of the BFCN system, we investigated the effects of maternal choline supplementation on the BFCN system in adult Ts65Dn mice and disomic (2N) littermates at 4.3–7.5 mos of age. Ts65Dn dams were maintained on a choline supplemented diet (5.1 g/kg choline chloride) or a control, unsupplemented diet with adequate amounts of choline (1 g/kg choline chloride) from conception until weaning of offspring; postweaning, offspring were fed the control diet. Mice were transcardially perfused with paraformaldehyde, brains were sectioned, and immunolabeled for choline acetyltransferase (ChAT) or p75-neurotrophin receptor (p75NTR). BFCN number and size, the area of the regions, and the intensity of hippocampal labeling were determined. Ts65Dn unsupplemented mice displayed region- and immunolabel-dependent increased BFCN number, larger areas, smaller BFCNs, and overall increased hippocampal ChAT intensity compared with 2N unsupplemented mice. These effects were partially normalized by maternal choline supplementation. Taken together, the results suggest a developmental imbalance in the Ts65Dn BFCN system. Early maternal-diet choline supplementation attenuates some of the genotype-dependent alterations in the BFCN system, suggesting this naturally occurring nutrient as a treatment option for pregnant mothers with knowledge that their offspring is trisomy 21. PMID:24178831
Li, Rui; Tai, Rui; Wang, Dan; Chu, Gui-Xin
2017-10-01
A four year field study was conducted to determine how soil biological properties and soil aggregate stability changed when organic fertilizer and biofertilizer were used to reduce chemical fertilizer application to a drip irrigated cotton field. The study consisted of six fertilization treatments: unfertilized (CK); chemical fertilizer (CF, 300 kg N·hm -2 ; 90 kg P2O5 · hm -2 , 60 kg K2 O·hm -2 ); 80% CF plus 3000 kg·hm -2 organic fertilizer (80%CF+OF); 60% CF plus 6000 kg·hm -2 organic fertilizer (60%CF+OF); 80% CF plus 3000 kg·hm -2 biofertilizer (80%CF+BF); and 60% CF plus 6000 kg·hm -2 biofertilizer (60%CF+BF). The relationships among soil organic C, soil biological properties, and soil aggregate size distribution were determined. The results showed that organic fertilizer and biofertilizer both significantly increased soil enzyme activities. Compared with CF, the biofertilizer treatments increased urease activity by 55.6%-84.0%, alkaline phosphatise activity by 53.1%-74.0%, invertase activity by 15.1%-38.0%, β-glucosidase activity by 38.2%-68.0%, polyphenoloxidase activity by 29.6%-52.0%, and arylsulfatase activity by 35.4%-58.9%. Soil enzyme activity increased as the amount of organic fertilizer and biofertilizer increased (i.e., 60%CF+OF > 80%CF+OF, 60%CF+BF > 80%CF+BF). Soil basal respiration decreased significantly in the order BF > OF > CF > CK. Soil microbial biomass C and N were 22.3% and 43.5% greater, respectively, in 60%CF+BF than in CF. The microbial biomass C:N was significantly lower in 60%CF+BF than in CF. The organic fertilizer and the biofertilizer both improved soil aggregate structure. Soil mass in the >0.25 mm fraction was 7.1% greater in 80%CF+OF and 8.0% greater in (60%CF+OF) than in CF. The geometric mean diameter was 9.2% greater in 80%CF+BF than in 80%CF+OF. Redundancy analysis and cluster analysis both demonstrated that soil aggregate structure and biological activities increased when organic fertilizer and biofertilizer were used to reduce chemical fertilizer application. In conclusion, the organic fertilizer and the biofertilizer significantly increased SOC, soil enzyme activity, and soil microbial biomass C and N. The organic fertilizers also improved soil aggregation. Therefore, soil quality could be improved by using these fertilizers to reduce chemical fertilizer application, especially under drip-irrigation.
Kumar, Rajesh; Macey, Paul M; Woo, Mary A; Alger, Jeffry R; Harper, Ronald M
2008-09-01
Congenital central hypoventilation syndrome (CCHS) patients show reduced breathing drive during sleep, decreased hypoxic and hypercapnic ventilatory responses, and autonomic and affective deficits, suggesting both brainstem and forebrain injuries. Forebrain damage was previously described in CCHS, but methodological limitations precluded detection of brainstem injury, a concern because genetic mutations in CCHS target brainstem autonomic nuclei. To assess brainstem and cerebellar areas, we used diffusion tensor imaging-based measures, namely axial diffusivity, reflecting water diffusion parallel to fibers, and sensitive to axonal injury, and radial diffusivity, measuring diffusion perpendicular to fibers, and indicative of myelin injury. Diffusion tensor imaging was performed in 12 CCHS and 26 controls, and axial and radial diffusivity maps were compared between groups using analysis of covariance (covariates; age and gender). Increased axial diffusivity in CCHS appeared within the lateral medulla and clusters with injury extended from the dorsal midbrain through the periaqueductal gray, raphé, and superior cerebellar decussation, ventrally to the basal-pons. Cerebellar cortex and deep nuclei, and the superior and inferior cerebellar peduncles showed increased radial diffusivity. Midbrain, pontine, and lateral medullary structures, and the cerebellum and its fiber systems are injured in CCHS, likely contributing to the characteristics found in the syndrome.
Dumont, M; Lalonde, R; Ghersi-Egea, J-F; Fukuchi, K; Strazielle, C
2006-09-01
In addition to Abeta plaques and neurofibrillary tangles, Alzheimer's disease (AD) is characterized by increased brain levels of APP C-terminal fragments. In the present investigation, the cholinergic innervation in forebrain regions of transgenic mice (Tg13592) expressing the human betaAPP C99 fragment was compared to that of non-transgenic controls by measuring the activity of the non-specific catabolic enzyme, acetylcholinesterase (AChE). The AchE activity of Tg13592 mice was altered in several regions implicated in the functional loop of regulation between septum and hippocampus, vulnerable in Alzheimer pathology and critically involved in cognitive functions. In particular, AChE activity was upregulated in three basal forebrain regions containing cholinergic cell bodies, prelimbic cortex, anterior subiculum, and paraventricular thalamus, but downregulated in lateral septum and reticular thalamus. The increased activity in medial septum and anterior subiculum was linearly correlated with poor performances in a spatial learning task, possibly due to cell stress mechanisms. Because of some similarities in terms of neurochemistry and behavior, this mouse model may be of use for studying prodromal AD.
Alcaro, Antonio; Panksepp, Jaak
2011-10-01
Appetitive motivation and incentive states are essential functions sustained by a common emotional brain process, the SEEKING disposition, which drives explorative and approach behaviors, sustains goal-directed activity, promotes anticipatory cognitions, and evokes feelings of positive excitement which control reward-learning. All such functions are orchestrated by the same "archetypical" neural processes, activated in ancient subcortical areas and transported to the forebrain by the mesolimbic dopamine (ML-DA) system. In mammals, the neurophysiology of the SEEKING urge is expressed by DA-promoted high-frequency oscillations, in the form of transient and synchronized gamma waves (>30Hz) emerging in limbic forebrain and diffusing throughout basal ganglia-thalamocortical (BG-T-C) circuits. These patterns may be considered basic "SEEKING neurodynamic impulses" which represent the primary-process exploratory disposition getting integrated with information relative to the external and the internal environment. Abnormal manifestation of SEEKING and its neural substrates are evident in clinical depression and addiction. Specifically, depression is characterized by reduced recruitment of SEEKING, while addictions reflect re-organizations of the SEEKING disposition around ultra-specific appetitive memories and compulsive activities. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effects of nitric oxide synthase inhibitor on cochlear blood flow.
Hoshijima, Hideaki; Makimoto, Kazuo; Noi, Osamu; Ohinata, Yoshimitsu; Takenaka, Hiroshi
2002-09-01
We observed in rats the changes in cochlear blood flow (CoBF) and cutaneous blood flow of the abdominal wall (AbBF) after the administration of the NO synthase inhibitor, N-nitro-L-arginine-methyl ester (L-NAME). Ten minutes after i.v. infusion of L-NAME (0.2, 1, 5, 10 mg/kg), L-arginine, which is a substrate of NO, was infused (100 mg/kg) i.v. Employing a laser Doppler flowmeter, the changes in blood flow were recorded from the basal turn of the right cochlea or the abdominal wall and blood pressure (BP) was recorded from the left femoral artery simultaneously. Vascular conductance (VC) was calculated from CoBF/mean BP (cochlear VC) or AbBF/mean BP (abdominal VC). The findings in rats generally agreed with those in guinea pigs [Brechtelsbauer et al., Hear. Res. 77 (1994) 38-42]. Intravenous infusion of L-NAME produced a dose-dependent depression of cochlear VC at 0.2 mg/kg (-18.9), 1 mg/kg (-37.9%), 5 mg/kg (-45.8%) and 10 mg/kg (-48.3%). AbBF also decreased after infusion of L-NAME (5 mg/kg) but to a lesser degree (-41.1% in VC) with no significance compared to CoBF (5 mg/kg). Infusion of L-arginine partially reversed the CoBF decrease caused by L-NAME. The group of 0.2 mg/kg infusion of L-NAME showed the largest degree of recovery with L-arginine, while the 10 mg/kg group showed the smallest. The decrease in AbBF did not recover substantially with L-arginine, the degree being less than that of each group in the CoBF experiment. It was suggested that the NO/soluble guanylate cyclase/cGMP system is more active in the cochlear microcirculation. With the round window (RW) application of 1% L-NAME (2 microl), cochlear VC was decreased by 21.6%, which was closest to that of the 0.2 mg/kg group of L-NAME i.v. infusion. The cochlear VC depression after local application of L-NAME did not show any recovery (-0.3%) by RW application of 5% L-arginine (2 microl) 25 min after L-NAME application; a slight gradual increase was observed when a higher concentration (20%) of L-arginine was applied to the RW. We propose that i.v. infusions of L-NAME and L-arginine primarily affect the precapillary arteriole of the spiral modiolar artery which effectively regulates microcirculation as a resistance vessel, and that RW application affects the vessels of the lateral wall, not the spiral modiolar artery because of the difficulty of substance diffusion.
AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors
Dietrich, Marcelo O; Bober, Jeremy; Ferreira, Jozélia G; Tellez, Luis A; Mineur, Yann S; Souza, Diogo O; Gao, Xiao-Bing; Picciotto, Marina R; Araújo, Ivan; Liu, Zhong-Wu; Horvath, Tamas L
2012-01-01
It is not known whether behaviors unrelated to feeding are affected by hypothalamic regulators of hunger. We found that impairment of Agouti-related protein (AgRP) circuitry by either Sirt1 knockdown in AgRP-expressing neurons or early postnatal ablation of these neurons increased exploratory behavior and enhanced responses to cocaine. In AgRP circuit–impaired mice, ventral tegmental dopamine neurons exhibited enhanced spike timing–dependent long-term potentiation, altered amplitude of miniature postsynaptic currents and elevated dopamine in basal forebrain. Thus, AgRP neurons determine the set point of the reward circuitry and associated behaviors. PMID:22729177
Pharmacological treatment of sleep disorders and its relationship with neuroplasticity.
Abad, Vivien C; Guilleminault, Christian
2015-01-01
Sleep and wakefulness are regulated by complex brain circuits located in the brain stem, thalamus, subthalamus, hypothalamus, basal forebrain, and cerebral cortex. Wakefulness and NREM and REM sleep are modulated by the interactions between neurotransmitters that promote arousal and neurotransmitters that promote sleep. Various lines of evidence suggest that sleep disorders may negatively affect neuronal plasticity and cognitive function. Pharmacological treatments may alleviate these effects but may also have adverse side effects by themselves. This chapter discusses the relationship between sleep disorders, pharmacological treatments, and brain plasticity, including the treatment of insomnia, hypersomnias such as narcolepsy, restless legs syndrome (RLS), obstructive sleep apnea (OSA), and parasomnias.
Berry, Alessandra; Aloe, Luigi; Rossi, Simona; Bonsignore, Luca T; Capone, Francesca; Alleva, Enrico; Cirulli, Francesca
2010-07-11
This study reports that peripheral administration of Nerve Growth Factor antibodies (ANA) affects behavior in aged female CD-1 mice. ANA increased the propensity of mice to stay and perform behaviors in the anxiogenic open arms of the maze, lowered pain sensitivity and reduced behavioral flexibility in a Morris water maze task, also reducing ChAT immunoreactivity in the basal forebrain. These findings support the hypothesis that topical eye application can represent an alternative route for delivering biologically active compounds into the brain allowing studying the role of NGF on brain cell function. Copyright 2010 Elsevier B.V. All rights reserved.
Network structure of brain atrophy in de novo Parkinson's disease
Zeighami, Yashar; Ulla, Miguel; Iturria-Medina, Yasser; Dadar, Mahsa; Zhang, Yu; Larcher, Kevin Michel-Herve; Fonov, Vladimir; Evans, Alan C; Collins, D Louis; Dagher, Alain
2015-01-01
We mapped the distribution of atrophy in Parkinson's disease (PD) using magnetic resonance imaging (MRI) and clinical data from 232 PD patients and 117 controls from the Parkinson's Progression Markers Initiative. Deformation-based morphometry and independent component analysis identified PD-specific atrophy in the midbrain, basal ganglia, basal forebrain, medial temporal lobe, and discrete cortical regions. The degree of atrophy reflected clinical measures of disease severity. The spatial pattern of atrophy demonstrated overlap with intrinsic networks present in healthy brain, as derived from functional MRI. Moreover, the degree of atrophy in each brain region reflected its functional and anatomical proximity to a presumed disease epicenter in the substantia nigra, compatible with a trans-neuronal spread of the disease. These results support a network-spread mechanism in PD. Finally, the atrophy pattern in PD was also seen in healthy aging, where it also correlated with the loss of striatal dopaminergic innervation. DOI: http://dx.doi.org/10.7554/eLife.08440.001 PMID:26344547
Galán-Ladero, M A; Blanco-Blanco, M T; Hurtado, C; Pérez-Giraldo, C; Blanco, M T; Gómez-García, A C
2013-09-01
Candida tropicalis is an emerging virulent species. The aim of this study is to determine the biofilm-forming ability of 29 strains of C. tropicalis isolated from inpatients, and to examine its relation with other virulence factors such as cellular surface hydrophobicity (CSH), immediate (15 min, IA) and late (24 h, LA) plastic adherence and filamentation ability. The study was performed in parallel using two incubation temperatures - 37 and 22 °C - to determine the effect of growth temperature variations on these pathogenic attributes of C. tropicalis. Biofilm formation (BF) was measured by optical density (OD) and by XTT reduction (XTT); Slime index (SI), which includes growth as a correction factor in BF, was calculated in both methods. All strains were hydrophobic and adherent - at 15 min and 24 h - at both temperatures, with higher values for 22 °C; the adhered basal yeast layer appears to be necessary to achieve subsequent development of biofilm. Filamentation ability varied from 76.2% of strains at 37 °C to 26.6% at 22 °C. All C. tropicalis strains were biofilm producers, with similar results obtained using OD determination and XTT measurement to evaluation methods; SI is useful when good growth is not presented. BF at 37 °C was similar at 24 h and 96 h incubation; conversely, at 22 °C, the highest number of biofilm-producing strains was detected at 96 h. CSH is an important pathogenic factor which is involved in adherence, is influenced by the filamentation of yeast, and plays a critical role in BF. Copyright © 2013 John Wiley & Sons, Ltd.
Associative and sensorimotor cortico-basal ganglia circuit roles in effects of abused drugs.
Gremel, C M; Lovinger, D M
2017-01-01
The mammalian forebrain is characterized by the presence of several parallel cortico-basal ganglia circuits that shape the learning and control of actions. Among these are the associative, limbic and sensorimotor circuits. The function of all of these circuits has now been implicated in responses to drugs of abuse, as well as drug seeking and drug taking. While the limbic circuit has been most widely examined, key roles for the other two circuits in control of goal-directed and habitual instrumental actions related to drugs of abuse have been shown. In this review we describe the three circuits and effects of acute and chronic drug exposure on circuit physiology. Our main emphasis is on drug actions in dorsal striatal components of the associative and sensorimotor circuits. We then review key findings that have implicated these circuits in drug seeking and taking behaviors, as well as drug use disorders. Finally, we consider different models describing how the three cortico-basal ganglia circuits become involved in drug-related behaviors. This topic has implications for drug use disorders and addiction, as treatments that target the balance between the different circuits may be useful for reducing excessive substance use. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Control of arousal by the orexin neurons
Alexandre, Chloe; Andermann, Mark L; Scammell, Thomas E
2013-01-01
The orexin-producing neurons in the lateral hypothalamus play an essential role in promoting arousal and maintaining wakefulness. These neurons receive a broad variety of signals related to environmental, physiological and emotional stimuli; they project to almost every brain region involved in the regulation of wakefulness; and they fire most strongly during active wakefulness, high motor activation, and sustained attention. This review focuses on the specific neuronal pathways through which the orexin neurons promote wakefulness and maintain high level of arousal, and how recent studies using optogenetic and pharmacogenetic methods have demonstrated that the locus coeruleus, the tuberomammillary nucleus, and the basal forebrain are some of the key sites mediating the arousing actions of orexins. PMID:23683477
Nichols, Matthew; Elustondo, Pia A; Warford, Jordan; Thirumaran, Aruloli; Pavlov, Evgeny V; Robertson, George S
2017-08-01
The effects of global mitochondrial calcium (Ca 2+ ) uniporter (MCU) deficiency on hypoxic-ischemic (HI) brain injury, neuronal Ca 2+ handling, bioenergetics and hypoxic preconditioning (HPC) were examined. Forebrain mitochondria isolated from global MCU nulls displayed markedly reduced Ca 2+ uptake and Ca 2+ -induced opening of the membrane permeability transition pore. Despite evidence that these effects should be neuroprotective, global MCU nulls and wild-type (WT) mice suffered comparable HI brain damage. Energetic stress enhanced glycolysis and depressed Complex I activity in global MCU null, relative to WT, cortical neurons. HI reduced forebrain NADH levels more in global MCU nulls than WT mice suggesting that increased glycolytic consumption of NADH suppressed Complex I activity. Compared to WT neurons, pyruvate dehydrogenase (PDH) was hyper-phosphorylated in MCU nulls at several sites that lower the supply of substrates for the tricarboxylic acid cycle. Elevation of cytosolic Ca 2+ with glutamate or ionomycin decreased PDH phosphorylation in MCU null neurons suggesting the use of alternative mitochondrial Ca 2+ transport. Under basal conditions, global MCU nulls showed similar increases of Ca 2+ handling genes in the hippocampus as WT mice subjected to HPC. We propose that long-term adaptations, common to HPC, in global MCU nulls compromise resistance to HI brain injury and disrupt HPC.
Modulation of singing-related activity in the songbird ventral tegmental area by social context.
Yanagihara, Shin; Hessler, Neal A
2006-12-01
Successful reproduction depends critically on social interactions. To understand the neural mechanisms underlying such interactions, the study of courtship singing of songbirds has many advantages. Male zebra finches produce a similar song during courtship of a female and while alone. However, singing-related neural activity in the anterior forebrain pathway (AFP), a basal ganglia-forebrain circuit, is markedly dependent on the social context in which singing occurs. Thus, the AFP should receive a signal of social context from outside the song system. Here, we have begun to investigate the neural source of such a signal by recording from neurons in the ventral tegmental area (VTA), which provides dopaminergic input to Area X, a striatal nucleus of the AFP. The level of activity of most VTA neurons we recorded (32/35) was clearly modulated during singing, especially when males sang to a female bird. Modulation of the level of activity could occur in the presence of a female without singing, but typically was further increased when males sang to the female. In addition, activity of some neurons was patterned in relation to song elements, and appeared related to motor output. These results suggest that VTA activity could carry signals related to motivational aspects of singing, as well as more primary sensory and motor signals.
Pitchers, Kyle K; Phillips, Kyra B; Jones, Jonte L; Robinson, Terry E; Sarter, Martin
2017-07-26
Stimuli associated with taking drugs are notorious instigators of relapse. There is, however, considerable variation in the motivational properties of such stimuli, both as a function of the individual and the nature of the stimulus. The behavior of some individuals (sign trackers, STs) is especially influenced by cues paired with reward delivery, perhaps because they are prone to process information via dopamine-dependent, cue-driven, incentive salience systems. Other individuals (goal trackers, GTs) are better able to incorporate higher-order contextual information, perhaps because of better executive/attentional control over behavior, which requires frontal cortical cholinergic activity. We hypothesized, therefore, that a cue that "sets the occasion" for drug taking (a discriminative stimulus, DS) would reinstate cocaine seeking more readily in GTs than STs and that this would require intact cholinergic neurotransmission. To test this, male STs and GTs were trained to self-administer cocaine using an intermittent access schedule with periods of cocaine availability and unavailability signaled by a DS + and a DS - , respectively. Thereafter, half of the rats received an immunotoxic lesion that destroyed 40-50% of basal forebrain cholinergic neurons and later, after extinction training, were tested for the ability of noncontingent presentations of the DS + to reinstate cocaine seeking behavior. The DS + was much more effective in reinstating cocaine seeking in GTs than STs and this effect was abolished by cholinergic losses despite the fact that all rats continued to orient to the DS + We conclude that vulnerability to relapse involves interactions between individual cognitive-motivational biases and the form of the drug cue encountered. SIGNIFICANCE STATEMENT The most predictable outcome of a diagnosis of addiction is a high chance for relapse. When addicts encounter cues previously associated with drug, their attention may be unduly attracted to such cues and these cues can evoke motivational states that instigate and maintain drug-seeking behavior. Although sign-tracking rats were previously demonstrated to exhibit greater relapse vulnerability to Pavlovian drug cues paired with drug delivery, here, we demonstrate that their counterparts, the goal trackers, are more vulnerable if the drug cue acts to signal drug availability and that the forebrain cholinergic system mediates such vulnerability. Given the importance of contextual cues for triggering relapse and the human cognitive-cholinergic capacity for the processing of such cues, goal trackers model essential aspects of relapse vulnerability. Copyright © 2017 the authors 0270-6474/17/377198-11$15.00/0.
Expanding the spectrum of neuronal pathology in multiple system atrophy
Cykowski, Matthew D.; Coon, Elizabeth A.; Powell, Suzanne Z.; Jenkins, Sarah M.; Benarroch, Eduardo E.; Low, Phillip A.; Schmeichel, Ann M.
2015-01-01
Multiple system atrophy is a sporadic alpha-synucleinopathy that typically affects patients in their sixth decade of life and beyond. The defining clinical features of the disease include progressive autonomic failure, parkinsonism, and cerebellar ataxia leading to significant disability. Pathologically, multiple system atrophy is characterized by glial cytoplasmic inclusions containing filamentous alpha-synuclein. Neuronal inclusions also have been reported but remain less well defined. This study aimed to further define the spectrum of neuronal pathology in 35 patients with multiple system atrophy (20 male, 15 female; mean age at death 64.7 years; median disease duration 6.5 years, range 2.2 to 15.6 years). The morphologic type, topography, and frequencies of neuronal inclusions, including globular cytoplasmic (Lewy body-like) neuronal inclusions, were determined across a wide spectrum of brain regions. A correlation matrix of pathologic severity also was calculated between distinct anatomic regions of involvement (striatum, substantia nigra, olivary and pontine nuclei, hippocampus, forebrain and thalamus, anterior cingulate and neocortex, and white matter of cerebrum, cerebellum, and corpus callosum). The major finding was the identification of widespread neuronal inclusions in the majority of patients, not only in typical disease-associated regions (striatum, substantia nigra), but also within anterior cingulate cortex, amygdala, entorhinal cortex, basal forebrain and hypothalamus. Neuronal inclusion pathology appeared to follow a hierarchy of region-specific susceptibility, independent of the clinical phenotype, and the severity of pathology was duration-dependent. Neuronal inclusions also were identified in regions not previously implicated in the disease, such as within cerebellar roof nuclei. Lewy body-like inclusions in multiple system atrophy followed the stepwise anatomic progression of Lewy body-spectrum disease inclusion pathology in 25.7% of patients with multiple system atrophy, including a patient with visual hallucinations. Further, the presence of Lewy body-like inclusions in neocortex, but not hippocampal alpha-synuclein pathology, was associated with cognitive impairment (P = 0.002). However, several cases had the presence of isolated Lewy body-like inclusions at atypical sites (e.g. thalamus, deep cerebellar nuclei) that are not typical for Lewy body-spectrum disease. Finally, interregional correlations (rho ≥ 0.6) in pathologic glial and neuronal lesion burden suggest shared mechanisms of disease progression between both discrete anatomic regions (e.g. basal forebrain and hippocampus) and cell types (neuronal and glial inclusions in frontal cortex and white matter, respectively). These findings suggest that in addition to glial inclusions, neuronal pathology plays an important role in the developmental and progression of multiple system atrophy. See Halliday (doi:10.1093/brain/awv151) for a scientific commentary on this article. PMID:25981961
Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice
Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique
2016-01-01
The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors related to reproductive or defensive behaviors. PMID:28066196
Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation.
Reisenauer, Chris J; Bhatt, Dhaval P; Mitteness, Dane J; Slanczka, Evan R; Gienger, Heidi M; Watt, John A; Rosenberger, Thad A
2011-04-01
Glyceryl triacetate (GTA), a compound effective at increasing circulating and tissue levels of acetate was used to treat rats subjected to a continual 28 day intra-ventricular infusion of bacterial lipopolysaccharide (LPS). This model produces a neuroinflammatory injury characterized by global neuroglial activation and a decrease in choline acetyltransferase immunoreactivity in the basal forebrain. During the LPS infusion, rats were given a daily treatment of either water or GTA at a dose of 6 g/kg by oral gavage. In parallel experiments, free-CoA and acetyl-CoA levels were measured in microwave fixed brains and flash frozen heart, liver, kidney and muscle following a single oral dose of GTA. We found that a single oral dose of GTA significantly increased plasma acetate levels by 15 min and remained elevated for up to 4 h. At 30 min the acetyl-CoA levels in microwave-fixed brain and flash frozen heart and liver were increased at least 2.2-fold. The concentrations of brain acetyl-CoA was significantly increased between 30 and 45 min following treatment and remained elevated for up to 4 h. The concentration of free-CoA in brain was significantly decreased compared to controls at 240 min. Immunohistochemical and morphological analysis demonstrated that a daily treatment with GTA significantly reduced the percentage of reactive glial fibrillary acidic protein-positive astrocytes and activated CD11b-positive microglia by 40-50% in rats subjected to LPS-induced neuroinflammation. Further, in rats subjected to neuroinflammation, GTA significantly increased the number of choline acetyltransferase (ChAT)-positive cells by 40% in the basal forebrain compared to untreated controls. These data suggest that acetate supplementation increases intermediary short chain acetyl-CoA metabolism and that treatment is potentially anti-inflammatory and neuroprotective with regards to attenuating neuroglial activation and increasing ChAT immunoreactivity in this model. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation
Reisenauer, Chris J.; Bhatt, Dhaval P.; Mitteness, Dane J.; Slanczka, Evan R.; Gienger, Heidi M.; Watt, John A.; Rosenberger, Thad A.
2011-01-01
Glyceryl triacetate (GTA), a compound effective at increasing circulating and tissue levels of acetate was used to treat rats subjected to a continual 28 day intra-ventricular infusion of bacterial lipopolysaccharide (LPS). This model produces a neuroinflammatory injury characterized by global neuroglial activation and a decrease in choline acetyltransferase immunoreactivity in the basal forebrain. During the LPS infusion, rats were given a daily treatment of either water or GTA at a dose of 6g/kg by oral gavage. In parallel experiments free-CoA and acetyl-CoA levels were measured in microwave fixed brains and flash frozen heart, liver, kidney and muscle following a single oral dose of GTA. We found that a single oral dose of GTA significantly increased plasma acetate levels by 15 min and remained elevated for up to 4 hr. At 30 min the acetyl-CoA levels in microwave-fixed brain and flash frozen heart and liver were increased at least 2.2-fold. The concentrations of brain acetyl-CoA was significantly increased between 30 and 45 min following treatment and remained elevated for up to 4 hr. The concentration of free-CoA in brain was significantly decreased compared to controls at 240 min. Immunohistochemical and morphological analysis demonstrated that a daily treatment with GTA significantly reduced the percentage of reactive GFAP-positive astrocytes and activated CD11b-positive microglia by 40–50% in rats subjected to LPS-induced neuroinflammation. Further, in rats subjected to neuroinflammation, GTA significantly increased the number of ChAT-positive cells by 40% in the basal forebrain compared to untreated controls. These data suggest that acetate supplementation increases intermediary short chain acetyl-CoA metabolism and that treatment is potentially anti-inflammatory and neuroprotective with regards to attenuating neuroglial activation and increasing ChAT immunoreactivity in this model. PMID:21272004
Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice.
Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique
2016-01-01
The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors related to reproductive or defensive behaviors.
Powers, Brian E.; Kelley, Christy M.; Velazquez, Ramon; Ash, Jessica A.; Strawderman, Myla S.; Alldred, Melissa J.; Ginsberg, Stephen D.; Mufson, Elliott J.; Strupp, Barbara J.
2016-01-01
The Ts65Dn mouse model of Down syndrome (DS) and Alzheimer’s disease (AD) exhibits cognitive impairment and degeneration of basal forebrain cholinergic neurons (BFCNs). Our prior studies demonstrated that maternal choline supplementation (MCS) improves attention and spatial cognition in Ts65Dn offspring, normalizes hippocampal neurogenesis, and lessens BFCN degeneration in the medial septal nucleus (MSN). Here we determined whether (i) BFCN degeneration contributes to attentional dysfunction, and (ii) whether the attentional benefits of perinatal MCS are due to changes in BFCN morphology. Ts65Dn dams were fed either a choline-supplemented or standard diet during pregnancy and lactation. Ts65Dn and disomic (2N) control offspring were tested as adults (12–17 months of age) on a series of operant attention tasks, followed by morphometric assessment of BFCNs. Ts65Dn mice demonstrated impaired learning and attention relative to 2N mice, and MCS significantly improved these functions in both genotypes. We also found, for the first time, that the number of BFCNs in the nucleus basalis of Meynert/substantia innominata (NBM/SI) was significantly increased in Ts65Dn mice relative to controls. In contrast, the number of BFCNs in the MSN was significantly decreased. Another novel finding was that the volume of BFCNs in both basal forebrain regions was significantly larger in Ts65Dn mice. MCS did not normalize any of these morphological abnormalities in the NBM/SI or MSN. Finally, correlational analysis revealed that attentional performance was inversely associated with BFCN volume, and positively associated with BFCN density. These results support the lifelong attentional benefits of MCS for Ts65Dn and 2N offspring and have profound implications for translation to human DS and pathology attenuation in AD. PMID:27840230
Powers, Brian E; Kelley, Christy M; Velazquez, Ramon; Ash, Jessica A; Strawderman, Myla S; Alldred, Melissa J; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J
2017-01-06
The Ts65Dn mouse model of Down syndrome (DS) and Alzheimer's disease (AD) exhibits cognitive impairment and degeneration of basal forebrain cholinergic neurons (BFCNs). Our prior studies demonstrated that maternal choline supplementation (MCS) improves attention and spatial cognition in Ts65Dn offspring, normalizes hippocampal neurogenesis, and lessens BFCN degeneration in the medial septal nucleus (MSN). Here we determined whether (i) BFCN degeneration contributes to attentional dysfunction, and (ii) whether the attentional benefits of perinatal MCS are due to changes in BFCN morphology. Ts65Dn dams were fed either a choline-supplemented or standard diet during pregnancy and lactation. Ts65Dn and disomic (2N) control offspring were tested as adults (12-17months of age) on a series of operant attention tasks, followed by morphometric assessment of BFCNs. Ts65Dn mice demonstrated impaired learning and attention relative to 2N mice, and MCS significantly improved these functions in both genotypes. We also found, for the first time, that the number of BFCNs in the nucleus basalis of Meynert/substantia innominata (NBM/SI) was significantly increased in Ts65Dn mice relative to controls. In contrast, the number of BFCNs in the MSN was significantly decreased. Another novel finding was that the volume of BFCNs in both basal forebrain regions was significantly larger in Ts65Dn mice. MCS did not normalize any of these morphological abnormalities in the NBM/SI or MSN. Finally, correlational analysis revealed that attentional performance was inversely associated with BFCN volume, and positively associated with BFCN density. These results support the lifelong attentional benefits of MCS for Ts65Dn and 2N offspring and have profound implications for translation to human DS and pathology attenuation in AD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Forebrain Cholinergic Dysfunction and Systemic and Brain Inflammation in Murine Sepsis Survivors
Zaghloul, Nahla; Addorisio, Meghan E.; Silverman, Harold A.; Patel, Hardik L.; Valdés-Ferrer, Sergio I.; Ayasolla, Kamesh R.; Lehner, Kurt R.; Olofsson, Peder S.; Nasim, Mansoor; Metz, Christine N.; Wang, Ping; Ahmed, Mohamed; Chavan, Sangeeta S.; Diamond, Betty; Tracey, Kevin J.; Pavlov, Valentin A.
2017-01-01
Sepsis, a complex disorder characterized by immune, metabolic, and neurological dysregulation, is the number one killer in the intensive care unit. Mortality remains alarmingly high even in among sepsis survivors discharged from the hospital. There is no clear strategy for managing this lethal chronic sepsis illness, which is associated with severe functional disabilities and cognitive deterioration. Providing insight into the underlying pathophysiology is desperately needed to direct new therapeutic approaches. Previous studies have shown that brain cholinergic signaling importantly regulates cognition and inflammation. Here, we studied the relationship between peripheral immunometabolic alterations and brain cholinergic and inflammatory states in mouse survivors of cecal ligation and puncture (CLP)-induced sepsis. Within 6 days, CLP resulted in 50% mortality vs. 100% survival in sham-operated controls. As compared to sham controls, sepsis survivors had significantly lower body weight, higher serum TNF, interleukin (IL)-1β, IL-6, CXCL1, IL-10, and HMGB1 levels, a lower TNF response to LPS challenge, and lower serum insulin, leptin, and plasminogen activator inhibitor-1 levels on day 14. In the basal forebrain of mouse sepsis survivors, the number of cholinergic [choline acetyltransferase (ChAT)-positive] neurons was significantly reduced. In the hippocampus and the cortex of mouse sepsis survivors, the activity of acetylcholinesterase (AChE), the enzyme that degrades acetylcholine, as well as the expression of its encoding gene were significantly increased. In addition, the expression of the gene encoding the M1 muscarinic acetylcholine receptor was decreased in the hippocampus. In parallel with these forebrain cholinergic alterations, microglial activation (in the cortex) and increased Il1b and Il6 gene expression (in the cortex), and Il1b gene expression (in the hippocampus) were observed in mouse sepsis survivors. Furthermore, microglial activation was linked to decreased cortical ChAT protein expression and increased AChE activity. These results reinforce the notion of persistent inflammation-immunosuppression and catabolic syndrome in sepsis survivors and characterize a previously unrecognized relationship between forebrain cholinergic dysfunction and neuroinflammation in sepsis survivors. This insight is of interest for new therapeutic approaches that focus on brain cholinergic signaling for patients with chronic sepsis illness, a problem with no specific treatment. PMID:29326685
Control of arousal by the orexin neurons.
Alexandre, Chloe; Andermann, Mark L; Scammell, Thomas E
2013-10-01
The orexin-producing neurons in the lateral hypothalamus play an essential role in promoting arousal and maintaining wakefulness. These neurons receive a broad variety of signals related to environmental, physiological and emotional stimuli; they project to almost every brain region involved in the regulation of wakefulness; and they fire most strongly during active wakefulness, high motor activation, and sustained attention. This review focuses on the specific neuronal pathways through which the orexin neurons promote wakefulness and maintain high level of arousal, and how recent studies using optogenetic and pharmacogenetic methods have demonstrated that the locus coeruleus, the tuberomammillary nucleus, and the basal forebrain are some of the key sites mediating the arousing actions of orexins. Copyright © 2013 Elsevier Ltd. All rights reserved.
Terry, Alvin V.; Gearhart, Debra A.
2007-01-01
α7 nicotinic acetylcholine receptor deficits may contribute to cognitive dysfunction in schizophrenia; however, the contribution of antipsychotic drug exposure to these deficits is unknown. In this study, rats were treated orally with haloperidol (2.0 mg/kg/day) or risperidone (2.5 mg/kg/day) for 15 or 90 days. Subsequent immunoassays indicated that both antipsychotics were associated with α7 nicotinic receptor decreases in the basal forebrain and prefrontal cortex when administered for 90 (but not 15) days, a result that was confirmed in autoradiographic experiments. These data suggest that haloperidol and risperidone may be associated with time dependent decreases in an important neurobiological substrate of memory. PMID:17601556
Moustafa, Ahmed A.; Keri, Szabolcs; Herzallah, Mohammad M.; Myers, Catherine E.; Gluck, Mark A.
2010-01-01
Building on our previous neurocomputational models of basal ganglia and hippocampal-region function (and their modulation by dopamine and acetylcholine, respectively), we show here how an integration of these models can inform our understanding of the interaction between the basal ganglia and hippocampal region in associative learning and transfer generalization across various patient populations. As a common test bed for exploring interactions between these brain regions and neuromodulators, we focus on the acquired equivalence task, an associative learning paradigm in which stimuli that have been associated with the same outcome acquire a functional similarity such that subsequent generalization between these stimuli increases. This task has been used to test cognitive dysfunction in various patient populations with damages to the hippocampal region and basal ganglia, including studies of patients with Parkinson’s disease (PD), schizophrenia, basal forebrain amnesia, and hippocampal atrophy. Simulation results show that damage to the hippocampal region—as in patients with hippocampal atrophy (HA), hypoxia, mild Alzheimer’s (AD), or schizophrenia—leads to intact associative learning but impaired transfer generalization performance. Moreover, the model demonstrates how PD and anterior communicating artery (ACoA) aneurysm—two very different brain disorders that affect different neural mechanisms—can have similar effects on acquired equivalence performance. In particular, the model shows that simulating a loss of dopamine function in the basal ganglia module (as in PD) leads to slow acquisition learning but intact transfer generalization. Similarly, the model shows that simulating the loss of acetylcholine in the hippocampal region (as in ACoA aneurysm) also results in slower acquisition learning. We argue from this that changes in associative learning of stimulus-action pathways (in the basal ganglia) or changes in the learning of stimulus representations (in the hippocampal region) can have similar functional effects. PMID:20728258
Cognitive Consilience: Primate Non-Primary Neuroanatomical Circuits Underlying Cognition
Solari, Soren Van Hout; Stoner, Rich
2011-01-01
Interactions between the cerebral cortex, thalamus, and basal ganglia form the basis of cognitive information processing in the mammalian brain. Understanding the principles of neuroanatomical organization in these structures is critical to understanding the functions they perform and ultimately how the human brain works. We have manually distilled and synthesized hundreds of primate neuroanatomy facts into a single interactive visualization. The resulting picture represents the fundamental neuroanatomical blueprint upon which cognitive functions must be implemented. Within this framework we hypothesize and detail 7 functional circuits corresponding to psychological perspectives on the brain: consolidated long-term declarative memory, short-term declarative memory, working memory/information processing, behavioral memory selection, behavioral memory output, cognitive control, and cortical information flow regulation. Each circuit is described in terms of distinguishable neuronal groups including the cerebral isocortex (9 pyramidal neuronal groups), parahippocampal gyrus and hippocampus, thalamus (4 neuronal groups), basal ganglia (7 neuronal groups), metencephalon, basal forebrain, and other subcortical nuclei. We focus on neuroanatomy related to primate non-primary cortical systems to elucidate the basis underlying the distinct homotypical cognitive architecture. To display the breadth of this review, we introduce a novel method of integrating and presenting data in multiple independent visualizations: an interactive website (http://www.frontiersin.org/files/cognitiveconsilience/index.html) and standalone iPhone and iPad applications. With these tools we present a unique, annotated view of neuroanatomical consilience (integration of knowledge). PMID:22194717
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowyer, John F., E-mail: john.bowyer@fda.hhs.go; Latendresse, John R.; Delongchamp, Robert R.
A study was undertaken to determine whether alterations in the gene expression or overt histological signs of neurotoxicity in selected regions of the forebrain might occur from acrylamide exposure via drinking water. Gene expression at the mRNA level was evaluated by cDNA array and/or RT-PCR analysis in the striatum, substantia nigra and parietal cortex of rat after a 2-week acrylamide exposure. The highest dose tested (maximally tolerated) of approximately 44 mg/kg/day resulted in a significant decreased body weight, sluggishness, and locomotor activity reduction. These physiological effects were not accompanied by prominent changes in gene expression in the forebrain. All themore » expression changes seen in the 1200 genes that were evaluated in the three brain regions were <= 1.5-fold, and most not significant. Very few, if any, statistically significant changes were seen in mRNA levels of the more than 50 genes directly related to the cholinergic, noradrenergic, GABAergic or glutamatergic neurotransmitter systems in the striatum, substantia nigra or parietal cortex. All the expression changes observed in genes related to dopaminergic function were less than 1.5-fold and not statistically significant and the 5HT1b receptor was the only serotonin-related gene affected. Therefore, gene expression changes were few and modest in basal ganglia and sensory cortex at a time when the behavioral manifestations of acrylamide toxicity had become prominent. No histological evidence of axonal, dendritic or neuronal cell body damage was found in the forebrain due to the acrylamide exposure. As well, microglial activation was not present. These findings are consistent with the absence of expression changes in genes related to changes in neuroinflammation or neurotoxicity. Over all, these data suggest that oral ingestion of acrylamide in drinking water or food, even at maximally tolerable levels, induced neither marked changes in gene expression nor neurotoxicity in the motor and somatosensory areas of the central nervous system.« less
Expanding the spectrum of neuronal pathology in multiple system atrophy.
Cykowski, Matthew D; Coon, Elizabeth A; Powell, Suzanne Z; Jenkins, Sarah M; Benarroch, Eduardo E; Low, Phillip A; Schmeichel, Ann M; Parisi, Joseph E
2015-08-01
Multiple system atrophy is a sporadic alpha-synucleinopathy that typically affects patients in their sixth decade of life and beyond. The defining clinical features of the disease include progressive autonomic failure, parkinsonism, and cerebellar ataxia leading to significant disability. Pathologically, multiple system atrophy is characterized by glial cytoplasmic inclusions containing filamentous alpha-synuclein. Neuronal inclusions also have been reported but remain less well defined. This study aimed to further define the spectrum of neuronal pathology in 35 patients with multiple system atrophy (20 male, 15 female; mean age at death 64.7 years; median disease duration 6.5 years, range 2.2 to 15.6 years). The morphologic type, topography, and frequencies of neuronal inclusions, including globular cytoplasmic (Lewy body-like) neuronal inclusions, were determined across a wide spectrum of brain regions. A correlation matrix of pathologic severity also was calculated between distinct anatomic regions of involvement (striatum, substantia nigra, olivary and pontine nuclei, hippocampus, forebrain and thalamus, anterior cingulate and neocortex, and white matter of cerebrum, cerebellum, and corpus callosum). The major finding was the identification of widespread neuronal inclusions in the majority of patients, not only in typical disease-associated regions (striatum, substantia nigra), but also within anterior cingulate cortex, amygdala, entorhinal cortex, basal forebrain and hypothalamus. Neuronal inclusion pathology appeared to follow a hierarchy of region-specific susceptibility, independent of the clinical phenotype, and the severity of pathology was duration-dependent. Neuronal inclusions also were identified in regions not previously implicated in the disease, such as within cerebellar roof nuclei. Lewy body-like inclusions in multiple system atrophy followed the stepwise anatomic progression of Lewy body-spectrum disease inclusion pathology in 25.7% of patients with multiple system atrophy, including a patient with visual hallucinations. Further, the presence of Lewy body-like inclusions in neocortex, but not hippocampal alpha-synuclein pathology, was associated with cognitive impairment (P = 0.002). However, several cases had the presence of isolated Lewy body-like inclusions at atypical sites (e.g. thalamus, deep cerebellar nuclei) that are not typical for Lewy body-spectrum disease. Finally, interregional correlations (rho ≥ 0.6) in pathologic glial and neuronal lesion burden suggest shared mechanisms of disease progression between both discrete anatomic regions (e.g. basal forebrain and hippocampus) and cell types (neuronal and glial inclusions in frontal cortex and white matter, respectively). These findings suggest that in addition to glial inclusions, neuronal pathology plays an important role in the developmental and progression of multiple system atrophy. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33AD251E mutation
Zhen, Yuanli; Li, Wei
2015-01-01
The HOPS (homotypic fusion and protein sorting) complex functions in endocytic and autophagic pathways in both lower eukaryotes and mammalian cells through its involvement in fusion events between endosomes and lysosomes or autophagosomes and lysosomes. However, the differential molecular mechanisms underlying these fusion processes are largely unknown. Buff (bf) is a mouse mutant that carries an Asp251-to-Glu point mutation (D251E) in the VPS33A protein, a tethering protein and a core subunit of the HOPS complex. Bf mice showed impaired spontaneous locomotor activity, motor learning, and autophagic activity. Although the gross anatomy of the brain was apparently normal, the number of Purkinje cells was significantly reduced. Furthermore, we found that fusion between autophagosomes and lysosomes was defective in bf cells without compromising the endocytic pathway. The direct association of mutant VPS33AD251E with the autophagic SNARE complex, STX17 (syntaxin 17)-VAMP8-SNAP29, was enhanced. In addition, the VPS33AD251E mutation enhanced interactions with other HOPS subunits, namely VPS41, VPS39, VPS18, and VPS11, except for VPS16. Reduction of the interactions between VPS33AY440D and several other HOPS subunits led to decreased association with STX17. These results suggest that the VPS33AD251E mutation plays dual roles by increasing the HOPS complex assembly and its association with the autophagic SNARE complex, which selectively affects the autophagosome-lysosome fusion that impairs basal autophagic activity and induces Purkinje cell loss. PMID:26259518
Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain
Fasano, Christopher A.; Phoenix, Timothy N.; Kokovay, Erzsebet; Lowry, Natalia; Elkabetz, Yechiel; Dimos, John T.; Lemischka, Ihor R.; Studer, Lorenz; Temple, Sally
2009-01-01
Neural stem cells (NSCs) persist throughout life in two forebrain areas: the subventricular zone (SVZ) and the hippocampus. Why forebrain NSCs self-renew more extensively than those from other regions remains unclear. Prior studies have shown that the polycomb factor Bmi-1 is necessary for NSC self-renewal and that it represses the cell cycle inhibitors p16, p19, and p21. Here we show that overexpression of Bmi-1 enhances self-renewal of forebrain NSCs significantly more than those derived from spinal cord, demonstrating a regional difference in responsiveness. We show that forebrain NSCs require the forebrain-specific transcription factor Foxg1 for Bmi-1-dependent self-renewal, and that repression of p21 is a focus of this interaction. Bmi-1 enhancement of NSC self-renewal is significantly greater with increasing age and passage. Importantly, when Bmi-1 is overexpressed in cultured adult forebrain NSCs, they expand dramatically and continue to make neurons even after multiple passages, when control NSCs have become restricted to glial differentiation. Together these findings demonstrate the importance of Bmi-1 and Foxg1 cooperation to maintenance of NSC multipotency and self-renewal, and establish a useful method for generating abundant forebrain neurons ex vivo, outside the neurogenic niche. PMID:19270157
Neural responses to salient visual stimuli.
Morris, J S; Friston, K J; Dolan, R J
1997-01-01
The neural mechanisms involved in the selective processing of salient or behaviourally important stimuli are uncertain. We used an aversive conditioning paradigm in human volunteer subjects to manipulate the salience of visual stimuli (emotionally expressive faces) presented during positron emission tomography (PET) neuroimaging. Increases in salience, and conflicts between the innate and acquired value of the stimuli, produced augmented activation of the pulvinar nucleus of the right thalamus. Furthermore, this pulvinar activity correlated positively with responses in structures hypothesized to mediate value in the brain right amygdala and basal forebrain (including the cholinergic nucleus basalis of Meynert). The results provide evidence that the pulvinar nucleus of the thalamus plays a crucial modulatory role in selective visual processing, and that changes in perceptual salience are mediated by value-dependent plasticity in pulvinar responses. PMID:9178546
Neuronal substrates of sleep homeostasis; lessons from flies, rats and mice.
Donlea, Jeffrey M; Alam, Md Noor; Szymusiak, Ronald
2017-06-01
Sleep homeostasis is a fundamental property of vigilance state regulation that is highly conserved across species. Neuronal systems and circuits that underlie sleep homeostasis are not well understood. In Drosophila, a neuronal circuit involving neurons in the ellipsoid body and in the dorsal Fan-shaped body is a candidate for both tracing sleep need during waking and translating it to increased sleep drive and expression. Sleep homeostasis in rats and mice involves multiple neuromodulators acting on multiple wake- and sleep-promoting neuronal systems. A functional central homeostat emerges from A 1 receptor mediated actions of adenosine on wake-promoting neurons in the basal forebrain and hypothalamus, and A 2A adenosine receptor-mediated actions on sleep-promoting neurons in the preoptic hypothalamus and nucleus accumbens. Copyright © 2017. Published by Elsevier Ltd.
Van Nhiem, Duong; Berg, Jan; Kjos, Nils Petter; Trach, Nguyen Xuan; Tuan, Bui Quang
2013-04-01
The present study was to test if different ratios of fish meal to soy cake as protein supplements in the diet are not significantly different in effects on feed intakes and performance of growing beef cattle fed urea-treated rice straw (URTRS) as basal diet under local conditions in North Vietnam. Thirty-six male cattle of Laisind (50% local Yellow cattle and 50% Sindhi, both Bos indicus) at around 12 months of age with an average live weight of 124 ± 12 kg at start were used in six groups of the experiment. Six diets named A, B, C, D, E, and F used in the experiment were similar in crude protein (CP) level, except for diet A with no supplementation, but different in fish meal/soy cake ratio based on CP content as follows: diet A 0/0, diet B 100/0, diet C 75/25, diet D 50/50, diet E 25/75, and diet F 0/100. Following a 4-week adaptation period, a comparison period lasted 24 weeks. The total intakes of dry matter (DM), DM from roughage, metabolizable energy (ME), and CP were 6, 7, 6, and 20% higher in diets B-F than diet A with P values ≤ 0.05, 0.05, 0.05, and 0.001, respectively. The average daily gain (ADG) was 50% higher (P<0.001) in diets B-F than that in diet A. Compared to diet A, diets B-F had lower feed conversion ratio (FCR)DM, FCRME, and FCRCP by 30, 20, and 30%, respectively (all at P<0.001). There were no significant differences between diets B-F in the intakes, FCRs, and ADG. The apparent digestibility of CP was 12 to 24% higher (P<0.001) in diets B-F than that in diet A. There was a tendency that the apparent digestibilities of DM, CP, and CF were increasing with increasing level of soy cake in this study. The ratio of fish meal to soy cake did not significantly affect feed intakes, ADG, FCR, and apparent nutrient digestibilities of the cattle. Soy cake can therefore be used to partially or fully replace fish meal as a protein supplement in the diet of growing beef cattle fed URTRS without any negative effects on animal performance.
Neurostimulation to improve level of consciousness in patients with epilepsy.
Gummadavelli, Abhijeet; Kundishora, Adam J; Willie, Jon T; Andrews, John P; Gerrard, Jason L; Spencer, Dennis D; Blumenfeld, Hal
2015-06-01
When drug-resistant epilepsy is poorly localized or surgical resection is contraindicated, current neurostimulation strategies such as deep brain stimulation and vagal nerve stimulation can palliate the frequency or severity of seizures. However, despite medical and neuromodulatory therapy, a significant proportion of patients continue to experience disabling seizures that impair awareness, causing disability and risking injury or sudden unexplained death. We propose a novel strategy in which neuromodulation is used not only to reduce seizures but also to ameliorate impaired consciousness when the patient is in the ictal and postictal states. Improving or preventing alterations in level of consciousness may have an effect on morbidity (e.g., accidents, drownings, falls), risk for death, and quality of life. Recent studies may have elucidated underlying networks and mechanisms of impaired consciousness and yield potential novel targets for neuromodulation. The feasibility, benefits, and pitfalls of potential deep brain stimulation targets are illustrated in human and animal studies involving minimally conscious/vegetative states, movement disorders, depth of anesthesia, sleep-wake regulation, and epilepsy. We review evidence that viable therapeutic targets for impaired consciousness associated with seizures may be provided by key nodes of the consciousness system in the brainstem reticular activating system, hypothalamus, basal ganglia, thalamus, and basal forebrain.
Integrating perspectives on vocal performance and consistency
Sakata, Jon T.; Vehrencamp, Sandra L.
2012-01-01
SUMMARY Recent experiments in divergent fields of birdsong have revealed that vocal performance is important for reproductive success and under active control by distinct neural circuits. Vocal consistency, the degree to which the spectral properties (e.g. dominant or fundamental frequency) of song elements are produced consistently from rendition to rendition, has been highlighted as a biologically important aspect of vocal performance. Here, we synthesize functional, developmental and mechanistic (neurophysiological) perspectives to generate an integrated understanding of this facet of vocal performance. Behavioral studies in the field and laboratory have found that vocal consistency is affected by social context, season and development, and, moreover, positively correlated with reproductive success. Mechanistic investigations have revealed a contribution of forebrain and basal ganglia circuits and sex steroid hormones to the control of vocal consistency. Across behavioral, developmental and mechanistic studies, a convergent theme regarding the importance of vocal practice in juvenile and adult songbirds emerges, providing a basis for linking these levels of analysis. By understanding vocal consistency at these levels, we gain an appreciation for the various dimensions of song control and plasticity and argue that genes regulating the function of basal ganglia circuits and sex steroid hormones could be sculpted by sexual selection. PMID:22189763
Delis, Foteini; Rombola, Christina; Bellezza, Robert; Rosko, Lauren; Grandy, David K; Volkow, Nora D; Thanos, Panayotis K
2015-01-01
Studies have shown that exposure to chronic mild stress decreases ethanol intake and preference in dopamine D2 receptor wild-type mice (Drd2 (+/+)), while it increases intake in heterozygous (Drd2 (+/-)) and knockout (Drd2 (-/-)) mice. Dopaminergic neurotransmission in the basal forebrain plays a major role in the reinforcing actions of ethanol as well as in brain responses to stress. In order to identify neurochemical changes associated with the regulation of ethanol intake, we used in vitro receptor autoradiography to measure the levels and distribution of dopamine D1 and D2 receptors and dopamine transporters (DAT). Receptor levels were measured in the basal forebrain of Drd2 (+/+), Drd2 (+/-), and Drd2 (-/-) mice belonging to one of four groups: control (C), ethanol intake (E), chronic mild stress exposure (S), and ethanol intake under chronic mild stress (ES). D2 receptor levels were higher in the lateral and medial striatum of Drd2 (+/+) ES mice, compared with Drd2 (+/+) E mice. Ethanol intake in Drd2 (+/+) mice was negatively correlated with striatal D2 receptor levels. D2 receptor levels in Drd2(+/-) mice were the same among the four treatment groups. DAT levels were lower in Drd2(+/-) C and Drd2 (-/-) C mice, compared with Drd2 (+/+) C mice. Among Drd2(+/-) mice, S and ES groups had higher DAT levels compared with C and E groups in most regions examined. In Drd2(-/-) mice, ethanol intake was positively correlated with DAT levels in all regions studied. D1 receptor levels were lower in Drd2(+/-) and Drd2(-/-) mice, compared with Drd2(+/+), in all regions examined and remained unaffected by all treatments. The results suggest that in normal mice, ethanol intake is associated with D2 receptor-mediated neurotransmission, which exerts a protective effect against ethanol overconsumption under stress. In mice with low Drd2 expression, where DRD2 levels are not further modulated, ethanol intake is associated with DAT function which is upregulated under stress leading to ethanol overconsumption.
Eye field requires the function of Sfrp1 as a Wnt antagonist.
Kim, Hyung-Seok; Shin, Jimann; Kim, Seok-Hyung; Chun, Hang-Suk; Kim, Jun-Dae; Kim, Young-Seop; Kim, Myoung-Jin; Rhee, Myungchull; Yeo, Sang-Yeob; Huh, Tae-Lin
2007-02-27
Wnts have been shown to provide a posteriorizing signal that has to be repressed in the specification of vertebrate forebrain region. Previous studies have shown that Wnt activation by LiCl treatment causes an expansion of optic stalk and mid-hindbrain boundary, whereas eye and ventral diencephalon in the forebrain region were reduced. However, the molecular mechanism, by which inhibits Wnt activity in the forebrain remains poorly defined. To investigate relationship between forebrain specification and Wnt signaling, the zebrafish homologue of secreted frizzled related protein1 (sfrp1) has been characterized. The transcripts of sfrp1 are detected in the presumptive forebrain at gastrula and in the ventral telencephalon, ventral diencephalon, midbrain and optic vesicles at 24h after postfertilization (hpf). Overexpression of sfrp1 causes an anteriorization of embryo, with enlarged head and reduced posterior structure as in the embryo overexpressing dominant-negative form of Frizzled8a or Dkk1. Its overexpression restored the eye defects in the Wnt8b-overexpressing embryos, but not in the LiCl-treated embryos. These results suggest that Sfrp1 expressed in the forebrain and eye field plays a critical role in the extracellular events of antagonizing Wnt activity for the forebrain specification.
NASA Astrophysics Data System (ADS)
Mobley, William C.; Neve, Rachael L.; Prusiner, Stanley B.; McKinley, Michael P.
1988-12-01
Deposition of amyloid filaments serves as a pathologic hallmark for some neurodegenerative disorders. The prion protein (PrP) is found in amyloid of animals with scrapie and humans with Creutzfeldt-Jakob disease; the β protein is present in amyloid deposits in Alzheimer disease and Down syndrome patients. These two proteins are derived from precursors that in the brain are expressed primarily in neurons and are membrane bound. We found that gene expression for PrP and the β -protein precursor (β -PP) is regulated in developing hamster brain. Specific brain regions showed distinct patterns of ontogenesis for PrP and β -PP mRNAs. The increases in PrP and β -PP mRNAs in developing basal forebrain coincided with an increase in choline acetyltransferase activity, raising the possibility that these markers might be coordinately controlled in cholinergic neurons and regulated by nerve growth factor (NGF). Injections of NGF into the brains of neonatal hamsters increased both PrP and β -PP mRNA levels. Increased PrP and β -PP mRNA levels induced by NGF were confined to regions that contain NGF-responsive cholinergic neurons and were accompanied by elevations in choline acetyltransferase. It remains to be established whether or not exogenous NGF acts to increase PrP and β -PP gene expression selectively in forebrain cholinergic neurons in the developing hamster and endogenous NGF regulates expression of these genes.
The Structural Connectome of the Human Central Homeostatic Network.
Edlow, Brian L; McNab, Jennifer A; Witzel, Thomas; Kinney, Hannah C
2016-04-01
Homeostatic adaptations to stress are regulated by interactions between the brainstem and regions of the forebrain, including limbic sites related to respiratory, autonomic, affective, and cognitive processing. Neuroanatomic connections between these homeostatic regions, however, have not been thoroughly identified in the human brain. In this study, we perform diffusion spectrum imaging tractography using the MGH-USC Connectome MRI scanner to visualize structural connections in the human brain linking autonomic and cardiorespiratory nuclei in the midbrain, pons, and medulla oblongata with forebrain sites critical to homeostatic control. Probabilistic tractography analyses in six healthy adults revealed connections between six brainstem nuclei and seven forebrain regions, several over long distances between the caudal medulla and cerebral cortex. The strongest evidence for brainstem-homeostatic forebrain connectivity in this study was between the brainstem midline raphe and the medial temporal lobe. The subiculum and amygdala were the sampled forebrain nodes with the most extensive brainstem connections. Within the human brainstem-homeostatic forebrain connectome, we observed that a lateral forebrain bundle, whose connectivity is distinct from that of rodents and nonhuman primates, is the primary conduit for connections between the brainstem and medial temporal lobe. This study supports the concept that interconnected brainstem and forebrain nodes form an integrated central homeostatic network (CHN) in the human brain. Our findings provide an initial foundation for elucidating the neuroanatomic basis of homeostasis in the normal human brain, as well as for mapping CHN disconnections in patients with disorders of homeostasis, including sudden and unexpected death, and epilepsy.
Consciousness: Its Neurobiology and the Major Classes of Impairment
Goldfine, Andrew M.; Schiff, Nicholas D.
2011-01-01
Summary Normal human consciousness requires brainstem, basal forebrain, and diencephalic areas to support generalized arousal, as well as functioning thalamocortical networks to become aware of, and respond to environmental and internal stimuli. Injury to or disconnection of these interconnected systems, typically from cardiac arrest and traumatic brain injury, can result in disorders of consciousness, including coma, vegetative state, minimally conscious state, and akinetic mutism. Similar brain injuries can also result in loss of motor output out of proportion to consciousness, resulting in misdiagnoses of disorders of consciousness. We review pathology and imaging studies and derive mechanistic models for each of these conditions, to aid in the assessment and prognosis of individual patients. We further suggest how such models may guide the development of target-based treatment algorithms to enhance recovery of consciousness in many of these patient. PMID:22032656
Rapid Neurofibrillary Tangle Formation after Localized Gene Transfer of Mutated Tau
Klein, Ronald L.; Lin, Wen-Lang; Dickson, Dennis W.; Lewis, Jada; Hutton, Michael; Duff, Karen; Meyer, Edwin M.; King, Michael A.
2004-01-01
Neurofibrillary pathology was produced in the brains of adult rats after localized gene transfer of human tau carrying the P301L mutation, which is associated with frontotemporal dementia with parkinsonism. Within 1 month of in situ transfection of the basal forebrain region of normal rats, tau-immunoreactive and argyrophilic neuronal lesions formed. The fibrillar lesions had features of neurofibrillary tangles and tau immunoreactivity at light and electron microscopic levels. In addition to neurofibrillary tangles, other tau pathology, including pretangles and neuropil threads, was abundant and widespread. Tau gene transfer to the hippocampal region of amyloid-depositing transgenic mice produced pretangles and threads, as well as intensely tau-immunoreactive neurites in amyloid plaques. The ability to produce neurofibrillary pathology in adult rodents makes this a useful method to study tau-related neurodegeneration. PMID:14695347
Hayashi, Kentaro; Nishimura, Seiichi; Yagi, Kazuyuki
2008-02-15
Ammonia (NH(3)) volatilization from a paddy field following applications of urea was measured. Two lysimeters of Gray Lowland soil with a pH (H(2)O) of 5.7 were used for the experiment. Urea was applied at a rate of 50 kg N ha(-1) by incorporation as the basal fertilization (BF) and at rates of 30 and 10 kg N ha(-1) by top-dressing as the first (SF1) and second (SF2) supplemental fertilizations, respectively. Two wind tunnels per lysimeter were installed just after BF; one was transplanted with rice plants (PR plot), and the other was without rice plants (NR plot). Weak volatilization was observed at the PR plots after BF. By contrast, strong volatilization was observed at the PR plots after SF1 with a maximum flux of 150 g N ha(-1) h(-1); however, almost no volatilization was observed after SF2. The NH(3) volatilization loss accounted for 2.1%, 20.9%, 0.5%, and 8.2% of the applied urea at each application, BF, SF1, SF2, and the total application, respectively, for which only the net fluxes as volatilization were accumulated. The NH(3) volatilization fluxes from the paddy water surface (F(vol)) at the NR plots were estimated using a film model for its verification. After confirmation of good correlation, the film model was applied to estimate F(vol) at the PR plots. The NH(3) exchange fluxes by rice plants (F(ric)) were obtained by subtracting F(vol) from the observed net NH(3) flux. The derived F(ric) showed that the rice plants emitted NH(3) remarkably just after SF1 when a relatively high rate of urea was applied, although they absorbed atmospheric NH(3) in the other periods. In conclusion, rice plants are essentially an absorber of atmospheric NH(3); however, they turn into an emitter of NH(3) under excess nutrition of ammoniacal nitrogen.
Snider, Kaitlin H.; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E.; Hoyt, Kari; Obrietan, Karl
2017-01-01
A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. PMID:27091299
Horger, Marius; Fallier-Becker, Petra; Thaiss, Wolfgang M; Sauter, Alexander; Bösmüller, Hans; Martella, Manuela; Preibsch, Heike; Fritz, Jan; Nikolaou, Konstantin; Kloth, Christopher
2018-05-03
This study aimed to test the hypothesis that ultrastructural wall abnormalities of lymphoma vessels correlate with perfusion computed tomography (PCT) kinetics. Our local institutional review board approved this prospective study. Between February 2013 and June 2016, we included 23 consecutive subjects with newly diagnosed lymphoma, who were referred for computed tomography-guided biopsy (6 women, 17 men; mean age, 60.61 ± 12.43 years; range, 28-74 years) and additionally agreed to undergo PCT of the target lymphoma tissues. PCT was obtained for 40 seconds using 80 kV, 120 mAs, 64 × 0.6-mm collimation, 6.9-cm z-axis coverage, and 26 volume measurements. Mean and maximum k-trans (mL/100 mL/min), blood flow (BF; mL/100 mL/min) and blood volume (BV) were quantified using the deconvolution and the maximum slope + Patlak calculation models. Immunohistochemical staining was performed for microvessel density quantification (vessels/m 2 ), and electron microscopy was used to determine the presence or absence of tight junctions, endothelial fenestration, basement membrane, and pericytes, and to measure extracellular matrix thickness. Extracellular matrix thickness as well as the presence or absence of tight junctions, basal lamina, and pericytes did not correlate with computed tomography perfusion parameters. Endothelial fenestrations correlated significantly with mean BF deconvolution (P = .047, r = 0.418) and additionally was significantly associated with higher mean BV deconvolution (P < .005). Mean k-trans Patlak correlated strongly with mean k-trans deconvolution (r = 0.939, P = .001), and both correlated with mean BF deconvolution (P = .001, r = 0.748), max BF deconvolution (P = .028, r = 0.564), mean BV deconvolution (P = .001, r = 0.752), and max BV deconvolution (P = .001, r = 0.771). Microvessel density correlated with max k-trans deconvolution (r = 0.564, P = .023). Vascular endothelial growth factor receptor-3 expression (receptor specific for lymphatics) correlated significantly with max k-trans Patlak (P = .041, r = 0.686) and mean BF deconvolution (P = .038, r = 0.695). k-Trans values of PCT do not correlate with ultrastructural microvessel features, whereas endothelial fenestrations correlate with increased intra-tumoral BVs. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Hamaguchi, Kosuke; Mooney, Richard
2012-01-01
Complex brain functions, such as the capacity to learn and modulate vocal sequences, depend on activity propagation in highly distributed neural networks. To explore the synaptic basis of activity propagation in such networks, we made dual in vivo intracellular recordings in anesthetized zebra finches from the input (nucleus HVC) and output (lateral magnocellular nucleus of the anterior nidopallium (LMAN)) neurons of a songbird cortico-basal ganglia (BG) pathway necessary to the learning and modulation of vocal motor sequences. These recordings reveal evidence of bidirectional interactions, rather than only feedforward propagation of activity from HVC to LMAN, as had been previously supposed. A combination of dual and triple recording configurations and pharmacological manipulations was used to map out circuitry by which activity propagates from LMAN to HVC. These experiments indicate that activity travels to HVC through at least two independent ipsilateral pathways, one of which involves fast signaling through a midbrain dopaminergic cell group, reminiscent of recurrent mesocortical loops described in mammals. We then used in vivo pharmacological manipulations to establish that augmented LMAN activity is sufficient to restore high levels of sequence variability in adult birds, suggesting that recurrent interactions through highly distributed forebrain – midbrain pathways can modulate learned vocal sequences. PMID:22915110
Kurz, Jonathan E; Parsons, J Travis; Rana, Aniruddha; Gibson, Cynthia J; Hamm, Robert J; Churn, Severn B
2005-04-01
Calcineurin, a neuronally enriched, calcium-stimulated phosphatase, is an important modulator of many neuronal processes, including several that are physiologically related to the pathology of traumatic brain injury. This study examined the effects of moderate, central fluid percussion injury on the activity of this important neuronal enzyme. Animals were sacrificed at several time-points postinjury and cortical, hippocampal, and cerebellar homogenates were assayed for calcineurin activity by dephosphorylation of p-nitrophenol phosphate. A significant brain injury-dependent increase was observed in both hippocampal and cortical homogenates under both basal and maximally-stimulated reaction conditions. This increase persisted 2-3 weeks post-injury. Brain injury did not alter substrate affinity, but did induce a significant increase in the apparent maximal dephosphorylation rate. Unlike the other brain regions, no change in calcineurin activity was observed in the cerebellum following brain injury. No brain region tested displayed a significant change in calcineurin enzyme levels as determined by Western blot, demonstrating that increased enzyme synthesis was not responsible for the observed increase in activity. The data support the conclusion that fluid percussion injury results in increased calcineurin activity in the rat forebrain. This increased activity has broad physiological implications, possibly resulting in altered cellular excitability or a greater likelihood of neuronal cell death.
Tseng, Kuei Y; Kargieman, Lucila; Gacio, Sebastian; Riquelme, Luis A; Murer, M Gustavo
2005-11-01
Severe chronic dopamine (DA) depletion increases the proportion of neurons in the basal ganglia that fire rhythmic bursts of action potential (LFO units) synchronously with the cortical oscillations. Here we report on how different levels of mesencephalic DA denervation affect substantia nigra pars reticulata (SNpr) neuronal activity in the rat and its relationship to akinesia (stepping test). Chronic nigrostriatal lesion induced with 0 (control group), 4, 6 or 8 microg of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle resulted in a dose-dependent decrease of tyrosine hydroxylase positive (TH+) neurons in the SN and ventral tegmental area (VTA). Although 4 microg of 6-OHDA reduced the number of TH+ neurons in the SN by approximately 60%, both stepping test performance and SNpr neuronal activity remained indistinguishable from control animals. By contrast, animals that received 6 microg of 6-OHDA showed a marked reduction of TH+ cells in the SN ( approximately 75%) and VTA ( approximately 55%), a significant stepping test deficit and an increased proportion of LFO units. These changes were not dramatically enhanced with 8 microg 6-OHDA, a dose that induced an extensive DA lesion (> 95%) in the SN and approximately 70% reduction of DA neurons in the VTA. These results suggest a threshold level of DA denervation for both the appearance of motor deficits and LFO units. Thus, the presence of LFO activity in the SNpr is not related to a complete nigrostriatal DA neuron depletion (ultimate stage parkinsonism); instead, it may reflect a functional disruption of cortico-basal ganglia dynamics associated with clinically relevant stages of the disease.
Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl
2016-07-15
A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. Copyright © 2016 Elsevier B.V. All rights reserved.
Esco, Michael R; Nickerson, Brett S; Bicard, Sara C; Russell, Angela R; Bishop, Phillip A
2016-01-01
The purpose of this investigation was to evaluate measurements of body-fat percentage (BF%) in 4 body-mass-index- (BMI) -based equations and dual-energy X-ray absorptiometry (DXA) in individuals with Down syndrome (DS). Ten male and 10 female adults with DS volunteered for this study. Four regression equations for estimating BF% based on BMI previously developed by Deurenberg et al. (DE(BMI-BF%)), Gallagher et al. (GA(BMI-BF%)), Womersley & Durnin (WO(BMI-BF%)), and Jackson et al. (JA(BMI-BF%)) were compared with DXA. There was no significant difference (p = .659) in mean BF% values between JA(BMI-BF%) (BF% = 40.80% ± 6.3%) and DXA (39.90% ± 11.1%), while DE(BMI-BF%) (34.40% ± 9.0%), WO(BMI-BF%) (35.10% ± 9.4%), and GA(BMI-BF%) (35.10% ± 9.4%) were significantly (p < .001) lower. The limits of agreement (1.96 SD of the constant error) varied from 9.80% to 16.20%. Therefore, BMI-based BF% equations should not be used in individuals with DS.
Koda, M; Ando, F; Niino, N; Tsuzuku, S; Shimokata, H
2000-04-01
Air displacement plethysmography (ADP) is a method for the determining percent body fat (%BF) using the two-compartment model, in which the body is partitioned into body-fat mass and fat-free mass (FFM). Although this model assumes a constant density of FFM as 1.10 g/ml, its density may depend upon the bone mineral content (BMC) and total body water (TBW) which vary with age, gender, and race/ethnicity. This study compared %BF determined from ADP (ADP%BF) with %BF obtained by dual-energy x-ray absorptiometry (DXA%BF), and also investigated the effects of BMC, TBW, and other factors on its value. The subjects were 721 female and male Japanese aged 40 to 79 years. Body density was measured by ADP and %BF was calculated using Brozek et al's equation. BMC and body-fat volume were measured using DXA, and TBW was measured by multifrequency bioelectrical impedance. A series of anthropometric measurements was taken. Although ADP%BF was highly correlated with DXA%BF (female: r = 0.89, male: r = 0.90) (p < 0.001), ADP%BF differed significantly from DXA%BF (female: -1.30 +/- 0.14% (mean +/- s.e.m.), male: 1.22 +/- 0.13%) (p < 0.001). The difference in %BF (ADP%BF-DXA%BF) was negatively associated with BMC/FFM but not with TBW/FFM in both genders. The difference in %BF was also positively correlated with waist circumference. Considering previous studies, this result may be explained by the underestimation of DXA%BF, rather than by the overestimation of ADP%BF. In conclusion, ADP may be a useful method to measure %BF. However, BMC should be taken into consideration. Furthermore, DXA%BF may be underestimated in people with large waists.
Dervis, Sheila; Coombs, Geoff B.; Chaseling, Georgia K.; Filingeri, Davide; Smoljanic, Jovana
2015-01-01
We sought to determine 1) the influence of adiposity on thermoregulatory responses independently of the confounding biophysical factors of body mass and metabolic heat production (Hprod); and 2) whether differences in adiposity should be accounted for by prescribing an exercise intensity eliciting a fixed Hprod per kilogram of lean body mass (LBM). Nine low (LO-BF) and nine high (HI-BF) body fat males matched in pairs for total body mass (TBM; LO-BF: 88.7 ± 8.4 kg, HI-BF: 90.1 ± 7.9 kg; P = 0.72), but with distinctly different percentage body fat (%BF; LO-BF: 10.8 ± 3.6%; HI-BF: 32.0 ± 5.6%; P < 0.001), cycled for 60 min at 28.1 ± 0.2°C, 26 ± 8% relative humidity (RH), at a target Hprod of 1) 550 W (FHP trial) and 2) 7.5 W/kg LBM (LBM trial). Changes in rectal temperature (ΔTre) and local sweat rate (LSR) were measured continuously while whole body sweat loss (WBSL) and net heat loss (Hloss) were estimated over 60 min. In the FHP trial, ΔTre (LO-BF: 0.66 ± 0.21°C, HI-BF: 0.87 ± 0.18°C; P = 0.02) was greater in HI-BF, whereas mean LSR (LO-BF 0.52 ± 0.19, HI-BF 0.43 ± 0.15 mg·cm−2·min−1; P = 0.19), WBSL (LO-BF 586 ± 82 ml, HI-BF 559 ± 75 ml; P = 0.47) and Hloss (LO-BF 1,867 ± 208 kJ, HI-BF 1,826 ± 224 kJ; P = 0.69) were all similar. In the LBM trial, ΔTre (LO-BF 0.82 ± 0.18°C, HI-BF 0.54 ± 0.19°C; P < 0.001), mean LSR (LO-BF 0.59 ± 0.20, HI-BF 0.38 ± 0.12 mg·cm−2·min−1; P = 0.04), WBSL (LO-BF 580 ± 106 ml, HI-BF 381 ± 68 ml; P < 0.001), and Hloss (LO-BF 1,884 ± 277 kJ, HI-BF 1,341 ± 184 kJ; P < 0.001) were all greater at end-exercise in LO-BF. In conclusion, high %BF individuals demonstrate a greater ΔTre independently of differences in mass and Hprod, possibly due to a lower mean specific heat capacity or impaired sudomotor control. However, thermoregulatory responses of groups with different adiposity levels should not be compared using a fixed Hprod in watts per kilogram lean body mass. PMID:26702025
Dervis, Sheila; Coombs, Geoff B; Chaseling, Georgia K; Filingeri, Davide; Smoljanic, Jovana; Jay, Ollie
2016-03-15
We sought to determine 1) the influence of adiposity on thermoregulatory responses independently of the confounding biophysical factors of body mass and metabolic heat production (Hprod); and 2) whether differences in adiposity should be accounted for by prescribing an exercise intensity eliciting a fixed Hprod per kilogram of lean body mass (LBM). Nine low (LO-BF) and nine high (HI-BF) body fat males matched in pairs for total body mass (TBM; LO-BF: 88.7 ± 8.4 kg, HI-BF: 90.1 ± 7.9 kg; P = 0.72), but with distinctly different percentage body fat (%BF; LO-BF: 10.8 ± 3.6%; HI-BF: 32.0 ± 5.6%; P < 0.001), cycled for 60 min at 28.1 ± 0.2 °C, 26 ± 8% relative humidity (RH), at a target Hprod of 1) 550 W (FHP trial) and 2) 7.5 W/kg LBM (LBM trial). Changes in rectal temperature (ΔTre) and local sweat rate (LSR) were measured continuously while whole body sweat loss (WBSL) and net heat loss (Hloss) were estimated over 60 min. In the FHP trial, ΔTre (LO-BF: 0.66 ± 0.21 °C, HI-BF: 0.87 ± 0.18 °C; P = 0.02) was greater in HI-BF, whereas mean LSR (LO-BF 0.52 ± 0.19, HI-BF 0.43 ± 0.15 mg·cm(-2)·min(-1); P = 0.19), WBSL (LO-BF 586 ± 82 ml, HI-BF 559 ± 75 ml; P = 0.47) and Hloss (LO-BF 1,867 ± 208 kJ, HI-BF 1,826 ± 224 kJ; P = 0.69) were all similar. In the LBM trial, ΔTre (LO-BF 0.82 ± 0.18 °C, HI-BF 0.54 ± 0.19 °C; P < 0.001), mean LSR (LO-BF 0.59 ± 0.20, HI-BF 0.38 ± 0.12 mg·cm(-2)·min(-1); P = 0.04), WBSL (LO-BF 580 ± 106 ml, HI-BF 381 ± 68 ml; P < 0.001), and Hloss (LO-BF 1,884 ± 277 kJ, HI-BF 1,341 ± 184 kJ; P < 0.001) were all greater at end-exercise in LO-BF. In conclusion, high %BF individuals demonstrate a greater ΔTre independently of differences in mass and Hprod, possibly due to a lower mean specific heat capacity or impaired sudomotor control. However, thermoregulatory responses of groups with different adiposity levels should not be compared using a fixed Hprod in watts per kilogram lean body mass. Copyright © 2016 the American Physiological Society.
Genomic Perspectives of Transcriptional Regulation in Forebrain Development
Nord, Alex S.; Pattabiraman, Kartik; Visel, Axel; ...
2015-01-07
The forebrain is the seat of higher-order brain functions, and many human neuropsychiatric disorders are due to genetic defects affecting forebrain development, making it imperative to understand the underlying genetic circuitry. We report that recent progress now makes it possible to begin fully elucidating the genomic regulatory mechanisms that control forebrain gene expression. Here, we discuss the current knowledge of how transcription factors drive gene expression programs through their interactions with cis-acting genomic elements, such as enhancers; how analyses of chromatin and DNA modifications provide insights into gene expression states; and how these approaches yield insights into the evolution ofmore » the human brain.« less
Kharche, Sanjay R.; So, Aaron; Salerno, Fabio; Lee, Ting-Yim; Ellis, Chris; Goldman, Daniel; McIntyre, Christopher W.
2018-01-01
Dialysis prolongs life but augments cardiovascular mortality. Imaging data suggests that dialysis increases myocardial blood flow (BF) heterogeneity, but its causes remain poorly understood. A biophysical model of human coronary vasculature was used to explain the imaging observations, and highlight causes of coronary BF heterogeneity. Post-dialysis CT images from patients under control, pharmacological stress (adenosine), therapy (cooled dialysate), and adenosine and cooled dialysate conditions were obtained. The data presented disparate phenotypes. To dissect vascular mechanisms, a 3D human vasculature model based on known experimental coronary morphometry and a space filling algorithm was implemented. Steady state simulations were performed to investigate the effects of altered aortic pressure and blood vessel diameters on myocardial BF heterogeneity. Imaging showed that stress and therapy potentially increased mean and total BF, while reducing heterogeneity. BF histograms of one patient showed multi-modality. Using the model, it was found that total coronary BF increased as coronary perfusion pressure was increased. BF heterogeneity was differentially affected by large or small vessel blocking. BF heterogeneity was found to be inversely related to small blood vessel diameters. Simulation of large artery stenosis indicates that BF became heterogeneous (increase relative dispersion) and gave multi-modal histograms. The total transmural BF as well as transmural BF heterogeneity reduced due to large artery stenosis, generating large patches of very low BF regions downstream. Blocking of arteries at various orders showed that blocking larger arteries results in multi-modal BF histograms and large patches of low BF, whereas smaller artery blocking results in augmented relative dispersion and fractal dimension. Transmural heterogeneity was also affected. Finally, the effects of augmented aortic pressure in the presence of blood vessel blocking shows differential effects on BF heterogeneity as well as transmural BF. Improved aortic blood pressure may improve total BF. Stress and therapy may be effective if they dilate small vessels. A potential cause for the observed complex BF distributions (multi-modal BF histograms) may indicate existing large vessel stenosis. The intuitive BF heterogeneity methods used can be readily used in clinical studies. Further development of the model and methods will permit personalized assessment of patient BF status. PMID:29867555
Ramírez-Vélez, Robinson; Correa-Bautista, Jorge Enrique; González-Ruíz, Katherine; Tordecilla-Sanders, Alejandra; García-Hermoso, Antonio; Schmidt-RioValle, Jacqueline; González-Jiménez, Emilio
2017-09-21
The aim of this study is to investigate the accuracy of body adiposity index (BAI) as a convenient tool for assessing body fat percentage (BF%) in a sample of adults with overweight/obesity using bioelectrical impedance analysis (BIA). The study population was composed of 96 volunteers (60% female, mean age 40.6 ± 7.5 years old). Anthropometric characteristics (body mass index, height, waist-to-height ratio, hip and waist circumference), socioeconomic status, and diet were assessed, and BF% was measured by BIA-BF% and by BAI-BF%. Pearson's correlation coefficient was used to evaluate the correlation between BAI-BF% and BF% assessed by BIA-BF%, while controlling for potential confounders. The concordance between the BF% measured by both methods was obtained with a paired sample t -test, Lin's concordance correlation coefficient, and Bland-Altman plot analysis. Overall, the correlation between BF% obtained by BIA-BF% and estimated by BAI-BF% was r = 0.885, p < 0.001, after adjusting for potential confounders (age, socioeconomic status, and diet). Lin's concordance correlation coefficient was moderate in both sexes. In the men, the paired t-test showed a significant mean difference in BF% between the methods (-5.6 (95%CI -6.4 to -4.8); p < 0.001). In the women, these differences were (-3.6 (95%CI -4.7 to -2.5); p < 0.001). Overall, the bias of the BAI-BF% was -4.8 ± 3.2 BF%; p < 0.001), indicating that the BAI-BF% method significantly underestimated the BF% in comparison with the reference method. In adults with overweight/obesity, the BAI presents low agreement with BF% measured by BIA-BF%; therefore, we conclude that BIA-BF% is not accurate in either sex when body fat percentage levels are low or high. Further studies are necessary to confirm our findings in different ethnic groups.
González-Ruíz, Katherine; Schmidt-RioValle, Jacqueline
2017-01-01
The aim of this study is to investigate the accuracy of body adiposity index (BAI) as a convenient tool for assessing body fat percentage (BF%) in a sample of adults with overweight/obesity using bioelectrical impedance analysis (BIA). The study population was composed of 96 volunteers (60% female, mean age 40.6 ± 7.5 years old). Anthropometric characteristics (body mass index, height, waist-to-height ratio, hip and waist circumference), socioeconomic status, and diet were assessed, and BF% was measured by BIA-BF% and by BAI-BF%. Pearson’s correlation coefficient was used to evaluate the correlation between BAI-BF% and BF% assessed by BIA-BF%, while controlling for potential confounders. The concordance between the BF% measured by both methods was obtained with a paired sample t-test, Lin’s concordance correlation coefficient, and Bland-Altman plot analysis. Overall, the correlation between BF% obtained by BIA-BF% and estimated by BAI-BF% was r = 0.885, p < 0.001, after adjusting for potential confounders (age, socioeconomic status, and diet). Lin’s concordance correlation coefficient was moderate in both sexes. In the men, the paired t-test showed a significant mean difference in BF% between the methods (−5.6 (95% CI −6.4 to −4.8); p < 0.001). In the women, these differences were (−3.6 (95% CI −4.7 to −2.5); p < 0.001). Overall, the bias of the BAI-BF% was −4.8 ± 3.2 BF%; p < 0.001), indicating that the BAI-BF% method significantly underestimated the BF% in comparison with the reference method. In adults with overweight/obesity, the BAI presents low agreement with BF% measured by BIA-BF%; therefore, we conclude that BIA-BF% is not accurate in either sex when body fat percentage levels are low or high. Further studies are necessary to confirm our findings in different ethnic groups. PMID:28934175
Höller, Yvonne; Storti, Monica; Christova, Monica; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen
2013-01-01
Nutritional deficiency can cause, mainly in chronic alcoholic subjects, the Wernicke encephalopathy and its chronic neurological sequela, the Wernicke-Korsakoff syndrome (WKS). Long-term chronic ethanol abuse results in hippocampal and cortical cell loss. Thiamine deficiency also alters principally hippocampal- and frontal cortical-dependent neurochemistry; moreover in WKS patients, important pathological damage to the diencephalon can occur. In fact, the amnesic syndrome typical for WKS is mainly due to the damage in the diencephalic-hippocampal circuitry, including thalamic nuclei and mammillary bodies. The loss of cholinergic cells in the basal forebrain region results in decreased cholinergic input to the hippocampus and the cortex and reduced choline acetyltransferase and acetylcholinesterase activities and function, as well as in acetylcholine receptor downregulation within these brain regions. In this narrative review, we will focus on the neurochemical, neuroanatomical, and neuropsychological studies shedding light on the effects of thiamine deficiency in experimental models and in humans. PMID:24235882
Takata, Norio; Nagai, Terumi; Ozawa, Katsuya; Oe, Yuki; Mikoshiba, Katsuhiko; Hirase, Hajime
2013-01-01
We report that a brief electrical stimulation of the nucleus basalis of Meynert (NBM), the primary source of cholinergic projection to the cerebral cortex, induces a biphasic cerebral cortical blood flow (CBF) response in the somatosensory cortex of C57BL/6J mice. This CBF response, measured by laser Doppler flowmetry, was attenuated by the muscarinic type acetylcholine receptor antagonist atropine, suggesting a possible involvement of astrocytes in this type of CBF modulation. However, we find that IP3R2 knockout mice, which lack cytosolic Ca2+ surges in astrocytes, show similar CBF changes. Moreover, whisker stimulation resulted in similar degrees of CBF increase in IP3R2 knockout mice and the background strain C57BL/6J. Our results show that neural activity-driven CBF modulation could occur without large cytosolic increases of Ca2+ in astrocytes.
Beedessee, Girish; Ramanjooloo, Avin; Surnam-Boodhun, Rashmee; van Soest, Rob W M; Marie, Daniel E P
2013-03-01
Patients diagnosed with Alzheimer's disease (AD) show a characteristic neurochemical deficit of acetylcholine, especially in the basal forebrains. The use of acetylcholinesterase (AChE) inhibitors to retard the hydrolysis of acetylcholine has been suggested as a promising strategy for AD treatment. In this study, we evaluated the acetylcholinesterase inhibitory (AChEI) activities of 134 extracts obtained from 45 species of marine sponges. Thin-layer chromatography (TLC) and microplate assays reveal potent acetylcholinsterase inhibitory activities of two AcOEt extracts from the sponges Pericharax heteroraphis and Amphimedon navalis PULITZER-FINALI. We further investigated the inhibitory kinetics of the extracts and found them to display mixed competitive/noncompetitive inhibition and associated their inhibitory activity partly to terpenoids. Acetylcholinesterase inhibitors from marine organisms have been rarely studied, and this study demonstrated the potential of marine sponges as a source of pharmaceutical leads against neurodegenerative diseases. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.
Hamasu, Kousuke; Shigemi, Kazutaka; Kabuki, Yusuke; Tomonaga, Shozo; Denbow, D Michael; Furuse, Mitsuhiro
2009-08-21
Using microdialysis, we investigated the effect of l-proline on monoamine release in the medio-rostral neostriatum/hyperstriatum ventrale (MNH) of freely moving and restricted chicks. A 30 min handling-stress resulted in a significant increase in extracellular homovallinic acid (HVA), a dopamine metabolite, and 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, in the MNH. l-Proline, perfused through the microdialysis probe into the MNH during the stressed condition, significantly attenuated the average dialysate concentration of HVA produced by handling-stress. Handling-stress resulted in a significant increase in 5-HIAA levels in the control group, which were attenuated by profusion with l-proline. l-Proline did not significantly modify basal concentrations of HVA or 5-HIAA in the MNH during control conditions. These results show that perfusion of l-proline modified the turnover/metabolism of dopamine and serotonin in the MNH caused by handling-stress.
Emergent processes in cognitive-emotional interactions
Pessoa, Luiz
2010-01-01
Emotion and cognition have been viewed as largely separate entities in the brain. Within this framework, significant progress has been made in understanding specific aspects of behavior. Research in the past two decades, however, has started to paint a different picture of brain organization, one in which network interactions are key to understanding complex behaviors. From both basic and clinical perspectives, the characterization of cognitive-emotional interactions constitutes a fundamental issue in the investigation of the mind and brain. This review will highlight the interactive and integrative potential that exists in the brain to bring together the cognitive and emotional domains. First, anatomical evidence will be provided, focusing on structures such as hypothalamus, basal forebrain, amygdala, cingulate cortex, orbitofrontal cortex, and insula. Data on functional interactions will then be discussed, followed by a discussion of a dual competition framework, which describes cognitive-emotional interactions in terms of perceptual and cognitive competition mechanisms. PMID:21319489
Sarter, Martin
2007-02-01
Previous views on the cognitive functions of the basal forebrain cholinergic system often suggested that this neuromodulator system influences fundamental attentional processes but not learning. The results from an elegant series of studies by J. M. Maddux, E. C. Kerfoot, S. Chatterjee, and P. Holland reveal the intricate relationships between the levels of attentional processing of stimuli and the rate of learning about such stimuli. Moreover, their results indicate a double dissociation between the role of prefrontal and posterior parietal cholinergic inputs, respectively, in attentional performance and the learning rate of stimuli that command different levels of attentional processing. Separate yet interacting components of the cortical cholinergic input system modulate the attentional processing of cues that guide well-practiced performance or that serve as conditioned stimuli during learning. Copyright (c) 2007 APA, all rights reserved.
Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia.
Román, Gustavo C; Kalaria, Raj N
2006-12-01
Alzheimer's disease (AD) and vascular dementia (VaD) are widely accepted as the most common forms of dementia. Cerebrovascular lesions frequently coexist with AD, creating an overlap in the clinical and pathological features of VaD and AD. This review assembles evidence for a role for cholinergic mechanisms in the pathogenesis of VaD, as has been established for AD. We first consider the anatomy and vascularization of the basal forebrain cholinergic neuronal system, emphasizing its susceptibility to the effects of arterial hypertension, sustained hypoperfusion, and ischemic cerebrovascular disease. The impact of aging and consequences of disruption of the cholinergic system in cognition and in control of cerebral blood flow are further discussed. We also summarize preclinical and clinical evidence supporting cholinergic deficits and the use of cholinesterase inhibitors in patients with VaD. We postulate that vascular pathology likely plays a common role in initiating cholinergic neuronal abnormalities in VaD and AD.
Decreased subcortical cholinergic arousal in focal seizures
Motelow, Joshua E.; Li, Wei; Zhan, Qiong; Mishra, Asht M.; Sachdev, Robert N. S.; Liu, Geoffrey; Gummadavelli, Abhijeet; Zayyad, Zaina; Lee, Hyun Seung; Chu, Victoria; Andrews, John P.; Englot, Dario J.; Herman, Peter; Sanganahalli, Basavaraju G.; Hyder, Fahmeed; Blumenfeld, Hal
2015-01-01
SUMMARY Impaired consciousness in temporal lobe seizures has a major negative impact on quality of life. The prevailing view holds that this disorder impairs consciousness by seizure spread to the bilateral temporal lobes. We propose instead that seizures invade subcortical regions and depress arousal, causing impairment through decreases rather than through increases in activity. Using functional magnetic resonance imaging in a rodent model, we found increased activity in regions known to depress cortical function including lateral septum and anterior hypothalamus. Importantly, we found suppression of intralaminar thalamic and brainstem arousal systems and suppression of the cortex. At a cellular level, we found reduced firing of identified cholinergic neurons in the brainstem pedunculopontine tegmental nucleus and basal forebrain. Finally, we used enzyme-based amperometry to demonstrate reduced cholinergic neurotransmission in both cortex and thalamus. Decreased subcortical arousal is a novel mechanism for loss of consciousness in focal temporal lobe seizures. PMID:25654258
Choi, Doo-Sup; Wang, Dan; Dadgar, Jahan; Chang, Wesley S; Messing, Robert O
2002-11-15
Conventional gene targeting is a powerful tool to study the influence of specific genes on behavior. However, conclusions relevant for adult animals are limited by consequences of gene loss during development. Mice lacking protein kinase C epsilon (PKCepsilon) consume less alcohol and show greater acute sensitivity to alcohol than do wild-type mice. There are no selective inhibitors of PKCepsilon that can be administered systemically and cross the blood-brain barrier to test whether these phenotypes result from loss of PKCepsilon during development or in adulthood. Here we used conditional expression of PKCepsilon in the basal forebrain, amygdala, and cerebellum to rescue wild-type responses to alcohol in adult PKCepsilon(-/-) mice. Subsequent suppression of transgenic PKCepsilon restored PKCepsilon(-/-) behaviors. These findings establish that PKCepsilon signaling in the adult brain regulates alcohol consumption and sensitivity. If this extends to humans, then PKCepsilon inhibitors might prove useful as novel therapeutics for alcoholism.
Marco Antonio, Garzón-Zúñiga; Angélica Julieta, Alvillo-Rivera; Esperanza, Ramírez Camperos; Gerardo, Buelna; Gerardo, Díaz-Godínez; Edson Baltazar, Estrada-Arriaga
2018-03-01
This study was focused on the application of an aerobic biofiltration (BF) with Ficus benjamina wood chips as support medium, inoculated with two basidiomycete fungi, Phanerochaete chrysosporium (BF 1) and Trametes versicolor (BF 2), to treat Tequila vinasses from a Tequila industry. The biofiltration system was compared with a biofilter system without basidiomycete fungi (BF W), in order to determine the influence of fungi on the treatment of vinasses. Three different vinasses/water ratios (30/70, 40/60, and 50/50) were evaluated. The maximum removals of chemical oxygen demand (COD) obtained during each operation step were 72% (BF 1), 72% (BF 2), and 8% (BF W) for 30 vinasses/70 water; 72% (BF 1), 73% (BF 2), and 66% (BF W) for 40 vinasses/60 water; and 22% (BF 1), 20% (BF 2), and 18% (BF W) for 50 vinasses/50 water. The total organic carbon (TOC) removal was significantly increased using a volumetric organic load of 5.5 kg COD m -3 d -1 . During the operation of the biofilters, the enzymatic activity of laccase was present, even at the step of highest concentration of vinasses.
Steady- and transient-state H2S biofiltration using expanded schist as packing material.
Romero Hernandez, A C; Rodríguez Susa, M S; Andrès, Y; Dumont, E
2013-01-25
The performances of three laboratory-scale biofilters (BF1, BF2, BF3) packed with expanded schist for H(2)S removal were studied at different empty bed residence times (EBRT=35, 24 and 16s) in terms of elimination capacity (EC) and removal efficiency (RE). BF1 and BF2 were filled with expanded schist while BF3 was filled with both expanded schist and a nutritional material (UP20; 12% vol). BF1 and BF3 were inoculated with activated sludge, whereas BF2 was not inoculated. A maximum EC of 42 g m(-3) h(-1) was recorded for BF3 at EBRT=35 s demonstrating the ability of schist to treat high H(2)S loading rates, and the ability of UP20 to improve H(2)S removal. Michaelis-Menten and Haldane models were fitted to the experimental elimination capacities while biofilter responses to transient-state conditions in terms of removal efficiency during shock load events were also evaluated for BF1 and BF3. Copyright © 2012 Elsevier B.V. All rights reserved.
Lin, Jin; Lü, Renqing; Wu, Chongchong; Xiao, Ye; Liang, Fei; Famakinwa, Temilola
2017-04-01
The interactions between dibenzothiophene (DBT) and N-butyl-N-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), N-butyl-N-methylmorpholinium tetrafluoroborate ([Bmmorpholinium][BF 4 ]), N-butyl-N-methylpiperdinium tetrafluoroborate ([BMPiper][BF 4 ]), N-butyl-N-methylpyrrolidinium tetrafluoroborate ([BMPyrro][BF 4 ]), and N-butylpyridinium tetrafluoroborate ([BPY][BF 4 ]) were investigated using density functional theory approach. Geometric, electron, and topological properties were analyzed using natural bond orbital, atoms in molecules theory, and noncovalent interaction methods in order to understand intermolecular interactions between DBT and ionic liquids. The result shows that hydrogen bond and van der Waals interactions are widespread in all the ionic liquids-DBT systems. Ion-π interactions between DBT and cation or anion are also observed, while π + -π interactions are only found in the [BMIM][BF 4 ]-DBT and [BPY][BF 4 ]-DBT systems. The order of interaction energy is [BPY][BF4]-DBT > [BMIM][BF 4 ]-DBT > [BMPiper][BF 4 ]-DBT > [BMPyrro][BF 4 ]-DBT > [BMmorpholinum][BF 4 ]-DBT. The energies between DBT and the two ionic liquids containing aromatic cations are significantly higher.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happe, J.A.; Morgan, R.J.; Walkup, C.M.
The chemical composition of commercial BF/sub 3/:amine complexes are variable and contain BF/sub 4//sup -/ and BF/sub 3/(OH)/sup -/ salts together with other unidentified highly reactive species. The BF/sub 3/:amine complexes, which are susceptible to hydrolysis, also partially convert to the BF/sub 4//sup -/ salt (i.e. BF/sub 4//sup -/NH/sub 3//sup +/C/sub 2/H/sub 5/) upon heating. This salt formation is accelerated in dimethyl sulfoxide solution and in the presence of the epoxides that are present in commercial prepregs. Commercial C fiber-epoxy prepregs are shown to contain either BF/sub 3/:NH/sub 2/C/sub 2/H/sub 5/ or BF/sub 3/:NHC/sub 5/H/sub 10/ species together with theirmore » BF/sub 4//sup -/ salts and a variety of boron-fluorine or carbon-fluorine prepreg species. Considerable variation in the relative quantities of BF/sub 3/:amine to its BF/sub 4//sup -/ salt was observed from prepreg lot to lot, which will cause variable viscosity-time-temperature prepreg cure profiles. It is concluded that the chemically stable and mobile BF/sub 4//sup -/ salt is the pre-dominant catalytic species, acting as a cationic catalyst for the prepreg cure reactions. During the early stages of cure the BF/sub 3/:amine catalyst converts to the BF/sub 4//sup -/ salt in the presence of epoxides, whereas the BF/sub 3/-prepreg species are susceptible to catalytic deactivation and immobilization.« less
Pimenta, N M; Santa-Clara, H; Cortez-Pinto, H; Silva-Nunes, J; da Lapa Rosado, M; Sousa, P J; Calé, R; Melo, X; Sardinha, L B; Fernhall, B
2014-02-01
Heart rate recovery (HRR), a cardiac autonomic control marker, was shown to be related to body composition (BC), yet this was not tested in non-alcoholic fatty liver disease (NAFLD) patients. The aim of this study was to determine if, and to what extent, markers of BC and body fat (BF) distribution are related to cardiac autonomic control in NAFLD patients. BC was assessed with dual-energy X-ray absorptiometry in 28 NAFLD patients (19 men, 51±13 years, and 9 women, 47±13 years). BF depots ratios were calculated to assess BF distribution. Subjects' HRR was recorded 1 (HRR1) and 2 min (HRR2) immediately after a maximum graded exercise test. BC and BF distribution were related to HRR; particularly weight, trunk BF and trunk BF-to-appendicular BF ratio showed a negative relation with HRR1 (r=-0.613, r=-0.597 and r=-0.547, respectively, P<0.01) and HRR2 (r=-0.484, r=-0.446, P<0.05, and r=-0.590, P<0.01, respectively). Age seems to be related to both HRR1 and HRR2 except when controlled for BF distribution. The preferred model in multiple regression should include trunk BF-to-appendicular BF ratio and BF to predict HRR1 (r2=0.549; P<0.05), and trunk BF-to-appendicular BF ratio alone to predict HRR2 (r2=0.430; P<0.001). BC and BF distribution were related to HRR in NAFLD patients. Trunk BF-to-appendicular BF ratio was the best independent predictor of HRR and therefore may be best related to cardiovascular increased risk, and possibly act as a mediator in age-related cardiac autonomic control variation.
Weisfeld, Lori; Shu, Youyi; Shah, Tushar P
2015-07-01
Budesonide formoterol (BF) Spiromax® is a breath-actuated dry-powder inhaler designed to deliver similar combinations of budesonide and formoterol as Symbicort® Turbohaler®. We performed two studies to demonstrate pharmacokinetic (PK) equivalence of BF Spiromax with BF Turbohaler. Two single-center, open-label, randomized, 5-period crossover studies were performed. The first study compared BF Spiromax 160/4.5 μg with BF Turbohaler 200/6 μg, while the second study compared BF Spiromax 320/9 μg with BF Turbohaler 400/12 μg. All treatments were administered with and without charcoal. PK parameters were calculated by measuring plasma drug concentrations from blood samples taken pre-dose and up to 24 hours post-dose. In each study, 90 healthy volunteers were randomized. Bioequivalence of BF Spiromax with BF Turbohaler was demonstrated for budesonide and formoterol (AUC0-t and Cmax (90% confidence intervals of the geometric mean between-device ratios for both parameters were within the predefined range of 0.80-1.25 in both studies)). Equivalence was observed without use of charcoal (overall absorption post-inhalation) and with charcoal (pulmonary absorption). There were no major differences between treatments in tmax for either budesonide or formoterol. All study treatments were well tolerated (one treatment-emergent adverse event (TEAE) in the medium-dose study and four TEAEs in the high-dose study). These studies indicate that BF Spiromax (±charcoal block) is bioequivalent to BF Turbohaler with respect to the PK parameters assessed. Single doses of BF Spiromax were well tolerated; the overall safety profile of BF Spiromax and BF Turbohaler was similar.
Enantioselective disruption of the endocrine system by Cis-Bifenthrin in the male mice.
Jin, Yuanxiang; Wang, Jiangcong; Pan, Xiuhong; Miao, Wenyu; Lin, Xiaojian; Wang, Linggang; Fu, Zhengwei
2015-07-01
Bifenthrin (BF), as a chiral pyrethroid, is widely used to control field and household pests in China. At present, the commercial BF is a mixed compound containing cis isomers (cis-BF) including two enantiomers of 1R-cis-BF and 1S-cis-BF. In the present study, the two individual cis-BF enantiomers were separated by a preparative supercritical fluid chromatography. Then, four week-old adolescent male ICR mice were orally administered 1R-cis-BF and 1S-cis-BF separately daily for 3 weeks at doses of 0, 7.5 and 15 mg/kg/day, respectively. Results showed that the transcription status of some genes involved in cholesterol synthesis and transport as well as testosterone (T) synthesis in the testes were influenced by cis-BF enantiomers. Especially, we observed that the transcription status of key genes on the pathway of T synthesis including cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc) and cytochrome P450 17α-hydroxysteroid dehydrogenase (P45017α)) were selectively altered in the testis of mice when treated with 1S-cis-BF, suggesting that it is the possible reason to explain why the lower serum T concentration in 1S-cis-BF treated group. Taken together, it concluded that both of the cis-BF enantiomers have the endocrine disruption activities, while 1S-cis-BF was higher than 1R-cis-BF in mice when exposed during the puberty. The data was helpful to understand the toxicity of cis-BF in mammals under enantiomeric level. © 2014 Wiley Periodicals, Inc.
Antenatal breastfeeding education for increasing breastfeeding duration
Lumbiganon, Pisake; Martis, Ruth; Laopaiboon, Malinee; Festin, Mario R; Ho, Jacqueline J; Hakimi, Mohammad
2014-01-01
Background Breastfeeding (BF) is well recognised as the best food for infants. The impact of antenatal BF education on the duration of BF has not been evaluated. Objectives To evaluate the effectiveness of antenatal BF education for increasing BF initiation and duration. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (21 April 2010), CENTRAL (The Cochrane Library 2010, Issue 2), MEDLINE (1966 to April 2010) and SCOPUS (January 1985 to April 2010). We contacted experts and searched reference lists of retrieved articles. We updated the search of the Pregnancy and Childbirth Group’s Trials Register on 28 September 2011 and added the results to the awaiting classification section of the review. Selection criteria All identified published, unpublished and ongoing randomised controlled trials (RCTs) assessing the effect of formal antenatal BF education or comparing two different methods of formal antenatal BF education, on duration of BF. We excluded RCTs that also included intrapartum or postpartum BF education. Data collection and analysis We assessed all potential studies identified as a result of the search strategy. Two review authors extracted data from each included study using the agreed form and assessed risk of bias. We resolved discrepancies through discussion. Main results We included 17 studies with 7131 women in the review and 14 studies involving 6932 women contributed data to the analyses. We did not do any meta-analysis because there was only one study for each comparison. Five studies compared a single method of BF education with routine care. Peer counselling significantly increased BF initiation. Three studies compared one form of BF education versus another. No intervention was significantly more effective than another intervention in increasing initiation or duration of BF. Seven studies compared multiple methods versus a single method of BF education. Combined BF educational interventions were not significantly better than a single intervention in initiating or increasing BF duration. However, in one trial a combined BF education significantly reduced nipple pain and trauma. One study compared different combinations of interventions. There was a marginally significant increase in exclusive BF at six months in women receiving a booklet plus video plus lactation consultation (LC) compared with the booklet plus video only. Two studies compared multiple methods of BF education versus routine care. The combination of BF booklet plus video plus LC was significantly better than routine care for exclusive BF at three months. Authors’ conclusions Because there were significant methodological limitations and the observed effect sizes were small, it is not appropriate to recommend any antenatal BF education. There is an urgent need to conduct RCTs study with adequate power to evaluate the effectiveness of antenatal BF education. PMID:22071830
2017-01-01
Abstract While a topographic map of auditory space exists in the vertebrate midbrain, it is absent in the forebrain. Yet, both brain regions are implicated in sound localization. The heterogeneous spatial tuning of adjacent sites in the forebrain compared to the midbrain reflects different underlying circuitries, which is expected to affect the correlation structure, i.e., signal (similarity of tuning) and noise (trial-by-trial variability) correlations. Recent studies have drawn attention to the impact of response correlations on the information readout from a neural population. We thus analyzed the correlation structure in midbrain and forebrain regions of the barn owl’s auditory system. Tetrodes were used to record in the midbrain and two forebrain regions, Field L and the downstream auditory arcopallium (AAr), in anesthetized owls. Nearby neurons in the midbrain showed high signal and noise correlations (RNCs), consistent with shared inputs. As previously reported, Field L was arranged in random clusters of similarly tuned neurons. Interestingly, AAr neurons displayed homogeneous monotonic azimuth tuning, while response variability of nearby neurons was significantly less correlated than the midbrain. Using a decoding approach, we demonstrate that low RNC in AAr restricts the potentially detrimental effect it can have on information, assuming a rate code proposed for mammalian sound localization. This study harnesses the power of correlation structure analysis to investigate the coding of auditory space. Our findings demonstrate distinct correlation structures in the auditory midbrain and forebrain, which would be beneficial for a rate-code framework for sound localization in the nontopographic forebrain representation of auditory space. PMID:28674698
Chen, Kevin; Cases, Olivier; Rebrin, Igor; Wu, Weihua; Gallaher, Timothy K; Seif, Isabelle; Shih, Jean Chen
2007-01-05
Previous studies have established that abrogation of monoamine oxidase (MAO) A expression leads to a neurochemical, morphological, and behavioral specific phenotype with increased levels of serotonin (5-HT), norepinephrine, and dopamine, loss of barrel field structure in mouse somatosensory cortex, and an association with increased aggression in adults. Forebrain-specific MAO A transgenic mice were generated from MAO A knock-out (KO) mice by using the promoter of calcium-dependent kinase IIalpha (CaMKIIalpha). The presence of human MAO A transgene and its expression were verified by PCR of genomic DNA and reverse transcription-PCR of mRNA and Western blot, respectively. Significant MAO A catalytic activity, autoradiographic labeling of 5-HT, and immunocytochemistry of MAO A were found in the frontal cortex, striatum, and hippocampus but not in the cerebellum of the forebrain transgenic mice. Also, compared with MAO A KO mice, lower levels of 5-HT, norepinephrine, and DA and higher levels of MAO A metabolite 5-hydroxyindoleacetic acid were found in the forebrain regions but not in the cerebellum of the transgenic mice. These results suggest that MAO A is specifically expressed in the forebrain regions of transgenic mice. This forebrain-specific differential expression resulted in abrogation of the aggressive phenotype. Furthermore, the disorganization of the somatosensory cortex barrel field structure associated with MAO A KO mice was restored and became morphologically similar to wild type. Thus, the lack of MAO A in the forebrain of MAO A KO mice may underlie their phenotypes.
Batal, Malek; Boulghourjian, Choghik; Abdallah, Ahmad; Afifi, Rima
2006-05-01
Breast-feeding (BF) provides the ideal food for the healthy growth and development of infants. The prevalence of BF in Lebanon shows mixed results. The present study was the first large-scale, extensive survey on BF parameters in Lebanon that aimed to explore demographic, socio-economic and other fundamental issues associated with the initiation and duration of BF by Lebanese mothers. The survey was cross-sectional in design and administered over 10 months. Information on all variables was collected from mothers at health centres. Two-stage sampling was conducted to select participants. A total of 1,000 participants were randomly selected. A consent form was provided to each participant. Data were collected from 830 of these. Almost all mothers were Lebanese, married and had given birth in a hospital. About a third stated that breast milk was the first food introduced after birth. Although 55.9% started breast-feeding their newborns within a few hours after birth, and 18.3% within half an hour, 21.2% replied that they initiated BF a few days after birth. Only 4.6% of the mothers replied that they never breast-fed their infant. Timing of initiation of BF was associated with the type of delivery (vaginal/Caesarean section) and hospital-related factors (rooming-in, night feedings and frequency of mother-infant interaction). Of the mothers who breast-fed exclusively beyond 6 months, 86.7% had initiated BF a few hours following delivery, while only 13.3% had initiated BF a few days later. Compared with the exceptionally high proportion of BF initiation, exclusivity of BF was low, dropping to 52.4% at 1 month. Exclusivity of BF was also associated with place of residence (urban/rural) and negatively associated with educational level of the mother. Duration of BF was inversely associated with the use of pain killers during delivery and maternal education. Rural mothers and those who practised exclusive BF maintained BF for a longer duration. Initiation rates of BF are very high in Lebanon but rates of exclusive BF are low and duration of BF is short. Future research targeting the factors associated with BF, with particular emphasis on exclusivity, is needed. For the 95.4% of mothers who initiated BF, an ecological perspective on intervention aimed at women and their social support system is required to improve duration and exclusivity.
Tucker, Matthew A; Caldwell, Aaron R; Butts, Cory L; Robinson, Forrest B; Reynebeau, Haley C; Kavouras, Stavros A; McDermott, Brendon P; Washington, Tyrone A; Turner, Ronna C; Ganio, Matthew S
2017-01-01
It is unclear whether men with low body fat (LO-BF) have impaired thermoregulation during exercise heat stress compared with those with high body fat (HI-BF) when euhydration (EU) is maintained. Furthermore, in LO-BF individuals, hypohydration (HY) impairs thermoregulatory responses during exercise heat stress, but it is unknown whether this occurs in HI-BF counterparts. The purpose of this study was to test the hypotheses that men with HI-BF have impaired thermoregulatory responses to exercise heat stress and that HY further exacerbates these impairments vs. LO-BF. Men with LO-BF [n = 11, body mass (BM) 73.9 ± 8.5 kg, BF% 13.6 ± 3.8] and HI-BF (n = 9, BM 89.6 ± 6.9 kg, BF% 30.2 ± 4.1), in a randomized crossover design, performed 60 min of upright cycling in a hot environment (40.3 ± 0.4°C, relative humidity 32.5 ± 1.9%) at a metabolic heat production rate of 6 W/kg BM and finished exercise either euhydrated (EU; 0.3 ± 1.2 vs. 0.3 ± 0.9% BM loss) or HY (-2.5 ± 1.1 vs. -1.7 ± 1.5% BM loss). Changes in rectal temperature (ΔT rec ), local sweat rate (ΔLSR), and cutaneous vascular conductance (ΔCVC; % max ) were measured throughout. When EU, LO-BF and HI-BF had similar CVC and LSR responses (P > 0.05); however, LO-BF had a lower ΔT rec vs. HI-BF (0.92 ± 0.35 vs. 1.31 ± 0.32°C, P = 0.021). Compared with EU, HY increased end-exercise ΔT rec in LO-BF (0.47 ± 0.37°C, P < 0.01) but not in HI-BF (-0.06 ± 0.29°C, P > 0.05). HY, compared with EU, did not affect ΔLSR and ΔCVC in either group (P > 0.05). We conclude that, when euhydrated, men with HI-BF have a greater increase in T rec vs. LO-BF but similar CVC and LSR. HY exacerbates increases in T rec in LO-BF but not HI-BF. This is the first known investigation to compare thermoregulatory responses to exercise heat stress between men with high and low body fat (BF) in a physiologically uncompensable environment while simultaneously examining the confounding influence of hydration status. Both groups demonstrated similar sweating and cutaneous vasodilatory responses when euhydrated, despite vast differences in rectal temperature. Furthermore, in contrast to low BF, individuals with high BF demonstrated similar increases in core body temperature when either euhydrated or hypohydrated. Copyright © 2017 the American Physiological Society.
Williams, Scott G; Pickles, Tom; Kestin, Larry; Potters, Louis; Fearn, Paul; Smith, Ryan; Pratt, Gary
2006-08-01
To evaluate the interobserver variation of four electronic biochemical failure (bF) calculators using three bF definitions. The data of 1200 men were analyzed using the electronic bF calculators of four institutions. Three bF definitions were examined for their concordance of bF identification across the centers: the American Society for Therapeutic Radiology and Oncology consensus definition (ACD), the lowest prostate-specific antigen (PSA) level to date plus 2 ng/mL (L2), and a threshold of 3 ng/mL (T3). Unanimous agreement regarding bF status using the ACD, L2, and T3 definitions occurred in 87.3%, 96.4%, and 92.7% of cases, respectively. Using the ACD, 63% of the variation was from one institution, which allowed the bF status to be reversed if a PSA decline was seen after bF (PSA "bounce"). A total of 270 men had an ACD bF time variation of >2 months across the calculators, and the 5-year freedom from bF rate was 49.8-60.9%. The L2 definition had a 20.5% rate of calculated bF times; which varied by >2 months (median, 6.4; range, 2.1-75.6) and a corresponding 5-year freedom from bF rate of 55.9-61.0%. The T3 definition had a 2.0% range in the 5-year freedom from bF. Fifteen definition interpretation variations were identified. Reported bF results vary not only because of bF definition differences, but because of variations in how those definitions are written into computer-based calculators, with multiple interpretations most prevalent for the ACD. An algorithm to avoid misinterpretations is proposed for the L2 definition. A verification system to guarantee consistent electronic bF results requires development.
Vertebrate brains and evolutionary connectomics: on the origins of the mammalian ‘neocortex’
Karten, Harvey J.
2015-01-01
The organization of the non-mammalian forebrain had long puzzled neurobiologists. Unlike typical mammalian brains, the telencephalon is not organized in a laminated ‘cortical’ manner, with distinct cortical areas dedicated to individual sensory modalities or motor functions. The two major regions of the telencephalon, the basal ventricular ridge (BVR) and the dorsal ventricular ridge (DVR), were loosely referred to as being akin to the mammalian basal ganglia. The telencephalon of non-mammalian vertebrates appears to consist of multiple ‘subcortical’ groups of cells. Analysis of the nuclear organization of the avian brain, its connections, molecular properties and physiology, and organization of its pattern of circuitry and function relative to that of mammals, collectively referred to as ‘evolutionary connectomics’, revealed that only a restricted portion of the BVR is homologous to the basal ganglia of mammals. The remaining dorsal regions of the DVR, wulst and arcopallium of the avian brain contain telencephalic inputs and outputs remarkably similar to those of the individual layers of the mammalian ‘neocortex’, hippocampus and amygdala, with instances of internuclear connections strikingly similar to those found between cortical layers and within radial ‘columns’ in the mammalian sensory and motor cortices. The molecular properties of these ‘nuclei’ in birds and reptiles are similar to those of the corresponding layers of the mammalian neocortex. The fundamental pathways and cell groups of the auditory, visual and somatosensory systems of the thalamus and telencephalon are homologous at the cellular, circuit, network and gene levels, and are of great antiquity. A proposed altered migration of these homologous neurons and circuits during development is offered as a mechanism that may account for the altered configuration of mammalian telencephalae. PMID:26554047
Wong, William W.; Strizich, Garrett; Heo, Moonseong; Heymsfield, Steven B.; Himes, John H.; Rock, Cheryl L.; Gellman, Marc D.; Siega-Riz, Anna Maria; Sotres-Alvarez, Daniela; Davis, Sonia M.; Arredondo, Elva M.; Van Horn, Linda; Wylie-Rosett, Judith; Sanchez-Johnsen, Lisa; Kaplan, Robert; Mossavar-Rahmani, Yasmin
2016-01-01
Objective To evaluate the percentage of body fat (%BF)-BMI relationship, identify %BF levels corresponding to adult BMI cut-points, and examine %BF-BMI agreement in a diverse Hispanic/Latino population. Methods %BF by bioelectrical impedance analysis (BIA) was corrected against %BF by 18O dilution in 476 participants of the ancillary Hispanic Community Health/Latinos Studies. Corrected %BF were regressed against 1/BMI in the parent study (n=15,261), fitting models for each age group, by sex and Hispanic/Latino background; predicted %BF was then computed for each BMI cut-point. Results BIA underestimated %BF by 8.7 ± 0.3% in women and 4.6 ± 0.3% in men (P < 0.0001). The %BF-BMI relationshp was non-linear and linear for 1/BMI. Sex- and age-specific regression parameters between %BF and 1/BMI were consistent across Hispanic/Latino backgrounds (P > 0.05). The precision of the %BF-1/BMI association weakened with increasing age in men but not women. The proportion of participants classified as non-obese by BMI but obese by %BF was generally higher among women and older adults (16.4% in women vs. 12.0% in men aged 50-74 y). Conclusions %BF was linearly related to 1/BMI with consistent relationship across Hispanic/Lation backgrounds. BMI cut-points consistently underestimated the proportion of Hispanics/Latinos with excess adiposity. PMID:27184359
Wong, William W; Strizich, Garrett; Heo, Moonseong; Heymsfield, Steven B; Himes, John H; Rock, Cheryl L; Gellman, Marc D; Siega-Riz, Anna Maria; Sotres-Alvarez, Daniela; Davis, Sonia M; Arredondo, Elva M; Van Horn, Linda; Wylie-Rosett, Judith; Sanchez-Johnsen, Lisa; Kaplan, Robert C; Mossavar-Rahmani, Yasmin
2016-07-01
To evaluate the percentage of body fat (%BF)-BMI relationship, identify %BF levels corresponding to adult BMI cut points, and examine %BF-BMI agreement in a diverse Hispanic/Latino population. %BF by bioelectrical impedance analysis was corrected against %BF by (18) O dilution in 434 participants of the ancillary Hispanic Community Health Study/Study of Latinos. Corrected %BF was regressed against 1/BMI in the parent study (n = 15,261), fitting models for each age group, by sex, and Hispanic/Latino background; predicted %BF was then computed for each BMI cut point. Bioelectrical impedance analysis underestimated %BF by 8.7 ± 0.3% in women and 4.6 ± 0.3% in men (P < 0.0001). The %BF-BMI relationship was nonlinear and linear for 1/BMI. Sex- and age-specific regression parameters between %BF and 1/BMI were consistent across Hispanic/Latino backgrounds (P > 0.05). The precision of the %BF-1/BMI association weakened with increasing age in men but not women. The proportion of participants classified as nonobese by BMI but as having obesity by %BF was generally higher among women and older adults (16.4% in women vs. 12.0% in men aged 50-74 years). %BF was linearly related to 1/BMI with consistent relationship across Hispanic/Latino backgrounds. BMI cut points consistently underestimated the proportion of Hispanics/Latinos with excess adiposity. © 2016 The Obesity Society.
Picceli, V F; Skare, T L; Nisihara, R M; Nass, F R; Messias-Reason, I T; Utiyama, S R R
2016-04-01
B factor (BF) from the alternative complement pathway seems to participate in the pathophysiology of systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS). To study the allotypic variability of BF in SLE and their associations with clinical and autoantibodies profile. BF allotypes were determined by high-voltage agarose gel electrophoresis, under constant cooling, followed by immunofixation with anti-human BF antibody, in 188 SLE patients and 103 controls. Clinical and serological data were obtained from medical examination and records. No significant differences of BF variants between patients and controls were found, neither in relation to epidemiologic or clinical manifestations. Associations of phenotype BF SS07 and allotype BF*S07 were found with anticardiolipin IgM (aCl-IgM) antibodies (p = 0.014 and p = 0.009 respectively), but not with aCl-IgG, lupus anticoagulant (LA), anti β2GPI or clinical APS. A significant decrease in BF*F allotype (p = 0.043) and BF SF phenotype (p = 0.018) was detected in patients with anti-phospholipid antibodies as a whole (aCl-IgG, aCl-IgM, LA and anti β2GPI). There is a link between phenotype BF SS07 and allotype BF*S07 with aCl-IgM in SLE patients; BF*F allotype could be considered a marker of protection against the development of antiphospholipid antibodies in these patients. © The Author(s) 2015.
Muller, Christopher L; Anacker, Allison MJ; Rogers, Tiffany D; Goeden, Nick; Keller, Elizabeth H; Forsberg, C Gunnar; Kerr, Travis M; Wender, Carly LA; Anderson, George M; Stanwood, Gregg D; Blakely, Randy D; Bonnin, Alexandre; Veenstra-VanderWeele, Jeremy
2017-01-01
Biomarker, neuroimaging, and genetic findings implicate the serotonin transporter (SERT) in autism spectrum disorder (ASD). Previously, we found that adult male mice expressing the autism-associated SERT Ala56 variant have altered central serotonin (5-HT) system function, as well as elevated peripheral blood 5-HT levels. Early in gestation, before midbrain 5-HT projections have reached the cortex, peripheral sources supply 5-HT to the forebrain, suggesting that altered maternal or placenta 5-HT system function could impact the developing embryo. We therefore used different combinations of maternal and embryo SERT Ala56 genotypes to examine effects on blood, placenta and embryo serotonin levels and neurodevelopment at embryonic day E14.5, when peripheral sources of 5-HT predominate, and E18.5, when midbrain 5-HT projections have reached the forebrain. Maternal SERT Ala56 genotype was associated with decreased placenta and embryonic forebrain 5-HT levels at E14.5. Low 5-HT in the placenta persisted, but forebrain levels normalized by E18.5. Maternal SERT Ala56 genotype effects on forebrain 5-HT levels were accompanied by a broadening of 5-HT-sensitive thalamocortical axon projections. In contrast, no effect of embryo genotype was seen in concepti from heterozygous dams. Blood 5-HT levels were dynamic across pregnancy and were increased in SERT Ala56 dams at E14.5. Placenta RNA sequencing data at E14.5 indicated substantial impact of maternal SERT Ala56 genotype, with alterations in immune and metabolic-related pathways. Collectively, these findings indicate that maternal SERT function impacts offspring placental 5-HT levels, forebrain 5-HT levels, and neurodevelopment. PMID:27550733
Placenta-derived hypo-serotonin situations in the developing forebrain cause autism.
Sato, Kohji
2013-04-01
Autism is a pervasive developmental disorder that is characterized by the behavioral traits of impaired social cognition and communication, and repetitive and/or obsessive behavior and interests. Although there are many theories and speculations about the pathogenetic causes of autism, the disruption of the serotonergic system is one of the most consistent and well-replicated findings. Recently, it has been reported that placenta-derived serotonin is the main source in embryonic day (E) 10-15 mouse forebrain, after that period, the serotonergic fibers start to supply serotonin into the forebrain. E 10-15 is the very important developing period, when cortical neurogenesis, migration and initial axon targeting are processed. Since all these events have been considered to be involved in the pathogenesis of autism and they are highly controlled by serotonin signals, the paucity of placenta-derived serotonin should have potential importance when the pathogenesis of autism is considered. I, thus, postulate a hypothesis that placenta-derived hypo-serotonin situations in the developing forebrain cause autism. The hypothesis is as follows. Various factors, such as inflammation, dysfunction of the placenta, together with genetic predispositions cause a decrease of placenta-derived serotonin levels. The decrease of placenta-derived serotonin levels leads to hypo-serotonergic situations in the forebrain of the fetus. The paucity of serotonin in the forebrain leads to mis-wiring in important regions which are responsible for the theory of mind. The paucity of serotonin in the forebrain also causes over-growth of serotonergic fibers. These disturbances result in network deficiency and aberration of the serotonergic system, leading to the autistic phenotypes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Chi; Kang, Yi; Lundy, Robert F.
2010-01-01
The pontine parabrachial nucleus (PBN) and medullary reticular formation (RF) are hindbrain regions that, respectively, process sensory input and coordinate motor output related to ingestive behavior. Neural processing in each hindbrain site is subject to modulation originating from several forebrain structures including the insular gustatory cortex (IC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH). The present study combined electrophysiology and retrograde tracing techniques to determine the extent of overlap between neurons within the IC, BNST, CeA and LH that target both the PBN and RF. One fluorescent retrograde tracer, red (RFB) or green (GFB) latex microbeads, was injected into the gustatory PBN under electrophysiological guidance and a different retrograde tracer, GFB or fluorogold (FG), into the ipsilateral RF using the location of gustatory NST as a point of reference. Brain tissue containing each forebrain region was sectioned, scanned using a confocal microscope, and scored for the number of single and double labeled neurons. Neurons innervating the RF only, the PBN only, or both the medullary RF and PBN were observed, largely intermingled, in each forebrain region. The CeA contained the largest number of cells retrogradely labeled after tracer injection into either hindbrain region. For each forebrain area except the IC, the origin of descending input to the RF and PBN was almost entirely ipsilateral. Axons from a small percentage of hindbrain projecting forebrain neurons targeted both the PBN and RF. Target specific and non specific inputs from a variety of forebrain nuclei to the hindbrain likely reflect functional specialization in the control of ingestive behaviors. PMID:21040715
Suda, Yoko; Kokura, Kenji; Kimura, Jun; Kajikawa, Eriko; Inoue, Fumitaka; Aizawa, Shinichi
2010-09-01
We have analyzed Emx2 enhancers to determine how Emx2 functions during forebrain development are regulated. The FB (forebrain) enhancer we identified immediately 3' downstream of the last coding exon is well conserved among tetrapods and unexpectedly directed all the Emx2 expression in forebrain: caudal forebrain primordium at E8.5, dorsal telencephalon at E9.5-E10.5 and the cortical ventricular zone after E12.5. Otx, Tcf, Smad and two unknown transcription factor binding sites were essential to all these activities. The mutant that lacked this enhancer demonstrated that Emx2 expression under the enhancer is solely responsible for diencephalon development. However, in telencephalon, the FB enhancer did not have activities in cortical hem or Cajal-Retzius cells, nor was its activity in the cortex graded. Emx2 expression was greatly reduced, but persisted in the telencephalon of the enhancer mutant, indicating that there exists another enhancer for Emx2 expression unique to mammalian telencephalon.
Liu, Xin; Sun, Qi; Sun, Liang; Zong, Geng; Lu, Ling; Liu, Gang; Rosner, Bernard; Ye, Xingwang; Li, Huaixing; Lin, Xu
2015-05-14
Equations based on simple anthropometric measurements to predict body fat percentage (BF%) are lacking in Chinese population with increasing prevalence of obesity and related abnormalities. We aimed to develop and validate BF% equations in two independent population-based samples of Chinese men and women. The equations were developed among 960 Chinese Hans living in Shanghai (age 46.2 (SD 5.3) years; 36.7% male) using a stepwise linear regression and were subsequently validated in 1150 Shanghai residents (58.7 (SD 6.0) years; 41.7% male; 99% Chinese Hans, 1% Chinese minorities). The associations of equation-derived BF% with changes of 6-year cardiometabolic outcomes and incident type 2 diabetes (T2D) were evaluated in a sub-cohort of 780 Chinese, compared with BF% measured by dual-energy X-ray absorptiometry (DXA; BF%-DXA). Sex-specific equations were established with age, BMI and waist circumference as independent variables. The BF% calculated using new sex-specific equations (BF%-CSS) were in reasonable agreement with BF%-DXA (mean difference: 0.08 (2 SD 6.64) %, P= 0.606 in men; 0.45 (2 SD 6.88) %, P< 0.001 in women). In multivariate-adjusted models, the BF%-CSS and BF%-DXA showed comparable associations with 6-year changes in TAG, HDL-cholesterol, diastolic blood pressure, C-reactive protein and uric acid (P for comparisons ≥ 0.05). Meanwhile, the BF%-CSS and BF%-DXA had comparable areas under the receiver operating characteristic curves for associations with incident T2D (men P= 0.327; women P= 0.159). The BF% equations might be used as surrogates for DXA to estimate BF% among adult Chinese. More studies are needed to evaluate the application of our equations in different populations.
Morona, Ruth; González, Agustín
2013-01-01
The present study represents a detailed spatiotemporal analysis of the localization of calbindin-D28k (CB) and calretinin (CR) immunoreactive structures in the brain of Xenopus laevis throughout development, conducted with the aim to correlate the onset of the immunoreactivity with the development of compartmentalization of distinct subdivisions recently identified in the brain of adult amphibians and primarily highlighted when analyzed within a segmental paradigm. CR and CB are expressed early in the brain and showed a progressively increasing expression throughout development, although transient expression in some neuronal subpopulations was also noted. Common and distinct characteristics in Xenopus, as compared with reported features during development in the brain of mammals, were observed. The development of specific regions in the forebrain such as the olfactory bulbs, the components of the basal ganglia and the amygdaloid complex, the alar and basal hypothalamic regions, and the distinct diencephalic neuromeres could be analyzed on the basis of the distinct expression of CB and CR in subregions. Similarly, the compartments of the mesencephalon and the main rhombencephalic regions, including the cerebellum, were differently highlighted by their specific content in CB and CR throughout development. Our results show the usefulness of the analysis of the distribution of these proteins as a tool in neuroanatomy to interpret developmental aspects of many brain regions. Copyright © 2012 Wiley Periodicals, Inc.
Wagenführ, Lisa; Meyer, Anne K; Braunschweig, Lena; Marrone, Lara; Storch, Alexander
2015-09-01
The mammalian neocortex shows a conserved six-layered structure that differs between species in the total number of cortical neurons produced owing to differences in the relative abundance of distinct progenitor populations. Recent studies have identified a new class of proliferative neurogenic cells in the outer subventricular zone (OSVZ) in gyrencephalic species such as primates and ferrets. Lissencephalic brains of mice possess fewer OSVZ-like progenitor cells and these do not constitute a distinct layer. Most in vitro and in vivo studies have shown that oxygen regulates the maintenance, proliferation and differentiation of neural progenitor cells. Here we dissect the effects of fetal brain oxygen tension on neural progenitor cell activity using a novel mouse model that allows oxygen tension to be controlled within the hypoxic microenvironment in the neurogenic niche of the fetal brain in vivo. Indeed, maternal oxygen treatment of 10%, 21% and 75% atmospheric oxygen tension for 48 h translates into robust changes in fetal brain oxygenation. Increased oxygen tension in fetal mouse forebrain in vivo leads to a marked expansion of a distinct proliferative cell population, basal to the SVZ. These cells constitute a novel neurogenic cell layer, similar to the OSVZ, and contribute to corticogenesis by heading for deeper cortical layers as a part of the cortical plate. © 2015. Published by The Company of Biologists Ltd.
Bui, Quyen Thi-Tu; Lee, Hwa-Young; Le, Anh Thi-Kim; Van Dung, Do; Vu, Lan Thi-Hoang
2016-01-01
There is strong evidence that breastfeeding (BF) significantly benefits mothers and infants in various ways. Yet the proportion of breastfed babies in Vietnam is low and continues to decline. This study fills an important evidence gap in BF practices in Vietnam. This paper examines the trend of early initiation of BF and exclusive BF from 2000 to 2011 in Vietnam and explores the determinants at individual and contextual levels. Data from three waves of the Multiple Indicator Cluster Survey were combined to estimate crude and adjusted trends over time for two outcomes - early initiation of BF and exclusive BF. Three-level logistic regressions were fitted to examine the impacts of both individual and contextual characteristics on early initiation of BF and exclusive BF in the 2011 data. Both types of BF showed a decreasing trend over time after controlling for individual-level characteristics but this trend was more evident for early initiation of BF. Apart from child's age, individual-level characteristics were not significant predictors of the BF outcomes, but provincial characteristics had a strong association. When controlling for individual-level characteristics, mothers living in provinces with a higher percentage of mothers with more than three children were more likely to have initiated early BF (odds ratio [OR]: 1.06; confidence interval [CI]: 1.02-1.11) but less likely to exclusively breastfeed their babies (OR: 0.94; CI: 0.88-1.01). Mothers living in areas with a higher poverty rate were more likely to breastfeed exclusively (OR: 1.07; CI: 1.02-1.13), and those who delivered by Caesarean section were less likely to initiate early BF. Our results suggest that environmental factors are becoming more important for determining BF practices in Vietnam. Intervention programs should therefore not only consider individual factors, but should also consider the potential impact of contextual factors on BF practices.
Izadi, Vajihe; Kelishadi, Roya; Qorbani, Mostafa; Esmaeilmotlagh, Mohammad; Taslimi, Mahnaz; Heshmat, Ramin; Ardalan, Gelayol; Azadbakht, Leila
2013-05-01
Studies examining the relationship between breast-feeding (BF) duration and cardiovascular disease (CVD) risk factors have reached contradictory results. This study aims to investigate the relationship between BF duration and CVD risk factors in adolescents. This national population-based study was conducted among 5258 Iranian students, ages 10 to 18 y living in central cities of 27 provinces of Iran. Association was examined between duration of BF and adolescent blood pressure, overweight, obesity, and fasting blood glucose and lipid profiles. Analyses were adjusted for potential confounders. Low birth weight was less frequent in the longer than in the shorter BF duration categories (P < 0.0001). Number of children was lower in individuals with longer BF duration (P = 0.01). Individuals with longer BF duration used more homemade food than those with shorter BF duration (P < 0.0001). Means of total cholesterol and systolic blood pressure were lower in participants with the longest BF period compared with those with the shortest BF duration; this difference was marginally significant (P = 0.06). No significant association was found between BF duration and CVD risk factors in logistic regression after adjustment for potential confounders. Although the long-term benefits of BF on preventing CVDs are well documented, controversies exist as to the association of BF duration with such beneficial effects. In this study, there was no substantial evidence that longer BF duration was protective against CVD risk factors among adolescents. More prospective studies are recommended to clarify this association. Copyright © 2013 Elsevier Inc. All rights reserved.
Chen, Kuen-Tsann; Chen, Yu-Yawn; Wang, Chia-Wei; Chuang, Chih-Lin; Chiang, Li-Ming; Lai, Chung-Liang; Lu, Hsueh-Kuan; Dwyer, Gregory B; Chao, Shu-Ping; Shih, Ming-Kuei; Hsieh, Kuen-Chang
2016-01-01
Bioelectrical impedance analysis (BIA) is a common method for assessing body composition in research and clinical trials. BIA is convenient but when compared with other reference methods, the results have been inconclusive. The level of obesity degree in subjects is considered to be an important factor affecting the accuracy of the measurements. A total of 711 participants were recruited in Taiwan and were sub-grouped by gender and levels of adiposity. Regression analysis and Bland-Altman analysis were used to evaluate the agreement of the measured body fat percentage (BF%) between BIA and DXA. The BF% measured by the DXA and BIA methods (Tanita BC-418) were expressed as BF%DXA and BF%BIA8, respectively. A one-way ANOVA was used to test the differences in BF% measurements by gender and levels of adiposity. The estimated BF%BIA8 and BF%DXA in the all subjects, male and female groups were all highly correlated (r = 0.934, 0.901, 0.916, all P< 0.001). The average estimated BF%BIA8 (22.54 ± 9.48%) was significantly lower than the average BF%DXA (26.26 ± 11.18%). The BF%BIA8 was overestimated in the male subgroup (BF%DXA< 15%), compared to BF%DXA by 0.45%, respectively. In the other subgroups, the BF%BIA8 values were all underestimated. Standing BIA estimating body fat percentage in Chinese participants have a high correlation, but underestimated on normal and high obesity degree in both male and female subjects.
Chen, Kuen-Tsann; Chen, Yu-Yawn; Wang, Chia-Wei; Chuang, Chih-Lin; Chiang, Li-Ming; Lai, Chung-Liang; Lu, Hsueh-Kuan; Dwyer, Gregory B.; Chao, Shu-Ping; Shih, Ming-Kuei; Hsieh, Kuen-Chang
2016-01-01
Bioelectrical impedance analysis (BIA) is a common method for assessing body composition in research and clinical trials. BIA is convenient but when compared with other reference methods, the results have been inconclusive. The level of obesity degree in subjects is considered to be an important factor affecting the accuracy of the measurements. A total of 711 participants were recruited in Taiwan and were sub-grouped by gender and levels of adiposity. Regression analysis and Bland-Altman analysis were used to evaluate the agreement of the measured body fat percentage (BF%) between BIA and DXA. The BF% measured by the DXA and BIA methods (Tanita BC-418) were expressed as BF%DXA and BF%BIA8, respectively. A one-way ANOVA was used to test the differences in BF% measurements by gender and levels of adiposity. The estimated BF%BIA8 and BF%DXA in the all subjects, male and female groups were all highly correlated (r = 0.934, 0.901, 0.916, all P< 0.001). The average estimated BF%BIA8 (22.54 ± 9.48%) was significantly lower than the average BF%DXA (26.26 ± 11.18%). The BF%BIA8 was overestimated in the male subgroup (BF%DXA< 15%), compared to BF%DXA by 0.45%, respectively. In the other subgroups, the BF%BIA8 values were all underestimated. Standing BIA estimating body fat percentage in Chinese participants have a high correlation, but underestimated on normal and high obesity degree in both male and female subjects. PMID:27467065
USDA-ARS?s Scientific Manuscript database
To evaluate the percentage of body fat (%BF)-BMI relationship, identify %BF levels corresponding to adult BMI cut points, and examine %BF-BMI agreement in a diverse Hispanic/Latino population. %BF by bioelectrical impedance analysis was corrected against %BF by 18O dilution in 434 participants of th...
Surbhi; Rastogi, Ashutosh; Malik, Shalie; Rani, Sangeeta; Kumar, Vinod
2016-10-01
This study examines whether differences in annual life-history states (LHSs) among the inhabitants of two latitudes would have an impact on the neuronal plasticity of the song-control system in songbirds. At the times of equinoxes and solstices during the year (n = 4 per year) corresponding to different LHSs, we measured the volumetric changes and expression of doublecortin (DCX; an endogenous marker of the neuronal recruitment) in the song-control nuclei and higher order auditory forebrain regions of the subtropical resident Indian weaverbirds (Ploceus philippinus) and Palearctic-Indian migratory redheaded buntings (Emberiza bruniceps). Area X in basal ganglia, lateral magnocellular nucleus of the anterior nidopallium (LMAN), HVC (proper name), and robust nucleus of the arcopallium (RA) were enlarged during the breeding LHS. Both round and fusiform DCX-immunoreactive (DCX-ir) cells were found in area X and HVC but not in LMAN or RA, with a significant seasonal difference. Also, as shown by increase in volume and by dense, round DCX-ir cells, the neuronal incorporation was increased in HVC alone during the breeding LHS. This suggests differences in the response of song-control nuclei to photoperiod-induced changes in LHSs. Furthermore, DCX immunoreactivity indicated participation of the cortical caudomedial nidopallium and caudomedial mesopallium in the song-control system, albeit with differences between the weaverbirds and the buntings. Overall, these results show seasonal neuronal plasticity in the song-control system closely associated with annual reproductive LHS in both of the songbirds. Differences between species probably account for the differences in the photoperiod-response system between the relative refractory weaverbirds and absolute refractory redheaded buntings. J. Comp. Neurol. 524:2914-2929, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Majercikova, Z; Kiss, A
2016-01-01
Asenapine (ASE), an atypical antipsychotic drug used in the treatment of schizophrenia, induces Fos expression in forebrain. Effect of ASE on activity of basal nucleus of Meynert (NBM) cells, a part of the striatal-cortical circuits, was studied. We were also interested to reveal whether a chronic unpredictable variable mild stress (CMS) preconditioning might affect the ASE impact. Rats were divided into as follows: controls-vehicle, controls-ASE, stressed-vehicle and stressed-ASE groups. CMS included restrain, social isolation, crowding, swimming and cold applied for 21 days. On the 22nd day, rats were subcutaneously injected with ASE (0.3 mg/kg) or vehicle (saline 300 μl/rat), 90 min prior euthanizing. After transcardial fixation, brains were cut into 30 μm thick coronal sections. Fos protein presence, as indicator of cell activity, was detected by ABC immunohistochemistry. Hypocretin (Hcrt) and melanin-concentrating hormone (MCH) containing cells were visualized with fluorescent dyes. ASE induced significant increase in Fos expression in NBM in both controls and CMS preconditioned rats in comparison with the related vehicle-treated controls. CMS preconditioning, however, significantly lowered the Fos response to ASE in NBM. From Hrct and MCH cells, only Hcrt ones displayed Fos presence in response to ASE. This study demonstrates for the first time that ASE may target a special group of cells occupying NBM, which effect can be modulated by CMS preconditioning. This finding extends a view that ASE impact may extend beyond the classical forebrain target areas common for the action of all antipsychotics and might be helpful in the identification of sites and side effects of its therapeutic actions.
Shin, Dong-Ho; Webb, Barbara; Nakao, Miki; Smith, Sylvia L
2007-01-01
Factor B and C2 are serine proteases that provide the catalytic subunits of C3 and C5 convertases of the alternative (AP) and classical (CP) complement pathways. Two Bf/C2 cDNAs, GcBf/C2-1 and -2 (previously referred to as nsBf/C2-A and nsBf/C2-B), were isolated from the nurse shark, Ginglymostoma cirratum. GcBf/C2-1 and -2 are 3364 and 3082bp in length and encode a leader peptide, three CCPs, one VWFA, the serine protease domain and have a putative factor D/C1s/MASP cleavage site. Southern blots show that there might be up to two Bf/C2-like genes for each of the two GcBf/C2 isoforms. GcBf/C2-1 and -2 are constitutively expressed, albeit at different levels, in all nine tissues examined. Expression in erythrocytes is a novel finding. Structural analysis has revealed that the localization of glycosylation sites in the SP domain of both putative proteins indicates that the molecular organization of the shark molecules is more like C2 than factor B. Phylogenetic analysis indicates that GcBf/C2-1 and -2 and TrscBf of Triakis scyllia (another shark species) originated from a common ancestor and share a remote ancestor with Bf and C2 of mammals and bony fish.
Chen, Sheng; He, Nianhai; Yu, Jialin; Li, Luquan; Sun, Fengjun; Hu, Ying; Deng, Rui; Zhong, Shiming; Shen, Leilei
2015-10-01
The biofilms (BF) formed by Escherichia coli (E. coli) is an important cause of chronic and recurrent infections due to its capacity to persist on medical surfaces and indwelling devices, demonstrating the importance of inhibiting the formation of E. coli BF and reducing BF infection. Although 2‑mercaptoethane sulfonate (MESNA) exhibits a marked mucolytic effect clinically, the effect of MESNA on the inhibition of E. coli BF formation remains to be elucidated. The present study investigated whether MESNA inhibits the formation of E. coli BF in vitro. The minimum inhibitory concentration of MESNA on E. coli was determined to be 10 mg/ml. Subsequently, the effect of MESNA on BF early adhesion, extracellular polysaccharide (EPS) and extracellular protein were detected. The effect of a subinhibitory concentration of MESNA on BF formation was evaluated, and the inhibitory potency of MESNA against matured BF was assayed. The results revealed that MESNA inhibited early stage adhesion and formation of the E. coli BF, destroyed the mature BF membrane and reduced the EPS and extracellular proteins levels of the BF. In addition, the present study investigated the effects of MESNA on the expression of EPS‑ and adhesion protein‑associated genes using quantitative polymerase chain reaction analysis, which demonstrated that MESNA effectively inhibited the expression of these genes. These results suggested that MESNA possesses anti‑BF formation capability on E. coli in vitro and may be used as a potential reagent for the clinical treatment of E. coli BF‑associated infections.
NASA Astrophysics Data System (ADS)
Kahar, A. W. M.; Ann, L. Ju
2017-06-01
In this study, the influence of banana fibre (BF) loading using sodium hydroxide (NaOH) pre-treated and succinic anhydride-treated (SA) BF on the mechanical properties of linear low-density polyethylene (LLDPE)/thermoplastic starch (TPS) matrix is investigated. LLDPE/TPS/BF composites were developed under different BF conditions, with and without chemical modifications with the BF content ranging from 5% to 30% based on the total composite. The tensile strength showed an increase with an increase of fibre content up to 10%, thereby decreasing gradually beyond this level. NaOH pre-treated and SA treated BF added with LLDPE/TPS composite displays a higher tensile strength as compared to untreated BF in LLDPE/TPS composites. Thermal behaviour of the BF incorporated in LLDPE/TPS composite was characterised using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). This showed that SA treated BF exhibits better thermal stability, compared to other composites. This is because of the improvement in interfacial adhesion existing between both the fibre and matrix. In addition, a morphology study confirmed that pre-treated and treated BF had excellent interfacial adhesion with LLDPE/TPS matrix, leading to better mechanical properties of resultant composites.
New body fat prediction equations for severely obese patients.
Horie, Lilian Mika; Barbosa-Silva, Maria Cristina Gonzalez; Torrinhas, Raquel Susana; de Mello, Marco Túlio; Cecconello, Ivan; Waitzberg, Dan Linetzky
2008-06-01
Severe obesity imposes physical limitations to body composition assessment. Our aim was to compare body fat (BF) estimations of severely obese patients obtained by bioelectrical impedance (BIA) and air displacement plethysmography (ADP) for development of new equations for BF prediction. Severely obese subjects (83 female/36 male, mean age=41.6+/-11.6 years) had BF estimated by BIA and ADP. The agreement of the data was evaluated using Bland-Altman's graphic and concordance correlation coefficient (CCC). A multivariate regression analysis was performed to develop and validate new predictive equations. BF estimations from BIA (64.8+/-15 kg) and ADP (65.6+/-16.4 kg) did not differ (p>0.05, with good accuracy, precision, and CCC), but the Bland- Altman graphic showed a wide limit of agreement (-10.4; 8.8). The standard BIA equation overestimated BF in women (-1.3 kg) and underestimated BF in men (5.6 kg; p<0.05). Two BF new predictive equations were generated after BIA measurement, which predicted BF with higher accuracy, precision, CCC, and limits of agreement than the standard BIA equation. Standard BIA equations were inadequate for estimating BF in severely obese patients. Equations developed especially for this population provide more accurate BF assessment.
Zago, Anderson Saranz; Kokubun, Eduardo; Fenty-Stewart, Nicola; Park, Joon-Young; Attipoe, Selasi; Hagberg, James; Brown, Michael
2010-10-01
the T-786C polymorphism of the gene for endothelial nitric oxide synthase (eNOS) and superoxide anion production may reduce production and bioavailability of nitric oxide, affecting the degree of vasodilation. This effect can be reversed by exercise. to investigate the influence of aerobic training and T-786C polymorphism in the concentrations of nitric oxide metabolites (NOx) in blood flow (BF) and blood pressure (BP). thirty-two elderly pre-hypertensive women (59 ± 6 years old) were divided into two groups according to the T-786C polymorphism (TT and TC + CC). We analyzed the concentrations of NOx (plasma) and blood flow by venous occlusion plethysmography at rest, 1, 2 and 3 minutes post-occlusion (BF-0, BF-1 BF-2 BF-3, respectively). Evaluations were performed before and after 6 months of a program of aerobic exercise. In the pre-training evaluations, NOx levels were lower in TC + CC group than in TT group. The TT group showed correlations between NOx and BF-0 (r = 0.6) and diastolic blood pressure (DBP) and BF-0 (r = -0.7), but no correlation was found in TC + CC group. In the post-training evaluations, there were correlations between NOx and BF-0 (r = 0.6) and the changes in NOx and DBP (r = -0.6) in TT group. There were also correlations between DBP and BF-1 (r = -0.8), DBP, and BF-2 (r = -0.6), DBP, and BF-3 (r = -0.6), in the changes between NOx and BF-1 (r = 0.8) and changes in NOx and DBP (r = -0.7) in TC + CC group. it was concluded that 6 months of aerobic exercise can increase the relationship between NO, BP and BF in elderly of allele C carriers.
Kerimoglu, Ozlem Secilmis; Pekin, Aybike; Yilmaz, Setenay Arzu; Yavas, Guler; Beyhekim, Fatma; Demirtaş, Ayşe Ayda; Dogan, Nasuh Utku; İlhan, Tolgay Tuyan; Celik, Cetin
2015-03-01
This study used the measure of percentage of body fat (%BF) to define obesity and evaluated the effect of percentage of %BF on clinical, surgical and pathological features in women with endometrial cancer. Between 2011 and 2013, bioelectrical impedance analysis and body size measurements of 94 patients whose endometrial biopsy revealed endometrial cancer were obtained. Patients were divided into two groups according to body mass index (BMI) (normal, < 30 kg/m(2); elevated, ≥ 30 kg/m(2)), and also classified by %BF (normal, < 32%; elevated, ≥ 32%). The patients' mean age was 55.0 ± 10.9 years. Mean %BF and BMI were 40.8% ± 9.8% and 32.9 ± 7.5, respectively. Eighty-three (88%) patients were obese according to %BF; 54 (57%) were obese according to BMI. Patients with elevated %BF were more likely to have less than 50% myometrial invasion (P = 0.004). Significantly more para-aortic lymph nodes were retrieved in patients with normal %BF or BMI (P < 0.001, P < 0.001). Patients with elevated %BF had longer operating times (P = 0.043) and were more likely to have stage I disease than patients with normal %BF (P < 0.001). Endometrial cancer patients with an elevated %BF are more likely to have stage I disease and less than 50% myometrial invasion than patients with normal %BF. Defining obesity by BF may provide better estimation of obesity prevalence in patients with endometrial cancer and further understanding the relationship between BF with endometrial cancer may give more information about the effects of obesity on endometrial cancer. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.
Hegyi, Thomas; Kleinfeld, Alan; Huber, Andrew; Weinberger, Barry; Memon, Naureen; Shih, Weichung Joe; Carayannopoulos, Mary; Oh, William
2017-05-01
To assess the effects of a soybean lipid emulsion infusions on levels of unbound (free) bilirubin (Bf) and unbound free fatty acids (FFAu) as well as changes in Bf and total serum bilirubin (TSB) during phototherapy in infants born preterm. Ninety-seven infants born preterm (birth weight: 500-2000 g; gestational age: 23-34 weeks) were enrolled to investigate the effect of 0, 1, 2, and 3 g/kg/d of intralipid infusion on Bf and FFAu. Pre- and postphototherapy TSB, FFAu, and Bf also were analyzed in 91 infants to assess the effects of phototherapy. FFAu levels were measured with the fluorescent probe ADIFAB2 and Bf by the fluorescent Bf sensor BL22P1B11-Rh during intralipid infusion and at start and end of phototherapy. TSB and plasma albumin were measured by the diazo and bromcresol green techniques, respectively. Bilirubin-albumin dissociation constants were calculated based on Bf and plasma albumin. Bf and FFAu increased with increasing intralipid dosage across all gestational ages. TSB and Bf were correlated significantly when infants received 0 or 1 g/kg/d of intralipid but not at greater doses of intralipid (2 and 3 g/kg/d). Although phototherapy effectively reduced both TSB and Bf in the total phototherapy group (by 32% and 12%, respectively), it reduced TSB, but not Bf, in infants less than 28 weeks of gestation. Increasing intralipid doses result in increasing FFAu levels, which are associated with increased Bf independent of TSB. In infants born extremely preterm (<28 weeks of gestation), phototherapy effectively reduces TSB but not Bf. Copyright © 2016 Elsevier Inc. All rights reserved.
Ristic, Natalia; Zukurov, Jean; Alkmim, Wagner; Diaz, Ricardo Sobhie; Janini, Luiz Mario; Chin, Mario P. S.
2011-01-01
Background HIV-1 subtype B and subtype F are prevalent in the AIDS epidemic of Brazil. Recombinations between these subtypes have generated at least four BF circulating recombinant forms (CRFs). CRF28_BF and CRF29_BF are among the first two BF recombinants being identified in Brazil and they contributed significantly to the epidemic. However, the evolution and demographic histories of the CRFs are unclear. Methodology/Principal Findings A collection of gag and pol sequences sampled within Brazil was screened for CRF28_BF-like and CRF29_BF-like recombination patterns. A Bayesian coalescent framework was employed to delineate the phylogenetic, divergence time and population dynamics of the virus having CRF28_BF-like and CRF29_BF-like genotype. These recombinants were phylogenetically related to each other and formed a well-supported monophyletic clade dated to 1988–1989. The effective number of infections by these recombinants grew exponentially over a five-year period after their emergence, but then decreased toward the present following a logistic model of population growth. The demographic pattern of both recombinants closely resembles those previously reported for CRF31_BC. Conclusions We revealed that HIV-1 recombinants of the CRF28_BF/CRF29_BF clade are still circulating in the Brazilian population. These recombinants did not exhibit a strong founder effect and showed a decreasing prevalence in the AIDS epidemic of Brazil. Our data suggested that multiple URFs may also play a role in shaping the epidemic of recombinant BF HIV-1 in the region. PMID:21390250
Breathing frequency-independent effect of Tai Chi Chuan on autonomic modulation.
Lu, Wan-An; Kuo, Cheng-Deng
2014-04-01
This study investigates the breathing frequency (BF)-independent effect of Tai Chi Chuan (TCC) on autonomic nervous modulation in TCC practitioners. Twenty-five TCC practitioners and 25 sedentary normal controls were recruited. The stationary heart rate variability (HRV) measures of TCC practitioners and controls were compared. The same HRV measures in TCC practitioners and among the controls, TCC practitioners before TCC and TCC practitioners 30 min after TCC were compared. In TCC practitioners, the BF, normalized high-frequency power (nHFP), and normalized very low-frequency power were significantly increased, while the normalized low-frequency power (nLFP) was significantly decreased 30 min after TCC. The BF correlated significantly and negatively with heart rate (HR), nHFP and nLFP, and correlated significantly and positively with mean RR interval (MnRR) before TCC in TCC practitioners. A slower BF is associated with a higher HR, a greater vagal modulation, and a greater combined sympatho-vagal modulation before TCC. To remove the effect of BF on HRV measures, new indices such as HR*BF, nHFP*BF, nLFP*BF, and MnRR/BF were introduced for comparison among the controls, TCC practitioners before TCC, and TCC practitioners 30 min after TCC. Thirty minutes after TCC, the MnRR/BF of TCC practitioner was smaller whereas HR*BF and nHFP*BF were greater than those before TCC. The BF-independent effects of TCC on the autonomic nervous modulation of TCC practitioners are an increase in vagal modulation and HR, and a decrease in mean RR interval. The mechanism underlying the parallel increase in HR and vagal modulation in TCC practitioners is not understood yet at present.
Decreased levels of free D-aspartic acid in the forebrain of serine racemase (Srr) knock-out mice.
Horio, Mao; Ishima, Tamaki; Fujita, Yuko; Inoue, Ran; Mori, Hisashi; Hashimoto, Kenji
2013-05-01
d-Serine, an endogenous co-agonist of the N-methyl-d-aspartate (NMDA) receptor is synthesized from l-serine by serine racemase (SRR). A previous study of Srr knockout (Srr-KO) mice showed that levels of d-serine in forebrain regions, such as frontal cortex, hippocampus, and striatum, but not cerebellum, of mutant mice are significantly lower than those of wild-type (WT) mice, suggesting that SRR is responsible for d-serine production in the forebrain. In this study, we attempted to determine whether SRR affects the level of other amino acids in brain tissue. We found that tissue levels of d-aspartic acid in the forebrains (frontal cortex, hippocampus and striatum) of Srr-KO mice were significantly lower than in WT mice, whereas levels of d-aspartic acid in the cerebellum were not altered. Levels of d-alanine, l-alanine, l-aspartic acid, taurine, asparagine, arginine, threonine, γ-amino butyric acid (GABA) and methionine, remained the same in frontal cortex, hippocampus, striatum and cerebellum of WT and mutant mice. Furthermore, no differences in d-aspartate oxidase (DDO) activity were detected in the forebrains of WT and Srr-KO mice. These results suggest that SRR and/or d-serine may be involved in the production of d-aspartic acid in mouse forebrains, although further detailed studies will be necessary to confirm this finding. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pombal, M A; Puelles, L
1999-11-22
The structural organization of the lamprey extratelencephalic forebrain is re-examined from the perspective of the prosomeric segmental paradigm. The question asked was whether the prosomeric forebrain model used for gnathostomes is of material advantage for interpreting subdivisions in the lamprey forebrain. To this aim, the main longitudinal and transverse landmarks recognized by the prosomeric model in other vertebrates were identified in Nissl-stained lamprey material. Lines of cytoarchitectural discontinuity and contours of migrated neuronal groups were mapped in a two-dimensional sagittal representation and were also classified according to their radial position. Immunocytochemical mapping of calretinin expression in adjacent sections served to define particular structural units better, in particular, the dorsal thalamus. These data were complemented by numerous other chemoarchitectonic observations obtained with ancillary markers, which identified additional specific formations, subdivisions, or boundaries. Emphasis was placed on studying whether such chemically defined neuronal groups showed boundaries aligned with the postulated inter- or intraprosomeric boundaries. The course of diverse axonal tracts was studied also with regard to their prosomeric topography. This analysis showed that the full prosomeric model applies straightforwardly to the lamprey forebrain. This finding implies that a common segmental and longitudinal organization of the neural tube may be primitive for all vertebrates. Interesting novel aspects appear in the interpretation of the lamprey pretectum, the dorsal and ventral thalami, and the hypothalamus. The topologic continuity of the prosomeric forebrain regions with evaginated or non-evaginated portions of the telencephalon was also examined. Copyright 1999 Wiley-Liss, Inc.
Annett, R W; Carson, A F; Dawson, L E R; Kilpatrick, D J
2011-05-01
The objectives of this study were to investigate the effect of dietary lipid source on the growth and carcass characteristics of lambs sourced from a range of crossbred hill ewes. Over a 2-year period, 466 lambs representing the progeny of Scottish Blackface (BF × BF), Swaledale (SW) × BF, North Country Cheviot (CH) × BF, Lleyn (LL) × BF and Texel (T) × BF ewes were sourced from six commercial hill flocks and finished on one of four diets: grass pellets (GP), cereal-based concentrate (CC), CC enriched with oilseed rape (CR) and CC enriched with fish oil (CF). Dry matter intake (DMI) was highest (P < 0.001) in lambs offered GP; however, carcass weight gain (CWG) and feed conversion efficiency were higher (P < 0.001) in lambs fed concentrate-based diets. For lambs offered concentrate-based diets, DMI and live weight gain were lower (P < 0.001) for CF than CC or CR. Lambs with T × BF dams achieved a higher (P < 0.05) daily CWG and CWG/kg DMI than BF × BF, SW × BF or LL × BF dams. When lambs were slaughtered at fat score 3, CH × BF, LL × BF and T × BF dams increased carcass weight by 0.8 to 1.4 kg (P < 0.001) and conformation score (CS) by 0.2 to 0.4 units (P < 0.001) compared with BF × BF or SW × BF dams. However, breed effects on carcass conformation were reduced by 50% when lambs were slaughtered at a constant carcass weight. Diets CC and CR increased carcass weight by 0.8 to 1.6 kg (P < 0.001) and CS by 0.1 to 0.3 units (P < 0.001) compared with GP and CF. Both, dam breed and dietary effects on carcass conformation were associated with an increase (P < 0.001) in shoulder width of the lambs. Lambs fed CF and slaughtered at a constant carcass weight had more subcutaneous fat over the Longissumus dorsi (P < 0.05), Iliocostalis thoracis (P < 0.001) and Obliquus internus abdominis (P < 0.001) compared with those fed CC. However, these effects were removed when lambs were slaughtered at a constant fat score. At both endpoints, lambs from T × BF dams contained less (P < 0.05) perinephric and retroperitoneal fat than SW × BF or LL × BF dams fed GP or CC, respectively. The results from this study show that using crossbred ewes sired by CH, LL or T sires will increase carcass weight and improve carcass conformation of lambs sourced from hill flocks. Inclusion of oilseed rape in lamb finishing diets had only minor effects on performance compared with a standard CC but feeding fish oil or GP impacted negatively on lamb growth and carcass quality.
Percent body fat and prediction of surgical site infection.
Waisbren, Emily; Rosen, Heather; Bader, Angela M; Lipsitz, Stuart R; Rogers, Selwyn O; Eriksson, Elof
2010-04-01
Obesity is a risk factor for surgical site infection (SSI) after elective surgery. Body mass index (BMI) is commonly used to define obesity (BMI >or=30 kg/m(2)), but percent body fat (%BF) (obesity is >25%BF [men]; >31%BF [women]) might better predict SSI risk because BMI might not reflect body composition. This prospective study included 591 elective surgical patients 18 to 64 years of age from September 2008 through February 2009. Height and weight were measured for BMI. %BF was calculated by bioelectrical impedance analysis. Preoperative, operative, and 30-day postoperative data were captured through interviews and chart review. Our primary, predetermined outcomes measurement was SSI as defined by the Center for Disease Control and Prevention. Mean %BF and BMI were 34+/-10 and 29+/-8, respectively. Four-hundred and nine (69%) patients were obese by %BF; 225 (38%) were obese by BMI. SSI developed in 71 (12%) patients. With BMI defining obesity, SSI incidence was 12.3% in nonobese and 11.6% in obese patients (p = 0.8); Using %BF, SSI occurred in 5.0% of nonobese and 15.2% of obese patients (p < 0.001). In univariate analyses, significant predictors of SSI were %BF (p = 0.005), obesity by %BF (p < 0.001), smoking (p = 0.002), National Nosocomial Infections Surveillance score (p < 0.001), postoperative hyperglycemia (p = 0.03), and anemia (p = 0.02). In multivariable analysis, obese patients by %BF had a 5-fold higher risk for SSI than nonobese patients (odds ratio = 5.3; 95% CI, 1.2-23.1; p = 0.03). Linear regression was used to show that there is a positive, nonlinear relationship between %BF and BMI. Obesity, defined by %BF, is associated with a 5-fold increased SSI risk. This risk increases as %BF increases. %BF is a more sensitive and precise measurement of SSI risk than BMI. Additional studies are required to better understand this relationship. Copyright (c) 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Hernández, Jerónimo; Prado, Oscar J; Almarcha, Manuel; Lafuente, Javier; Gabriel, David
2010-06-15
The performance of three biofilters (BF1-BF3) packed with a new hybrid (inert/organic) packing material that consists of spherical argyle pellets covered with compost was examined in different operational scenarios and compared with a biofilter packed with pine bark (BF4). BF1, BF2 and BF4 were inoculated with an enriched microbial population, while BF3 was inoculated with sludge from a wastewater treatment plant. A gas mixture containing ammonia and six VOCs was fed to the reactors with N-NH(3) loads ranging from 0 to 10 g N/m(3)h and a VOCs load of around 10 g C/m(3)h. A profound analysis of the fate of nitrogen was performed in all four reactors. Results show that the biofilters packed with the hybrid packing material and inoculated with the microbial pre-adapted population (BF1 and BF2) achieved the highest nitrification rates and VOCs removal efficiencies. In BF3, nitratation was inhibited during most of the study, while only slight evidence of nitrification could be observed in BF4. All four reactors were able to treat the VOCs mixture with efficiencies greater than 80% during the entire experimental period, regardless of the inlet ammonia load. Copyright 2010 Elsevier B.V. All rights reserved.
Bui, Quyen Thi-Tu; Lee, Hwa-Young; Le, Anh Thi-Kim; Van Dung, Do; Vu, Lan Thi-Hoang
2016-01-01
Background There is strong evidence that breastfeeding (BF) significantly benefits mothers and infants in various ways. Yet the proportion of breastfed babies in Vietnam is low and continues to decline. This study fills an important evidence gap in BF practices in Vietnam. Objective This paper examines the trend of early initiation of BF and exclusive BF from 2000 to 2011 in Vietnam and explores the determinants at individual and contextual levels. Design Data from three waves of the Multiple Indicator Cluster Survey were combined to estimate crude and adjusted trends over time for two outcomes – early initiation of BF and exclusive BF. Three-level logistic regressions were fitted to examine the impacts of both individual and contextual characteristics on early initiation of BF and exclusive BF in the 2011 data. Results Both types of BF showed a decreasing trend over time after controlling for individual-level characteristics but this trend was more evident for early initiation of BF. Apart from child's age, individual-level characteristics were not significant predictors of the BF outcomes, but provincial characteristics had a strong association. When controlling for individual-level characteristics, mothers living in provinces with a higher percentage of mothers with more than three children were more likely to have initiated early BF (odds ratio [OR]: 1.06; confidence interval [CI]: 1.02–1.11) but less likely to exclusively breastfeed their babies (OR: 0.94; CI: 0.88–1.01). Mothers living in areas with a higher poverty rate were more likely to breastfeed exclusively (OR: 1.07; CI: 1.02–1.13), and those who delivered by Caesarean section were less likely to initiate early BF. Conclusions Our results suggest that environmental factors are becoming more important for determining BF practices in Vietnam. Intervention programs should therefore not only consider individual factors, but should also consider the potential impact of contextual factors on BF practices. PMID:26950562
Hasegawa, Naoya; Takeda, Kenta; Sakuma, Moe; Mani, Hiroki; Maejima, Hiroshi; Asaka, Tadayoshi
2017-10-01
Augmented sensory biofeedback (BF) for postural control is widely used to improve postural stability. However, the effective sensory information in BF systems of motor learning for postural control is still unknown. The purpose of this study was to investigate the learning effects of visual versus auditory BF training in dynamic postural control. Eighteen healthy young adults were randomly divided into two groups (visual BF and auditory BF). In test sessions, participants were asked to bring the real-time center of pressure (COP) in line with a hidden target by body sway in the sagittal plane. The target moved in seven cycles of sine curves at 0.23Hz in the vertical direction on a monitor. In training sessions, the visual and auditory BF groups were required to change the magnitude of a visual circle and a sound, respectively, according to the distance between the COP and target in order to reach the target. The perceptual magnitudes of visual and auditory BF were equalized according to Stevens' power law. At the retention test, the auditory but not visual BF group demonstrated decreased postural performance errors in both the spatial and temporal parameters under the no-feedback condition. These findings suggest that visual BF increases the dependence on visual information to control postural performance, while auditory BF may enhance the integration of the proprioceptive sensory system, which contributes to motor learning without BF. These results suggest that auditory BF training improves motor learning of dynamic postural control. Copyright © 2017 Elsevier B.V. All rights reserved.
Generation and collision-induced dissociation of ammonium tetrafluoroborate cluster ions.
Dain, Ryan P; Van Stipdonk, Michael J
2008-07-01
Singly and doubly charged cluster ions of ammonium tetrafluoroborate (NH4BF4) with general formula [(NH4BF4)nNH4]+ and [(NH4BF4)m(NH4)2]2+, respectively, were generated by electrospray ionization (ESI) and their fragmentation examined using collision-induced dissociation (CID) and ion-trap tandem mass spectrometry. CID of [(NH4BF4)nNH4]+ caused the loss of one or more neutral NH4BF4 units. The n = 2 cluster, [(NH4BF4)2NH4]+, was unique in that it also exhibited a dissociation pathway in which HBF4 was eliminated to create [(NH4BF4)(NH3)NH4]+. Dissociation of [(NH4BF4)m(NH4)2]2+ occurred through two general pathways: (a) 'fission' to produce singly charged cluster ions and (b) elimination of one or more neutral NH4BF4 units to leave doubly charged product ions. CID profiles, and measurements of changing precursor and product ion signal intensity as a function of applied collision voltage, were collected for [(NH4BF4)nNH4]+ and compared with those for analogous [(NaBF4)nNa]+ and [(KBF4)nK]+ ions to determine the influence of the cation on the relative stability of cluster ions. In general, the [(NH4BF4)nNH4]+ clusters were found to be easier to dissociate than both the sodium and potassium clusters of comparable size, with [(KBF4)nK]+ ions the most difficult to dissociate.
Differential functions of NR2A and NR2B in short-term and long-term memory in rats.
Jung, Ye-Ha; Suh, Yoo-Hun
2010-08-23
N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors implicated in synaptic plasticity and memory function. The specific functions of NMDA receptor subunits NR2A and NR2B have not yet been fully determined in the different types of memory. Nine Wistar rats (8-weeks-old) were subjected to the Morris water maze task to evaluate the memory behaviorally. Quantitative analysis of NR1, NR2A, and NR2B levels in the right and left forebrain of rats was performed and subunit associations with different types of memory were investigated using the Morris water maze task. Right forebrain NR2A expression was significantly increased and correlated with faster escape time onto a hidden platform, indicating involvement of short-term memory, because of the training time interval. Right forebrain NR2B expression was positively associated with long-term memory lasting 24-h (h). In the left forebrain, NR2B expression was positively related to 72-h long-term memory. In conclusion, the functions of NR2A and NR2B receptors were differentially specialized in short-term and long-term memory, depending on the right or left forebrain.
Cavodeassi, Florencia; Ivanovitch, Kenzo; Wilson, Stephen W.
2013-01-01
During forebrain morphogenesis, there is extensive reorganisation of the cells destined to form the eyes, telencephalon and diencephalon. Little is known about the molecular mechanisms that regulate region-specific behaviours and that maintain the coherence of cell populations undergoing specific morphogenetic processes. In this study, we show that the activity of the Eph/Ephrin signalling pathway maintains segregation between the prospective eyes and adjacent regions of the anterior neural plate during the early stages of forebrain morphogenesis in zebrafish. Several Ephrins and Ephs are expressed in complementary domains in the prospective forebrain and combinatorial abrogation of their activity results in incomplete segregation of the eyes and telencephalon and in defective evagination of the optic vesicles. Conversely, expression of exogenous Ephs or Ephrins in regions of the prospective forebrain where they are not usually expressed changes the adhesion properties of the cells, resulting in segregation to the wrong domain without changing their regional fate. The failure of eye morphogenesis in rx3 mutants is accompanied by a loss of complementary expression of Ephs and Ephrins, suggesting that this pathway is activated downstream of the regional fate specification machinery to establish boundaries between domains undergoing different programmes of morphogenesis. PMID:24026122
NASA Astrophysics Data System (ADS)
Mendoza-Ponce, A.; Perez Lopez, R.; Guardiola-Albert, C.; Garduño-Monroy, V. H.; Figueroa-Soto, Á.
2017-12-01
The Trans Mexican Volcanic Belt (TMVB) is related to the convergence between the Cocos and Rivera plates beneath the North American plate by the Middle America Trench (MAT). Moreover, there is also intraplate faulting within the TMVB, which is responsible of important earthquakes like the Acambay in 1912 (Mw 7.0) and Maravatío in 1979 (Mb 5.3). In this tectonic scheme, monogenetic volcanoes, active faulting and earthquakes configure a complex tectonic frame where different spatial anisotropy featured this activity. This complexity can be characterized by the power-law of the frequency-size distribution of the monogenetic volcanoes, the faults and the earthquakes. This power-law is determined by the b-value of the Gutenberg-Richter law in case of the earthquakes. The novelty of this work is the application of geostatistics techniques (variograms) for the analysis of spatial distribution of the b-values obtained from the size distribution of the basal diameter for monogenetic volcanoes in the Michoacán-Guanajuato Volcanic Field (bmv), surface area for faults in the Morelia-Acambay fault system (bf) and the seismicity in the Central TMVB (beq). Therefore, the anisotropy in each case was compared and a geometric tectonic model was proposed. The evaluation of the spatial distribution of the b-value maps gives us a general interpretation of the tectonic stress field and the seismic hazard in the zone. Hence, the beq-value map for the seismic catalog shows anomalously low and high values, reveling two different processes, one related to a typical tectonic rupture (low b-values) and the other one related to hydraulic fracturing (high b-values). The resulting bmv-map for the diameter basal cones indicates us the locations of the ages of the monogenetic volcanoes, giving important information about the volcanic hazard. High bmv-values are correlated with the presence of young cinder cones and an increasing probability of a new volcano. For the Morelia-Acambay fault system, the bf-map shows the strongest locations along the system where tectonic stress accumulates.
Tsarpali, Vasiliki; Belavgeni, Alexia; Dailianis, Stefanos
2015-07-01
This study investigated the cytotoxic, oxidative and genotoxic effects of two commonly used imidazolium ionic liquids (ILs), [bmim][BF4] (1-butyl-3-methylimidazolium) and [omim][BF4] (1-methyl-3-octylimidazolium tetrafluoroborate), on the marine mussel Mytilus galloprovincialis, as well as whether acetone could mediate their toxic profile. In this context, mussels were firstly exposed to different concentrations of [bmim][BF4] or [omim][BF4], with or without the presence of acetone (at a final concentration of 0.06% v/v), for a period of 96h, in order to determine the concentration that causes 50% mussel mortality (LC50 values) in each case. Thereafter, mussels were exposed to sub- and non-lethal concentrations of ILs for investigating their ability to cause lysosomal membrane impairment (with the use of neutral red retention assay/NRRT), superoxide anion and lipid peroxidation byproduct (malondialdehyde/MDA) formation, as well as DNA damage and formation of nuclear abnormalities in hemocytes. The results showed that [omim][BF4] was more toxic than [bmim][BF4] in all cases, while the presence of acetone resulted in a slight attenuation of its toxicity. The different toxic behavior of ILs was further revealed by the significantly lower levels of NRRT values observed in [omim][BF4]-treated mussels, compared to those occurring in [bmim][BF4] in all cases. Similarly, [bmim][BF4]-mediated oxidative and genotoxic effects were observed only in the highest concentration tested (10mgL(-1)), while [omim][BF4]-mediated effects were enhanced at lower concentrations (0.01-0.05mgL(-1)). Overall, the present study showed that [bmim][BF4] and [omim][BF4] could induce not only lethal but also nonlethal effects on mussel M. galloprovincialis. The extent of [bmim][BF4] and/or [omim][BF4]-mediated effects could be ascribed to the length of each IL alkyl chain, as well as to their lipophilicity. Moreover, the role of acetone on the obtained toxic effects of the specific ILs was reported for the first time, giving evidence for its interaction with the ILs and the modulation of their toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.
Ramires, Virgílio Viana; Dumith, Samuel Carvalho; Gonçalves, Helen
2015-09-01
Physical activity (PA) practice has been inversely associated to body fat (BF) and recommended as a way to reduce and prevent obesity. The objective of this study was to conduct a systematic review on the association of PA and BF in adolescence. The review includes 18 longitudinal studies found in the PubMed database, comprising papers published from January 1990 to July 2014. Studies assessing BF only through body mass index were excluded. Among the outcomes analyzed, waist circumference, skinfolds, and absolute and relative fat mass measurement were identified. Questionnaires were the more predominant way to evaluate PA. Most studies showed that PA promotes a protective effect against a higher BF gain. It was concluded that PA has a protective effect against BF with differences between the genders and according to the BF marker or measurement assessed; higher intensity PA leads to a greater effect against BF gain in both genders; and the maintenance or increase of PA level on BF observed through analysis of change in PA level yielded more consistent findings in the relation between PA and BF.
Antenatal breastfeeding education for increasing breastfeeding duration.
Lumbiganon, Pisake; Martis, Ruth; Laopaiboon, Malinee; Festin, Mario R; Ho, Jacqueline J; Hakimi, Mohammad
2016-12-06
Breast milk is well recognised as the best food source for infants. The impact of antenatal breastfeeding (BF) education on the duration of BF has not been evaluated. To assess the effectiveness of antenatal breastfeeding (BF) education for increasing BF initiation and duration. We searched Cochrane Pregnancy and Childbirth's Trials Register on 1 March 2016, CENTRAL (The Cochrane Library, 2016, Issue 3), MEDLINE (1966 to 1 March 2016) and Scopus (January 1985 to 1 March 2016). We contacted experts and searched reference lists of retrieved articles. All identified published, unpublished and ongoing randomised controlled trials (RCTs) assessing the effect of formal antenatal BF education or comparing two different methods of formal antenatal BF education, on the duration of BF. We included RCTs that only included antenatal interventions and excluded those that combined antenatal and intrapartum or postpartum BF education components. Cluster-randomised trials were included in this review. Quasi-randomised trials were not eligible for inclusion. We assessed all potential studies identified as a result of the search strategy. Two review authors extracted data from each included study using the agreed form and assessed risk of bias. We resolved discrepancies through discussion. We assessed the quality of the evidence using the GRADE approach. This review update includes 24 studies (10,056 women). Twenty studies (9789 women) contribute data to analyses. Most studies took place in high-income countries such as the USA, UK, Canada and Australia. In the first five comparisons, we display the included trials according to type of intervention without pooling data. For the 'Summary of findings' we pooled data for a summary effect.Five included studies were cluster-randomised trials: all of these adjusted data and reported adjustments as odds ratios (OR). We have analysed the data using the generic inverse variance method and presented results as odds ratios, because we were unable to derive a cluster-adjusted risk ratio from the published cluster-trial. We acknowledge that the use of odds ratio prevents the pooling of these cluster trials in our main analyses. One method of BF education with standard (routine) careThere were no group differences for duration of any BF in days or weeks. There was no evidence that interventions improved the proportion of women with any BF or exclusive BF at three or six months. Single trials of different interventions were unable to show that education improved initiation of BF, apart from one small trial at high risk of attrition bias. Many trial results marginally favoured the intervention but had wide confidence intervals crossing the line of no effect. BF complications such as mastitis and other BF problems were similar in treatment arms in single trials reporting these outcomes. Multiple methods of BF education versus standard careFor all trials included in this comparison we have presented the cluster-adjusted odds ratios as reported in trial publications. One three-arm study found the intervention of BF booklet plus video plus Lactation Consultant versus standard care improved the proportion of women exclusively BF at three months (OR 2.60, 95% CI 1.25 to 5.40; women = 159) and marginally at six months (OR 2.40, 95% CI 1.00 to 5.76; women = 175). For the same trial, an intervention arm without a lactation consultant but with the BF booklet and video did not have the same effect on proportion of women exclusively BF at three months (OR 1.80, 95% CI 0.80 to 4.05; women = 159) or six months (OR 0.90, 95% CI 0.30 to 2.70; women = 184). One study compared monthly BF sessions and weekly cell phone message versus standard care and reported improvements in the proportion of women exclusively BF at both three and six months (three months OR 1.80, 95% CI 1.10 to 2.95; women = 390; six months OR 2.40, 95% CI 1.40 to 4.11; women = 390). One study found monthly BF sessions and weekly cell phone messages improved initiation of BF over standard care (OR 2.61, 95% CI 1.61 to 4.24; women = 380). BF education session versus standard care, pooled analyses for 'Summary of findings' (SoF)This comparison does not include cluster-randomised trials reporting adjusted odds ratios. We did not downgrade any evidence for trials' lack of blinding; no trial had adequate blinding of staff and participants. The SoF table presents risk ratios for all outcomes analysed. For proportion of women exclusively BF there is no evidence that antenatal BF education improved BF at three months (RR 1.06, 95% CI 0.90 to 1.25; women = 822; studies = 3; moderate quality evidence) or at six months (RR 1.07, 95% CI 0.87 to 1.30; women = 2161; studies = 4; moderate quality evidence). For proportion of women with any BF there were no group differences in BF at three (average RR 0.98, 95% CI 0.82 to 1.18; women = 654; studies = 2; I² = 60%; low-quality evidence) or six months (average RR 1.05, 95% CI 0.90 to 1.23; women = 1636; studies = 4; I² = 61%; high-quality evidence). There was no evidence that antenatal BF education could improve initiation of BF (average RR 1.01, 95% CI 0.94 to 1.09; women = 3505; studies = 8; I² = 69%; high-quality evidence). Where we downgraded evidence this was due to small sample size or wide confidence intervals crossing the line of no effect, or both.There was insufficient data for subgroup analysis of mother's occupation or education. There was no conclusive evidence supporting any antenatal BF education for improving initiation of BF, proportion of women giving any BF or exclusively BF at three or six months or the duration of BF. There is an urgent need to conduct a high-quality, randomised controlled study to evaluate the effectiveness and adverse effects of antenatal BF education, especially in low- and middle-income countries. Evidence in this review is primarily relevant to high-income settings.
Validity and Reliability of Assessing Body Composition Using a Mobile Application.
Macdonald, Elizabeth Z; Vehrs, Pat R; Fellingham, Gilbert W; Eggett, Dennis; George, James D; Hager, Ronald
2017-12-01
The purpose of this study was to determine the validity and reliability of the LeanScreen (LS) mobile application that estimates percent body fat (%BF) using estimates of circumferences from photographs. The %BF of 148 weight-stable adults was estimated once using dual-energy x-ray absorptiometry (DXA). Each of two administrators assessed the %BF of each subject twice using the LS app and manually measured circumferences. A mixed-model ANOVA and Bland-Altman analyses were used to compare the estimates of %BF obtained from each method. Interrater and intrarater reliabilities values were determined using multiple measurements taken by each of the two administrators. The LS app and manually measured circumferences significantly underestimated (P < 0.05) the %BF determined using DXA by an average of -3.26 and -4.82 %BF, respectively. The LS app (6.99 %BF) and manually measured circumferences (6.76 %BF) had large limits of agreement. All interrater and intrarater reliability coefficients of estimates of %BF using the LS app and manually measured circumferences exceeded 0.99. The estimates of %BF from manually measured circumferences and the LS app were highly reliable. However, these field measures are not currently recommended for the assessment of body composition because of significant bias and large limits of agreements.
Simmons, J M; Ackermann, R F; Gallistel, C R
1998-10-15
Lesions in the medial forebrain bundle rostral to a stimulating electrode have variable effects on the rewarding efficacy of self-stimulation. We attempted to account for this variability by measuring the anatomical and functional effects of electrolytic lesions at the level of the lateral hypothalamus (LH) and by correlating these effects to postlesion changes in threshold pulse frequency (pps) for self-stimulation in the ventral tegmental area (VTA). We implanted True Blue in the VTA and compared cell labeling patterns in forebrain regions of intact and lesioned animals. We also compared stimulation-induced regional [14C]deoxyglucose (DG) accumulation patterns in the forebrains of intact and lesioned animals. As expected, postlesion threshold shifts varied: threshold pps remained the same or decreased in eight animals, increased by small but significant amounts in three rats, and increased substantially in six subjects. Unexpectedly, LH lesions did not anatomically or functionally disconnect all forebrain nuclei from the VTA. Most septal and preoptic regions contained equivalent levels of True Blue label in intact and lesioned animals. In both intact and lesioned groups, VTA stimulation increased metabolic activity in the fundus of the striatum (FS), the nucleus of the diagonal band, and the medial preoptic area. On the other hand, True Blue labeling demonstrated anatomical disconnection of the accumbens, FS, substantia innominata/magnocellular preoptic nucleus (SI/MA), and bed nucleus of the stria terminalis. [14C]DG autoradiography indicated functional disconnection of the lateral preoptic area and SI/MA. Correlations between patterns of True Blue labeling or [14C]deoxyglucose accumulation and postlesion shifts in threshold pulse frequency were weak and generally negative. These direct measures of connectivity concord with the behavioral measures in suggesting a diffuse net-like connection between forebrain nuclei and the VTA.
Preissl, Sebastian; Fang, Rongxin; Huang, Hui; Zhao, Yuan; Raviram, Ramya; Gorkin, David U; Zhang, Yanxiao; Sos, Brandon C; Afzal, Veena; Dickel, Diane E; Kuan, Samantha; Visel, Axel; Pennacchio, Len A; Zhang, Kun; Ren, Bing
2018-03-01
Analysis of chromatin accessibility can reveal transcriptional regulatory sequences, but heterogeneity of primary tissues poses a significant challenge in mapping the precise chromatin landscape in specific cell types. Here we report single-nucleus ATAC-seq, a combinatorial barcoding-assisted single-cell assay for transposase-accessible chromatin that is optimized for use on flash-frozen primary tissue samples. We apply this technique to the mouse forebrain through eight developmental stages. Through analysis of more than 15,000 nuclei, we identify 20 distinct cell populations corresponding to major neuronal and non-neuronal cell types. We further define cell-type-specific transcriptional regulatory sequences, infer potential master transcriptional regulators and delineate developmental changes in forebrain cellular composition. Our results provide insight into the molecular and cellular dynamics that underlie forebrain development in the mouse and establish technical and analytical frameworks that are broadly applicable to other heterogeneous tissues.
Collins, Kelsey H; Sharif, Behnam; Sanmartin, Claudia; Reimer, Raylene A; Herzog, Walter; Chin, Rick; Marshall, Deborah A
2017-03-01
To evaluate the association between percent body fat (%BF) and body mass index (BMI) among BMI-defined non-obese individuals between 40 and 69 years of age using a population-based Canadian sample. Cross-sectional data from the Canadian Health Measures Survey (2007 and 2009) was used to select all middle-aged individuals with BMI < 30 kg/m2 (n = 2,656). %BF was determined from anthropometric skinfolds and categorized according to sex-specific equations. Association of other anthropometry measures and metabolic markers were evaluated across different %BF categories. Significance of proportions was evaluated using chi-squared and Bonferroni-adjusted Wald test. Diagnostic performance measures of BMI-defined overweight categories compared to those defined by %BF were reported. The majority (69%) of the sample was %BF-defined overweight/obese, while 55% were BMI-defined overweight. BMI category was not concordant with %BF classification for 30% of the population. The greatest discordance between %BF and BMI was observed among %BF-defined overweight/obese women (32%). Sensitivity and specificity of BMI-defined overweight compared to %BF-defined overweight/obese were (58%, 94%) among females and (82%, 59%) among males respectively. According to the estimated negative predictive value, if an individual is categorized as BMI-defined non-obese, he/she has a 52% chance of being in the %BF-defined overweight/obese category. Middle-aged individuals classified as normal by BMI may be overweight/obese based on measures of %BF. These individuals may be at risk for chronic diseases, but would not be identified as such based on their BMI classification. Quantifying %BF in this group could inform targeted strategies for disease prevention.
Ramírez-Vélez, Robinson; Correa-Bautista, Jorge Enrique; González-Ruíz, Katherine; Vivas, Andrés; García-Hermoso, Antonio; Triana-Reina, Hector Reynaldo
2016-01-01
The body adiposity index (BAI) is a recent anthropometric measure proven to be valid in predicting body fat percentage (BF%) in some populations. However, the results have been inconsistent across populations. This study was designed to verify the validity of BAI in predicting BF% in a sample of overweight/obese adults, using dual-energy X-ray absorptiometry (DEXA) as the reference method. A cross-sectional study was conducted in 48 participants (54% women, mean age 41.0 ± 7.3 years old). DEXA was used as the “gold standard” to determine BF%. Pearson’s correlation coefficient was used to evaluate the association between BAI and BF%, as assessed by DEXA. A paired sample t-test was used to test differences in mean BF% obtained with BAI and DEXA methods. To evaluate the concordance between BF% as measured by DEXA and as estimated by BAI, we used Lin’s concordance correlation coefficient and Bland–Altman agreement analysis. The correlation between BF% obtained by DEXA and that estimated by BAI was r = 0.844, p < 0.001. Paired t-test showed a significant mean difference in BF% between methods (BAI = 33.3 ± 6.2 vs. DEXA 39.0 ± 6.1; p < 0.001). The bias of the BAI was −6.0 ± 3.0 BF% (95% CI = −12.0 to 1.0), indicating that the BAI method significantly underestimated the BF% compared to the reference method. Lin’s concordance correlation coefficient was considered stronger (ρc = 0.923, 95% CI = 0.862 to 0.957). In obese adults, BAI presented low agreement with BF% measured by DEXA; therefore, BAI is not recommended for BF% prediction in this overweight/obese sample studied. PMID:27916871
Lamperti, A A; Pickard, G E
1984-05-01
The immunohistochemical localization of luteinizing hormone-releasing hormone (LHRH) was studied in paraffin and vibratome-sectioned tissue from adult female hamsters that were treated neonatally with monosodium glutamate (MSG) or hypertonic saline. There appeared to be a reduction in LHRH-positive fibers in the median eminence of animals with an MSG-induced lesion of the arcuate nucleus in paraffin-embedded tissue. However, when unembedded tissue was cut on a vibratome, the distribution of LHRH-positive fibers and perikarya was similar in both groups of animals. Fibers were seen coursing through the periventricular area and lateral hypothalamus to the median eminence. In addition, LHRH-positive fibers were seen in the organum vasculosum of the lamina terminalis, subfornical organ, septal and preoptic areas, fasciculus retroflexus, habenular complex, and several regions in the basal forebrain. Animals that were pretreated with colchicine had LHRH-positive perikarya in the medial habenular nucleus, diagonal band of Broca, and the medial olfactory tract.
Selectively driving cholinergic fibers optically in the thalamic reticular nucleus promotes sleep
Ni, Kun-Ming; Hou, Xiao-Jun; Yang, Ci-Hang; Dong, Ping; Li, Yue; Zhang, Ying; Jiang, Ping; Berg, Darwin K; Duan, Shumin; Li, Xiao-Ming
2016-01-01
Cholinergic projections from the basal forebrain and brainstem are thought to play important roles in rapid eye movement (REM) sleep and arousal. Using transgenic mice in which channelrhdopsin-2 is selectively expressed in cholinergic neurons, we show that optical stimulation of cholinergic inputs to the thalamic reticular nucleus (TRN) activates local GABAergic neurons to promote sleep and protect non-rapid eye movement (NREM) sleep. It does not affect REM sleep. Instead, direct activation of cholinergic input to the TRN shortens the time to sleep onset and generates spindle oscillations that correlate with NREM sleep. It does so by evoking excitatory postsynaptic currents via α7-containing nicotinic acetylcholine receptors and inducing bursts of action potentials in local GABAergic neurons. These findings stand in sharp contrast to previous reports of cholinergic activity driving arousal. Our results provide new insight into the mechanisms controlling sleep. DOI: http://dx.doi.org/10.7554/eLife.10382.001 PMID:26880556
NASA Astrophysics Data System (ADS)
Ernfors, Patrik; Ebendal, Ted; Olson, Lars; Mouton, Peter; Stromberg, Ingrid; Persson, Hakan
1989-06-01
The rat β nerve growth factor (NGF) gene was inserted into a mammalian expression vector and cotransfected with a plasmid conferring resistance to neomycin into mouse 3T3 fibroblasts. From this transfection a stable cell line was selected that contains several hundred copies of the rat NGF gene and produces excess levels of recombinant NGF. Such genetically modified cells were implanted into the rat brain as a probe for in vivo effects of NGF on central nervous system neurons. In a model of the cortical cholinergic deficits in Alzheimer disease, we demonstrate a marked increase in the survival of, and fiber outgrowth from, grafts of fetal basal forebrain cholinergic neurons, as well as stimulation of fiber formation by intact adult intrinsic cholinergic circuits in the cerebral cortex. Adult cholinergic interneurons in intact striatum also sprout vigorously toward implanted fibroblasts. Our results suggest that this model has implications for future treatment of neurodegenerative diseases.
Focal Scn1a knockdown induces cognitive impairment without seizures
Bender, Alex C.; Natola, Heather; Holmes, Gregory L.; Scott, Rod C.; Lenck-Santini, Pierre-Pascal
2013-01-01
Cognitive impairment is a common comorbidity in pediatric epilepsy that can severely affect quality of life. In many cases, antiepileptic treatments fail to improve cognition. Therefore, a fundamental question is whether underlying brain abnormalities may contribute to cognitive impairment through mechanisms independent of seizures. Here, we examined the possible effects on cognition of Nav1.1 down-regulation, a sodium channel principally involved in Dravet syndrome but also implicated in other cognitive disorders, including autism and Alzheimer’s disease. Using an siRNA approach to knockdown Nav1.1 selectively in the basal forebrain region, we were able to target a learning and memory network while avoiding the generation of spontaneous seizures. We show that reduction of Nav1.1 expression in the medial septum and diagonal band of Broca leads to a dysregulation of hippocampal oscillations in association with a spatial memory deficit. We propose that the underlying etiology responsible for Dravet syndrome may directly contribute to cognitive impairment in a manner that is independent from seizures. PMID:23318929
Brain mechanisms that control sleep and waking
NASA Astrophysics Data System (ADS)
Siegel, Jerome
This review paper presents a brief historical survey of the technological and early research that laid the groundwork for recent advances in sleep-waking research. A major advance in this field occurred shortly after the end of World War II with the discovery of the ascending reticular activating system (ARAS) as the neural source in the brain stem of the waking state. Subsequent research showed that the brain stem activating system produced cortical arousal via two pathways: a dorsal route through the thalamus and a ventral route through the hypothalamus and basal forebrain. The nuclei, pathways, and neurotransmitters that comprise the multiple components of these arousal systems are described. Sleep is now recognized as being composed of two very different states: rapid eye movements (REMs) sleep and non-REM sleep. The major findings on the neural mechanisms that control these two sleep states are presented. This review ends with a discussion of two current views on the function of sleep: to maintain the integrity of the immune system and to enhance memory consolidation.
Liedl, Alexandra; Müller, Julia; Morina, Naser; Karl, Anke; Denke, Claudia; Knaevelsrud, Christine
2011-02-01
Many traumatized refugees experience both posttraumatic stress disorder and chronic pain. Based on Mutual Maintenance Theory and the Perpetual Avoidance Model, this study examined the additional effect of physical activity within a biofeedback-based cognitive behavioral therapy (CBT-BF) for traumatized refugees. In a controlled design, 36 patients were randomized into one of three conditions (CBT-BF, CBT-BF with physical activity [CBT-BF+active], and a waiting list control group [WL]). Thirty patients (n=10 in each group) completed the treatment and a follow-up assessment 3 months later. Participants' coping strategies, pain and mental health status, and physiological reactivity were assessed before and after the intervention and at 3-month follow-up. Treatment effects were analyzed using analyses of variance with baseline scores as covariates (ANCOVAs) and the Reliable Change Index. The CBT-BF and CBT-BF+active groups showed improvements in all outcome measures relative to the WL group. The effect sizes for the main outcome measures were higher in the CBT-BF+active group than in the CBT-BF group. Repeated measures analyses of covariance showed significant group effects for coping strategies--in particular, for the "cognitive restructuring" and "counter-activities" subscales as well as a marginally significant group effect for "perceived self-competence"--with the CBT-BF+active group showing more favorable outcomes than the CBT-BF group. Moreover, 60% of participants in the CBT-BF+active group showed clinically reliable intraindividual change in at least one subscale of the pain coping strategies questionnaire, compared with just 30% of participants in the CBT-BF group. Findings of improved coping strategies, larger effect sizes, and higher rates of clinical improvement in the CBT-BF+active group suggest that physical activity adds value to pain management interventions for traumatized refugees. Given the small sample size, however, these preliminary results need replication in a larger trial. Wiley Periodicals, Inc.
Effect of banana flour, screw speed and temperature on extrusion behaviour of corn extrudates.
Kaur, Amritpal; Kaur, Seeratpreet; Singh, Mrinal; Singh, Narpinder; Shevkani, Khetan; Singh, Baljit
2015-07-01
Effect of extrusion parameters (banana flour, screw speed, extrusion temperature) on extrusion behaviour of corn grit extrudates were studied. Second order quadratic equations for extrusion properties as function of banana flour (BF), screwspeed (SS) and extrusion temperature (ET) were computed. BF had predominant effect on the Hunter color (L*, a*, b*) parameters of the extrudates. Addition of BF resulted in corn extrudates with higher L* and lower a* and b* values. Higher ET resulted in dark colored extrudates with lower L* and a* value. Higher SS enhanced the lightness of the extrudates. Expansion of the extrudates increased with increase in the level of BF and ET. WAI of the extrudates decreased with BF whereas increased with SS. However, reversed effect of BF and SS on WSI was observed. Flextural strength of the extrudates increased with increase in SS followed by BF and ET. The addition of BF and higher ET resulted in extrudates with higher oil uptake.
Choe, Katrina Y; Sanchez, Carlos F; Harris, Neil G; Otis, Thomas S; Mathews, Paul J
2018-06-01
Complex animal behavior is produced by dynamic interactions between discrete regions of the brain. As such, defining functional connections between brain regions is critical in gaining a full understanding of how the brain generates behavior. Evidence suggests that discrete regions of the cerebellar cortex functionally project to the forebrain, mediating long-range communication potentially important in motor and non-motor behaviors. However, the connectivity map remains largely incomplete owing to the challenge of driving both reliable and selective output from the cerebellar cortex, as well as the need for methods to detect region specific activation across the entire forebrain. Here we utilize a paired optogenetic and fMRI (ofMRI) approach to elucidate the downstream forebrain regions modulated by activating a region of the cerebellum that induces stereotypical, ipsilateral forelimb movements. We demonstrate with ofMRI, that activating this forelimb motor region of the cerebellar cortex results in functional activation of a variety of forebrain and midbrain areas of the brain, including the hippocampus and primary motor, retrosplenial and anterior cingulate cortices. We further validate these findings using optogenetic stimulation paired with multi-electrode array recordings and post-hoc staining for molecular markers of activated neurons (i.e. c-Fos). Together, these findings demonstrate that a single discrete region of the cerebellar cortex is capable of influencing motor output and the activity of a number of downstream forebrain as well as midbrain regions thought to be involved in different aspects of behavior. Copyright © 2018 Elsevier Inc. All rights reserved.
Forebrain Mechanisms of Nociception and Pain: Analysis through Imaging
NASA Astrophysics Data System (ADS)
Casey, Kenneth L.
1999-07-01
Pain is a unified experience composed of interacting discriminative, affective-motivational, and cognitive components, each of which is mediated and modulated through forebrain mechanisms acting at spinal, brainstem, and cerebral levels. The size of the human forebrain in relation to the spinal cord gives anatomical emphasis to forebrain control over nociceptive processing. Human forebrain pathology can cause pain without the activation of nociceptors. Functional imaging of the normal human brain with positron emission tomography (PET) shows synaptically induced increases in regional cerebral blood flow (rCBF) in several regions specifically during pain. We have examined the variables of gender, type of noxious stimulus, and the origin of nociceptive input as potential determinants of the pattern and intensity of rCBF responses. The structures most consistently activated across genders and during contact heat pain, cold pain, cutaneous laser pain or intramuscular pain were the contralateral insula and anterior cingulate cortex, the bilateral thalamus and premotor cortex, and the cerebellar vermis. These regions are commonly activated in PET studies of pain conducted by other investigators, and the intensity of the brain rCBF response correlates parametrically with perceived pain intensity. To complement the human studies, we developed an animal model for investigating stimulus-induced rCBF responses in the rat. In accord with behavioral measures and the results of human PET, there is a progressive and selective activation of somatosensory and limbic system structures in the brain and brainstem following the subcutaneous injection of formalin. The animal model and human PET studies should be mutually reinforcing and thus facilitate progress in understanding forebrain mechanisms of normal and pathological pain.
Gómez-Picos, Patsy; Sifuentes-Romero, Itzel; Merchant-Larios, Horacio; Hernández-Cornejo, Rubí; Díaz-Hernández, Verónica; García-Gasca, Alejandra
2014-01-01
Brain aromatase participates in several biological processes, such as regulation of the reproductive-endocrine axis, memory, stress, sexual differentiation of the nervous system, male sexual behavior, and brain repair. Here we report the isolation and expression of brain aromatase in olive ridley sea turtle (Lepidochelys olivacea) embryos incubated at male- and female-promoting temperatures (MPT and FPT, respectively), at the thermosensitive period (TSP) and the sex-differentiated period. Also, aromatase expression was assessed in differentiated embryos exposed to bisphenol-A (BPA) during the TSP. BPA is a monomer of polycarbonate plastics and is considered an endocrine-disrupting compound. Normal aromatase expression was measured in both forebrain and hindbrain, showing higher expression levels in the forebrain of differentiated embryos at both incubation temperatures. Although no significant differences were detected in the hindbrain, expression was slightly higher at MPT. BPA did not affect aromatase expression neither in forebrains or hindbrains from embryos incubated at MPT, whereas at FPT an inverted U-shape curve was observed in forebrains with significant differences at lower concentrations, whereas in hindbrains a non-significant increment was observed at higher concentrations. Our data indicate that both incubation temperature and developmental stage are critical factors affecting aromatase expression in the forebrain. Because of the timing and location of aromatase expression in the brain, we suggest that brain aromatase may participate in the imprinting of sexual trends related to reproduction and sexual behavior at the onset of sex differentiation, and BPA exposure may impair aromatase function in the female forebrain.
Telford, R D; Cunningham, R B; Abhayaratna, W P
2014-12-01
The index of body mass related to stature, (body mass index, BMI, kgm(-2) ), is widely used as a proxy for percent body fat (%BF) in cross-sectional and longitudinal investigations. BMI does not distinguish between lean and fat mass and in children, the cross-sectional relationship between %BF and BMI changes with age and sex. While BMI increases linearly with age from age 8 to 12 years in both boys and girls, %BF plateaus off between 10 and 12 years. Repeated measures in children show a systematic decrease in %BF for any given BMI from age 8 to 10 to 12 years. Because changes in BMI misrepresent changes in %BF, its use as a proxy of %BF should be avoided in longitudinal studies in this age group. Body mass index (BMI, kgm(-2) ) is commonly used as an indicator of pediatric adiposity, but with its inability to distinguish changes in lean and fat mass, its use in longitudinal studies of children requires careful consideration. To investigate the suitability of BMI as a surrogate of percent body fat (%BF) in pediatric longitudinal investigations. In this longitudinal study, healthy Australian children (256 girls and 278 boys) were measured at ages 8.0 (standard deviation 0.3), 10.0 and 12.0 years for height, weight and percent body fat (%BF) by dual-energy X-ray absorptiometry. The patterns of change in the means of %BF and BMI were different (P < 0.001). While mean BMI increased linearly from 8 to 12 years of age, %BF did not change between 10 and 12 years. Relationships between %BF and BMI in boys and girls were curvilinear and varied with age (P < 0.001) and gender (P < 0.001); any given BMI corresponding with a lower %BF as a child became older. Considering the divergence of temporal patterns of %BF and BMI between 10 and 12 years of age, employment of BMI as a proxy for %BF in absolute or age and sex standardized forms in pediatric longitudinal investigations is problematical. © 2013 The Authors. Pediatric Obesity © 2013 International Association for the Study of Obesity.
2014-01-01
Background Although body fat percent (BF%) may be used for screening metabolic risk factors, its accuracy compared to BMI and waist circumference is unknown in a Mexican population. We compared the classification accuracy of BF%, BMI and WC for the detection of metabolic risk factors in a sample of Mexican adults; optimized cutoffs as well as sensitivity and specificity at commonly used BF% and BMI international cutoffs were estimated. We also estimated conditional BF% means at BMI international cutoffs. Methods We performed a cross-sectional analysis of data on body composition, anthropometry and metabolic risk factors(high glucose, high triglycerides, low HDL cholesterol and hypertension) from 5,100 Mexican men and women. The association between BMI, WC and BF%was evaluated with linear regression models. The BF%, BMI and WC optimal cutoffs for the detection of metabolic risk factors were selected at the point where sensitivity was closest to specificity. Areas under the ROC Curve (AUC) were compared among classifiers using a non-parametric method. Results After adjustment for WC, a 1% increase in BMI was associated with a BF% rise of 0.05 percentage points (p.p.) in men (P < 0.05) and 0.25 p.p. in women (P < 0.001). At BMI = 25.0 predicted BF% was 27.6 ± 0.16 (mean ± SE) in men and 41.2 ± 0.07 in women. Estimated BF% cutoffs for detection of metabolic risk factors were close to 30.0 in men and close to 44.0 in women. In men WC had higher AUC than BF% for the classification of all conditions whereas BMI had higher AUC than BF% for the classification of high triglycerides and hypertension. In womenBMI and WC had higher AUC than BF% for the classification of all metabolic risk factors. Conclusions BMI and WC were more accurate than BF% for classifying the studied metabolic disorders. International BF% cutoffs had very low specificity and thus produced a high rate of false positives in both sexes. PMID:24721260
Does body mass index misclassify physically active young men.
Grier, Tyson; Canham-Chervak, Michelle; Sharp, Marilyn; Jones, Bruce H
2015-01-01
The purpose of this analysis was to determine the accuracy of age and gender adjusted BMI as a measure of body fat (BF) in U.S. Army Soldiers. BMI was calculated through measured height and weight (kg/m(2)) and body composition was determined by dual energy X-ray absorptiometry (DEXA). Linear regression was used to determine a BF prediction equation and examine the correlation between %BF and BMI. The sensitivity and specificity of BMI compared to %BF as measured by DEXA was calculated. Soldiers (n = 110) were on average 23 years old, with a BMI of 26.4, and approximately 18% BF. The correlation between BMI and %BF (R = 0.86) was strong (p < 0.01). A sensitivity of 77% and specificity of 100% were calculated when using Army age adjusted BMI thresholds. The overall accuracy in determining if a Soldier met Army BMI standards and were within the maximum allowable BF or exceeded BMI standards and were over the maximum allowable BF was 83%. Using adjusted BMI thresholds in populations where physical fitness and training are requirements of the job provides better accuracy in identifying those who are overweight or obese due to high BF.
Rossato, M; Dellagrana, R A; de Souza Bezerra, E; da Costa, R M; Dos Santos, J O L; Silva, D A S; Diefenthaeler, F
2017-11-01
The aim of this study was to verify the agreement between body fat percentage (%BF) values evaluated by air displacement plethysmograph (ADP) and body adiposity index (BAI) in adults with Down's syndrome (DS). Forty-five adults with DS volunteered to participate in this study (19 women; age 28.7±8.5 years and 26 men; age 29.1±8.8 years). The %BF was measured by ADP (%BF ADP ) and estimated by anthropometric measures [%BF=(hip circumference/height) 1.5 -18] (%BF BAI ). Agreement between methods was evaluated by paired t-test, Pearson's correlation coefficient and Bland-Altman analysis. Although high correlation coefficients were found between %BF ADP and %BF BAI for women (r=0.78, P<0.05) and men (r=0.87, P<0.05), significant differences were observed between methods for both sexes (38.9±8.9 vs 42.5±8.5% for women, and 25.8±11.3 vs 32.6±5.4% for men in %BF ADP and %BF BAI , respectively). Moreover, Bland-Altman analysis showed that the mean error estimate was +3.6 (95%CI, -7.59 to 14.79) in women and +6.74 (95%CI, -7.25 to 20.72) in men. The results indicate that BAI seems to be a limited method to evaluate %BF in women and in men with DS.
Biaggi, R R; Vollman, M W; Nies, M A; Brener, C E; Flakoll, P J; Levenhagen, D K; Sun, M; Karabulut, Z; Chen, K Y
1999-05-01
Over the past decade, considerable attention has been paid to accurately measuring body composition in diverse populations. Recently, the use of air-displacement plethysmography (AP) was proposed as an accurate, comfortable, and accessible method of body-composition analysis. The purpose of this study was to compare measurements of percentage body fat (%BF) by AP and 2 other established techniques, hydrostatic weighing (HW) and bioelectrical impedance analysis (BIA), in adults. The sample consisted of healthy men (n = 23) and women (n = 24). %BF was measured by AP, HW, and BIA. In the total group, %BF(AP) (25.0+/-8.9%) was not significantly different from %BF(HW) (25.1+/-7.7%) or %BF(BIA) (23.9+/-7.7%), and %BF(AP) was significantly correlated with %BF(HW) (r = 0.944, P < 0.001) and with %BF(BIA) (r = 0.859, P < 0.01). Compared with HW, AP underestimated %BF in men (by -1.24+/-3.12%) but overestimated %BF in women (by 1.02+/-2.48%), indicating a significant sex effect (P < 0.05). The differences in estimation between AP and BIA and between BIA and HW were not significantly different between the sexes. AP is an accurate method for assessing body composition in healthy adults. Future studies should assess further the cause of the individual variations with this new method.
Zhu, Shankuan; Wang, ZiMian; Shen, Wei; Heymsfield, Steven B; Heshka, Stanley
2003-08-01
Increasing attention has focused on the association between body fatness and related metabolic risk factors. The quantitative link between percentage body fat (%BF) and the risk of metabolic syndrome is unknown. The objectives were to determine the risk [odds ratios (ORs)] of metabolic syndrome based on %BF in black and white men and women in the United States and to provide corresponding ranges of %BF associated with a risk equivalent to body mass index (BMI; in kg/m(2)). The subjects were participants in the third National Health and Nutrition Examination Survey and were divided into those with and without the metabolic syndrome. OR equations were derived from logistic regression models for %BF and BMI, with the 25th percentile in the study population as the reference. Ranges were developed by associating %BF with the equivalent risk of metabolic syndrome based on established BMI cutoffs. Four sets (men, women, black, and white) of OR curves were generated for %BF and for BMI by using data from 8259 adults. The ORs for metabolic syndrome were lower in blacks than in whites at any given %BF or BMI. The developed cutoffs for %BF differed between men and women but showed only small race and age effects. A simplified set of sex-specific %BF ranges for the risk of metabolic syndrome were developed. The risk of metabolic syndrome can be established from measured %BF by using either the developed OR curves or %BF thresholds at traditional BMI cutoffs. This information should prove useful in both clinical and research settings.
Sekiguchi, Toshio; Shiraishi, Akira; Satake, Honoo; Kuwasako, Kenji; Takahashi, Hiroki; Sato, Masayuki; Urata, Makoto; Wada, Shuichi; Endo, Masato; Ikari, Takahiro; Hattori, Atsuhiko; Srivastav, Ajai K; Suzuki, Nobuo
2017-05-15
Calcitonin (CT) is a hormone that decreases serum calcium level by suppressing osteoclastic activity in the vertebrate bone. In vertebrates, the structure-function relationship of CTs has been studied extensively. We recently identified three CT superfamily peptides, Bf-CTFP1 to 3, and clarified the molecular and functional characteristics of their receptor and receptor activity-modifying protein in amphioxus, Branchiostoma floridae. However, the CT activity of Bf-CTFPs has yet to be investigated. In the present study, a functional analysis of Bf-CTFPs was performed using goldfish scales having both osteoclasts and osteoblasts. All Bf-CTFPs suppressed osteoclastic activity via a goldfish CT receptor. Although the primary amino acid sequences of the Bf-CTFPs showed low sequence similarity to vertebrate CTs, Bf-CTFP1 to 3 share three amino acids, Thr 25 , Thr 27 , and Pro 32 -NH 2 , that are required for receptor binding, with salmon CT. Moreover, homology model analysis revealed that the Bf-CTFPs form alpha-helical structures. The alpha-helical position and length of Bf-CTFP1 and 2 were conserved with those of a highly potent ligand, teleost CT. Interestingly, the composition of the alpha-helix of Bf-CTFP3 differed from those of teleost CT, despite that the action of Bf-CTFP3 on goldfish scales was the same as that of Bf-CTFP1 and 2. Collectively, the present study provides new insights into the structure-function relationship of CT and its functional evolution in chordates. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nord, Alex S.; Pattabiraman, Kartik; Visel, Axel
The forebrain is the seat of higher-order brain functions, and many human neuropsychiatric disorders are due to genetic defects affecting forebrain development, making it imperative to understand the underlying genetic circuitry. We report that recent progress now makes it possible to begin fully elucidating the genomic regulatory mechanisms that control forebrain gene expression. Here, we discuss the current knowledge of how transcription factors drive gene expression programs through their interactions with cis-acting genomic elements, such as enhancers; how analyses of chromatin and DNA modifications provide insights into gene expression states; and how these approaches yield insights into the evolution ofmore » the human brain.« less
Enhanced recognition memory following glycine transporter 1 deletion in forebrain neurons.
Singer, Philipp; Boison, Detlev; Möhler, Hanns; Feldon, Joram; Yee, Benjamin K
2007-10-01
Selective deletion of glycine transporter 1 (GlyT1) in forebrain neurons enhances N-methyl-D-aspartate receptor (NMDAR)-dependent neurotransmission and facilitates associative learning. These effects are attributable to increases in extracellular glycine availability in forebrain neurons due to reduced glycine re-uptake. Using a forebrain- and neuron-specific GlyT1-knockout mouse line (CamKIIalphaCre; GlyT1tm1.2fl/fI), the authors investigated whether this molecular intervention can affect recognition memory. In a spontaneous object recognition memory test, enhanced preference for a novel object was demonstrated in mutant mice relative to littermate control subjects at a retention interval of 2 hr, but not at 2 min. Furthermore, mutants were responsive to a switch in the relative spatial positions of objects, whereas control subjects were not. These potential procognitive effects were demonstrated against a lack of difference in contextual novelty detection: Mutant and control subjects showed equivalent preference for a novel over a familiar context. Results therefore extend the possible range of potential promnesic effects of specific forebrain neuronal GlyT1 deletion from associative learning to recognition memory and further support the possibility that mnemonic functions can be enhanced by reducing GlyT1 function. (PsycINFO Database Record (c) 2007 APA, all rights reserved).
Clonal and molecular analysis of the prospective anterior neural boundary in the mouse embryo
Cajal, Marieke; Lawson, Kirstie A.; Hill, Bill; Moreau, Anne; Rao, Jianguo; Ross, Allyson; Collignon, Jérôme; Camus, Anne
2012-01-01
In the mouse embryo the anterior ectoderm undergoes extensive growth and morphogenesis to form the forebrain and cephalic non-neural ectoderm. We traced descendants of single ectoderm cells to study cell fate choice and cell behaviour at late gastrulation. In addition, we provide a comprehensive spatiotemporal atlas of anterior gene expression at stages crucial for anterior ectoderm regionalisation and neural plate formation. Our results show that, at late gastrulation stage, expression patterns of anterior ectoderm genes overlap significantly and correlate with areas of distinct prospective fates but do not define lineages. The fate map delineates a rostral limit to forebrain contribution. However, no early subdivision of the presumptive forebrain territory can be detected. Lineage analysis at single-cell resolution revealed that precursors of the anterior neural ridge (ANR), a signalling centre involved in forebrain development and patterning, are clonally related to neural ectoderm. The prospective ANR and the forebrain neuroectoderm arise from cells scattered within the same broad area of anterior ectoderm. This study establishes that although the segregation between non-neural and neural precursors in the anterior midline ectoderm is not complete at late gastrulation stage, this tissue already harbours elements of regionalisation that prefigure the later organisation of the head. PMID:22186731
Hegyi, Thomas; Kathiravan, Suganya; Stahl, Gary E; Huber, Andrew H; Kleinfeld, Alan
2013-01-01
Extremely low birth weight (ELBW; <1,000 g) infants have poor outcomes, often compromised by bilirubin neurotoxicity. We measured unbound bilirubin (Bf) and unbound free fatty acid (FFAu) levels in 5 ELBW infants in a trial examining the effects of pharmacologic ductal closure on infants treated with Intralipid infusion (3 g/kg/day). The levels for all infants (mean ± SD) were: total serum bilirubin (TSB) 4.6 ± 1.7 mg/dl, FFAu 376 ± 496 nM, and Bf 42 ± 30 nM. Of the 3 infants who died, 2 had TSB <5.9 mg/dl but FFAu >580 nM and Bf >75 nM. Multiple regression revealed a major effect on Bf levels due to FFAu, indicating that Intralipid elevated levels of FFAu and Bf. Indomethacin or ibuprofen reduced Bf levels, most likely by reducing FFAu levels through lipase inhibition. Because displacement of Bf by FFAu decouples Bf from TSB, phototherapy may not reduce the risk of bilirubin or FFAu toxicity in Intralipid-treated ELBW infants. Copyright © 2013 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Suliman, FakhrEldin O.; Elbashir, Abdalla A.
2012-07-01
Using capillary electrophoresis baclofen (BF) enantiomers were separated only in the presence of β-cyclodextrin (βCD) as a chiral selector when added to the background electrolyte. Proton nuclear magnetic resonance and electrospray ionization mass spectrometry (ESI-MS) techniques were used to determine the structure of the BF-βCD inclusion complexes. From the MS data BF was found to form a 1:1 complex with α- and βCD, while the NMR data suggest location of the aromatic ring of BF into the cyclodextrin cavity. A molecular modeling study, using the semiempirical PM6 calculations was used to investigate the mechanism of enantiodifferentiation of BF with cyclodextrins. Optimization of the structures of the complexes by PM6 method indicated that separation is obtained in the presence of β-CD due to a large binding energy difference (ΔΔE) of 46.8 kJ mol-1 between S-BF-βCD and R-BF-βCD complexes. In the case of αCD complexes ΔΔE was 1.3 kJ mol-1 indicating poor resolution between the two enantiomers. Furthermore, molecular dynamic simulations show that the formation of more stable S-BF-βCD complex compared to R-BF-β-CD complex is primarily due to differences in intermolecular hydrogen bonding.
Tsarpali, Vasiliki; Dailianis, Stefanos
2015-07-01
The main goal of this study was to investigate the toxicity of the imidazolium-based ionic liquids (ILs), [bmim][BF4] (1-butyl-3-methylimidazolium tetrafluoroborate) and [omim][BF4] (1-octyl-3-methylimidazolium tetrafluoroborate), in battery of standard aquatic toxicity test organisms. Specifically, exposure of the algae Scenedesmus rubescens, crustaceans Thamnocephalus platyurus and Artemia franciscana, rotifers Brachionus calyciflorus and Brachionus plicatilis and bivalve Mytilus galloprovincialis to different concentrations of [bmim][BF4], [omim][BF4] and/or a binary mixture of [bmim][BF4]-[omim][BF4] (1:1) with or without acetone (carrier solvent), revealed that solvent can differentially mediate ILs' toxic profile. Acetone's ability to differentially affect ILs' cation's alkyl chain length, as well as the hydrolysis of [BF4(-)] anions was evident. Given that the toxic potency of the tested ILs seemed to be equal or even higher (in some cases) than those of conventional organic solvents, the present study revealed that the characterization of imidazolium-based ILs as "green solvents" should not be generalized, at least in case of their natural occurrence in mixtures with organic solvents, such as acetone. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Chong; Radabaugh, Jeffrey P.; Aouad, Rony K.; Lin, Yu; Gal, Thomas J.; Patel, Amit B.; Valentino, Joseph; Shang, Yu; Yu, Guoqiang
2015-07-01
Knowledge of tissue blood flow (BF) changes after free tissue transfer may enable surgeons to predict the failure of flap thrombosis at an early stage. This study used our recently developed noncontact diffuse correlation spectroscopy to monitor dynamic BF changes in free flaps without getting in contact with the targeted tissue. Eight free flaps were elevated in patients with head and neck cancer; one of the flaps failed. Multiple BF measurements probing the transferred tissue were performed during and post the surgical operation. Postoperative BF values were normalized to the intraoperative baselines (assigning "1") for the calculation of relative BF change (rBF). The rBF changes over the seven successful flaps were 1.89±0.15, 2.26±0.13, and 2.43±0.13 (mean±standard error), respectively, on postoperative days 2, 4, and 7. These postoperative values were significantly higher than the intraoperative baseline values (p<0.001), indicating a gradual recovery of flap vascularity after the tissue transfer. By contrast, rBF changes observed from the unsuccessful flaps were 1.14 and 1.34, respectively, on postoperative days 2 and 4, indicating less flow recovery. Measurement of BF recovery after flap anastomosis holds the potential to act early to salvage ischemic flaps.
Huang, Chong; Radabaugh, Jeffrey P.; Aouad, Rony K.; Lin, Yu; Gal, Thomas J.; Patel, Amit B.; Valentino, Joseph; Shang, Yu; Yu, Guoqiang
2015-01-01
Abstract. Knowledge of tissue blood flow (BF) changes after free tissue transfer may enable surgeons to predict the failure of flap thrombosis at an early stage. This study used our recently developed noncontact diffuse correlation spectroscopy to monitor dynamic BF changes in free flaps without getting in contact with the targeted tissue. Eight free flaps were elevated in patients with head and neck cancer; one of the flaps failed. Multiple BF measurements probing the transferred tissue were performed during and post the surgical operation. Postoperative BF values were normalized to the intraoperative baselines (assigning “1”) for the calculation of relative BF change (rBF). The rBF changes over the seven successful flaps were 1.89±0.15, 2.26±0.13, and 2.43±0.13 (mean±standard error), respectively, on postoperative days 2, 4, and 7. These postoperative values were significantly higher than the intraoperative baseline values (p<0.001), indicating a gradual recovery of flap vascularity after the tissue transfer. By contrast, rBF changes observed from the unsuccessful flaps were 1.14 and 1.34, respectively, on postoperative days 2 and 4, indicating less flow recovery. Measurement of BF recovery after flap anastomosis holds the potential to act early to salvage ischemic flaps. PMID:26187444
GPR3 Receptor, a Novel Actor in the Emotional-Like Responses
Valverde, Olga; Célérier, Evelyne; Baranyi, Mária; Vanderhaeghen, Pierre; Maldonado, Rafael; Sperlagh, Beata; Vassart, Gilbert; Ledent, Catherine
2009-01-01
GPR3 is an orphan G protein-coupled receptor endowed with constitutive Gs signaling activity, which is expressed broadly in the central nervous system, with maximal expression in the habenula. We investigated the consequences of its genetic deletion in several behavioral paradigms and on neurotransmission. Compared to wild-type, hippocampal neurons from Gpr3−/− mice displayed lower basal intracellular cAMP levels, consistent with the strong constitutive activity of GPR3 in transiently transfected cells. Behavioral analyses revealed that Gpr3−/− mice exhibited a high level of avoidance of novel and unfamiliar environment, associated with increased stress reactivity in behavioral despair paradigms and aggressive behavior in the resident-intruder test. On the contrary, no deficit was found in the learning ability to avoid an aversive event in active avoidance task. The reduced ability of Gpr3 −/− mice to cope with stress was unrelated to dysfunction of the hypothalamic-pituitary-adrenal axis, with Gpr3−/− mice showing normal corticosterone production under basal or stressful conditions. In contrast, dramatic alterations of monoamine contents were found in hippocampus, hypothalamus and frontal cortex of Gpr3−/− mice. Our results establish a link between tonic stimulation of the cAMP signaling pathway by GPR3 and control of neurotransmission by monoamines throughout the forebrain. GPR3 qualifies as a new player in the modulation of behavioral responses to stress and constitutes a novel promising pharmacological target for treatment of emotional disorders. PMID:19259266
NASA Astrophysics Data System (ADS)
Chen, Zhong; Zhou, Zunchun; Yang, Aifu; Dong, Ying; Guan, Xiaoyan; Jiang, Bei; Wang, Bai
2015-12-01
The complement system plays a crucial role in the innate immune system of animals. It can be activated by distinct yet overlapping classical, alternative and lectin pathways. In the alternative pathway, complement factor B (Bf) serves as the catalytic subunit of complement component 3 (C3) convertase, which plays the central role among three activation pathways. In this study, the Bf gene in sea cucumber ( Apostichopus japonicus), termed AjBf, was obtained by rapid amplification of cDNA ends (RACE). The full-length cDNA of AjBf was 3231 bp in length barring the poly (A) tail. It contained an open reading frame (ORF) of 2742 bp encoding 913 amino acids, a 105 bp 5'-UTR (5'-terminal untranslated region) and a 384 bp 3'-UTR. AjBf was a mosaic protein with six CCP (complement control protein) domains, a VWA (von Willebrand factor A) domain, and a serine protease domain. The deduced molecular weight of AjBf protein was 101 kDa. Quantitative real time PCR (qRT-PCR) analysis indicated that the expression level of AjBf in A. japonicus was obviously higher at larval stage than that at embryonic stage. Expression detection in different tissues showed that AjBf expressed higher in coelomocytes than in other four tissues. In addation, AjBf expression in different tissues was induced significantly after LPS or PolyI:C challenge. These results indicated that AjBf plays an important role in immune responses to pathogen infection.
Heinonen, Ilkka; Wendelin-Saarenhovi, Maria; Kaskinoro, Kimmo; Knuuti, Juhani; Scheinin, Mika; Kalliokoski, Kari K
2013-07-15
The role of neuronal regulation of human cardiovascular function remains incompletely elucidated, especially during exercise. Here we, by positron emission tomography, monitored tissue-specific blood flow (BF) changes in nine healthy young men during femoral arterial infusions of norepinephrine (NE) and phentolamine. At rest, the α-adrenoceptor agonist NE reduced BF by ~40%, similarly in muscles (from 3.2 ± 1.9 to 1.4 ± 0.3 ml·min(-1)·100 g(-1) in quadriceps femoris muscle), bone (from 1.1 ± 0.4 to 0.5 ± 0.2 ml·min(-1)·100 g(-1)) and adipose tissue (AT) (from 1.2 ± 0.7 to 0.7 ± 0.3 ml·min(-1)·100 g(-1)). During exercise, NE reduced exercising muscle BF by ~16%. BF in AT was reduced similarly as rest. The α-adrenoceptor antagonist phentolamine increased BF similarly in the different muscles and other tissues of the limb at rest. During exercise, BF in inactive muscle was increased 3.4-fold by phentolamine compared with exercise without drug, but BF in exercising muscles was not influenced. Bone and AT (P = 0.055) BF were also increased by phentolamine in the exercise condition. NE increased and phentolamine decreased oxygen extraction in the limb during exercise. We conclude that inhibition of α-adrenergic tone markedly disturbs the distribution of BF and oxygen extraction in the exercising human limb by increasing BF especially around inactive muscle fibers. Moreover, although marked functional sympatholysis also occurs during exercise, the arterial NE infusion that mimics the exaggerated sympathetic nerve activity commonly seen in patients with cardiovascular disease was still capable of directly limiting BF in the exercising leg muscles.
Blanco-Rivero, Javier; Sastre, Esther; Caracuel, Laura; Granado, Miriam; Balfagón, Gloria
2013-01-01
The aim of this study was to investigate in rat mesenteric artery whether breast feeding (BF) affects the vasomotor response induced by electrical field stimulation (EFS), participation by different innervations in the EFS-induced response and the mechanism/s underlying these possible modifications. Experiments were performed in female Sprague-Dawley rats (3 months old), divided into three groups: Control (in oestrous phase), mothers after 21 days of BF, and mothers that had recovered their oestral cycle (After BF, in oestrous phase). Vasomotor response to EFS, noradrenaline (NA) and nitric oxide (NO) donor DEA-NO were studied. Neuronal NO synthase (nNOS) and phosphorylated nNOS (P-nNOS) protein expression were analysed and NO, superoxide anion (O(2)(.-)), NA and ATP releases were also determined. EFS-induced contraction was higher in the BF group, and was recovered after BF. 1 µmol/L phentolamine decreased the response to EFS similarly in control and BF rats. NA vasoconstriction and release were similar in both experimental groups. ATP release was higher in segments from BF rats. 0.1 mmol/L L-NAME increased the response to EFS in both control and BF rats, but more so in control animals. BF decreased NO release and did not modify O(2)(.-) production. Vasodilator response to DEA-NO was similar in both groups, while nNOS and P-nNOS expressions were decreased in segments from BF animals. Breast feeding increases EFS-induced contraction in mesenteric arteries, mainly through the decrease of neuronal NO release mediated by decreased nNOS and P-nNOS expression. Sympathetic function is increased through the increased ATP release in BF rats.
Caracuel, Laura; Granado, Miriam; Balfagón, Gloria
2013-01-01
Objectives The aim of this study was to investigate in rat mesenteric artery whether breast feeding (BF) affects the vasomotor response induced by electrical field stimulation (EFS), participation by different innervations in the EFS-induced response and the mechanism/s underlying these possible modifications. Methods Experiments were performed in female Sprague-Dawley rats (3 months old), divided into three groups: Control (in oestrous phase), mothers after 21 days of BF, and mothers that had recovered their oestral cycle (After BF, in oestrous phase). Vasomotor response to EFS, noradrenaline (NA) and nitric oxide (NO) donor DEA-NO were studied. Neuronal NO synthase (nNOS) and phosphorylated nNOS (P-nNOS) protein expression were analysed and NO, superoxide anion (O2 .–), NA and ATP releases were also determined. Results EFS-induced contraction was higher in the BF group, and was recovered after BF. 1 µmol/L phentolamine decreased the response to EFS similarly in control and BF rats. NA vasoconstriction and release were similar in both experimental groups. ATP release was higher in segments from BF rats. 0.1 mmol/L L-NAME increased the response to EFS in both control and BF rats, but more so in control animals. BF decreased NO release and did not modify O2 .– production. Vasodilator response to DEA-NO was similar in both groups, while nNOS and P-nNOS expressions were decreased in segments from BF animals. Conclusion Breast feeding increases EFS-induced contraction in mesenteric arteries, mainly through the decrease of neuronal NO release mediated by decreased nNOS and P-nNOS expression. Sympathetic function is increased through the increased ATP release in BF rats. PMID:23342008
Norcross, J; Van Loan, M D
2004-01-01
Background: Pencil beam dual energy x ray absorptiometry (DXA) has been shown to provide valid estimates of body fat (%BF), but DXA fan beam technology has not been adequately tested to determine its validity. Objective: To compare %BF estimated from fan beam DXA with %BF determined using two and three compartment (2C, 3C) models. Methods: Men (n = 25) and women (n = 31), aged 18–41 years, participated in the study. Body density, from hydrostatic weighing, was used in the 2C estimate of %BF; DXA was used to determine bone mineral content (BMC) for the 3C estimate of %BF calculated using body density and BMC (3CBMC). DXA was also used to determine %BF. Analysis of variance was used to test for significant differences in %BF between sexes and among methods. Results: Women were significantly shorter, weighed less, had less fat free mass, and a higher %BF than men. No significant differences were found among methods (2C, 3CBMC, DXA) for determination of %BF in either sex. Although not significant, Bland-Altman plots showed that DXA gave higher values for %BF than the 2C and 3CBMC methods. Conclusion: DXA determination of %BF was not different from that of the 2C and 3CBMC models in this group of young adults. However, to validate fan beam DXA fully as a method for body composition assessment in a wide range of individuals and populations, comparisons are needed that use a 4C model with a measure of total body water and BMC. PMID:15273189
Fluorescence sensor for the quantification of unbound bilirubin concentrations.
Huber, Andrew H; Zhu, Baolong; Kwan, Thomas; Kampf, J Patrick; Hegyi, Thomas; Kleinfeld, Alan M
2012-05-01
Hyperbilirubinemia in jaundiced neonates is routinely assessed by use of total serum bilirubin. However, the unbound or free form (B(f)), not total bilirubin, crosses the blood-brain barrier and can be neurotoxic. Although the peroxidase-mediated oxidation of bilirubin can be used to measure plasma concentrations of B(f), this measurement is relatively complex and the assay is not routinely used. We describe a fluorescence sensor for quantifying B(f) in plasma. Our method uses a mutated fatty acid binding protein labeled with the fluorescent molecule acrylodan (BL22P1B11), whose fluorescence is quenched upon binding bilirubin. Another configuration (BL22P1B11-Rh) was developed that uses BL22P1B11 together with the fluorophore rhodamine B, which responds by a change in the ratio of its fluorescence. The "B(f) probes" were calibrated with aqueous solutions of bilirubin and yielded similar bilirubin dissociation constants [K(d) = 16 (1.5) nmol/L]. We used the probes to determine B(f) concentrations in equilibrium with human serum albumin (HSA) and in human plasma samples supplemented with bilirubin. We obtained equivalent B(f) values in both systems, and the B(f) probe results were in agreement with the peroxidase assay. B(f) measurements revealed that bilirubin-HSA binding was well described by 2 sites with K(d) values of 15.4 (1) nmol/L and 748 (14) nmol/L. We measured B(f) concentrations in the range expected in jaundiced neonates with a mean CV of approximately 3%. The BL22P1B11-Rh probe provides accurate plasma sample B(f) concentrations with a single measurement, in 1 min with either a handheld B(f) meter or a laboratory fluorometer.
Bentzur, Keren M; Kravitz, Len; Lockner, Donna W
2008-11-01
This investigation examined the accuracy of the BOD POD on a group of Division I collegiate track and field female athletes (N = 30). Hydrostatic weighing (HW) was used as the gold standard method. Body density (Db) values obtained from the BOD POD (Db BP) were compared with those determined by HW (Db HW). Both Db values were converted to percent body fat (%BF) using the Siri equation for comparison. Percent body fat values obtained from the BOD POD (BF BP) were also compared with those obtained from dual-energy X-ray absorptiometry (DXA, BF DXA) and skinfold (SF, BF SF). The validity of the BOD POD was assessed using repeated-measures analysis of variance (ANOVA), and the relationship between the methods was examined through Pearson correlation. Average Db BP was 0.00890 g x cm(-3) lower (p < 0.05) than Db HW, resulting in a significant overestimation of %BF (p < 0.05) by the BOD POD. Values for BFDXA and BFBP also differed significantly (p < 0.05). On the other hand, BFSF and BF BP were not significantly different. The correlation between percent body fat values obtained from HW (BFHW) and BF BP was good (r = 0.88, SEE = 2.30) as well as between BF SF and BF BP (r = 0.85, SEE = 2.05). Conversely, the correlation between BFDXA and BF BP was poor (r = 0.25, SEE = 5.73). The strong correlation between BF BP and BF HW presented here suggests that the BOD POD has the potential to be used as a body composition analysis tool for female athletes. The advantages of the BOD POD over HW encourage further investigation of this instrument. However, the fact that the BOD POD and SF results did not differ significantly might suggest that the SF could be used in its place until a better rate of accuracy for this instrument is established.
Breast-feeding trends and the breast-feeding promotion programme in the Philippines.
Williamson, N E
1990-03-01
Breastfeeding (BF) duration and incidence have declined in the Philippines since 1973, particularly among urban, better-educated and higher income groups. As more and more women move into these modern groups, BF may continue to decline, making attempts to decrease fertility more difficult. The National Movement for the Promotion of Breastfeeding (NMPB) seeks to overcome the declines by encouraging a wide range of BF promotion activities including improving hospital practices and implementing a 5-year plan. In 1988, the 2nd 5 years of the United Nations International Children's Emergency Fund support for BF promotion started as part of a program to strengthen health services for child survival. Also in 1988, the Ministry of Health directed private hospitals to have rooming-in. In 1984, BF promotion messages began in the mass media. In 1983, NMPB was set up. The NMPB is housed in the Department of Public Health and has 30 member agencies: 14 governmental organizations and 25 nongovernmental agencies/institutions. From 1982-84 a longitudinal study on decision making regrading infant feeding practices was started. A hospital-based BF promotion program was started in the city of Baguio in the 70s. "Rooming-in" is required in government facilities, but there is a need for education programs for women so that they will continue their healthy practices at home. Challenges of the Philippines BF promotion program corner 4 areas: 1) health facilities; 2) information, education, and communication; 3) training; and 4) outreach. Research activities for the future include: 1) continued monitoring of patterns and trends of BF, including evaluation of the 1988 national survey; 2) analysis of the impact of "rooming-in" programs; 3) studies on the cost effectiveness of different strategies for increasing BF incidence and length and modifying BF practices and beliefs; 4) testing of strategies for helping working women to breastfeed; 5) research on obstacles to BF in private hospitals; and 6) studies on the nature and timing of starting contraception among BF women.
Fujimoto, Junji
2013-01-01
We developed a PCR-based method to detect and quantify viable Bifidobacterium bifidum BF-1 cells in human feces. This method (PMA-qPCR) uses propidium monoazide (PMA) to distinguish viable from dead cells and quantitative PCR using a BF-1-specific primer set designed from the results of randomly amplified polymorphic DNA analysis. During long-term culture (10 days), the number of viable BF-1 cells detected by counting the number of CFU on modified MRS agar, by measuring the ATP contents converted to CFU, and by using PMA-qPCR decreased from about 1010 to 106 cells/ml; in contrast, the total number of (viable and dead) BF-1 cells detected by counting 4′,6-diamidino-2-phenylindolee (DAPI)-stained cells and by using qPCR without PMA and reverse transcription-qPCR remained constant. The number of viable BF-1 cells in fecal samples detected by using PMA-qPCR was highly and significantly correlated with the number of viable BF-1 cells added to the fecal samples, within the range of 105.3 to 1010.3 cells/g feces (wet weight) (r > 0.99, P < 0.001). After 12 healthy subjects ingested 1010.3 to 1011.0 CFU of BF-1 in a fermented milk product daily for 28 days, 104.5 ± 1.5 (mean ± standard deviation [SD]) BF-1 CFU/g was detected in fecal samples by using strain-specific selective agar; in contrast, 106.2 ± 0.4 viable BF-1 cells/g were detected by using PMA-qPCR, and a total of 107.6 ± 0.7 BF-1 cells/g were detected by using qPCR without PMA. Thus, the number of viable BF-1 cells detected by PMA-qPCR was about 50 times higher (P < 0.01) than that detected by the culture-dependent method. We conclude that strain-specific PMA-qPCR can be used to quickly and accurately evaluate viable BF-1 in feces. PMID:23354719
Zebrafish zic2a patterns the forebrain through modulation of Hedgehog-activated gene expression
Sanek, Nicholas A.; Taylor, Aaron A.; Nyholm, Molly K.; Grinblat, Yevgenya
2009-01-01
Summary Holoprosencephaly (HPE) is the most common congenital malformation of the forebrain in human. Several genes with essential roles during forebrain development have been identified because they cause HPE when mutated. Among these are genes that encode the secreted growth factor Sonic hedgehog (Shh) and the transcription factors Six3 and Zic2. In the mouse, Six3 and Shh activate each other's transcription, but a role for Zic2 in this interaction has not been tested. We demonstrate that in zebrafish, as in mouse, Hh signaling activates transcription of six3b in the developing forebrain. zic2a is also activated by Hh signaling, and represses six3b non-cell-autonomously, i.e. outside of its own expression domain, probably through limiting Hh signaling. Zic2a repression of six3b is essential for the correct formation of the prethalamus. The diencephalon-derived optic stalk (OS) and neural retina are also patterned in response to Hh signaling. We show that zebrafish Zic2a limits transcription of the Hh targets pax2a and fgf8a in the OS and retina. The effects of Zic2a depletion in the forebrain and in the OS and retina are rescued by blocking Hh signaling or by increasing levels of the Hh antagonist Hhip, suggesting that in both tissues Zic2a acts to attenuate the effects of Hh signaling. These data uncover a novel, essential role for Zic2a as a modulator of Hh-activated gene expression in the developing forebrain and advance our understanding of a key gene regulatory network that, when disrupted, causes HPE. PMID:19855021
Zebrafish zic2a patterns the forebrain through modulation of Hedgehog-activated gene expression.
Sanek, Nicholas A; Taylor, Aaron A; Nyholm, Molly K; Grinblat, Yevgenya
2009-11-01
Holoprosencephaly (HPE) is the most common congenital malformation of the forebrain in human. Several genes with essential roles during forebrain development have been identified because they cause HPE when mutated. Among these are genes that encode the secreted growth factor Sonic hedgehog (Shh) and the transcription factors Six3 and Zic2. In the mouse, Six3 and Shh activate each other's transcription, but a role for Zic2 in this interaction has not been tested. We demonstrate that in zebrafish, as in mouse, Hh signaling activates transcription of six3b in the developing forebrain. zic2a is also activated by Hh signaling, and represses six3b non-cell-autonomously, i.e. outside of its own expression domain, probably through limiting Hh signaling. Zic2a repression of six3b is essential for the correct formation of the prethalamus. The diencephalon-derived optic stalk (OS) and neural retina are also patterned in response to Hh signaling. We show that zebrafish Zic2a limits transcription of the Hh targets pax2a and fgf8a in the OS and retina. The effects of Zic2a depletion in the forebrain and in the OS and retina are rescued by blocking Hh signaling or by increasing levels of the Hh antagonist Hhip, suggesting that in both tissues Zic2a acts to attenuate the effects of Hh signaling. These data uncover a novel, essential role for Zic2a as a modulator of Hh-activated gene expression in the developing forebrain and advance our understanding of a key gene regulatory network that, when disrupted, causes HPE.
The effects of increasing PGE2 on translocation of labeled albumin into rat brain.
Messripour, M; Mesripour, A; Mashayekhie, F J
2015-01-01
Under pathophysiological conditions, infiltration of leukocyte plays a key role in the progression of the neuroinflammatory reaction in the CNS. Prostaglandin E2 (PGE2) is known to accumulate at lesion sites of the post-ischemic brain. Although post-ischemic treatments with cyclooxygenase-2 inhibitors reduce blood-brain barrier (BBB) leukocyte infiltration, the direct effect of PGE2 on BBB has not been fully implemented. Therefore, the direct effect of increasing PGE2 infusion on translocation of labeled albumin into the brain was assessed. Under anesthesia rats were drilled stereo-taxicaly a burr hole in the right forebrain and PGE2 was infused into the forebrain and the hole was occluded. The animals were then injected with fluorescent labeled albumin (FA), via internal right jugular vein and decapitated at different infusion time points. The forebrain was removed and each forebrain hemisphere was homogenized and fluorescence intensities were measured in the supernatant. The fluorescence intensities measured in the right and left forebrain hemispheres of the control group (0.0 μg PGE2) were almost identical. Four hours after infusion of PGE2 at doses higher than 250 μg, fluorescence intensity increased in the right forebrain supernatant, even if it was not statistically significant. The fluorescence intensity was detectable in the brain supernatant 4 h after infusion of PGE2 in doses higher than 250 μg PGE2. The highest fluorescence intensity was 16 h after infusion of 500 μg PGE2, which returned to near control values after 48 h. Increased fluorescence intensity in the brain following PGE2 infusion is concluded to be associated with disruption of the BBB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozinsek, Matic; Bunic, Tina; Goreshnik, Evgeny, E-mail: evgeny.goreshnik@ijs.s
2009-10-15
In the system BaF{sub 2}/BF{sub 3}/PF{sub 5}/anhydrous hydrogen fluoride (aHF) a compound Ba(BF{sub 4})(PF{sub 6}) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF{sub 4})(PF{sub 6}) crystallizes in a hexagonal P6-bar2m space group with a=10.2251(4) A, c=6.1535(4) A, V=557.17(5) A{sup 3} at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF{sub 4}{sup -} and PF{sub 6}{sup -} anions. In the analogous system with AsF{sub 5} instead of PF{sub 5} the compound Ba(BF{sub 4})(AsF{sub 6}) was isolated and characterized.more » It crystallizes in an orthorhombic Pnma space group with a=10.415(2) A, b=6.325(3) A, c=11.8297(17) A, V=779.3(4) A{sup 3} at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF{sub 6}{sup -} and four F atoms from BF{sub 4}{sup -} anions. When the system BaF{sub 2}/BF{sub 3}/AsF{sub 5}/aHF is made basic with an extra addition of BaF{sub 2}, the compound Ba{sub 2}(BF{sub 4}){sub 2}(AsF{sub 6})(H{sub 3}F{sub 4}) was obtained. It crystallizes in a hexagonal P6{sub 3}/mmc space group with a=6.8709(9) A, c=17.327(8) A, V=708.4(4) A{sup 3} at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF{sub 4}{sup -}, three AsF{sub 6}{sup -} and three H{sub 3}F{sub 4}{sup -} anions. All F atoms, except the central atom in H{sub 3}F{sub 4} moiety, act as mu{sub 2}-bridges yielding a complex 3-D structural network. - Graphical abstract: The first three compounds, containing simultaneously tetrahedral BF{sub 4}{sup -} and octahedral AF{sub 6}{sup -} (A=P, As) anions have been synthesized and characterized by Raman spectroscopy and X-ray single crystal diffraction. In the system BaF{sub 2}/BF{sub 3}/PF{sub 5}/anhydrous hydrogen fluoride (aHF) the compound Ba(BF{sub 4})(PF{sub 6}) was isolated. In the analogous system with AsF{sub 5} instead of PF{sub 5} the compound Ba(BF{sub 4})(AsF{sub 6}) was obtained. When the system BaF{sub 2}/BF{sub 3}/AsF{sub 5}/aHF is made basic with an extra addition of BaF{sub 2}, the compound Ba{sub 2}(BF{sub 4}){sub 2}(AsF{sub 6})(H{sub 3}F{sub 4}) was prepared.« less
Effect of inulin and pectin on physicochemical characteristics and stability of meat batters
USDA-ARS?s Scientific Manuscript database
The aim of this study was to investigate levels of inulin and pectin replacing pork back fat (BF) in meat batters (MB) of frankfurter sausage. Six treatments were evaluated: control (T1), control + 70% BF (T2), control + 85% BF + 15% inulin (T3), control + 70% BF + 30% inulin (T4), control + 85% B...
Comparative Analysis of Ultrasonic Inspection Procedures for Kaman K747 Root End Fittings
1989-04-01
I.CI- IA 4cz 4c-- a- LLJ 4A ccu I46 APPENDIX III. TRANSDUCER WEDGE ANGLE DATA RESULTS No Procedure, Gain = 70 dB 45.Degre Probe REF# TF1 TF2 TF3 TAl...Degree Probe REF # TF1 TF2 TF3 TAl TA2 TA3 BF1 BF2 BF3 BAl BA2 BA3 B5328 35 33 -. . . 31 - - - - - 38 38 B5102 38 - 31 .. - - 31 - - - B5298 40 42...50 No Procedure, Gain = 70 dB 50-Degree Probe REF # TF1 TF2 TF3 TAl TA2 TA3 BF1 BF2 BF3 BAl BA2 BA3 B5328 - . . . . 32 - 40 B5102 34 .- 30
Downregulation of ribosome biogenesis during early forebrain development
Chau, Kevin F; Shannon, Morgan L; Fame, Ryann M; Fonseca, Erin; Mullan, Hillary; Johnson, Matthew B; Sendamarai, Anoop K; Springel, Mark W; Laurent, Benoit
2018-01-01
Forebrain precursor cells are dynamic during early brain development, yet the underlying molecular changes remain elusive. We observed major differences in transcriptional signatures of precursor cells from mouse forebrain at embryonic days E8.5 vs. E10.5 (before vs. after neural tube closure). Genes encoding protein biosynthetic machinery were strongly downregulated at E10.5. This was matched by decreases in ribosome biogenesis and protein synthesis, together with age-related changes in proteomic content of the adjacent fluids. Notably, c-MYC expression and mTOR pathway signaling were also decreased at E10.5, providing potential drivers for the effects on ribosome biogenesis and protein synthesis. Interference with c-MYC at E8.5 prematurely decreased ribosome biogenesis, while persistent c-MYC expression in cortical progenitors increased transcription of protein biosynthetic machinery and enhanced ribosome biogenesis, as well as enhanced progenitor proliferation leading to subsequent macrocephaly. These findings indicate large, coordinated changes in molecular machinery of forebrain precursors during early brain development. PMID:29745900
NASA Technical Reports Server (NTRS)
Wu, L.; Daunton, N. G.; Krasnov, I. B.; DAmelio, F.; Hyde, T. M.; Sigworth, S. K.
1994-01-01
Quantitative autoradiographic analysis of receptors for GABA and acetylcholine in the forebrain of rats flown on COSMOS 2044 was undertaken as part of a joint US-Soviet study to determine the effects of microgravity on the central nervous system, and in particular on the sensory and motor portions of the forebrain. Changes in binding of these receptors in tissue from animals exposed to microgravity would provide evidence for possible changes in neural processing as a result of exposure to microgravity. Tritium-labelled diazepam and Quinuclidinyl-benzilate (QNB) were used to visualize GABA (benzodiazepine) and muscarinic (cholinergic) receptors, respectively. The density of tritium-labelled radioligands bound to various regions in the forebrain of both flight and control animals were measured from autoradiograms. Data from rats flown in space and from ground-based control animals that were not exposed to microgravity were compared.
Barradas, P C; Gomes, S S; Cavalcante, L A
1998-01-01
The differentiation of oligodendrocytes in the forebrain of the opossum (Didelphis marsupialis) has been studied by the immunohistochemical identification of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and by the autoradiographic detection of the uptake of 3H-thymidine. CNPase is expressed early in oligodendroglia somata and fibre sheaths (myelin) in the forebrain and its persistence in the cell bodies is regionally heterogeneous, being ephemeral in cells within the optic pathway, supraoptic decussation, and posterior commissure, of intermediate duration in the mamillo-thalamic fascicle, and stria medullaris, and long-lasting in other diencephalic and in telencephalic tracts. In the cerebral cortex, most CNPase+ cells have small somata and multiple processes (types I and II). CNPase-expressing oligodendrocytes are also regionally heterogeneous in terms of proliferative capability, which could not be detected in forebrain tracts or diencephalon, but has appeared in a small proportion of cells in the neocortical white matter and in the fimbria. Our findings provide additional evidence in favour of the heterogeneity of oligodendrocytes.
Krabbe, Christina; Bak, Sara Thornby; Jensen, Pia; von Linstow, Christian; Martínez Serrano, Alberto; Hansen, Claus; Meyer, Morten
2014-01-01
Neural stem cells (NSCs) constitute a promising source of cells for transplantation in Parkinson's disease (PD), but protocols for controlled dopaminergic differentiation are not yet available. Here we investigated the influence of oxygen on dopaminergic differentiation of human fetal NSCs derived from the midbrain and forebrain. Cells were differentiated for 10 days in vitro at low, physiological (3%) versus high, atmospheric (20%) oxygen tension. Low oxygen resulted in upregulation of vascular endothelial growth factor and increased the proportion of tyrosine hydroxylase-immunoreactive (TH-ir) cells in both types of cultures (midbrain: 9.1±0.5 and 17.1±0.4 (P<0.001); forebrain: 1.9±0.4 and 3.9±0.6 (P<0.01) percent of total cells). Regardless of oxygen levels, the content of TH-ir cells with mature neuronal morphologies was higher for midbrain as compared to forebrain cultures. Proliferative Ki67-ir cells were found in both types of cultures, but the relative proportion of these cells was significantly higher for forebrain NSCs cultured at low, as compared to high, oxygen tension. No such difference was detected for midbrain-derived cells. Western blot analysis revealed that low oxygen enhanced β-tubulin III and GFAP expression in both cultures. Up-regulation of β-tubulin III was most pronounced for midbrain cells, whereas GFAP expression was higher in forebrain as compared to midbrain cells. NSCs from both brain regions displayed less cell death when cultured at low oxygen tension. Following mictrotransplantation into mouse striatal slice cultures predifferentiated midbrain NSCs were found to proliferate and differentiate into substantial numbers of TH-ir neurons with mature neuronal morphologies, particularly at low oxygen. In contrast, predifferentiated forebrain NSCs microtransplanted using identical conditions displayed little proliferation and contained few TH-ir cells, all of which had an immature appearance. Our data may reflect differences in dopaminergic differentiation capacity and region-specific requirements of NSCs, with the dopamine-depleted striatum cultured at low oxygen offering an attractive micro-environment for midbrain NSCs. PMID:24788190
Lobar holoprosencephaly in a Miniature Schnauzer with hypodipsic hypernatremia.
Sullivan, Stacey A; Harmon, Barry G; Purinton, P Thomas; Greene, Craig E; Glerum, Leigh E
2003-12-15
A 9-month-old male Miniature Schnauzer was examined because of a lifelong history of behavioral abnormalities, including hypodipsia. Diagnostic evaluation revealed marked hypernatremia and a single forebrain ventricle. The behavioral abnormalities did not resolve with correction of the hypernatremia, and the dog was euthanatized. At necropsy, midline forebrain structures were absent or reduced in size, and normally paired forebrain structures were incompletely separated. Findings were diagnostic for holoprosencephaly, a potentially genetic disorder and the likely cause of the hypodipsia. Similar evaluation of affected Miniature Schnauzer dogs may reveal whether holoprosencephaly routinely underlies the thirst deficiency that may be seen in dogs of this breed.
Reliability and concurrent validity of Futrex and bioelectrical impedance.
Vehrs, P; Morrow, J R; Butte, N
1998-11-01
Thirty Caucasian males (aged 19-32yr) participated in this study designed to investigate the reliability of multiple bioelectrical impedance analysis (BIA) and near-infrared spectroscopy (Futrex, FTX) measurements and the validity of BIA and FTX estimations of hydrostatically (UW) determined percent body fat (%BF). Two BIA and two FTX instruments were used to make 6 measurements each of resistance (R) and optical density (OD) respectively over a 30 min period on two consecutive days. Repeated measures ANOVA indicated that FTX and BIA, using manufacturer's equations, significantly (p<0.01) under predicted UW by 2.4 and 3.8%BF respectively. Standard error of estimate (SEE) and total error (TE) terms provided by regression analysis for FTX (4.6 and 5.31%BF respectively) and BIA (5.65 and 6.95%BF, respectively) were high. Dependent t-tests revealed no significant differences in either FTX or BIA predictions of %BF using two machines. Intraclass reliabilities for BIA and FTX estimates of UW %BF across trials, days, and machines all exceeded 0.97. A significant random error term associated with FTX and a significant subject-by-day interaction associated with BIA was revealed using the generalizability model. Although FTX and BIA estimates of UW %BF were reliable, due to the significant underestimation of UW %BF and high SEE and TE, neither FTX nor BIA were considered valid estimates of hydrostatically determined %BF.
Wang, Jing; Li, Bing; Li, Yang; Dou, Jie; Hao, Qingru; Tian, Yuwei; Wang, Hui; Zhou, Changlin
2014-07-01
Bacterial infections are becoming increasingly difficult to treat due to the increasing number of multidrug-resistant strains. Cathelicidin-BF (BF-30) is a cathelicidin-like antimicrobial peptide and exhibits broad antimicrobial activity against bacteria. In the present study, the antibacterial activity of BF-30 against ciprofloxacin-resistant Escherichia coli and Staphylococcus aureus was examined, and the protective effects of this peptide against these bacteria in rats with bacterial vaginosis were identified for the first time. The data showed that BF-30 had effective antimicrobial activities against ciprofloxacin-resistant E. coli and S. aureus. The minimal inhibitory concentrations for both bacterial strains were 16 μg/ml, and the minimal bactericidal concentrations were 64 and 128 μg/ml, respectively. A time course experiment showed that the CFU counts rapidly decreased after BF-30 treatment, and the bacteria were nearly eliminated within 4 h. BF-30 could reduce the fold change (CFU/ml) in local colonization by drug-resistant E. coli and S. aureus to 0.01 at a dose of 0.8 mg/kg/day in the rats' vaginal secretions. In addition, BF-30 induced membrane permeabilization and bound to the genomic DNA, interrupting protein synthesis. Taken together, our data demonstrate that BF-30 has potential therapeutic value for the prevention and treatment of bacterial vaginosis.
Fossati, Andrea; Somma, Antonella; Borroni, Serena; Markon, Kristian E; Krueger, Robert F
2017-07-01
To assess the reliability and construct validity of the Personality Inventory for DSM-5 Brief Form (PID-5-BF) among adolescents, 877 Italian high school students were administered the PID-5-BF. Participants were administered also the Measure of Disordered Personality Functioning (MDPF) as a criterion measure. In the full sample, Cronbach's alpha values for the PID-5-BF scales ranged from .59 (Detachment) to .77 (Psychoticism); in addition, all PID-5-BF scales showed mean interitem correlation values in the .22 to .40 range. Cronbach's alpha values for the PID-5-BF total score was .83 (mean interitem r = .16). Although 2-month test-retest reliability could be assessed only in a small ( n = 42) subsample of participants, all PID-5-BF scale scores showed adequate temporal stability, as indexed by intraclass r values ranging from .78 (Negative Affectivity) to .97 (Detachment), all ps <.001. Exploratory structural equation modeling analyses provided at least moderate support for the a priori model of PID-5-BF items. Multiple regression analyses showed that PID-5-BF scales predicted a nonnegligible amount of variance in MDPF Non-Cooperativeness, adjusted R 2 = .17, p < .001, and Non-Coping scales, adjusted R 2 = .32, p < .001. Similarly, the PID-5-BF total score was a significant predictor of both MDPF Non-Coping, and Non-Cooperativeness scales.
Physical Activity and Bone Health in Schoolchildren: The Mediating Role of Fitness and Body Fat
Torres-Costoso, Ana; Gracia-Marco, Luis; Sánchez-López, Mairena; Notario-Pacheco, Blanca; Arias-Palencia, Natalia; Martínez-Vizcaíno, Vicente
2015-01-01
Background The relationship between physical activity (PA) and bone health is well known, although the role of percent body fat (%BF) and fitness as confounders or mediators in this relationship remains uncertain. Objective To examine whether the association between PA and bone mineral content (BMC) is mediated by %BF and cardiorespiratory fitness (CRF). Methods In this cross sectional study, BMC, total %BF (by DXA), vigorous PA (VPA), CRF, age and height were measured in 132 schoolchildren (62 boys, aged 8–11 years). ANCOVA was used to test differences in BMC by %BF, CRF and VPA, controlling for different sets of confounders. Simple mediation analyses and serial multiple mediation analyses were fitted to examine whether the relationship between PA and BMC is mediated by %BF and fitness. Results Children with high %BF had higher total body BMC than their peers after controlling for all sets of confounders. Children with good CRF or VPA had significantly less total body BMC after controlling for age and sex but in children with good CRF this inverse relation disappeared after adjusting by %BF. %BF and CRF both act as a full mediator in the association between VPA and BMC, after inclusion of the potential confounders in the models. Conclusion Fitness and %BF seem to have a mediator role on the relationship between physical activity and bone mass. PMID:25915941
Kasote, D M; Badhe, Y S; Zanwar, A A; Hegde, M V; Deshmukh, K K
2012-07-01
to investigate the hepatoprotective potential of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed against CCl(4) -induced liver damage in rats. Hepatotoxicity was induced to Wistar rats by administration of 0.2% CCl(4) in olive oil (8 mL/kg, i.p.) on the seventh day of treatment. Hepatoprotective potential of EPC-BF at doses, 250 and 500 mg/kg, p.o. was assessed through biochemical and histological parameters. EPC-BF and silymarin pretreated animal groups showed significantly decreased activities of Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and level of total bilirubin, elevated by CCl(4) intoxication. Hepatic lipid peroxidation elevated by CCl(4) intoxication were also found to be alleviated at almost normal level in the EPC-BF and silymarin pretreated groups. Histological studies supported the biochemical findings and treatment of EPC-BF at doses 250 and 500 mg/kg, p.o. was found to be effective in restoring CCl(4) -induced hepatic damage. However, EPC-BF did not show dose-dependent hepatoprotective potential. EPC-BF depicted maximum protection against CCl(4) -induced hepatic damage at lower dose 250 mg/kg than higher dose (500 mg/ kg). EPC-BF possesses the significant hepatoprotective activity against CCl(4) induced liver damage, which could be mediated through increase in antioxidant defenses.
Reliability of air displacement plethysmography.
Anderson, Dawn E
2007-02-01
The purpose of this study was to examine the reliability of an air displacement plethysmography device (BOD POD) over trials performed on 3 different days. Subjects consisted of 24 healthy adults (8 men, 16 women), ages 18-38 years, with body weights 46.8-93.6 kg, body mass indexes of 19.1-30.1 kg x m(-2), and percentage body fats (BF) of 7.9-43.1%. Two estimates of BF were performed on 3 days. Paired t-tests revealed no significant within-day differences in body volume (BV), thoracic gas volume (V(TG)), body density (BD), and BF. Correlations between the two V(TG) measures on a day were r = 0.86 for day 1, r = 0.93 for day 2, and r = 0.96 for day 3. BF estimates within a day had high correlations of r = 0.98. Significant differences were found between days for measures of BV, V(TG), BD, and BF. These results indicate a high reliability for within-day estimates of BF and significant differences in between-day estimates of BF using air displacement plethysmography. Reliability of BF may be increased by requiring subjects to practice the procedure for V(TG) measurement.
Dentin bonding performance and interface observation of an MMA-based restorative material.
Shinagawa, Junichi; Inoue, Go; Nikaido, Toru; Ikeda, Masaomi; Sadr, Alireza; Tagami, Junji
2016-07-30
The purpose of this study was to evaluate bonding performance and dentin interface acid resistance using a 4-META/MMA-TBB based restorative material (BF) compared to a conventional 4-META/MMA-TBB resin cement (SB), and the effect of sodium fluoride (NaF) addition to the materials. Dentin surfaces were treated with 10% citric acid-3% ferric chloride (10-3) or 4-META containing self-etching primer (TP), followed by application of BF or SB polymer powders with or without NaF, to evaluate microtensile bond strength (µTBS) in six experimental groups; 10-3/SB, 10-3/BF, TP/SB, TP/BF, TP/SB/NaF and TP/BF/NaF. SEM observation of the resin-dentin interface was performed after acid-base challenge to evaluate interfacial dentin resistance to acid attack. TP/BF showed highest µTBS, while NaF polymers decreased µTBS. TP/BF showed funnel-shaped erosion at the interface, however, NaF polymers improved acid resistance of interface. In conclusion, BF demonstrated high µTBSs and low acid-resistance at the interface. NaF addition enhanced acid resistance but decreased µTBS.
Response to deep hypoglycemia does not involve glucoreceptors in carotid perfused tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cane, P.; Haun, C.K.; Evered, J.
1988-11-01
In the present study the authors examined whether the magnified hormonal counter-regulatory response seen during deep hypoglycemia (40 mg/dl) could be attenuated by supplying the forebrain with glucose furnished through carotid infusion. Two protocols were performed in conscious dogs. In the first protocol they infused glucose bilaterally into the carotid circulation to produce a forebrain glycemia of 55 {plus minus} 1 mg/dl whereas systemic glycemia declined to 39 {plus minus} 2 mg/dl. In the second protocol as a control they infused glucose into the systemic circulation at a rate matched to protocol 1 so that both systemic and jugular plasmamore » glucose concentrations were equivalent to the systemic glucose concentrations in protocol 1. In spite of a substantial difference in forebrain glycemia there were no differences in the counter-regulatory responses of catecholamines or glucagon. In addition, through the use of radiolabeled microspheres, they defined the precise regions of the forebrain irrigated during bilateral intracarotid glucose infusions. The concentration of microspheres was high in the forebrain but very low in the hindbrain. The results indicate that glucoreceptor cells in tissues perfused by carotid arteries may play a tautological role in the sympathetic response to hypoglycemia and imply that glucose-sensitive receptors must also be located elsewhere in the central nervous system or in the periphery.« less
Basaure, Pia; Guardia-Escote, Laia; Cabré, Maria; Peris-Sampedro, Fiona; Sánchez-Santed, Fernando; Domingo, José L; Colomina, Maria Teresa
2018-05-03
Chlorpyrifos (CPF) is one of the most commonly used organophosphate pesticides in the world. Our previous results described that apolipoprotein E (APOE) polymorphisms are a source of individual differences in susceptibility to CPF. The aim of this study was to assess the physical and biochemical effects of postnatal exposure to CPF in the apoE targeted replacement mouse model. Mice were exposed to CPF at 0 or 1 mg/kg/day from postnatal day 10-15. Physical development, plasma and forebrain cholinesterase (ChE) activity and gene expression in liver and forebrain were evaluated. CPF exposure delays physical maturation and decreases the expression of choline acetyltransferase, α4-subunit and the α7 receptor. CPF decreases the expression of vesicular acetylcholine transporter (VAChT) mRNA in the forebrain only in apoE3 mice. The expression of paraoxonase-2 in the forebrain was also influenced by APOE genotype and CPF. Differences between genotypes were observed in litter size, ChE activity, expression of butyrylcholinesterase and paraoxonase-1 in liver and variants of acetylcholinesterase, VAChT and the α7 receptor in the forebrain. These results support that there are different vulnerabilities to postnatal CPF exposure according to the APOE polymorphism, which in turn affects the cholinergic system and defenses to oxidative stress. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kahar, A. W. M.; Abduati Salem, A. E.
2017-06-01
Blending of linear low density polyethylene (LLDPE), thermoplastic starch (TPS) and banana fiber (BF) have been studied. Two types of systems were prepared; the matrix having different ratio of LLDPE/TPS and, the LLDPE/TPS composites having 5 - 30 wt% BF. Morphological changes using scanning electron microscope (SEM) were observed and its showed that TPS particle are homogenously dispersed in LLDPE matrix. On the other hand BF was found to be well embedded in TPS phase, showing the good interaction between BF and TPS phases. This observation show an agreement with the Young’s modulus value which is increased with the BF contents. The increment in Young’s modulus value was also attributed to the difficulties in LLDPE/TPS chains movement with the presence of BF.
Hung, Kai-En; Tsai, Che-En; Chang, Shao-Ling; Lai, Yu-Ying; Jeng, U-Ser; Cao, Fong-Yi; Hsu, Chain-Shu; Su, Chun-Jen; Cheng, Yen-Ju
2017-12-20
A new class of additive materials bis(pentafluorophenyl) diesters (BFEs) where the two pentafluorophenyl (C 6 F 5 ) moieties are attached at the both ends of a linear aliphatic chain with tunable tether lengths (BF5, BF7, and BF13) were designed and synthesized. In the presence of BF7 to restrict the migration of fullerene by hand-grabbing-like supramolecular interactions induced between the C 6 F 5 groups and the surface of fullerene, the P3HT:PC 61 BM:BF7 device showed stable device characteristics after thermal heating at 150 °C for 25 h. The morphologies of the active layers were systematically investigated by optical microscopy, grazing-incidence small-angle X-ray scattering (GISAXS), and atomic force microscopy. The tether length between the two C 6 F 5 groups plays a pivotal role in controlling the intermolecular attractions. BF13 with a long and flexible tether might form a BF13-fullerene sandwich complex that fails to prevent fullerene's movement and aggregation, while BF5 with too short tether length decreases the possibility of interactions between the C 6 F 5 groups and the fullerenes. BF7 with the optimal tether length has the best ability to stabilize the morphology. In sharp contrast, the nonfluorinated BP7 analogue without C 6 F 5 -C 60 physical interactions does not have the capability of morphological stabilization, unambiguously revealing the necessity of the C 6 F 5 group. Most importantly, the function of BF7 can be also applied to the high-performance PffBT4BT-2OD:PC 71 BM system, which exhibited an original PCE of 8.80%. After thermal heating at 85 °C for 200 h, the efficiency of the PffBT4BT-2OD:PC 71 BM:BF7 device only decreased slightly to 7.73%, maintaining 88% of its original efficiency. To the best of our knowledge, this is the first time that the thermal-driven morphological evolution of the high-performance PffBT4BT-2OD polymer has been investigated, and its morphological stability in the inverted device can be successfully preserved by the incorporation of BF7. This research also demonstrates that BF7 is not only effective with PC 61 BM but also to PC 71 BM.
Liu, Yan-Yan; Sun, Ling-Cong; Wei, Jing-Jing; Li, Dong; Yuan, Ye; Yan, Bin; Liang, Zhi-Hui; Zhu, Hui-Fen; Xu, Yong; Li, Bo; Song, Chuan-Wang; Liao, Sheng-Jun; Lei, Zhang; Zhang, Gui-Mei; Feng, Zuo-Hua
2010-09-01
Gr-1(+)CD11b(+)F4/80(+) cells play important roles in tumor development and have a negative effect on tumor immunotherapy. So far, the mechanisms underlying the regulation of their immunosuppressive phenotype by classical and alternative macrophage activation stimuli are not well elucidated. In this study, we found that molecules from necrotic tumor cells (NTC-Ms) stimulated Gr-1(+)CD11b(+)F4/80(+) cells to induce apoptosis of activated T cells but not nonstimulated T cells. The apoptosis-inducing capacity was determined by higher expression levels of arginase I and IL-10 relative to those of NO synthase 2 and IL-12 in Gr-1(+)CD11b(+)F4/80(+) cells, which were induced by NTC-Ms through TLR4 signaling. The apoptosis-inducing capacity of NTC-Ms-stimulated Gr-1(+)CD11b(+)F4/80(+) cells could be enhanced by IL-10. IFN-gamma may reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells only if their response to IFN-gamma was not attenuated. However, the potential of Gr-1(+)CD11b(+)F4/80(+) cells to express IL-12 in response to IFN-gamma could be attenuated by tumor, partially due to the existence of active STAT3 in Gr-1(+)CD11b(+)F4/80(+) cells and NTC-Ms from tumor. In this situation, IFN-gamma could not effectively reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells. Tumor immunotherapy with 4-1BBL/soluble programmed death-1 may significantly reduce, but not abolish the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells in local microenvironment. Blockade of TLR4 signaling could further reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells and enhance the suppressive effect of 4-1BBL/soluble form of programmed death-1 on tumor growth. These findings indicate the relationship of distinct signaling pathways with apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells and emphasize the importance of blocking TLR4 signaling to prevent the induction of T cell apoptosis by Gr-1(+)CD11b(+)F4/80(+) cells.
Glucocorticoids are the consensus treatment to avoid respiratory distress in preterm infants but there is accumulating evidence that these agents evoke long-term neurobehavioral deficits. Earlier, we showed that the developing rat forebrain is far more sensitive to glucocorticoi...
Texture and acceptability of goat meat frankfurters processed with 3 different sources of fat.
Bratcher, C L; Dawkins, N L; Solaiman, S; Kerth, C R; Bartlett, J R
2011-05-01
The objective of this research was to evaluate the texture and consumer acceptability of goat meat frankfurter formulations with no added fat (NAF), beef fat (BF), or canola oil (CO). Consumer sensory evaluation, fat, and moisture and texture profile analyses were performed on goat meat frankfurters produced with the fat sources BF, CO, and NAF. For sensory evaluations, NAF was less tender (P = 0.007; 4.90 vs. 4.11 and 4.35 for BF and CO, respectively) and the flavor was liked less (P = 0.004; 4.59 vs. 3.83 and 4.30 for BF and CO, respectively); BF was scored as the juiciest (P = 0.003; 3.86 vs. 4.49 and 4.58 for CO and NAF, respectively); and CO had the least amount of flavor (P = 0.029; 3.65 vs. 3.12 and 3.10 for BF and NAF, respectively). Moisture was least (P < 0.001) in CO (46.59%), followed by BF (48.57%) and NAF (55.80%). The amount of fat was not different (P = 0.761) in BF (24.36%) or CO (24.43%) but was less (P < 0.001) in NAF (9.06%), as expected. The NAF had the most protein (P < 0.001; 34.14%), followed by CO (27.98%) and BF (26.07%). For texture profile analyses, NAF had the least hardness value (P = 0.008; 3.92 vs. 4.48 and 4.40 for BF and CO, respectively) and least chewiness value (P = 0.026; 2.89 vs. 3.39 and 3.29 for BF and CO, respectively). Beef fat and CO were not different for hardness (P = 0.596) or chewiness (P = 0.530). No differences were observed in springiness (P = 0.954) or resilience (P = 0.561). The sensory panelists tended to prefer BF for overall acceptability. Results from these data revealed that value-added goat meat products received acceptable sensory scores; therefore, continued research and development will greatly expand the knowledge of goat meat and increase the acceptance of value-added products.
Kim, Y. I.; Park, J. M.; Lee, Y. H.; Lee, M.; Choi, D. Y.; Kwak, W. S.
2015-01-01
This study was conducted to determine the effects of feeding by-product feed (BF)-based silage on the performance, blood metabolite parameters, and carcass characteristics of Hanwoo steers. The BF-based silage was composed of 50% spent mushroom substrate, 21% recycled poultry bedding, 15% cut ryegrass straw, 10.8% rice bran, 2% molasses, 0.6% bentonite, and 0.6% microbial additive (on a wet basis), and ensiled for over 5 d. Fifteen steers were allocated to three diets during the growing and fattening periods (3.1 and 9.8 months, respectively): a control diet (concentrate mix and free access to rice straw), a 50% BF-based silage diet (control diet+50% of maximum BF-based silage intake), and a 100% BF-based silage diet (the same amount of concentrate mix and ad libitum BF-based silage). The BF-based silage was fed during the growing and fattening periods, and was replaced with larger particles of rice straw during the finishing period. After 19.6 months of the whole period all the steers were slaughtered. Compared with feeding rice straw, feeding BF-based silage tended (p = 0.10) to increase the average daily gain (27%) and feed efficiency (18%) of the growing steers, caused by increased voluntary feed intake. Feeding BF-based silage had little effect on serum constituents, electrolytes, enzymes, or the blood cell profiles of fattening steers, except for low serum Ca and high blood urea concentrations (p<0.05). Feeding BF-based silage did not affect cold carcass weight, yield traits such as back fat thickness, longissimus muscle area, yield index or yield grade, or quality traits such as meat color, fat color, texture, maturity, marbling score, or quality grade. However, it improved good quality grade (1+ and 1++) appearance rates (60% for the control group vs 100% for the BF-based silage-fed groups). In conclusion, cheap BF-based silage could be successfully used as a good quality roughage source for beef cattle. PMID:25557813
Kim, Y I; Park, J M; Lee, Y H; Lee, M; Choi, D Y; Kwak, W S
2015-02-01
This study was conducted to determine the effects of feeding by-product feed (BF)-based silage on the performance, blood metabolite parameters, and carcass characteristics of Hanwoo steers. The BF-based silage was composed of 50% spent mushroom substrate, 21% recycled poultry bedding, 15% cut ryegrass straw, 10.8% rice bran, 2% molasses, 0.6% bentonite, and 0.6% microbial additive (on a wet basis), and ensiled for over 5 d. Fifteen steers were allocated to three diets during the growing and fattening periods (3.1 and 9.8 months, respectively): a control diet (concentrate mix and free access to rice straw), a 50% BF-based silage diet (control diet+50% of maximum BF-based silage intake), and a 100% BF-based silage diet (the same amount of concentrate mix and ad libitum BF-based silage). The BF-based silage was fed during the growing and fattening periods, and was replaced with larger particles of rice straw during the finishing period. After 19.6 months of the whole period all the steers were slaughtered. Compared with feeding rice straw, feeding BF-based silage tended (p = 0.10) to increase the average daily gain (27%) and feed efficiency (18%) of the growing steers, caused by increased voluntary feed intake. Feeding BF-based silage had little effect on serum constituents, electrolytes, enzymes, or the blood cell profiles of fattening steers, except for low serum Ca and high blood urea concentrations (p<0.05). Feeding BF-based silage did not affect cold carcass weight, yield traits such as back fat thickness, longissimus muscle area, yield index or yield grade, or quality traits such as meat color, fat color, texture, maturity, marbling score, or quality grade. However, it improved good quality grade (1(+) and 1(++)) appearance rates (60% for the control group vs 100% for the BF-based silage-fed groups). In conclusion, cheap BF-based silage could be successfully used as a good quality roughage source for beef cattle.
Culman, Juraj; Mühlenhoff, Stephan; Blume, Annegret; Hedderich, Jürgen; Lützen, Ulf; Hunt, Stephen P; Rupniak, Nadia M J; Zhao, Yi
2018-06-15
Mice lacking the substance P (SP) neurokinin-1 (NK1) receptor (NK1R-/-mice) were used to investigate whether SP affects serotonin (5-HT) function in the brain and to assess the effects of acute immobilisation stress on the hypothalamic-pituitary-adrenocortical (HPA) axis and 5-HT turnover in individual brain nuclei. Basal HPA activity and the expression of hypothalamic corticotropin-releasing hormone (CRH) in wild-type (WT)- and NK1R-/- mice were identical. Stress-induced increases in plasma ACTH concentration were considerably higher in NK1R-/- mice than in WT mice while corticosterone concentrations were equally elevated in both mouse lines. Acute stress did not alter the expression of CRH. In the dorsal raphe nucleus (DRN), basal 5-HT turnover was increased in NK1R-/- mice and a 15 min stress further magnified 5-HT utilisation in this region. In the frontoparietal cortex, medial prefrontal cortex, central nucleus of amygdala, and the hippocampal CA1 region, stress increased 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) concentrations to a similar extent in WT and NK1R-/- mice. 5-HT turnover in the hypothalamic paraventricular nucleus was not affected by stress, but stress induced similar increases in 5-HT and 5-HIAA in the ventromedial and dorsomedial hypothalamic nuclei in WT and NK1R-/- mice. Our findings indicate that NK1 receptor activation suppresses ACTH release during acute stress but does not exert sustained inhibition of the HPA axis. Genetic deletion of the NK1 receptor accelerates 5-HT turnover in DRN under basal and stress conditions. No differences between the responses of serotonergic system to acute stress in WT and NK1R-/- mice occur in forebrain nuclei linked to the regulation of anxiety and neuroendocrine stress responses.
Kimura, F; Kawakami, M
1978-01-01
In order to elucidate neural pathways concerned with the proestrous surge of LH, FSH and prolactin (Prl) release, brain transection or lesion was made acutely under ether anesthesia between 12.00 and 14.00 h of proestrus, and electrochemical stimulation was done under anesthesia with pentobarbital sodium (31.5 mg/kg b.w.) injected at 13.45 h. Transection which interrupted the connection of septum (SEPT), diagonal band of Broca (DBB) and bed nucleus of stria terminalis (BST) with the preoptic-suprachiasmatic area interfered with ovulation and surge of release of all 3 hormones. Isolation of the basal part of the suprachiasmatic area, including the suprachiasmatic nucleus (SCH), blocked ovulation also. Bilateral lesions in the medial preoptic area (MPO) with platinium-iridium electrode blocked ovulation and the surge of LH and Prl release, but not of FSH. Lesions in the SCH blocked ovulation and the surge of LH, but not of FSH and Prl. In the rat with acute isolation of the basal part of the suprachiasmatic area and SCH, stimulation of the MPO failed to induce ovulation and LH release, but was followed by FSH release. Prl release was not inhibited as in the intact rat. When the rat had the antero-SCH cut, stimulation of the SCH induced LH release but not FSH, and the inhibition on Prl release was pronounced. These findings offer evidence that the limbic-forebrain inputs are necessary for the preoptic integration in order to stimulate the proestrous surge of LH, FSH and Prl release. Furthermore, it is possible that separate pathways from the preoptic area to the medial basal hypothalamus are concerned in the stimulation of individual hormones--a restricted route for LH which may pass through the SCH, a diffuse one for FSH which may pass through either the SCH or anterior hypothalamic area, and a relatively diffuse one for Prl which may pass outside the SCH.
Generation of choline for acetylcholine synthesis by phospholipase D isoforms
Zhao, Di; Frohman, Michael A; Blusztajn, Jan Krzysztof
2001-01-01
Dedication This article is dedicated to the memory of Sue Kim Hanson, a graduate student in the department of Pathology and Laboratory Medicine at Boston University School of Medicine, who perished in the terrorist attacks of September 11, 2001. Abstract Background In cholinergic neurons, the hydrolysis of phosphatidylcholine (PC) by a phospholipase D (PLD)-type enzyme generates some of the precursor choline used for the synthesis of the neurotransmitter acetylcholine (ACh). We sought to determine the molecular identity of the relevant PLD using murine basal forebrain cholinergic SN56 cells in which the expression and activity of the two PLD isoforms, PLD1 and PLD2, were experimentally modified. ACh levels were examined in cells incubated in a choline-free medium, to ensure that their ACh was synthesized entirely from intracellular choline. Results PLD2, but not PLD1, mRNA and protein were detected in these cells and endogenous PLD activity and ACh synthesis were stimulated by phorbol 12-myristate 13-acetate (PMA). Introduction of a PLD2 antisense oligonucleotide into the cells reduced PLD2 mRNA and protein expression by approximately 30%. The PLD2 antisense oligomer similarly reduced basal- and PMA-stimulated PLD activity and ACh levels. Overexpression of mouse PLD2 by transient transfection increased basal- (by 74%) and PMA-stimulated (by 3.2-fold) PLD activity. Moreover, PLD2 transfection increased ACh levels by 26% in the absence of PMA and by 2.1-fold in the presence of PMA. Overexpression of human PLD1 by transient transfection increased PLD activity by 4.6-fold and ACh synthesis by 2.3-fold in the presence of PMA as compared to controls. Conclusions These data identify PLD2 as the endogenous enzyme that hydrolyzes PC to generate choline for ACh synthesis in cholinergic cells, and indicate that in a model system choline generated by PLD1 may also be used for this purpose. PMID:11734063
Zhang, Yang; Qiu, Munan; Yu, Ying; Wen, Bianying; Cheng, Lele
2017-01-11
A facile route was proposed to synthesize polyaniline (PANI) uniformly deposited on bagasse fiber (BF) via a one-step in situ polymerization of aniline in the dispersed system of BF. Correlations between the structural, electrical, and electromagnetic properties were extensively investigated. Scanning electron microscopy images confirm that the PANI was coated dominantly on the BF surface, indicating that the as-prepared BF/PANI composite adopted the natural and inexpensive BF as its core and the PANI as the shell. Fourier transform infrared spectra suggest significant interactions between the BF and PANI shell, and a high degree of doping in the PANI shell was achieved. X-ray diffraction results reveal that the crystallization of the PANI shell was improved. The dielectric behaviors are analyzed with respect to dielectric constant, loss tangent, and Cole-Cole plots. The BF/PANI composite exhibits superior electrical conductivity (2.01 ± 0.29 S·cm -1 ), which is higher than that of the pristine PANI with 1.35 ± 0.15 S·cm -1 . The complex permittivity, electromagnetic interference (EMI), shielding effectiveness (SE) values, and attenuation constants of the BF/PANI composite were larger than those of the pristine PANI. The EMI shielding mechanisms of the composite were experimentally and theoretically analyzed. The absorption-dominated total EMI SE of 28.8 dB at a thickness of 0.4 mm indicates the usefulness of the composite for electromagnetic shielding. Moreover, detailed comparison of electrical and EMI shielding properties with respect to the BF/PANI, dedoped BF/PANI composite, and the pristine PANI indicate that the enhancement of electromagnetic properties for the BF/PANI composite was due to the improved conductivity and the core-shell architecture. Thus, the composite has potential commercial applications for high-performance electromagnetic shielding materials and also could be used as a conductive filler to endow polymers with electromagnetic shielding ability.
Dilernia, Dario A.; Jones, Leandro R.; Pando, Maria A.; Rabinovich, Roberto D.; Damilano, Gabriel D.; Turk, Gabriela; Rubio, Andrea E.; Pampuro, Sandra; Gomez-Carrillo, Manuel
2011-01-01
Abstract HIV-1 epidemics in South America are believed to have originated in part from the subtype B epidemic initiated in the Caribbean/North America region. However, circulation of BF recombinants in similar proportions was extensively reported. Information currently shows that many BF recombinants share a recombination structure similar to that found in the CRF12_BF. In the present study, analyzing a set of 405 HIV sequences, we identified the most likely origin of the BF epidemic in an early event of recombination. We found that the subtype B epidemics in South America analyzed in the present study were initiated by a founder event that occurred in the early 1970s, a few years after the introduction of these strains in the Americas. Regarding the F/BF recombinant epidemics, by analyzing a subtype F genomic segment within the viral gene gag present in the majority of the BF recombinants, we found evidence of a geographic divergence very soon after the introduction of subtype F strains in South America. Moreover, through analysis of a subtype B segment present in all the CRF12_BF-like recombination structure, we estimated the circulation of the subtype B strain that gave rise to that recombinant structure around the same time period estimated for the introduction of subtype F strains. The HIV epidemics in South America were initiated in part through a founder event driven by subtype B strains coming from the previously established epidemic in the north of the continent. A second introduction driven by subtype F strains is likely to have encountered the incipient subtype B epidemic that soon after their arrival recombined with them, originating the BF epidemic in the region. These results may explain why in South America the majority of F sequences are found as BF recombinants. PMID:20919926
Heat stress redistributes blood flow in arteries of the brain during dynamic exercise.
Sato, Kohei; Oue, Anna; Yoneya, Marina; Sadamoto, Tomoko; Ogoh, Shigehiko
2016-04-01
We hypothesized that heat stress would decrease anterior and posterior cerebral blood flow (CBF) during exercise, and the reduction in anterior CBF would be partly associated with large increase in extracranial blood flow (BF). Nine subjects performed 40 min of semirecumbent cycling at 60% of the peak oxygen uptake in hot (35°C; Heat) and thermoneutral environments (25°C; Control). We evaluated BF and conductance (COND) in the external carotid artery (ECA), internal carotid artery (ICA), and vertebral artery (VA) using ultrasonography. During the Heat condition, ICA and VA BF were significantly increased 10 min after the start of exercise (P < 0.05) and thereafter gradually decreased. ICA COND was significantly decreased (P < 0.05), whereas VA COND remained unchanged throughout Heat. Compared with the Control, either BF or COND of ICA and VA at the end of Heat tended to be lower, but not significantly. In contrast, ECA BF and COND at the end of Heat were both higher than levels in the Control condition (P < 0.01). During Heat, a reduction in ICA BF appears to be associated with a decline in end-tidal CO2 tension (r = 0.84), whereas VA BF appears to be affected by a change in cardiac output (r = 0.87). In addition, a change in ECA BF during Heat was negatively correlated with a change in ICA BF (r = -0.75). Heat stress resulted in modification of the vascular response of head and brain arteries to exercise, which resulted in an alteration in the distribution of cardiac output. Moreover, a hyperthermia-induced increase in extracranial BF might compromise anterior CBF during exercise with heat stress. Copyright © 2016 the American Physiological Society.
Krishna, Gamidi Rama; Devarapalli, Ramesh; Prusty, Rajesh; Liu, Tiandong; Fraser, Cassandra L; Ramamurty, Upadrasta; Reddy, Chilla Malla
2015-11-01
The structure and mechanical properties of crystalline materials of three boron difluoride dibenzoylmethane (BF2dbm) derivatives were investigated to examine the correlation, if any, among mechanochromic luminescence (ML) behaviour, solid-state structure, and the mechanical behaviour of single crystals. Qualitative mechanical deformation tests show that the crystals of BF2dbm( (t) Bu)2 can be bent permanently, whereas those of BF2dbm(OMe)2 exhibit an inhomogeneous shearing mode of deformation, and finally BF2dbmOMe crystals are brittle. Quantitative mechanical analysis by nano-indentation on the major facets of the crystals shows that BF2dbm( (t) Bu)2 is soft and compliant with low values of elastic modulus, E, and hardness, H, confirming its superior suceptibility for plastic deformation, which is attributed to the presence of a multitude of slip systems in the crystal structure. In contrast, both BF2dbm(OMe)2 and BF2dbmOMe are considerably stiffer and harder with comparable E and H, which are rationalized through analysis of the structural attributes such as the intermolecular interactions, slip systems and their relative orientation with respect to the indentation direction. As expected from the qualitative mechanical behaviour, prominent ML was observed in BF2dbm( (t) Bu)2, whereas BF2dbm(OMe)2 exhibits only a moderate ML and BF2dbmOMe shows no detectable ML, all examined under identical conditions. These results confirm that the extent of ML in crystalline organic solid-state fluorophore materials can be correlated positively with the extent of plasticity (low recovery). In turn, they offer opportunities to design new and improved efficient ML materials using crystal engineering principles.
Long, John D; Carmena, Jose M
2013-05-01
The rodent somatosensory barrel cortex (S1bf) has proved a valuable model for studying neural plasticity in vivo. It has been observed that sensory deprivation or conditioning reorganizes sensory-driven activity within S1bf. These observations suggest a role for S1bf in somatosensory learning. This study evaluated the hypothesis that the response properties of extracellularly recorded neurons in S1bf would change as subjects learned to respond to stimulation of S1bf. Intracortical microstimulation (ICMS) of S1bf was used as a means for bypassing feedforward drive from the sensory periphery, midbrain, and thalamus while exciting local cortical networks. To separate the learning of this conditioned stimulus-conditioned response (CS-CR) from other elements of the task, we employed a cross-modal transfer schedule. Long-Evans rats were initially trained to respond to an auditory stimulus. All subjects were then implanted in both S1bfs with chronic microwire arrays for recording neural activity and delivering ICMS. Next, this association was transferred to ICMS of one hemisphere's S1bf. S1bf responded to ICMS with a brief increase in firing rate followed by a longer reduction in activity. We observed that the duration of reduced activity elicited by ICMS increased as the subjects began to respond correctly more often than expected by chance, and the magnitude of the initial positive response increased as they consolidated this CS-CR. Subsequent ICMS of the opposite S1bf revealed that this CS-CR did not generalize across hemispheres. These results suggest that a mechanism involving a single hemisphere's S1bf tunes cortical responses in concert with changes in rodent behavior during somatosensory learning.
Tong, Hua Hua; Li, Yong Xing; Stahl, Gregory L; Thurman, Joshua M
2010-03-01
To define the roles of specific complement activation pathways in host defense against Streptococcus pneumoniae in acute otitis media (AOM), we investigated the susceptibility to AOM in mice deficient in complement factor B and C2 (Bf/C2(-/)(-)), C1qa (C1qa(-/)(-)), and factor B (Bf(-)(/)(-)). Bacterial titers of both S. pneumoniae serotype 6A and 14 in the middle ear lavage fluid samples from Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice were significantly higher than in samples from wild-type mice 24 h after transtympanical infection (P < 0.05) and remained persistently higher in samples from Bf/C2(-/)(-) mice than in samples from wild-type mice. Bacteremia occurred in Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice infected with both strains, but not in wild-type mice. Recruitment of inflammatory cells was paralleled by enhanced production of inflammatory mediators in the middle ear lavage samples from Bf/C2(-/)(-) mice. C3b deposition on both strains was greatest for sera obtained from wild-type mice, followed by C1qa(-)(/)(-) and Bf(-)(/)(-) mice, and least for Bf/C2(-)(/)(-) mice. Opsonophagocytosis and whole-blood killing capacity of both strains were significantly decreased in the presence of sera or whole blood from complement-deficient mice compared to wild-type mice. These findings indicate that both the classical and alternative complement pathways are critical for middle ear immune defense against S. pneumoniae. The reduced capacity of complement-mediated opsonization and phagocytosis in the complement-deficient mice appears to be responsible for the impaired clearance of S. pneumoniae from the middle ear and dissemination to the bloodstream during AOM.
Obesity and coronary artery calcification: Can it explain the obesity-paradox?
Aljizeeri, Ahmed; Coutinho, Thais; Pen, Ally; Chen, Li; Yam, Yeung; Dent, Robert; McPherson, Ruth; Chow, Benjamin J W
2015-06-01
The inverse relationship between obesity and adverse cardiovascular outcomes has been coined the 'obesity-paradox'. We sought to determine the relationship between measures of obesity [body mass index (BMI), body surface area (BSA) and body fat percentage (BF%)] and coronary artery calcification (CAC). We retrospectively analyzed patients who underwent CAC using the Agatston score. Baseline demographics were collected and BMI, BSA and BF% were calculated. A two-stage regression modeling approach was used to evaluate the association between BMI, BSA, BF% and Agatston score. Of the 6661 patients [mean age = 57.1 ± 10.8 years, men = 54.3%, median Agatston score = 14 (0, 163)], 0.1% were underweight, 21.3% had normal BMI, 39.1% were overweight and 39.4% were obese. The mean BMI, BSA and BF% were 29.6 ± 6.1 kg/m(2), 1.97 ± 0.25 m(2) and 37 ± 10 %, respectively. There was an independent association between the presence of CAC and BMI (5 kg/m(2) increments) (OR 1.05, CI 1.00-1.11, P = 0.038) and BF% (OR 2.38, CI 1.05-5.41, P = 0.038). Neither BMI categories nor large BSA independently predicted the presence of CAC. BF% predicted the extent of CAC in men but not in women, and higher BF% was associated with higher category of CAC severity in men only. BMI and BF% were independent predictors of the presence of CAC. BF% was associated with the extent of CAC and higher BF% was associated with higher category of CAC severity in men only. These results suggest that further study is needed to better understand the obesity-paradox.
Dirschka, T; Radny, P; Dominicus, R; Mensing, H; Brüning, H; Jenne, L; Karl, L; Sebastian, M; Oster-Schmidt, C; Klövekorn, W; Reinhold, U; Tanner, M; Gröne, D; Deichmann, M; Simon, M; Hübinger, F; Hofbauer, G; Krähn-Senftleben, G; Borrosch, F; Reich, K; Berking, C; Wolf, P; Lehmann, P; Moers-Carpi, M; Hönigsmann, H; Wernicke-Panten, K; Hahn, S; Pabst, G; Voss, D; Foguet, M; Schmitz, B; Lübbert, H; Szeimies, R-M
2013-01-01
Background Two phase III trials of photodynamic therapy (PDT) with BF-200 ALA, a recently approved nanoemulsion formulation of 5-aminolaevulinic acid (ALA) demonstrated high clearance rates in mild-to-moderate actinic keratosis (AK). The comparison to a registered methyl aminolaevulinate (MAL) cream demonstrated significantly superior total patient clearance rates. Objectives To evaluate long-term efficacy and safety of PDT for AK 6 and 12 months after the last PDT with BF-200 ALA, MAL or placebo. Methods The follow-up phase (FUP) was performed with patients of two phase III studies. Both studies compared BF-200 ALA with placebo, one of the studies additionally with MAL. Overall recurrence rates and various subgroups (light source, lesion severity, lesion location, complete responders after first PDT) were assessed 6 and 12 months after the last PDT. Results Recurrence rates were similar for BF-200 ALA and MAL, with a tendency to lower recurrence rates for BF-200 ALA. The proportion of patients who were fully cleared during PDT and remained completely clear for at least 12 months after PDT were 47% for BF-200 ALA (both studies) and 36% for MAL treatment. The subgroup that was illuminated with narrow wavelength LED lamps reached 69% and 53% for BF-200 ALA (both studies, respectively) and 41% for MAL. No safety concerns were reported. Conclusions The FUP data confirmed the high efficacy and safety of PDT with BF-200 ALA. The slightly lower recurrence rates after BF-200 ALA treatment compared with MAL treatment enhanced the better treatment outcome due to the significantly superior efficacy. PMID:23252768
Dirschka, T; Radny, P; Dominicus, R; Mensing, H; Brüning, H; Jenne, L; Karl, L; Sebastian, M; Oster-Schmidt, C; Klövekorn, W; Reinhold, U; Tanner, M; Gröne, D; Deichmann, M; Simon, M; Hübinger, F; Hofbauer, G; Krähn-Senftleben, G; Borrosch, F; Reich, K; Berking, C; Wolf, P; Lehmann, P; Moers-Carpi, M; Hönigsmann, H; Wernicke-Panten, K; Hahn, S; Pabst, G; Voss, D; Foguet, M; Schmitz, B; Lübbert, H; Szeimies, R-M
2013-04-01
Two phase III trials of photodynamic therapy (PDT) with BF-200 ALA, a recently approved nanoemulsion formulation of 5-aminolaevulinic acid (ALA) demonstrated high clearance rates in mild-to-moderate actinic keratosis (AK). The comparison to a registered methyl aminolaevulinate (MAL) cream demonstrated significantly superior total patient clearance rates. To evaluate long-term efficacy and safety of PDT for AK 6 and 12 months after the last PDT with BF-200 ALA, MAL or placebo. The follow-up phase (FUP) was performed with patients of two phase III studies. Both studies compared BF-200 ALA with placebo, one of the studies additionally with MAL. Overall recurrence rates and various subgroups (light source, lesion severity, lesion location, complete responders after first PDT) were assessed 6 and 12 months after the last PDT. Recurrence rates were similar for BF-200 ALA and MAL, with a tendency to lower recurrence rates for BF-200 ALA. The proportion of patients who were fully cleared during PDT and remained completely clear for at least 12 months after PDT were 47% for BF-200 ALA (both studies) and 36% for MAL treatment. The subgroup that was illuminated with narrow wavelength LED lamps reached 69% and 53% for BF-200 ALA (both studies, respectively) and 41% for MAL. No safety concerns were reported. The FUP data confirmed the high efficacy and safety of PDT with BF-200 ALA. The slightly lower recurrence rates after BF-200 ALA treatment compared with MAL treatment enhanced the better treatment outcome due to the significantly superior efficacy. © 2012 Biofrontera Bioscience GmbH BJD © 2012 British Association of Dermatologists.
Charnchai, Pattra; Jantama, Sirima Suvarnakuta; Jantama, Kaemwich
2017-09-15
In this study, Bifidobacterium animalis subsp. lactis BF052 was demonstrated the growth capability in soymilk and could be thus supplemented as a probiotic starter that employed soymilk as one of its food vehicles. The complete genome sequence of BF052 was therefore determined to understand the genetic basis of BF052 as a technological and functional probiotic starter. The whole genome sequence of BF052 consists of a circular genome of 1938 624 bp with a G+C content of 60.50%. This research highlights relevant genes involving in its adaptive responses to industrial and/or environmental stresses and utilization of α-galacto-oligosaccharides in BF052 strain compared with other representative bifidobacterial genomes. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Gasier, Heath G.; Hughes, Linda M.; Young, Colin R.; Richardson, Annely M.
2015-01-01
Background Little is known of the diagnostic accuracy of BMI in classifying obesity in active duty military personnel and those that previously served. Thus, the primary objectives were to determine the relationship between lean and fat mass, and body fat percentage (BF%) with BMI, and assess the agreement between BMI and BF% in defining obesity. Methods Body composition was measured by dual-energy X-ray absorptiometry in 462 males (20–91 years old) who currently or previously served in the U.S. Navy. A BMI of ≥ 30 kg/m2 and a BF% ≥ 25% were used for obesity classification. Results The mean BMI (± SD) and BF% were 28.8 ± 4.1 and 28.9 ± 6.6%, respectively, with BF% increasing with age. Lean mass, fat mass, and BF% were significantly correlated with BMI for all age groups. The exact agreement of obesity defined by BMI and BF% was fair (61%), however, 38% were misclassified by a BMI cut-off of 30 when obesity was defined by BF%. Conclusions From this data we determined that there is a good correlation between body composition and BMI, and fair agreement between BMI and BF% in classifying obesity in a group of current and former U.S. Navy service members. However, as observed in the general population, a significant proportion of individuals with excess fat are misclassified by BMI cutoffs. PMID:26197480
Inverted BMI rather than BMI is a better proxy for percentage of body fat.
Nevill, Alan M; Stavropoulos-Kalinoglou, Antonios; Metsios, Giorgos S; Koutedakis, Yiannis; Holder, Roger L; Kitas, George D; Mohammed, Mohammed A
2011-11-01
Percentage of body fat (BF%) is a known risk factor for a range of healthcare problems but is difficult to measure. An easy to measure proxy is the weight/height(2) ratio known as the Body Mass Index (BMI kg/m(2)). However, BMI does have some inherent weaknesses which are readily overcome by its inverse iBMI (1000/BMI, cm(2)/kg). The association between BF% and both BMI and iBMI together with their distributional properties was explored using previously published data from healthy (n = 2993) and diseased populations (n = 298). BMI is skewed whereas iBMI is symmetrical and so is better approximated by the normal distribution. The relationship between BF% and BMI is curved, but that of iBMI and BF% is linear and thus iBMI explains more of the variation in BF% than BMI. For example a unit increase in BMI for a group of thin women represents an increase of 2.3% in BF, but for obese women this represents only a 0.3% increase in BF-a 7-fold difference. The curvature stems from body mass being the numerator in BMI but the denominator in BF% resulting in a form of hyperbolic curve which is not the case with iBMI. Furthermore, BMI and iBMI have different relationships (interaction) with BF% for men and women, but these differences are less marked with iBMI. Overall, these characteristics of iBMI favour its use over BMI, especially in statistical models.
Gasier, Heath G; Hughes, Linda M; Young, Colin R; Richardson, Annely M
2015-01-01
Little is known of the diagnostic accuracy of BMI in classifying obesity in active duty military personnel and those that previously served. Thus, the primary objectives were to determine the relationship between lean and fat mass, and body fat percentage (BF%) with BMI, and assess the agreement between BMI and BF% in defining obesity. Body composition was measured by dual-energy X-ray absorptiometry in 462 males (20-91 years old) who currently or previously served in the U.S. Navy. A BMI of ≥ 30 kg/m2 and a BF% ≥ 25% were used for obesity classification. The mean BMI (± SD) and BF% were 28.8 ± 4.1 and 28.9 ± 6.6%, respectively, with BF% increasing with age. Lean mass, fat mass, and BF% were significantly correlated with BMI for all age groups. The exact agreement of obesity defined by BMI and BF% was fair (61%), however, 38% were misclassified by a BMI cut-off of 30 when obesity was defined by BF%. From this data we determined that there is a good correlation between body composition and BMI, and fair agreement between BMI and BF% in classifying obesity in a group of current and former U.S. Navy service members. However, as observed in the general population, a significant proportion of individuals with excess fat are misclassified by BMI cutoffs.
Kasote, D. M.; Badhe, Y. S.; Zanwar, A. A.; Hegde, M. V.; Deshmukh, K. K.
2012-01-01
Objective: to investigate the hepatoprotective potential of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed against CCl4 -induced liver damage in rats. Materials and Methods: Hepatotoxicity was induced to Wistar rats by administration of 0.2% CCl4 in olive oil (8 mL/kg, i.p.) on the seventh day of treatment. Hepatoprotective potential of EPC-BF at doses, 250 and 500 mg/kg, p.o. was assessed through biochemical and histological parameters. Results: EPC-BF and silymarin pretreated animal groups showed significantly decreased activities of Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and level of total bilirubin, elevated by CCl4 intoxication. Hepatic lipid peroxidation elevated by CCl4 intoxication were also found to be alleviated at almost normal level in the EPC-BF and silymarin pretreated groups. Histological studies supported the biochemical findings and treatment of EPC-BF at doses 250 and 500 mg/kg, p.o. was found to be effective in restoring CCl4 -induced hepatic damage. However, EPC-BF did not show dose-dependent hepatoprotective potential. EPC-BF depicted maximum protection against CCl4 -induced hepatic damage at lower dose 250 mg/kg than higher dose (500 mg/ kg). Conclusion: EPC-BF possesses the significant hepatoprotective activity against CCl4 induced liver damage, which could be mediated through increase in antioxidant defenses. PMID:22923966
Ramírez-González, Pedro E; Ren, Gan; Saielli, Giacomo; Wang, Yanting
2016-06-30
In this work, we have performed molecular dynamics (MD) simulations to compare the structural and dynamical properties of three ionic liquids (ILs), 1-ethyl-3-methyl-imidazolium tetrafluorborate ([EMI(+)][BF4(-)]), 1,1'-dimethyl-4,4'-bipyridinium bis(tetrafluorborate) ([VIO(2+)][BF4(-)]2), and 1,1'-dimethyl-4,4'-bipyridinium bis(trifluoromethylsulfonyl)imide (bistriflimide in short) ([VIO(2+)][Tf2N(-)]2), aiming to discover the influence of ion rigidity on the physical properties of ILs. [VIO(2+)] is more rigid than [EMI(+)], and [BF4(-)] is more rigid than [Tf2N(-)]. [VIO(2+)][BF4(-)]2 has an anion distribution different from the other two by the higher and sharper peaks in the cation-anion radial distribution functions, reflecting a close-packed local structure of anions around cations. [VIO(2+)][BF4(-)]2 and [VIO(2+)][Tf2N(-)]2 have similar dynamics much slower than [EMI(+)][BF4(-)], and [VIO(2+)][Tf2N(-)]2 shows a more isotropic molecular distribution than [VIO(2+)][BF4(-)]2 and [EMI(+)][BF4(-)]. Additionally, we have simulated two modified viologen-based ILs to reinforce our interpretations. We conclude from the above simulation results that the rigidity of anions influences the alignment of cations and that the rigidity of cations shows a large obstacle to their rotational capacity. Moreover, we have observed a slower diffusion of [VIO(2+)][BF4(-)]2 due to the electrostatic correlations, which stabilizes the ion-cage effect.
Yasuda, Kazuhiro; Kaibuki, Naomi; Harashima, Hiroaki; Iwata, Hiroyasu
2017-06-01
Impaired balance in patients with hemiparesis caused by stroke is frequently related to deficits in the central integration of afferent inputs, and traditional rehabilitation reinforces excessive visual reliance by focusing on visual compensation. The present study investigated whether a balance task involving a haptic biofeedback (BF) system, which provided supplementary vibrotactile sensory cues associated with center-of-foot-pressure displacement, improved postural control in patients with stroke. Seventeen stroke patients were assigned to two groups: the Vibrotactile BF and Control groups. During the balance task (i.e., standing on a foam mat), participants in the Vibrotactile BF group tried to stabilize their postural sway while wearing the BF system around the pelvic girdle. In the Control group, participants performed an identical postural task without the BF system. Pre- and post-test measurements of postural control using a force plate revealed that the stability of bipedal posture in the Vibrotactile BF group was markedly improved compared with that in the Control group. A balance task involving a vibrotactile BF system improved postural stability in patients with stroke immediately. This confirms the potential of a haptic-based BF system for balance training, both in routine clinical practice and in everyday life.
Rodriguez, C; Huang, L J; Son, J K; McKee, A; Xiao, Z; Lodish, H F
2001-08-10
Using the plasminogen activator inhibitor (PAI) promoter to drive the expression of a reporter gene (mouse CD2), we devised a system to clone negative regulators of the transforming growth factor-beta (TGF-beta) signaling pathway. We infected a TGF-beta-responsive cell line (MvLu1) with a retroviral cDNA library, selecting by fluorescence-activated cell sorter single cells displaying low PAI promoter activity in response to TGF-beta. Using this strategy we cloned the proto-oncogene brain factor-1 (BF-1). BF-1 represses the PAI promoter in part by associating with both unphosphorylated Smad3 (in the cytoplasm) and phosphorylated Smad3 (in the nucleus), thus preventing its binding to DNA. BF-1 also associates with Smad1, -2, and -4; the Smad MH2 domain binds to BF-1, and the C-terminal segment of BF-1 is uniquely and solely required for binding to Smads. Further, BF-1 represses another TGF-beta-induced promoter (p15), it up-regulates a TGF-beta-repressed promoter (Cyclin A), and it reverses the growth arrest caused by TGF-beta. Our results suggest that BF-1 is a general inhibitor of TGF-beta signaling and as such may play a key role during brain development.
NASA Astrophysics Data System (ADS)
Kononevich, Yuriy N.; Surin, Nikolay M.; Sazhnikov, Viacheslav A.; Svidchenko, Evgeniya A.; Aristarkhov, Vladimir M.; Safonov, Andrei A.; Bagaturyants, Alexander A.; Alfimov, Mikhail V.; Muzafarov, Aziz M.
2017-03-01
A series of (dibenzoylmethanato)boron difluoride (BF2DBM) derivatives with a halogen atom in one of the phenyl rings at the para-position were synthesized and used to elucidate the effects of changing the attached halogen atom on the photophysical properties of BF2DBM. The room-temperature absorption and fluorescence maxima of fluoro-, chloro-, bromo- and iodo-substituted derivatives of BF2DBM in THF are red-shifted by about 2-10 nm relative to the corresponding peaks of the parent BF2DBM. The fluorescence quantum yields of the halogenated BF2DBMs (except the iodinated derivative) are larger than that of the unsubstituted BF2DBM. All the synthesized compounds are able to form fluorescent exciplexes with benzene and toluene (emission maxima at λem = 433 and 445 nm, respectively). The conformational structure and electronic spectral properties of halogenated BF2DBMs have been modeled by DFT/TDDFT calculations at the PBE0/SVP level of theory. The structure and fluorescence spectra of exciplexes were calculated using the CIS method with empirical dispersion correction.
Bhaskar, Jamuna J; S, Mahadevamma; Chilkunda, Nandini D; Salimath, Paramahans V
2012-01-11
Banana flower (BF) and pseudostem (PS) are byproducts of banana cultivation and are known to have health beneficial effects. The main objective of this study was to evaluate the dietary fiber composition and antioxidant effect of BF and PS. In the present study, BF and PS were found to be rich in dietary fiber (65.6 ± 1.32 and 28.8 ± 0.98%, respectively). Dietary fiber fractions were extracted and characterized in terms of sugar profile, and antioxidant activities were determined. BF and PS fractions were rich in sugars and showed wide diversity with respect to the nature of the sugars. Hemicellulose A fraction of BF showed high amounts of total polyphenols and total antioxidants, which were 121.8 ± 1.9 and 39.03 ± 0.118 μg/mg extract, respectively. HPLC analysis showed the presence of phenolic acids in hemicellulose A and B fractions of BF. These results indicate that BF and PS are rich sources of dietary fiber associated with polyphenols, which could promote health beneficial effects.
Barber, Melissa; Andrews, William D; Memi, Fani; Gardener, Phillip; Ciantar, Daniel; Tata, Mathew; Ruhrberg, Christiana; Parnavelas, John G
2018-01-01
Abstract Vascular endothelial growth factor (Vegfa) is essential for promoting the vascularization of the embryonic murine forebrain. In addition, it directly influences neural development, although its role in the forming forebrain is less well elucidated. It was recently suggested that Vegfa may influence the development of GABAergic interneurons, inhibitory cells with crucial signaling roles in cortical neuronal circuits. However, the mechanism by which it affects interneuron development remains unknown. Here we investigated the developmental processes by which Vegfa may influence cortical interneuron development by analyzing transgenic mice that ubiquitously express the Vegfa120 isoform to perturb its signaling gradient. We found that interneurons reach the dorsal cortex at mid phases of corticogenesis despite an aberrant vascular network. Instead, endothelial ablation of Vegfa alters cortical interneuron numbers, their intracortical distribution and spatial proximity to blood vessels. We show for the first time that vascular-secreted guidance factors promote early-migrating interneurons in the intact forebrain in vivo and identify a novel role for vascular-Vegfa in this process. PMID:29901792
New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk.
Lu, Yingchang; Day, Felix R; Gustafsson, Stefan; Buchkovich, Martin L; Na, Jianbo; Bataille, Veronique; Cousminer, Diana L; Dastani, Zari; Drong, Alexander W; Esko, Tõnu; Evans, David M; Falchi, Mario; Feitosa, Mary F; Ferreira, Teresa; Hedman, Åsa K; Haring, Robin; Hysi, Pirro G; Iles, Mark M; Justice, Anne E; Kanoni, Stavroula; Lagou, Vasiliki; Li, Rui; Li, Xin; Locke, Adam; Lu, Chen; Mägi, Reedik; Perry, John R B; Pers, Tune H; Qi, Qibin; Sanna, Marianna; Schmidt, Ellen M; Scott, William R; Shungin, Dmitry; Teumer, Alexander; Vinkhuyzen, Anna A E; Walker, Ryan W; Westra, Harm-Jan; Zhang, Mingfeng; Zhang, Weihua; Zhao, Jing Hua; Zhu, Zhihong; Afzal, Uzma; Ahluwalia, Tarunveer Singh; Bakker, Stephan J L; Bellis, Claire; Bonnefond, Amélie; Borodulin, Katja; Buchman, Aron S; Cederholm, Tommy; Choh, Audrey C; Choi, Hyung Jin; Curran, Joanne E; de Groot, Lisette C P G M; De Jager, Philip L; Dhonukshe-Rutten, Rosalie A M; Enneman, Anke W; Eury, Elodie; Evans, Daniel S; Forsen, Tom; Friedrich, Nele; Fumeron, Frédéric; Garcia, Melissa E; Gärtner, Simone; Han, Bok-Ghee; Havulinna, Aki S; Hayward, Caroline; Hernandez, Dena; Hillege, Hans; Ittermann, Till; Kent, Jack W; Kolcic, Ivana; Laatikainen, Tiina; Lahti, Jari; Mateo Leach, Irene; Lee, Christine G; Lee, Jong-Young; Liu, Tian; Liu, Youfang; Lobbens, Stéphane; Loh, Marie; Lyytikäinen, Leo-Pekka; Medina-Gomez, Carolina; Michaëlsson, Karl; Nalls, Mike A; Nielson, Carrie M; Oozageer, Laticia; Pascoe, Laura; Paternoster, Lavinia; Polašek, Ozren; Ripatti, Samuli; Sarzynski, Mark A; Shin, Chan Soo; Narančić, Nina Smolej; Spira, Dominik; Srikanth, Priya; Steinhagen-Thiessen, Elisabeth; Sung, Yun Ju; Swart, Karin M A; Taittonen, Leena; Tanaka, Toshiko; Tikkanen, Emmi; van der Velde, Nathalie; van Schoor, Natasja M; Verweij, Niek; Wright, Alan F; Yu, Lei; Zmuda, Joseph M; Eklund, Niina; Forrester, Terrence; Grarup, Niels; Jackson, Anne U; Kristiansson, Kati; Kuulasmaa, Teemu; Kuusisto, Johanna; Lichtner, Peter; Luan, Jian'an; Mahajan, Anubha; Männistö, Satu; Palmer, Cameron D; Ried, Janina S; Scott, Robert A; Stancáková, Alena; Wagner, Peter J; Demirkan, Ayse; Döring, Angela; Gudnason, Vilmundur; Kiel, Douglas P; Kühnel, Brigitte; Mangino, Massimo; Mcknight, Barbara; Menni, Cristina; O'Connell, Jeffrey R; Oostra, Ben A; Shuldiner, Alan R; Song, Kijoung; Vandenput, Liesbeth; van Duijn, Cornelia M; Vollenweider, Peter; White, Charles C; Boehnke, Michael; Boettcher, Yvonne; Cooper, Richard S; Forouhi, Nita G; Gieger, Christian; Grallert, Harald; Hingorani, Aroon; Jørgensen, Torben; Jousilahti, Pekka; Kivimaki, Mika; Kumari, Meena; Laakso, Markku; Langenberg, Claudia; Linneberg, Allan; Luke, Amy; Mckenzie, Colin A; Palotie, Aarno; Pedersen, Oluf; Peters, Annette; Strauch, Konstantin; Tayo, Bamidele O; Wareham, Nicholas J; Bennett, David A; Bertram, Lars; Blangero, John; Blüher, Matthias; Bouchard, Claude; Campbell, Harry; Cho, Nam H; Cummings, Steven R; Czerwinski, Stefan A; Demuth, Ilja; Eckardt, Rahel; Eriksson, Johan G; Ferrucci, Luigi; Franco, Oscar H; Froguel, Philippe; Gansevoort, Ron T; Hansen, Torben; Harris, Tamara B; Hastie, Nicholas; Heliövaara, Markku; Hofman, Albert; Jordan, Joanne M; Jula, Antti; Kähönen, Mika; Kajantie, Eero; Knekt, Paul B; Koskinen, Seppo; Kovacs, Peter; Lehtimäki, Terho; Lind, Lars; Liu, Yongmei; Orwoll, Eric S; Osmond, Clive; Perola, Markus; Pérusse, Louis; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rice, Treva K; Rivadeneira, Fernando; Rudan, Igor; Salomaa, Veikko; Sørensen, Thorkild I A; Stumvoll, Michael; Tönjes, Anke; Towne, Bradford; Tranah, Gregory J; Tremblay, Angelo; Uitterlinden, André G; van der Harst, Pim; Vartiainen, Erkki; Viikari, Jorma S; Vitart, Veronique; Vohl, Marie-Claude; Völzke, Henry; Walker, Mark; Wallaschofski, Henri; Wild, Sarah; Wilson, James F; Yengo, Loïc; Bishop, D Timothy; Borecki, Ingrid B; Chambers, John C; Cupples, L Adrienne; Dehghan, Abbas; Deloukas, Panos; Fatemifar, Ghazaleh; Fox, Caroline; Furey, Terrence S; Franke, Lude; Han, Jiali; Hunter, David J; Karjalainen, Juha; Karpe, Fredrik; Kaplan, Robert C; Kooner, Jaspal S; McCarthy, Mark I; Murabito, Joanne M; Morris, Andrew P; Bishop, Julia A N; North, Kari E; Ohlsson, Claes; Ong, Ken K; Prokopenko, Inga; Richards, J Brent; Schadt, Eric E; Spector, Tim D; Widén, Elisabeth; Willer, Cristen J; Yang, Jian; Ingelsson, Erik; Mohlke, Karen L; Hirschhorn, Joel N; Pospisilik, John Andrew; Zillikens, M Carola; Lindgren, Cecilia; Kilpeläinen, Tuomas Oskari; Loos, Ruth J F
2016-02-01
To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.
Kawano, Takayuki; Morioka, Motohiro; Yano, Shigetoshi; Hamada, Jun-Ichiro; Ushio, Yukitaka; Miyamoto, Eishichi; Fukunaga, Kohji
2002-08-01
The authors recently reported that sodium orthovanadate rescues cells from delayed neuronal death in gerbil hippocampus after transient forebrain ischemia through phosphatidylinositol 3-kinase-protein kinase B (Akt) pathway (Kawano et al., 2001). In the current study, they demonstrated that the activation of FKHR, a Forkhead transcription factor and a substrate for Akt, preceded delayed neuronal death in CA1 regions after transient forebrain ischemia. Adult Mongolian gerbils were subjected to 5-minute forebrain ischemia. Immunoblotting analysis with anti-phospho-FKHR antibody showed that phosphorylation of FKHR at serine-256 in the CA1 region decreased immediately after and 0.5 and 1 hour after reperfusion. The dephosphorylation of FKHR was correlated with the decreased Akt activity. Intracerebroventricular injection of orthovanadate 30 minutes before ischemia inhibited dephosphorylation of FKHR after reperfusion, and blocked delayed neuronal death in the CA1 region. Gel mobility shift analysis using nuclear extracts from the CA1 region prepared immediately after reperfusion revealed increases in DNA binding activity for the FKHR-responsive element on the Fas ligand promoter. The orthovanadate injection administered before ischemia inhibited its binding activity. Two days after reperfusion, expression of Fas ligand increased in the CA1 region and the orthovanadate injection inhibited this increased expression. These results suggest that the inactivation of Akt results in the activation of FKHR and, in turn, relates to the expression of Fas ligand in the CA1 region after transient forebrain ischemia.
Adult forebrain NMDA receptors gate social motivation and social memory.
Jacobs, Stephanie; Tsien, Joe Z
2017-02-01
Motivation to engage in social interaction is critical to ensure normal social behaviors, whereas dysregulation in social motivation can contribute to psychiatric diseases such as schizophrenia, autism, social anxiety disorders and post-traumatic stress disorder (PTSD). While dopamine is well known to regulate motivation, its downstream targets are poorly understood. Given the fact that the dopamine 1 (D1) receptors are often physically coupled with the NMDA receptors, we hypothesize that the NMDA receptor activity in the adult forebrain principal neurons are crucial not only for learning and memory, but also for the proper gating of social motivation. Here, we tested this hypothesis by examining sociability and social memory in inducible forebrain-specific NR1 knockout mice. These mice are ideal for exploring the role of the NR1 subunit in social behavior because the NR1 subunit can be selectively knocked out after the critical developmental period, in which NR1 is required for normal development. We found that the inducible deletion of the NMDA receptors prior to behavioral assays impaired, not only object and social recognition memory tests, but also resulted in profound deficits in social motivation. Mice with ablated NR1 subunits in the forebrain demonstrated significant decreases in sociability compared to their wild type counterparts. These results suggest that in addition to its crucial role in learning and memory, the NMDA receptors in the adult forebrain principal neurons gate social motivation, independent of neuronal development. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomiyama, Ken-ichi; Funada, Masahiko, E-mail: mfunada@ncnp.go.jp
2014-01-01
The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB{sub 1} receptor antagonist AM251, but not with the selective CB{sub 2} receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrainmore » cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB{sub 1} receptors.« less
do Carmo, J M; da Silva, A A; Sessums, P O; Ebaady, S H; Pace, B R; Rushing, J S; Davis, M T; Hall, J E
2014-06-01
We examined whether deficiency of Src homology 2 containing phosphatase (Shp2) signaling in forebrain neurons alters metabolic and cardiovascular regulation under various conditions and if it attenuates the anorexic and cardiovascular effects of leptin. We also tested whether forebrain Shp2 deficiency alters blood pressure (BP) and heart rate (HR) responses to acute stress. Forebrain Shp2(-/-) mice were generated by crossing Shp2(flox/flox) mice with CamKIIα-cre mice. At 22-24 weeks of age, the mice were instrumented for telemetry for measurement of BP, HR and body temperature (BT). Oxygen consumption (VO2), energy expenditure and motor activity were monitored by indirect calorimetry. Shp2/CamKIIα-cre mice were heavier (46±3 vs 32±1 g), hyperglycemic, hyperleptinemic, hyperinsulinemic and hyperphagic compared to Shp2(flox/flox) control mice. Shp2/CamKIIα-cre mice exhibited reduced food intake responses to fasting/refeeding and impaired regulation of BT when exposed to 15 and 30 °C ambient temperatures. Despite being obese and having many features of metabolic syndrome, Shp2/CamKIIα-cre mice had similar daily average BP and HR compared to Shp2(flox/flox) mice (112±2 vs 113±1 mm Hg and 595±34 vs 650±40 b.p.m.), but exhibited increased BP and HR responses to cold exposure and acute air-jet stress test. Leptin's ability to reduce food intake and to raise BP were markedly attenuated in Shp2/CamKIIα-cre mice. These results suggest that forebrain Shp2 signaling regulates food intake, appetite responses to caloric deprivation and thermogenic control of body temperature during variations in ambient temperature. Deficiency of Shp2 signaling in the forebrain is associated with augmented cardiovascular responses to cold and acute stress but attenuated BP responses to leptin.
Thalamic reticular nucleus in Caiman crocodilus: Relationship with the dorsal thalamus.
Pritz, M B
2016-05-13
The thalamic reticular nucleus was investigated in one group of crocodilians, Caiman crocodilus. This neuronal aggregate is composed of two parts: a compact portion and a diffuse region made up of scattered cells within the forebrain bundles. In Caiman, both the lateral and medial forebrain bundles project to the telencephalon and the thalamic reticular nucleus is associated with each fiber tract. In the lateral forebrain bundle, the compact area is termed the nucleus of the dorsal peduncle (dorsal peduncular nucleus) while the diffuse part is called the perireticular area. In the medial forebrain bundle, the interstitial nucleus comprises one part of the compact area while another region without a specific neuronal label is also present. Similar to the perireticular cells of the lateral forebrain bundle, scattered cells are also present in the medial forebrain bundle. Morphological features of the thalamic reticular nucleus are revealed with stains for the following: fibers; cells; succinic acid dehydrogenase; and acetylcholinesterase. Regardless of which dorsal thalamic nucleus was injected, a localized region of the thalamic reticular nucleus contained retrogradely labeled cells and anterogradely labeled axons and terminals. This grouping was termed clusters and was felt to represent the densest interconnection between the dorsal thalamus and the reticular nucleus. Using clusters as an index of interconnections, the reticular nucleus was divided into sectors, each of which was associated with a specific dorsal thalamic nucleus. An organization similar to that found in Caiman is present in other sauropsids as well as in mammals. These data suggest that a thalamic reticular nucleus is present in all amniotes and has morphological properties similar to those described in this analysis. Lastly, a hypothesis is presented to explain how the external shape of the reticular nucleus in Caiman might be transformed into the homologous area in a representative bird and mammal. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Akima, Hiroshi; Hioki, Maya; Yoshiko, Akito; Koike, Teruhiko; Sakakibara, Hisataka; Takahashi, Hideyuki; Oshida, Yoshiharu
2016-05-01
The purpose of this study was to assess relationships between intramuscular adipose tissue (IntraMAT) content determined by MRI and intramyocellular lipids (IMCL) and extramyocellular lipids (EMCL) determined by (1)H magnetic resonance spectroscopy ((1)H MRS) or echo intensity determined by B-mode ultrasonography of human skeletal muscles. Thirty young and elderly men and women were included. T1-weighted MRI was taken from the right mid-thigh to measure IntraMAT content of the vastus lateralis (VL) and biceps femoris (BF) using a histogram shape-based thresholding technique. IMCL and EMCL were measured from the VL and BF at the right mid-thigh using (1)H MRS. Ultrasonographic images were taken from the VL and BF of the right mid-thigh to measure echo intensity based on gray-scale level for quantitative analysis. There was a significant correlation between IntraMAT content by MRI and EMCL of the VL and BF (VL, r=0.506, P<0.01; BF, r=0.591, P<0.001) and between echo intensity and EMCL of the VL and BF (VL, r=0.485, P<0.05; BF, r=0.648, P<0.01). IntraMAT content was also significantly correlated with echo intensity of the VL and BF (VL, r=0.404, P<0.05; BF, r=0.493, P<0.01). Our study suggests that IntraMAT content determined by T1-weighted MRI at 3T primarily reflects extramyocellular lipids, not intramyocellular lipids, in human skeletal muscles. Copyright © 2016 Elsevier Inc. All rights reserved.
Near infrared reactance for the estimation of body fatness in regularly exercising individuals.
Evans, J; Lambert, M I; Micklesfield, L K; Goedecke, J H; Jennings, C L; Savides, L; Claassen, A; Lambert, E V
2013-07-01
Near infrared reactance (NIR) is used to measure body fat percentage (BF%), but there is little data on its use in non-obese, regularly exercising individuals. Therefore, this study aimed to examine the limits of agreement between NIR compared to dual x-ray absorptiometry (DXA) for the measurement of BF% in 2 cohorts of regularly exercising individuals. BF% was measured using DXA and NIR in a regular exercising (≥3 sessions/week), healthy active cohort (HA; n=57), and in a regularly exercising and resistance trained (≥2 sessions/week) cohort (RT; n=59). The RT cohort had lower BF% than the HA cohort (15.3±5.5% and 25.8±7.1%, P<0.001). In the HA and RT cohorts, NIR BF% was associated with DXA BF% (R2=0.72, SEE=3.7, p<0.001 and R2=0.50, SEE=4.1 p<0.001, respectively). In the HA cohort, NIR tended to under-predict BF% (mean difference: - 1.3%; 95% limits of agreement (LOA); - 8.8 to 6.2%) whereas in the RT cohort, NIR tended to over-predict BF% compared to DXA (mean difference: 1.1; 95% LOA; - 8.1 to 10.3%). In conclusion, NIR and DXA yield similar average BF% measurements in 2 cohorts of non-obese regularly exercising individuals. However, the rather broad LOA of NIR need to be considered when using NIR to screen for overweight and obesity, or measure and track changes in body composition. © Georg Thieme Verlag KG Stuttgart · New York.
Bohn, Barbara; Müller, Manfred James; Simic-Schleicher, Gunter; Kiess, Wieland; Siegfried, Wolfgang; Oelert, Monika; Tuschy, Sabine; Berghem, Stefan; Holl, Reinhard W
2015-01-01
Body fat (BF) percentiles for German children and adolescents have recently been published. This study aims to evaluate the association between bioelectrical impedance analysis (BIA)-derived BF and cardiovascular risk factors and to investigate whether BF is better suited than BMI in children and adolescents. Data of 3,327 children and adolescents (BMI > 90th percentile) were included. Spearman's correlation and receiver operating characteristics (ROCs) were applied determining the associations between BMI or BF and cardiovascular risk factors (hypertension, dyslipidemia, elevated liver enzymes, abnormal carbohydrate metabolism). Area under the curve (AUC) was calculated to predict cardiovascular risk factors. A significant association between both obesity indices and hypertension was present (all p < 0.0001), but the correlation with BMI was stronger (r = 0.22) compared to BF (r = 0.13). There were no differences between BMI and BF regarding their correlation with other cardiovascular risk factors. BF significantly predicted hypertension (AUC = 0.61), decreased HDL-cholesterol (AUC = 0.58), elevated LDL-cholesterol (AUC = 0.59), elevated liver enzymes (AUC = 0.61) (all p < 0.0001), and elevated triglycerides (AUC = 0.57, p < 0.05), but not abnormal carbohydrate metabolism (AUC = 0.54, p = 0.15). For the prediction of cardiovascular risk factors, no significant differences between BMI and BF were observed. BIA-derived BF was not superior to BMI to predict cardiovascular risk factors in overweight or obese children and adolescents.
NASA Astrophysics Data System (ADS)
Huang, Chong; Radabaugh, Jeffrey P.; Aouad, Rony K.; Lin, Yu; Gal, Thomas J.; Patel, Amit B.; Valentino, Joseph; Shang, Yu; Yu, Guoqiang
2016-02-01
Head and neck cancer accounts for 3 to 5% of all cancers in the United States. Primary or salvage surgeries are extensive and often lead to major head and neck defects that require complex reconstructions with local, regional, or free tissue transfer flaps. Knowledge of tissue blood flow (BF) changes after free tissue transfer may enable surgeons to predict the failure of flap thrombosis at an early stage. This study used our recently developed noncontact diffuse correlation spectroscopy to monitor dynamic BF changes in free flaps without getting in contact with the targeted tissue. Eight free flaps were elevated in patients with head and neck cancer; one of the flaps failed. Multiple BF measurements probing the transferred tissue were performed during and post the surgical operation. Postoperative BF values were normalized to the intraoperative baselines (assigning '1') for the calculation of relative BF change (rBF). The rBF changes over the seven successful flaps were 1.89 +/- 0.15, 2.26 +/- 0.13, and 2.43 +/- 0.13 (mean +/- standard error) respectively on postoperative days 2, 4, and 7. These postoperative values were significantly higher than the intraoperative baseline values (p < 0.001), indicating a gradual recovery of flap vascularity after the tissue transfer. By contrast, rBF changes observed from the unsuccessful flap were 1.14 and 1.34 respectively on postoperative days 2 and 4, indicating a less flow recovery. Measurement of BF recovery after flap anastomosis holds the potential to act early to salvage ischemic flaps.
Comparison of body composition methods during weight loss in obese women using herbal formula.
Kim, Ho-Jun; Gallagher, Dympna; Song, Mi-Yeon
2005-01-01
Bioelectrical impedance analysis (BIA), a device that analyzes the current conduction differences between the fat and water components is widely used for reasons that include convenience of use, non-invasiveness, safety, and low cost. Dual energy X-ray absorptiometry (DXA) allows for the assessment of total body and regional lean and fat tissues and bone mineral content (BMC). The objective of this study was to compare body composition assessments by BIA and DXA before and after a 6-week herbal diet intervention program in 50 pre-menopausal women [mean +/- SD: age 30.58 +/- 6.15, body mass index (BMI) 31.72 +/- 3.78]. Waist-to-hip ratio (WHR) was measured by BIA and anthropometry. Lean body mass (LBM), body fat (BF), BMC and percent body fat (%BF) were measured by BIA and DXA. Highly significant correlations were observed between BIA and DXA measurements for LBM, BF, BMC and %BF (r = 0.73, 0.93, 0.53, 0.79, respectively) before the intervention. Differences between BIA and DXA measurements were observed in LBM, BF, %BF and BMC before intervention (p < 0.01) where WHR by BIA was significantly higher compared to anthropometry before (p < 0.01) and after the intervention (p < 0.01). BIA underestimated LBM by 1.85 kg and overestimated BF by 2.54 kg compared to DXA before the intervention. Although BIA and DXA showed highly significant correlations for LBM, BF, BMC and %BF before the intervention, they did not produce statistically comparable results in pre-menopausal Korean women and therefore should not be used interchangeably when measuring body composition.
Kim, Na Young; Hong, Young Mi; Jung, Jo Won; Kim, Nam Su; Noh, Chung Il; Song, Young-Hwan
2013-12-01
Obesity is an important risk factor for hypertension in adolescents. We investigated the relationship of obesity-related indices (body mass index [BMI], waist-to-height ratio [WHR], and body fat percentage [%BF]) with blood pressure and the hemodynamic determinants of blood pressure in Korean adolescents. In 2008, 565 adolescents, aged 12-16 years, were examined. The %BF of the participants was measured by bioelectrical impedance analysis. Echocardiography and brachial artery pulse tracing were used to estimate the stroke volume (SV), cardiac output (CO), total vascular resistance (TVR), and total arterial compliance (TAC). We noted that BMI, WHR, and %BF were positively correlated with systolic blood pressure (SBP) and diastolic blood pressure (DBP). The positive correlation between BMI and blood pressure (SBP and DBP) persisted after adjustment for WHR and %BF. However, after adjustment for BMI, the positive associations between blood pressure (SBP and DBP) and WHR as well as %BF, were not noted. With regard to the hemodynamic factors, BMI, but not WHR and %BF, was an independent positive factor correlated with SV and CO. TVR had an independent negative association with BMI; however, it was not associated with WHR or %BF. Moreover, we noted that BMI, WHR, and %BF did not affect TAC. In Korean adolescents, BMI had an independent positive correlation with SBP and DBP, possibly because of its effects on SV, CO, and TVR. WHR and %BF are believed to indirectly affect SBP and DBP through changes in BMI.
Physical activity, bowel function, and quality of life among rectal cancer survivors.
Krouse, Robert S; Wendel, Christopher S; Garcia, David O; Grant, Marcia; Temple, Larissa K F; Going, Scott B; Hornbrook, Mark C; Bulkley, Joanna E; McMullen, Carmit K; Herrinton, Lisa J
2017-11-01
Physical activity (PA) is positively associated with numerous health benefits among cancer survivors. This study examined insufficiently investigated relationships among PA, health-related quality of life (HRQOL), and bowel function (BF) in rectal cancer survivors. RC survivors (n = 1063) ≥5 years from diagnosis in two Kaiser permanente regions were mailed a multidimensional survey to assess HRQOL and BF. PA was assessed by a modified Godin Leisure-Time Exercise Questionnaire. PA minutes were categorized into weighted categories based on guidelines: (1) not active (zero PA minutes); (2) insufficiently active (1-149 PA minutes); (3) meeting guidelines (150-299 PA minutes); and (4) above guidelines (≥300 PA minutes). Relationships of PA with HRQOL and BF were evaluated using multiple linear regression, stratified by sex and ostomy status for BF. Types of PA identified as helpful for BF and symptoms addressed were summarized. Response rate was 60.5%. Of 557 participants, 40% met or exceeded PA guidelines, 34% were not active, and 26% were insufficiently active. Aerobic activities, specifically walking and cycling, were most commonly reported to help BF. Higher PA was associated with better psychological wellbeing and multiple SF12 scales, worse BF scores in men with ostomies, and better BF scores in women. Meeting or exceeding PA guidelines was associated with higher HRQOL. Although the BF findings are exploratory, they suggest women may benefit from increased PA, whereas men with ostomies may face challenges that require more study. Identifying PA strategies that will lead to improved patient compliance and benefit are needed.
The effect of biofiltration on red blood cells 2.3-diphosphoglycerate and pH.
Umimoto, K; Hirai, Y; Hayashi, T; Tanaka, H
2000-12-01
To investigate the effect of biofiltration (BF) on the ability of blood to supply oxygen to the peripheral tissues, a 2 week crossover study was conducted with bicarbonate hemodialysis (BcHD) and BF using 5 male patients with diabetic renal failure as subjects. BcHD and BF were performed for 4 h and 3.5 h per session, respectively. Blood gases, the pH of red blood cells (RBC-pH), and 2. 3-diphosphoglycerate in RBC (RBC-2.3DPG) were measured during each treatment. After a 2 week BF treatment, the plasma HCO3- at the beginning of BF was significantly higher than that of BcHD (p < 0.01), and the blood pH improved with an elevated plasma bicarbonate level (p < 0.05). The RBC-pH at the beginning of BF was higher than that of BcHD (p < 0.05) although the RBC-pH at the end of both therapies increased to similar levels. The RBC-2.3DPG during BcHD remained unchanged, but during BF significantly increased (p < 0.05). Metabolic acidosis was significantly improved by BF with its effect reaching to the RBC intracellular level. The improved metabolic acidosis might occur as a result of the increase in RBC-2.3DPG during BF. This increase in RBC-2.3DPG has the effect of reducing the affinity of oxygen for hemoglobin and allows more oxygen to be delivered to the peripheral tissues although the increase in RBC-pH by dialysis restricts the dissociation of oxygen from hemoglobin.
Nucleotide sequence and expression of three subtypes of proopiomelanocortin mRNA in barfin flounder.
Takahashi, Akiyoshi; Amano, Masafumi; Itoh, Toshihiro; Yasuda, Akikazu; Yamanome, Takeshi; Amemiya, Yutaka; Sasaki, Kiyoshi; Sakai, Masahiro; Yamamori, Kunio; Kawauchi, Hiroshi
2005-05-01
Melanophore-stimulating hormone (MSH) has been shown to be associated with food intake in addition to body color change in teleosts. MSH is encoded by a proopiomelanocortin (POMC) gene together with endorphin (END). To assess the significance of MSH to biological activities, we determined the structure and evaluated the expression of POMC mRNA in barfin flounder (bf), Verasper moseri, a member of a group of teleosts, Pleuronectiformes. Three subtypes of POMC cDNAs (A, B, and C) were amplified from bf pituitary glands. These bfPOMCs contained segments for N-POMC, alpha-MSH, beta-MSH, and beta-END as do other teleost POMCs, while POMC-C showed remarkable variations in the segments corresponding to N-POMC and beta-END. A phylogenetic tree of ray-finned fish POMCs constructed by the neighbor joining method revealed that the three POMC subtypes may have appeared as a result of duplication events occurring at least twice during the course of bf evolution. The first duplication may have generated the lineage leading to an ancestor of bfPOMC-A and -B and that leading to bfPOMC-C, and then the lineage of bfPOMC-A may have diverged from that of bfPOMC-B. All peptides flanked by processing signals excluding N-POMC-C (1-14) were identified in a single pituitary extract by mass spectrometry, and the cDNAs of three POMCs were amplified from a single pituitary by reverse transcription polymerase chain reaction. These results demonstrated that the three POMC genes are expressed in a single individual. While the bfPOMC-A gene was exclusively expressed in the pituitary, the bfPOMC-B and -C genes were expressed in non-pituitary tissues such as brain, gill, heart, spleen, liver, stomach, intestine, testis, muscle, blood, and skin in addition to the pituitary. The expression levels of the POMC-A, -B, and -C genes in pituitary neurointermediate lobe were greater in the fish reared with a black background than the fish reared with a white background, indicating that MSH derived from all of the three bfPOMC genes was associated with body color change. No difference was observed in the expression levels of bfPOMC-C in the brain in response to feeding status.
Measures of body fat in South Asian adults.
Kalra, S; Mercuri, M; Anand, S S
2013-05-27
South Asian people who originate from the Indian subcontinent have greater percent body fat (%BF) for the same body mass index (BMI) compared with white Caucasians. This has been implicated in their increased risk of type 2 diabetes and cardiovascular disease. There is limited information comparing different measures of body fat in this ethnic group. The objectives of this study were: (1) to investigate the correlation of %BF measured by a foot-to-foot bioelectrical impedance analysis (FF-BIA) against the BOD POD, a method of air-displacement plethysmography, and (2) to determine the correlations of simple anthropometric measures, (that is, BMI, body adiposity index (BAI), waist circumference (WC), hip circumference (HC) and waist-to-hip ratio (WHR)) against the BOD POD measure of body fat. Eighty apparently healthy South Asian men and women were recruited from the community, and measurements of height, weight, WC, HC and body composition using Tanita FF-BIA and BOD POD were taken. The mean±s.d. age of participants was 27.78±10.49 years, 42.5% were women, and the mean BMI was 22.68±3.51 kg m(-2). The mean body fat (%BF) calculated by FF-BIA and BOD POD was 21.94±7.88% and 26.20±8.47%, respectively. The %BF calculated by FF-BIA was highly correlated with the BOD POD (Pearson's r=0.83, P<0.001), however, FF-BIA underestimated %BF by 4.3%. When anthropometric measures were compared with % BF by BOD POD, the BAI showed the strongest correlation (r=0.74) and the WHR showed the weakest (r=0.33). BAI generally underestimated %BF by 2.6% in comparison with %BF by BOD POD. The correlations of BOD POD with other measures of %BF were much stronger in subjects with a BMI >21 kg m(-2) than those with a BMI 21 kg m(-2). The FF-BIA and BAI estimates of %BF are highly correlated with that of BOD POD among people of South Asian origin, although both methods somewhat underestimate % BF. Furthermore, their correlations with % BF from BOD POD are significantly weakened among men and women with a BMI 21 kg m(-2).
Functional disruption of stress modulatory circuits in a model of temporal lobe epilepsy
Franco-Villanueva, Ana; Romancheck, Christian; Morano, Rachel L.; Smith, Brittany L.; Packard, Benjamin A.; Danzer, Steve C.; Herman, James P.
2018-01-01
Clinical data suggest that the neuroendocrine stress response is chronically dysregulated in a subset of patients with temporal lobe epilepsy (TLE), potentially contributing to both disease progression and the development of psychiatric comorbidities such as anxiety and depression. Whether neuroendocrine dysregulation and psychiatric comorbidities reflect direct effects of epilepsy-related pathologies, or secondary effects of disease burden particular to humans with epilepsy (i.e. social estrangement, employment changes) is not clear. Animal models provide an opportunity to dissociate these factors. Therefore, we queried whether epileptic mice would reproduce neuroendocrine and behavioral changes associated with human epilepsy. Male FVB mice were exposed to pilocarpine to induce status epilepticus (SE) and the subsequent development of spontaneous recurrent seizures. Morning baseline corticosterone levels were elevated in pilocarpine treated mice at 1, 7 and 10 weeks post-SE relative to controls. Similarly, epileptic mice had increased adrenal weight when compared to control mice. Exposure to acute restraint stress resulted in hypersecretion of corticosterone 30 min after the onset of the challenge. Anatomical analyses revealed reduced Fos expression in infralimbic and prelimbic prefrontal cortex, ventral subiculum and basal amygdala following restraint. No differences in Fos immunoreactivity were found in the paraventricular nucleus of the hypothalamus, hippocampal subfields or central amygdala. In order to assess emotional behavior, a second cohort of mice underwent a battery of behavioral tests, including sucrose preference, open field, elevated plus maze, 24h home-cage monitoring and forced swim. Epileptic mice showed increased anhedonic behavior, hyperactivity and anxiety-like behaviors. Together these data demonstrate that epileptic mice develop HPA axis hyperactivity and exhibit behavioral dysfunction. Endocrine and behavioral changes are associated with impaired recruitment of forebrain circuits regulating stress inhibition and emotional reactivity. Loss of forebrain control may underlie pronounced endocrine dysfunction and comorbid psychopathologies seen in temporal lobe epilepsy. PMID:29795651
Functional disruption of stress modulatory circuits in a model of temporal lobe epilepsy.
Wulsin, Aynara C; Franco-Villanueva, Ana; Romancheck, Christian; Morano, Rachel L; Smith, Brittany L; Packard, Benjamin A; Danzer, Steve C; Herman, James P
2018-01-01
Clinical data suggest that the neuroendocrine stress response is chronically dysregulated in a subset of patients with temporal lobe epilepsy (TLE), potentially contributing to both disease progression and the development of psychiatric comorbidities such as anxiety and depression. Whether neuroendocrine dysregulation and psychiatric comorbidities reflect direct effects of epilepsy-related pathologies, or secondary effects of disease burden particular to humans with epilepsy (i.e. social estrangement, employment changes) is not clear. Animal models provide an opportunity to dissociate these factors. Therefore, we queried whether epileptic mice would reproduce neuroendocrine and behavioral changes associated with human epilepsy. Male FVB mice were exposed to pilocarpine to induce status epilepticus (SE) and the subsequent development of spontaneous recurrent seizures. Morning baseline corticosterone levels were elevated in pilocarpine treated mice at 1, 7 and 10 weeks post-SE relative to controls. Similarly, epileptic mice had increased adrenal weight when compared to control mice. Exposure to acute restraint stress resulted in hypersecretion of corticosterone 30 min after the onset of the challenge. Anatomical analyses revealed reduced Fos expression in infralimbic and prelimbic prefrontal cortex, ventral subiculum and basal amygdala following restraint. No differences in Fos immunoreactivity were found in the paraventricular nucleus of the hypothalamus, hippocampal subfields or central amygdala. In order to assess emotional behavior, a second cohort of mice underwent a battery of behavioral tests, including sucrose preference, open field, elevated plus maze, 24h home-cage monitoring and forced swim. Epileptic mice showed increased anhedonic behavior, hyperactivity and anxiety-like behaviors. Together these data demonstrate that epileptic mice develop HPA axis hyperactivity and exhibit behavioral dysfunction. Endocrine and behavioral changes are associated with impaired recruitment of forebrain circuits regulating stress inhibition and emotional reactivity. Loss of forebrain control may underlie pronounced endocrine dysfunction and comorbid psychopathologies seen in temporal lobe epilepsy.
Monoaminergic control of cellular glucose utilization by glycogenolysis in neocortex and hippocampus
DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Mangia, Silvia
2016-01-01
Brainstem nuclei are the principal sites of monoamine (MA) innervation to major forebrain structures. In the cortical grey matter, increased secretion of MA neuromodulators occurs in response to a wealth of environmental and homeostatic challenges, whose onset is associated with rapid, preparatory changes in neural activity as well as with increases in energy metabolism. Blood-borne glucose is the main substrate for energy production in the brain. Once entered the tissue, interstitial glucose is equally accessible to neurons and astrocytes, the two cell types accounting for most of cellular volume and energy metabolism in neocortex and hippocampus. Astrocytes also store substantial amounts of glycogen, but non-stimulated glycogen turnover is very small. The rate of cellular glucose utilization in the brain is largely determined by hexokinase, which under basal conditions is more than 90% inhibited by its product glucose-6-phosphate (Glc-6-P). During rapid increases in energy demand, glycogen is a primary candidate in modulating the intracellular level of Glc-6-P, which can occur only in astrocytes. Glycogenolysis can produce Glc-6-P at a rate higher than uptake and phosphorylation of glucose. MA neurotransmitter are released extrasinaptically by brainstem neurons projecting to neocortex and hippocampus, thus activating MA receptors located on both neuronal and astrocytic plasma membrane. Importantly, MAs are glycogenolytic agents and thus they are exquisitely suitable for regulation of astrocytic Glc-6-P concentration, upstream substrate flow through hexokinase and hence cellular glucose uptake. Conforming to such mechanism, Gerald A. Dienel and Nancy F. Cruz recently suggested that activation of noradrenergic locus coeruleus might reversibly block astrocytic glucose uptake by stimulating glycogenolysis in these cells, thereby anticipating the rise in glucose need by active neurons. In this paper, we further develop the idea that the whole monoaminergic system modulates both function and metabolism of forebrain regions in a manner mediated by glycogen mobilization in astrocytes. PMID:26168779
DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Mangia, Silvia
2015-12-01
Brainstem nuclei are the principal sites of monoamine (MA) innervation to major forebrain structures. In the cortical grey matter, increased secretion of MA neuromodulators occurs in response to a wealth of environmental and homeostatic challenges, whose onset is associated with rapid, preparatory changes in neural activity as well as with increases in energy metabolism. Blood-borne glucose is the main substrate for energy production in the brain. Once entered the tissue, interstitial glucose is equally accessible to neurons and astrocytes, the two cell types accounting for most of cellular volume and energy metabolism in neocortex and hippocampus. Astrocytes also store substantial amounts of glycogen, but non-stimulated glycogen turnover is very small. The rate of cellular glucose utilization in the brain is largely determined by hexokinase, which under basal conditions is more than 90 % inhibited by its product glucose-6-phosphate (Glc-6-P). During rapid increases in energy demand, glycogen is a primary candidate in modulating the intracellular level of Glc-6-P, which can occur only in astrocytes. Glycogenolysis can produce Glc-6-P at a rate higher than uptake and phosphorylation of glucose. MA neurotransmitter are released extrasinaptically by brainstem neurons projecting to neocortex and hippocampus, thus activating MA receptors located on both neuronal and astrocytic plasma membrane. Importantly, MAs are glycogenolytic agents and thus they are exquisitely suitable for regulation of astrocytic Glc-6-P concentration, upstream substrate flow through hexokinase and hence cellular glucose uptake. Conforming to such mechanism, Gerald A. Dienel and Nancy F. Cruz recently suggested that activation of noradrenergic locus coeruleus might reversibly block astrocytic glucose uptake by stimulating glycogenolysis in these cells, thereby anticipating the rise in glucose need by active neurons. In this paper, we further develop the idea that the whole monoaminergic system modulates both function and metabolism of forebrain regions in a manner mediated by glycogen mobilization in astrocytes.
Successive disorder to disorder phase transitions in ionic liquid [HMIM][BF4] under high pressure
NASA Astrophysics Data System (ADS)
Zhu, Xiang; Yuan, Chaosheng; Li, Haining; Zhu, Pinwen; Su, Lei; Yang, Kun; Wu, Jie; Yang, Guoqiang; Liu, Jing
2016-02-01
In situ high-pressure Raman spectroscopy and synchrotron X-ray diffraction have been employed to investigate the phase behavior of ionic liquid, 1-hexyl-3-methylimidazolium tetrafluoroborate ([HMIM][BF4]) under high pressure up to 20 GPa at room temperature. With increasing pressure, some characteristic bands of [HMIM][BF4] disappear, and some characteristic bands of [HMIM][BF4] display non-monotonic pressure-induced frequency shift and non-monotonic variation of full width at half-maximum. Two successive phase transitions at ˜1.7 GPa and 7.3 GPa have been corroborated by the results above. The glass transition pressure (Pg) of [HMIM][BF4] at ˜7.3 GPa has been obtained by ruby R1 line broadening measurements and analysis of synchrotron X-ray diffraction patterns, and its glass transition mechanism is also analyzed in detail. These facts are suggestive of two successive disorder to disorder phase transitions induced by compression, that is, [HMIM][BF4] serves as a superpressurized glass under the pressure above 7.3 GPa, which is similar to the glassy state at low temperature, and a compression-induced liquid to liquid phase transition in [HMIM][BF4] occurs at ˜1.7 GPa. Besides, the conformational equilibrium of the GAAA conformer and AAAA conformer was converted easily in liquid [HMIM][BF4], while it was difficult to be influenced in glassy state.
Ramírez-Vélez, Robinson; Correa-Bautista, Jorge Enrique; González-Ruíz, Katherine; Vivas, Andrés; Triana-Reina, Héctor Reynaldo; Martínez-Torres, Javier; Prieto-Benavides, Daniel Humberto; Carrillo, Hugo Alejandro; Ramos-Sepúlveda, Jeison Alexander; Villa-González, Emilio; García-Hermoso, Antonio
2017-01-17
Recently, a body adiposity index (BAI = (hip circumference)/((height)(1.5)) -18 ) was developed and validated in adult populations. The aim of this study was to evaluate the performance of BAI in estimating percentage body fat (BF%) in a sample of Colombian collegiate young adults. The participants were comprised of 903 volunteers (52% females, mean age = 21.4 years ± 3.3). We used the Lin's concordance correlation coefficient, linear regression, Bland-Altman's agreement analysis, concordance correlation coefficient ( ρc ) and the coefficient of determination ( R ²) between BAI, and BF%; by bioelectrical impedance analysis (BIA)). The correlation between the two methods of estimating BF% was R ² = 0.384, p < 0.001. A paired-sample t -test showed a difference between the methods (BIA BF% = 16.2 ± 3.1, BAI BF% = 30.0 ± 5.4%; p < 0.001). For BIA, bias value was 6.0 ± 6.2 BF% (95% confidence interval (CI) = -6.0 to 18.2), indicating that the BAI method overestimated BF% relative to the reference method. Lin's concordance correlation coefficient was poor ( ρc = 0.014, 95% CI = -0.124 to 0.135; p = 0.414). In Colombian college students, there was poor agreement between BAI- and BIA-based estimates of BF%, and so BAI is not accurate in people with low or high body fat percentage levels.
Linear lateral vibration of axisymmetric liquid briges
NASA Astrophysics Data System (ADS)
Ferrera, C.; Montanero, J. M.; Cabezas, M. G.
A liquid bridge is a mass of liquid sustained by the action of the surface tension force between two parallel supporting disks Apart from their basic scientific interest a liquid bridge can be considered as the simplest idealization of the configuration appearing in the floating zone technique used for crystal growth and purification of high melting point materials footnote Messeguer et al emph Crystal Growth Res bf 5 27 1999 This has conferred considerable interest on the study of liquid bridges not only in fluid mechanics but also in the field of material engineering The axisymmetric dynamics of an isothermal liquid bridge has been frequently analysed over the past years The studies have considered different phenomena such as free oscillations footnote Montanero emph E J Mech B Fluids bf 22 169 2003 footnote Acero and Montanero emph Phys Fluids bf 17 078105 2005 forced vibrations footnote Perales and Messeguer emph Phys Fluids A bf 4 1110 1992 g-jitter effects footnote Messeguer and Perales emph Phys Fluids A bf 3 2332 1991 extensional deformation footnote Zhang et al emph J Fluid Mech bf 329 207 1996 and breakup process footnote Espino et al emph Phys Fluids bf 14 3710 2002 among others Works considering the nonaxisymmetric dynamical behaviour of a liquid bridge has been far less common footnote Sanz and Diez emph J Fluid Mech bf 205 503 1989 In the present study the linear vibration of an axisymmetric liquid
Otsuka, Ryo; Almeida, Fernanda Ribeiro; Lowe, Alan A
2007-02-01
The aim of this study was to objectively and prospectively assess whether oral appliances (OAs) alter occlusal function in patients treated for snoring or obstructive sleep apnea. The occlusal contact area (OCA) and bite force (Bf) of 12 patients who used OAs were measured with pressure-sensitive sheets in the morning and evening with the Dental Prescale Occluzer System. OCA and Bf were compared in each measurement period by using ANOVA. Percentage changes in the morning relative to the evening (OCA(M-E) and Bf(M-E)) were compared between the 2 periods by using the Wilcoxon signed rank test. Correlations between percentage changes in pretreatment and posttitration ((Pre-Post)OCA and (Pre-Post)Bf), age, and cephalometric variables were also assessed. Patients showed significant decreases in OCA and Bf when posttitration readings were compared with corresponding pretreatment measurements. OCA(M-E) and Bf(M-E) were significantly different between pretreatment and posttitration, suggesting that OCA and Bf tend to be smaller in the morning with OA use. (Pre-Post)Bf measured in the evening correlated with age. Effects on occlusal function after OA use were observed. These results suggest that practitioners should pay attention to the possible side effects of OAs on the dentition when treating patients with snoring or obstructive sleep apnea.
Crowley, Kevin; Pickle, Jody; Dale, Roman; Fattal, Omar
2008-12-01
Bifrontal (BF) electroconvulsive therapy (ECT), although researched less extensively than bitemporal (BT) or right unilateral (RUL) ECT, has been suggested to be comparable to the other 2 electrode placements with respect to clinical efficacy while resulting in less cognitive impairment than BT ECT. Imaging studies have indicated that seizures induced by BF ECT affect the brain differently than BT or RUL ECT, in that BF ECT increases cerebral blood flow in the frontal lobes more intensely than either of the other 2 placements. Therefore, it is possible that the cognitive impairment manifested after a course of BF ECT could also be different than the impairment seen with BT and RUL ECT. Research conducted on cognitive impairment from BF ECT to date has been inadequate due to the use of nonspecific cognitive measures (such as the Mini-Mental Status Examination) or an inordinate focus on memory functioning (which is believed to be mostly subsumed in the temporal lobes). Because BF ECT increases cerebral blood flow in the frontal lobes more intensely than either of the other placements, research must instead focus on investigating the possible effects of BF ECT on executive functioning, which is believed to be subsumed in the frontal lobes. This is especially important because of the established relationship between executive dysfunction and depression and also because of the increasing popularity of BF ECT.
The HIV-1 epidemic in Bolivia is dominated by subtype B and CRF12_BF "family" strains.
Guimarães, Monick L; Velarde-Dunois, Ketty G; Segurondo, David; Morgado, Mariza G
2012-01-16
Molecular epidemiological studies of HIV-1 in South America have revealed the occurrence of subtypes B, F1 and BF1 recombinants. Even so, little information concerning the HIV-1 molecular epidemiology in Bolivia is available. In this study we performed phylogenetic analyses from samples collected in Bolivia at two different points in time over a 10 year span. We analyzed these samples to estimate the trends in the HIV subtype and recombinant forms over time. Fifty one HIV-1 positive samples were collected in Bolivia over two distinct periods (1996 and 2005). These samples were genetically characterized based on partial pol protease/reverse transcriptase (pr/rt) and env regions. Alignment and neighbor-joining (NJ) phylogenetic analyses were established from partial env (n = 37) and all pol sequences using Mega 4. The remaining 14 env sequences from 1996 were previously characterized based on HMA-env (Heteroduplex mobility assay). The Simplot v.3.5.1 program was used to verify intragenic recombination, and SplitsTree 4.0 was employed to confirm the phylogenetic relationship of the BF1 recombinant samples. Phylogenetic analysis of both env and pol regions confirmed the predominance of "pure" subtype B (72.5%) samples circulating in Bolivia and revealed a high prevalence of BF1 genotypes (27.5%). Eleven out of 14 BF1 recombinants displayed a mosaic structure identical or similar to that described for the CRF12_BF variant, one sample was classified as CRF17_BF, and two others were F1pol/Benv. No "pure" HIV-1 subtype F1 or B" variant of subtype B was detected in the present study. Of note, samples characterized as CRF12_BF-related were depicted only in 2005. HIV-1 genetic diversity in Bolivia is mostly driven by subtype B followed by BF1 recombinant strains from the CRF12_BF "family". No significant temporal changes were detected between the mid-1990s and the mid-2000s for subtype B (76.2% vs 70.0%) or BF1 recombinant (23.8% vs 30.0%) samples from Bolivia.
The HIV-1 epidemic in Bolivia is dominated by subtype B and CRF12_BF "family" strains
2012-01-01
Background Molecular epidemiological studies of HIV-1 in South America have revealed the occurrence of subtypes B, F1 and BF1 recombinants. Even so, little information concerning the HIV-1 molecular epidemiology in Bolivia is available. In this study we performed phylogenetic analyses from samples collected in Bolivia at two different points in time over a 10 year span. We analyzed these samples to estimate the trends in the HIV subtype and recombinant forms over time. Materials and methods Fifty one HIV-1 positive samples were collected in Bolivia over two distinct periods (1996 and 2005). These samples were genetically characterized based on partial pol protease/reverse transcriptase (pr/rt) and env regions. Alignment and neighbor-joining (NJ) phylogenetic analyses were established from partial env (n = 37) and all pol sequences using Mega 4. The remaining 14 env sequences from 1996 were previously characterized based on HMA-env (Heteroduplex mobility assay). The Simplot v.3.5.1 program was used to verify intragenic recombination, and SplitsTree 4.0 was employed to confirm the phylogenetic relationship of the BF1 recombinant samples. Results Phylogenetic analysis of both env and pol regions confirmed the predominance of "pure" subtype B (72.5%) samples circulating in Bolivia and revealed a high prevalence of BF1 genotypes (27.5%). Eleven out of 14 BF1 recombinants displayed a mosaic structure identical or similar to that described for the CRF12_BF variant, one sample was classified as CRF17_BF, and two others were F1pol/Benv. No "pure" HIV-1 subtype F1 or B" variant of subtype B was detected in the present study. Of note, samples characterized as CRF12_BF-related were depicted only in 2005. Conclusion HIV-1 genetic diversity in Bolivia is mostly driven by subtype B followed by BF1 recombinant strains from the CRF12_BF "family". No significant temporal changes were detected between the mid-1990s and the mid-2000s for subtype B (76.2% vs 70.0%) or BF1 recombinant (23.8% vs 30.0%) samples from Bolivia. PMID:22248191
Ma, Howard Z; Li, Jiaye; Canty, Allan J; O'Hair, Richard A J
2017-11-07
The copper nanocluster [Cu 3 (μ 3 -H)(μ 3 -BH 4 )L Ph 3 ](BF 4 ), 1a·BF4 (L Ph = (PPh 2 ) 2 NH = dppa), can potentially react with substrates at either the coordinated hydride or borohydride sites. Reaction of 1a·BF4 with CS 2 has given rise to [Cu 3 (μ 3 -H)(μ 2 ,μ 1 -S 2 CH)L Ph 3 ](BF 4 ), (2a·BF4), which was structurally characterised using electrospray ionisation (ESI) with high-resolution mass spectrometry (HRMS), X-ray crystallography, NMR, IR and UV-Vis spectroscopy. The copper(i) atoms adopt a planar trinuclear Cu 3 geometry coordinated on the bottom face by a μ 3 -hydride, on the top face by a μ 2 ,μ 1 -dithioformate and surrounded by three bridging L Ph ligands. Reaction of 1a·BF4 with elemental sulfur gives the known cluster [Cu 4 (L Ph -H + 2S) 3 ](BF 4 ), (3·BF4), which was structurally characterised via X-ray crystallography. ESI-MS of 2a·BF4 produces [Cu 3 (H)(S 2 CH)L Ph 3 ] + and its gas-phase ion chemistry was examined under multistage mass spectrometry conditions using collision-induced dissociation (CID). The primary product, [Cu 3 (H)(S 2 CH)L Ph 2 ] + , formed via ligand loss, undergoes further fragmentation via loss of thioformaldehyde to give [Cu 3 (S)L Ph 2 ] + . DFT calculations exploring rearrangement and fragmentation of the model system [Cu 3 (H)(S 2 CH)L Me 2 ] + (L Me = (PMe 2 ) 2 NH = dmpa) provide a feasible mechanism. Thus, coupling of the coordinated hydride with the dithioformate ligands gives [Cu 3 (S 2 CH 2 )L Me 2 ] + , which then undergoes CH 2 S extrusion via C-S bond cleavage to give [Cu 3 (S)L Me 2 ] + .
Fu, Jingjing; Zhang, Lingling; Song, Shanshan; Sheng, Kangliang; Li, Ying; Li, Peipei; Song, Shasha; Wang, Qingtong; Chu, Jianhong; Wei, Wei
2014-05-01
To explore the effect of bone marrow-derived CD11b(+)F4/80(+) immature dendritic cells (BM CD11b(+)F4/80(+)iDC) on the balance between pro-inflammatory and anti-inflammatory cytokines in DBA/1 mice with collagen-induced arthritis (CIA). BM CD11b(+)F4/80(+)iDC were induced with rmGM-CSF and rmIL-4, and were identified by the expressions of toll-like receptor 2 (TLR-2), indoleamine 2,3-deoxygenase (IDO), interleukin (IL)-10, transforming growth factor (TGF)-β1 and mixed leukocyte reaction (MLR). CIA was established in DBA/1 mice by immunization with type II collagen. CIA mice were injected intravenously with BM CD11b(+)F4/80(+)iDC three times after immunization. The effect of BM CD11b(+)F4/80(+)iDC on CIA was evaluated by the arthritis index, joint histopathology, body weight, thymus index, thymocytes proliferation, IL-1β, tumor necrosis factor (TNF)-α, IL-17, IL-10 and TGF-β1 levels. BM CD11b(+)F4/80(+)iDC induced with rmGM-CSF and rmIL-4 expressed high levels of TLR-2, IDO, IL-10 and TGF-β1. Infusion of BM CD11b(+)F4/80(+)iDC in CIA mice significantly reduced the arthritis index and pathological scores of joints, recovered the weight, decreased the thymus index and inhibited thymocyte proliferation. Levels of IL-1β, TNF-α and IL-17 were decreased in BM CD11b(+)F4/80(+)iDC-treated mice. BM CD11b(+)F4/80(+)iDC can be induced successfully with rmGM-CSF and rmIL-4. BM CD11b(+)F4/80(+)iDC treatment can ameliorate the development and severity of CIA by regulating the balance between pro-inflammatory cytokines and anti-inflammatory cytokines.
Cortical cholinergic signaling controls the detection of cues
Gritton, Howard J.; Howe, William M.; Mallory, Caitlin S.; Hetrick, Vaughn L.; Berke, Joshua D.; Sarter, Martin
2016-01-01
The cortical cholinergic input system has been described as a neuromodulator system that influences broadly defined behavioral and brain states. The discovery of phasic, trial-based increases in extracellular choline (transients), resulting from the hydrolysis of newly released acetylcholine (ACh), in the cortex of animals reporting the presence of cues suggests that ACh may have a more specialized role in cognitive processes. Here we expressed channelrhodopsin or halorhodopsin in basal forebrain cholinergic neurons of mice with optic fibers directed into this region and prefrontal cortex. Cholinergic transients, evoked in accordance with photostimulation parameters determined in vivo, were generated in mice performing a task necessitating the reporting of cue and noncue events. Generating cholinergic transients in conjunction with cues enhanced cue detection rates. Moreover, generating transients in noncued trials, where cholinergic transients normally are not observed, increased the number of invalid claims for cues. Enhancing hits and generating false alarms both scaled with stimulation intensity. Suppression of endogenous cholinergic activity during cued trials reduced hit rates. Cholinergic transients may be essential for synchronizing cortical neuronal output driven by salient cues and executing cue-guided responses. PMID:26787867
Hatayama, Minoru; Ishiguro, Akira; Iwayama, Yoshimi; Takashima, Noriko; Sakoori, Kazuto; Toyota, Tomoko; Nozaki, Yayoi; Odaka, Yuri S.; Yamada, Kazuyuki; Yoshikawa, Takeo; Aruga, Jun
2011-01-01
ZIC2 is a causal gene for holoprosencephaly and encodes a zinc-finger-type transcriptional regulator. We characterized Zic2kd/+ mice with a moderate (40%) reduction in Zic2 expression. Zic2kd/+ mice showed increased locomotor activity in novel environments, cognitive and sensorimotor gating dysfunctions, and social behavioral abnormalities. Zic2kd/+ brain involved enlargement of the lateral ventricle, thinning of the cerebral cortex and corpus callosum, and decreased number of cholinergic neurons in the basal forebrain. Because these features are reminiscent of schizophrenia, we examined ZIC2 variant-carrying allele frequencies in schizophrenia patients and in controls in the Japanese population. Among three novel missense mutations in ZIC2, R409P was only found in schizophrenia patients, and was located in a strongly conserved position of the zinc finger domain. Mouse Zic2 with the corresponding mutation showed lowered transcription-activating capacity and had impaired target DNA-binding and co-factor-binding capacities. These results warrant further study of ZIC2 in the pathogenesis of schizophrenia. PMID:22355535
Minocycline prevents cholinergic loss in a mouse model of Down's syndrome.
Hunter, Christopher L; Bachman, David; Granholm, Ann-Charlotte
2004-11-01
Individuals with Down's syndrome develop Alzheimer's-like pathologies comparatively early in life, including progressive degeneration of basal forebrain cholinergic neurons (BFCNs). Cholinergic hypofunction contributes to dementia-related cognitive decline and remains a target of therapeutic intervention for Alzheimer's disease. In light of this, partial trisomy 16 (Ts65Dn) mice have been developed to provide an animal model of Down's syndrome that exhibits progressive loss of BFCNs and cognitive ability. Another feature common to both Down's syndrome and Alzheimer's disease is neuroinflammation, which may exacerbate neurodegeneration, including cholinergic loss. Minocycline is a semisynthetic tetracycline with antiinflammatory properties that has demonstrated neuroprotective properties in certain disease models. Consistent with a role for inflammatory processes in BFCN degeneration, we have shown previously that minocycline protects BFCNs and improves memory in mice with acute, immunotoxic BFCN lesions. We now report that minocycline treatment inhibits microglial activation, prevents progressive BFCN decline, and markedly improves performance of Ts65Dn mice on a working and reference memory task. Minocycline is an established antiinflammatory and neuroprotective drug and may provide a novel approach to treat specific AD-like pathologies.
Prosomeric organization of the hypothalamus in an elasmobranch, the catshark Scyliorhinus canicula
Santos-Durán, Gabriel N.; Menuet, Arnaud; Lagadec, Ronan; Mayeur, Hélène; Ferreiro-Galve, Susana; Mazan, Sylvie; Rodríguez-Moldes, Isabel; Candal, Eva
2015-01-01
The hypothalamus has been a central topic in neuroanatomy because of its important physiological functions, but its mature organization remains elusive. Deciphering its embryonic and adult organization is crucial in an evolutionary approach of the organization of the vertebrate forebrain. Here we studied the molecular organization of the hypothalamus and neighboring telencephalic domains in a cartilaginous fish, the catshark, Scyliorhinus canicula, focusing on ScFoxg1a, ScShh, ScNkx2.1, ScDlx2/5, ScOtp, and ScTbr1 expression profiles and on the identification α-acetylated-tubulin-immunoreactive (ir), TH-ir, 5-HT-ir, and GFAP-ir structures by means of immunohistochemistry. Analysis of the results within the updated prosomeric model framework support the existence of alar and basal histogenetic compartments in the hypothalamus similar to those described in the mouse, suggesting the ancestrality of these subdivisions in jawed vertebrates. These data provide new insights into hypothalamic organization in cartilaginous fishes and highlight the generality of key features of the prosomeric model in jawed vertebrates. PMID:25904850
Mohammadi, Alireza; Maleki-Jamshid, Ali; Sanooghi, Davood; Milan, Peiman Brouki; Rahmani, Arash; Sefat, Farshid; Shahpasand, Koorosh; Soleimani, Mansoureh; Bakhtiari, Mehrdad; Belali, Rafie; Faghihi, Faezeh; Joghataei, Mohammad Taghi; Perry, George; Mozafari, Masoud
2018-03-16
A neurological disorder is any disorder or abnormality in the nervous system. Among different neurological disorders, Alzheimer's disease (AD) is recognized as the sixth leading cause of death globally. Considerable research has been conducted to find pioneer treatments for this devastating disorder among which cell therapy has attracted remarkable attentions over the last decade. Up to now, targeted differentiation into specific desirable cell types has remained a major obstacle to clinical application of cell therapy. Also, potential risks including uncontrolled growth of stem cells could be disastrous. In our novel protocol, we used basal forebrain cholinergic progenitor cells (BFCN) derived from human chorion-derived mesenchymal stem cells (hC-MSCs) which made it possible to obtain high-quality population of cholinergic neurons and in vivo in much shorter time period than previous established methods. Remarkably, the transplanted progenitors fully differentiated to cholinergic neurons which in turn integrated in higher cortical networks of host brains, resulting in significant improvement in cognitive assessments. This method may have profound implications in cell therapies for any other neurodegenerative disorders. Graphical Abstract ᅟ.
2012-01-01
Background Notch signaling is well recognized as a key regulator of the neuronal fate during embryonic development, but its function in the adult brain is still largely unknown. Mind bomb-1 (Mib1) is an essential positive regulator in the Notch pathway, acting non-autonomously in the signal-sending cells. Therefore, genetic ablation of Mib1 in mature neuron would give valuable insight to understand the cell-to-cell interaction between neurons via Notch signaling for their proper function. Results Here we show that the inactivation of Mib1 in mature neurons in forebrain results in impaired hippocampal dependent spatial memory and contextual fear memory. Consistently, hippocampal slices from Mib1-deficient mice show impaired late-phase, but not early-phase, long-term potentiation and long-term depression without change in basal synaptic transmission at SC-CA1 synapses. Conclusions These data suggest that Mib1-mediated Notch signaling is essential for long-lasting synaptic plasticity and memory formation in the rodent hippocampus. PMID:23111145
Strychnine and taurine modulation of amygdala-associated anxiety-like behavior is 'state' dependent.
McCool, Brian A; Chappell, Ann
2007-03-12
Strychnine-sensitive glycine receptors are expressed in many adult forebrain regions, yet the biological function of these receptors outside the spinal cord/brainstem is poorly understood. We have recently shown that rat lateral/basolateral amygdala neurons express strychnine-sensitive glycine-gated currents whose pharmacological and molecular characteristics are consistent with those established for classic ligand-gated chloride channels. The current studies were undertaken to establish the behavioral role, if any, of these strychnine-sensitive glycine receptors. Adult Long-Evans male rats were implanted with guide cannulae targeted at the lateral amygdala and were microinjected with standard artificial cerebrospinal fluid with or without various doses of strychnine or taurine. Anxiety-like behaviors were assessed with the elevated plus maze or the light/dark box. In the elevated plus maze, strychnine decreased closed-arm time and increased open-arm time, suggestive of an anxiolytic effect. Similarly, strychnine produced a modest anxiolytic effect in the light/dark box. Post hoc analysis of 'open-arm' time and 'light-side' time indicated that aCSF-treated animals were distributed into two apparent groups that displayed either high or low amounts of anxiety-like behavior in a given apparatus. Surprisingly, the pharmacological effects of both strychnine and taurine in these assays were dependent upon a given animal's behavioral phenotype. Together, these findings are significant because they suggest that the basal 'emotional state' of the animal could influence the behavioral outcome associated with drug application directly into the lateral/basolateral amygdala. Furthermore, our findings also suggest that compounds acting at amygdala strychnine-sensitive glycine receptors may actively modulate this basal anxiety-like state.
Emotion and cognition and the amygdala: from "what is it?" to "what's to be done?".
Pessoa, Luiz
2010-10-01
The amygdala is a fascinating, complex structure that lies at the center of much of our current thinking about emotion. Here, I will review data that suggest that the amygdala is involved in several processes linked to determining what a stimulus is and what the organism should therefore do - the two questions that are part of the title. This piece will focus on three main aspects of amygdala function, namely attention, value representation, and decision making, by reviewing both non-human and human data. Two mechanisms of affective attention will be described. The first involves projections from the central nucleus of the amygdala to the basal forebrain, which has extensive and diffuse projections throughout the cortical mantle. The second involves projections from the basal amygdala to multiple levels across the visual cortex. I will also describe how the basolateral amygdala is important for the representation of value and in decision making. Overall, it will be argued that the amygdala plays a key role in solving the following problem: How can a limited-capacity information processing system that receives a constant stream of diverse inputs be designed to selectively process those inputs that are most significant to the objectives of the system? "What is it?" and "What's to be done?" processes can then be viewed as important building blocks in the construction of emotion, a process that is intertwined with cognition. Furthermore, answering the two questions directs how resources should be mobilized as the organism seeks out additional information from the environment. Copyright © 2010 Elsevier Ltd. All rights reserved.
Kojima, Satoshi; Doupe, Allison J.
2008-01-01
Acoustic experience critically influences auditory cortical development as well as emergence of highly selective auditory neurons in the songbird sensorimotor circuit. In adult zebra finches, these “song-selective” neurons respond better to the bird's own song (BOS) than to songs of other conspecifics. Birds learn their songs by memorizing a tutor's song and then matching auditory feedback of their voice to the tutor song memory. Song-selective neurons in the pallial-basal ganglia circuit called the anterior forebrain pathway (AFP) reflect the development of BOS. However, during learning, they also respond strongly to tutor song and are compromised in their adult selectivity when birds are prevented from matching BOS to tutor, suggesting that selectivity depends on tutor song learning as well as sensorimotor matching of BOS feedback to the tutor song memory. We examined the contribution of sensory learning of tutor song to song selectivity by recording from AFP neurons in birds reared without exposure to adult conspecifics. We found that AFP neurons in these “isolate” birds had highly tuned responses to isolate BOS. The selectivity was as high, and in the striato-pallidal nucleus Area X, even higher than that in normal birds, due to abnormally weak responsiveness to conspecific song. These results demonstrate that sensory learning of tutor song is not necessary for BOS tuning of AFP neurons. Because isolate birds develop their song via sensorimotor learning, our data further illustrate the importance of individual sensorimotor learning for song selectivity and provide insight into possible functions of song-selective neurons. PMID:17625059
Emotion and Cognition and the Amygdala: From “what is it?” to “what’s to be done?”
Pessoa, Luiz
2010-01-01
The amygdala is a fascinating, complex structure that lies at the center of much of our current thinking about emotion. Here, I will review data that suggest that the amygdala is involved in several processes linked to determining what a stimulus is and what the organism should therefore do – the two questions that are part of the title. This piece will focus on three main aspects of amygdala function, namely attention, value representation, and decision making, by reviewing both non-human and human data. Two mechanisms of affective attention will be described. The first involves projections from the central nucleus of the amygdala to the basal forebrain, which has extensive and diffuse projections throughout the cortical mantle. The second involves projections from the basal amygdala to multiple levels across the visual cortex. I will also describe how the basolateral amygdala is important for the representation of value and in decision making. Overall, it will be argued that the amygdala plays a key role in solving the following problem: How can a limited-capacity information processing system that receives a constant stream of diverse inputs be designed to selectively process those inputs that are most significant to the objectives of the system? “What is it?” and “What’s to be done?” processes can then be viewed as important building blocks in the construction of emotion, a process that is intertwined with cognition. Furthermore, answering the two questions directs how resources should be mobilized as the organism seeks out additional information from the environment. PMID:20619280
Neville, C E; McKinley, M C; Holmes, V A; Spence, D; Woodside, J V
2014-04-01
Pregnancy and the postpartum period is a time of increased vulnerability for retention of excess body fat in women. Breastfeeding (BF) has been shown to have many health benefits for both mother and baby; however, its role in postpartum weight management is unclear. Our aim was to systematically review and critically appraise the literature published to date in relation to the impact of BF on postpartum weight change, weight retention and maternal body composition. Electronic literature searches were carried out using MEDLINE, EMBASE, PubMed, Web of Science, BIOSIS, CINAHL and British Nursing Index. The search covered publications up to 12 June 2012 and included observational studies (prospective and retrospective) carried out in BF mothers (either exclusively or as a subgroup), who were ≤ 2 years postpartum and with a body mass index (BMI) >18.5 kg m(-2), with an outcome measure of change in weight (including weight retention) and/or body composition. Thirty-seven prospective studies and eight retrospective studies were identified that met the selection criteria; studies were stratified according to study design and outcome measure. Overall, studies were heterogeneous, particularly in relation to sample size, measurement time points and in the classification of BF and postpartum weight change. The majority of studies reported little or no association between BF and weight change (n=27, 63%) or change in body composition (n=16, 89%), although this seemed to depend on the measurement time points and BF intensity. However, of the five studies that were considered to be of high methodological quality, four studies demonstrated a positive association between BF and weight change. This systematic review highlights the difficulties of examining the association between BF and weight management in observational research. Although the available evidence challenges the widely held belief that BF promotes weight loss, more robust studies are needed to reliably assess the impact of BF on postpartum weight management.
Williams, D S Blaise; Green, Douglas H; Wurzinger, Brian
2012-10-01
Both forefoot strike shod (FFS) and barefoot (BF) running styles result in different mechanics when compared to rearfoot strike (RFS) shod running. Additionally, running mechanics of FFS and BF running are similar to one another. Comparing the mechanical changes occurring in each of these patterns is necessary to understand potential benefits and risks of these running styles. The authors hypothesized that FFS and BF conditions would result in increased sagittal plane joint angles at initial contact and that FFS and BF conditions would demonstrate a shift in sagittal plane joint power from the knee to the ankle when compared to the RFS condition. Finally, total lower extremity power absorption will be least in BF and greatest in the RFS shod condition. The study included 10 male and 10 female RFS runners who completed 3-dimensional running analysis in 3 conditions: shod with RFS, shod with FFS, and BF. Variables were the angles of plantarflexion, knee flexion, and hip flexion at initial contact and peak sagittal plane joint power at the hip, knee, and ankle during stance phase. Running with a FFS pattern and BF resulted in significantly greater plantarflexion and significantly less negative knee power (absorption) when compared to shod RFS condition. FFS condition runners landed in the most plantarflexion and demonstrated the most peak ankle power absorption and lowest knee power absorption between the 3 conditions. BF and FFS conditions demonstrated decreased total lower extremity power absorption compared to the shod RFS condition but did not differ from one another. BF and FFS running result in reduced total lower extremity power, hip power and knee power and a shift of power absorption from the knee to the ankle. Alterations associated with BF running patterns are present in a FFS pattern when wearing shoes. Additionally, both patterns result in increased demand at the foot and ankle as compared to the knee.
Green, Douglas H.; Wurzinger, Brian
2012-01-01
Purpose/Background: Both forefoot strike shod (FFS) and barefoot (BF) running styles result in different mechanics when compared to rearfoot strike (RFS) shod running. Additionally, running mechanics of FFS and BF running are similar to one another. Comparing the mechanical changes occurring in each of these patterns is necessary to understand potential benefits and risks of these running styles. The authors hypothesized that FFS and BF conditions would result in increased sagittal plane joint angles at initial contact and that FFS and BF conditions would demonstrate a shift in sagittal plane joint power from the knee to the ankle when compared to the RFS condition. Finally, total lower extremity power absorption will be least in BF and greatest in the RFS shod condition. Methods: The study included 10 male and 10 female RFS runners who completed 3‐dimensional running analysis in 3 conditions: shod with RFS, shod with FFS, and BF. Variables were the angles of plantarflexion, knee flexion, and hip flexion at initial contact and peak sagittal plane joint power at the hip, knee, and ankle during stance phase. Results: Running with a FFS pattern and BF resulted in significantly greater plantarflexion and significantly less negative knee power (absorption) when compared to shod RFS condition. FFS condition runners landed in the most plantarflexion and demonstrated the most peak ankle power absorption and lowest knee power absorption between the 3 conditions. BF and FFS conditions demonstrated decreased total lower extremity power absorption compared to the shod RFS condition but did not differ from one another. Conclusions: BF and FFS running result in reduced total lower extremity power, hip power and knee power and a shift of power absorption from the knee to the ankle. Clinical Relevance: Alterations associated with BF running patterns are present in a FFS pattern when wearing shoes. Additionally, both patterns result in increased demand at the foot and ankle as compared to the knee. PMID:23091785
Insulin sensitivity is reduced in children with high body-fat regardless of BMI.
Fairchild, Timothy J; Klakk, Heidi; Heidemann, Malene; Grøntved, Anders; Wedderkopp, Niels
2018-02-23
To examine the association between insulin sensitivity and adiposity in children stratified according to their body mass index (BMI: normal weight, NW; overweight or obese, OW/OB) and body-fat percentage (BF%: adipose or NonAdipose), and determine whether cardiorespiratory fitness (CRF) ameliorates any deleterious associations. This prospective cohort study comprises a cross-sectional and longitudinal analyses of data collected at baseline and 2 years later on children (7.7-13.4 years) attending public school in Denmark. Levels of CRF were measured using the Andersen test, whereas BF% was measured by dual-energy X-ray absorptiometry (DXA). Fasting plasma glucose and insulin concentrations were measured and the homoeostatic model assessment of insulin resistance (HOMA-IR) used to assess insulin sensitivity. Approximately 8% of children classified as normal weight by BMI had high BF% (NW + Adipose). Children with high BF% had significantly higher insulin (NW + adipose: 32.3%; OW/OB + Adipose: 52.2%) and HOMA-IR scores (NW + Adipose: 32.3%; OW/OB + Adipose: 55.3%) than children classified as NW without high BF% (reference group; NW + NonAdipose). Adjusting for CRF reduced this difference, but did not completely ameliorate these associations. Longitudinally, children with high BF% (OW/OB + Adipose or NW + Adipose) had significantly worse insulin sensitivity 2 years later than NW + NonAdipose children (All p < 0.001). The few children (n = 14) who improved their BMI or BF% during the 2 years follow-up, no longer had significantly worse insulin sensitivity than children with NW + NonAdipose. High BF% in children is associated with significantly lower insulin sensitivity even when BMI is considered NW. Longitudinally, insulin sensitivity is lower in children with high BF% with or without high BMI. The CRF was a significant covariate in these models, but CRF did not completely ameliorate the effects of high BF% on insulin sensitivity.
Morgan, Peter B.; Hanlon, Alexandra L.; Horwitz, Eric M.; Buyyounouski, Mark K.; Uzzo, Robert G.; Pollack, Alan
2007-01-01
Condensed Abstract The timing of biochemical failure and distant metastasis after radiotherapy for low, intermediate and high-risk prostate cancer was determined. The patterns of failure suggest that the majority of early failures were due to subclinical micrometastases present at diagnosis, whereas a late wave of metastasis at 10–12 years in every risk group was consistent with tumor spread from local persistence of disease. Background The relationship of prostate cancer risk group stratification and the timing of biochemical failure (BF) and distant metastasis (DM) is not well defined. We sought to differentiate early failures due to subclinical micrometastasis at presentation from late failures due to local persistence. Methods A total of 1833 men with clinically localized prostate cancer treated with 3D-conformal radiotherapy with or without short-term androgen deprivation were retrospectively analyzed. The interval hazard rates of DM and BF, using ASTRO and Phoenix (Nadir+2) definitions, were determined for men with low, intermediate, and high risk disease. Results Median follow-up was 67 months. Multivariate analysis showed that increasing risk group was independently associated with higher ASTRO BF (P<.0001) and Nadir+2 BF (P<.0001). The preponderance (87%) of ASTRO BF occurred ≤4 years after RT, while Nadir+2 BF was more evenly spread over years 1–12, with 43% at >4 years. The hazard of Nadir+2 BF persisted in years 8–12 in all risk groups. The interval hazard function for DM appeared to be biphasic (early and late peaks) for intermediate and high risk patients, but no distinct early wave was evident for low risk patients. Conclusions ASTRO BF underestimates late BF due to backdating. Local persistence of disease is suggested by delayed Nadir+2 BF and subsequent late DM in every risk group. The paucity of early DM among those with low risk tumors supports the hypothesis that occult micrometastases contributed to the early wave. PMID:17520705
High performance of nitrogen and phosphorus removal in an electrolysis-integrated biofilter.
Gao, Y; Xie, Y W; Zhang, Q; Yu, Y X; Yang, L Y
A novel electrolysis-integrated biofilter system was developed in this study to evaluate the intensified removal of nitrogen and phosphorus from contaminated water. Two laboratory-scale biofilter systems were established, one with electrolysis (E-BF) and one without electrolysis (BF) as control. The dynamics of intensified nitrogen and phosphorus removal and the changes of inflow and outflow water qualities were also evaluated. The total nitrogen (TN) removal rate was 94.4% in our newly developed E-BF, but only 74.7% in the control BF. Ammonium removal rate was up to 95% in biofilters with or without electrolysis integration with an influent ammonium concentration of 40 mg/L, and the accumulation of nitrate and nitrite was much lower in the effluent of E-BF than that of BF. Thus electrolysis plays an important role in TN removal especially the nitrate and nitrite removal. Phosphorus removal was significantly enhanced, exceeding 90% in E-BF by chemical precipitation, physical adsorption, and flocculation of phosphorus because of the in situ formation of ferric ions by the anodizing of sacrificial iron anodes. Results from this study indicate that the electrolysis integrated biofilter is a promising solution for intensified nitrogen and phosphorus removal.
Akindele, Mukadas O; Phillips, Julie S; Igumbor, Ehimario U
2016-08-17
The increase in the prevalence of overweight and obesity in both developed and developing countries is associated with musculoskeletal and other non-communicable diseases. To address this, an accurate measure of body adiposity, bearing in mind several shortcomings of body mass index (BMI), should be used. This study determined the relationship between BMI and body fat (BF)% among adult Nigerians of different ethnic groups residing in an urban setting. Using multistage cluster sampling technique were recruited 1571 subjects (>18 years; male=51.2%) in a cross-sectional study. Body adiposity indices were assessed using BMI and BF%. Using BF%, the result shows that a total number of 156 (9.9%) had low BF% while 291 (18.5%) had very high BF%, while the BMI classifications of body adiposity, 68 (4.3%) were underweight while 271 (17.3%) were obese. There was a strong and positive statistical relationship between BF% and BMI when both were paired without controlling for gender and age (r=0.81, P<0.01). The results show that there is a strong positive association between BMI and BF%, and age and sex are predictors of this association.
Differences in activation properties of the hamstring muscles during overground sprinting.
Higashihara, Ayako; Nagano, Yasuharu; Ono, Takashi; Fukubayashi, Toru
2015-09-01
The purpose of this study was to quantify activation of the biceps femoris (BF) and medial hamstring (MH) during overground sprinting. Lower-extremity kinematics and electromyography (EMG) of the BF and MH were recorded in 13 male sprinters performing overground sprinting at maximum effort. Mean EMG activity was calculated in the early stance, late stance, mid-swing, and late-swing phases. Activation of the BF was significantly greater during the early stance phase than the late stance phase (p<0.01). Activation of the BF muscle was significantly lower during the first half of the mid-swing phase than the other phases (p<0.05). The MH had significantly greater EMG activation relative to its recorded maximum values compared to that for the BF during the late stance (p<0.05) and mid-swing (p<0.01) phases. These results indicate that the BF shows high activation before and after foot contact, while the MH shows high activation during the late stance and mid-swing phases. We concluded that the activation properties of the BF and MH muscles differ within the sprinting gait cycle. Copyright © 2015 Elsevier B.V. All rights reserved.
Takamura, Ayari; Watanabe, Ken; Akutsu, Tomoko; Ozawa, Takeaki
2018-05-31
Body fluid (BF) identification is a critical part of a criminal investigation because of its ability to suggest how the crime was committed and to provide reliable origins of DNA. In contrast to current methods using serological and biochemical techniques, vibrational spectroscopic approaches provide alternative advantages for forensic BF identification, such as non-destructivity and versatility for various BF types and analytical interests. However, unexplored issues remain for its practical application to forensics; for example, a specific BF needs to be discriminated from all other suspicious materials as well as other BFs, and the method should be applicable even to aged BF samples. Herein, we describe an innovative modeling method for discriminating the ATR FT-IR spectra of various BFs, including peripheral blood, saliva, semen, urine and sweat, to meet the practical demands described above. Spectra from unexpected non-BF samples were efficiently excluded as outliers by adopting the Q-statistics technique. The robustness of the models against aged BFs was significantly improved by using the discrimination scheme of a dichotomous classification tree with hierarchical clustering. The present study advances the use of vibrational spectroscopy and a chemometric strategy for forensic BF identification.
Linkage and association mapping reveals the genetic basis of brown fibre (Gossypium hirsutum).
Wen, Tianwang; Wu, Mi; Shen, Chao; Gao, Bin; Zhu, De; Zhang, Xianlong; You, Chunyuan; Lin, Zhongxu
2018-02-24
Brown fibre cotton is an environmental-friendly resource that plays a key role in the textile industry. However, the fibre quality and yield of natural brown cotton are poor, and fundamental research on brown cotton is relatively scarce. To understand the genetic basis of brown fibre cotton, we constructed linkage and association populations to systematically examine brown fibre accessions. We fine-mapped the brown fibre region, Lc 1 , and dissected it into 2 loci, qBF-A07-1 and qBF-A07-2. The qBF-A07-1 locus mediates the initiation of brown fibre production, whereas the shade of the brown fibre is affected by the interaction between qBF-A07-1 and qBF-A07-2. Gh_A07G2341 and Gh_A07G0100 were identified as candidate genes for qBF-A07-1 and qBF-A07-2, respectively. Haploid analysis of the signals significantly associated with these two loci showed that most tetraploid modern brown cotton accessions exhibit the introgression signature of Gossypium barbadense. We identified 10 quantitative trait loci (QTLs) for fibre yield and 19 QTLs for fibre quality through a genome-wide association study (GWAS) and found that qBF-A07-2 negatively affects fibre yield and quality through an epistatic interaction with qBF-A07-1. This study sheds light on the genetics of fibre colour and lint-related traits in brown fibre cotton, which will guide the elite cultivars breeding of brown fibre cotton. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Liu, Xin; Zhao, Yaling; Li, Qiang; Dang, Shaonong; Yan, Hong
2017-07-08
Obesity classification using body mass index (BMI) may miss subjects with elevated body fat percentage (BF%) and related metabolic risk factors. We aimed to evaluate whether BF% calculated by equations could provide more information about metabolic risks, in addition to BMI classification, in a cross-sectional rural Chinese population. A total of 2,990 men and women aged 18-80 years were included in this study. BF% was calculated using previously validated Chinese-specific equations. Metabolic syndrome was defined according to the updated National Cholesterol Education Program Panel III criteria for Asian Americans. In total, 33.6% men and 32.9% women were overweight/obese according to BMI classification. Among those within the normal BMI range, 25.4% men and 54.7% women were indicated as overweight or obese given their elevated BF% (men: BF% ≥ 20%; women: BF% ≥ 30%). In both men and women, compared with those with normal BMI and BF% (NBB), subjects with normal BMI but elevated BF% (NBOB) were more likely to carry abnormal serum lipid profile and to have higher risks of metabolic syndrome. The multivariable adjusted odds ratios (95% confidence intervals) for metabolic syndrome were 5.45 (2.37-9.53, P < 0.001) and 5.65 (3.36-9.52, P < 0.001) for men and women, respectively. Moreover, the women with NBOB also showed higher blood pressure and serum uric acid than women with NBB. Our study suggested that high BF% based on equations may indicate adverse metabolic profiles among rural Chinese adults with a normal BMI. © 2017 Wiley Periodicals, Inc.
Nass, F R; Skare, T L; Goeldner, I; Nisihara, R; Messias-Reason, I J; Utiyama, S R R
2015-12-01
The aim of the study was to investigate the allotypic variability of complement factor B (BF) in patients and relatives with rheumatoid arthritis (RA) and its association with serological biomarkers and clinical features of the disease. BF allotypes were determined by high-voltage agarose gel electrophoresis in serum samples of 180 patients with RA, 198 relatives and 98 controls from Southern Brazil. Anticyclic citrullinated peptide (anti-CCP), antimutated citrullinated vimentin (anti-MCV) and IgA-rheumatoid factor (RF) were determined by ELISA and IgM-RF by latex agglutination in all samples. No significant differences were found in the allotypic variants of BF between patients with RA, relatives and controls, nor associations with gender and age of RA onset. BF*S07 allotype was significantly associated with extra-articular manifestations (EAMs; Secondary Sjögren Syndrome, pneumonitis, rheumatoid nodules) in patients with RA (P = 0.02; OR = 6.62). Patients with phenotype BF F had lower positivity for anti-MCV biomarker (P = 0.02; OR = 0.22) and those with allotype BF*S had higher prevalence of this autoantibody (P = 0.02; OR = 3.77). An increased frequency of RF-IgA was detected in relatives of patients with RA with BF FS07 phenotype (P = 0.02; OR = 7.78). Complement BF variability did not influence the development of RA in the studied patients, but BF variants may act as markers of disease prognosis, such as development of EAMs, corroborating with the role of the alternative pathway in the pathogenesis of RA. © 2015 John Wiley & Sons Ltd.
Shafer, Kimberly J; Siders, William A; Johnson, LuAnn K; Lukaski, Henry C
2008-02-01
We determined the effect of clothing type on the validity of air-displacement plethysmography (ADP) to estimate percentage of body fat (%BF) and ascertain if these effects differ by body mass index (BMI). The %BF by dual x-ray absorptiometry (DXA) and %BF, density, and body volume by ADP were assessed in 132 healthy adults classified by normal (N; 18.5-24.9 kg/m2), overweight (OW; 25-29.9 kg/m2), and obese (OB; 30-39.9 kg/m2) BMIs. Compared with DXA, ADP underestimated (P < 0.0001) %BF from scrubs (SC) and t-shirt/shorts (TS) in N (11.4%; 8.6%) and OW (6.8%; 4.9%) BMI groups, respectively. ADP compared with DXA overestimated (P < 0.0006) %BF in the OW group (1.2%), but underestimated (P < 0.0001) it in the N group (2.4%). ADP also overestimated (P < 0.006) %BF in the OB group wearing spandex (SP; 4.8%), but not in those wearing SC (0.7%; P = 0.10) and TS (0.5%; P = 0.22) versus DXA. All three clothing types showed significant error in estimating %BF with ADP compared with DXA in N and OW BMI. Use of spandex provided the least error and is the preferred attire to obtain valid body composition results when testing N and OW subjects. However, SP provided the greatest error in the OB group. Error in ADP %BF in OB was minimal in SC and TS and similar to the within-subject variability in %BF estimates with ADP. Thus, TS and SC are acceptable alternatives to SP in adults with excess body weight.
Pérez, M C; Álvarez-Hornos, F J; Portune, K; Gabaldón, C
2015-01-01
The removal of styrene was studied using two biofilters packed with peat and coconut fibre (BF1-P and BF2-C, respectively) and one biotrickling filter (BTF) packed with plastic rings. Two inoculation procedures were applied: an enriched culture with strain Pseudomonas putida CECT 324 for BFs and activated sludge from a municipal wastewater treatment plant for the BTF. Inlet loads (ILs) between 10 and 45 g m(-3) h(-1) and empty bed residence times (EBRTs) from 30 to 120 s were applied. At inlet concentrations ranging between 200 and 400 mg Nm(-3), removal efficiencies between 70 % and 95 % were obtained in the three bioreactors. Maximum elimination capacities (ECs) of 81 and 39 g m(-3) h(-1) were obtained for the BF1-P and BF2-C, respectively (IL of 173 g m(-3) h(-1) and EBRT of 60 s in BF1-P; IL of 89 g m(-3) h(-1) and EBRT of 90 s in BF2-C). A maximum EC of 52 g m(-3) h(-1) was obtained for the BTF (IL of 116 g m(-3) h(-1), EBRT of 45 s). Problems regarding high pressure drop appeared in the peat BF, whereas drying episodes occurred in the coconut fibre BF. DGGE revealed that the pure culture used for BF inoculation was not detected by day 105. Although two different inoculation procedures were applied, similar styrene removal at the end of the experiments was observed. The use as inoculum of activated sludge from municipal wastewater treatment plant appears a more feasible option.
Dunnwald, Lisa K.; Gralow, Julie R.; Ellis, Georgiana K.; Livingston, Robert B.; Linden, Hannah M.; Specht, Jennifer M.; Doot, Robert K.; Lawton, Thomas J.; Barlow, William E.; Kurland, Brenda F.; Schubert, Erin K.; Mankoff, David A.
2008-01-01
Purpose Patients with locally advanced breast carcinoma (LABC) receive preoperative chemotherapy to provide early systemic treatment and assess in vivo tumor response. Serial positron emission tomography (PET) has been shown to predict pathologic response in this setting. We evaluated serial quantitative PET tumor blood flow (BF) and metabolism as in vivo measurements to predict patient outcome. Patients and Methods Fifty-three women with primary LABC underwent dynamic [18F]fluorodeoxyglucose (FDG) and [15O]water PET scans before and at midpoint of neoadjuvant chemotherapy. The FDG metabolic rate (MRFDG) and transport (FDG K1) parameters were calculated; BF was estimated from the [15O]water study. Associations between BF, MRFDG, FDG K1, and standardized uptake value and disease-free survival (DFS) and overall survival (OS) were evaluated using the Cox proportional hazards model. Results Patients with persistent or elevated BF and FDG K1 from baseline to midtherapy had higher recurrence and mortality risks than patients with reductions. In multivariable analyses, BF and FDG K1 changes remained independent prognosticators of DFS and OS. For example, in the association between BF and mortality, a patient with a 5% increase in tumor BF had a 67% higher mortality risk compared with a patient with a 5% decrease in tumor BF (hazard ratio = 1.67; 95% CI, 1.24 to 2.24; P < .001). Conclusion LABC patients with limited or no decline in BF and FDG K1 experienced higher recurrence and mortality risks that were greater than the effects of clinical tumor characteristics. Tumor perfusion changes over the course of neoadjuvant chemotherapy measured directly by [15O]water or indirectly by dynamic FDG predict DFS and OS. PMID:18626006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turaka, Aruna; Buyyounouski, Mark K., E-mail: mark.buyyounouski@fccc.edu; Hanlon, Alexandra L.
Purpose: To correlate tumor oxygenation status with long-term biochemical outcome after prostate brachytherapy. Methods and Materials: Custom-made Eppendorf PO{sub 2} microelectrodes were used to obtain PO{sub 2} measurements from the prostate (P), focused on positive biopsy locations, and normal muscle tissue (M), as a control. A total of 11,516 measurements were obtained in 57 men with localized prostate cancer immediately before prostate brachytherapy was given. The Eppendorf histograms provided the median PO{sub 2}, mean PO{sub 2}, and % <5 mm Hg or <10 mm Hg. Biochemical failure (BF) was defined using both the former American Society of Therapeutic Radiation Oncologymore » (ASTRO) (three consecutive raises) and the current Phoenix (prostate-specific antigen nadir + 2 ng/mL) definitions. A Cox proportional hazards regression model evaluated the influence of hypoxia using the P/M mean PO{sub 2} ratio on BF. Results: With a median follow-up time of 8 years, 12 men had ASTRO BF and 8 had Phoenix BF. On multivariate analysis, P/M PO{sub 2} ratio <0.10 emerged as the only significant predictor of ASTRO BF (p = 0.043). Hormonal therapy (p = 0.015) and P/M PO{sub 2} ratio <0.10 (p = 0.046) emerged as the only independent predictors of the Phoenix BF. Kaplan-Meier freedom from BF for P/M ratio <0.10 vs. {>=}0.10 at 8 years for ASTRO BF was 46% vs. 78% (p = 0.03) and for the Phoenix BF was 66% vs. 83% (p = 0.02). Conclusions: Hypoxia in prostate cancer (low mean P/M PO{sub 2} ratio) significantly predicts for poor long-term biochemical outcome, suggesting that novel hypoxic strategies should be investigated.« less
A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults
Fuster-Parra, Pilar; Bennasar-Veny, Miquel; Tauler, Pedro; Yañez, Aina; López-González, Angel A.; Aguiló, Antoni
2015-01-01
Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (ρ = 0:87 vs. ρ = 0:86 for the whole sample and ρ = 0:88 vs. ρ = 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF. PMID:25821960
A comparison between multiple regression models and CUN-BAE equation to predict body fat in adults.
Fuster-Parra, Pilar; Bennasar-Veny, Miquel; Tauler, Pedro; Yañez, Aina; López-González, Angel A; Aguiló, Antoni
2015-01-01
Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (ρ = 0:87 vs. ρ = 0:86 for the whole sample and ρ = 0:88 vs. ρ = 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.
Benzaquen, David; Delouya, Guila; Ménard, Cynthia; Barkati, Maroie; Taussky, Daniel
In prostate seed brachytherapy, a D 90 of <130 Gy is an accepted predictive factor for biochemical failure (BF). We studied whether there is a subpopulation that does not need additional treatment after a suboptimal permanent seed brachytherapy implantation. A total of 486 patients who had either BF or a minimum followup of 48 months without BF were identified. BF was defined according to the Phoenix definition (nadir prostate-specific antigen + 2). Univariate and multivariate analyses were performed, adjusting for known prognostic factors such as D 90 and prostate-specific antigen density (PSAD) of ≥0.15 ng/mL/cm 3 , to evaluate their ability to predict BF. Median followup for patients without BF was 72 months (interquartile range 56-96). BF-free recurrence rate at 5 years was 95% and at 8 years 88%. In univariate analysis, PSAD and cancer of the prostate risk assessment score were predictive of BF. On multivariate analysis, none of the factors remained significant. The best prognosis had patients with a low PSAD (<0.15 ng/mL/cm 3 ) and an optimal implant at 30 days after implantation (as defined by D 90 ≥ 130 Gy) compared to patients with both factors unfavorable (p = 0.006). A favorable PSAD was associate with a good prognosis, independently of the D 90 (<130 Gy vs. ≥130 Gy, p = 0.7). Patients with a PSAD of <0.15 ng/mL/cm 3 have little risk of BF, even in the case of a suboptimal implant. These results need to be validated in other patients' cohorts. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Differences in Postprandial Lipid Response to Breast- or Formula-feeding in 8-Week-Old Infants.
Teller, Inga C; Schoen, Stefanie; van de Heijning, Bert; van der Beek, Eline M; Sauer, Pieter J J
2017-04-01
Lipids play important roles in infant growth and development. In this exploratory observational single-center study, we investigated postmeal responses of infants to dietary lipids and differences between breast-feeding (BF) and formula-feeding (FF). Two capillary blood samples were collected from each subject, before and randomly assigned at either 30, 60, 90, 120, 180, or 240 minutes after their respective feeding, followed by measurement of lipid-related plasma parameter concentrations using enzyme-linked immunosorbent assay-based or combined enzymatic and colorimetric methods. The intermeal interval before testing was shorter in the BF (182.91 ± 22.85 minutes, n = 33) versus FF group (214.1 ± 30.76 minutes, n = 34); BF subjects fed 5 minutes longer (BF 20.27 ± 7.7 minutes; FF 14.82 ± 3.57 minutes). Composite postmeal concentration profiles were generated from 59 plasma sample pairs with sufficient volume (BF = 30): triglyceride (TG) baselines were not different. A TG difference was indicated for BF over FF subjects at 30 minutes, for FF over BF subjects at 60 minutes when corrected for baseline. TG responses in both groups appeared and seemed to clear much faster than those reported for adults. The TG:apolipoprotein B48 (ApoB48) ratio suggests that chylomicrons in BF subjects may carry a higher fat load (P < 0.05), compensated by a higher chylomicron number in FF subjects (P < 0.05). Cholesterol in BF subjects was higher and showed an increase after feeding when corrected for baseline. Our results indicate that lipids from either BF or FF may be handled differently in young healthy infants.
Forehead versus forearm skin vascular responses at presyncope in humans
Gagnon, Daniel; Matthew Brothers, R.; Ganio, Matthew S.; Hastings, Jeffrey L.
2014-01-01
Facial pallor is commonly observed at presyncope in humans, suggestive of reductions in facial skin blood flow (SkBF). Yet, cutaneous vasoconstriction is usually minimal at presyncope when measured at the forearm. We tested the hypothesis that reductions in forehead SkBF at presyncope are greater than in the forearm. Forehead and forearm SkBF (laser-Doppler) and blood pressure (Finometer or radial artery catheterization) were measured during lower body negative pressure (LBNP) to presyncope in 11 normothermic and 13 heat-stressed subjects (intestinal temperature increased ∼1.4°C). LBNP reduced mean arterial pressure from 91 ± 5 to 57 ± 7 mmHg during normothermia (P ≤ 0.001) and from 82 ± 5 to 57 ± 7 mmHg during heat stress (P ≤ 0.001). During normothermia, LBNP decreased forehead SkBF 55 ± 14% compared with 24 ± 11% at the forearm (P = 0.002), while during heat stress LBNP decreased forehead SkBF 39 ± 11% compared with 28 ± 8% in the forearm (P = 0.007). In both conditions, most (≥68%) of the decreases in SkBF were due to decreases in blood pressure. However, a greater contribution of actively mediated reductions in SkBF was observed at the forehead, relative to the forearm during normothermia (32 ± 13% vs. 11 ± 11%, P = 0.031) and heat stress (30 ± 13% vs. 10 ± 13%, P = 0.004). These data suggest that facial pallor at presyncope is due to a combination of passive decreases in forehead SkBF secondary to reductions in blood pressure and to active decreases in SkBF, the latter of which are relatively greater than in the forearm. PMID:25100073
51. BF corridor, (example of older building meeting with new ...
51. BF corridor, (example of older building meeting with new building addition) from outside room BF-6, basement level, building 500, looking south - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
Harada, Ryuichi; Okamura, Nobuyuki; Furumoto, Shozo; Yoshikawa, Takeo; Arai, Hiroyuki; Yanai, Kazuhiko; Kudo, Yukitsuka
2014-02-01
Selective visualization of amyloid-β and tau protein deposits will help to understand the pathophysiology of Alzheimer's disease (AD). Here, we introduce a novel fluorescent probe that can distinguish between these two deposits by multispectral fluorescence imaging technique. Fluorescence spectral analysis was performed using AD brain sections stained with novel fluorescence compounds. Competitive binding assay using [(3)H]-PiB was performed to evaluate the binding affinity of BF-188 for synthetic amyloid-β (Aβ) and tau fibrils. In AD brain sections, BF-188 clearly stained Aβ and tau protein deposits with different fluorescence spectra. In vitro binding assays indicated that BF-188 bound to both amyloid-β and tau fibrils with high affinity (K i < 10 nM). In addition, BF-188 showed an excellent blood-brain barrier permeability in mice. Multispectral imaging with BF-188 could potentially be used for selective in vivo imaging of tau deposits as well as amyloid-β in the brain.
New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk
Lu, Yingchang; Day, Felix R.; Gustafsson, Stefan; Buchkovich, Martin L.; Na, Jianbo; Bataille, Veronique; Cousminer, Diana L.; Dastani, Zari; Drong, Alexander W.; Esko, Tõnu; Evans, David M.; Falchi, Mario; Feitosa, Mary F.; Ferreira, Teresa; Hedman, Åsa K.; Haring, Robin; Hysi, Pirro G.; Iles, Mark M.; Justice, Anne E.; Kanoni, Stavroula; Lagou, Vasiliki; Li, Rui; Li, Xin; Locke, Adam; Lu, Chen; Mägi, Reedik; Perry, John R. B.; Pers, Tune H.; Qi, Qibin; Sanna, Marianna; Schmidt, Ellen M.; Scott, William R.; Shungin, Dmitry; Teumer, Alexander; Vinkhuyzen, Anna A. E.; Walker, Ryan W.; Westra, Harm-Jan; Zhang, Mingfeng; Zhang, Weihua; Zhao, Jing Hua; Zhu, Zhihong; Afzal, Uzma; Ahluwalia, Tarunveer Singh; Bakker, Stephan J. L.; Bellis, Claire; Bonnefond, Amélie; Borodulin, Katja; Buchman, Aron S.; Cederholm, Tommy; Choh, Audrey C.; Choi, Hyung Jin; Curran, Joanne E.; de Groot, Lisette C. P. G. M.; De Jager, Philip L.; Dhonukshe-Rutten, Rosalie A. M.; Enneman, Anke W.; Eury, Elodie; Evans, Daniel S.; Forsen, Tom; Friedrich, Nele; Fumeron, Frédéric; Garcia, Melissa E.; Gärtner, Simone; Han, Bok-Ghee; Havulinna, Aki S.; Hayward, Caroline; Hernandez, Dena; Hillege, Hans; Ittermann, Till; Kent, Jack W.; Kolcic, Ivana; Laatikainen, Tiina; Lahti, Jari; Leach, Irene Mateo; Lee, Christine G.; Lee, Jong-Young; Liu, Tian; Liu, Youfang; Lobbens, Stéphane; Loh, Marie; Lyytikäinen, Leo-Pekka; Medina-Gomez, Carolina; Michaëlsson, Karl; Nalls, Mike A.; Nielson, Carrie M.; Oozageer, Laticia; Pascoe, Laura; Paternoster, Lavinia; Polašek, Ozren; Ripatti, Samuli; Sarzynski, Mark A.; Shin, Chan Soo; Narančić, Nina Smolej; Spira, Dominik; Srikanth, Priya; Steinhagen-Thiessen, Elisabeth; Sung, Yun Ju; Swart, Karin M. A.; Taittonen, Leena; Tanaka, Toshiko; Tikkanen, Emmi; van der Velde, Nathalie; van Schoor, Natasja M.; Verweij, Niek; Wright, Alan F.; Yu, Lei; Zmuda, Joseph M.; Eklund, Niina; Forrester, Terrence; Grarup, Niels; Jackson, Anne U.; Kristiansson, Kati; Kuulasmaa, Teemu; Kuusisto, Johanna; Lichtner, Peter; Luan, Jian'an; Mahajan, Anubha; Männistö, Satu; Palmer, Cameron D.; Ried, Janina S.; Scott, Robert A.; Stancáková, Alena; Wagner, Peter J.; Demirkan, Ayse; Döring, Angela; Gudnason, Vilmundur; Kiel, Douglas P.; Kühnel, Brigitte; Mangino, Massimo; Mcknight, Barbara; Menni, Cristina; O'Connell, Jeffrey R.; Oostra, Ben A.; Shuldiner, Alan R.; Song, Kijoung; Vandenput, Liesbeth; van Duijn, Cornelia M.; Vollenweider, Peter; White, Charles C.; Boehnke, Michael; Boettcher, Yvonne; Cooper, Richard S.; Forouhi, Nita G.; Gieger, Christian; Grallert, Harald; Hingorani, Aroon; Jørgensen, Torben; Jousilahti, Pekka; Kivimaki, Mika; Kumari, Meena; Laakso, Markku; Langenberg, Claudia; Linneberg, Allan; Luke, Amy; Mckenzie, Colin A.; Palotie, Aarno; Pedersen, Oluf; Peters, Annette; Strauch, Konstantin; Tayo, Bamidele O.; Wareham, Nicholas J.; Bennett, David A.; Bertram, Lars; Blangero, John; Blüher, Matthias; Bouchard, Claude; Campbell, Harry; Cho, Nam H.; Cummings, Steven R.; Czerwinski, Stefan A.; Demuth, Ilja; Eckardt, Rahel; Eriksson, Johan G.; Ferrucci, Luigi; Franco, Oscar H.; Froguel, Philippe; Gansevoort, Ron T.; Hansen, Torben; Harris, Tamara B.; Hastie, Nicholas; Heliövaara, Markku; Hofman, Albert; Jordan, Joanne M.; Jula, Antti; Kähönen, Mika; Kajantie, Eero; Knekt, Paul B.; Koskinen, Seppo; Kovacs, Peter; Lehtimäki, Terho; Lind, Lars; Liu, Yongmei; Orwoll, Eric S.; Osmond, Clive; Perola, Markus; Pérusse, Louis; Raitakari, Olli T.; Rankinen, Tuomo; Rao, D. C.; Rice, Treva K.; Rivadeneira, Fernando; Rudan, Igor; Salomaa, Veikko; Sørensen, Thorkild I. A.; Stumvoll, Michael; Tönjes, Anke; Towne, Bradford; Tranah, Gregory J.; Tremblay, Angelo; Uitterlinden, André G.; van der Harst, Pim; Vartiainen, Erkki; Viikari, Jorma S.; Vitart, Veronique; Vohl, Marie-Claude; Völzke, Henry; Walker, Mark; Wallaschofski, Henri; Wild, Sarah; Wilson, James F.; Yengo, Loïc; Bishop, D. Timothy; Borecki, Ingrid B.; Chambers, John C.; Cupples, L. Adrienne; Dehghan, Abbas; Deloukas, Panos; Fatemifar, Ghazaleh; Fox, Caroline; Furey, Terrence S.; Franke, Lude; Han, Jiali; Hunter, David J.; Karjalainen, Juha; Karpe, Fredrik; Kaplan, Robert C.; Kooner, Jaspal S.; McCarthy, Mark I.; Murabito, Joanne M.; Morris, Andrew P.; Bishop, Julia A. N.; North, Kari E.; Ohlsson, Claes; Ong, Ken K.; Prokopenko, Inga; Richards, J. Brent; Schadt, Eric E.; Spector, Tim D.; Widén, Elisabeth; Willer, Cristen J.; Yang, Jian; Ingelsson, Erik; Mohlke, Karen L.; Hirschhorn, Joel N.; Pospisilik, John Andrew; Zillikens, M. Carola; Lindgren, Cecilia; Kilpeläinen, Tuomas Oskari; Loos, Ruth J. F.
2016-01-01
To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10−8), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk. PMID:26833246
Bělohlávek, Jan; Mlček, Mikuláš; Huptych, Michal; Svoboda, Tomáš; Havránek, Stěpán; Ošt'ádal, Petr; Bouček, Tomáš; Kovárník, Tomáš; Mlejnský, František; Mrázek, Vratislav; Bělohlávek, Marek; Aschermann, Michael; Linhart, Aleš; Kittnar, Otomar
2012-12-12
Extracorporeal membrane oxygenation (ECMO) is increasingly used in cardiac arrest (CA). Adequacy of carotid and coronary blood flows (CaBF, CoBF) and coronary perfusion pressure (CoPP) in ECMO treated CA is not well established. This study compares femoro-femoral (FF) to femoro-subclavian (FS) ECMO and intraaortic balloon counterpulsation (IABP) contribution based on CaBF, CoBF, CoPP, myocardial and brain oxygenation in experimental CA managed by ECMO. In 11 female pigs (50.3 ± 3.4 kg), CA was randomly treated by FF versus FS ECMO ± IABP. Animals under general anesthesia had undergone 15 minutes of ventricular fibrillation (VF) with ECMO flow of 5 to 10 mL/kg/min simulating low-flow CA followed by continued VF with ECMO flow of 100 mL/kg/min. CaBF and CoBF were measured by a Doppler flow wire, cerebral and peripheral oxygenation by near infrared spectroscopy. CoPP, myocardial oxygen metabolism and resuscitability were determined. CaBF reached values > 80% of baseline in all regimens. CoBF > 80% was reached only by the FF ECMO, 90.0% (66.1, 98.6). Addition of IABP to FF ECMO decreased CoBF to 60.7% (55.1, 86.2) of baseline, P = 0.004. FS ECMO produced 70.0% (49.1, 113.2) of baseline CoBF, significantly lower than FF, P = 0.039. Addition of IABP to FS did not change the CoBF; however, it provided significantly higher flow, 76.7% (71.9, 111.2) of baseline, compared to FF + IABP, P = 0.026. Both brain and peripheral regional oxygen saturations decreased after induction of CA to 23% (15.0, 32.3) and 34% (23.5, 34.0), respectively, and normalized after ECMO institution. For brain saturations, all regimens reached values exceeding 80% of baseline, none of the comparisons between respective treatment approaches differed significantly. After a decline to 15 mmHg (9.5, 20.8) during CA, CoPP gradually rose with time to 68 mmHg (43.3, 84.0), P = 0 .003, with best recovery on FF ECMO. Resuscitability of the animals was high, both 5 and 60 minutes return of spontaneous circulation occured in eight animals (73%). In a pig model of CA, both FF and FS ECMO assure adequate brain perfusion and oxygenation. FF ECMO offers better CoBF than FS ECMO. Addition of IABP to FF ECMO worsens CoBF. FF ECMO, more than FS ECMO, increases CoPP over time.
2012-01-01
Introduction Extracorporeal membrane oxygenation (ECMO) is increasingly used in cardiac arrest (CA). Adequacy of carotid and coronary blood flows (CaBF, CoBF) and coronary perfusion pressure (CoPP) in ECMO treated CA is not well established. This study compares femoro-femoral (FF) to femoro-subclavian (FS) ECMO and intraaortic balloon counterpulsation (IABP) contribution based on CaBF, CoBF, CoPP, myocardial and brain oxygenation in experimental CA managed by ECMO. Methods In 11 female pigs (50.3 ± 3.4 kg), CA was randomly treated by FF versus FS ECMO ± IABP. Animals under general anesthesia had undergone 15 minutes of ventricular fibrillation (VF) with ECMO flow of 5 to 10 mL/kg/min simulating low-flow CA followed by continued VF with ECMO flow of 100 mL/kg/min. CaBF and CoBF were measured by a Doppler flow wire, cerebral and peripheral oxygenation by near infrared spectroscopy. CoPP, myocardial oxygen metabolism and resuscitability were determined. Results CaBF reached values > 80% of baseline in all regimens. CoBF > 80% was reached only by the FF ECMO, 90.0% (66.1, 98.6). Addition of IABP to FF ECMO decreased CoBF to 60.7% (55.1, 86.2) of baseline, P = 0.004. FS ECMO produced 70.0% (49.1, 113.2) of baseline CoBF, significantly lower than FF, P = 0.039. Addition of IABP to FS did not change the CoBF; however, it provided significantly higher flow, 76.7% (71.9, 111.2) of baseline, compared to FF + IABP, P = 0.026. Both brain and peripheral regional oxygen saturations decreased after induction of CA to 23% (15.0, 32.3) and 34% (23.5, 34.0), respectively, and normalized after ECMO institution. For brain saturations, all regimens reached values exceeding 80% of baseline, none of the comparisons between respective treatment approaches differed significantly. After a decline to 15 mmHg (9.5, 20.8) during CA, CoPP gradually rose with time to 68 mmHg (43.3, 84.0), P = 0 .003, with best recovery on FF ECMO. Resuscitability of the animals was high, both 5 and 60 minutes return of spontaneous circulation occured in eight animals (73%). Conclusions In a pig model of CA, both FF and FS ECMO assure adequate brain perfusion and oxygenation. FF ECMO offers better CoBF than FS ECMO. Addition of IABP to FF ECMO worsens CoBF. FF ECMO, more than FS ECMO, increases CoPP over time. PMID:22424292
Barefoot running does not affect simple reaction time: an exploratory study
Snow, Nicholas J.; Blair, Jason F.L.; MacDonald, Graham Z.
2018-01-01
Background Converging evidence comparing barefoot (BF) and shod (SH) running highlights differences in foot-strike patterns and somatosensory feedback, among others. Anecdotal evidence from SH runners attempting BF running suggests a greater attentional demand may be experienced during BF running. However, little work to date has examined whether there is an attentional cost of BF versus SH running. Objective This exploratory study aimed to examine whether an acute bout of BF running would impact simple reaction time (SRT) compared to SH running, in a sample of runners naïve to BF running. Methods Eight male distance runners completed SRT testing during 10 min of BF or SH treadmill running at 70% maximal aerobic speed (17.9 ± 1.4 km h−1). To test SRT, participants were required to press a hand-held button in response to the flash of a light bulb placed in the center of their visual field. SRT was tested at 1-minute intervals during running. BF and SH conditions were completed in a pseudo-randomized and counterbalanced crossover fashion. SRT was defined as the time elapsed between the light bulb flash and the button press. SRT errors were also recorded and were defined as the number of trials in which a button press was not recorded in response to the light bulb flash. Results Overall, SRT later in the exercise bouts showed a statistically significant increase compared to earlier (p < 0.05). Statistically significant increases in SRT were present at 7 min versus 5 min (0.29 ± 0.02 s vs. 0.27 ± 0.02 s, p < 0.05) and at 9 min versus 2 min (0.29 ± 0.03 s vs. 0.27 ± 0.03 s, p < 0.05). However, BF running did not influence this increase in SRT (p > 0.05) or the number of SRT errors (17.6 ± 6.6 trials vs. 17.0 ± 13.0 trials, p > 0.05). Discussion In a sample of distance runners naïve to BF running, there was no statistically significant difference in SRT or SRT errors during acute bouts of BF and SH running. We interpret these results to mean that BF running does not have a greater attentional cost compared to SH running during a SRT task throughout treadmill running. Literature suggests that stride-to-stride gait modulation during running may occur predominately via mechanisms that preclude conscious perception, thus potentially attenuating effects of increased somatosensory feedback experienced during BF running. Future research should explore the present experimental paradigm in a larger sample using over-ground running trials, as well as employing different tests of attention. PMID:29666760
Evans, Andrew K.; Strassmann, Patrick S.; Lee, I-Ping; Sapolsky, Robert M.
2014-01-01
Toxoplasma gondii (T. gondii) is one of the world’s most successful brain parasites. T. gondii engages in parasite manipulation of host behavior and infection has been epidemiologically linked to numerous psychiatric disorders. Mechanisms by which T. gondii alters host behavior are not well understood, but neuroanatomical cyst presence and the localized host immune response to cysts are potential candidates. The aim of these studies was to test the hypothesis that T. gondii manipulation of specific host behaviors is dependent on neuroanatomical location of cysts in a time-dependent function post-infection. We examined neuroanatomical cyst distribution (53 forebrain regions) in infected rats after predator odor aversion behavior and anxiety-related behavior in the elevated plus maze and open field arena, across a 6-week time course. In addition, we examined evidence for microglial response to the parasite across the time course. Our findings demonstrate that while cysts are randomly distributed throughout the forebrain, individual variation in cyst localization, beginning 3 weeks post-infection, can explain individual variation in the effects of T. gondii on behavior. Additionally, not all infected rats develop cysts in the forebrain, and attenuation of predator odor aversion and changes in anxiety-related behavior are linked with cyst presence in specific forebrain areas. Finally, the immune response to cysts is striking. These data provide the foundation for testing hypotheses about proximate mechanisms by which T. gondii alters behavior in specific brain regions, including consequences of establishment of a homeostasis between T. gondii and the host immune response. PMID:24269877
Wang, Xiao-Dong; Chen, Yuncai; Wolf, Miriam; Wagner, Klaus V.; Liebl, Claudia; Scharf, Sebastian H.; Harbich, Daniela; Mayer, Bianca; Wurst, Wolfgang; Holsboer, Florian; Deussing, Jan M.; Baram, Tallie Z.; Müller, Marianne B.; Schmidt, Mathias V.
2011-01-01
Chronic stress evokes profound structural and molecular changes in the hippocampus, which may underlie spatial memory deficits. Corticotropin-releasing hormone (CRH) and CRH receptor 1 (CRHR1) mediate some of the rapid effects of stress on dendritic spine morphology and modulate learning and memory, thus providing a potential molecular basis for impaired synaptic plasticity and spatial memory by repeated stress exposure. Using adult male mice with CRHR1 conditionally inactivated in the forebrain regions, we investigated the role of CRH-CRHR1 signaling in the effects of chronic social defeat stress on spatial memory, the dendritic morphology of hippocampal CA3 pyramidal neurons, and the hippocampal expression of nectin-3, a synaptic cell adhesion molecule important in synaptic remodeling. In chronically stressed wild-type mice, spatial memory was disrupted, and the complexity of apical dendrites of CA3 neurons reduced. In contrast, stressed mice with forebrain CRHR1 deficiency exhibited normal dendritic morphology of CA3 neurons and mild impairments in spatial memory. Additionally, we showed that the expression of nectin-3 in the CA3 area was regulated by chronic stress in a CRHR1-dependent fashion and associated with spatial memory and dendritic complexity. Moreover, forebrain CRHR1 deficiency prevented the down-regulation of hippocampal glucocorticoid receptor expression by chronic stress but induced increased body weight gain during persistent stress exposure. These findings underscore the important role of forebrain CRH-CRHR1 signaling in modulating chronic stress-induced cognitive, structural and molecular adaptations, with implications for stress-related psychiatric disorders. PMID:21296667
Sakharkar, Amul J; Singru, Praful S; Sarkar, Koustav; Subhedar, Nishikant K
2005-08-22
We studied the organization of the neuropeptide Y (NPY)-immunoreactive system in the forebrain of adult male cichlid fish Oreochromis mossambicus and its response to castration and testosterone replacement by using morphometric methods. Immunoreactivity for NPY was widely distributed in the forebrain, and the pattern generally resembled that in other teleosts. Whereas immunoreactivity was conspicuous in the ganglia of nervus terminalis (NT; or nucleus olfactoretinalis), a weak reaction was detected in some granule cells in the olfactory bulb and in the cells of area ventralis telencephali pars lateralis (Vl). Moderately to intensely immunoreactive cells were distinctly seen in the nucleus entopeduncularis (NE), nucleus preopticus (NPO), nucleus lateralis tuberis (NLT), paraventricular organ (PVO), and midbrain tegmentum (MT). NPY fibers were widely distributed in the forebrain. Castration for 10/15 days resulted in a drastic loss of immunoreactivity in the cells of NE (P<0.001) and a significant decrease (P<0.01) in their cell nuclear size. However, cell nuclei of the NT neurons showed a significant increase in size. A highly significant reduction in the NPY-immunoreactive fiber density (P<0.001) was observed in several areas of the forebrain. Although testosterone replacement reversed these changes, fibers in some areas showed supranormal responses. Immunoreactive cells in Vl, NPO, NLT, PVO, and MT and fiber density in some other areas did not respond to castration. We suggest that the NPY-immunoreactive elements that respond to castration and testosterone replacement may serve as the substrate for processing the positive feedback action of the steroid hormone. (c) 2005 Wiley-Liss, Inc.
Judson, Matthew C; Bergman, Mica Y; Campbell, Daniel B; Eagleson, Kathie L; Levitt, Pat
2009-04-10
The establishment of appropriate neural circuitry depends on the coordination of multiple developmental events across space and time. These events include proliferation, migration, differentiation, and survival-all of which can be mediated by hepatocyte growth factor (HGF) signaling through the Met receptor tyrosine kinase. We previously found a functional promoter variant of the MET gene to be associated with autism spectrum disorder, suggesting that forebrain circuits governing social and emotional function may be especially vulnerable to developmental disruptions in HGF/Met signaling. However, little is known about the spatiotemporal distribution of Met expression in the forebrain during the development of such circuits. To advance our understanding of the neurodevelopmental influences of Met activation, we employed complementary Western blotting, in situ hybridization, and immunohistochemistry to comprehensively map Met transcript and protein expression throughout perinatal and postnatal development of the mouse forebrain. Our studies reveal complex and dynamic spatiotemporal patterns of expression during this period. Spatially, Met transcript is localized primarily to specific populations of projection neurons within the neocortex and in structures of the limbic system, including the amygdala, hippocampus, and septum. Met protein appears to be principally located in axon tracts. Temporally, peak expression of transcript and protein occurs during the second postnatal week. This period is characterized by extensive neurite outgrowth and synaptogenesis, supporting a role for the receptor in these processes. Collectively, these data suggest that Met signaling may be necessary for the appropriate wiring of forebrain circuits, with particular relevance to the social and emotional dimensions of behavior. (c) 2009 Wiley-Liss, Inc.
Toth, Mate; Gresack, Jodi E; Bangasser, Debra A; Plona, Zach; Valentino, Rita J; Flandreau, Elizabeth I; Mansuy, Isabelle M; Merlo-Pich, Emilio; Geyer, Mark A; Risbrough, Victoria B
2014-05-01
Corticotropin releasing factor (CRF) regulates physiological and behavioral responses to stress. Trauma in early life or adulthood is associated with increased CRF in the cerebrospinal fluid and heightened anxiety. Genetic variance in CRF receptors is linked to altered risk for stress disorders. Thus, both heritable differences and environmentally induced changes in CRF neurotransmission across the lifespan may modulate anxiety traits. To test the hypothesis that CRF hypersignaling is sufficient to modify anxiety-related phenotypes (avoidance, startle, and conditioned fear), we induced transient forebrain-specific overexpression of CRF (CRFOE) in mice (1) during development to model early-life stress, (2) in adulthood to model adult-onset stress, or (3) across the entire postnatal lifespan to model heritable increases in CRF signaling. The consequences of these manipulations on CRF peptide levels and behavioral responses were examined in adulthood. We found that transient CRFOE during development decreased startle habituation and prepulse inhibition, and increased avoidance (particularly in females) recapitulating the behavioral effects of lifetime CRFOE despite lower CRF peptide levels at testing. In contrast, CRFOE limited to adulthood reduced contextual fear learning in females and increased startle reactivity in males but did not change avoidance or startle plasticity. These findings suggest that forebrain CRFOE limited to development is sufficient to induce enduring alterations in startle plasticity and anxiety, while forebrain CRFOE during adulthood results in a different phenotype profile. These findings suggest that startle circuits are particularly sensitive to forebrain CRFOE, and that the impact of CRFOE may be dependent on the time of exposure.
Liu, Ailing; Byrne, Nuala M; Kagawa, Masaharu; Ma, Guansheng; Poh, Bee Koon; Ismail, Mohammad Noor; Kijboonchoo, Kallaya; Nasreddine, Lara; Trinidad, Trinidad Palad; Hills, Andrew P
2011-11-01
Overweight and obesity in Asian children are increasing at an alarming rate; therefore a better understanding of the relationship between BMI and percentage body fat (%BF) in this population is important. A total of 1039 children aged 8-10 years, encompassing a wide BMI range, were recruited from China, Lebanon, Malaysia, The Philippines and Thailand. Body composition was determined using the 2H dilution technique to quantify total body water and subsequently fat mass, fat-free mass and %BF. Ethnic differences in the BMI-%BF relationship were found; for example, %BF in Filipino boys was approximately 2 % lower than in their Thai and Malay counterparts. In contrast, Thai girls had approximately 2.0 % higher %BF values than in their Chinese, Lebanese, Filipino and Malay counterparts at a given BMI. However, the ethnic difference in the BMI-%BF relationship varied by BMI. Compared with Caucasian children of the same age, Asian children had 3-6 units lower BMI at a given %BF. Approximately one-third of the obese Asian children (%BF above 25 % for boys and above 30 % for girls) in the study were not identified using the WHO classification and more than half using the International Obesity Task Force classification. Use of the Chinese classification increased the sensitivity. Results confirmed the necessity to consider ethnic differences in body composition when developing BMI cut-points and other obesity criteria in Asian children.
Ramírez-Vélez, Robinson; Correa-Bautista, Jorge Enrique; González-Ruíz, Katherine; Vivas, Andrés; Triana-Reina, Héctor Reynaldo; Martínez-Torres, Javier; Prieto-Benavides, Daniel Humberto; Carrillo, Hugo Alejandro; Ramos-Sepúlveda, Jeison Alexander; Villa-González, Emilio; García-Hermoso, Antonio
2017-01-01
Recently, a body adiposity index (BAI = (hip circumference)/((height)(1.5))−18) was developed and validated in adult populations. The aim of this study was to evaluate the performance of BAI in estimating percentage body fat (BF%) in a sample of Colombian collegiate young adults. The participants were comprised of 903 volunteers (52% females, mean age = 21.4 years ± 3.3). We used the Lin’s concordance correlation coefficient, linear regression, Bland–Altman’s agreement analysis, concordance correlation coefficient (ρc) and the coefficient of determination (R2) between BAI, and BF%; by bioelectrical impedance analysis (BIA)). The correlation between the two methods of estimating BF% was R2 = 0.384, p < 0.001. A paired-sample t-test showed a difference between the methods (BIA BF% = 16.2 ± 3.1, BAI BF% = 30.0 ± 5.4%; p < 0.001). For BIA, bias value was 6.0 ± 6.2 BF% (95% confidence interval (CI) = −6.0 to 18.2), indicating that the BAI method overestimated BF% relative to the reference method. Lin’s concordance correlation coefficient was poor (ρc = 0.014, 95% CI = −0.124 to 0.135; p = 0.414). In Colombian college students, there was poor agreement between BAI- and BIA-based estimates of BF%, and so BAI is not accurate in people with low or high body fat percentage levels. PMID:28106719
NCAM deficiency in the mouse forebrain impairs innate and learned avoidance behaviours.
Brandewiede, J; Stork, O; Schachner, M
2014-06-01
The neural cell adhesion molecule (NCAM) has been implicated in the development and plasticity of neural circuits and the control of hippocampus- and amygdala-dependent learning and behaviour. Previous studies in constitutive NCAM null mutants identified emotional behaviour deficits related to disturbances of hippocampal and amygdala functions. Here, we studied these behaviours in mice conditionally deficient in NCAM in the postmigratory forebrain neurons. We report deficits in both innate and learned avoidance behaviours, as observed in elevated plus maze and passive avoidance tasks. In contrast, general locomotor activity, trait anxiety or neophobia were unaffected by the mutation. Altered avoidance behaviour of the conditional NCAM mutants was associated with a deficit in serotonergic signalling, as indicated by their reduced responsiveness to (±)-8-hydroxy-2-(dipropylamino)-tetralin-induced hypothermia. Another serotonin-dependent behaviour, namely intermale aggression that is massively increased in constitutively NCAM-deficient mice, was not affected in the forebrain-specific mutants. Our data suggest that genetically or environmentally induced changes of NCAM expression in the late postnatal and mature forebrain determine avoidance behaviour and serotonin (5-HT)1A receptor signalling. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Forebrain neuroanatomy of the neonatal and juvenile dolphin (T. truncatus and S. coeruloalba)
Parolisi, Roberta; Peruffo, Antonella; Messina, Silvia; Panin, Mattia; Montelli, Stefano; Giurisato, Maristella; Cozzi, Bruno; Bonfanti, Luca
2015-01-01
Knowledge of dolphin functional neuroanatomy mostly derives from post-mortem studies and non-invasive approaches (i.e., magnetic resonance imaging), due to limitations in experimentation on cetaceans. As a consequence the availability of well-preserved tissues for histology is scarce, and detailed histological analyses are referred mainly to adults. Here we studied the neonatal/juvenile brain in two species of dolphins, the bottlenose dolphin (Tursiops truncatus) and the striped dolphin (Stenella coeruleoalba), with special reference to forebrain regions. We analyzed cell density in subcortical nuclei, white/gray matter ratio, and myelination in selected regions at different anterior–posterior levels of the whole dolphin brain at different ages, to better define forebrain neuroanatomy and the developmental stage of the dolphin brain around birth. The analyses were extended to the periventricular germinal layer and the cerebellum, whose delayed genesis of the granule cell layer is a hallmark of postnatal development in the mammalian nervous system. Our results establish an atlas of the young dolphin forebrain and, on the basis of occurrence/absence of delayed neurogenic layers, confirm the stage of advanced brain maturation in these animals with respect to most terrestrial mammals. PMID:26594155
2018-01-01
Objective To report the prevalence and incidence of low-risk human papillomavirus infection (LR-HPV) and anogenital warts (AGW) among women living with HIV (WLHIV) in Burkina Faso (BF) and South Africa (SA), and to explore HIV-related factors associated with these outcomes. Methods We enrolled 1238 WLHIV (BF = 615; SA = 623) aged 25–50 years and followed them at three time points (6, 12 and 16 months) after enrolment. Presence of AGW was assessed during gynaecological examination. Cervico-vaginal swabs for enrolment and month 16 follow-up visits were tested for HPV infection by Inno-LiPA® genotyping. Logistic regression was used to assess risk factors for prevalent infection or AGW. Cox regression was used to assess risk factors for incident AGW. Results Women in SA were more likely than those in BF to have prevalent LR-HPV infection (BF: 27.1% vs. SA: 40.9%; p<0.001) and incident LR-HPV infection (BF: 25.8% vs. SA: 31.6%, p = 0.05). Prevalence of persistent LR-HPV was similar in the two countries (BF: 33.3% vs. SA: 30.4%; p = 0.54), as were prevalence and incidence of AGW (Prevalence: BF: 7.5% vs. SA: 5.7%; p = 0.21; Incidence: BF: 2.47 vs. SA: 2.33 per 100 person-years; p = 0.41). HPV6 was associated with incident AGW (BF: adjusted Hazard Ratio (aHR) = 4.88; 95%CI: 1.36–17.45; SA: aHR = 5.02; 95%CI: 1.40–17.99). Prevalent LR-HPV (BF: adjusted Odds Ratio [aOR = 1.86]; 95%CI: 1.01–3.41; SA: aOR = 1.75; 95%CI: 0.88–3.48); persistent LR-HPV (BF: aOR = 1.92; 95%CI: 0.44–8.44; SA: aOR = 2.81; 95%CI: 1.07–7.41) and prevalent AGW (BF: aOR = 1.53; 95%CI: 0.61–3.87; SA: aOR = 4.11; 95%CI: 1.20–14.10) were each associated with low CD4+ counts (i.e. <200 vs. >500 cells/μL). Duration of ART and HIV plasma viral load were not associated with any LR-HPV infection or AGW outcomes. Conclusion LR-HPV infection and AGW are common in WLHIV in sub-Saharan Africa. Type-specific HPV vaccines and effective ART with immunological reconstitution could reduce the burden of AGW in this population. PMID:29715305
Cao, Hong; Saraf, Amit; Zweifel, Larry S.
2015-01-01
The type 1 adenylyl cyclase (AC1) is an activity-dependent, calcium-stimulated adenylyl cyclase expressed in the nervous system that is implicated in memory formation. We examined the locomotor activity, and impulsive and social behaviors of AC1+ mice, a transgenic mouse strain overexpressing AC1 in the forebrain. Here we report that AC1+ mice exhibit hyperactive behaviors and demonstrate increased impulsivity and reduced sociability. In contrast, AC1 and AC8 double knock-out mice are hypoactive, and exhibit increased sociability and reduced impulsivity. Interestingly, the hyperactivity of AC1+ mice can be corrected by valproate, a mood-stabilizing drug. These data indicate that increased expression of AC1 in the forebrain leads to deficits in behavioral inhibition. PMID:25568126
Temporal variations in early developmental decisions: an engine of forebrain evolution.
Bielen, H; Pal, S; Tole, S; Houart, C
2017-02-01
Tight control of developmental timing is pivotal to many major processes in developmental biology, such as patterning, fate specification, cell cycle dynamics, cell migration and connectivity. Temporal change in these ontogenetic sequences is known as heterochrony, a major force in the evolution of body plans and organogenesis. In the last 5 years, studies in fish and rodents indicate that heterochrony in signaling during early development generates diversity in forebrain size and complexity. Here, we summarize these findings and propose that, additionally to spatio-temporal tuning of neurogenesis, temporal and quantitative modulation of signaling events drive pivotal changes in shape, size and complexity of the forebrain across evolution, participating to the generation of diversity in animal behavior and emergence of cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Generalized equations for estimating DXA percent fat of diverse young women and men: The Tiger Study
USDA-ARS?s Scientific Manuscript database
Popular generalized equations for estimating percent body fat (BF%) developed with cross-sectional data are biased when applied to racially/ethnically diverse populations. We developed accurate anthropometric models to estimate dual-energy x-ray absorptiometry BF% (DXA-BF%) that can be generalized t...
Blast furnace residues for arsenic removal from mining-contaminated groundwater.
Carrillo-Pedroza, Fco Raúl; Soria-Aguilar, Ma de Jesús; Martínez-Luevanos, Antonia; Narvaez-García, Víctor
2014-01-01
In this work, blast furnace (BF) residues were well characterized and then evaluated as an adsorbent material for arsenic removal from a mining-contaminated groundwater. The adsorption process was analysed using the theories of Freundlich and Langmuir. BF residues were found to be an effective sorbent for As (V) ions. The modelling of adsorption isotherms by empirical models shows that arsenate adsorption is fitted by the Langmuir model, suggesting a monolayer adsorption of arsenic onto adsorbents. Arsenate adsorption onto BF residue is explained by the charge density surface affinity and by the formation of Fe (II) and Fe (III) corrosion products onto BF residue particles. The results indicate that BF residues represent an attractive low-cost absorbent option for the removal of arsenic in wastewater treatment.
de Oliveira, Lais Moraes; Rodrigues, Aline Gabriela; da Silva, Elaine Fernanda; Cerqueira, Letícia Bonancio; Castro, Carlos Henrique; Pedrino, Gustavo Rodrigues; de Carvalho, Maria Helena Catelli; Pontarolo, Roberto; Costa, Elson Alves; Campos, Francinete Ramos; Filgueira, Fernando Paranaiba; Ghedini, Paulo César
2012-01-01
Caryocar brasiliense Camb. “pequi” is a native plant from the Cerrado region of Brazil that contains bioactive components reported to be antioxidant agents. Previous work has demonstrated that dietary supplementation with pequi decreased the arterial pressure of volunteer athletes. We found that the crude hydroalcoholic extract (CHE) of C. brasiliense leaves relaxed, in a concentration-dependent manner, rat aortic rings precontracted with phenylephrine, and that the butanolic fraction (BF) produced an effect similar to that of the CHE. Aortic relaxation induced by BF was abolished by endothelium removal, by incubation of the nitric oxide synthase inhibitor L-NAME, or the soluble guanylatecyclase inhibitor ODQ. However, incubation with atropine and pyrilamine had no effect on the BF-induced vasorelaxation. Moreover, this effect was not inhibited by indomethacin and tetraethylammonium. The concentration-response curve to calcium in denuded-endothelium rings was not modified after incubation with BF, and the vasorelaxation by BF in endothelium-intact rings precontracted with KCl was abolished after incubation with L-NAME. In addition, administration of BF in anesthetized rats resulted in a reversible hypotension. The results reveal that C. brasiliense possesses both in vivo and in vitro activities and that the vascular effect of BF involves stimulation of the nitric oxide/cyclic GMP pathway. PMID:22927883
NASA Astrophysics Data System (ADS)
Matéo, Tony; Mofid, Yassine; Grégoire, Jean-Marc; Ossant, Frédéric
In ophtalmic ultrasonography, axial B-scans are seriously deteriorated owing to the presence of the crystalline lens. This strongly aberrating medium affects both spatial and contrast resolution and causes important distortions. To deal with this issue, an adapted beamforming (BF) has been developed and experimented with a 20 MHz linear array working with a custom US research scanner. The adapted BF computes focusing delays that compensate for crystalline phase aberration, including refraction effects. This BF was tested in vitro by imaging a wire phantom through an eye phantom consisting of a synthetic gelatin lens, shaped according to the unaccommodated state of an adult human crystalline lens, anatomically set up in an appropriate liquid (turpentine) to approach the in vivo velocity ratio. Both image quality and fidelity from the adapted BF were assessed and compared with conventional delay-and-sum BF over the aberrating medium. Results showed 2-fold improvement of the lateral resolution, greater sensitivity and 90% reduction of the spatial error (from 758 μm to 76 μm) with adapted BF compared to conventional BF. Finally, promising first ex vivo axial B-scans of a human eye are presented.
Fresnedo-Ramírez, Jonathan; Chan, Helen M.; Parfitt, Dan E.; Crisosto, Carlos H.; Gradziel, Thomas M.
2017-01-01
Noninfectious bud-failure (BF) remains a major threat to almond production in California, particularly with the recent rapid expansion of acreage and as more intensive cultural practices and modern cultivars are adopted. BF has been shown to be inherited in both vegetative and sexual progeny, with exhibition related to the age and propagation history of scion clonal sources. These characteristics suggest an epigenetic influence, such as the loss of juvenility mediated by DNA-(de)methylation. Various degrees of BF have been reported among cultivars as well as within sources of clonal propagation of the same cultivar. Genome-wide methylation profiles for different clones within almond genotypes were developed to examine their association with BF levels and association with the chronological time from initial propagation. The degree of BF exhibition was found to be associated with DNA-(de)methylation and clonal age, which suggests that epigenetic changes associated with ageing may be involved in the differential exhibition of BF within and among almond clones. Research is needed to investigate the potential of DNA-(de)methylation status as a predictor for BF as well as for effective strategies to improve clonal selection against age related deterioration. This is the first report of an epigenetic-related disorder threatening a major tree crop. PMID:28202904
Fresnedo-Ramírez, Jonathan; Chan, Helen M; Parfitt, Dan E; Crisosto, Carlos H; Gradziel, Thomas M
2017-02-16
Noninfectious bud-failure (BF) remains a major threat to almond production in California, particularly with the recent rapid expansion of acreage and as more intensive cultural practices and modern cultivars are adopted. BF has been shown to be inherited in both vegetative and sexual progeny, with exhibition related to the age and propagation history of scion clonal sources. These characteristics suggest an epigenetic influence, such as the loss of juvenility mediated by DNA-(de)methylation. Various degrees of BF have been reported among cultivars as well as within sources of clonal propagation of the same cultivar. Genome-wide methylation profiles for different clones within almond genotypes were developed to examine their association with BF levels and association with the chronological time from initial propagation. The degree of BF exhibition was found to be associated with DNA-(de)methylation and clonal age, which suggests that epigenetic changes associated with ageing may be involved in the differential exhibition of BF within and among almond clones. Research is needed to investigate the potential of DNA-(de)methylation status as a predictor for BF as well as for effective strategies to improve clonal selection against age related deterioration. This is the first report of an epigenetic-related disorder threatening a major tree crop.
NASA Astrophysics Data System (ADS)
Soeda, Kazunari; Yamagata, Masaki; Ishikawa, Masashi
2015-04-01
An alginate-based gel electrolyte with an ionic liquid (Alg/IL) is investigated for electric double-layer capacitors (EDLCs) by using physicochemical and electrochemical measurements. The Alg/EMImBF4 (EMImBF4 = 1-ethyl-3-methylimidazolium tetrafluoroborate) gel electrolyte is thermally stable up to 280 °C, where EMImBF4 decomposes. Furthermore, the EDLC with the gel electrolyte can be operated even at high temperature. The cell containing Alg/EMImBF4 is also electrochemically stable even under high voltage (∼3.5 V) operation. Thus, the alginate is a suitable host polymer for the gel electrolyte for EDLCs. According to the result of charge-discharge characteristics, the voltage drop in the charge-discharge curve for the cell with Alg/EMImBF4 gel electrolyte is considerably smaller than that with liquid-phase EMImBF4 electrolyte. To clarify the effect of Alg in contact with the activated carbon electrode, we also prepared an Alg-containing ACFC electrode (Alg + ACFC), and evaluated its EDLC characteristics in liquid EMImBF4. The results prove that the presence of Alg close to the active materials significantly reduces the internal resistance of the EDLC cell, which may be attributed to the high affinity of Alg to activated carbon.
Simultaneous biodegradation of bifenthrin and chlorpyrifos by Pseudomonas sp. CB2.
Zhang, Qun; Li, Shuhuai; Ma, Chen; Wu, Nancun; Li, Chunli; Yang, Xinfeng
2018-05-04
The degradation of bifenthrin (BF) and chlorpyrifos (CP), either together or individually, by a bacterial strain (CB2) isolated from activated sludge was investigated. Strain CB2 was identified as belonging to genus Pseudomonas based on the morphological, physiological, and biochemical characteristics and a homological analysis of the 16S rDNA sequence. Strain CB2 has the potential to degrade BF and CP, either individually or in a mixture. The optimum conditions for mixture degradation were as follows: OD 600nm = 0.5; incubation temperature = 30°C; pH = 7.0; BF-CP mixture (10 mg L -1 of each). Under these optimal conditions, the degradation rate constants (and half-lives) were 0.4308 d -1 (1.61 d) and 0.3377 d -1 (2.05 d) for individual BF and CP samples, respectively, and 0.3463 d -1 (2.00 d) and 0.2931 d -1 (2.36 d) for the BF-CP mixture. Major metabolites of BF and CP were 2-methyl-3-biphenylyl methanol and 3,5,6-trichloro-2-pyridinol, respectively. No metabolite bioaccumulation was observed. The ability of CB2 to efficiently degrade BF and CP, particularly in a mixture, may be useful in bioremediation efforts.
Insertion of rare gas atoms into BF3 and AlF3 molecules: An ab initio investigation
NASA Astrophysics Data System (ADS)
Jayasekharan, T.; Ghanty, T. K.
2006-12-01
The structure, stability, charge redistribution, and harmonic vibrational frequencies of rare gas inserted group III-B fluorides with the general formula F -Rg-MF2 (where M =B and Al; Rg =Ar, Kr, and Xe) have been investigated using ab initio quantum chemical methods. The Rg atom is inserted in one of the M -F bond of MF3 molecules, and the geometries are optimized for ground as well as transition states using the MP2 method. It has been found that Rg inserted F -Rg-M portion is linear in both F -Rg-BF2 and F -Rg-AlF2 species. The binding energies corresponding to the lowest energy fragmentation products MF3+Rg (two-body dissociation) have been computed to be -670.4, -598.8, -530.7, -617.0, -562.1, and -494.0kJ /mol for F -Ar-BF2, F -Kr-BF2, F -Xe-BF2, F -Ar-AlF2, F -Kr-AlF2, and F -Xe-AlF2 species, respectively. The dissociation energies corresponding to MF2+Rg +F fragments (three-body dissociation) are found to be positive with respect to F -Rg-MF2 species, and the computed values are 56.3, 127.8, and 196.0kJ/mol for F -Ar-BF2, F -Kr-BF2, and F -Xe-BF2 species, respectively. The corresponding values for F -Ar-AlF2, F -Kr-AlF2, and F -Xe-AlF2 species are also found to be positive. The decomposition of F -Rg-MF2 species into the MF3+Rg (two-body dissociation) channel typically proceeds via a transition state involving F -Rg-M out-of-plane bending mode. The transition state barrier heights are 35.5, 62.7, 89.8, 22.0, 45.6, and 75.3kJ/mol for F -Ar-BF2, F -Kr-BF2, F -Xe-BF2, F -Ar-AlF2, F -Kr-AlF2, and F -Xe-AlF2 species, respectively. The calculated geometrical parameters and the energy values suggest that these species are metastable and may be prepared and characterized using low temperature matrix isolation techniques, and are possibly the next new candidates for gas phase or matrix experiments.
Ochiai, Hirotaka; Shirasawa, Takako; Nishimura, Rimei; Morimoto, Aya; Shimada, Naoki; Ohtsu, Tadahiro; Kujirai, Emiko; Hoshino, Hiromi; Tajima, Naoko; Kokaze, Akatsuki
2010-08-18
Although the correlation coefficient between body mass index (BMI) and percent body fat (%BF) or waist circumference (WC) has been reported, studies conducted among population-based schoolchildren to date have been limited in Japan, where %BF and WC are not usually measured in annual health examinations at elementary schools or junior high schools. The aim of the present study was to investigate the relationship of BMI to %BF and WC and to examine the influence of gender and obesity on these relationships among Japanese schoolchildren. Subjects included 3,750 schoolchildren from the fourth and seventh grade in Ina-town, Saitama Prefecture, Japan between 2004 and 2008. Information about subject's age, sex, height, weight, %BF, and WC was collected from annual physical examinations. %BF was measured with a bipedal biometrical impedance analysis device. Obesity was defined by the following two criteria: the obese definition of the Centers for Disease Control and Prevention, and the definition of obesity for Japanese children. Pearson's correlation coefficients between BMI and %BF or WC were calculated separately for sex. Among fourth graders, the correlation coefficients between BMI and %BF were 0.74 for boys and 0.97 for girls, whereas those between BMI and WC were 0.94 for boys and 0.90 for girls. Similar results were observed in the analysis of seventh graders. The correlation coefficient between BMI and %BF varied by physique (obese or non-obese), with weaker correlations among the obese regardless of the definition of obesity; most correlation coefficients among obese boys were less than 0.5, whereas most correlations among obese girls were more than 0.7. On the other hand, the correlation coefficients between BMI and WC were more than 0.8 among boys and almost all coefficients were more than 0.7 among girls, regardless of physique. BMI was positively correlated with %BF and WC among Japanese schoolchildren. The correlations could be influenced by obesity as well as by gender. Accordingly, it is essential to consider gender and obesity when using BMI as a surrogate for %BF and WC for epidemiological use.
Breastfeeding as the sole source of milk for 6 months and adolescent bone mineral density.
Blanco, E; Burrows, R; Reyes, M; Lozoff, B; Gahagan, S; Albala, C
2017-10-01
Little is known regarding the relationship between early life factors and bone mineral density (BMD). We found a positive association between breastfeeding for at least 6 months, without formula supplementation, and whole body adolescent BMD z-score. The aim of the study is to assess the role of breastfeeding BF on adolescent bone mineral density (BMD) in a cohort prospectively followed since infancy. We studied 679 participants from an infancy iron deficiency anemia preventive trial in Santiago, Chile, followed to adolescence. Breast and bottle feeding were ascertained weekly from 4 to 12 months. At 16 years, whole body BMD was assessed by DEXA. Using linear regression, we evaluated associations between BF duration and BF as the sole source of milk and adolescent BMD z-score, adjusting for possible infancy, adolescent, and background confounders. Mean birth weight and length were 3.5 (0.3) kg and 50.7 (1.6) cm. For at least 6 months, BF was the sole source of milk for 26.3% and with supplementation for 36.7%. For 37%, BF was provided for less than 6 months. Mean 16-year BMD z-score was 0.25 (1.0). Covariates included male sex, birth length, and gestational age. BF as the sole source of milk ≥6 months, compared to BF < 6 months, was associated with higher adolescent BMD z-score adjusting for covariates (β = 0.29, p < 0.05). Mixed BF was not significantly related to adolescent BMD z-score (β = 0.06, p = 0.47). For every 30 days of BF as the sole source of milk, adolescent BMD z-score increased by 0.03 (p = 0.01). BF without formula supplementation for at least 6 months was associated with higher adolescent BMD z-score and a suggestive trend in the same direction for BMD suggests that exclusivity and duration of BF may play a role in adolescent bone health.
Zhang, Lingling; Fu, Jingjing; Sheng, Kangliang; Li, Ying; Song, Shanshan; Li, Peipei; Song, Shasha; Wang, Qingtong; Chen, Jingyu; Yu, Jianhua; Wei, Wei
2015-03-01
Tolerogenic dendritic cells (DCs) are well-known to show an immunosuppressive function. In this study we determine the therapeutic effects and potential mechanisms of transferred bone marrow (BM) CD11b(+)F4/80(+) DCs on collagen-induced arthritis (CIA) in mice. Murine BM CD11b(+)F4/80(+) DCs were generated under the stimulation of GM-CSF and IL-4, and the function of BM CD11b(+) F4/80(+) DCs was identified by measuring the levels of IL-10, TGF-beta and indoleamine 2,3-dioxygenase (IDO). BM CD11b(+)F4/80(+) DCs were transferred to CIA mice by intravenous injections. The histopathology of joint and spleen were evaluated. T lymphocyte proliferation, Treg and Th17 subsets were analyzed. The expressions of Foxp3, Helios and RORγt in T lymphocytes co-cultured with BM CD11b(+)F4/80(+) DCs were measured in vitro. We found that BM CD11b(+)F4/80(+) DCs induced by GM-CSF and IL-4 could express high levels of IL-10, TGF-beta and IDO. BM CD11b(+)F4/80(+) DCs significantly reduced the pathologic scores in joints and spleens, which correlated significantly with the reduced T lymphocyte proliferation and Th17 cell number, and with the increased Tregs number. In vitro, OVA-pulsed BM CD11b(+)F4/80(+) DCs promoted Treg cell expansion, enhanced IL-10 and CTLA-4 protein expression, augmented Foxp3 and Helios mRNA expression, and inhibited RORγt and IL-17 mRNA expression. Taken together, BM CD11b(+)F4/80(+) DCs are able to ameliorate the development and severity of CIA, at least partly by inducing Foxp3(+) Treg cell expansion and suppressing Th17 function. The BM CD11b(+)F4/80(+) DCs might have a promising immunotherapeutic potential for autoimmune arthritis. Copyright © 2015 Elsevier B.V. All rights reserved.
Electromyogram biofeedback training for daytime clenching and its effect on sleep bruxism.
Sato, M; Iizuka, T; Watanabe, A; Iwase, N; Otsuka, H; Terada, N; Fujisawa, M
2015-02-01
Bruxism contributes to the development of temporomandibular disorders as well as causes dental problems. Although it is an important issue in clinical dentistry, no treatment approaches have been proven effective. This study aimed to use electromyogram (EMG) biofeedback (BF) training to improve awake bruxism (AB) and examine its effect on sleep bruxism (SB). Twelve male participants (mean age, 26·8 ± 2·5 years) with subjective symptoms of AB or a diagnosis of SB were randomly divided into BF (n = 7) and control (CO, n = 5) groups to undergo 5-h daytime and night-time EMG measurements for three consecutive weeks. EMG electrodes were placed over the temporalis muscle on the habitual masticatory side. Those in the BF group underwent BF training to remind them of the occurrence of undesirable clenching activity when excessive EMG activity of certain burst duration was generated in week 2. Then, EMGs were recorded at week 3 as the post-BF test. Those in the CO group underwent EMG measurement without any EMG BF training throughout the study period. Although the number of tonic EMG events did not show statistically significant differences among weeks 1-3 in the CO group, events in weeks 2 and 3 decreased significantly compared with those in week 1, both daytime and night-time, in the BF group (P < 0·05, Scheffé's test). This study results suggest that EMG BF to improve AB tonic EMG events can also provide an effective approach to regulate SB tonic EMG events. © 2014 John Wiley & Sons Ltd.
Comelles, Francesc; Ribosa, Isabel; Gonzalez, Juan José; Garcia, M Teresa
2017-03-15
Mixtures of the cationic surfactant hexadecyltrimethylammonium bromide (CTA-Br) and the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (bmim-BF 4 ) in aqueous solutions are expected to behave as typical binary cationic surfactant system taking into account the surface activity displayed by the ionic liquid, instead of considering the IL as a water cosolvent. Surface tension and conductivity measurements have been conducted as a function of the total concentration of the mixtures at different surfactant mole fraction (α CTA-Br ) to investigate the surface active properties. Turbidity immediately appearing when the compounds are mixed in water suggests the spontaneous formation of the low soluble compound hexadecyltrimethylammonium tetrafluoroborate (CTA-BF 4 ), together with the salt formed by the respective counterions bmim + and Br - in solution. For α CTA-Br ≠0.5, furthermore of the mentioned compounds, the spare bmim-BF 4 (for α CTA-Br <0.5) or CTA-Br (for α CTA-Br >0.5), are also present in the aqueous solution. Systems containing excess of bmim-BF 4 show a low critical aggregate concentration (cac), but an unexpected high surface tension at cac (γ cac ≈53-56mN/m), as pure CTA-BF 4 . For systems containing excess of CTA-Br, cac increases but γ cac decreases up to 36mN/m. Mixtures of pure CTA-BF 4 and bmim-BF 4 or CTA-Br behave as typical binary surfactant systems. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Azoogh, Liela; Khalili moghadam, Bijan; Jafari, Siroos
2018-06-01
In the past half-century, petroleum mulching-biological fixation (PM-BF) practices have been employed to stabilize sand dunes in Iran. However, the effects of PM-BF practices on the attributes of sand dunes and the dispersion of heavy metals of mulch have been poorly understood. To this end, three regions treated with PM-BF for 5, 20, and 40 years and a control region with no PM-BF were studied. Samples of soil properties were taken at the depths of 0-10 cm and 10-50 cm, with three replications, in Khuzestan Province. The results showed that PM-BF practices promoted the restoration of vegetation cover in the sand dunes. In addition, these practices increased the deposition of dust particles, gradually increasing the magnitudes of palygorskite and smectite clays over time. The interactions between dust deposition and PM-BF practices significantly altered the chemical and physical properties of the dunes. PM-BF practices increased soil organic matter (184-287%), cation exchangeable capacity (142-209%), electrical conductivity (144-493%), clay content (134-196%), and penetration resistance (107-170%) compared to the region with no PM-BF practices. Furthermore, petroleum mulching significantly increased the amount of Ni (1.19%), Cd (1.55%), Pb (1.08%), Cu (1.34%), Zn (1.38%), Mn (1.66%), and Fe (1.15%). However, in the long term, these elements will probably leach linearly as a consequence of an increase in organic matter and soil salinity in the light texture of sand dunes.
Unbound bilirubin measurements by a novel probe in preterm infants.
Hegyi, Thomas; Kleinfeld, Alan; Huber, Andrew; Weinberger, Barry; Memon, Naureen; Shih, Weichung; Carayannopoulos, Mary; Oh, William
2018-03-12
Hyperbilirubinemia occurs in over 80% of newborns and severe bilirubin toxicity can lead to neurological dysfunction and death, especially in preterm infants. Currently, the risk of bilirubin toxicity is assessed by measuring the levels of total serum bilirubin (TSB), which are used to direct treatments including immunoglobulin administration, phototherapy, and exchange transfusion. However, free, unbound bilirubin levels (Bf) predict the risk of bilirubin neurotoxicity more accurately than TSB. To examine Bf levels in preterm infants and determine the frequency with which they exceed reported neurotoxic thresholds. One hundred thirty preterm infants (BW 500-2000 g; GA 23-34 weeks) were enrolled and Bf levels measured during the first week of life by the fluorescent Bf sensor BL22P1B11-Rh. TSB and plasma albumin were measured by standard techniques. Bilirubin-albumin dissociation constants (K d ) were calculated based on Bf and plasma albumin. Five hundred eighty samples were measured during the first week of life, with an overall mean Bf of 13.6 ± 9.0 nM. A substantial number of measurements exceeded potential toxic thresholds levels as reported in the literature. The correlation between Bf and TSB was statistically significant (r 2 0.17), but this weak relationship was lost at high Bf levels. Infants <28-week gestations had more hearing screening failures than infants ≥28-week gestation. Unbound (free) bilirubin values are extremely variable during the first week of life in preterm infants. A significant proportion of these values exceeded reported neurotoxic thresholds.
Coherent Raman Spectra of the nu(1) Mode of 10BF3 and 11BF3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, Robynne; Masiello, Tony; Weber, Alfons
2006-05-01
High resolution (0.001cm-1) coherent anti-Stokes Raman spectroscopy (CARS) was used to directly examine the v1 symmetric stretching mode of the planar symmetric D3h molecules 10BF3 and 11BF3. Simulations of the spectra were done using v1 rovibrational parameters deduced from published infrared hot-band and difference-band studies and the close similarity to the observed CARS spectra confirms the validity of the infrared constants. No significant perturbations by Fermi resonance or Coriolis interactions with nearby states are observed, in marked contrast to the case of sulfur trioxide, a similar D3h molecule recently studied. In the harmonic approximation, the 10BF3 and 11BF3 v1 Q-more » branches would be identical since the isotopic substitution is at the center of mass but, interestingly, the v1 stretching frequency for 11BF3 is found to be 0.198 cm-1 higher than for the lighter 10BF3 isotopomer. This counterintuitive result is reproduced almost exactly (0.200 cm -1) by ab initio calculations (B3LYP/cc-pVTZ) that included evaluation of cubic and quartic forced constants and xij anharmonicity constants. The ab initio computations also predict to within 1% the ?B, ?C changes in the rotational constants in going from the ground state to the v1=1 vibrational level. The results illustrate nicely the complementary interplay of modern infrared, Raman, and ab initio methods in obtaining and analyzing rovibrational spectra.« less
Agonist and antagonist muscle activation in elite athletes: influence of age.
Quinzi, Federico; Camomilla, Valentina; Felici, Francesco; Di Mario, Alberto; Sbriccoli, Paola
2015-01-01
Age-related neuromuscular control adaptations have been investigated mainly in untrained populations, where higher antagonist activation in adults was observed with respect to children. In elite athletes age-related differences in neuromuscular control have scarcely been investigated. Therefore, this study aims at investigating differences in co-activation about the knee joint in two groups of karate athletes belonging to the Junior (JK) and Senior (SK) age categories, performing the roundhouse kick (RK). Six SK and six JK performed the RK impacting on a punching bag. Each participant performed three attempts during which kicking limb kinematics and sEMG from the vastus lateralis (VL) and from the biceps femoris (BF) were recorded. Co-activation index during knee flexion and extension (CIF; CIE) and agonist and antagonist activation areas of VL and BF (I AGO-VL; I AGO-BF; I ANT-VL; I ANT-BF) were computed. Hip and knee range of motion, peak angular velocity and minima and maxima of lower limb angular momentum were computed. During knee extension, the SK demonstrated higher CIE, higher IANT-BF and higher total angular momentum with respect to the JK. Significant relationships were observed between I ANT-BF and total angular momentum maxima, and between I ANT-BF and age. IANT-BF is partially related to the age of the group and to joint protection upon impact. Moreover, given the very brief duration of the task, a feed-forward mechanism modulating antagonist activation partly based on the stress imposed on the knee joint could be hypothesized. This mechanism potentially involves skill dependent re-modelling of the peripheral and central nervous system.
Tabe, Yoko; Takemura, Hiroyuki; Kimura, Konobu; Takahashi, Toshihiro; Yang, Haeun; Tsuchiya, Koji; Konishi, Aya; Uchihashi, Kinya; Horii, Takashi; Ohsaka, Akimichi
2018-01-01
Morphological microscopic examinations of nucleated cells in body fluid (BF) samples are performed to screen malignancy. However, the morphological differentiation is time-consuming and labor-intensive. This study aimed to develop a new flowcytometry-based gating analysis mode “XN-BF gating algorithm” to detect malignant cells using an automated hematology analyzer, Sysmex XN-1000. XN-BF mode was equipped with WDF white blood cell (WBC) differential channel. We added two algorithms to the WDF channel: Rule 1 detects larger and clumped cell signals compared to the leukocytes, targeting the clustered malignant cells; Rule 2 detects middle sized mononuclear cells containing less granules than neutrophils with similar fluorescence signal to monocytes, targeting hematological malignant cells and solid tumor cells. BF samples that meet, at least, one rule were detected as malignant. To evaluate this novel gating algorithm, 92 various BF samples were collected. Manual microscopic differentiation with the May-Grunwald Giemsa stain and WBC count with hemocytometer were also performed. The performance of these three methods were evaluated by comparing with the cytological diagnosis. The XN-BF gating algorithm achieved sensitivity of 63.0% and specificity of 87.8% with 68.0% for positive predictive value and 85.1% for negative predictive value in detecting malignant-cell positive samples. Manual microscopic WBC differentiation and WBC count demonstrated 70.4% and 66.7% of sensitivities, and 96.9% and 92.3% of specificities, respectively. The XN-BF gating algorithm can be a feasible tool in hematology laboratories for prompt screening of malignant cells in various BF samples. PMID:29425230
Ai, Tomohiko; Tabe, Yoko; Takemura, Hiroyuki; Kimura, Konobu; Takahashi, Toshihiro; Yang, Haeun; Tsuchiya, Koji; Konishi, Aya; Uchihashi, Kinya; Horii, Takashi; Ohsaka, Akimichi
2018-01-01
Morphological microscopic examinations of nucleated cells in body fluid (BF) samples are performed to screen malignancy. However, the morphological differentiation is time-consuming and labor-intensive. This study aimed to develop a new flowcytometry-based gating analysis mode "XN-BF gating algorithm" to detect malignant cells using an automated hematology analyzer, Sysmex XN-1000. XN-BF mode was equipped with WDF white blood cell (WBC) differential channel. We added two algorithms to the WDF channel: Rule 1 detects larger and clumped cell signals compared to the leukocytes, targeting the clustered malignant cells; Rule 2 detects middle sized mononuclear cells containing less granules than neutrophils with similar fluorescence signal to monocytes, targeting hematological malignant cells and solid tumor cells. BF samples that meet, at least, one rule were detected as malignant. To evaluate this novel gating algorithm, 92 various BF samples were collected. Manual microscopic differentiation with the May-Grunwald Giemsa stain and WBC count with hemocytometer were also performed. The performance of these three methods were evaluated by comparing with the cytological diagnosis. The XN-BF gating algorithm achieved sensitivity of 63.0% and specificity of 87.8% with 68.0% for positive predictive value and 85.1% for negative predictive value in detecting malignant-cell positive samples. Manual microscopic WBC differentiation and WBC count demonstrated 70.4% and 66.7% of sensitivities, and 96.9% and 92.3% of specificities, respectively. The XN-BF gating algorithm can be a feasible tool in hematology laboratories for prompt screening of malignant cells in various BF samples.
Carr, Russell L.; Graves, Casey A.; Mangum, Lee C.; Nail, Carole A.; Ross, Matthew K.
2014-01-01
The prevailing dogma is that chlorpyrifos (CPF) mediates its toxicity through inhibition of cholinesterase (ChE). However, in recent years, the toxicological effects of developmental CPF exposure have been attributed to an unknown non-cholinergic mechanism of action. We hypothesize that the endocannabinoid system may be an important target because of its vital role in nervous system development. We have previously reported that repeated exposure to CPF results in greater inhibition of fatty acid amide hydrolase (FAAH), the enzyme that metabolizes the endocannabinoid anandamide (AEA), than inhibition of either forebrain ChE or monoacylglycerol lipase (MAGL), the enzyme that metabolizes the endocannabinoid 2-arachidonylglycerol (2-AG). This exposure resulted in the accumulation of 2-AG and AEA in the forebrain of juvenile rats; however, even at the lowest dosage level used (1.0 mg/kg), forebrain ChE inhibition was still present. Thus, it is not clear if FAAH activity would be inhibited at dosage levels that do not inhibit ChE. To determine this, 10 day old rat pups were exposed daily for 7 days to either corn oil or 0.5 mg/kg CPF by oral gavage. At 4 and 12 h post-exposure on the last day of administration, the activities of serum ChE and carboxylesterase (CES) and forebrain ChE, MAGL, and FAAH were determined as well as the forebrain AEA and 2-AG levels. Significant inhibition of serum ChE and CES was present at both 4 and 12 h. There was no significant inhibition of the activities of forebrain ChE or MAGL and no significant change in the amount of 2-AG at either time point. On the other hand, while no statistically significant effects were observed at 4 h, FAAH activity was significantly inhibited at 12 h resulting in a significant accumulation of AEA. Although it is not clear if this level of accumulation impacts brain maturation, this study demonstrates that developmental CPF exposure at a level that does not inhibit brain ChE can alter components of endocannabinoid signaling. PMID:24373905
Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.
Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V; Field, Bianca; Deutch, Ariel Y; Rayport, Stephen
2015-12-09
In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are capable of glutamate cotransmission. With conditional expression of channelrhodopsin in dopamine neurons, we systematically explored dopamine neuron connections in the forebrain and identified regionally specific dopamine neuron excitatory connections. Establishing that only a subset of forebrain regions receive excitatory connections from dopamine neurons will help to determine the function of dopamine neuron glutamate cotransmission, which likely involves transmission of precise temporal signals and enhancement of the dynamic range of dopamine neuron signals. Copyright © 2015 the authors 0270-6474/15/3516259-13$15.00/0.
Jin, Kun; Huang, Xiaoying; Pan, Long; Li, Jing; Appel, Aaron; Wherland, Scot; Pang, Long
2002-12-07
Use of an ionic liquid [bmim][BF4] (bmim = 1-butyl-3-methylimidazolium) as solvent has resulted in the first extended coordination structure, the two-dimensional network [Cu(bpp)]BF4 [bpp = 1,3-bis(4-pyridyl)propane], produced via a solvothermal route.
Struck, Daniel; Roman, François; De Landtsheer, Sébastien; Servais, Jean-Yves; Lambert, Christine; Masquelier, Cécile; Venard, Véronique; Ruelle, Jean; Nijhuis, Monique; Schmit, Jean-Claude; Seguin-Devaux, Carole
2015-05-01
A new recombinant form representing a mosaic of HIV-1 subtype B and F1 and designated as CRF42_BF was identified in Luxembourg. We confirmed the inedited nature of CRF42_BF by near full-length genome characterization and retrieved a possible ancestor originating from Brazil. The demographic history of CRF42_BF in Luxembourg using Bayesian coalescent-based methods was investigated. The exponential phase of the logistic growth happened in a very short time period of approximately 5 months associated with a high mean rate of population growth of 15.02 new infections per year. However, CRF42_BF was not characterized by either a higher ex vivo replication capacity in peripheral blood mononuclear cells (PBMCs) or a higher ex vivo transmission efficiency from monocyte-derived dendritic cells to PBMCs as compared to B and F1 viruses. These data do not support a high pathogenic potential of CFR42_BF but rather an initial bursting spread of the recombinant probably due to a more favorable transmission route.
Clark, Katy M.; Li, Ming; Zhu, Bingquan; Liang, Furong; Shao, Jie; Zhang, Yueyang; Ji, Chai; Zhao, Zhengyan; Kaciroti, Niko; Lozoff, Betsy
2016-01-01
Objective To assess associations between breastfeeding and iron status at 9 months in two samples of Chinese infants. Study design Associations between feeding at 9 months (breastfed [BF] as sole milk source, mixed-fed [MF], or formula-fed [FF]) and iron deficiency anemia (IDA), iron deficiency (ID), and iron sufficiency were determined in infants from Zhejiang and Hebei provinces (ns = 142 and 813). ID was defined as body iron < 0 mg/kg, IDA as ID + hemoglobin < 110 g/L. Multiple logistic regression assessed associations between feeding pattern and iron status. Results Breastfeeding was associated with iron status (P-values < .001). In Zhejiang, 27.5% of BF infants had IDA compared with 0% of FF infants. The odds of ID/IDA were increased in BF and MF infants compared with FF: BF vs. FF odds ratio (OR): 28.8, 95% CI: 3.7–226.4; MF vs. FF OR: 11.0, 95% CI: 1.2–103.2. In Hebei, 44.0% of BF infants had IDA compared with 2.8% of FF infants. With covariable adjustment, odds of IDA were increased in BF and MF groups: BF vs. FF OR: 78.8, 95% CI: 27.2–228.1; MF vs. FF OR: 21.0, 95% CI: 7.3–60.9. Conclusions In both cohorts, the odds of ID/IDA at 9 months were increased in BF and MF infants, and ID/IDA was common. Although the benefits of breastfeeding are indisputable, these findings add to the evidence that breastfeeding in later infancy identifies infants at risk for ID/IDA in many settings. Protocols for detecting and preventing ID/IDA in BF infants are needed. Trial registration ClinicalTrials.gov: NCT00642863 and NCT00613717 PMID:27836288
Measurement of the Color-Suppressed B0->D(*)0 pi0 /omega/eta/eta Prime Branching Fractions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prudent, X
2008-11-05
The authors report results on the branching fraction (BF) measurement of the color-suppressed decays {bar B}{sup 0} {yields} D{sup 0}{pi}{sup 0}, D*{sup 0}{pi}{sup 0}, D{sup 0}{eta}, D*{sup 0}{eta}, D{sup 0}{omega}, D*{sup 0}{omega}, D{sup 0}{eta}{prime}, and D*{sup 0}{eta}{prime}. They measure the branching fractions BF(D{sup 0}{pi}{sup 0}) = (2.78 {+-} 0.08 {+-} 0.20) x 10{sup -4}, BF(D*{sup 0}{pi}{sup 0}) = (1.78 {+-} 0.13 {+-} 0.23) x 10{sup -4}, BF(D{sup 0}{eta}) = (2.41 {+-} 0.09 {+-} 0.17) x 10{sup -4}, BF(D*{sup 0}{eta}) = (2.32 {+-} 0.13 {+-} 0.22) x 10{sup -4}, BF(D{sup 0}{omega}) = (2.77 {+-} 0.13 {+-} 0.22) x 10{sup -4}, BF(D*{supmore » 0}{omega}) = (4.44 {+-} 0.23 {+-} 0.61) x 10{sup -4}, BF(D{sup 0}{eta}{prime}) = (1.38 {+-} 0.12 {+-} 0.22) x 10{sup -4} and BF(D*{sup 0}{eta}{prime}) = (1.29 {+-} 0.23 {+-} 0.23) x 10{sup -4}, where the first uncertainty is statistical and the second is systematic. The result is based on a sample of (454 {+-} 5) x 10{sup 6} B{bar B} pairs collected at the {Upsilon}(4S) resonance from 1999 to 2007, with the BABAR detector at the PEP-II storage rings at the Stanford Linear Accelerator Center. The measurements are compared to theoretical predictions by factorization, SCET and pQCD. The presence of final state interactions predictions by factorization, SCET and pQCD. The presence of final state interactions is confirmed and the measurements seem to be more in favor of SCET compared to pQCD.« less
Zhu, Jiemin; Hong-Gu, He; Zhou, Xiuzhu; Wei, Haixia; Gao, Yaru; Ye, Benlan; Liu, Zuguo; Chan, Sally Wai-Chi
2015-03-01
to test the effectiveness of breast feeding (BF), music therapy (MT), and combined breast feeding and music therapy (BF+MT) on pain relief in healthy-term neonates during heel lance. randomised controlled trial. in the postpartum unit of one university-affiliated hospital in China from August 2013 to February 2014. among 288 healthy-term neonates recruited, 250 completed the trial. All neonates were undergoing heel lancing for metabolic screening, were breast fed, and had not been fed for the previous 30 minutes. all participants were randomly assigned into four groups - BF, MT, BF+MT, and no intervention - with 72 neonates in each group. Neonates in the control group received routine care. Neonates in the other three intervention groups received corresponding interventions five minutes before the heel lancing and throughout the whole procedure. Neonatal Infant Pain Scale (NIPS), latency to first cry, and duration of first crying. mean changes in NIPS scores from baseline over time was dependent on the interventions given. Neonates in the BF and combined BF+MT groups had significantly longer latency to first cry, shorter duration of first crying, and lower pain mean score during and one minute after heel lance, compared to the other two groups. No significant difference in pain response was found between BF groups with or without music therapy. The MT group did not achieve a significantly reduced pain response in all outcome measures. BF could significantly reduce pain response in healthy-term neonates during heel lance. MT did not enhance the effect of pain relief of BF. healthy-term neonates should be breast fed to alleviate pain during heel lance. There is no need for the additional input of classical music on breast feeding in clinic to relieve procedural pain. Nurses should encourage breast feeding to relieve pain during heel lance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Economou, Mary; Kolokotroni, Ourania; Paphiti-Demetriou, Irene; Kouta, Christiana; Lambrinou, Ekaterini; Hadjigeorgiou, Eleni; Hadjiona, Vasiliki; Tryfonos, Froso; Philippou, Elena; Middleton, Nicos
2018-04-01
To assess the prevalence and sociodemographic determinants of breast-feeding (BF) and exclusive breast-feeding (EBF) in Cyprus up to the sixth month. Cross-sectional and longitudinal descriptive study. BF and EBF were estimated based on mothers' self-reported BF status in line with Step 7 of the WHO/UNICEF Baby-Friendly Hospital Initiative questionnaire and based on 24 h recall. Maternity wards in all public hospitals and twenty-nine (of thirty-five) private maternity clinics nationwide. Consecutive sample of 586 mothers recruited within 48 h from birth, followed up by telephone interview at the first, fourth and sixth month. Although 84·3 % of mothers initiated BF before discharge, prevalence of BF at the sixth month was 32·4 %, with the highest reduction observed between the first and fourth months. Prevalence of EBF at 48 h was 18·8 % and fell gradually to 5·0 % at the sixth month. Mothers with higher educational attainment or higher family income were more likely to breast-feed until the sixth month. In terms of EBF, an association was observed only with education, which persisted until the sixth month. Other than social gradient, mode of delivery was the strongest determinant of BF initiation, exclusivity and continuation. Mothers who gave birth vaginally were three to four times more likely to initiate BF (OR=3·1; 95 % CI 1·7, 5·4) and EBF (OR=4·3; 95 % CI 2·7, 6·8). The low prevalence of BF and EBF in Cyprus, together with the fact that caesarean section rates are currently among the highest in Europe, suggest the need for further research to understand this multidimensional phenomenon and for interdisciplinary policy action to protect, promote and support BF.
Maclean, Courtney C; Stringer, Jeffrey S A
2005-04-15
One-third of maternal-to-child HIV transmission occurs during breast-feeding (BF). Several trials are currently evaluating the efficacy of postpartum antiretrovirals to reduce BF transmission. This study used Markov modeling to define the circumstances under which the following interventions would be cost-effective: BF for 6 months with daily infant nevirapine (NVP) prophylaxis; maternal combination antiretroviral therapy (ART) during pregnancy and for 6 months of BF; and maternal combination ART only for women who meet CD4 criteria. Each was compared to: BF for 12 months; BF for 6 months; and formula feeding for 12 months. Strategies were evaluated for a hypothetical cohort of 40,000 pregnant women in sub-Saharan Africa, in the context of available voluntary counseling and testing in antenatal care. Model estimates were derived from the literature and local sources. Sensitivity analyses were performed on uncertain estimates. The perspective used was that of a government health district. Using base case estimates, BF for 6 months was the economically preferred strategy: it cost 806,995 dollars and generated 446,208 quality-adjusted life-years (QALYs). Providing daily infant NVP cost an additional 93,638 dollars and generated 1183 additional QALYs, but its incremental cost-effectiveness ratio (ICER) of 79 dollars/QALY exceeded the standard willingness to pay (64 dollars/QALY) for most resource-poor settings. Maternal combination ART was potentially very effective but too costly for most resource-poor settings (ICER: 87 dollars/QALY). In order for daily infant NVP during BF to be preferred, it must have >/=44% relative efficacy or cost =5.00 dollars/mo. If NVP were donated, it would only have to be minimally effective to be the economically preferred strategy. If ART cost =34.50 dollars/mo, ART to all mothers would become the preferred strategy under our assumption of 82% efficacy. Providing antiretrovirals during BF represents a promising alternative, should their effectiveness, and feasibility be proven.
Mishra, Nibha; Milikovsky, Dan Z.; Hanin, Geula; Zelig, Daniel; Sheintuch, Liron; Berson, Amit; Greenberg, David S.; Friedman, Alon
2017-01-01
Epilepsy is a common neurological disease, manifested in unprovoked recurrent seizures. Epileptogenesis may develop due to genetic or pharmacological origins or following injury, but it remains unclear how the unaffected brain escapes this susceptibility to seizures. Here, we report that dynamic changes in forebrain microRNA (miR)-211 in the mouse brain shift the threshold for spontaneous and pharmacologically induced seizures alongside changes in the cholinergic pathway genes, implicating this miR in the avoidance of seizures. We identified miR-211 as a putative attenuator of cholinergic-mediated seizures by intersecting forebrain miR profiles that were Argonaute precipitated, synaptic vesicle target enriched, or differentially expressed under pilocarpine-induced seizures, and validated TGFBR2 and the nicotinic antiinflammatory acetylcholine receptor nAChRa7 as murine and human miR-211 targets, respectively. To explore the link between miR-211 and epilepsy, we engineered dTg-211 mice with doxycycline-suppressible forebrain overexpression of miR-211. These mice reacted to doxycycline exposure by spontaneous electrocorticography-documented nonconvulsive seizures, accompanied by forebrain accumulation of the convulsive seizures mediating miR-134. RNA sequencing demonstrated in doxycycline-treated dTg-211 cortices overrepresentation of synaptic activity, Ca2+ transmembrane transport, TGFBR2 signaling, and cholinergic synapse pathways. Additionally, a cholinergic dysregulated mouse model overexpressing a miR refractory acetylcholinesterase-R splice variant showed a parallel propensity for convulsions, miR-211 decreases, and miR-134 elevation. Our findings demonstrate that in mice, dynamic miR-211 decreases induce hypersynchronization and nonconvulsive and convulsive seizures, accompanied by expression changes in cholinergic and TGFBR2 pathways as well as in miR-134. Realizing the importance of miR-211 dynamics opens new venues for translational diagnosis of and interference with epilepsy. PMID:28584127