Science.gov

Sample records for basal metazoan nematostella

  1. Phylogenetic context and Basal metazoan model systems.

    PubMed

    Collins, Allen G; Cartwright, Paulyn; McFadden, Catherine S; Schierwater, Bernd

    2005-08-01

    In comparative studies using model organisms, extant taxa are often referred to as basal. The term suggests that such taxa are descendants of lineages that diverged early in the history of some larger taxon. By this usage, the basal metazoans comprise just four phyla (Placozoa, Porifera, Cnidaria, and Ctenophora) and the large clade Bilateria. We advise against this practice because basal refers to a region at the base or root of a phylogenetic tree. Thus, referring to an extant taxon or species as basal, or as more basal than another, can be misleading. While much progress has been made toward understanding some of the phylogenetic relationships within these groups, the relationships among them are still largely not known with certainty. Thus, sound inferences from comparative studies of model organisms demand continued illumination of phylogeny. Hypotheses about the mechanisms underlying metazoan evolution can be drawn from the study of model organisms in Cnidaria, Ctenophora, Placozoa, and Porifera, but it is clear that these model organisms are likely to be derived in many respects. Therefore, testing these hypotheses requires the study of yet additional model organisms. The most effective tests are those that investigate model organisms with phylogenetic positions among two sister groups comprising a larger clade of interest.

  2. Nematostella vectensis achaete-scute homolog NvashA regulates embryonic ectodermal neurogenesis and represents an ancient component of the metazoan neural specification pathway

    PubMed Central

    Layden, Michael J.; Boekhout, Michiel; Martindale, Mark Q.

    2012-01-01

    achaete-scute homologs (ash) regulate neural development in all bilaterian model animals indicating that they represent a component of the ancestral neurogenic pathway. We test this by investigating four ash genes during development of a basal metazoan, the cnidarian sea anemone Nematostella vectensis. Spatiotemporal expression of ash genes in the early embryo and larval stages suggests that they regulate neurogenesis. More specifically, NvashA is co-expressed with neural genes in the embryonic ectoderm. Knockdown of NvashA results in decreased expression of eight neural markers, including the six novel neural targets identified here. Conversely, overexpression of NvashA induces increased expression of all eight genes, but only within their normal axial domains. Overexpression of NvashB-D differentially increases expression of NvashA targets. The expression patterns and differential ability of ash genes to regulate neural gene expression reveals surprising molecular complexity in these ‘simple’ animals. These data suggest that achaete-scute homologs functioned in the ancestral metazoan neurogenic pathway and provide a foundation to investigate further the evolution of neurogenesis and the origin of complex central nervous systems. PMID:22318631

  3. Melatonin Distribution Reveals Clues to Its Biological Significance in Basal Metazoans

    PubMed Central

    Roopin, Modi; Levy, Oren

    2012-01-01

    Although nearly ubiquitous in nature, the precise biological significance of endogenous melatonin is poorly understood in phylogenetically basal taxa. In the present work, we describe insights into the functional role of melatonin at the most “basal” level of metazoan evolution. Hitherto unknown morphological determinants of melatonin distribution were evaluated in Nematostella vectensis by detecting melatonin immunoreactivity and examining the spatial gene expression patterns of putative melatonin biosynthetic and receptor elements that are located at opposing ends of the melatonin signaling pathway. Immuno-melatonin profiling indicated an elaborate interaction with reproductive tissues, reinforcing previous conjectures of a melatonin-responsive component in anthozoan reproduction. In situ hybridization (ISH) to putative melatonin receptor elements highlighted the possibility that the bioregulatory effects of melatonin in anthozoan reproduction may be mediated by interactions with membrane receptors, as in higher vertebrates. Another intriguing finding of the present study pertains to the prevalence of melatonin in centralized nervous structures. This pattern may be of great significance given that it 1) identifies an ancestral association between melatonin and key neuronal components and 2) potentially implies that certain effects of melatonin in basal species may be spread widely by regionalized nerve centers. PMID:23300630

  4. The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution

    PubMed Central

    Matus, David Q.; Magie, Craig; Pang, Kevin; Martindale, Mark Q; Thomsen, Gerald H.

    2008-01-01

    Hedgehog signaling is an important component of cell-cell communication during bilaterian development, and abnormal Hedgehog signaling contributes to disease and birth defects. Hedgehog genes are composed of a ligand (“hedge”) domain and an autocatalytic intein (“hog”) domain. Hedgehog (hh) ligands bind to a conserved set of receptors and activate downstream signal transduction pathways terminating with Gli/Ci transcription factors. We have identified five intein-containing genes in the anthozoan cnidarian Nematostella vectensis, two of which (NvHh1 and NvHh2) contain definitive hedgehog ligand domains, suggesting that to date, cnidarians are the earliest branching metazoan phylum to possess definitive Hh orthologs. Expression analysis of NvHh1 and NvHh2, the receptor NvPatched and a downstream transcription factor NvGli (a Gli3/Ci ortholog) indicate that these genes may have conserved roles in planar and trans-epithelial signaling during gut and germline development, while the three remaining intein-containing genes (NvHint1,2,3) are expressed in a cell-type specific manner in putative neural precursors. Metazoan intein-containing genes that lack a ligand domain have previously only been identified within nematodes. However, phylogenetic analyses suggest that these nematode inteins may be derived from an ancestral nematode true hedgehog gene, and that the non-bilaterian intein-containing genes identified here may represent an ancestral state prior to the domain swapping events that resulted in the formation of true hedgehog genes in the cnidarian-bilaterian ancestor. Genomic surveys of N. vectensis suggest that most of the components of both protostome and deuterostome Hh signaling pathways are present in anthozoans and that some appear to have been lost in ecdysozoan lineages. Cnidarians possess many bilaterian cell-cell signaling pathways (Wnt, TGFß, FGF and Hh) that appear to act in concert to pattern tissues along the oral-aboral axis of the polyp

  5. Characterization of the Cadherin–Catenin Complex of the Sea Anemone Nematostella vectensis and Implications for the Evolution of Metazoan Cell–Cell Adhesion

    PubMed Central

    Clarke, Donald Nathaniel; Miller, Phillip W.; Lowe, Christopher J.; Weis, William I.; Nelson, William James

    2016-01-01

    The cadherin–catenin complex (CCC) mediates cell–cell adhesion in bilaterian animals by linking extracellular cadherin-based adhesions to the actin cytoskeleton. However, it is unknown whether the basic organization of the complex is conserved across all metazoans. We tested whether protein interactions and actin-binding properties of the CCC are conserved in a nonbilaterian animal, the sea anemone Nematostella vectensis. We demonstrated that N. vectensis has a complete repertoire of cadherin–catenin proteins, including two classical cadherins, one α-catenin, and one β-catenin. Using size-exclusion chromatography and multi-angle light scattering, we showed that α-catenin and β-catenin formed a heterodimer that bound N. vectensis Cadherin-1 and -2. Nematostella vectensis α-catenin bound F-actin with equivalent affinity as either a monomer or an α/β-catenin heterodimer, and its affinity for F-actin was, in part, regulated by a novel insert between the N- and C-terminal domains. Nematostella vectensis α-catenin inhibited Arp2/3 complex-mediated nucleation of actin filaments, a regulatory property previously thought to be unique to mammalian αE-catenin. Thus, despite significant differences in sequence, the key interactions of the CCC are conserved between bilaterians and cnidarians, indicating that the core function of the CCC as a link between cell adhesions and the actin cytoskeleton is ancestral in the eumetazoans. PMID:27189570

  6. DNA Methylation in Basal Metazoans: Insights from Ctenophores.

    PubMed

    Dabe, Emily C; Sanford, Rachel S; Kohn, Andrea B; Bobkova, Yelena; Moroz, Leonid L

    2015-12-01

    Epigenetic modifications control gene expression without altering the primary DNA sequence. However, little is known about DNA methylation in invertebrates and its evolution. Here, we characterize two types of genomic DNA methylation in ctenophores, 5-methyl cytosine (5-mC) and the unconventional form of methylation 6-methyl adenine (6-mA). Using both bisulfite sequencing and an ELISA-based colorimetric assay, we experimentally confirmed the presence of 5-mC DNA methylation in ctenophores. In contrast to other invertebrates studied, Mnemiopsis leidyi has lower levels of genome-wide 5-mC methylation, but higher levels of 5-mC methylation in promoters when compared with gene bodies. Phylogenetic analysis showed that ctenophores have distinct forms of DNA methyltransferase 1 (DNMT1); the zf-CXXC domain type, which localized DNMT1 to CpG sites, and is a metazoan specific innovation. We also show that ctenophores encode the full repertoire of putative enzymes for 6-mA DNA methylation, and these genes are expressed in the aboral organ of Mnemiopsis. Using an ELISA-based colorimetric assay, we experimentally confirmed the presence of 6-mA methylation in the genomes of three different species of ctenophores, M. leidyi, Beroe abyssicola, and Pleurobrachia bachei. The functional role of this novel epigenomic mark is currently unknown. In summary, despite their compact genomes, there is a wide variety of epigenomic mechanisms employed by basal metazoans that provide novel insights into the evolutionary origins of biological novelties.

  7. DNA Methylation in Basal Metazoans: Insights from Ctenophores

    PubMed Central

    Dabe, Emily C.; Sanford, Rachel S.; Kohn, Andrea B.; Bobkova, Yelena; Moroz, Leonid L.

    2015-01-01

    Epigenetic modifications control gene expression without altering the primary DNA sequence. However, little is known about DNA methylation in invertebrates and its evolution. Here, we characterize two types of genomic DNA methylation in ctenophores, 5-methyl cytosine (5-mC) and the unconventional form of methylation 6-methyl adenine (6-mA). Using both bisulfite sequencing and an ELISA-based colorimetric assay, we experimentally confirmed the presence of 5-mC DNA methylation in ctenophores. In contrast to other invertebrates studied, Mnemiopsis leidyi has lower levels of genome-wide 5-mC methylation, but higher levels of 5-mC methylation in promoters when compared with gene bodies. Phylogenetic analysis showed that ctenophores have distinct forms of DNA methyltransferase 1 (DNMT1); the zf-CXXC domain type, which localized DNMT1 to CpG sites, and is a metazoan specific innovation. We also show that ctenophores encode the full repertoire of putative enzymes for 6-mA DNA methylation, and these genes are expressed in the aboral organ of Mnemiopsis. Using an ELISA-based colorimetric assay, we experimentally confirmed the presence of 6-mA methylation in the genomes of three different species of ctenophores, M. leidyi, Beroe abyssicola, and Pleurobrachia bachei. The functional role of this novel epigenomic mark is currently unknown. In summary, despite their compact genomes, there is a wide variety of epigenomic mechanisms employed by basal metazoans that provide novel insights into the evolutionary origins of biological novelties. PMID:26173712

  8. The evolutionary origin of the Runx/CBFbeta transcription factors – Studies of the most basal metazoans

    PubMed Central

    2008-01-01

    Background Members of the Runx family of transcriptional regulators, which bind DNA as heterodimers with CBFβ, are known to play critical roles in embryonic development in many triploblastic animals such as mammals and insects. They are known to regulate basic developmental processes such as cell fate determination and cellular potency in multiple stem-cell types, including the sensory nerve cell progenitors of ganglia in mammals. Results In this study, we detect and characterize the hitherto unexplored Runx/CBFβ genes of cnidarians and sponges, two basal animal lineages that are well known for their extensive regenerative capacity. Comparative structural modeling indicates that the Runx-CBFβ-DNA complex from most cnidarians and sponges is highly similar to that found in humans, with changes in the residues involved in Runx-CBFβ dimerization in either of the proteins mirrored by compensatory changes in the binding partner. In situ hybridization studies reveal that Nematostella Runx and CBFβ are expressed predominantly in small isolated foci at the base of the ectoderm of the tentacles in adult animals, possibly representing neurons or their progenitors. Conclusion These results reveal that Runx and CBFβ likely functioned together to regulate transcription in the common ancestor of all metazoans, and the structure of the Runx-CBFβ-DNA complex has remained extremely conserved since the human-sponge divergence. The expression data suggest a hypothesis that these genes may have played a role in nerve cell differentiation or maintenance in the common ancestor of cnidarians and bilaterians. PMID:18681949

  9. Naturally occurring tumours in the basal metazoan Hydra.

    PubMed

    Domazet-Lošo, Tomislav; Klimovich, Alexander; Anokhin, Boris; Anton-Erxleben, Friederike; Hamm, Mailin J; Lange, Christina; Bosch, Thomas C G

    2014-06-24

    The molecular nature of tumours is well studied in vertebrates, although their evolutionary origin remains unknown. In particular, there is no evidence for naturally occurring tumours in pre-bilaterian animals, such as sponges and cnidarians. This is somewhat surprising given that recent computational studies have predicted that most metazoans might be prone to develop tumours. Here we provide first evidence for naturally occurring tumours in two species of Hydra. Histological, cellular and molecular data reveal that these tumours are transplantable and might originate by differentiation arrest of female gametes. Growth of tumour cells is independent from the cellular environment. Tumour-bearing polyps have significantly reduced fitness. In addition, Hydra tumours show a greatly altered transcriptome that mimics expression shifts in vertebrate cancers. Therefore, this study shows that spontaneous tumours have deep evolutionary roots and that early branching animals may be informative in revealing the fundamental mechanisms of tumorigenesis.

  10. Trichoplax adhaerens, an enigmatic basal metazoan with potential.

    PubMed

    Heyland, Andreas; Croll, Roger; Goodall, Sophie; Kranyak, Jeff; Wyeth, Russell

    2014-01-01

    Trichoplax adhaerens is an enigmatic basal animal with an extraordinarily simple morphological organization and surprisingly complex behaviors. Basic morphological, molecular and behavioral work is essential to better understand the unique and curious life style of these organisms. We provide basic instructions on how Trichoplax can be cultured and studied in the laboratory emphasizing behavioral and cellular aspects.

  11. Evolutionary Consequences of DNA Methylation in a Basal Metazoan

    PubMed Central

    Dixon, Groves B.; Bay, Line K.; Matz, Mikhail V.

    2016-01-01

    Gene body methylation (gbM) is an ancestral and widespread feature in Eukarya, yet its adaptive value and evolutionary implications remain unresolved. The occurrence of gbM within protein-coding sequences is particularly puzzling, because methylation causes cytosine hypermutability and hence is likely to produce deleterious amino acid substitutions. We investigate this enigma using an evolutionarily basal group of Metazoa, the stony corals (order Scleractinia, class Anthozoa, phylum Cnidaria). We show that patterns of coral gbM are similar to other invertebrate species, predicting wide and active transcription and slower sequence evolution. We also find a strong correlation between gbM and codon bias, resulting from systematic replacement of CpG bearing codons. We conclude that gbM has strong effects on codon evolution and speculate that this may influence establishment of optimal codons. PMID:27189563

  12. The synapsin gene family in basal chordates: evolutionary perspectives in metazoans

    PubMed Central

    2010-01-01

    Background Synapsins are neuronal phosphoproteins involved in several functions correlated with both neurotransmitter release and synaptogenesis. The comprehension of the basal role of the synapsin family is hampered in vertebrates by the existence of multiple synapsin genes. Therefore, studying homologous genes in basal chordates, devoid of genome duplication, could help to achieve a better understanding of the complex functions of these proteins. Results In this study we report the cloning and characterization of the Ciona intestinalis and amphioxus Branchiostoma floridae synapsin transcripts and the definition of their gene structure using available C. intestinalis and B. floridae genomic sequences. We demonstrate the occurrence, in both model organisms, of a single member of the synapsin gene family. Full-length synapsin genes were identified in the recently sequenced genomes of phylogenetically diverse metazoans. Comparative genome analysis reveals extensive conservation of the SYN locus in several metazoans. Moreover, developmental expression studies underline that synapsin is a neuronal-specific marker in basal chordates and is expressed in several cell types of PNS and in many, if not all, CNS neurons. Conclusion Our study demonstrates that synapsin genes are metazoan genes present in a single copy per genome, except for vertebrates. Moreover, we hypothesize that, during the evolution of synapsin proteins, new domains are added at different stages probably to cope up with the increased complexity in the nervous system organization. Finally, we demonstrate that protochordate synapsin is restricted to the post-mitotic phase of CNS development and thereby is a good marker of postmitotic neurons. PMID:20113475

  13. The synaptonemal complex of basal metazoan hydra: more similarities to vertebrate than invertebrate meiosis model organisms.

    PubMed

    Fraune, Johanna; Wiesner, Miriam; Benavente, Ricardo

    2014-03-20

    The synaptonemal complex (SC) is an evolutionarily well-conserved structure that mediates chromosome synapsis during prophase of the first meiotic division. Although its structure is conserved, the characterized protein components in the current metazoan meiosis model systems (Drosophila melanogaster, Caenorhabditis elegans, and Mus musculus) show no sequence homology, challenging the question of a single evolutionary origin of the SC. However, our recent studies revealed the monophyletic origin of the mammalian SC protein components. Many of them being ancient in Metazoa and already present in the cnidarian Hydra. Remarkably, a comparison between different model systems disclosed a great similarity between the SC components of Hydra and mammals while the proteins of the ecdysozoan systems (D. melanogaster and C. elegans) differ significantly. In this review, we introduce the basal-branching metazoan species Hydra as a potential novel invertebrate model system for meiosis research and particularly for the investigation of SC evolution, function and assembly. Also, available methods for SC research in Hydra are summarized. Copyright © 2014. Published by Elsevier Ltd.

  14. Defensin-neurotoxin dyad in a basally branching metazoan sea anemone.

    PubMed

    Kim, Chan-Hee; Lee, Ye Jin; Go, Hye-Jin; Oh, Hye Young; Lee, Tae Kwan; Park, Ji Been; Park, Nam Gyu

    2017-10-01

    Recent studies suggest that vertebrate and invertebrate defensins have evolved from two independent ancestors, and that both defensins could share origins with animal toxins. Here, we purified novel sea anemone neurotoxin (BDS)-like antimicrobial peptides (AMPs)-Crassicorin-I and its putative homolog (Crassicorin-II)-from the pharynx extract of an anthozoan sea anemone (Urticina crassicornis). Based on structural analyses and cDNA cloning, mature Crassicorin-I represents a cationic AMP likely generated from a precursor and comprising 40 amino acid residues, including six cysteines forming three intramolecular disulfide bonds. Recombinant Crassicorin-I produced in a heterologous bacterial-expression system displayed antimicrobial activity against both a gram-positive bacterium (Bacillus subtilis) and gram-negative bacteria (Escherichia coli and Salmonella enterica). The Crassicorin-I transcript was upregulated by immune challenge, suggesting its involvement in defense mechanisms against infectious pathogens in sea anemone. Sequence alignment and three-dimensional molecular modeling revealed that Crassicorin-I exhibits high degrees of structural similarity to sea anemone neurotoxins that share β-defensin fold which is found in vertebrate defensins and invertebrate big-defensins. Consistent with its structural similarity to neurotoxins, Crassicorin-I exhibited paralytic activity toward a crustacean. These findings motivated our investigation and subsequent discovery of antimicrobial activity from other known sea anemone neurotoxins, such as APETx1 and ShK. Collectively, our work signified that Crassicorin-I is the first AMP identified from a sea anemone and provided evidence of a functional linkage between AMPs and neurotoxins in a basally branching metazoan. © 2017 Federation of European Biochemical Societies.

  15. Inductive interactions and embryonic equivalence groups in a basal metazoan, the ctenophore Mnemiopsis leidyi.

    PubMed

    Henry, Jonathan Q; Martindale, Mark Q

    2004-01-01

    Ctenophores undergo locomotion via the metachronal beating of eight longitudinally arrayed rows of comb plate cilia. These cilia are normally derived from two embryonic lineages, which include both daughters of the four e1 micromeres (e11 and e12) and a single daughter of the four m1 micromeres (the m12 micromeres). Although the e1 lineage is established autonomously, the m1 lineage requires an inductive interaction from the e1 lineage to contribute to comb plate formation. Successive removal of the e1 progeny at later stages of development indicates that this interaction takes place after the 32-cell stage and likely proceeds over a prolonged period of development. Normally, the e1, cell lies in closest proximity to the m12 cell that generates comb plate cilia; however, either of the e1 daughters (e11 or e12) is capable of emitting the signal required for m1 descendants to form comb plates. Previous cell lineage analyses indicate that the two e1 daughters generate the same suite of cell fates. On the other hand, the m1 daughters (m11 and m12) normally give rise to different cell fates. Reciprocal m1 daughter deletions show that in the absence of one daughter, the other cell can generate all the cell types normally formed by the missing cell. Together, these findings demonstrate that the two m1 daughters (m11 and m12) represent an embryonic equivalence group or field and that differences in the fates of the two m1 daughters are normally controlled by cell-cell interactions. These combined properties of ctenophore development, including the utilization of deterministic cleavage divisions, inductive interactions, and the establishment of embryonic fields or equivalence groups, are remarkably similar to those present in the development of various bilaterian metazoans.

  16. Comb jellies (ctenophora): a model for Basal metazoan evolution and development.

    PubMed

    Pang, Kevin; Martindale, Mark Q

    2008-11-01

    INTRODUCTIONCtenophores, or comb jellies, are a group of marine organisms whose unique biological features and phylogenetic placement make them a key taxon for understanding animal evolution. These gelatinous creatures are clearly distinct from cnidarian medusae (i.e., jellyfish). Key features present in the ctenophore body plan include biradial symmetry, an oral-aboral axis delimited by a mouth and an apical sensory organ, two tentacles, eight comb rows composed of interconnected cilia, and thick mesoglea. Other morphological features include definitive muscle cells, a nerve net, basal lamina, a sperm acrosome, and light-producing photocytes. Aspects of their development made them attractive to experimental embryologists as early as the 19th century. Recently, because of their role as an invasive species, studies on their role in ecology and fisheries-related fields have increased. Although the phylogenetic placement of ctenophores with respect to other animals has proven difficult, it is clear that, along with poriferans, placozoans, and cnidarians, ctenophores are one of the earliest diverging extant animal groups. It is important to determine if some of the complex features of ctenophores are examples of convergence or if they were lost in other animal branches. Because ctenophores are amenable to modern technical approaches, they could prove to be a highly useful emerging model.

  17. Evolution of the perlecan/HSPG2 gene and its activation in regenerating Nematostella vectensis.

    PubMed

    Warren, Curtis R; Kassir, Elias; Spurlin, James; Martinez, Jerahme; Putnam, Nicholas H; Farach-Carson, Mary C

    2015-01-01

    The heparan sulfate proteoglycan 2 (HSPG2)/perlecan gene is ancient and conserved in all triploblastic species. Its presence maintains critical cell boundaries in tissue and its large (up to ~900 kDa) modular structure has prompted speculation about the evolutionary origin of the gene. The gene's conservation amongst basal metazoans is unclear. After the recent sequencing of their genomes, the cnidarian Nematostella vectensis and the placozoan Trichoplax adhaerens have become favorite models for studying tissue regeneration and the evolution of multicellularity. More ancient basal metazoan phyla include the poriferan and ctenophore, whose evolutionary relationship has been clarified recently. Our in silico and PCR-based methods indicate that the HSPG2 gene is conserved in both the placozoan and cnidarian genomes, but not in those of the ctenophores and only partly in poriferan genomes. HSPG2 also is absent from published ctenophore and Capsaspora owczarzaki genomes. The gene in T. adhaerens is encoded as two separate but genetically juxtaposed genes that house all of the constituent pieces of the mammalian HSPG2 gene in tandem. These genetic constituents are found in isolated genes of various poriferan species, indicating a possible intronic recombinatory mechanism for assembly of the HSPG2 gene. Perlecan's expression during wound healing and boundary formation is conserved, as expression of the gene was activated during tissue regeneration and reformation of the basement membrane of N. vectensis. These data indicate that the complex HSPG2 gene evolved concurrently in a common ancestor of placozoans, cnidarians and bilaterians, likely along with the development of differentiated cell types separated by acellular matrices, and is activated to reestablish these tissue borders during wound healing.

  18. Evolution of the Perlecan/HSPG2 Gene and Its Activation in Regenerating Nematostella vectensis

    PubMed Central

    Warren, Curtis R.; Kassir, Elias; Spurlin, James; Martinez, Jerahme; Putnam, Nicholas H.; Farach-Carson, Mary C.

    2015-01-01

    The heparan sulfate proteoglycan 2 (HSPG2)/perlecan gene is ancient and conserved in all triploblastic species. Its presence maintains critical cell boundaries in tissue and its large (up to ~900 kDa) modular structure has prompted speculation about the evolutionary origin of the gene. The gene’s conservation amongst basal metazoans is unclear. After the recent sequencing of their genomes, the cnidarian Nematostella vectensis and the placozoan Trichoplax adhaerens have become favorite models for studying tissue regeneration and the evolution of multicellularity. More ancient basal metazoan phyla include the poriferan and ctenophore, whose evolutionary relationship has been clarified recently. Our in silico and PCR-based methods indicate that the HSPG2 gene is conserved in both the placozoan and cnidarian genomes, but not in those of the ctenophores and only partly in poriferan genomes. HSPG2 also is absent from published ctenophore and Capsaspora owczarzaki genomes. The gene in T. adhaerens is encoded as two separate but genetically juxtaposed genes that house all of the constituent pieces of the mammalian HSPG2 gene in tandem. These genetic constituents are found in isolated genes of various poriferan species, indicating a possible intronic recombinatory mechanism for assembly of the HSPG2 gene. Perlecan’s expression during wound healing and boundary formation is conserved, as expression of the gene was activated during tissue regeneration and reformation of the basement membrane of N. vectensis. These data indicate that the complex HSPG2 gene evolved concurrently in a common ancestor of placozoans, cnidarians and bilaterians, likely along with the development of differentiated cell types separated by acellular matrices, and is activated to reestablish these tissue borders during wound healing. PMID:25876075

  19. The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis

    PubMed Central

    Ryan, Joseph F; Burton, Patrick M; Mazza, Maureen E; Kwong, Grace K; Mullikin, James C; Finnerty, John R

    2006-01-01

    Background Homeodomain transcription factors are key components in the developmental toolkits of animals. While this gene superclass predates the evolutionary split between animals, plants, and fungi, many homeobox genes appear unique to animals. The origin of particular homeobox genes may, therefore, be associated with the evolution of particular animal traits. Here we report the first near-complete set of homeodomains from a basal (diploblastic) animal. Results Phylogenetic analyses were performed on 130 homeodomains from the sequenced genome of the sea anemone Nematostella vectensis along with 228 homeodomains from human and 97 homeodomains from Drosophila. The Nematostella homeodomains appear to be distributed among established homeodomain classes in the following fashion: 72 ANTP class; one HNF class; four LIM class; five POU class; 33 PRD class; five SINE class; and six TALE class. For four of the Nematostella homeodomains, there is disagreement between neighbor-joining and Bayesian trees regarding their class membership. A putative Nematostella CUT class gene is also identified. Conclusion The homeodomain superclass underwent extensive radiations prior to the evolutionary split between Cnidaria and Bilateria. Fifty-six homeodomain families found in human and/or fruit fly are also found in Nematostella, though seventeen families shared by human and fly appear absent in Nematostella. Homeodomain loss is also apparent in the bilaterian taxa: eight homeodomain families shared by Drosophila and Nematostella appear absent from human (CG13424, EMXLX, HOMEOBRAIN, MSXLX, NK7, REPO, ROUGH, and UNC4), and six homeodomain families shared by human and Nematostella appear absent from fruit fly (ALX, DMBX, DUX, HNF, POU1, and VAX). PMID:16867185

  20. Functional Roles of Notch Signaling in the cnidarian Nematostella vectensis

    PubMed Central

    Marlow, Heather; Roettinger, Eric; Boekhout, Michiel; Martindale, Mark Q.

    2013-01-01

    Notch signaling is among the oldest of known Metazoan signaling pathways and is used in a multitude of developmental contexts to effect cellular differentiation, specification and the maintenance of stem cell state. Here we report the isolation and expression of the canonical Notch signaling pathway in the early branching metazoan Nematostella vectensis (Anthozoa, Cnidaria) during embryonic and larval development. We have used pharmacological treatment, morpholino knockdown, and dominant negative misexpression experiments to demonstrate that Notch signaling acts to mediate cnidogenesis, the development of cnidarian-specific neural effecter cells. Notch signaling often results in the transcriptional activation of NvHes genes, a conserved family of bHLH transcription factors. A loss of Notch signaling through use of pharmacological inhibition or knock-down of the Notch effecter gene Suppressor of Hairless Su(H) similarly results in a loss of cnidocyte cell fate. We also provide evidence that Notch signaling is responsible for certain aspects of neurogenesis in developing N. vectensis planula in which disruption of Notch cleavage via the pharmacological agent DAPT results in increased expression of neural marker genes in vivo. This data suggests that Notch signaling acting on components of the developing nervous system is an ancient role of this pathway. The shared requirement of Notch signaling for the development of both cnidocytes and neurons further supports the hypothesis that cnidocytes and neurons share common origins as multifunctional sensory-effecter cells. PMID:22155407

  1. Expansion of tandem repeats in sea anemone Nematostella vectensis proteome: A source for gene novelty?

    PubMed Central

    2009-01-01

    Background The complete proteome of the starlet sea anemone, Nematostella vectensis, provides insights into gene invention dating back to the Cnidarian-Bilaterian ancestor. With the addition of the complete proteomes of Hydra magnipapillata and Monosiga brevicollis, the investigation of proteins having unique features in early metazoan life has become practical. We focused on the properties and the evolutionary trends of tandem repeat (TR) sequences in Cnidaria proteomes. Results We found that 11-16% of N. vectensis proteins contain tandem repeats. Most TRs cover 150 amino acid segments that are comprised of basic units of 5-20 amino acids. In total, the N. Vectensis proteome has about 3300 unique TR-units, but only a small fraction of them are shared with H. magnipapillata, M. brevicollis, or mammalian proteomes. The overall abundance of these TRs stands out relative to that of 14 proteomes representing the diversity among eukaryotes and within the metazoan world. TR-units are characterized by a unique composition of amino acids, with cysteine and histidine being over-represented. Structurally, most TR-segments are associated with coiled and disordered regions. Interestingly, 80% of the TR-segments can be read in more than one open reading frame. For over 100 of them, translation of the alternative frames would result in long proteins. Most domain families that are characterized as repeats in eukaryotes are found in the TR-proteomes from Nematostella and Hydra. Conclusions While most TR-proteins have originated from prediction tools and are still awaiting experimental validations, supportive evidence exists for hundreds of TR-units in Nematostella. The existence of TR-proteins in early metazoan life may have served as a robust mode for novel genes with previously overlooked structural and functional characteristics. PMID:20003297

  2. Inducing Complete Polyp Regeneration from the Aboral Physa of the Starlet Sea Anemone Nematostella vectensis.

    PubMed

    Bossert, Patricia; Thomsen, Gerald H

    2017-01-14

    Cnidarians, and specifically Hydra, were the first animals shown to regenerate damaged or severed structures, and indeed such studies arguably launched modern biological inquiry through the work of Trembley more than 250 years ago. Presently the study of regeneration has seen a resurgence using both "classic" regenerative organisms, such as the Hydra, planaria and Urodeles, as well as a widening spectrum of species spanning the range of metazoa, from sponges through mammals. Besides its intrinsic interest as a biological phenomenon, understanding how regeneration works in a variety of species will inform us about whether regenerative processes share common features and/or species or context-specific cellular and molecular mechanisms. The starlet sea anemone, Nematostella vectensis, is an emerging model organism for regeneration. Like Hydra, Nematostella is a member of the ancient phylum, cnidaria, but within the class anthozoa, a sister clade to the hydrozoa that is evolutionarily more basal. Thus aspects of regeneration in Nematostella will be interesting to compare and contrast with those of Hydra and other cnidarians. In this article, we present a method to bisect, observe and classify regeneration of the aboral end of the Nematostella adult, which is called the physa. The physa naturally undergoes fission as a means of asexual reproduction, and either natural fission or manual amputation of the physa triggers re-growth and reformation of complex morphologies. Here we have codified these simple morphological changes in a Nematostella Regeneration Staging System (the NRSS). We use the NRSS to test the effects of chloroquine, an inhibitor of lysosomal function that blocks autophagy. The results show that the regeneration of polyp structures, particularly the mesenteries, is abnormal when autophagy is inhibited.

  3. Induction of Canonical Wnt Signaling by Alsterpaullone Is Sufficient for Oral Tissue Fate During Regeneration and Embryogenesis in Nematostella vectensis

    PubMed Central

    Trevino, Michael; Stefanik, Derek J.; Rodriguez, Richard; Harmon, Shane; Burton, Patrick M.

    2013-01-01

    Although regeneration is widespread among metazoa, the molecular mechanisms have been studied in only a handful of taxa. Of these taxa, fewer still are amenable to studies of embryogenesis. Our understanding of the evolution of regeneration, and its relation to embryogenesis, therefore remains limited. Using β-catenin as a marker, we investigated the role of canonical Wnt signaling during both regeneration and embryogenesis in the cnidarian Nematostella vectensis. The canonical Wnt signaling pathway is known to play a conserved role in primary axis patterning in triploblasts. Induction of Wnt signaling with alsterpaullone results in ectopic oral tissue during both regeneration and embryogenesis by specifically upregulating β-catenin expression, as measured by qRTPCR. Our data indicate that canonical Wnt signaling is sufficient for oral patterning during Nematostella regeneration and embryogenesis. These data also contribute to a growing body of literature indicating a conserved role for patterning mechanisms across various developmental modes of metazoans. PMID:22052821

  4. Spatial gene expression quantification: a tool for analysis of in situ hybridizations in sea anemone Nematostella vectensis

    PubMed Central

    2012-01-01

    Background Spatial gene expression quantification is required for modeling gene regulation in developing organisms. The fruit fly Drosophila melanogaster is the model system most widely applied for spatial gene expression analysis due to its unique embryonic properties: the shape does not change significantly during its early cleavage cycles and most genes are differentially expressed along a straight axis. This system of development is quite exceptional in the animal kingdom. In the sea anemone Nematostella vectensis the embryo changes its shape during early development; there are cell divisions and cell movement, like in most other metazoans. Nematostella is an attractive case study for spatial gene expression since its transparent body wall makes it accessible to various imaging techniques. Findings Our new quantification method produces standardized gene expression profiles from raw or annotated Nematostella in situ hybridizations by measuring the expression intensity along its cell layer. The procedure is based on digital morphologies derived from high-resolution fluorescence pictures. Additionally, complete descriptions of nonsymmetric expression patterns have been constructed by transforming the gene expression images into a three-dimensional representation. Conclusions We created a standard format for gene expression data, which enables quantitative analysis of in situ hybridizations from embryos with various shapes in different developmental stages. The obtained expression profiles are suitable as input for optimization of gene regulatory network models, and for correlation analysis of genes from dissimilar Nematostella morphologies. This approach is potentially applicable to many other metazoan model organisms and may also be suitable for processing data from three-dimensional imaging techniques. PMID:23039089

  5. Intracellular fate mapping in a basal metazoan, the ctenophore Mnemiopsis leidyi, reveals the origins of mesoderm and the existence of indeterminate cell lineages.

    PubMed

    Martindale, M Q; Henry, J Q

    1999-10-15

    Ctenophores are marine invertebrates that develop rapidly and directly into juvenile adults. They are likely to be the simplest metazoans possessing definitive muscle cells and are possibly the sister group to the Bilateria. All ctenophore embryos display a highly stereotyped, phylum-specific pattern of development in which every cell can be identified by its lineage history. We generated a cell lineage fate map for Mnemiopsis leidyi by injecting fluorescent lineage tracers into individual blastomeres up through the 60-cell stage. The adult ctenophore body plan is composed of four nearly identical quadrants organized along the oral-aboral axis. Each of the four quadrants is derived largely from one cell of the four-cell-stage embryo. At the eight-cell stage each quadrant contains a single E ("end") and M ("middle") blastomere. Subsequently, micromeres are formed first at the aboral pole and later at the oral pole. The ctene rows, apical organ, and tentacle apparatus are complex structures that are generated by both E and M blastomere lineages from all four quadrants. All muscle cells are derived from micromeres born at the oral pole of endomesodermal precursors (2M and 3E macromeres). While the development of the four quadrants is similar, diagonally opposed quadrants share more similarities than adjacent quadrants. Adult ctenophores possess two diagonally opposed endodermal anal canals that open at the base of the apical organ. These two structures are derived from the two diagonally opposed 2M/ macromeres. The two opposing 2M/ macromeres generated a unique set of circumpharyngeal muscle cells, but do not contribute to the anal canals. No other lineages displayed such diagonal asymmetries. Clones from each blastomere yielded regular, but not completely invariant patterns of descendents. Ectodermal descendents normally, but not always, remained within their corresponding quadrants. On the other hand, endodermal and mesodermal progeny dispersed throughout the body

  6. T-box and homeobox genes from the ctenophore Pleurobrachia pileus: comparison of Brachyury, Tbx2/3 and Tlx in basal metazoans and bilaterians.

    PubMed

    Martinelli, Cosimo; Spring, Jürg

    2005-09-12

    Most animals are classified as Bilateria and only four phyla are still extant as outgroups, namely Porifera, Placozoa, Cnidaria and Ctenophora. These non-bilaterians were not considered to have a mesoderm and hence mesoderm-specific genes. However, the T-box gene Brachyury could be isolated from sponges, placozoans and cnidarians. Here, we describe the first Brachyury and a Tbx2/3 homologue from a ctenophore. In addition, analysing T-box and homeobox genes under comparable conditions in all four basal phyla lead to the discovery of novel T-box genes in sponges and cnidarians and a Tlx homeobox gene in the ctenophore Pleurobrachia pileus. The conservation of the T-box and the homeobox genes suggest that distinct subfamilies with different roles in bilaterians were already split in non-bilaterians.

  7. A cleavage clock regulates features of lineage-specific differentiation in the development of a basal branching metazoan, the ctenophore Mnemiopsis leidyi

    PubMed Central

    2014-01-01

    DNA to cytoplasmic ratio, are critical for the appearance of lineage-specific differentiation. Conclusion Our work corroborates previous studies demonstrating that the cleavage program is causally involved in the spatial segregation and/or activation of factors that give rise to distinct cell types in ctenophore development. These factors are segregated independently to the appropriate lineage at the 8- and the 16-cell stages and have features of a clock, such that comb-plate-like cilia and light-emitting photoproteins appear at roughly the same developmental time in cleavage-arrested embryos as they do in untreated embryos. Nuclear division, which possibly affects DNA-cytoplasmic ratios, appears to be important in the timing of differentiation markers. Evidence suggests that the 60-cell stage, just prior to gastrulation, is the time of zygotic gene activation. Such cleavage-clock-regulated phenomena appear to be widespread amongst the Metazoa and these cellular and molecular developmental mechanisms probably evolved early in metazoan evolution. PMID:24485336

  8. A cleavage clock regulates features of lineage-specific differentiation in the development of a basal branching metazoan, the ctenophore Mnemiopsis leidyi.

    PubMed

    Fischer, Antje Hl; Pang, Kevin; Henry, Jonathan Q; Martindale, Mark Q

    2014-01-31

    ratio, are critical for the appearance of lineage-specific differentiation. Our work corroborates previous studies demonstrating that the cleavage program is causally involved in the spatial segregation and/or activation of factors that give rise to distinct cell types in ctenophore development. These factors are segregated independently to the appropriate lineage at the 8- and the 16-cell stages and have features of a clock, such that comb-plate-like cilia and light-emitting photoproteins appear at roughly the same developmental time in cleavage-arrested embryos as they do in untreated embryos. Nuclear division, which possibly affects DNA-cytoplasmic ratios, appears to be important in the timing of differentiation markers. Evidence suggests that the 60-cell stage, just prior to gastrulation, is the time of zygotic gene activation. Such cleavage-clock-regulated phenomena appear to be widespread amongst the Metazoa and these cellular and molecular developmental mechanisms probably evolved early in metazoan evolution.

  9. Surprisingly complex T-box gene complement in diploblastic metazoans.

    PubMed

    Yamada, Atsuko; Pang, Kevin; Martindale, Mark Q; Tochinai, Shin

    2007-01-01

    Ctenophores and cnidarians are two metazoan groups that evolved at least 600 Ma, predating the Cambrian explosion. Although both groups are commonly categorized as diploblastic animals without derivatives of the mesodermal germ layer, ctenophores possess definitive contractile "muscle" cells. T-box family transcription factors are an evolutionarily ancient gene family, arising in the common ancestor of metazoans, and have been divided into eight groups in five distinct subfamilies, many of which are involved in the specification of mesodermal as well as ectodermally and endodermally derived structures. Here, we report the cloning and expression of five T-box genes from a ctenophore, Mnemiopsis leidyi. Phylogenetic analyses demonstrated that ctenophores possess members of at least three of the five T-box subfamilies, and expression studies suggested distinct roles of each T-box genes during gastrulation and early organogenesis. Moreover, genome searches of the sea anemone, Nematostella vectensis (anthozoan cnidarian), showed at least 13 T-box genes in Nematostella, which are divided into at least six distinct groups in the same three subfamilies found in ctenophores. Our results from two diploblastic animals indicate that the common ancestor of eumetazoans had a complex set of T-box genes and that two distinct subfamilies might have appeared during triploblastic evolution.

  10. Convergent Evolution of Sodium Ion Selectivity in Metazoan Neuronal Signaling

    PubMed Central

    Gur Barzilai, Maya; Reitzel, Adam M.; Kraus, Johanna E.M.; Gordon, Dalia; Technau, Ulrich; Gurevitz, Michael; Moran, Yehu

    2012-01-01

    Summary Ion selectivity of metazoan voltage-gated Na+ channels is critical for neuronal signaling and has long been attributed to a ring of four conserved amino acids that constitute the ion selectivity filter (SF) at the channel pore. Yet, in addition to channels with a preference for Ca2+ ions, the expression and characterization of Na+ channel homologs from the sea anemone Nematostella vectensis, a member of the early-branching metazoan phylum Cnidaria, revealed a sodium-selective channel bearing a noncanonical SF. Mutagenesis and physiological assays suggest that pore elements additional to the SF determine the preference for Na+ in this channel. Phylogenetic analysis assigns the Nematostella Na+-selective channel to a channel group unique to Cnidaria, which diverged >540 million years ago from Ca2+-conducting Na+ channel homologs. The identification of Cnidarian Na+-selective ion channels distinct from the channels of bilaterian animals indicates that selectivity for Na+ in neuronal signaling emerged independently in these two animal lineages. PMID:22854023

  11. Functional characterization of Vitellogenin_N domain, domain of unknown function 1943, and von Willebrand factor type D domain in vitellogenin of the non-bilaterian coral Euphyllia ancora: Implications for emergence of immune activity of vitellogenin in basal metazoan.

    PubMed

    Du, Xiaoyuan; Wang, Xia; Wang, Su; Zhou, Yang; Zhang, Yu; Zhang, Shicui

    2017-02-01

    Our understanding of the function of vitellogenin (Vg) in reproduction has undergone a transformation over the past decade in parallel with new insights into the role of Vg in immunity. However, the time when Vg was endowed with immunological activities during animal evolution remains elusive. Here we demonstrate for the first time that the recombinant proteins rVitellogenin_N, rDUF1943, and rVWD from Vg of the basal metazoan coral Euphyllia ancora not only interact with Gram-positive and negative bacteria as well as their conserved surface components LTA and LPS but also enhance phagocytosis of bacteria by macrophages. Moreover, challenge with LPS results in a marked up-regulation of vg in the coral E. ancora. These data suggest that E. ancora Vg, like that described in the bilaterian oviparous animals fish and amphioxus, is a molecule related to antibacterial defense, indicating that the timing of the emergence of immune role of Vg predates the divergence of the cnidarian (non-bilaterian) and bilaterian lineages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Functional conservation of Nematostella Wnts in canonical and noncanonical Wnt-signaling

    PubMed Central

    Rigo-Watermeier, T; Kraft, B; Ritthaler, M; Wallkamm, V; Holstein, T; Wedlich, D

    2012-01-01

    Summary Cnidarians surprise by the completeness of Wnt gene subfamilies (11) expressed in an overlapping pattern along the anterior-posterior axis. While the functional conservation of canonical Wnt-signaling components in cnidarian gastrulation and organizer formation is evident, a role of Nematostella Wnts in noncanonical Wnt-signaling has not been shown so far. In Xenopus, noncanonical Wnt-5a/Ror2 and Wnt-11 (PCP) signaling are distinguishable by different morphant phenotypes. They differ in PAPC regulation, cell polarization, cell protrusion formation, and the so far not reported reorientation of the microtubules. Based on these readouts, we investigated the evolutionary conservation of Wnt-11 and Wnt-5a function in rescue experiments with Nematostella orthologs and Xenopus morphants. Our results revealed that NvWnt-5 and -11 exhibited distinct noncanonical Wnt activities by disturbing convergent extension movements. However, NvWnt-5 rescued XWnt-11 and NvWnt-11 specifically XWnt-5a depleted embryos. This unexpected ‘inverse’ activity suggests that specific structures in Wnt ligands are important for receptor complex recognition in Wnt-signaling. Although we can only speculate on the identity of the underlying recognition motifs, it is likely that these crucial structural features have already been established in the common ancestor of cnidarians and vertebrates and were conserved throughout metazoan evolution. PMID:23213367

  13. Antagonistic BMP–cWNT signaling in the cnidarian Nematostella vectensis reveals insight into the evolution of mesoderm

    PubMed Central

    Wijesena, Naveen; Simmons, David K.

    2017-01-01

    Gastrulation was arguably the key evolutionary innovation that enabled metazoan diversification, leading to the formation of distinct germ layers and specialized tissues. Differential gene expression specifying cell fate is governed by the inputs of intracellular and/or extracellular signals. Beta-catenin/Tcf and the TGF-beta bone morphogenetic protein (BMP) provide critical molecular signaling inputs during germ layer specification in bilaterian metazoans, but there has been no direct experimental evidence for a specific role for BMP signaling during endomesoderm specification in the early branching metazoan Nematostella vectensis (an anthozoan cnidarian). Using forward transcriptomics, we show that beta-catenin/Tcf signaling and BMP2/4 signaling provide differential inputs into the cnidarian endomesodermal gene regulatory network (GRN) at the onset of gastrulation (24 h postfertilization) in N. vectensis. Surprisingly, beta-catenin/Tcf signaling and BMP2/4 signaling regulate a subset of common downstream target genes in the GRN in opposite ways, leading to the spatial and temporal differentiation of fields of cells in the developing embryo. Thus, we show that regulatory interactions between beta-catenin/Tcf signaling and BMP2/4 signaling are required for the specification and determination of different embryonic regions and the patterning of the oral–aboral axis in Nematostella. We also show functionally that the conserved “kernel” of the bilaterian heart mesoderm GRN is operational in N. vectensis, which reinforces the hypothesis that the endoderm and mesoderm in triploblastic bilaterians evolved from the bifunctional endomesoderm (gastrodermis) of a diploblastic ancestor, and that slow rhythmic contractions might have been one of the earliest functions of mesodermal tissue. PMID:28652368

  14. StellaBase: The Nematostella vectensis Genomics Database

    PubMed Central

    Sullivan, James C.; Ryan, Joseph F.; Watson, James A.; Webb, Jeramy; Mullikin, James C.; Rokhsar, Daniel; Finnerty, John R.

    2006-01-01

    StellaBase, the Nematostella vectensis Genomics Database, is a web-based resource that will facilitate desktop and bench-top studies of the starlet sea anemone. Nematostella is an emerging model organism that has already proven useful for addressing fundamental questions in developmental evolution and evolutionary genomics. StellaBase allows users to query the assembled Nematostella genome, a confirmed gene library, and a predicted genome using both keyword and homology based search functions. Data provided by these searches will elucidate gene family evolution in early animals. Unique research tools, including a Nematostella genetic stock library, a primer library, a literature repository and a gene expression library will provide support to the burgeoning Nematostella research community. The development of StellaBase accompanies significant upgrades to CnidBase, the Cnidarian Evolutionary Genomics Database. With the completion of the first sequenced cnidarian genome, genome comparison tools have been added to CnidBase. In addition, StellaBase provides a framework for the integration of additional species-specific databases into CnidBase. StellaBase is available at . PMID:16381919

  15. StellaBase: the Nematostella vectensis Genomics Database.

    PubMed

    Sullivan, James C; Ryan, Joseph F; Watson, James A; Webb, Jeramy; Mullikin, James C; Rokhsar, Daniel; Finnerty, John R

    2006-01-01

    StellaBase, the Nematostella vectensis Genomics Database, is a web-based resource that will facilitate desktop and bench-top studies of the starlet sea anemone. Nematostella is an emerging model organism that has already proven useful for addressing fundamental questions in developmental evolution and evolutionary genomics. StellaBase allows users to query the assembled Nematostella genome, a confirmed gene library, and a predicted genome using both keyword and homology based search functions. Data provided by these searches will elucidate gene family evolution in early animals. Unique research tools, including a Nematostella genetic stock library, a primer library, a literature repository and a gene expression library will provide support to the burgeoning Nematostella research community. The development of StellaBase accompanies significant upgrades to CnidBase, the Cnidarian Evolutionary Genomics Database. With the completion of the first sequenced cnidarian genome, genome comparison tools have been added to CnidBase. In addition, StellaBase provides a framework for the integration of additional species-specific databases into CnidBase. StellaBase is available at http://www.stellabase.org.

  16. Rotifers: exquisite metazoans.

    PubMed

    Wallace, Robert Lee

    2002-07-01

    Rotifers comprise a modestly sized phylum (≈1,850 species) of tiny (ca. 50-2,000 μm), bilaterally symmetrical, eutelic metazoans, traditionally grouped within the pseudocoelomates or Aschelminthes. These saccate to cylindrically shaped protostomes possess three prominent regions (corona, trunk, foot). They are distinguished by a ciliated, anterior corona (used in locomotion and food gathering) and a pharynx equipped with a complex set of jaws. Unfortunately, these generalizations grossly oversimplify a rich and fascinating diversity. Chief among the charms of the study of rotifers are their ecological importance, ease of culture (including chemostat technology), and the fact that much remains unknown about this exquisite phylum.

  17. RGM regulates BMP-mediated secondary axis formation in the sea anemone Nematostella vectensis.

    PubMed

    Leclère, Lucas; Rentzsch, Fabian

    2014-12-11

    Patterning of the metazoan dorsoventral axis is mediated by a complex interplay of BMP signaling regulators. Repulsive guidance molecule (RGM) is a conserved BMP coreceptor that has not been implicated in axis specification. We show that NvRGM is a key positive regulator of BMP signaling during secondary axis establishment in the cnidarian Nematostella vectensis. NvRGM regulates first the generation and later the shape of a BMP-dependent Smad1/5/8 gradient with peak activity on the side opposite the NvBMP/NvRGM/NvChordin expression domain. Full knockdown of Smad1/5/8 signaling blocks the formation of endodermal structures, the mesenteries, and the establishment of bilateral symmetry, while altering the gradient through partial NvRGM or NvBMP knockdown shifts the boundaries of asymmetric gene expression and the positioning of the mesenteries along the secondary axis. These findings provide insight into the diversification of axis specification mechanisms and identify a previously unrecognized role for RGM in BMP-mediated axial patterning.

  18. Conserved and novel gene expression between regeneration and asexual fission in Nematostella vectensis.

    PubMed

    Burton, Patrick M; Finnerty, John R

    2009-02-01

    Due to work in model systems (e.g., flies and mice), the molecular mechanisms of embryogenesis are known in exquisite detail. However, these organisms are incapable of asexual reproduction and possess limited regenerative abilities. Thus, the mechanisms of alternate developmental trajectories and their relation to embryonic mechanisms remain understudied. Because these developmental trajectories are present in a diverse group of animal phyla spanning the metazoan phylogeny, including cnidarians, annelids, and echinoderms, they are likely to have played a major role in animal evolution. The starlet sea anemone Nematostella vectensis, an emerging model system, undergoes larval development, asexual fission, and complete bi-directional regeneration in the field and laboratory. In order to investigate to what extent embryonic patterning mechanisms are utilized during alternate developmental trajectories, we examined expression of developmental regulatory genes during regeneration and fission. When compared to previously reported embryonic expression patterns, we found that all genes displayed some level of expression consistent with embryogenesis. However, five of seven genes investigated also displayed striking differences in gene expression between one or more developmental trajectory. These results demonstrate that alternate developmental trajectories utilize distinct molecular mechanisms upstream of major developmental regulatory genes such as fox, otx, and Hox-like.

  19. FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian

    PubMed Central

    Matus, David Q.; Thomsen, Gerald H.

    2013-01-01

    The fibroblast growth factor (FGF) signal transduction pathway serves as one of the key regulators of early metazoan development, displaying conserved roles in the specification of endodermal, mesodermal, and neural fates during vertebrate development. FGF signals also regulate gastrulation, in part, by triggering epithelial to mesenchymal transitions in embryos of both vertebrates and invertebrates. Thus, FGF signals coordinate gastrulation movements across many different phyla. To help understand the breadth of FGF signaling deployment across the animal kingdom, we have examined the presence and expression of genes encoding FGF pathway components in the anthozoan cnidarian Nematostella vectensis. We isolated three FGF ligands (NvFGF8A, NvFGF8B, and NvFGF1A), two FGF receptors (NvFGFRa and NvFGFRb), and two orthologs of vertebrate FGF responsive genes, Sprouty (NvSprouty), an inhibitor of FGF signaling, and Churchill (NvChurchill), a Zn finger transcription factor. We found these FGF ligands, receptors, and response gene expressed asymmetrically along the oral/aboral axis during gastrulation and in a developing chemosensory structure of planula stages known as the apical tuft. These results suggest a conserved role for FGF signaling molecules in coordinating both gastrulation and neural induction that predates the Cambrian explosion and the origins of the Bilateria. PMID:17237944

  20. FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian.

    PubMed

    Matus, David Q; Thomsen, Gerald H; Martindale, Mark Q

    2007-02-01

    The fibroblast growth factor (FGF) signal transduction pathway serves as one of the key regulators of early metazoan development, displaying conserved roles in the specification of endodermal, mesodermal, and neural fates during vertebrate development. FGF signals also regulate gastrulation, in part, by triggering epithelial to mesenchymal transitions in embryos of both vertebrates and invertebrates. Thus, FGF signals coordinate gastrulation movements across many different phyla. To help understand the breadth of FGF signaling deployment across the animal kingdom, we have examined the presence and expression of genes encoding FGF pathway components in the anthozoan cnidarian Nematostella vectensis. We isolated three FGF ligands (NvFGF8A, NvFGF8B, and NvFGF1A), two FGF receptors (NvFGFRa and NvFGFRb), and two orthologs of vertebrate FGF responsive genes, Sprouty (NvSprouty), an inhibitor of FGF signaling, and Churchill (NvChurchill), a Zn finger transcription factor. We found these FGF ligands, receptors, and response gene expressed asymmetrically along the oral/aboral axis during gastrulation and in a developing chemosensory structure of planula stages known as the apical tuft. These results suggest a conserved role for FGF signaling molecules in coordinating both gastrulation and neural induction that predates the Cambrian explosion and the origins of the Bilateria.

  1. Ether-à-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian-bilaterian ancestor.

    PubMed

    Li, Xiaofan; Martinson, Alexandra S; Layden, Michael J; Diatta, Fortunay H; Sberna, Anna P; Simmons, David K; Martindale, Mark Q; Jegla, Timothy J

    2015-02-15

    We examined the evolutionary origins of the ether-à-go-go (EAG) family of voltage-gated K(+) channels, which have a strong influence on the excitability of neurons. The bilaterian EAG family comprises three gene subfamilies (Eag, Erg and Elk) distinguished by sequence conservation and functional properties. Searches of genome sequence indicate that EAG channels are metazoan specific, appearing first in ctenophores. However, phylogenetic analysis including two EAG family channels from the ctenophore Mnemiopsis leidyi indicates that the diversification of the Eag, Erg and Elk gene subfamilies occurred in a cnidarian/bilaterian ancestor after divergence from ctenophores. Erg channel function is highly conserved between cnidarians and mammals. Here we show that Eag and Elk channels from the sea anemone Nematostella vectensis (NvEag and NvElk) also share high functional conservation with mammalian channels. NvEag, like bilaterian Eag channels, has rapid kinetics, whereas NvElk activates at extremely hyperpolarized voltages, which is characteristic of Elk channels. Potent inhibition of voltage activation by extracellular protons is conserved between mammalian and Nematostella EAG channels. However, characteristic inhibition of voltage activation by Mg(2+) in Eag channels and Ca(2+) in Erg channels is reduced in Nematostella because of mutation of a highly conserved aspartate residue in the voltage sensor. This mutation may preserve sub-threshold activation of Nematostella Eag and Erg channels in a high divalent cation environment. mRNA in situ hybridization of EAG channels in Nematostella suggests that they are differentially expressed in distinct cell types. Most notable is the expression of NvEag in cnidocytes, a cnidarian-specific stinging cell thought to be a neuronal subtype. © 2015. Published by The Company of Biologists Ltd.

  2. Ether-à-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian–bilaterian ancestor

    PubMed Central

    Li, Xiaofan; Martinson, Alexandra S.; Layden, Michael J.; Diatta, Fortunay H.; Sberna, Anna P.; Simmons, David K.; Martindale, Mark Q.; Jegla, Timothy J.

    2015-01-01

    We examined the evolutionary origins of the ether-à-go-go (EAG) family of voltage-gated K+ channels, which have a strong influence on the excitability of neurons. The bilaterian EAG family comprises three gene subfamilies (Eag, Erg and Elk) distinguished by sequence conservation and functional properties. Searches of genome sequence indicate that EAG channels are metazoan specific, appearing first in ctenophores. However, phylogenetic analysis including two EAG family channels from the ctenophore Mnemiopsis leidyi indicates that the diversification of the Eag, Erg and Elk gene subfamilies occurred in a cnidarian/bilaterian ancestor after divergence from ctenophores. Erg channel function is highly conserved between cnidarians and mammals. Here we show that Eag and Elk channels from the sea anemone Nematostella vectensis (NvEag and NvElk) also share high functional conservation with mammalian channels. NvEag, like bilaterian Eag channels, has rapid kinetics, whereas NvElk activates at extremely hyperpolarized voltages, which is characteristic of Elk channels. Potent inhibition of voltage activation by extracellular protons is conserved between mammalian and Nematostella EAG channels. However, characteristic inhibition of voltage activation by Mg2+ in Eag channels and Ca2+ in Erg channels is reduced in Nematostella because of mutation of a highly conserved aspartate residue in the voltage sensor. This mutation may preserve sub-threshold activation of Nematostella Eag and Erg channels in a high divalent cation environment. mRNA in situ hybridization of EAG channels in Nematostella suggests that they are differentially expressed in distinct cell types. Most notable is the expression of NvEag in cnidocytes, a cnidarian-specific stinging cell thought to be a neuronal subtype. PMID:25696816

  3. Strabismus-mediated primary archenteron invagination is uncoupled from Wnt/β-catenin-dependent endoderm cell fate specification in Nematostella vectensis (Anthozoa, Cnidaria): Implications for the evolution of gastrulation

    PubMed Central

    2011-01-01

    Background Gastrulation is a uniquely metazoan character, and its genesis was arguably the key step that enabled the remarkable diversification within this clade. The process of gastrulation involves two tightly coupled events during embryogenesis of most metazoans. Morphogenesis produces a distinct internal epithelial layer in the embryo, and this epithelium becomes segregated as an endoderm/endomesodermal germ layer through the activation of a specific gene regulatory program. The developmental mechanisms that induced archenteron formation and led to the segregation of germ layers during metazoan evolution are unknown. But an increased understanding of development in early diverging taxa at the base of the metazoan tree may provide insights into the origins of these developmental mechanisms. Results In the anthozoan cnidarian Nematostella vectensis, initial archenteron formation begins with bottle cell-induced buckling of the blastula epithelium at the animal pole. Here, we show that bottle cell formation and initial gut invagination in Nematostella requires NvStrabismus (NvStbm), a maternally-expressed core component of the Wnt/Planar Cell Polarity (PCP) pathway. The NvStbm protein is localized to the animal pole of the zygote, remains asymmetrically expressed through the cleavage stages, and becomes restricted to the apical side of invaginating bottle cells at the blastopore. Antisense morpholino-mediated NvStbm-knockdown blocks bottle cell formation and initial archenteron invagination, but it has no effect on Wnt/ß-catenin signaling-mediated endoderm cell fate specification. Conversely, selectively blocking Wnt/ß-catenin signaling inhibits endoderm cell fate specification but does not affect bottle cell formation and initial archenteron invagination. Conclusions Our results demonstrate that Wnt/PCP-mediated initial archenteron invagination can be uncoupled from Wnt/ß-catenin-mediated endoderm cell fate specification in Nematostella, and provides evidence

  4. Strabismus-mediated primary archenteron invagination is uncoupled from Wnt/β-catenin-dependent endoderm cell fate specification in Nematostella vectensis (Anthozoa, Cnidaria): Implications for the evolution of gastrulation.

    PubMed

    Kumburegama, Shalika; Wijesena, Naveen; Xu, Ronghui; Wikramanayake, Athula H

    2011-01-21

    Gastrulation is a uniquely metazoan character, and its genesis was arguably the key step that enabled the remarkable diversification within this clade. The process of gastrulation involves two tightly coupled events during embryogenesis of most metazoans. Morphogenesis produces a distinct internal epithelial layer in the embryo, and this epithelium becomes segregated as an endoderm/endomesodermal germ layer through the activation of a specific gene regulatory program. The developmental mechanisms that induced archenteron formation and led to the segregation of germ layers during metazoan evolution are unknown. But an increased understanding of development in early diverging taxa at the base of the metazoan tree may provide insights into the origins of these developmental mechanisms. In the anthozoan cnidarian Nematostella vectensis, initial archenteron formation begins with bottle cell-induced buckling of the blastula epithelium at the animal pole. Here, we show that bottle cell formation and initial gut invagination in Nematostella requires NvStrabismus (NvStbm), a maternally-expressed core component of the Wnt/Planar Cell Polarity (PCP) pathway. The NvStbm protein is localized to the animal pole of the zygote, remains asymmetrically expressed through the cleavage stages, and becomes restricted to the apical side of invaginating bottle cells at the blastopore. Antisense morpholino-mediated NvStbm-knockdown blocks bottle cell formation and initial archenteron invagination, but it has no effect on Wnt/ß-catenin signaling-mediated endoderm cell fate specification. Conversely, selectively blocking Wnt/ß-catenin signaling inhibits endoderm cell fate specification but does not affect bottle cell formation and initial archenteron invagination. Our results demonstrate that Wnt/PCP-mediated initial archenteron invagination can be uncoupled from Wnt/ß-catenin-mediated endoderm cell fate specification in Nematostella, and provides evidence that these two processes could

  5. CHARACTERIZATION OF MICROSATELLITE LOCI IN THE WIDELY INTRODUCED ESTUARINE ANEMONE NEMATOSTELLA VECTENSIS

    EPA Science Inventory

    We characterized ten polymorphic microsatellite loci from Nematostella vectensis, a burrowing anemone recently introduced to estuaries along the Pacific coast of North America and the southeast coast of England. Preliminary results indicate high variability and significant depar...

  6. CHARACTERIZATION OF MICROSATELLITE LOCI IN THE WIDELY INTRODUCED ESTUARINE ANEMONE NEMATOSTELLA VECTENSIS

    EPA Science Inventory

    We characterized ten polymorphic microsatellite loci from Nematostella vectensis, a burrowing anemone recently introduced to estuaries along the Pacific coast of North America and the southeast coast of England. Preliminary results indicate high variability and significant depar...

  7. Phylogenetic evidence for the modular evolution of metazoan signalling pathways.

    PubMed

    Babonis, Leslie S; Martindale, Mark Q

    2017-02-05

    Communication among cells was paramount to the evolutionary increase in cell type diversity and, ultimately, the origin of large body size. Across the diversity of Metazoa, there are only few conserved cell signalling pathways known to orchestrate the complex cell and tissue interactions regulating development; thus, modification to these few pathways has been responsible for generating diversity during the evolution of animals. Here, we summarize evidence for the origin and putative function of the intracellular, membrane-bound and secreted components of seven metazoan cell signalling pathways with a special focus on early branching metazoans (ctenophores, poriferans, placozoans and cnidarians) and basal unikonts (amoebozoans, fungi, filastereans and choanoflagellates). We highlight the modular incorporation of intra- and extracellular components in each signalling pathway and suggest that increases in the complexity of the extracellular matrix may have further promoted the modulation of cell signalling during metazoan evolution. Most importantly, this updated view of metazoan signalling pathways highlights the need for explicit study of canonical signalling pathway components in taxa that do not operate a complete signalling pathway. Studies like these are critical for developing a deeper understanding of the evolution of cell signalling.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.

  8. Profiling molecular and behavioral circadian rhythms in the non-symbiotic sea anemone Nematostella vectensis

    PubMed Central

    Oren, Matan; Tarrant, Ann M.; Alon, Shahar; Simon-Blecher, Noa; Elbaz, Idan; Appelbaum, Lior; Levy, Oren

    2015-01-01

    Endogenous circadian clocks are poorly understood within early-diverging animal lineages. We have characterized circadian behavioral patterns and identified potential components of the circadian clock in the starlet sea anemone, Nematostella vectensis: a model cnidarian which lacks algal symbionts. Using automatic video tracking we showed that Nematostella exhibits rhythmic circadian locomotor activity, which is persistent in constant dark, shifted or disrupted by external dark/light cues and maintained the same rate at two different temperatures. This activity was inhibited by a casein kinase 1δ/ε inhibitor, suggesting a role for CK1 homologue(s) in Nematostella clock. Using high-throughput sequencing we profiled Nematostella transcriptomes over 48 hours under a light-dark cycle. We identified 180 Nematostella diurnally-oscillated transcripts and compared them with previously established databases of adult and larvae of the symbiotic coral Acropora millepora, revealing both shared homologues and unique rhythmic genes. Taken together, this study further establishes Nematostella as a non-symbiotic model organism to study circadian rhythms and increases our understanding about the fundamental elements of circadian regulation and their evolution within the Metazoa PMID:26081482

  9. Continuous drug release by sea anemone Nematostella vectensis stinging microcapsules.

    PubMed

    Tal, Yossi; Ayalon, Ari; Sharaev, Agnesa; Kazir, Zoya; Brekhman, Vera; Lotan, Tamar

    2014-01-27

    Transdermal delivery is an attractive option for drug delivery. Nevertheless, the skin is a tough barrier and only a limited number of drugs can be delivered through it. The most difficult to deliver are hydrophilic drugs. The stinging mechanism of the cnidarians is a sophisticated injection system consisting of microcapsular nematocysts, which utilize built-in high osmotic pressures to inject a submicron tubule that penetrates and delivers their contents to the prey. Here we show, for the first time, that the nematocysts of the starlet sea anemone Nematostella vectensis can be isolated and incorporated into a topical formulation for continuous drug delivery. We demonstrate quantitative delivery of nicotinamide and lidocaine hydrochloride as a function of microcapsular dose or drug exposure. We also show how the released submicron tubules can be exploited as a skin penetration enhancer prior to and independently of drug application. The microcapsules are non-irritant and may offer an attractive alternative for hydrophilic transdermal drug delivery.

  10. Continuous Drug Release by Sea Anemone Nematostella vectensis Stinging Microcapsules

    PubMed Central

    Tal, Yossi; Ayalon, Ari; Sharaev, Agnesa; Kazir, Zoya; Brekhman, Vera; Lotan, Tamar

    2014-01-01

    Transdermal delivery is an attractive option for drug delivery. Nevertheless, the skin is a tough barrier and only a limited number of drugs can be delivered through it. The most difficult to deliver are hydrophilic drugs. The stinging mechanism of the cnidarians is a sophisticated injection system consisting of microcapsular nematocysts, which utilize built-in high osmotic pressures to inject a submicron tubule that penetrates and delivers their contents to the prey. Here we show, for the first time, that the nematocysts of the starlet sea anemone Nematostella vectensis can be isolated and incorporated into a topical formulation for continuous drug delivery. We demonstrate quantitative delivery of nicotinamide and lidocaine hydrochloride as a function of microcapsular dose or drug exposure. We also show how the released submicron tubules can be exploited as a skin penetration enhancer prior to and independently of drug application. The microcapsules are non-irritant and may offer an attractive alternative for hydrophilic transdermal drug delivery. PMID:24473172

  11. Nonribosomal peptide synthesis in animals: the cyclodipeptide synthase of Nematostella.

    PubMed

    Seguin, Jérôme; Moutiez, Mireille; Li, Yan; Belin, Pascal; Lecoq, Alain; Fonvielle, Matthieu; Charbonnier, Jean-Baptiste; Pernodet, Jean-Luc; Gondry, Muriel

    2011-11-23

    Cyclodipeptide synthases (CDPSs) are small enzymes structurally related to class-I aminoacyl-tRNA synthetases (aaRSs). They divert aminoacylated tRNAs from their canonical role in ribosomal protein synthesis, for cyclodipeptide formation. All the CDPSs experimentally characterized to date are bacterial. We show here that a predicted CDPS from the sea anemone Nematostella vectensis is an active CDPS catalyzing the formation of various cyclodipeptides, preferentially containing tryptophan. Our findings demonstrate that eukaryotes encode active CDPSs and suggest that all CDPSs have a similar aminoacyl-tRNA synthetase-like architecture and ping-pong mechanism. They also raise questions about the biological roles of the cyclodipeptides produced in bacteria and eukaryotes.

  12. BEL/Pao retrotransposons in metazoan genomes

    PubMed Central

    2011-01-01

    Background Long terminal repeat (LTR) retrotransposons are a widespread kind of transposable element present in eukaryotic genomes. They are a major factor in genome evolution due to their ability to create large scale mutations and genome rearrangements. Compared to other transposable elements, little attention has been paid to elements belonging to the metazoan BEL/Pao subclass of LTR retrotransposons. No comprehensive characterization of these elements is available so far. The aim of this study was to describe all BEL/Pao elements in a set of 62 sequenced metazoan genomes, and to analyze their phylogenetic relationship. Results We identified a total of 7,861 BEL/Pao elements in 53 of our 62 study genomes. We identified BEL/Pao elements in 20 genomes where such elements had not been found so far. Our analysis shows that BEL/Pao elements are the second-most abundant class of LTR retrotransposons in the genomes we study, more abundant than Ty1/Copia elements, and second only to Ty3/Gypsy elements. They occur in multiple phyla, including basal metazoan phyla, suggesting that BEL/Pao elements arose early in animal evolution. We confirm findings from previous studies that BEL/Pao elements do not occur in mammals. The elements we found can be grouped into more than 1725 families, 1623 of which are new, previously unknown families. These families fall into seven superfamilies, only five of which have been characterized so far. One new superfamily is a major subdivision of the Pao superfamily which we propose to call Dan, because it is restricted to the genome of the zebrafish Danio rerio. The other new superfamily comprises 83 elements and is restricted to lower aquatic eumetazoans. We propose to call this superfamily Flow. BEL/Pao elements do not show any signs of recent horizontal gene transfer between distantly related species. Conclusions In sum, our analysis identifies thousands of new BEL/Pao elements and provides new insights into their distribution, abundance

  13. The telomere repeat motif of basal Metazoa.

    PubMed

    Traut, Walther; Szczepanowski, Monika; Vítková, Magda; Opitz, Christian; Marec, Frantisek; Zrzavý, Jan

    2007-01-01

    In most eukaryotes the telomeres consist of short DNA tandem repeats and associated proteins. Telomeric repeats are added to the chromosome ends by telomerase, a specialized reverse transcriptase. We examined telomerase activity and telomere repeat sequences in representatives of basal metazoan groups. Our results show that the 'vertebrate' telomere motif (TTAGGG)( n ) is present in all basal metazoan groups, i.e. sponges, Cnidaria, Ctenophora, and Placozoa, and also in the unicellular metazoan sister group, the Choanozoa. Thus it can be considered the ancestral telomere repeat motif of Metazoa. It has been conserved from the metazoan radiation in most animal phylogenetic lineages, and replaced by other motifs-according to our present knowledge-only in two major lineages, Arthropoda and Nematoda.

  14. Metazoan Parasites of Antarctic Fishes.

    PubMed

    Oğuz, Mehmet Cemal; Tepe, Yahya; Belk, Mark C; Heckmann, Richard A; Aslan, Burçak; Gürgen, Meryem; Bray, Rodney A; Akgül, Ülker

    2015-06-01

    To date, there have been nearly 100 papers published on metazoan parasites of Antarctic fishes, but there has not yet been any compilation of a species list of fish parasites for this large geographic area. Herein, we provide a list of all documented occurrences of monogenean, cestode, digenean, acanthocephalan, nematode, and hirudinean parasites of Antarctic fishes. The list includes nearly 250 parasite species found in 142 species of host fishes. It is likely that there are more species of fish parasites, which are yet to be documented from Antarctic waters.

  15. Development and epithelial organisation of muscle cells in the sea anemone Nematostella vectensis

    PubMed Central

    2014-01-01

    Introduction Nematostella vectensis, a member of the cnidarian class Anthozoa, has been established as a promising model system in developmental biology, but while information about the genetic regulation of embryonic development is rapidly increasing, little is known about the cellular organization of the various cell types in the adult. Here, we studied the anatomy and development of the muscular system of N. vectensis to obtain further insights into the evolution of muscle cells. Results The muscular system of N. vectensis is comprised of five distinct muscle groups, which are differentiated into a tentacle and a body column system. Both systems house longitudinal as well as circular portions. With the exception of the ectodermal tentacle longitudinal muscle, all muscle groups are of endodermal origin. The shape and epithelial organization of muscle cells vary considerably between different muscle groups. Ring muscle cells are formed as epitheliomuscular cells in which the myofilaments are housed in the basal part of the cell, while the apical part is connected to neighboring cells by apical cell-cell junctions. In the longitudinal muscles of the column, the muscular part at the basal side is connected to the apical part by a long and narrow cytoplasmic bridge. The organization of these cells, however, remains epitheliomuscular. A third type of muscle cell is represented in the longitudinal muscle of the tentacle. Using transgenic animals we show that the apical cell-cell junctions are lost during differentiation, resulting in a detachment of the muscle cells to a basiepithelial position. These muscle cells are still located within the epithelium and outside of the basal matrix, therefore constituting basiepithelial myocytes. We demonstrate that all muscle cells, including the longitudinal basiepithelial muscle cells of the tentacle, initially differentiate from regular epithelial cells before they alter their epithelial organisation. Conclusions A wide range of

  16. Metazoan Gene Families from Metazome

    DOE Data Explorer

    Metazome is a joint project of the Department of Energy's Joint Genome Institute and the Center for Integrative Genomics to facilitate comparative genomic studies amongst metazoans. Clusters of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These clusters allow easy access to clade specific orthology/paralogy relationships as well as clade specific genes and gene expansions. As of version 2.0.4, Metazome provides access to twenty-four sequenced and annotated metazoan genomes, clustered at nine evolutionarily significant nodes. Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, Ensembl, and JGI are hyper-linked and searchable. The included organisms (by common name) are: Human, Mouse, Rat, Dog, Opossum, Chicken, Frog, Stickleback, Medaka, Fugu pufferfish; Zebrafish, Seasquirt - savignyi, Seasquirt - intestinalis, Amphioxus, Sea Urchin, Fruitfly, Mosquite, Yellow Fever Mosquito, Silkworm, Red Flour Beetle, Worm, Briggsae Worm, Owl limpet (snail), and Sea anemone. [Copied from Metazome Overview at http://www.metazome.net/Metazome_info.php

  17. Biological control of biofilms on membranes by metazoans.

    PubMed

    Klein, Theresa; Zihlmann, David; Derlon, Nicolas; Isaacson, Carl; Szivak, Ilona; Weissbrodt, David G; Pronk, Wouter

    2016-01-01

    Traditionally, chemical and physical methods have been used to control biofouling on membranes by inactivating and removing the biofouling layer. Alternatively, the permeability can be increased using biological methods while accepting the presence of the biofouling layer. We have investigated two different types of metazoans for this purpose, the oligochaete Aelosoma hemprichi and the nematode Plectus aquatilis. The addition of these grazing metazoans in biofilm-controlled membrane systems resulted in a flux increase of 50% in presence of the oligochaetes (Aelosoma hemprichi), and a flux increase of 119-164% in presence of the nematodes (Plectus aquatilis) in comparison to the control system operated without metazoans. The change in flux resulted from (1) a change in the biofilm structure, from a homogeneous, cake-like biofilm to a more heterogeneous, porous structure and (2) a significant reduction in the thickness of the basal layer. Pyrosequencing data showed that due to the addition of the predators, also the community composition of the biofilm in terms of protists and bacteria was strongly affected. The results have implications for a range of membrane processes, including ultrafiltration for potable water production, membrane bioreactors and reverse osmosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Current directions and future perspectives from the third Nematostella research conference☆

    PubMed Central

    Tarrant, Ann M.; Gilmore, Thomas D.; Reitzel, Adam M.; Levy, Oren; Technau, Ulrich; Martindale, Mark Q.

    2016-01-01

    The third Nematostella vectensis Research Conference took place in December 2013 in Eilat, Israel, as a satellite to the 8th International Conference on Coelenterate Biology. The starlet sea anemone, N. vectensis, has emerged as a powerful cnidarian model, in large part due to the extensive genomic and transcriptomic resources and molecular approaches that are becoming available for Nematostella, which were the focus of several presentations. In addition, research was presented highlighting the broader utility of this species for studies of development, circadian rhythms, signal transduction, and gene–environment interactions. PMID:25450665

  19. Identification of 526 conserved metazoan genetic innovations exposes a new role for cofactor E-like in neuronal microtubule homeostasis.

    PubMed

    Frédéric, Melissa Y; Lundin, Victor F; Whiteside, Matthew D; Cueva, Juan G; Tu, Domena K; Kang, S Y Catherine; Singh, Hansmeet; Baillie, David L; Hutter, Harald; Goodman, Miriam B; Brinkman, Fiona S L; Leroux, Michel R

    2013-01-01

    The evolution of metazoans from their choanoflagellate-like unicellular ancestor coincided with the acquisition of novel biological functions to support a multicellular lifestyle, and eventually, the unique cellular and physiological demands of differentiated cell types such as those forming the nervous, muscle and immune systems. In an effort to understand the molecular underpinnings of such metazoan innovations, we carried out a comparative genomics analysis for genes found exclusively in, and widely conserved across, metazoans. Using this approach, we identified a set of 526 core metazoan-specific genes (the 'metazoanome'), approximately 10% of which are largely uncharacterized, 16% of which are associated with known human disease, and 66% of which are conserved in Trichoplax adhaerens, a basal metazoan lacking neurons and other specialized cell types. Global analyses of previously-characterized core metazoan genes suggest a prevalent property, namely that they act as partially redundant modifiers of ancient eukaryotic pathways. Our data also highlights the importance of exaptation of pre-existing genetic tools during metazoan evolution. Expression studies in C. elegans revealed that many metazoan-specific genes, including tubulin folding cofactor E-like (TBCEL/coel-1), are expressed in neurons. We used C. elegans COEL-1 as a representative to experimentally validate the metazoan-specific character of our dataset. We show that coel-1 disruption results in developmental hypersensitivity to the microtubule drug paclitaxel/taxol, and that overexpression of coel-1 has broad effects during embryonic development and perturbs specialized microtubules in the touch receptor neurons (TRNs). In addition, coel-1 influences the migration, neurite outgrowth and mechanosensory function of the TRNs, and functionally interacts with components of the tubulin acetylation/deacetylation pathway. Together, our findings unveil a conserved molecular toolbox fundamental to metazoan

  20. Identification of 526 Conserved Metazoan Genetic Innovations Exposes a New Role for Cofactor E-like in Neuronal Microtubule Homeostasis

    PubMed Central

    Whiteside, Matthew D.; Cueva, Juan G.; Tu, Domena K.; Kang, S. Y. Catherine; Singh, Hansmeet; Baillie, David L.; Hutter, Harald; Goodman, Miriam B.; Brinkman, Fiona S. L.; Leroux, Michel R.

    2013-01-01

    The evolution of metazoans from their choanoflagellate-like unicellular ancestor coincided with the acquisition of novel biological functions to support a multicellular lifestyle, and eventually, the unique cellular and physiological demands of differentiated cell types such as those forming the nervous, muscle and immune systems. In an effort to understand the molecular underpinnings of such metazoan innovations, we carried out a comparative genomics analysis for genes found exclusively in, and widely conserved across, metazoans. Using this approach, we identified a set of 526 core metazoan-specific genes (the ‘metazoanome’), approximately 10% of which are largely uncharacterized, 16% of which are associated with known human disease, and 66% of which are conserved in Trichoplax adhaerens, a basal metazoan lacking neurons and other specialized cell types. Global analyses of previously-characterized core metazoan genes suggest a prevalent property, namely that they act as partially redundant modifiers of ancient eukaryotic pathways. Our data also highlights the importance of exaptation of pre-existing genetic tools during metazoan evolution. Expression studies in C. elegans revealed that many metazoan-specific genes, including tubulin folding cofactor E-like (TBCEL/coel-1), are expressed in neurons. We used C. elegans COEL-1 as a representative to experimentally validate the metazoan-specific character of our dataset. We show that coel-1 disruption results in developmental hypersensitivity to the microtubule drug paclitaxel/taxol, and that overexpression of coel-1 has broad effects during embryonic development and perturbs specialized microtubules in the touch receptor neurons (TRNs). In addition, coel-1 influences the migration, neurite outgrowth and mechanosensory function of the TRNs, and functionally interacts with components of the tubulin acetylation/deacetylation pathway. Together, our findings unveil a conserved molecular toolbox fundamental to metazoan

  1. The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration

    PubMed Central

    Rentzsch, Fabian; Röttinger, Eric

    2016-01-01

    Reverse genetics and next‐generation sequencing unlocked a new era in biology. It is now possible to identify an animal(s) with the unique biology most relevant to a particular question and rapidly generate tools to functionally dissect that biology. This review highlights the rise of one such novel model system, the starlet sea anemone Nematostella vectensis. Nematostella is a cnidarian (corals, jellyfish, hydras, sea anemones, etc.) animal that was originally targeted by EvoDevo researchers looking to identify a cnidarian animal to which the development of bilaterians (insects, worms, echinoderms, vertebrates, mollusks, etc.) could be compared. Studies in Nematostella have accomplished this goal and informed our understanding of the evolution of key bilaterian features. However, Nematostella is now going beyond its intended utility with potential as a model to better understand other areas such as regenerative biology, EcoDevo, or stress response. This review intends to highlight key EvoDevo insights from Nematostella that guide our understanding about the evolution of axial patterning mechanisms, mesoderm, and nervous systems in bilaterians, as well as to discuss briefly the potential of Nematostella as a model to better understand the relationship between development and regeneration. Lastly, the sum of research to date in Nematostella has generated a variety of tools that aided the rise of Nematostella to a viable model system. We provide a catalogue of current resources and techniques available to facilitate investigators interested in incorporating Nematostella into their research. WIREs Dev Biol 2016, 5:408–428. doi: 10.1002/wdev.222 For further resources related to this article, please visit the WIREs website. PMID:26894563

  2. Fast Neurotransmission Related Genes Are Expressed in Non Nervous Endoderm in the Sea Anemone Nematostella vectensis

    PubMed Central

    Oren, Matan; Brikner, Itzchak; Appelbaum, Lior; Levy, Oren

    2014-01-01

    Cnidarian nervous systems utilize chemical transmission to transfer signals through synapses and neurons. To date, ample evidence has been accumulated for the participation of neuropeptides, primarily RFamides, in neurotransmission. Yet, it is still not clear if this is the case for the classical fast neurotransmitters such as GABA, Glutamate, Acetylcholine and Monoamines. A large repertoire of cnidarian Fast Neurotransmitter related Genes (FNGs) has been recently identified in the genome of the sea anemone, Nematostella vectensis. In order to test whether FNGs are localized in cnidarian neurons, we characterized the expression patterns of eight Nematostella genes that are closely or distantly related to human central and peripheral nervous systems genes, in adult Nematostella and compared them to the RFamide localization. Our results show common expression patterns for all tested genes, in a single endodermal cell layer. These expressions did not correspond with the RFamide expressing nerve cell network. Following these results we suggest that the tested Nematostella genes may not be directly involved in vertebrate-like fast neurotransmission. PMID:24705400

  3. Expression and phylogenetic analysis of the zic gene family in the evolution and development of metazoans

    PubMed Central

    2010-01-01

    Background zic genes are members of the gli/glis/nkl/zic super-family of C2H2 zinc finger (ZF) transcription factors. Homologs of the zic family have been implicated in patterning neural and mesodermal tissues in bilaterians. Prior to this study, the origin of the metazoan zic gene family was unknown and expression of zic gene homologs during the development of early branching metazoans had not been investigated. Results Phylogenetic analyses of novel zic candidate genes identified a definitive zic homolog in the placozoan Trichoplax adhaerens, two gli/glis/nkl-like genes in the ctenophore Mnemiopsis leidyi, confirmed the presence of three gli/glis/nkl-like genes in Porifera, and confirmed the five previously identified zic genes in the cnidarian Nematostella vectensis. In the cnidarian N. vectensis, zic homologs are expressed in ectoderm and the gastrodermis (a bifunctional endomesoderm), in presumptive and developing tentacles, and in oral and sensory apical tuft ectoderm. The Capitella teleta zic homolog (Ct-zic) is detectable in a subset of the developing nervous system, the foregut, and the mesoderm associated with the segmentally repeated chaetae. Lastly, expression of gli and glis homologs in Mnemiopsis. leidyi is detected exclusively in neural cells in floor of the apical organ. Conclusions Based on our analyses, we propose that the zic gene family arose in the common ancestor of the Placozoa, Cnidaria and Bilateria from a gli/glis/nkl-like gene and that both ZOC and ZF-NC domains evolved prior to cnidarian-bilaterian divergence. We also conclude that zic expression in neural ectoderm and developing neurons is pervasive throughout the Metazoa and likely evolved from neural expression of an ancestral gli/glis/nkl/zic gene. zic expression in bilaterian mesoderm may be related to the expression in the gastrodermis of a cnidarian-bilaterian common ancestor. PMID:21054859

  4. Expression and phylogenetic analysis of the zic gene family in the evolution and development of metazoans.

    PubMed

    Layden, Michael J; Meyer, Néva P; Pang, Kevin; Seaver, Elaine C; Martindale, Mark Q

    2010-11-05

    zic genes are members of the gli/glis/nkl/zic super-family of C2H2 zinc finger (ZF) transcription factors. Homologs of the zic family have been implicated in patterning neural and mesodermal tissues in bilaterians. Prior to this study, the origin of the metazoan zic gene family was unknown and expression of zic gene homologs during the development of early branching metazoans had not been investigated. Phylogenetic analyses of novel zic candidate genes identified a definitive zic homolog in the placozoan Trichoplax adhaerens, two gli/glis/nkl-like genes in the ctenophore Mnemiopsis leidyi, confirmed the presence of three gli/glis/nkl-like genes in Porifera, and confirmed the five previously identified zic genes in the cnidarian Nematostella vectensis. In the cnidarian N. vectensis, zic homologs are expressed in ectoderm and the gastrodermis (a bifunctional endomesoderm), in presumptive and developing tentacles, and in oral and sensory apical tuft ectoderm. The Capitella teleta zic homolog (Ct-zic) is detectable in a subset of the developing nervous system, the foregut, and the mesoderm associated with the segmentally repeated chaetae. Lastly, expression of gli and glis homologs in Mnemiopsis. leidyi is detected exclusively in neural cells in floor of the apical organ. Based on our analyses, we propose that the zic gene family arose in the common ancestor of the Placozoa, Cnidaria and Bilateria from a gli/glis/nkl-like gene and that both ZOC and ZF-NC domains evolved prior to cnidarian-bilaterian divergence. We also conclude that zic expression in neural ectoderm and developing neurons is pervasive throughout the Metazoa and likely evolved from neural expression of an ancestral gli/glis/nkl/zic gene. zic expression in bilaterian mesoderm may be related to the expression in the gastrodermis of a cnidarian-bilaterian common ancestor.

  5. Daily cycle in oxygen consumption by the sea anemone Nematostella vectensis Stephenson

    PubMed Central

    Maas, Amy E.; Jones, Ian T.; Reitzel, Adam M.; Tarrant, Ann M.

    2016-01-01

    ABSTRACT In bilaterian animals, the circadian clock is intimately involved in regulating energetic metabolism. Although cnidarians exhibit diel behavioral rhythms including cycles in locomotor activity, tentacle extension and spawning, daily cycles in cnidarian metabolism have not been described. To explore a possible circadian metabolic cycle, we maintained the anemone Nematostella vectensis in a 12 h light/dark cycle, a reversed light cycle, or in constant darkness. Oxygen consumption rates were measured at intervals using an optical oxygen meter. Respiration rates responded to entrainment with higher rates during light periods. During a second experiment with higher temporal resolution, respiration rates peaked late in the light period. The diel pattern could be detected after six days in constant darkness. Together, our results suggest that respiration rates in Nematostella exhibit a daily cycle that may be under circadian control and that the cycle in respiration rate is not driven by the previously described nocturnal increase in locomotor activity in this species. PMID:26772201

  6. Metazoan phylogeny and the Cambrian radiation.

    PubMed

    Erwin, D H

    1991-04-01

    Sequence analysis of small-subunit ribosomal RNA (18S rRNA) has provided important new pieces for the great puzzle of metazoan phylogeny and has generated new perspectives on the Precambrian-Cambrian fossil record of the metazoan radiation. While the puzzle is far from resolved and the early results are plagued by difficulties in data analysis, intriguing insights have appeared. Early results suggest that molluscs and lophophorates are protostomes, and that deuterostomes may be derived from protostomes. More speculatively, annelids and molluscs may be derived from arthropods or an arthropod ancestor. The molecular evidence further strengthens paleontological arguments for an explosive metazoan radiation near the Vendian-Cambrian boundary, rather than a lengthy, but hidden, period of Precambrian diversification. Copyright © 1991. Published by Elsevier Ltd.

  7. Characterization of Morphological and Cellular Events Underlying Oral Regeneration in the Sea Anemone, Nematostella vectensis.

    PubMed

    Amiel, Aldine R; Johnston, Hereroa T; Nedoncelle, Karine; Warner, Jacob F; Ferreira, Solène; Röttinger, Eric

    2015-12-01

    Cnidarians, the extant sister group to bilateria, are well known for their impressive regenerative capacity. The sea anemone Nematostella vectensis is a well-established system for the study of development and evolution that is receiving increased attention for its regenerative capacity. Nematostella is able to regrow missing body parts within five to six days after its bisection, yet studies describing the morphological, cellular, and molecular events underlying this process are sparse and very heterogeneous in their experimental approaches. In this study, we lay down the basic framework to study oral regeneration in Nematostella vectensis. Using various imaging and staining techniques we characterize in detail the morphological, cellular, and global molecular events that define specific landmarks of this process. Furthermore, we describe in vivo assays to evaluate wound healing success and the initiation of pharynx reformation. Using our described landmarks for regeneration and in vivo assays, we analyze the effects of perturbing either transcription or cellular proliferation on the regenerative process. Interestingly, neither one of these experimental perturbations has major effects on wound closure, although they slightly delay or partially block it. We further show that while the inhibition of transcription blocks regeneration in a very early step, inhibiting cellular proliferation only affects later events such as pharynx reformation and tentacle elongation.

  8. Characterization of Morphological and Cellular Events Underlying Oral Regeneration in the Sea Anemone, Nematostella vectensis

    PubMed Central

    Amiel, Aldine R.; Johnston, Hereroa T.; Nedoncelle, Karine; Warner, Jacob F.; Ferreira, Solène; Röttinger, Eric

    2015-01-01

    Cnidarians, the extant sister group to bilateria, are well known for their impressive regenerative capacity. The sea anemone Nematostella vectensis is a well-established system for the study of development and evolution that is receiving increased attention for its regenerative capacity. Nematostella is able to regrow missing body parts within five to six days after its bisection, yet studies describing the morphological, cellular, and molecular events underlying this process are sparse and very heterogeneous in their experimental approaches. In this study, we lay down the basic framework to study oral regeneration in Nematostella vectensis. Using various imaging and staining techniques we characterize in detail the morphological, cellular, and global molecular events that define specific landmarks of this process. Furthermore, we describe in vivo assays to evaluate wound healing success and the initiation of pharynx reformation. Using our described landmarks for regeneration and in vivo assays, we analyze the effects of perturbing either transcription or cellular proliferation on the regenerative process. Interestingly, neither one of these experimental perturbations has major effects on wound closure, although they slightly delay or partially block it. We further show that while the inhibition of transcription blocks regeneration in a very early step, inhibiting cellular proliferation only affects later events such as pharynx reformation and tentacle elongation. PMID:26633371

  9. Glycoprotein hormones and their receptors emerged at the origin of metazoans.

    PubMed

    Roch, Graeme J; Sherwood, Nancy M

    2014-06-05

    The cystine knot growth factor (CKGF) superfamily includes important secreted developmental regulators, including the families of transforming growth factor beta, nerve growth factor, platelet-derived growth factor, and the glycoprotein hormones (GPHs). The evolutionary origin of the GPHs and the related invertebrate bursicon hormone, and their characteristic receptors, contributes to an understanding of the endocrine system in metazoans. Using a sensitive search method with hidden Markov models, we identified homologs of the hormones and receptors, along with the closely related bone morphogenetic protein (BMP) antagonists in basal metazoans. In sponges and a comb jelly, cystine knot hormones (CKHs) with mixed features of GPHs, bursicon, and BMP antagonists were identified using primary sequence and phylogenetic analysis. Also, we identified potential receptors for these CKHs, leucine-rich repeat-containing G protein-coupled receptors (LGRs), in the same species. Cnidarians, such as the sea anemone, coral, and hydra, diverged later in metazoan evolution and appear to have duplicated and differentiated CKH-like peptides resulting in bursicon/GPH-like peptides and several BMP antagonists: Gremlin (Grem), sclerostin domain containing (SOSD), neuroblastoma suppressor of tumorigenicity 1 (NBL1), and Norrie disease protein. An expanded cnidarian LGR group also evolved, including receptors for GPH and bursicon. With the appearance of bilaterians, a separate GPH (thyrostimulin) along with bursicon and BMP antagonists were present. Synteny indicates that the GPHs, Grem, and SOSD have been maintained in a common gene neighborhood throughout much of metazoan evolution. The stable and highly conserved CKGFs are not identified in nonmetazoan organisms but are established with their receptors in the basal metazoans, becoming critical to growth, development, and regulation in all animals.

  10. Concatenated analysis sheds light on early metazoan evolution and fuels a modern "urmetazoon" hypothesis.

    PubMed

    Schierwater, Bernd; Eitel, Michael; Jakob, Wolfgang; Osigus, Hans-Jürgen; Hadrys, Heike; Dellaporta, Stephen L; Kolokotronis, Sergios-Orestis; Desalle, Rob

    2009-01-27

    For more than a century, the origin of metazoan animals has been debated. One aspect of this debate has been centered on what the hypothetical "urmetazoon" bauplan might have been. The morphologically most simply organized metazoan animal, the placozoan Trichoplax adhaerens, resembles an intriguing model for one of several "urmetazoon" hypotheses: the placula hypothesis. Clear support for a basal position of Placozoa would aid in resolving several key issues of metazoan-specific inventions (including, for example, head-foot axis, symmetry, and coelom) and would determine a root for unraveling their evolution. Unfortunately, the phylogenetic relationships at the base of Metazoa have been controversial because of conflicting phylogenetic scenarios generated while addressing the question. Here, we analyze the sum of morphological evidence, the secondary structure of mitochondrial ribosomal genes, and molecular sequence data from mitochondrial and nuclear genes that amass over 9,400 phylogenetically informative characters from 24 to 73 taxa. Together with mitochondrial DNA genome structure and sequence analyses and Hox-like gene expression patterns, these data (1) provide evidence that Placozoa are basal relative to all other diploblast phyla and (2) spark a modernized "urmetazoon" hypothesis.

  11. Near intron pairs and the metazoan tree.

    PubMed

    Lehmann, Jörg; Stadler, Peter F; Krauss, Veiko

    2013-03-01

    Gene structure data can substantially advance our understanding of metazoan evolution and deliver an independent approach to resolve conflicts among existing hypotheses. Here, we used changes of spliceosomal intron positions as novel phylogenetic marker to reconstruct the animal tree. This kind of data is inferred from orthologous genes containing mutually exclusive introns at pairs of sequence positions in close proximity, so-called near intron pairs (NIPs). NIP data were collected for 48 species and utilized as binary genome-level characters in maximum parsimony (MP) analyses to reconstruct deep metazoan phylogeny. All groupings that were obtained with more than 80% bootstrap support are consistent with currently supported phylogenetic hypotheses. This includes monophyletic Chordata, Vertebrata, Nematoda, Platyhelminthes and Trochozoa. Several other clades such as Deuterostomia, Protostomia, Arthropoda, Ecdysozoa, Spiralia, and Eumetazoa, however, failed to be recovered due to a few problematic taxa such as the mite Ixodesand the warty comb jelly Mnemiopsis. The corresponding unexpected branchings can be explained by the paucity of synapomorphic changes of intron positions shared between some genomes, by the sensitivity of MP analyses to long-branch attraction (LBA), and by the very unequal evolutionary rates of intron loss and intron gain during evolution of the different subclades of metazoans. In addition, we obtained an assemblage of Cnidaria, Porifera, and Placozoa as sister group of Bilateria+Ctenophora with medium support, a disputable, but remarkable result. We conclude that NIPs can be used as phylogenetic characters also within a broader phylogenetic context, given that they have emerged regularly during evolution irrespective of the large variation of intron density across metazoan genomes.

  12. Rolling circle amplification of metazoan mitochondrialgenomes

    SciTech Connect

    Simison, W. Brian; Lindberg, D.R.; Boore, J.L.

    2005-07-31

    Here we report the successful use of rolling circle amplification (RCA) for the amplification of complete metazoan mt genomes to make a product that is amenable to high-throughput genome sequencing techniques. The benefits of RCA over PCR are many and with further development and refinement of RCA, the sequencing of organellar genomics will require far less time and effort than current long PCR approaches.

  13. Early metazoan life: divergence, environment and ecology

    PubMed Central

    Erwin, Douglas H.

    2015-01-01

    Recent molecular clock studies date the origin of Metazoa to 750–800 million years ago (Ma), roughly coinciding with evidence from geochemical proxies that oxygen levels rose from less than 0.1% present atmospheric level (PAL) to perhaps 1–3% PAL O2. A younger origin of Metazoa would require greatly increased substitution rates across many clades and many genes; while not impossible, this is less parsimonious. Yet the first fossil evidence for metazoans (the Doushantuo embryos) about 600 Ma is followed by the Ediacaran fossils after 580 Ma, the earliest undisputed bilaterians at 555 Ma, and an increase in the size and morphologic complexity of bilaterians around 542 Ma. This temporal framework suggests a missing 150–200 Myr of early metazoan history that encompasses many apparent novelties in the early evolution of the nervous system. This span includes two major glaciations, and complex marine geochemical changes including major changes in redox and other environmental changes. One possible resolution is that animals of these still unknown Cryogenian and early Ediacaran ecosystems were relatively simple, with highly conserved developmental genes involved in cell-type specification and simple patterning. In this model, complex nervous systems are a convergent phenomenon in bilaterian clades which occurred close to the time that larger metazoans appeared in the fossil record. PMID:26554036

  14. Early metazoan life: divergence, environment and ecology.

    PubMed

    Erwin, Douglas H

    2015-12-19

    Recent molecular clock studies date the origin of Metazoa to 750-800 million years ago (Ma), roughly coinciding with evidence from geochemical proxies that oxygen levels rose from less than 0.1% present atmospheric level (PAL) to perhaps 1-3% PAL O2. A younger origin of Metazoa would require greatly increased substitution rates across many clades and many genes; while not impossible, this is less parsimonious. Yet the first fossil evidence for metazoans (the Doushantuo embryos) about 600 Ma is followed by the Ediacaran fossils after 580 Ma, the earliest undisputed bilaterians at 555 Ma, and an increase in the size and morphologic complexity of bilaterians around 542 Ma. This temporal framework suggests a missing 150-200 Myr of early metazoan history that encompasses many apparent novelties in the early evolution of the nervous system. This span includes two major glaciations, and complex marine geochemical changes including major changes in redox and other environmental changes. One possible resolution is that animals of these still unknown Cryogenian and early Ediacaran ecosystems were relatively simple, with highly conserved developmental genes involved in cell-type specification and simple patterning. In this model, complex nervous systems are a convergent phenomenon in bilaterian clades which occurred close to the time that larger metazoans appeared in the fossil record.

  15. Molecular characterization of the apical organ of the anthozoan Nematostella vectensis.

    PubMed

    Sinigaglia, Chiara; Busengdal, Henriette; Lerner, Avi; Oliveri, Paola; Rentzsch, Fabian

    2015-02-01

    Apical organs are sensory structures present in many marine invertebrate larvae where they are considered to be involved in their settlement, metamorphosis and locomotion. In bilaterians they are characterised by a tuft of long cilia and receptor cells and they are associated with groups of neurons, but their relatively low morphological complexity and dispersed phylogenetic distribution have left their evolutionary relationship unresolved. Moreover, since apical organs are not present in the standard model organisms, their development and function are not well understood. To provide a foundation for a better understanding of this structure we have characterised the molecular composition of the apical organ of the sea anemone Nematostella vectensis. In a microarray-based comparison of the gene expression profiles of planulae with either a wildtype or an experimentally expanded apical organ, we identified 78 evolutionarily conserved genes, which are predominantly or specifically expressed in the apical organ of Nematostella. This gene set comprises signalling molecules, transcription factors, structural and metabolic genes. The majority of these genes, including several conserved, but previously uncharacterized ones, are potentially involved in different aspects of the development or function of the long cilia of the apical organ. To demonstrate the utility of this gene set for comparative analyses, we further analysed the expression of a subset of previously uncharacterized putative orthologs in sea urchin larvae and detected expression for twelve out of eighteen of them in the apical domain. Our study provides a molecular characterization of the apical organ of Nematostella and represents an informative tool for future studies addressing the development, function and evolutionary history of apical organ cells.

  16. Molecular characterization of the apical organ of the anthozoan Nematostella vectensis

    PubMed Central

    Sinigaglia, Chiara; Busengdal, Henriette; Lerner, Avi; Oliveri, Paola; Rentzsch, Fabian

    2015-01-01

    Apical organs are sensory structures present in many marine invertebrate larvae where they are considered to be involved in their settlement, metamorphosis and locomotion. In bilaterians they are characterised by a tuft of long cilia and receptor cells and they are associated with groups of neurons, but their relatively low morphological complexity and dispersed phylogenetic distribution have left their evolutionary relationship unresolved. Moreover, since apical organs are not present in the standard model organisms, their development and function are not well understood. To provide a foundation for a better understanding of this structure we have characterised the molecular composition of the apical organ of the sea anemone Nematostella vectensis. In a microarray-based comparison of the gene expression profiles of planulae with either a wildtype or an experimentally expanded apical organ, we identified 78 evolutionarily conserved genes, which are predominantly or specifically expressed in the apical organ of Nematostella. This gene set comprises signalling molecules, transcription factors, structural and metabolic genes. The majority of these genes, including several conserved, but previously uncharacterized ones, are potentially involved in different aspects of the development or function of the long cilia of the apical organ. To demonstrate the utility of this gene set for comparative analyses, we further analysed the expression of a subset of previously uncharacterized putative orthologs in sea urchin larvae and detected expression for twelve out of eighteen of them in the apical domain. Our study provides a molecular characterization of the apical organ of Nematostella and represents an informative tool for future studies addressing the development, function and evolutionary history of apical organ cells. PMID:25478911

  17. FGFRL1 is a neglected putative actor of the FGF signalling pathway present in all major metazoan phyla

    PubMed Central

    Bertrand, Stephanie; Somorjai, Ildiko; Garcia-Fernandez, Jordi; Lamonerie, Thomas; Escriva, Hector

    2009-01-01

    Background Fibroblast Growth Factors (FGF) and their receptors are well known for having major implications in cell signalling controlling embryonic development. Recently, a gene coding for a protein closely related to FGFRs (Fibroblast Growth Factor Receptors) called FGFR5 or FGFR-like 1 (FGFRL1), has been described in vertebrates. An orthologous gene was also found in the cephalochordate amphioxus, but no orthologous genes were found by the authors in other non-vertebrate species, even if a FGFRL1 gene was identified in the sea urchin genome, as well as a closely related gene, named nou-darake, in the planarian Dugesia japonica. These intriguing data of a deuterostome-specific gene that might be implicated in FGF signalling prompted us to search for putative FGFRL1 orthologues in the completely sequenced genomes of metazoans. Results We found FGFRL1 genes in the cnidarian Nematostella vectensis as well as in many bilaterian species. Our analysis also shows that FGFRL1 orthologous genes are linked in the genome with other members of the FGF signalling pathway from cnidarians to bilaterians (distance < 10 Mb). To better understand the implication of FGFRL1 genes in chordate embryonic development, we have analyzed expression patterns of the amphioxus and the mouse genes by whole mount in situ hybridization. We show that some homologous expression territories can be defined, and we propose that FGFRL1 and FGF8/17/18 were already co-expressed in the pharyngeal endoderm in the ancestor of chordates. Conclusion Our work sheds light on the existence of a putative FGF signalling pathway actor present in the ancestor of probably all metazoans, the function of which has received little attention until now. PMID:19740411

  18. Hydra meiosis reveals unexpected conservation of structural synaptonemal complex proteins across metazoans

    PubMed Central

    Fraune, Johanna; Alsheimer, Manfred; Volff, Jean-Nicolas; Busch, Karoline; Fraune, Sebastian; Bosch, Thomas C. G.; Benavente, Ricardo

    2012-01-01

    The synaptonemal complex (SC) is a key structure of meiosis, mediating the stable pairing (synapsis) of homologous chromosomes during prophase I. Its remarkable tripartite structure is evolutionarily well conserved and can be found in almost all sexually reproducing organisms. However, comparison of the different SC protein components in the common meiosis model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealed no sequence homology. This discrepancy challenged the hypothesis that the SC arose only once in evolution. To pursue this matter we focused on the evolution of SYCP1 and SYCP3, the two major structural SC proteins of mammals. Remarkably, our comparative bioinformatic and expression studies revealed that SYCP1 and SYCP3 are also components of the SC in the basal metazoan Hydra. In contrast to previous assumptions, we therefore conclude that SYCP1 and SYCP3 form monophyletic groups of orthologous proteins across metazoans. PMID:23012415

  19. Evolution of selenoproteins in the metazoan.

    PubMed

    Jiang, Liang; Ni, Jiazuan; Liu, Qiong

    2012-09-03

    The selenocysteine (Sec) containing proteins, selenoproteins, are an important group of proteins present throughout all 3 kingdoms of life. With the rapid progression of selenoprotein research in the post-genomic era, application of bioinformatics methods to the identification of selenoproteins in newly sequenced species has become increasingly important. Although selenoproteins in human and other vertebrates have been investigated, studies of primitive invertebrate selenoproteomes are rarely reported outside of insects and nematodes. A more integrated view of selenoprotein evolution was constructed using several representative species from different evolutionary eras. Using a SelGenAmic-based selenoprotein identification method, 178 selenoprotein genes were identified in 6 invertebrates: Amphimedon queenslandica, Trichoplax adhaerens, Nematostella vectensis, Lottia gigantean, Capitella teleta, and Branchiostoma floridae. Amphioxus was found to have the most abundant and variant selenoproteins of any animal currently characterized, including a special selenoprotein P (SelP) possessing 3 repeated Trx-like domains and Sec residues in the N-terminal and 2 Sec residues in the C-terminal. This gene structure suggests the existence of two different strategies for extension of Sec numbers in SelP for the preservation and transportation of selenium. In addition, novel eukaryotic AphC-like selenoproteins were identified in sponges. Comparison of various animal species suggests that even the most primitive animals possess a selenoproteome range and variety similar to humans. During evolutionary history, only a few new selenoproteins have emerged and few were lost. Furthermore, the massive loss of selenoproteins in nematodes and insects likely occurred independently in isolated partial evolutionary branches.

  20. Evolution of selenoproteins in the metazoan

    PubMed Central

    2012-01-01

    Background The selenocysteine (Sec) containing proteins, selenoproteins, are an important group of proteins present throughout all 3 kingdoms of life. With the rapid progression of selenoprotein research in the post-genomic era, application of bioinformatics methods to the identification of selenoproteins in newly sequenced species has become increasingly important. Although selenoproteins in human and other vertebrates have been investigated, studies of primitive invertebrate selenoproteomes are rarely reported outside of insects and nematodes. Result A more integrated view of selenoprotein evolution was constructed using several representative species from different evolutionary eras. Using a SelGenAmic-based selenoprotein identification method, 178 selenoprotein genes were identified in 6 invertebrates: Amphimedon queenslandica, Trichoplax adhaerens, Nematostella vectensis, Lottia gigantean, Capitella teleta, and Branchiostoma floridae. Amphioxus was found to have the most abundant and variant selenoproteins of any animal currently characterized, including a special selenoprotein P (SelP) possessing 3 repeated Trx-like domains and Sec residues in the N-terminal and 2 Sec residues in the C-terminal. This gene structure suggests the existence of two different strategies for extension of Sec numbers in SelP for the preservation and transportation of selenium. In addition, novel eukaryotic AphC-like selenoproteins were identified in sponges. Conclusion Comparison of various animal species suggests that even the most primitive animals possess a selenoproteome range and variety similar to humans. During evolutionary history, only a few new selenoproteins have emerged and few were lost. Furthermore, the massive loss of selenoproteins in nematodes and insects likely occurred independently in isolated partial evolutionary branches. PMID:22943432

  1. NF-κB is required for cnidocyte development in the sea anemone Nematostella vectensis.

    PubMed

    Wolenski, Francis S; Bradham, Cynthia A; Finnerty, John R; Gilmore, Thomas D

    2013-01-01

    The sea anemone Nematostella vectensis (Nv) is a leading model organism for the phylum Cnidaria, which includes anemones, corals, jellyfishes and hydras. A defining trait across this phylum is the cnidocyte, an ectodermal cell type with a variety of functions including defense, prey capture and environmental sensing. Herein, we show that the Nv-NF-κB transcription factor and its inhibitor Nv-IκB are expressed in a subset of cnidocytes in the body column of juvenile and adult anemones. The size and distribution of the Nv-NF-κB-positive cnidocytes suggest that they are in a subtype known as basitrichous haplonema cnidocytes. Nv-NF-κB is primarily cytoplasmic in cnidocytes in juvenile and adult animals, but is nuclear when first detected in the 30-h post-fertilization embryo. Morpholino-mediated knockdown of Nv-NF-κB expression results in greatly reduced cnidocyte formation in the 5 day-old animal. Taken together, these results indicate that NF-κB plays a key role in the development of the phylum-specific cnidocyte cell type in Nematostella, likely by nuclear Nv-NF-κB-dependent activation of genes required for cnidocyte development.

  2. Meganuclease-assisted generation of stable transgenics in the sea anemone Nematostella vectensis.

    PubMed

    Renfer, Eduard; Technau, Ulrich

    2017-09-01

    The sea anemone Nematostella vectensis is a model system used by a rapidly growing research community for comparative genomics, developmental biology and ecology. Here, we describe a microinjection procedure for creating stable transgenic lines in Nematostella based on meganuclease (I-SceI)-assisted integration of a transgenic cassette into the genome. The procedure describes the preparation of the reagents, microinjection of the transgenesis vector and the husbandry of transgenic animals. The microinjection setup differs from those of previously published protocols by the use of a holding capillary mounted on an inverted fluorescence microscope. In one session of injections, a single researcher can microinject up to 1,300 zygotes with a reporter construct digested with the meganuclease I-SceI. Under optimal conditions, fully transgenic heterozygous F1 animals can be obtained within 4-5 months of the injections, with a germ-line transmission efficiency of ∼3%. The method is versatile and, after a short training phase, can be carried out by any researcher with basic training in molecular biology. Flexibility of construct design enables this method to be used for numerous applications, including the functional dissection of cis-regulatory elements, subcellular localization of proteins, detection of protein-binding partners, ectopic expression of genes of interest, lineage tracing and cell-type-specific reporter gene expression.

  3. Daily cycle in oxygen consumption by the sea anemone Nematostella vectensis Stephenson.

    PubMed

    Maas, Amy E; Jones, Ian T; Reitzel, Adam M; Tarrant, Ann M

    2016-01-15

    In bilaterian animals, the circadian clock is intimately involved in regulating energetic metabolism. Although cnidarians exhibit diel behavioral rhythms including cycles in locomotor activity, tentacle extension and spawning, daily cycles in cnidarian metabolism have not been described. To explore a possible circadian metabolic cycle, we maintained the anemone Nematostella vectensis in a 12 h light/dark cycle, a reversed light cycle, or in constant darkness. Oxygen consumption rates were measured at intervals using an optical oxygen meter. Respiration rates responded to entrainment with higher rates during light periods. During a second experiment with higher temporal resolution, respiration rates peaked late in the light period. The diel pattern could be detected after six days in constant darkness. Together, our results suggest that respiration rates in Nematostella exhibit a daily cycle that may be under circadian control and that the cycle in respiration rate is not driven by the previously described nocturnal increase in locomotor activity in this species. © 2016. Published by The Company of Biologists Ltd.

  4. Evolution of the Metazoan Mitochondrial Replicase

    PubMed Central

    Oliveira, Marcos T.; Haukka, Jani; Kaguni, Laurie S.

    2015-01-01

    The large number of complete mitochondrial DNA (mtDNA) sequences available for metazoan species makes it a good system for studying genome diversity, although little is known about the mechanisms that promote and/or are correlated with the evolution of this organellar genome. By investigating the molecular evolutionary history of the catalytic and accessory subunits of the mtDNA polymerase, pol γ, we sought to develop mechanistic insight into its function that might impact genome structure by exploring the relationships between DNA replication and animal mitochondrial genome diversity. We identified three evolutionary patterns among metazoan pol γs. First, a trend toward stabilization of both sequence and structure occurred in vertebrates, with both subunits evolving distinctly from those of other animal groups, and acquiring at least four novel structural elements, the most important of which is the HLH-3β (helix-loop-helix, 3 β-sheets) domain that allows the accessory subunit to homodimerize. Second, both subunits of arthropods and tunicates have become shorter and evolved approximately twice as rapidly as their vertebrate homologs. And third, nematodes have lost the gene for the accessory subunit, which was accompanied by the loss of its interacting domain in the catalytic subunit of pol γ, and they show the highest rate of molecular evolution among all animal taxa. These findings correlate well with the mtDNA genomic features of each group described above, and with their modes of DNA replication, although a substantive amount of biochemical work is needed to draw conclusive links regarding the latter. Describing the parallels between evolution of pol γ and metazoan mtDNA architecture may also help in understanding the processes that lead to mitochondrial dysfunction and to human disease-related phenotypes. PMID:25740821

  5. The evolution of metazoan extracellular matrix

    PubMed Central

    2012-01-01

    The modular domain structure of extracellular matrix (ECM) proteins and their genes has allowed extensive exon/domain shuffling during evolution to generate hundreds of ECM proteins. Many of these arose early during metazoan evolution and have been highly conserved ever since. Others have undergone duplication and divergence during evolution, and novel combinations of domains have evolved to generate new ECM proteins, particularly in the vertebrate lineage. The recent sequencing of several genomes has revealed many details of this conservation and evolution of ECM proteins to serve diverse functions in metazoa. PMID:22431747

  6. Insights into the Origin of Metazoan Filopodia and Microvilli

    PubMed Central

    Sánchez-Pons, Núria; Fairclough, Stephen R.; Lang, B. Franz; King, Nicole; Ruiz-Trillo, Iñaki

    2013-01-01

    Filopodia are fine actin-based cellular projections used for both environmental sensing and cell motility, and they are essential organelles for metazoan cells. In this study, we reconstruct the origin of metazoan filopodia and microvilli. We first report on the evolutionary assembly of the filopodial molecular toolkit and show that homologs of many metazoan filopodial components, including fascin and myosin X, were already present in the unicellular or colonial progenitors of metazoans. Furthermore, we find that the actin crosslinking protein fascin localizes to filopodia-like structures and microvilli in the choanoflagellate Salpingoeca rosetta. In addition, homologs of filopodial genes in the holozoan Capsaspora owczarzaki are upregulated in filopodia-bearing cells relative to those that lack them. Therefore, our findings suggest that proteins essential for metazoan filopodia and microvilli are functionally conserved in unicellular and colonial holozoans and that the last common ancestor of metazoans bore a complex and specific filopodial machinery. PMID:23770652

  7. Metazoan evolution of the armadillo repeat superfamily.

    PubMed

    Gul, Ismail Sahin; Hulpiau, Paco; Saeys, Yvan; van Roy, Frans

    2017-02-01

    The superfamily of armadillo repeat proteins is a fascinating archetype of modular-binding proteins involved in various fundamental cellular processes, including cell-cell adhesion, cytoskeletal organization, nuclear import, and molecular signaling. Despite their diverse functions, they all share tandem armadillo (ARM) repeats, which stack together to form a conserved three-dimensional structure. This superhelical armadillo structure enables them to interact with distinct partners by wrapping around them. Despite the important functional roles of this superfamily, a comprehensive analysis of the composition, classification, and phylogeny of this protein superfamily has not been reported. Furthermore, relatively little is known about a subset of ARM proteins, and some of the current annotations of armadillo repeats are incomplete or incorrect, often due to high similarity with HEAT repeats. We identified the entire armadillo repeat superfamily repertoire in the human genome, annotated each armadillo repeat, and performed an extensive evolutionary analysis of the armadillo repeat proteins in both metazoan and premetazoan species. Phylogenetic analyses of the superfamily classified them into several discrete branches with members showing significant sequence homology, and often also related functions. Interestingly, the phylogenetic structure of the superfamily revealed that about 30 % of the members predate metazoans and represent an ancient subset, which is gradually evolving to acquire complex and highly diverse functions.

  8. Initiating a regenerative response; cellular and molecular features of wound healing in the cnidarian Nematostella vectensis

    PubMed Central

    2014-01-01

    Background Wound healing is the first stage of a series of cellular events that are necessary to initiate a regenerative response. Defective wound healing can block regeneration even in animals with a high regenerative capacity. Understanding how signals generated during wound healing promote regeneration of lost structures is highly important, considering that virtually all animals have the ability to heal but many lack the ability to regenerate missing structures. Cnidarians are the phylogenetic sister taxa to bilaterians and are highly regenerative animals. To gain a greater understanding of how early animals generate a regenerative response, we examined the cellular and molecular components involved during wound healing in the anthozoan cnidarian Nematostella vectensis. Results Pharmacological inhibition of extracellular signal-regulated kinases (ERK) signaling blocks regeneration and wound healing in Nematostella. We characterized early and late wound healing events through genome-wide microarray analysis, quantitative PCR, and in situ hybridization to identify potential wound healing targets. We identified a number of genes directly related to the wound healing response in other animals (metalloproteinases, growth factors, transcription factors) and suggest that glycoproteins (mucins and uromodulin) play a key role in early wound healing events. This study also identified a novel cnidarian-specific gene, for a thiamine biosynthesis enzyme (vitamin B synthesis), that may have been incorporated into the genome by lateral gene transfer from bacteria and now functions during wound healing. Lastly, we suggest that ERK signaling is a shared element of the early wound response for animals with a high regenerative capacity. Conclusions This research describes the temporal events involved during Nematostella wound healing, and provides a foundation for comparative analysis with other regenerative and non-regenerative species. We have shown that the same genes that

  9. Sequential actions of β-catenin and Bmp pattern the oral nerve net in Nematostella vectensis

    PubMed Central

    Watanabe, Hiroshi; Kuhn, Anne; Fushiki, Manami; Agata, Kiyokazu; Özbek, Suat; Fujisawa, Toshitaka; Holstein, Thomas W.

    2014-01-01

    Animal evolution is closely linked to the emergence of the nervous system. At present it is unknown how the basic mechanisms of neural induction and formation of central nervous systems evolved. We addressed this question in Nematostella vectensis, a member of cnidarians, the ancient sister group of bilaterians. We found that β-catenin signalling is crucial for the early induction of the embryonic nervous system. β-Catenin activity at the blastopore induces specific neurogenic genes required for development of the oral nervous system. β-Catenin signalling induces also Bmp signalling, which, at later larval stages, becomes indispensible for the maintenance and asymmetric patterning of the oral nervous system along the primary and secondary (directive) axes. We hypothesize that the consecutive and functionally linked involvement of β-catenin and Bmp signalling in the formation of the cnidarian oral nervous system reflects an ancestral mechanism that evolved before the cnidarian/bilaterian split. PMID:25534229

  10. Independent evolution of genomic characters during major metazoan transitions.

    PubMed

    Simakov, Oleg; Kawashima, Takeshi

    2017-07-15

    Metazoan evolution encompasses a vast evolutionary time scale spanning over 600 million years. Our ability to infer ancestral metazoan characters, both morphological and functional, is limited by our understanding of the nature and evolutionary dynamics of the underlying regulatory networks. Increasing coverage of metazoan genomes enables us to identify the evolutionary changes of the relevant genomic characters such as the loss or gain of coding sequences, gene duplications, micro- and macro-synteny, and non-coding element evolution in different lineages. In this review we describe recent advances in our understanding of ancestral metazoan coding and non-coding features, as deduced from genomic comparisons. Some genomic changes such as innovations in gene and linkage content occur at different rates across metazoan clades, suggesting some level of independence among genomic characters. While their contribution to biological innovation remains largely unclear, we review recent literature about certain genomic changes that do correlate with changes to specific developmental pathways and metazoan innovations. In particular, we discuss the origins of the recently described pharyngeal cluster which is conserved across deuterostome genomes, and highlight different genomic features that have contributed to the evolution of this group. We also assess our current capacity to infer ancestral metazoan states from gene models and comparative genomics tools and elaborate on the future directions of metazoan comparative genomics relevant to evo-devo studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. PCR Primers for Metazoan Mitochondrial 12S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Kweskin, Matthew; Knowlton, Nancy

    2012-01-01

    Background Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64 complete mitochondrial genomes and then tested their efficacy. Methodology/Principal Findings A total of the 64 complete mitochondrial genome sequences representing all metazoan classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the complete metazoan mitochondrial genomes available in NCBI's Organelle Genome Resources database were used to determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will amplify target sequences for many metazoans. Conclusions/Significance Newly designed 12S ribosomal DNA primers have considerable potential for metazoan metagenetic analysis because of their ability to amplify sequences from many metazoans. PMID:22536450

  12. A staging system for the regeneration of a polyp from the aboral physa of the anthozoan Cnidarian Nematostella vectensis.

    PubMed

    Bossert, Patricia E; Dunn, Matthew P; Thomsen, Gerald H

    2013-11-01

    As the sea anemone Nematostella vectensis emerges as a model for studying regeneration, new tools will be needed to assess its regenerative processes and describe perturbations resulting from experimental investigation. Chief among these is the need for a universal set of staging criteria to establish morphological landmarks that will provide a common format for discussion among investigators. We have established morphological criteria to describe stages for rapidly assessing regeneration of the aboral end (physa) of Nematostella. Using this staging system, we observed rates of regeneration that are temperature independent during wound healing and temperature dependent afterward. Treatment with 25 μM lipoic acid delays the progression through wound healing without significantly affecting the subsequent rate of regeneration. Also, while an 11-day starvation before amputation causes only a minimal delay in regeneration, this delay is exacerbated by lipoic acid treatment. A system for staging the progression of regeneration in amputated Nematostella physa based on easily discernible morphological features provides a standard for the field. This system has allowed us to identify both temperature-dependent and -independent phases of regeneration, as well as a nutritional requirement for normal regenerative progression that is exacerbated by lipoic acid. Copyright © 2013 Wiley Periodicals, Inc.

  13. Ediacaran skeletal metazoan interpreted as a lophophorate

    PubMed Central

    Zhuravlev, A. Yu.; Wood, R. A.; Penny, A. M.

    2015-01-01

    While many skeletal biomineralized genera are described from Ediacaran (635–541 million years ago, Ma) strata, none have been suggested to have an affinity above the Porifera–Cnidaria metazoan grade. Here, we reinterpret the widespread terminal Ediacaran (approx. 550–541 Ma) sessile goblet-shaped Namacalathus as a triploblastic eumetazoan. Namacalathus has a stalked cup with radially symmetrical cross section, multiple lateral lumens and a central opening. We show that the skeleton of Namacalathus is composed of a calcareous foliated ultrastructure displaying regular concordant columnar inflections, with a possible inner organic-rich layer. These features point to an accretionary growth style of the skeleton and an affinity with the Lophotrochozoa, more specifically within the Lophophorata (Brachiopoda and Bryozoa). Additionally, we present evidence for asexual reproduction as expressed by regular budding in a bilateral pattern. The interpretation of Namacalathus as an Ediacaran total group lophophorate is consistent with an early radiation of the Lophophorata, as known early Cambrian representatives were sessile, mostly stalked forms, and in addition, the oldest known calcareous Brachiopoda (early Cambrian Obolellida) and Bryozoa (Ordovician Stenolaemata) possessed foliated ultrastructures. PMID:26538593

  14. The environmental genomics of metazoan thermal adaptation

    PubMed Central

    Porcelli, D; Butlin, R K; Gaston, K J; Joly, D; Snook, R R

    2015-01-01

    Continued and accelerating change in the thermal environment places an ever-greater priority on understanding how organisms are going to respond. The paradigm of ‘move, adapt or die', regarding ways in which organisms can respond to environmental stressors, stimulates intense efforts to predict the future of biodiversity. Assuming that extinction is an unpalatable outcome, researchers have focussed attention on how organisms can shift in their distribution to stay in the same thermal conditions or can stay in the same place by adapting to a changing thermal environment. How likely these respective outcomes might be depends on the answer to a fundamental evolutionary question, namely what genetic changes underpin adaptation to the thermal environment. The increasing access to and decreasing costs of next-generation sequencing (NGS) technologies, which can be applied to both model and non-model systems, provide a much-needed tool for understanding thermal adaptation. Here we consider broadly what is already known from non-NGS studies about thermal adaptation, then discuss the benefits and challenges of different NGS methodologies to add to this knowledge base. We then review published NGS genomics and transcriptomics studies of thermal adaptation to heat stress in metazoans and compare these results with previous non-NGS patterns. We conclude by summarising emerging patterns of genetic response and discussing future directions using these increasingly common techniques. PMID:25735594

  15. Regulation and expression of metazoan unconventional myosins.

    PubMed

    Sokac, A M; Bement, W M

    2000-01-01

    Unconventional myosins are molecular motors that convert adenosine triphosphate (ATP) hydrolysis into movement along actin filaments. On the basis of primary structure analysis, these myosins are represented by at least 15 distinct classes (classes 1 and 3-16), each of which is presumed to play a specific cellular role. However, in contrast to the conventional myosins-2, which drive muscle contraction and cytokinesis and have been studied intensively for many years in both uni- and multicellular organisms, unconventional myosins have only been subject to analysis in metazoan systems for a short time. Here we critically review what is known about unconventional myosin regulation, function, and expression. Several points emerge from this analysis. First, in spite of the high relative conservation of motor domains among the myosin classes, significant differences are found in biochemical and enzymatic properties of these motor domains. Second, the idea that characteristic distributions of unconventional myosins are solely dependent on the myosin tail domain is almost certainly an oversimplification. Third, the notion that most unconventional myosins function as transport motors for membranous organelles is challenged by recent data. Finally, we present a scheme that clarifies relationships between various modes of myosin regulation.

  16. A survey of metazoan selenocysteine insertion sequences.

    PubMed

    Lambert, André; Lescure, Alain; Gautheret, Daniel

    2002-09-01

    The computational detection of novel selenoproteins in genomic sequences is usually achieved through identification of SECIS, a conserved secondary structure element found in the 3' UTR of animal selenoprotein mRNAs. Previous studies have used "descriptors" specifying the number of base pairs and the conserved nucleotides in SECIS to identify this element. A major drawback of the "descriptor" approach is that the number of detections in current genomic or transcript databases largely exceeds the number of true selenoproteins. In this study, we use instead the ERPIN program to detect SECIS elements. ERPIN is based on a lod-score profile algorithm that uses a training-set of aligned RNA sequences as input. From an initial alignment of 44 animal SECIS sequences, we performed a series of iterative searches in which the training set was progressively enriched up to 117 confirmed SECIS elements, from a large collection of metazoan species. About 200 high-scoring candidates were also detected. We show that ERPIN scores for these candidates can be converted into expect values, thus enabling their statistical evaluation. The most interesting SECIS candidates are presented.

  17. Marine microalgae attack and feed on metazoans

    PubMed Central

    Berge, Terje; Poulsen, Louise K; Moldrup, Morten; Daugbjerg, Niels; Juel Hansen, Per

    2012-01-01

    Free-living microalgae from the dinoflagellate genus Karlodinium are known to form massive blooms in eutrophic coastal waters worldwide and are often associated with fish kills. Natural bloom populations, recently shown to consist of the two mixotrophic and toxic species Karlodinium armiger and Karlodinium veneficum have caused fast paralysis and mortality of finfish and copepods in the laboratory, and have been associated with reduced metazooplankton biomass in-situ. Here we show that a strain of K. armiger (K-0688) immobilises the common marine copepod Acartia tonsa in a density-dependent manner and collectively ingests the grazer to promote its own growth rate. In contrast, four strains of K. veneficum did not attack or affect the motility and survival of the copepods. Copepod immobilisation by the K. armiger strain was fast (within 15 min) and caused by attacks of swarming cells, likely through the transfer and action of a highly potent but uncharacterised neurotoxin. The copepods grazed and reproduced on a diet of K. armiger at densities below 1000, cells ml−1, but above 3500 cells ml−1 the mixotrophic dinoflagellates immobilised, fed on and killed the copepods. Switching the trophic role of the microalgae from prey to predator of copepods couples population growth to reduced grazing pressure, promoting the persistence of blooms at high densities. K. armiger also fed on three other metazoan organisms offered, suggesting that active predation by mixotrophic dinoflagellates may be directly involved in causing mortalities at several trophic levels in the marine food web. PMID:22513533

  18. Marine microalgae attack and feed on metazoans.

    PubMed

    Berge, Terje; Poulsen, Louise K; Moldrup, Morten; Daugbjerg, Niels; Juel Hansen, Per

    2012-10-01

    Free-living microalgae from the dinoflagellate genus Karlodinium are known to form massive blooms in eutrophic coastal waters worldwide and are often associated with fish kills. Natural bloom populations, recently shown to consist of the two mixotrophic and toxic species Karlodinium armiger and Karlodinium veneficum have caused fast paralysis and mortality of finfish and copepods in the laboratory, and have been associated with reduced metazooplankton biomass in-situ. Here we show that a strain of K. armiger (K-0688) immobilises the common marine copepod Acartia tonsa in a density-dependent manner and collectively ingests the grazer to promote its own growth rate. In contrast, four strains of K. veneficum did not attack or affect the motility and survival of the copepods. Copepod immobilisation by the K. armiger strain was fast (within 15 min) and caused by attacks of swarming cells, likely through the transfer and action of a highly potent but uncharacterised neurotoxin. The copepods grazed and reproduced on a diet of K. armiger at densities below 1000, cells ml(-1), but above 3500 cells ml(-1) the mixotrophic dinoflagellates immobilised, fed on and killed the copepods. Switching the trophic role of the microalgae from prey to predator of copepods couples population growth to reduced grazing pressure, promoting the persistence of blooms at high densities. K. armiger also fed on three other metazoan organisms offered, suggesting that active predation by mixotrophic dinoflagellates may be directly involved in causing mortalities at several trophic levels in the marine food web.

  19. Environmental sensing and response genes in Cnidaria: the chemical defensome in the sea anemone Nematostella vectensis

    PubMed Central

    Goldstone, J.V.

    2010-01-01

    The starlet sea anemone Nematostella vectensis has been recently established as a new model system for the study of the evolution of developmental processes, as cnidaria occupy a key evolutionary position at the base of the bilateria. Cnidaria play important roles in estuarine and reef communities, but are exposed to many environmental stressors. Here I describe the genetic components of a ‘chemical defensome’ in the genome of N. vectensis, and review cnidarian molecular toxicology. Gene families that defend against chemical stressors and the transcription factors that regulate these genes have been termed a ‘chemical defensome,’ and include the cytochromes P450 and other oxidases, various conjugating enyzymes, the ATP-dependent efflux transporters, oxidative detoxification proteins, as well as various transcription factors. These genes account for about 1% (266/27200) of the predicted genes in the sea anemone genome, similar to the proportion observed in tunicates and humans, but lower than that observed in sea urchins. While there are comparable numbers of stress-response genes, the stress sensor genes appear to be reduced in N. vectensis relative to many model protostomes and deuterostomes. Cnidarian toxicology is understudied, especially given the important ecological roles of many cnidarian species. New genomic resources should stimulate the study of chemical stress sensing and response mechanisms in cnidaria, and allow us to further illuminate the evolution of chemical defense gene networks. PMID:18956243

  20. A Computational Approach towards a Gene Regulatory Network for the Developing Nematostella vectensis Gut

    PubMed Central

    Botman, Daniel; Röttinger, Eric; Martindale, Mark Q.; de Jong, Johann; Kaandorp, Jaap A.

    2014-01-01

    Background The starlet sea anemone Nematostella vectensis is a diploblastic cnidarian that expresses a set of conserved genes for gut formation during its early development. During the last decade, the spatial distribution of many of these genes has been visualized with RNA hybridization or protein immunolocalization techniques. However, due to N. vectensis' curved and changing morphology, quantification of these spatial data is problematic. A method is developed for two-dimensional gene expression quantification, which enables a numerical analysis and dynamic modeling of these spatial patterns. Methods/Result In this work, first standardized gene expression profiles are generated from publicly available N. vectensis embryo images that display mRNA and/or protein distributions. Then, genes expressed during gut formation are clustered based on their expression profiles, and further grouped based on temporal appearance of their gene products in embryonic development. Representative expression profiles are manually selected from these clusters, and used as input for a simulation-based optimization scheme. This scheme iteratively fits simulated profiles to the selected profiles, leading to an optimized estimation of the model parameters. Finally, a preliminary gene regulatory network is derived from the optimized model parameters. Outlook While the focus of this study is N. vectensis, the approach outlined here is suitable for inferring gene regulatory networks in the embryonic development of any animal, thus allowing to comparatively study gene regulation of gut formation in silico across various species. PMID:25076223

  1. Nanotoxicology using the sea anemone Nematostella vectensis: from developmental toxicity to genotoxicology.

    PubMed

    Ambrosone, Alfredo; Marchesano, Valentina; Mazzarella, Veronica; Tortiglione, Claudia

    2014-08-01

    Concomitant with the fast-growing advances in the synthesis and engineering of colloidal nanocrystals, an urgent evaluation of their toxicity on human beings and environment is strongly encouraged by public health organisations. Despite the in vitro approaches employed for toxicological screening of hazardous compounds, the use of simple and cost-effective living organisms may enormously contribute to solve unanswered questions related to embryotoxic and teratogenic effects of nanomaterials. Here, the sea anemone Nematostella vectensis (Cnidaria, Anthozoa) is presented as a novel model organism to profile bio/non-bio interactions and to show a comprehensive toxicological analysis performed on embryos, larvae and adults treated with fluorescent cadmium-based nanocrystals. Spanning from in vivo biodistribution to molecular investigations, different behaviours and effects depending on the composition and surface coatings are showed. Rod-shaped cadmium selenide/cadmium sulfide (CdSe/CdS) nanocrystals resulted in excellent imaging probes to track N. vectensis development with negligible adverse effects, while spherical CdTe nanocrystals severely impaired embryogenesis, resulting in aberrant phenotypes and deregulation of developmental genes, which raise severe worries for a safe use of this type of nanoparticles for human purposes and environmental contamination.

  2. Environmental sensing and response genes in cnidaria: the chemical defensome in the sea anemone Nematostella vectensis.

    PubMed

    Goldstone, J V

    2008-12-01

    The starlet sea anemone Nematostella vectensis has been recently established as a new model system for the study of the evolution of developmental processes, as cnidaria occupy a key evolutionary position at the base of the bilateria. Cnidaria play important roles in estuarine and reef communities, but are exposed to many environmental stressors. Here, I describe the genetic components of a "chemical defensome" in the genome of N. vectensis and review cnidarian molecular toxicology. Gene families that defend against chemical stressors and the transcription factors that regulate these genes have been termed a chemical defensome and include the cytochromes P450 and other oxidases, various conjugating enyzymes, the ATP-dependent efflux transporters, oxidative detoxification proteins, as well as various transcription factors. These genes account for about 1% (266/27,200) of the predicted genes in the sea anemone genome, similar to the proportion observed in tunicates and humans, but lower than that observed in sea urchins. While there are comparable numbers of stress-response genes, the stress sensor genes appear to be reduced in N. vectensis relative to many model protostomes and deuterostomes. Cnidarian toxicology is understudied, especially given the important ecological roles of many cnidarian species. New genomic resources should stimulate the study of chemical stress sensing and response mechanisms in cnidaria and allow us to further illuminate the evolution of chemical defense gene networks.

  3. Expression of Pax gene family members in the anthozoan cnidarian, Nematostella vectensis.

    PubMed

    Matus, David Q; Pang, Kevin; Daly, Meg; Martindale, Mark Q

    2007-01-01

    Pax genes are a family of homeodomain transcription factors that have been isolated from protostomes (e.g., eight in Drosophilia) and deuterostomes (e.g., nine in vertebrates) as well as outside the Bilateria, from sponges, a placozoan, and several classes of cnidarians. The genome of an anthozoan cnidarian, the starlet sea anemone, Nematostella vectensis, has been surveyed by both degenerate polymerase chain reaction and in silico for the presence of Pax genes. N. vectensis possesses seven Pax genes, which are orthologous to cnidarian Pax genes (A,B,C, and D) previously identified in another anthozoan, a coral, Acropora millepora. Phylogenetic analyses including data from nonchordate deuterostomes indicates that there were five Pax gene classes in the protostome-deuterostome ancestor, but only three in the cnidarian-bilaterian ancestor, with PaxD class genes lost in medusozoan cnidarians. Pax genes play diverse roles in bilaterians, including eye formation (e.g., Pax6), segmentation (e.g., Pax3/7 class genes), and neural patterning (e.g., Pox-neuro, Pax2/5/8). We show the first expression data for members of all four Pax classes in a single species of cnidarian. N. vectensis Pax genes are expressed in both a cell-type and region-specific manner during embryogenesis, and likely play a role in patterning specific components of the cnidarian ectodermal nerve net. The results of these patterns are discussed with respect to Pax gene evolution in the Bilateria.

  4. A food's-eye view of the transition from basal metazoans to bilaterians.

    PubMed

    Blackstone, Neil W

    2007-11-01

    Living things invariably consist of some kind of compartmentalized redox chemistry. Signaling pathways mediated by oxidation and reduction thus derive from the nature of life itself. The role of such redox or metabolic signaling broadened with major transitions in the history of life. Prokaryotes often use redox signals to deploy one or more variant electron carriers and associated enzymes to better utilize environmental energy sources. Eukaryotes transcend the strong surface-to-volume constraints inherent in prokaryotic cells by moving chemiosmotic membranes internally. As a consequence, eukaryotic redox signaling is frequently between these organelle membranes and the nucleus, thus potentially involving levels-of-selection synergies and antagonisms. Gradients of oxygen and substrate in simple multicellular organisms similarly associated metabolic signaling with levels of selection, now at the level of the cell and the organism. By allowing sequestration of large amounts of food, the evolution of the animal mouth was a pivotal event in metabolic signaling, leading to "multicellular" redox regulation. Because concentrated food resources may be patchy in time and space, long-lived sedentary animals with mouths employ such metabolic signaling and phenotypic plasticity in ways that adapt them to the changing availability of food. Alternatively, if the mouth is coupled to a battery of sensory equipment, the organism can actively seek out and sequester patches of food. In these early bilaterians, competition for food resources may have favored rapid development with little subsequent plasticity and metabolic signaling. With rapid dispersal and colonization, such "assembly-line" animals could effectively compete for patchy resources. Limiting metabolic signaling, however, resulted in a cascade of seemingly unrelated changes. These changes derive from the effectiveness of metabolic signaling in policing variation at the cellular level. If the signals an organism uses to control cellular replication are the same as the signals a cell uses to control its own metabolism, then cells that ignore these signals and carry out selfish replication will pay a fitness cost in terms of inefficient metabolism. Bilaterians with limited metabolic signaling thus require other mechanisms to police cell-level variation. Bilaterian features such as restricted somatic cell potency, a sequestered germ line, and determinate growth should be viewed in this context. Bilaterian senescence evolved as a by-product of restricted potency of somatic cells, itself a mechanism of cell policing required by limited metabolic signaling.

  5. Paleoecology of the earliest skeletal metazoan communities: Implications for early biomineralization

    NASA Astrophysics Data System (ADS)

    Wood, Rachel A.

    2011-05-01

    The oldest skeletal metazoans (~ 550-543 Ma) are probably of diploblast grade, i.e., stem- or crown-group cnidarians or basal stem-group bilaterians, sessile benthos, and found in shallow marine carbonate settings. The abundant ions in carbonate environments made the formation of carbonate exoskeletons within pre-existing organic matrices physiologically inexpensive. Individuals also reached the largest sizes within reefs, further suggesting that growth in settings conducive to rapid carbonate precipitation promoted skeletonization. Likewise, the preferential precipitation of aragonite and high-Mg calcite mineralogies was thermodynamically-favored by ambient seawater Mg:Ca ratios/ pCO 2. Finally, the sessile habit of the earliest skeletal metazoans may be due to the fact that it is energetically far less costly to mineralise immobile rather than mobile organisms. The morphological and paleoecological characteristics of this biota — occupation of progressively younger skeletal parts ( Cloudina and Sinotubulites), aggregating behavior and possession of a stalk or holdfast ( Namacalathus), and the ability to encrust, a modular habit, and large size ( Namapoikia) — as well as general attachment to thrombolitic substrates, are all consistent with competitive strategies and anti-predation traits. Together, these observations support the view that skeletonization was promoted by the rise of substrate competitors and bilaterian predators, in predominately carbonate platform and reef environments.

  6. Bacteria-bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance.

    PubMed

    Fraune, Sebastian; Anton-Erxleben, Friederike; Augustin, René; Franzenburg, Sören; Knop, Mirjam; Schröder, Katja; Willoweit-Ohl, Doris; Bosch, Thomas C G

    2015-07-01

    Epithelial surfaces of most animals are colonized by diverse microbial communities. Although it is generally agreed that commensal bacteria can serve beneficial functions, the processes involved are poorly understood. Here we report that in the basal metazoan Hydra, ectodermal epithelial cells are covered with a multilayered glycocalyx that provides a habitat for a distinctive microbial community. Removing this epithelial microbiota results in lethal infection by the filamentous fungus Fusarium sp. Restoring the complex microbiota in gnotobiotic polyps prevents pathogen infection. Although mono-associations with distinct members of the microbiota fail to provide full protection, additive and synergistic interactions of commensal bacteria are contributing to full fungal resistance. Our results highlight the importance of resident microbiota diversity as a protective factor against pathogen infections. Besides revealing insights into the in vivo function of commensal microbes in Hydra, our findings indicate that interactions among commensal bacteria are essential to inhibit pathogen infection.

  7. Bacteria–bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance

    PubMed Central

    Fraune, Sebastian; Anton-Erxleben, Friederike; Augustin, René; Franzenburg, Sören; Knop, Mirjam; Schröder, Katja; Willoweit-Ohl, Doris; Bosch, Thomas CG

    2015-01-01

    Epithelial surfaces of most animals are colonized by diverse microbial communities. Although it is generally agreed that commensal bacteria can serve beneficial functions, the processes involved are poorly understood. Here we report that in the basal metazoan Hydra, ectodermal epithelial cells are covered with a multilayered glycocalyx that provides a habitat for a distinctive microbial community. Removing this epithelial microbiota results in lethal infection by the filamentous fungus Fusarium sp. Restoring the complex microbiota in gnotobiotic polyps prevents pathogen infection. Although mono-associations with distinct members of the microbiota fail to provide full protection, additive and synergistic interactions of commensal bacteria are contributing to full fungal resistance. Our results highlight the importance of resident microbiota diversity as a protective factor against pathogen infections. Besides revealing insights into the in vivo function of commensal microbes in Hydra, our findings indicate that interactions among commensal bacteria are essential to inhibit pathogen infection. PMID:25514534

  8. Independent elaboration of steroid hormone signaling pathways in metazoans

    PubMed Central

    Markov, Gabriel V.; Tavares, Raquel; Dauphin-Villemant, Chantal; Demeneix, Barbara A.; Baker, Michael E.; Laudet, Vincent

    2009-01-01

    Steroid hormones regulate many physiological processes in vertebrates, nematodes, and arthropods through binding to nuclear receptors (NR), a metazoan-specific family of ligand-activated transcription factors. The main steps controlling the diversification of this family are now well-understood. In contrast, the origin and evolution of steroid ligands remain mysterious, although this is crucial for understanding the emergence of modern endocrine systems. Using a comparative genomic approach, we analyzed complete metazoan genomes to provide a comprehensive view of the evolution of major enzymatic players implicated in steroidogenesis at the whole metazoan scale. Our analysis reveals that steroidogenesis has been independently elaborated in the 3 main bilaterian lineages, and that steroidogenic cytochrome P450 enzymes descended from those that detoxify xenobiotics. PMID:19571007

  9. Early and late response of Nematostella vectensis transcriptome to heavy metals.

    PubMed

    Elran, Ron; Raam, Maayan; Kraus, Roey; Brekhman, Vera; Sher, Noa; Plaschkes, Inbar; Chalifa-Caspi, Vered; Lotan, Tamar

    2014-10-01

    Environmental contamination from heavy metals poses a global concern for the marine environment, as heavy metals are passed up the food chain and persist in the environment long after the pollution source is contained. Cnidarians play an important role in shaping marine ecosystems, but environmental pollution profoundly affects their vitality. Among the cnidarians, the sea anemone Nematostella vectensis is an advantageous model for addressing questions in molecular ecology and toxicology as it tolerates extreme environments and its genome has been published. Here, we employed a transcriptome-wide RNA-Seq approach to analyse N. vectensis molecular defence mechanisms against four heavy metals: Hg, Cu, Cd and Zn. Altogether, more than 4800 transcripts showed significant changes in gene expression. Hg had the greatest impact on up-regulating transcripts, followed by Cu, Zn and Cd. We identified, for the first time in Cnidaria, co-up-regulation of immediate-early transcription factors such as Egr1, AP1 and NF-κB. Time-course analysis of these genes revealed their early expression as rapidly as one hour after exposure to heavy metals, suggesting that they may complement or substitute for the roles of the metal-mediating Mtf1 transcription factor. We further characterized the regulation of a large array of stress-response gene families, including Hsp, ABC, CYP members and phytochelatin synthase, that may regulate synthesis of the metal-binding phytochelatins instead of the metallothioneins that are absent from Cnidaria genome. This study provides mechanistic insight into heavy metal toxicity in N. vectensis and sheds light on ancestral stress adaptations. © 2014 John Wiley & Sons Ltd.

  10. Concerted evolution of sea anemone neurotoxin genes is revealed through analysis of the Nematostella vectensis genome.

    PubMed

    Moran, Yehu; Weinberger, Hagar; Sullivan, James C; Reitzel, Adam M; Finnerty, John R; Gurevitz, Michael

    2008-04-01

    Gene families, which encode toxins, are found in many poisonous animals, yet there is limited understanding of their evolution at the nucleotide level. The release of the genome draft sequence for the sea anemone Nematostella vectensis enabled a comprehensive study of a gene family whose neurotoxin products affect voltage-gated sodium channels. All gene family members are clustered in a highly repetitive approximately 30-kb genomic region and encode a single toxin, Nv1. These genes exhibit extreme conservation at the nucleotide level which cannot be explained by purifying selection. This conservation greatly differs from the toxin gene families of other animals (e.g., snakes, scorpions, and cone snails), whose evolution was driven by diversifying selection, thereby generating a high degree of genetic diversity. The low nucleotide diversity at the Nv1 genes is reminiscent of that reported for DNA encoding ribosomal RNA (rDNA) and 2 hsp70 genes from Drosophila, which have evolved via concerted evolution. This evolutionary pattern was experimentally demonstrated in yeast rDNA and was shown to involve unequal crossing-over. Through sequence analysis of toxin genes from multiple N. vectensis populations and 2 other anemone species, Anemonia viridis and Actinia equina, we observed that the toxin genes for each sea anemone species are more similar to one another than to those of other species, suggesting they evolved by manner of concerted evolution. Furthermore, in 2 of the species (A. viridis and A. equina) we found genes that evolved under diversifying selection, suggesting that concerted evolution and accelerated evolution may occur simultaneously.

  11. The initiation of metamorphosis as an ancient polyphenic trait and its role in metazoan life-cycle evolution

    PubMed Central

    Degnan, Sandie M.; Degnan, Bernard M.

    2010-01-01

    Comparative genomics of representative basal metazoans leaves little doubt that the most recent common ancestor to all modern metazoans was morphogenetically complex. Here, we support this interpretation by demonstrating that the demosponge Amphimedon queenslandica has a biphasic pelagobenthic life cycle resembling that present in a wide range of bilaterians and anthozoan cnidarians. The A. queenslandica life cycle includes a compulsory planktonic larval phase that can end only once the larva develops competence to respond to benthic signals that induce settlement and metamorphosis. The temporal onset of competence varies between individuals as revealed by idiosyncratic responses to inductive cues. Thus, the biphasic life cycle with a dispersing larval phase of variable length appears to be a metazoan synapomorphy and may be viewed as an ancestral polyphenic trait. Larvae of a particular age that are subjected to an inductive cue either maintain the larval form or metamorphose into the post-larval/juvenile form. Variance in the development of competence dictates that only a subset of a larval cohort will settle and undergo metamorphosis at a given time, which in turn leads to variation in dispersal distance and in location of settlement. Population divergence and allopatric speciation are likely outcomes of this conserved developmental polyphenic trait. PMID:20083639

  12. Domain analysis of the Nematostella vectensis SNAIL ortholog reveals unique nucleolar localization that depends on the zinc-finger domains

    PubMed Central

    Dattoli, Ada A.; Hink, Mark A.; DuBuc, Timothy Q.; Teunisse, Bram J.; Goedhart, Joachim; Röttinger, Eric; Postma, Marten

    2015-01-01

    SNAIL transcriptional factors are key regulators during development and disease. They arose early during evolution, and in cnidarians such as Nematostella vectensis, NvSNAILA/B are detected in invaginating tissues during gastrulation. The function of SNAIL proteins is well established in bilaterians but their roles in cnidarians remain unknown. The structure of NvSNAILA and B is similar to the human SNAIL1 and 2, including SNAG and zinc-finger domains. Here, we performed a molecular analysis on localization and mobility of NvSNAILA/B using mammalian cells and Nematostella embryos. NvSNAILA/B display nuclear localization and mobility similar to HsSNAIL1/2. Strikingly, NvSNAILA is highly enriched in the nucleoli and shuttles between the nucleoli and the nucleoplasm. Truncation of the N-terminal SNAG domain, reported to contain Nuclear Localization Signals, markedly reduces nucleolar levels, without effecting nuclear localization or mobility. Truncation of the C-terminal zinc-fingers, involved in DNA binding in higher organisms, significantly affects subcellular localization and mobility. Specifically, the zinc-finger domains are required for nucleolar enrichment of NvSNAILA. Differently from SNAIL transcriptional factors described before, NvSNAILA is specifically enriched in the nucleoli co-localizing with nucleolar markers even after nucleolar disruption. Our findings implicate additional roles for SNAG and zinc-finger domains, suggesting a role for NvSNAILA in the nucleolus. PMID:26190255

  13. Domain analysis of the Nematostella vectensis SNAIL ortholog reveals unique nucleolar localization that depends on the zinc-finger domains.

    PubMed

    Dattoli, Ada A; Hink, Mark A; DuBuc, Timothy Q; Teunisse, Bram J; Goedhart, Joachim; Röttinger, Eric; Postma, Marten

    2015-07-20

    SNAIL transcriptional factors are key regulators during development and disease. They arose early during evolution, and in cnidarians such as Nematostella vectensis, NvSNAILA/B are detected in invaginating tissues during gastrulation. The function of SNAIL proteins is well established in bilaterians but their roles in cnidarians remain unknown. The structure of NvSNAILA and B is similar to the human SNAIL1 and 2, including SNAG and zinc-finger domains. Here, we performed a molecular analysis on localization and mobility of NvSNAILA/B using mammalian cells and Nematostella embryos. NvSNAILA/B display nuclear localization and mobility similar to HsSNAIL1/2. Strikingly, NvSNAILA is highly enriched in the nucleoli and shuttles between the nucleoli and the nucleoplasm. Truncation of the N-terminal SNAG domain, reported to contain Nuclear Localization Signals, markedly reduces nucleolar levels, without effecting nuclear localization or mobility. Truncation of the C-terminal zinc-fingers, involved in DNA binding in higher organisms, significantly affects subcellular localization and mobility. Specifically, the zinc-finger domains are required for nucleolar enrichment of NvSNAILA. Differently from SNAIL transcriptional factors described before, NvSNAILA is specifically enriched in the nucleoli co-localizing with nucleolar markers even after nucleolar disruption. Our findings implicate additional roles for SNAG and zinc-finger domains, suggesting a role for NvSNAILA in the nucleolus.

  14. Metazoan Hsp70-based protein disaggregases: emergence and mechanisms

    PubMed Central

    Nillegoda, Nadinath B.; Bukau, Bernd

    2015-01-01

    Proteotoxic stresses and aging cause breakdown of cellular protein homeostasis, allowing misfolded proteins to form aggregates, which dedicated molecular machines have evolved to solubilize. In bacteria, fungi, protozoa and plants protein disaggregation involves an Hsp70•J-protein chaperone system, which loads and activates a powerful AAA+ ATPase (Hsp100) disaggregase onto protein aggregate substrates. Metazoans lack cytosolic and nuclear Hsp100 disaggregases but still eliminate protein aggregates. This longstanding puzzle of protein quality control is now resolved. Robust protein disaggregation activity recently shown for the metazoan Hsp70-based disaggregases relies instead on a crucial cooperation between two J-protein classes and interaction with the Hsp110 co-chaperone. An expanding multiplicity of Hsp70 and J-protein family members in metazoan cells facilitates different configurations of this Hsp70-based disaggregase allowing unprecedented versatility and specificity in protein disaggregation. Here we review the architecture, operation, and adaptability of the emerging metazoan disaggregation system and discuss how this evolved. PMID:26501065

  15. Characterization of differential transcript abundance through time during Nematostella vectensis development

    PubMed Central

    2013-01-01

    Background Nematostella vectensis, a burrowing sea anemone, has become a popular species for the study of cnidarian development. In previous studies, the expression of a variety of genes has been characterized during N. vectensis development with in situ mRNA hybridization. This has provided detailed spatial resolution and a qualitative perspective on changes in expression. However, little is known about broad transcriptome-level patterns of gene expression through time. Here we examine the expression of N. vectensis genes through the course of development with quantitative RNA-seq. We provide an overview of changes in the transcriptome through development, and examine the maternal to zygotic transition, which has been difficult to investigate with other tools. Results We measured transcript abundance in N. vectensis with RNA-seq at six time points in development: zygote (2 hours post fertilization (HPF)), early blastula (7 HPF), mid-blastula (12 HPF), gastrula (24 HPF), planula (5 days post fertilization (DPF)) and young polyp (10 DPF). The major wave of zygotic expression appears between 7–12 HPF, though some changes occur between 2–7 HPF. The most dynamic changes in transcript abundance occur between the late blastula and early gastrula stages. More transcripts are upregulated between the gastrula and planula than downregulated, and a comparatively lower number of transcripts significantly change between planula and polyp. Within the maternal to zygotic transition, we identified a subset of maternal factors that decrease early in development, and likely play a role in suppressing zygotic gene expression. Among the first genes to be expressed zygotically are genes whose proteins may be involved in the degradation of maternal RNA. Conclusions The approach presented here is highly complementary to prior studies on spatial patterns of gene expression, as it provides a quantitative perspective on a broad set of genes through time but lacks spatial resolution. In

  16. In vitro cultures of ectodermal monolayers from the model sea anemone Nematostella vectensis.

    PubMed

    Rabinowitz, Claudette; Moiseeva, Elisabeth; Rinkevich, Baruch

    2016-12-01

    We report here a novel approach for the extraction, isolation and culturing of intact ectodermal tissue layers from a model marine invertebrate, the sea anemone Nematostella vectensis. A methodology is described in which a brief exposure of the animal to the mucolytic agent N-acetyl-L-cysteine (NAC) solution triggers the dislodging of the ectodermis from its underlying basement membrane and mesoglea. These extracted fragments of cell sheets adherent to culture-dish substrates, initially form 2D monolayers that are transformed within 24 h post-isolation into 3D structures. These ectodermal tissues were sustained in vitro for several months, retaining their 3D structure while continuously releasing cells into the surrounding media. Cultures were then used for cell type characterizations and, additionally, the underlying organization of actin filaments in the 3D structures are demonstrated. Incorporation of BrdU and immunohistochemical labeling using p-histone H3 primary antibody were performed to compare mitotic activities of ectodermal cells originating from intact and from in vivo regenerating animals. Results revealed no change in mitotic activities at 2 h after bisection and a 1.67-, 1.71- and 3.74-fold increase over 24, 48 and 72 h of regeneration, respectively, depicting a significant correlation coefficient (p < 0.05; R (2) = 0.74). A significant difference was found only between the control and 3-day regenerations (p = 0.016). Cell proliferation was demonstrated in the 3D ectodermis after 6 culturing days. Moreover, monolayers that were subjected to Ca++/Mg++ free medium for the first 2 h after isolation and then replaced by standard medium, showed, at 6 days of culturing, profuse appearance of positive p-histone H3-labeled nuclei in the 3D tissues. Cytochalasin administered throughout the culturing period abolished all p-histone H3 labeling. This study thus depicts novel in vitro tissue culturing of ectodermal layers from a model marine

  17. A quantitative reference transcriptome for Nematostella vectensis early embryonic development: a pipeline for de novo assembly in emerging model systems.

    PubMed

    Tulin, Sarah; Aguiar, Derek; Istrail, Sorin; Smith, Joel

    2013-01-01

    The de novo assembly of transcriptomes from short shotgun sequences raises challenges due to random and non-random sequencing biases and inherent transcript complexity. We sought to define a pipeline for de novo transcriptome assembly to aid researchers working with emerging model systems where well annotated genome assemblies are not available as a reference. To detail this experimental and computational method, we used early embryos of the sea anemone, Nematostella vectensis, an emerging model system for studies of animal body plan evolution. We performed RNA-seq on embryos up to 24 h of development using Illumina HiSeq technology and evaluated independent de novo assembly methods. The resulting reads were assembled using either the Trinity assembler on all quality controlled reads or both the Velvet and Oases assemblers on reads passing a stringent digital normalization filter. A control set of mRNA standards from the National Institute of Standards and Technology (NIST) was included in our experimental pipeline to invest our transcriptome with quantitative information on absolute transcript levels and to provide additional quality control. We generated >200 million paired-end reads from directional cDNA libraries representing well over 20 Gb of sequence. The Trinity assembler pipeline, including preliminary quality control steps, resulted in more than 86% of reads aligning with the reference transcriptome thus generated. Nevertheless, digital normalization combined with assembly by Velvet and Oases required far less computing power and decreased processing time while still mapping 82% of reads. We have made the raw sequencing reads and assembled transcriptome publically available. Nematostella vectensis was chosen for its strategic position in the tree of life for studies into the origins of the animal body plan, however, the challenge of reference-free transcriptome assembly is relevant to all systems for which well annotated gene models and independently

  18. A quantitative reference transcriptome for Nematostella vectensis early embryonic development: a pipeline for de novo assembly in emerging model systems

    PubMed Central

    2013-01-01

    Background The de novo assembly of transcriptomes from short shotgun sequences raises challenges due to random and non-random sequencing biases and inherent transcript complexity. We sought to define a pipeline for de novo transcriptome assembly to aid researchers working with emerging model systems where well annotated genome assemblies are not available as a reference. To detail this experimental and computational method, we used early embryos of the sea anemone, Nematostella vectensis, an emerging model system for studies of animal body plan evolution. We performed RNA-seq on embryos up to 24 h of development using Illumina HiSeq technology and evaluated independent de novo assembly methods. The resulting reads were assembled using either the Trinity assembler on all quality controlled reads or both the Velvet and Oases assemblers on reads passing a stringent digital normalization filter. A control set of mRNA standards from the National Institute of Standards and Technology (NIST) was included in our experimental pipeline to invest our transcriptome with quantitative information on absolute transcript levels and to provide additional quality control. Results We generated >200 million paired-end reads from directional cDNA libraries representing well over 20 Gb of sequence. The Trinity assembler pipeline, including preliminary quality control steps, resulted in more than 86% of reads aligning with the reference transcriptome thus generated. Nevertheless, digital normalization combined with assembly by Velvet and Oases required far less computing power and decreased processing time while still mapping 82% of reads. We have made the raw sequencing reads and assembled transcriptome publically available. Conclusions Nematostella vectensis was chosen for its strategic position in the tree of life for studies into the origins of the animal body plan, however, the challenge of reference-free transcriptome assembly is relevant to all systems for which well annotated

  19. Transposable elements: from DNA parasites to architects of metazoan evolution.

    PubMed

    Piskurek, Oliver; Jackson, Daniel J

    2012-07-12

    One of the most unexpected insights that followed from the completion of the human genome a decade ago was that more than half of our DNA is derived from transposable elements (TEs). Due to advances in high throughput sequencing technologies it is now clear that TEs comprise the largest molecular class within most metazoan genomes. TEs, once categorised as "junk DNA", are now known to influence genomic structure and function by increasing the coding and non-coding genetic repertoire of the host. In this way TEs are key elements that stimulate the evolution of metazoan genomes. This review highlights several lines of TE research including the horizontal transfer of TEs through host-parasite interactions, the vertical maintenance of TEs over long periods of evolutionary time, and the direct role that TEs have played in generating morphological novelty.

  20. An ancient protein-DNA interaction underlying metazoan sex determination.

    PubMed

    Murphy, Mark W; Lee, John K; Rojo, Sandra; Gearhart, Micah D; Kurahashi, Kayo; Banerjee, Surajit; Loeuille, Guy-André; Bashamboo, Anu; McElreavey, Kenneth; Zarkower, David; Aihara, Hideki; Bardwell, Vivian J

    2015-06-01

    DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. Here we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are used in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.

  1. An ancient protein-DNA interaction underlying metazoan sex determination

    PubMed Central

    Murphy, Mark W.; Lee, John K.; Rojo, Sandra; Gearhart, Micah D.; Kurahashi, Kayo; Banerjee, Surajit; Loeuille, Guy-André; Bashamboo, Anu; McElreavey, Kenneth; Zarkower, David; Aihara, Hideki; Bardwell, Vivian J.

    2015-01-01

    DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds to a pseudopalindromic target DNA. Here we show that DMRT proteins employ a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to employ multiple DNA binding modes (tetramer, trimer, dimer). ChIP-Exo indicates that multiple DNA binding modes also are used in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and in male-to-female sex reversal in humans. Our results illuminate an ancient molecular interaction that underlies much of metazoan sexual development. PMID:26005864

  2. An ancient protein-DNA interaction underlying metazoan sex determination

    SciTech Connect

    Murphy, Mark W.; Lee, John K.; Rojo, Sandra; Gearhart, Micah D.; Kurahashi, Kayo; Banerjee, Surajit; Loeuille, Guy-André; Bashamboo, Anu; McElreavey, Kenneth; Zarkower, David; Aihara, Hideki; Bardwell, Vivian J.

    2015-05-25

    DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. In this paper, we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are used in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Finally, our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.

  3. An ancient protein-DNA interaction underlying metazoan sex determination

    DOE PAGES

    Murphy, Mark W.; Lee, John K.; Rojo, Sandra; ...

    2015-05-25

    DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. In this paper, we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are usedmore » in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Finally, our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.« less

  4. Metazoan operons accelerate recovery from growth arrested states

    PubMed Central

    Zaslaver, Alon; Baugh, L. Ryan; Sternberg, Paul W.

    2011-01-01

    Summary Existing theories explain why operons are advantageous in prokaryotes, but their occurrence in metazoans is an enigma. Nematode operon genes, typically consisting of growth genes, are significantly up-regulated during recovery from growth-arrested states. This expression pattern is anti-correlated to non-operon genes consistent with a competition for transcriptional resources. We find that transcriptional resources are initially limiting during recovery, and that recovering animals are highly sensitive to any additional decrease in transcriptional resources. Operons become advantageous because by clustering growth genes into operons, fewer promoters compete for the limited transcriptional machinery, effectively increasing the concentration of transcriptional resources, and accelerating recovery. Mathematical modeling reveals how a moderate increase in transcriptional resources can substantially enhance transcription rate and recovery. This design principle occurs in different nematodes and the chordate C. intestinalis. As transition from arrest to rapid growth is shared by many metazoans, operons could have evolved to facilitate these processes. PMID:21663799

  5. Transposable Elements: From DNA Parasites to Architects of Metazoan Evolution

    PubMed Central

    Piskurek, Oliver; Jackson, Daniel J.

    2012-01-01

    One of the most unexpected insights that followed from the completion of the human genome a decade ago was that more than half of our DNA is derived from transposable elements (TEs). Due to advances in high throughput sequencing technologies it is now clear that TEs comprise the largest molecular class within most metazoan genomes. TEs, once categorised as "junk DNA", are now known to influence genomic structure and function by increasing the coding and non-coding genetic repertoire of the host. In this way TEs are key elements that stimulate the evolution of metazoan genomes. This review highlights several lines of TE research including the horizontal transfer of TEs through host-parasite interactions, the vertical maintenance of TEs over long periods of evolutionary time, and the direct role that TEs have played in generating morphological novelty. PMID:24704977

  6. Pre-Bilaterian Origins of the Hox Cluster and the Hox Code: Evidence from the Sea Anemone, Nematostella vectensis

    PubMed Central

    Ryan, Joseph F.; Mazza, Maureen E.; Pang, Kevin; Matus, David Q.; Baxevanis, Andreas D.; Martindale, Mark Q.; Finnerty, John R.

    2007-01-01

    Background Hox genes were critical to many morphological innovations of bilaterian animals. However, early Hox evolution remains obscure. Phylogenetic, developmental, and genomic analyses on the cnidarian sea anemone Nematostella vectensis challenge recent claims that the Hox code is a bilaterian invention and that no “true” Hox genes exist in the phylum Cnidaria. Methodology/Principal Findings Phylogenetic analyses of 18 Hox-related genes from Nematostella identify putative Hox1, Hox2, and Hox9+ genes. Statistical comparisons among competing hypotheses bolster these findings, including an explicit consideration of the gene losses implied by alternate topologies. In situ hybridization studies of 20 Hox-related genes reveal that multiple Hox genes are expressed in distinct regions along the primary body axis, supporting the existence of a pre-bilaterian Hox code. Additionally, several Hox genes are expressed in nested domains along the secondary body axis, suggesting a role in “dorsoventral” patterning. Conclusions/Significance A cluster of anterior and posterior Hox genes, as well as ParaHox cluster of genes evolved prior to the cnidarian-bilaterian split. There is evidence to suggest that these clusters were formed from a series of tandem gene duplication events and played a role in patterning both the primary and secondary body axes in a bilaterally symmetrical common ancestor. Cnidarians and bilaterians shared a common ancestor some 570 to 700 million years ago, and as such, are derived from a common body plan. Our work reveals several conserved genetic components that are found in both of these diverse lineages. This finding is consistent with the hypothesis that a set of developmental rules established in the common ancestor of cnidarians and bilaterians is still at work today. PMID:17252055

  7. Modeling dual pathways for the metazoan spindle assembly checkpoint

    PubMed Central

    Sear, Richard P.; Howard, Martin

    2006-01-01

    Using computational modeling, we investigate mechanisms of signal transduction. We focus on the spindle assembly checkpoint, where a single unattached kinetochore is able to signal to prevent cell cycle progression. The inhibitory signal switches off rapidly once spindle microtubules have attached to all kinetochores. This requirement tightly constrains the possible mechanisms. Here we investigate two possible mechanisms for spindle checkpoint operation in metazoan cells, both supported by recent experiments. The first involves the free diffusion and sequestration of cell cycle regulators. This mechanism is severely constrained both by experimental fluorescence recovery data and by the large volumes involved in open mitosis in metazoan cells. By using a simple mathematical analysis and computer simulation, we find that this mechanism can generate the inhibition found in experiment but likely requires a two-stage signal amplification cascade. The second mechanism involves spatial gradients of a short-lived inhibitory signal that propagates first by diffusion but then primarily by active transport along spindle microtubules. We propose that both mechanisms may be operative in the metazoan spindle assembly checkpoint, with either able to trigger anaphase onset even without support from the other pathway. PMID:17065324

  8. Modeling dual pathways for the metazoan spindle assembly checkpoint.

    PubMed

    Sear, Richard P; Howard, Martin

    2006-11-07

    Using computational modeling, we investigate mechanisms of signal transduction. We focus on the spindle assembly checkpoint, where a single unattached kinetochore is able to signal to prevent cell cycle progression. The inhibitory signal switches off rapidly once spindle microtubules have attached to all kinetochores. This requirement tightly constrains the possible mechanisms. Here we investigate two possible mechanisms for spindle checkpoint operation in metazoan cells, both supported by recent experiments. The first involves the free diffusion and sequestration of cell cycle regulators. This mechanism is severely constrained both by experimental fluorescence recovery data and by the large volumes involved in open mitosis in metazoan cells. By using a simple mathematical analysis and computer simulation, we find that this mechanism can generate the inhibition found in experiment but likely requires a two-stage signal amplification cascade. The second mechanism involves spatial gradients of a short-lived inhibitory signal that propagates first by diffusion but then primarily by active transport along spindle microtubules. We propose that both mechanisms may be operative in the metazoan spindle assembly checkpoint, with either able to trigger anaphase onset even without support from the other pathway.

  9. The evolutionary trajectory of mitochondrial carrier family during metazoan evolution.

    PubMed

    Gong, Ming; Li, Jie; Wang, Meng; Wang, Jin; Zen, Ke; Zhang, Chen-Yu

    2010-09-16

    Exploring metabolic evolution is a way to understand metabolic complexity. The substrate transport of mitochondrial carrier family (MCF) influences direct metabolic activities, making it possible to understand indirectly metabolic evolution from the evolution of substrate transport of MCF. However, the evolutionary study of substrate transport of MCF does not mean that all the concrete structures of mitochondrial carriers (MCs) must first be gained. Here we studied the alternation of MCF structure and potential correlated functions of MCF during metazoan evolution. The data analysis indicates that the types of substrates transported by MCF as a whole were maintained during metazoan evolution. However, the size of the substrates transported by members of MCs continuously diminished during the evolutionary process. We have found that the ratio of hydrophobic amino acids at specific helix-helix interfaces increases significantly during vertebrate evolution. Amino acid's spatial positioning and the calculating of packing values both indicate the increase in the number of hydrophobic amino acids would lead to a more "tight" structure of the TR domain, which is in agreement with the trend of diminishing size of substrates transported by MCs. In addition, there was a significant increase in the number of carriers of MCF during vertebrate evolution. We propose that the more "tight" TR structure generated by the increase of the hydrophobic amino acids at specific helix-helix interfaces during vertebrate evolution enhances the substrate selectivity of MCF, reflecting the evolutionary trajectory of MCF during metazoan evolution.

  10. Ectopic activation of the canonical wnt signaling pathway affects ectodermal patterning along the primary axis during larval development in the anthozoan Nematostella vectensis.

    PubMed

    Marlow, Heather; Matus, David Q; Martindale, Mark Q

    2013-08-15

    The primary axis of cnidarians runs from the oral pole to the apical tuft and defines the major body axis of both the planula larva and adult polyp. In the anthozoan cnidarian Nematostella vectensis, the primary oral-aboral (O-Ab) axis first develops during the early embryonic stage. Here, we present evidence that pharmaceutical activators of canonical wnt signaling affect molecular patterning along the primary axis of Nematostella. Although not overtly morphologically complex, molecular investigations in Nematostella reveal that the O-Ab axis is demarcated by the expression of differentially localized signaling molecules and transcription factors that may serve roles in establishing distinct ectodermal domains. We have further characterized the larval epithelium by determining the position of a nested set of molecular boundaries, utilizing several newly characterized as well as previously reported epithelial markers along the primary axis. We have assayed shifts in their position in control embryos and in embryos treated with the pharmacological agents alsterpaullone and azakenpaullone, Gsk3β inhibitors that act as canonical wnt agonists, and the Wnt antagonist iCRT14, following gastrulation. Agonist drug treatments result in an absence of aboral markers, a shift in the expression boundaries of oral markers toward the aboral pole, and changes in the position of differentially localized populations of neurons in a dose-dependent manner, while antagonist treatment had the opposite effect. These experiments are consistent with canonical wnt signaling playing a role in an orally localized wnt signaling center. These findings suggest that in Nematostella, wnt signaling mediates O-Ab ectodermal patterning across a surprisingly complex epithelium in planula stages following gastrulation in addition to previously described roles for the wnt signaling pathway in endomesoderm specification during gastrulation and overall animal-vegetal patterning at earlier stages of

  11. Ectopic activation of the canonical wnt signaling pathway affects ectodermal patterning along the primary axis during larval development in the anthozoan Nematostella vectensis

    PubMed Central

    Marlow, Heather; Matus, David Q.

    2016-01-01

    The primary axis of cnidarians runs from the oral pole to the apical tuft and defines the major body axis of both the planula larva and adult polyp. In the anthozoan cnidarian Nematostella vectensis, the primary oral–aboral (O–Ab) axis first develops during the early embryonic stage. Here, we present evidence that pharmaceutical activators of canonical wnt signaling affect molecular patterning along the primary axis of Nematostella. Although not overtly morphologically complex, molecular investigations in Nematostella reveal that the O–Ab axis is demarcated by the expression of differentially localized signaling molecules and transcription factors that may serve roles in establishing distinct ectodermal domains. We have further characterized the larval epithelium by determining the position of a nested set of molecular boundaries, utilizing several newly characterized as well as previously reported epithelial markers along the primary axis. We have assayed shifts in their position in control embryos and in embryos treated with the pharmacological agents alsterpaullone and azakenpaullone, Gsk3β inhibitors that act as canonical wnt agonists, and the Wnt antagonist iCRT14, following gastrulation. Agonist drug treatments result in an absence of aboral markers, a shift in the expression boundaries of oral markers toward the aboral pole, and changes in the position of differentially localized populations of neurons in a dose-dependent manner, while antagonist treatment had the opposite effect. These experiments are consistent with canonical wnt signaling playing a role in an orally localized wnt signaling center. These findings suggest that in Nematostella, wnt signaling mediates O–Ab ectodermal patterning across a surprisingly complex epithelium in planula stages following gastrulation in addition to previously described roles for the wnt signaling pathway in endomesoderm specification during gastrulation and overall animal–vegetal patterning at earlier

  12. Characterization of the Core Elements of the NF-κB Signaling Pathway of the Sea Anemone Nematostella vectensis ▿ ‡

    PubMed Central

    Wolenski, Francis S.; Garbati, Michael R.; Lubinski, Tristan J.; Traylor-Knowles, Nikki; Dresselhaus, Erica; Stefanik, Derek J.; Goucher, Haley; Finnerty, John R.; Gilmore, Thomas D.

    2011-01-01

    The sea anemone Nematostella vectensis is the leading developmental and genomic model for the phylum Cnidaria, which includes anemones, hydras, jellyfish, and corals. In insects and vertebrates, the NF-κB pathway is required for cellular and organismal responses to various stresses, including pathogens and chemicals, as well as for several developmental processes. Herein, we have characterized proteins that comprise the core NF-κB pathway in Nematostella, including homologs of NF-κB, IκB, Bcl-3, and IκB kinase (IKK). We show that N. vectensis NF-κB (Nv-NF-κB) can bind to κB sites and activate transcription of reporter genes containing multimeric κB sites or the Nv-IκB promoter. Both Nv-IκB and Nv-Bcl-3 interact with Nv-NF-κB and block its ability to activate reporter gene expression. Nv-IKK is most similar to human IKKɛ/TBK kinases and, in vitro, can phosphorylate Ser47 of Nv-IκB. Nv-NF-κB is expressed in a subset of ectodermal cells in juvenile and adult Nematostella anemones. A bioinformatic analysis suggests that homologs of many mammalian NF-κB target genes are targets for Nv-NF-κB, including genes involved in apoptosis and responses to organic compounds and endogenous stimuli. These results indicate that NF-κB pathway proteins in Nematostella are similar to their vertebrate homologs, and these results also provide a framework for understanding the evolutionary origins of NF-κB signaling. PMID:21189285

  13. Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes.

    PubMed

    Ruiz-Trillo, I; Riutort, M; Littlewood, D T; Herniou, E A; Baguña, J

    1999-03-19

    Because of their simple organization the Acoela have been considered to be either primitive bilaterians or descendants of coelomates through secondary loss of derived features. Sequence data of 18S ribosomal DNA genes from non-fast evolving species of acoels and other metazoans reveal that this group does not belong to the Platyhelminthes but represents the extant members of the earliest divergent Bilateria, an interpretation that is supported by recent studies on the embryonic cleavage pattern and nervous system of acoels. This study has implications for understanding the evolution of major body plans, and for perceptions of the Cambrian evolutionary explosion.

  14. Current advances in the phylogenetic reconstruction of metazoan evolution. A new paradigm for the Cambrian explosion?

    PubMed

    Giribet, Gonzalo

    2002-09-01

    The study of metazoan evolution has fascinated biologists for centuries, and it will certainly keep doing so. Recent interest on the origin of metazoan body plans, early metazoan evolution, genetic mechanisms generating disparity and diversity, molecular clock information, paleontology, and biogeochemistry is contributing to a better understanding of the current phyletic diversity. Unfortunately, the pattern of the metazoan tree of life still shows some important gaps in knowledge. It is the aim of this article to review some of the most important issues related to the inference of the metazoan tree, and point towards possible ways of solving certain obscure aspects in the history of animal evolution. A new hypothesis of the metazoan diversification during the Cambrian explosion is proposed by synthesizing ideas from phylogenetics, molecular evolution, paleontology, and developmental biology.

  15. Nevoid basal cell carcinoma syndrome

    MedlinePlus

    NBCC syndrome; Gorlin-Goltz syndrome; Basal cell nevus syndrome; BCNS; Basal cell cancer - nevoid basal cell carcinoma syndrome ... Nevoid basal cell carcinoma nevus syndrome is a rare genetic condition. The gene linked to the syndrome is known as PTCH (" ...

  16. Imaging basal ganglia function

    PubMed Central

    BROOKS, DAVID J.

    2000-01-01

    In this review, the value of functional imaging for providing insight into the role of the basal ganglia in motor control is reviewed. Brain activation findings in normal subjects and Parkinson's disease patients are examined and evidence supporting the existence for functionally independent distributed basal ganglia-frontal loops is presented. It is argued that the basal ganglia probably act to focus and filter cortical output, optimising the running of motor programs. PMID:10923986

  17. Shedding light on ovothiol biosynthesis in marine metazoans

    PubMed Central

    Castellano, Immacolata; Migliaccio, Oriana; D’Aniello, Salvatore; Merlino, Antonello; Napolitano, Alessandra; Palumbo, Anna

    2016-01-01

    Ovothiol, isolated from marine invertebrate eggs, is considered one of the most powerful antioxidant with potential for drug development. However, its biological functions in marine organisms still represent a matter of debate. In sea urchins, the most accepted view is that ovothiol protects the eggs by the high oxidative burst at fertilization. In this work we address the role of ovothiol during sea urchin development to give new insights on ovothiol biosynthesis in metazoans. The gene involved in ovothiol biosynthesis OvoA was identified in Paracentrotus lividus genome (PlOvoA). PlOvoA embryo expression significantly increased at the pluteus stage and was up-regulated by metals at concentrations mimicking polluted sea-water and by cyclic toxic algal blooms, leading to ovothiol biosynthesis. In silico analyses of the PlOvoA upstream region revealed metal and stress responsive elements. Structural protein models highlighted conserved active site residues likely responsible for ovothiol biosynthesis. Phylogenetic analyses indicated that OvoA evolved in most marine metazoans and was lost in bony vertebrates during the transition from the aquatic to terrestrial environment. These results highlight the crucial role of OvoA in protecting embryos released in seawater from environmental cues, thus allowing the survival under different conditions. PMID:26916575

  18. GenDecoder: genetic code prediction for metazoan mitochondria

    PubMed Central

    Abascal, Federico; Zardoya, Rafael; Posada, David

    2006-01-01

    Although the majority of the organisms use the same genetic code to translate DNA, several variants have been described in a wide range of organisms, both in nuclear and organellar systems, many of them corresponding to metazoan mitochondria. These variants are usually found by comparative sequence analyses, either conducted manually or with the computer. Basically, when a particular codon in a query-species is linked to positions for which a specific amino acid is consistently found in other species, then that particular codon is expected to translate as that specific amino acid. Importantly, and despite the simplicity of this approach, there are no available tools to help predicting the genetic code of an organism. We present here GenDecoder, a web server for the characterization and prediction of mitochondrial genetic codes in animals. The analysis of automatic predictions for 681 metazoans aimed us to study some properties of the comparative method, in particular, the relationship among sequence conservation, taxonomic sampling and reliability of assignments. Overall, the method is highly precise (99%), although highly divergent organisms such as platyhelminths are more problematic. The GenDecoder web server is freely available from . PMID:16845034

  19. Unleashing the force of cladistics? Metazoan phylogenetics and hypothesis testing.

    PubMed

    Jenner, Ronald A

    2003-02-01

    The accumulation of multiple phylogenetic hypotheses for the Metazoa invites an evaluation of current progress in the field. I discuss three case studies from the recent literature to assess how cladistic analyses of metazoan morphology have contributed to our understanding of animal evolution. The first case study on cleavage cross patterns examines whether a decade of unanimous character scoring across different cladistic studies can be considered a reliable indicator of accumulated wisdom. The two remaining case studies illustrate how the unique strength of cladistic analyses to arbitrate between competing hypotheses can be crippled when insufficient attention is directed towards the construction of the data matrix. The second case study discusses a recent morphological cladistic analysis aimed at providing insight into the evolution of larval ciliary bands (prototrochs) in the Spiralia, and the third case study evaluates how four subsequent morphological cladistic analyses have contributed to our understanding of the phylogenetic placement of a problematicum, the Myzostomida. I conclude that current phylogenetic analyses of the Metazoa have not fully exploited the power of cladistics to test available alternative hypotheses. If our goal is to generate genuine progress in understanding rather than stochastic variation of opinions through time, we have to shift our attention from using cladistics as an easy tool to generate "novel" hypotheses of metazoan relationships, towards employing cladistics more critically as an effective instrument to test the relative merit of available multiple alternative hypotheses.

  20. Deep metazoan phylogeny: when different genes tell different stories.

    PubMed

    Nosenko, Tetyana; Schreiber, Fabian; Adamska, Maja; Adamski, Marcin; Eitel, Michael; Hammel, Jörg; Maldonado, Manuel; Müller, Werner E G; Nickel, Michael; Schierwater, Bernd; Vacelet, Jean; Wiens, Matthias; Wörheide, Gert

    2013-04-01

    Molecular phylogenetic analyses have produced a plethora of controversial hypotheses regarding the patterns of diversification of non-bilaterian animals. To unravel the causes for the patterns of extreme inconsistencies at the base of the metazoan tree of life, we constructed a novel supermatrix containing 122 genes, enriched with non-bilaterian taxa. Comparative analyses of this supermatrix and its two non-overlapping multi-gene partitions (including ribosomal and non-ribosomal genes) revealed conflicting phylogenetic signals. We show that the levels of saturation and long branch attraction artifacts in the two partitions correlate with gene sampling. The ribosomal gene partition exhibits significantly lower saturation levels than the non-ribosomal one. Additional systematic errors derive from significant variations in amino acid substitution patterns among the metazoan lineages that violate the stationarity assumption of evolutionary models frequently used to reconstruct phylogenies. By modifying gene sampling and the taxonomic composition of the outgroup, we were able to construct three different yet well-supported phylogenies. These results show that the accuracy of phylogenetic inference may be substantially improved by selecting genes that evolve slowly across the Metazoa and applying more realistic substitution models. Additional sequence-independent genomic markers are also necessary to assess the validity of the phylogenetic hypotheses. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Shedding light on ovothiol biosynthesis in marine metazoans

    NASA Astrophysics Data System (ADS)

    Castellano, Immacolata; Migliaccio, Oriana; D'Aniello, Salvatore; Merlino, Antonello; Napolitano, Alessandra; Palumbo, Anna

    2016-02-01

    Ovothiol, isolated from marine invertebrate eggs, is considered one of the most powerful antioxidant with potential for drug development. However, its biological functions in marine organisms still represent a matter of debate. In sea urchins, the most accepted view is that ovothiol protects the eggs by the high oxidative burst at fertilization. In this work we address the role of ovothiol during sea urchin development to give new insights on ovothiol biosynthesis in metazoans. The gene involved in ovothiol biosynthesis OvoA was identified in Paracentrotus lividus genome (PlOvoA). PlOvoA embryo expression significantly increased at the pluteus stage and was up-regulated by metals at concentrations mimicking polluted sea-water and by cyclic toxic algal blooms, leading to ovothiol biosynthesis. In silico analyses of the PlOvoA upstream region revealed metal and stress responsive elements. Structural protein models highlighted conserved active site residues likely responsible for ovothiol biosynthesis. Phylogenetic analyses indicated that OvoA evolved in most marine metazoans and was lost in bony vertebrates during the transition from the aquatic to terrestrial environment. These results highlight the crucial role of OvoA in protecting embryos released in seawater from environmental cues, thus allowing the survival under different conditions.

  2. Basal cell cancer (image)

    MedlinePlus

    ... biopsy is needed to prove the diagnosis of basal cell carcinoma. Treatment varies depending on the size, depth, and location of the cancer. Early treatment by a dermatologist may result in a cure ... is required to watch for new sites of basal cell cancer.

  3. A thrombospondin in the anthozoan Nematostella vectensis is associated with the nervous system and upregulated during regeneration

    PubMed Central

    Tucker, Richard P.; Hess, John F.; Gong, Qizhi; Garvey, Katrina; Shibata, Bradley; Adams, Josephine C.

    2013-01-01

    Summary Thrombospondins are multimeric extracellular matrix glycoproteins that play important roles in development, synaptogenesis and wound healing in mammals. We previously identified four putative thrombospondins in the genome of the starlet sea anemone Nematostella vectensis. This study presents the first analysis of these thrombospondins, with the goals of understanding fundamental roles of thrombospondins in the Eumetazoa. Reverse transcriptase PCR showed that each of the N. vectensis thrombospondins (Nv85341, Nv22035, Nv168100 and Nv30790) is transcribed. Three of the four thrombospondins include an RGD or KGD motif in their thrombospondin type 3 repeats at sites equivalent to mammalian thrombospondins, suggesting ancient roles as RGD integrin ligands. Phylogenetic analysis based on the C-terminal regions demonstrated a high level of sequence diversity between N. vectensis thrombospondins. A full-length cDNA sequence was obtained for Nv168100 (NvTSP168100), which has an unusual domain organization. Immunohistochemistry with an antibody to NvTSP168100 revealed labeling of neuron-like cells in the mesoglea of the retractor muscles and the pharynx. In situ hybridization and quantitative PCR showed that NvTSP168100 is upregulated during regeneration. Immunohistochemistry of the area of regeneration identified strong immunostaining of the glycocalyx, the carbohydrate-rich matrix coating the epidermis, and electron microscopy identified changes in glycocalyx organization during regeneration. Thus, N. vectensis thrombospondins share structural features with thrombospondins from mammals and may have roles in the nervous system and in matrix reorganization during regeneration. PMID:23430283

  4. Cas9-mediated excision of Nematostella brachyury disrupts endoderm development, pharynx formation and oral-aboral patterning

    PubMed Central

    Steinworth, Bailey; Simmons, David

    2017-01-01

    ABSTRACT The mesoderm is a key novelty in animal evolution, although we understand little of how the mesoderm arose. brachyury, the founding member of the T-box gene family, is a key gene in chordate mesoderm development. However, the brachyury gene was present in the common ancestor of fungi and animals long before mesoderm appeared. To explore ancestral roles of brachyury prior to the evolution of definitive mesoderm, we excised the gene using CRISPR/Cas9 in the diploblastic cnidarian Nematostella vectensis. Nvbrachyury is normally expressed in precursors of the pharynx, which separates endoderm from ectoderm. In knockout embryos, the pharynx does not form, embryos fail to elongate, and endoderm organization, ectodermal cell polarity and patterning along the oral-aboral axis are disrupted. Expression of many genes both inside and outside the Nvbrachyury expression domain is affected, including downregulation of Wnt genes at the oral pole. Our results point to an ancient role for brachyury in morphogenesis, cell polarity and the patterning of both ectodermal and endodermal derivatives along the primary body axis. PMID:28705897

  5. Cas9-mediated excision of Nematostella brachyury disrupts endoderm development, pharynx formation and oral-aboral patterning.

    PubMed

    Servetnick, Marc D; Steinworth, Bailey; Babonis, Leslie S; Simmons, David; Salinas-Saavedra, Miguel; Martindale, Mark Q

    2017-08-15

    The mesoderm is a key novelty in animal evolution, although we understand little of how the mesoderm arose. brachyury, the founding member of the T-box gene family, is a key gene in chordate mesoderm development. However, the brachyury gene was present in the common ancestor of fungi and animals long before mesoderm appeared. To explore ancestral roles of brachyury prior to the evolution of definitive mesoderm, we excised the gene using CRISPR/Cas9 in the diploblastic cnidarian Nematostella vectensisNvbrachyury is normally expressed in precursors of the pharynx, which separates endoderm from ectoderm. In knockout embryos, the pharynx does not form, embryos fail to elongate, and endoderm organization, ectodermal cell polarity and patterning along the oral-aboral axis are disrupted. Expression of many genes both inside and outside the Nvbrachyury expression domain is affected, including downregulation of Wnt genes at the oral pole. Our results point to an ancient role for brachyury in morphogenesis, cell polarity and the patterning of both ectodermal and endodermal derivatives along the primary body axis. © 2017. Published by The Company of Biologists Ltd.

  6. Do cnidarians have a ParaHox cluster? Analysis of synteny around a Nematostella homeobox gene cluster.

    PubMed

    Hui, Jerome H L; Holland, Peter W H; Ferrier, David E K

    2008-01-01

    The Hox gene cluster is renowned for its role in developmental patterning of embryogenesis along the anterior-posterior axis of bilaterians. Its supposed evolutionary sister or paralog, the ParaHox cluster, is composed of Gsx, Xlox, and Cdx, and also has important roles in anterior-posterior development. There is a debate as to whether the cnidarians, as an outgroup to bilaterians, contain true Hox and ParaHox genes, or instead the Hox-like gene complement of cnidarians arose from independent duplications to those that generated the genes of the bilaterian Hox and ParaHox clusters. A recent whole genome analysis of the cnidarian Nematostella vectensis found conserved synteny between this cnidarian and vertebrates, including a region of synteny between the putative Hox cluster of N. vectensis and the Hox clusters of vertebrates. No syntenic region was identified around a potential cnidarian ParaHox cluster. Here we use different approaches to identify a genomic region in N. vectensis that is syntenic with the bilaterian ParaHox cluster. This proves that the duplication that gave rise to the Hox and ParaHox regions of bilaterians occurred before the origin of cnidarians, and the cnidarian N. vectensis has bona fide Hox and ParaHox loci.

  7. Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics.

    PubMed

    Baker, Bradley J; Jin, Lei; Han, Zhou; Cohen, Lawrence B; Popovic, Marko; Platisa, Jelena; Pieribone, Vincent

    2012-07-15

    A substantial increase in the speed of the optical response of genetically encoded fluorescent protein voltage sensors (FP voltage sensors) was achieved by using the voltage-sensing phosphatase genes of Nematostella vectensis and Danio rerio. A potential N. vectensis voltage-sensing phosphatase was identified in silico. The voltage-sensing domain (S1-S4) of the N. vectensis homolog was used to create an FP voltage sensor called Nema. By replacing the phosphatase with a cerulean/citrine FRET pair, a new FP voltage sensor was synthesized with fast off kinetics (Tau(off)<5ms). However, the signal was small (ΔF/F=0.4%/200mV). FP voltage sensors using the D. rerio voltage-sensing phosphatase homolog, designated Zahra and Zahra 2, exhibited fast on and off kinetics within 2ms of the time constants observed with the organic voltage-sensitive dye, di4-ANEPPS. Mutagenesis of the S4 region of the Danio FP voltage sensor shifted the voltage dependence to more negative potentials but did not noticeably affect the kinetics of the optical signal.

  8. Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/β-catenin complex

    PubMed Central

    Nichols, Scott Anthony; Roberts, Brock William; Richter, Daniel Joseph; Fairclough, Stephen Robert; King, Nicole

    2012-01-01

    The evolution of cadherins, which are essential for metazoan multicellularity and restricted to metazoans and their closest relatives, has special relevance for understanding metazoan origins. To reconstruct the ancestry and evolution of cadherin gene families, we analyzed the genomes of the choanoflagellate Salpingoeca rosetta, the unicellular outgroup of choanoflagellates and metazoans Capsaspora owczarzaki, and a draft genome assembly from the homoscleromorph sponge Oscarella carmela. Our finding of a cadherin gene in C. owczarzaki reveals that cadherins predate the divergence of the C. owczarzaki, choanoflagellate, and metazoan lineages. Data from these analyses also suggest that the last common ancestor of metazoans and choanoflagellates contained representatives of at least three cadherin families, lefftyrin, coherin, and hedgling. Additionally, we find that an O. carmela classical cadherin has predicted structural features that, in bilaterian classical cadherins, facilitate binding to the cytoplasmic protein β-catenin and, thereby, promote cadherin-mediated cell adhesion. In contrast with premetazoan cadherin families (i.e., those conserved between choanoflagellates and metazoans), the later appearance of classical cadherins coincides with metazoan origins. PMID:22837400

  9. A metazoan parasitological research of some Iraqi amphibians.

    PubMed

    Saeed, Isam; Al-Barwari, Shlemon E; Al-Harmni, Kawther I

    2007-01-01

    The incidence and intensity of metazoan parasites in 3 species of Iraqi amphibians were studied. The amphibians were Rana ridibunda, Bufo viridis and Hyla arborea. Twenty-four species of helminths were encountered, including 16 trematodes, 1 cestode and 7 nematodes. Their respective names are: Polystoma integerrimum, Prosotocus confusus, P. fuelleborni, Pleurogenoides gastroporus, P. medians, Sonsinotrema tacapense, Opisthioglyphe ranae, Haplometra cylindracea, Haematoloechus volgensis, H. vitelloconfluentum, H. similis, H. asper, Gorgoderina vitelliloba, Gorgodera euzeti, G. amplicava, Nematotaenia dispar, Cosmocerca ornata, C. commutata, Aplectana acuminata, Aplectana sp., Oxysomatium sp., Ozwaldocruzia filiformis and Rhabdias bufonis. Collection localities, infection sites and rates and parasite burdens were determined throughout the species list. The highest and lowest rates of infection were for R. bufonis in B. viridis and O. ranae in R. ridibunda, while the highest and lowest worm burdens were for C. ornata in R. ridibunda and P. integerrimum in B. viridis. Seven of the species included in this study are thought to be new for Iraq.

  10. Molecular clocks and the early evolution of metazoan nervous systems.

    PubMed

    Wray, Gregory A

    2015-12-19

    The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation.

  11. Modify or die? - RNA modification defects in metazoans

    PubMed Central

    Sarin, L Peter; Leidel, Sebastian A

    2014-01-01

    Chemical RNA modifications are present in all kingdoms of life and many of these post-transcriptional modifications are conserved throughout evolution. However, most of the research has been performed on single cell organisms, whereas little is known about how RNA modifications contribute to the development of metazoans. In recent years, the identification of RNA modification genes in genome wide association studies (GWAS) has sparked new interest in previously neglected genes. In this review, we summarize recent findings that connect RNA modification defects and phenotypes in higher eukaryotes. Furthermore, we discuss the implications of aberrant tRNA modification in various human diseases including metabolic defects, mitochondrial dysfunctions, neurological disorders, and cancer. As the molecular mechanisms of these diseases are being elucidated, we will gain first insights into the functions of RNA modifications in higher eukaryotes and finally understand their roles during development. PMID:25692999

  12. Second-generation environmental sequencing unmasks marine metazoan biodiversity

    PubMed Central

    Fonseca, Vera G.; Carvalho, Gary R.; Sung, Way; Johnson, Harriet F.; Power, Deborah M.; Neill, Simon P.; Packer, Margaret; Blaxter, Mark L.; Lambshead, P. John D.; Thomas, W. Kelley; Creer, Simon

    2010-01-01

    Biodiversity is of crucial importance for ecosystem functioning, sustainability and resilience, but the magnitude and organization of marine diversity at a range of spatial and taxonomic scales are undefined. In this paper, we use second-generation sequencing to unmask putatively diverse marine metazoan biodiversity in a Scottish temperate benthic ecosystem. We show that remarkable differences in diversity occurred at microgeographical scales and refute currently accepted ecological and taxonomic paradigms of meiofaunal identity, rank abundance and concomitant understanding of trophic dynamics. Richness estimates from the current benchmarked Operational Clustering of Taxonomic Units from Parallel UltraSequencing analyses are broadly aligned with those derived from morphological assessments. However, the slope of taxon rarefaction curves for many phyla remains incomplete, suggesting that the true alpha diversity is likely to exceed current perceptions. The approaches provide a rapid, objective and cost-effective taxonomic framework for exploring links between ecosystem structure and function of all hitherto intractable, but ecologically important, communities. PMID:20981026

  13. Biodiversity and body size are linked across metazoans

    PubMed Central

    McClain, Craig R.; Boyer, Alison G.

    2009-01-01

    Body size variation across the Metazoa is immense, encompassing 17 orders of magnitude in biovolume. Factors driving this extreme diversification in size and the consequences of size variation for biological processes remain poorly resolved. Species diversity is invoked as both a predictor and a result of size variation, and theory predicts a strong correlation between the two. However, evidence has been presented both supporting and contradicting such a relationship. Here, we use a new comprehensive dataset for maximum and minimum body sizes across all metazoan phyla to show that species diversity is strongly correlated with minimum size, maximum size and consequently intra-phylum variation. Similar patterns are also observed within birds and mammals. The observations point to several fundamental linkages between species diversification and body size variation through the evolution of animal life. PMID:19324730

  14. Molecular clocks and the early evolution of metazoan nervous systems

    PubMed Central

    Wray, Gregory A.

    2015-01-01

    The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation. PMID:26554040

  15. Basal Cell Carcinoma

    PubMed Central

    Lanoue, Julien

    2016-01-01

    Basal cell carcinoma is the most commonly occurring cancer in the world and overall incidence is still on the rise. While typically a slow-growing tumor for which metastases is rare, basal cell carcinoma can be locally destructive and disfiguring. Given the vast prevalence of this disease, there is a significant overall burden on patient well-being and quality of life. The current mainstay of basal cell carcinoma treatment involves surgical modalities, such as electrodessication and curettage, excision, cryosurgery, and Mohs micrographic surgery. Such methods are typically reserved for localized basal cell carcinoma and offer high five-year cure rates, but come with the risk of functional impairment, disfigurement, and scarring. Here, the authors review the evidence and indications for nonsurgical treatment modalities in cases where surgery is impractical, contraindicated, or simply not desired by the patient. PMID:27386043

  16. Cell type complexity in the basal metazoan Hydra is maintained by both stem cell based mechanisms and transdifferentiation.

    PubMed

    Siebert, Stefan; Anton-Erxleben, Friederike; Bosch, Thomas C G

    2008-01-01

    Understanding the mechanisms controlling the stability of the differentiated cell state is a fundamental problem in biology. To characterize the critical regulatory events that control stem cell behavior and cell plasticity in vivo in an organism at the base of animal evolution, we have generated transgenic Hydra lines [Wittlieb, J., Khalturin, K., Lohmann, J., Anton-Erxleben, F., Bosch, T.C.G., 2006. Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 103, 6208-6211] which express eGFP in one of the differentiated cell types. Here we present a novel line which expresses eGFP specifically in zymogen gland cells. These cells are derivatives of the interstitial stem cell lineage and have previously been found to express two Dickkopf related genes [Augustin, R., Franke, A., Khalturin, K., Kiko, R., Siebert, S. Hemmrich, G., Bosch, T.C.G., 2006. Dickkopf related genes are components of the positional value gradient in Hydra. Dev. Biol. 296 (1), 62-70]. In the present study we have generated transgenic Hydra in which eGFP expression is under control of the promoter of one of them, HyDkk1/2/4 C. Transgenic Hydra recapitulate faithfully the previously described graded activation of HyDkk1/2/4 C expression along the body column, indicating that the promoter contains all elements essential for spatial and temporal control mechanisms. By in vivo monitoring of eGFP+ gland cells, we provide direct evidence for continuous transdifferentiation of zymogen cells into granular mucous cells in the head region. We also show that in this tissue a subpopulation of mucous gland cells directly derives from interstitial stem cells. These findings indicate that both stem cell-based mechanisms and transdifferentiation are involved in normal development and maintenance of cell type complexity in Hydra. The results demonstrate a remarkable plasticity in the differentiation capacity of cells in an organism which diverged before the origin of bilaterian animals.

  17. Hippo pathway genes developed varied exon numbers and coevolved functional domains in metazoans for species specific growth control

    PubMed Central

    2013-01-01

    Background The Hippo pathway controls growth by mediating cell proliferation and apoptosis. Dysregulation of Hippo signaling causes abnormal proliferation in both healthy and cancerous cells. The Hippo pathway receives inputs from multiple developmental pathways and interacts with many tissue-specific transcription factors, but how genes in the pathway have evolved remains inadequately revealed. Results To explore the origin and evolution of Hippo pathway, we have extensively examined 16 Hippo pathway genes, including upstream regulators and downstream targets, in 24 organisms covering major metazoan phyla. From simple to complex organisms, these genes are varied in the length and number of exons but encode conserved domains with similar higher-order organization. The core of the pathway is more conserved than its upstream regulators and downstream targets. Several components, despite existing in the most basal metazoan sponges, cannot be convincingly identified in other species. Potential recombination breakpoints were identified in some genes. Coevolutionary analysis reveals that most functional domains in Hippo genes have coevolved with interacting functional domains in other genes. Conclusions The two essential upstream regulators cadherins fat and dachsous may have originated in the unicellular organism Monosiga brevicollis and evolved more significantly than the core of the pathway. Genes having varied numbers of exons in different species, recombination events, and the gain and loss of some genes indicate alternative splicing and species-specific evolution. Coevolution signals explain some species-specific loss of functional domains. These results significantly unveil the structure and evolution of the Hippo pathway in distant phyla and provide valuable clues for further examination of Hippo signaling. PMID:23547742

  18. Indirect development, transdifferentiation and the macroregulatory evolution of metazoans

    PubMed Central

    Arenas-Mena, Cesar

    2010-01-01

    It is proposed here that a biphasic life cycle with partial dedifferentiation of intermediate juvenile or larval stages represents the mainstream developmental mode of metazoans. Developmental plasticity of differentiated cells is considered the essential characteristic of indirect development, rather than the exclusive development of the adult from ‘set-aside’ cells. Many differentiated larval cells of indirect developers resume proliferation, partially dedifferentiate and contribute to adult tissues. Transcriptional pluripotency of differentiated states has premetazoan origins and seems to be facilitated by histone variant H2A.Z. Developmental plasticity of differentiated states also facilitates the evolution of polyphenism. Uncertainty remains about whether the most recent common ancestor of protostomes and deuterostomes was a direct or an indirect developer, and how the feeding larvae of bilaterians are related to non-feeding larvae of sponges and cnidarians. Feeding ciliated larvae of bilaterians form their primary gut opening by invagination, which seems related to invagination in cnidarians. Formation of the secondary gut opening proceeds by protostomy or deuterostomy, and gene usage suggests serial homology of the mouth and anus. Indirect developers do not use the Hox vector to build their ciliated larvae, but the Hox vector is associated with the construction of the reproductive portion of the animal during feeding-dependent posterior growth. It is further proposed that the original function of the Hox cluster was in gonad formation rather than in anteroposterior diversification. PMID:20083640

  19. Sterols in a unicellular relative of the metazoans

    PubMed Central

    Kodner, Robin B.; Summons, Roger E.; Pearson, Ann; King, Nicole; Knoll, Andrew H.

    2008-01-01

    Molecular clocks suggest that animals originated well before they first appear as macroscopic fossils, but geologic tests of these hypotheses have been elusive. A rare steroid hydrocarbon, 24-isopropylcholestane, has been hypothesized to be a biomarker for sponges or their immediate ancestors because of its relatively high abundance in pre-Ediacaran to Early Cambrian sedimentary rocks and oils. Biolipid precursors of this sterane have been reported to be prominent in several demosponges. Whether 24-isopropylcholestane can be interpreted as a sponge (and, hence, animal) biomarker, and so provide clues about early metazoan history, depends on an understanding of the distribution of sterol biosynthesis among animals and their protistan relatives. Accordingly, we characterized the sterol profile of the choanoflagellate Monosiga brevicollis, a representative of the unicellular sister group of animals. M. brevicollis does not produce a candidate sterol precursor for 24-isopropylcholestane under our experimental growth conditions. It does, however, produce a number of other sterols, and comparative genomics confirms its biosynthetic potential to produce the full suite of compounds recovered. Consistent with the phylogenetic position of choanoflagellates, the sterol profile and biosynthetic pathway of M. brevicollis display characteristics of both fungal and poriferan sterol biosynthesis. This is an example in which genomic and biochemical information have been used together to investigate the taxonomic specificity of a fossil biomarker. PMID:18632573

  20. Microhomology-mediated intron loss during metazoan evolution.

    PubMed

    van Schendel, Robin; Tijsterman, Marcel

    2013-01-01

    How introns are lost from eukaryotic genomes during evolution remains an enigmatic question in biology. By comparative genome analysis of five Caenorhabditis and eight Drosophila species, we found that the likelihood of intron loss is highly influenced by the degree of sequence homology at exon-intron junctions: a significant elevated degree of microhomology was observed for sequences immediately flanking those introns that were eliminated from the genome of one or more subspecies. This determinant was significant even at individual nucleotides. We propose that microhomology-mediated DNA repair underlies this phenomenon, which we termed microhomology-mediated intron loss. This hypothesis is further supported by the observations that in both species 1) smaller introns are preferentially lost over longer ones and 2) genes that are highly transcribed in germ cells, and are thus more prone to DNA double strand breaks, display elevated frequencies of intron loss. Our data also testify against a prominent role for reverse transcriptase-mediated intron loss in metazoans.

  1. Interrogating the function of metazoan histones using engineered gene clusters.

    PubMed

    McKay, Daniel J; Klusza, Stephen; Penke, Taylor J R; Meers, Michael P; Curry, Kaitlin P; McDaniel, Stephen L; Malek, Pamela Y; Cooper, Stephen W; Tatomer, Deirdre C; Lieb, Jason D; Strahl, Brian D; Duronio, Robert J; Matera, A Gregory

    2015-02-09

    Histones and their posttranslational modifications influence the regulation of many DNA-dependent processes. Although an essential role for histone-modifying enzymes in these processes is well established, defining the specific contribution of individual histone residues remains a challenge because many histone-modifying enzymes have nonhistone targets. This challenge is exacerbated by the paucity of suitable approaches to genetically engineer histone genes in metazoans. Here, we describe a platform in Drosophila for generating and analyzing any desired histone genotype, and we use it to test the in vivo function of three histone residues. We demonstrate that H4K20 is neither essential for DNA replication nor for completion of development, unlike inferences drawn from analyses of H4K20 methyltransferases. We also show that H3K36 is required for viability and H3K27 is essential for maintenance of cellular identity but not for gene activation. These findings highlight the power of engineering histones to interrogate genome structure and function in animals. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Evolution of the metazoan protein phosphatase 2C superfamily.

    PubMed

    Stern, Adi; Privman, Eyal; Rasis, Michal; Lavi, Sara; Pupko, Tal

    2007-01-01

    Members of the protein phosphatase 2C (PP2C) superfamily are Mg(2+)/Mn(2+)-dependent serine/threonine phosphatases, which are essential for regulation of cell cycle and stress signaling pathways in cells. In this study, a comprehensive genomic analysis of all available metazoan PP2C sequences was conducted. The phylogeny of PP2C was reconstructed, revealing the existence of 15 vertebrate families which arose following a series of gene duplication events. Relative dating of these duplications showed that they occurred in two active periods: before the divergence of bilaterians and before vertebrate diversification. PP2C families which duplicated during the first period take part in different signaling pathways, whereas PP2C families which diverged in the second period display tissue expression differences yet participate in similar signaling pathways. These differences were found to involve variation of expression in tissues which show higher complexity in vertebrates, such as skeletal muscle and the nervous system. Further analysis was performed with the aim of identifying the functional domains of PP2C. The conservation pattern across the entire PP2C superfamily revealed an extensive domain of more than 50 amino acids which is highly conserved throughout all PP2C members. Several insertion or deletion events were found which may have led to the specialization of each PP2C family.

  3. The Regulatory Landscape of Lineage Differentiation in a Metazoan Embryo.

    PubMed

    Du, Zhuo; Santella, Anthony; He, Fei; Shah, Pavak K; Kamikawa, Yuko; Bao, Zhirong

    2015-09-14

    Elucidating the mechanism of cell lineage differentiation is critical for our understanding of development and fate manipulation. Here we combined systematic perturbation and direct lineaging to map the regulatory landscape of lineage differentiation in early C. elegans embryogenesis. High-dimensional phenotypic analysis of 204 essential genes in 1,368 embryos revealed that cell lineage differentiation follows a canalized landscape with barriers shaped by lineage distance and genetic robustness. We assigned function to 201 genes in regulating lineage differentiation, including 175 switches of binary fate choices. We generated a multiscale model that connects gene networks and cells to the experimentally mapped landscape. Simulations showed that the landscape topology determines the propensity of differentiation and regulatory complexity. Furthermore, the model allowed us to identify the chromatin assembly complex CAF-1 as a context-specific repressor of Notch signaling. Our study presents a systematic survey of the regulatory landscape of lineage differentiation of a metazoan embryo. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Organic matrices in metazoan calcium carbonate skeletons: Composition, functions, evolution.

    PubMed

    Marin, Frédéric; Bundeleva, Irina; Takeuchi, Takeshi; Immel, Françoise; Medakovic, Davorin

    2016-11-01

    Calcium carbonate skeletal tissues in metazoans comprise a small quantity of occluded organic macromolecules, mostly proteins and polysaccharides that constitute the skeletal matrix. Because its functions in modulating the biomineralization process are well known, the skeletal matrix has been extensively studied, successively via classical biochemical approaches, via molecular biology and, in recent years, via transcriptomics and proteomics. The optimistic view that the deposition of calcium carbonate minerals requires a limited number of macromolecules has been challenged, in the last decade, by high-throughput approaches. Such approaches have made possible the rapid identification of large sets of mineral-associated proteins, i.e., 'skeletal repertoires' or 'skeletomes', in several calcifying animal models, ranging from sponges to echinoderms. One of the consequences of this expanding set of data is that a simple definition of the skeletal matrix is no longer possible. This increase in available data, however, makes it easier to compare skeletal repertoires, shedding light on the fundamental evolutionary mechanisms affecting matrix components. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Quantitative study of developmental biology confirms Dickinsonia as a metazoan.

    PubMed

    Hoekzema, Renee S; Brasier, Martin D; Dunn, Frances S; Liu, Alexander G

    2017-09-13

    The late Ediacaran soft-bodied macroorganism Dickinsonia (age range approx. 560-550 Ma) has often been interpreted as an early animal, and is increasingly invoked in debate on the evolutionary assembly of eumetazoan body plans. However, conclusive positive evidence in support of such a phylogenetic affinity has not been forthcoming. Here we subject a collection of Dickinsonia specimens interpreted to represent multiple ontogenetic stages to a novel, quantitative method for studying growth and development in organisms with an iterative body plan. Our study demonstrates that Dickinsonia grew via pre-terminal 'deltoidal' insertion and inflation of constructional units, followed by a later inflation-dominated phase of growth. This growth model is contrary to the widely held assumption that Dickinsonia grew via terminal addition of units at the end of the organism bearing the smallest units. When considered alongside morphological and behavioural attributes, our developmental data phylogenetically constrain Dickinsonia to the Metazoa, specifically the Eumetazoa plus Placozoa total group. Our findings have implications for the use of Dickinsonia in developmental debates surrounding the metazoan acquisition of axis specification and metamerism. © 2017 The Author(s).

  6. Fixational eye movements in the earliest stage of metazoan evolution.

    PubMed

    Bielecki, Jan; Høeg, Jens T; Garm, Anders

    2013-01-01

    All known photoreceptor cells adapt to constant light stimuli, fading the retinal image when exposed to an immobile visual scene. Counter strategies are therefore necessary to prevent blindness, and in mammals this is accomplished by fixational eye movements. Cubomedusae occupy a key position for understanding the evolution of complex visual systems and their eyes are assumedly subject to the same adaptive problems as the vertebrate eye, but lack motor control of their visual system. The morphology of the visual system of cubomedusae ensures a constant orientation of the eyes and a clear division of the visual field, but thereby also a constant retinal image when exposed to stationary visual scenes. Here we show that bell contractions used for swimming in the medusae refresh the retinal image in the upper lens eye of Tripedalia cystophora. This strongly suggests that strategies comparable to fixational eye movements have evolved at the earliest metazoan stage to compensate for the intrinsic property of the photoreceptors. Since the timing and amplitude of the rhopalial movements concur with the spatial and temporal resolution of the eye it circumvents the need for post processing in the central nervous system to remove image blur.

  7. Intranuclear DNA density affects chromosome condensation in metazoans

    PubMed Central

    Hara, Yuki; Iwabuchi, Mari; Ohsumi, Keita; Kimura, Akatsuki

    2013-01-01

    Chromosome condensation is critical for accurate inheritance of genetic information. The degree of condensation, which is reflected in the size of the condensed chromosomes during mitosis, is not constant. It is differentially regulated in embryonic and somatic cells. In addition to the developmentally programmed regulation of chromosome condensation, there may be adaptive regulation based on spatial parameters such as genomic length or cell size. We propose that chromosome condensation is affected by a spatial parameter called the chromosome amount per nuclear space, or “intranuclear DNA density.” Using Caenorhabditis elegans embryos, we show that condensed chromosome sizes vary during early embryogenesis. Of importance, changing DNA content to haploid or polyploid changes the condensed chromosome size, even at the same developmental stage. Condensed chromosome size correlates with interphase nuclear size. Finally, a reduction in nuclear size in a cell-free system from Xenopus laevis eggs resulted in reduced condensed chromosome sizes. These data support the hypothesis that intranuclear DNA density regulates chromosome condensation. This suggests an adaptive mode of chromosome condensation regulation in metazoans. PMID:23783035

  8. Interrogating the function of metazoan histones using engineered gene clusters

    PubMed Central

    McKay, Daniel J.; Klusza, Stephen; Penke, Taylor J.R.; Meers, Michael P.; Curry, Kaitlin P.; McDaniel, Stephen L.; Malek, Pamela Y.; Cooper, Stephen W.; Tatomer, Deirdre C.; Lieb, Jason D.; Strahl, Brian D.; Duronio, Robert J.; Matera, A. Gregory

    2015-01-01

    SUMMARY Histones and their post-translational modifications influence the regulation of many DNA-dependent processes. Although an essential role for histone-modifying enzymes in these processes is well established, defining the specific contribution of individual histone residues remains a challenge because many histone-modifying enzymes have non-histone targets. This challenge is exacerbated by the paucity of suitable approaches to genetically engineer histone genes in metazoans. Here, we describe a facile platform in Drosophila for generating and analyzing any desired histone genotype, and we use it to test the in vivo function of three histone residues. We demonstrate that H4K20 is neither essential for DNA replication nor for completion of development, unlike conclusions drawn from analyses of H4K20 methyltransferases. We also show that H3K36 is required for viability and H3K27 is essential for maintenance of cellular identity during development. These findings highlight the power of engineering histones to interrogate genome structure and function in animals. PMID:25669886

  9. Evidence of inherent spontaneous polarization in the metazoan integument epithelia.

    PubMed Central

    Athenstaedt, H; Claussen, H

    1983-01-01

    The live integument epithelia of the metazoa have an inherent spontaneous polarization (an inherent permanent electric dipole moment) of corresponding direction perpendicular to the integument surface. The existence of the inherent polarization was proved by their temperature dependence, i.e., by the pyroelectric (PE) effect. Quantitative PE measurements were carried out on a number of integument epithelia of vertebrates (a) in vivo, (b) on fresh epidermis preparations, and (c) on dead, air-dried epidermis specimens of the same species. The demonstrated spontaneous polarization is not dependent on the living state and not caused by a potential difference between the outer and inner integument surface. Dead, dry epidermis samples (potential difference less than 0.01 mV) as well as dead, dry integument appendages (bristles, hairs), and dead cuticles (of arthropoda, annelida, nematoda) showed an inherent dipole moment of the same orientation as the live epidermis. The findings reveal a relationship between the direction (vector) of inherent spontaneous polarization and that of growth (morphogenesis) in the animal epidermis, their appendages, and cuticles. We conclude (a) that the inherent spontaneous polarization is present in live individual epithelial cells of the metazoan integument, and (b) that this physical property is related to the structural and functional cell polarity of integument epithelia and possibly of other epithelia. Images FIGURE 10 PMID:6838974

  10. Intranuclear DNA density affects chromosome condensation in metazoans.

    PubMed

    Hara, Yuki; Iwabuchi, Mari; Ohsumi, Keita; Kimura, Akatsuki

    2013-08-01

    Chromosome condensation is critical for accurate inheritance of genetic information. The degree of condensation, which is reflected in the size of the condensed chromosomes during mitosis, is not constant. It is differentially regulated in embryonic and somatic cells. In addition to the developmentally programmed regulation of chromosome condensation, there may be adaptive regulation based on spatial parameters such as genomic length or cell size. We propose that chromosome condensation is affected by a spatial parameter called the chromosome amount per nuclear space, or "intranuclear DNA density." Using Caenorhabditis elegans embryos, we show that condensed chromosome sizes vary during early embryogenesis. Of importance, changing DNA content to haploid or polyploid changes the condensed chromosome size, even at the same developmental stage. Condensed chromosome size correlates with interphase nuclear size. Finally, a reduction in nuclear size in a cell-free system from Xenopus laevis eggs resulted in reduced condensed chromosome sizes. These data support the hypothesis that intranuclear DNA density regulates chromosome condensation. This suggests an adaptive mode of chromosome condensation regulation in metazoans.

  11. C2H2 zinc finger proteins of the SP/KLF, Wilms tumor, EGR, Huckebein, and Klumpfuss families in metazoans and beyond

    PubMed Central

    Pei, Jimin; Grishin, Nick V.

    2015-01-01

    Specificity proteins (SPs) and Krüppel-like factors (KLFs) are C2H2-type Zinc finger transcription factors that play essential roles in differentiation, development, proliferation and cell death. SP/KLF proteins, similarly to Wilms tumor protein 1 (WT1), Early Growth Response (EGR), Huckebein, and Klumpfuss, prefer to bind GC-rich sequences such as GC-box and CACCC-box (GT-box). We searched various genomes and transcriptomes of metazoans and single-cell holozoans for members of these families. Seven groups of KLFs (KLFA–G) and three groups of SPs (SPA–C) were identified in the three lineages of Bilateria (Deuterostomia, Ecdysozoa, and Lophotrochozoa). The last ancestor of jawed vertebrates was inferred to have at least 18 KLFs (group A: KLF1/2/4/17, group B: KLF3/8/12; group C: KLF5/5l; group D: KLF6/7; group E: KLF9/13/16; group F: KLF10/KLF11; group G: KLF15/15l) and 10 SPs (group A: SP1/2/3/4; group B: SP5/5l; group C: SP6/7/8/9), since they were found in both cartilaginous and boned fishes. Placental mammals have added KLF14 (group E) and KLF18 (group A), and lost KLF5l (KLF5-like) and KLF15l (KLF15-like). Multiple KLF members were found in basal metazoans (Ctenophora, Porifera, Placozoa, and Cnidaria). Ctenophora has the least number of KLFs and no SPs, which could be attributed to its proposed sister group relationship to other metazoans or gene loss. While SP, EGR and Klumpfuss were only detected in metazoans, KLF, WT1, and Huckebein are present in nonmetazoan holozoans. Of the seven metazoan KLF groups, only KLFG, represented by KLF15 in human, was found in nonmetazoans. In addition, two nonmetazoan groups of KLFs are present in Choanoflagellatea and Filasterea. WT1 could be evolutionarily the earliest among these GC/GT-box-binding families due to its sole presence in Ichthyosporea. PMID:26187067

  12. C2H2 zinc finger proteins of the SP/KLF, Wilms tumor, EGR, Huckebein, and Klumpfuss families in metazoans and beyond.

    PubMed

    Pei, Jimin; Grishin, Nick V

    2015-11-15

    Specificity proteins (SPs) and Krüppel-Like Factors (KLFs) are C2H2-type zinc finger transcription factors that play essential roles in differentiation, development, proliferation and cell death. SP/KLF proteins, similarly to Wilms tumor protein 1 (WT1), Early Growth Response (EGR), Huckebein, and Klumpfuss, prefer to bind GC-rich sequences such as GC-box and CACCC-box (GT-box). We searched various genomes and transcriptomes of metazoans and single-cell holozoans for members of these families. Seven groups of KLFs (KLFA-G) and three groups of SPs (SPA-C) were identified in the three lineages of Bilateria (Deuterostomia, Ecdysozoa, and Lophotrochozoa). The last ancestor of jawed vertebrates was inferred to have at least 18 KLFs (group A: KLF1/2/4/17, group B: KLF3/8/12; group C: KLF5/5l; group D: KLF6/7; group E: KLF9/13/16; group F: KLF10/KLF11; group G: KLF15/15l) and 10 SPs (group A: SP1/2/3/4; group B: SP5/5l; group C: SP6/7/8/9), since they were found in both cartilaginous and boned fishes. Placental mammals have added KLF14 (group E) and KLF18 (group A), and lost KLF5l (KLF5-like) and KLF15l (KLF15-like). Multiple KLF members were found in basal metazoans (Ctenophora, Porifera, Placozoa, and Cnidaria). Ctenophora has the least number of KLFs and no SPs, which could be attributed to its proposed sister group relationship to other metazoans or gene loss. While SP, EGR and Klumpfuss were only detected in metazoans, KLF, WT1, and Huckebein are present in nonmetazoan holozoans. Of the seven metazoan KLF groups, only KLFG, represented by KLF15 in human, was found in nonmetazoans. In addition, two nonmetazoan groups of KLFs are present in Choanoflagellatea and Filasterea. WT1 could be evolutionarily the earliest among these GC/GT-box-binding families due to its sole presence in Ichthyosporea. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Life beyond the Basal.

    ERIC Educational Resources Information Center

    Grey, Jeanne; Carbone, Carole

    1987-01-01

    Reading is a tool for learning. The goal for the teaching of reading must be to produce lovers of reading. A holistic approach should replace exclusive dependence on basal readers. Effective methods are the following: (1) language experience approach; (2) word banks; (3) pattern books; (4) sustained silent reading; and (5) directed…

  14. PCR Primers for Metazoan Nuclear 18S and 28S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Knowlton, Nancy

    2012-01-01

    Background Metagenetic analyses, which amplify and sequence target marker DNA regions from environmental samples, are increasingly employed to assess the biodiversity of communities of small organisms. Using this approach, our understanding of microbial diversity has expanded greatly. In contrast, only a few studies using this approach to characterize metazoan diversity have been reported, despite the fact that many metazoan species are small and difficult to identify or are undescribed. One of the reasons for this discrepancy is the availability of universal primers for the target taxa. In microbial studies, analysis of the 16S ribosomal DNA is standard. In contrast, the best gene for metazoan metagenetics is less clear. In the present study, we have designed primers that amplify the nuclear 18S and 28S ribosomal DNA sequences of most metazoan species with the goal of providing effective approaches for metagenetic analyses of metazoan diversity in environmental samples, with a particular emphasis on marine biodiversity. Methodology/Principal Findings Conserved regions suitable for designing PCR primers were identified using 14,503 and 1,072 metazoan sequences of the nuclear 18S and 28S rDNA regions, respectively. The sequence similarity of both these newly designed and the previously reported primers to the target regions of these primers were compared for each phylum to determine the expected amplification efficacy. The nucleotide diversity of the flanking regions of the primers was also estimated for genera or higher taxonomic groups of 11 phyla to determine the variable regions within the genes. Conclusions/Significance The identified nuclear ribosomal DNA primers (five primer pairs for 18S and eleven for 28S) and the results of the nucleotide diversity analyses provide options for primer combinations for metazoan metagenetic analyses. Additionally, advantages and disadvantages of not only the 18S and 28S ribosomal DNA, but also other marker regions as targets

  15. Conservation and diversification of Msx protein in metazoan evolution.

    PubMed

    Takahashi, Hirokazu; Kamiya, Akiko; Ishiguro, Akira; Suzuki, Atsushi C; Saitou, Naruya; Toyoda, Atsushi; Aruga, Jun

    2008-01-01

    Msx (/msh) family genes encode homeodomain (HD) proteins that control ontogeny in many animal species. We compared the structures of Msx genes from a wide range of Metazoa (Porifera, Cnidaria, Nematoda, Arthropoda, Tardigrada, Platyhelminthes, Mollusca, Brachiopoda, Annelida, Echiura, Echinodermata, Hemichordata, and Chordata) to gain an understanding of the role of these genes in phylogeny. Exon-intron boundary analysis suggested that the position of the intron located N-terminally to the HDs was widely conserved in all the genes examined, including those of cnidarians. Amino acid (aa) sequence comparison revealed 3 new evolutionarily conserved domains, as well as very strong conservation of the HDs. Two of the three domains were associated with Groucho-like protein binding in both a vertebrate and a cnidarian Msx homolog, suggesting that the interaction between Groucho-like proteins and Msx proteins was established in eumetazoan ancestors. Pairwise comparison among the collected HDs and their C-flanking aa sequences revealed that the degree of sequence conservation varied depending on the animal taxa from which the sequences were derived. Highly conserved Msx genes were identified in the Vertebrata, Cephalochordata, Hemichordata, Echinodermata, Mollusca, Brachiopoda, and Anthozoa. The wide distribution of the conserved sequences in the animal phylogenetic tree suggested that metazoan ancestors had already acquired a set of conserved domains of the current Msx family genes. Interestingly, although strongly conserved sequences were recovered from the Vertebrata, Cephalochordata, and Anthozoa, the sequences from the Urochordata and Hydrozoa showed weak conservation. Because the Vertebrata-Cephalochordata-Urochordata and Anthozoa-Hydrozoa represent sister groups in the Chordata and Cnidaria, respectively, Msx sequence diversification may have occurred differentially in the course of evolution. We speculate that selective loss of the conserved domains in Msx family

  16. Eyes absent: a gene family found in several metazoan phyla.

    PubMed

    Duncan, M K; Kos, L; Jenkins, N A; Gilbert, D J; Copeland, N G; Tomarev, S I

    1997-07-01

    Genes related to the Drosophila eyes absent gene were identified in vertebrates (mouse and human), mollusks (squid), and nematodes (C. elegans). Proteins encoded by these genes consist of conserved C-terminal and variable N-terminal domains. In the conserved 271-amino acid C-terminal region, Drosophila and vertebrate proteins are 65-67% identical. A vertebrate homolog of eyes absent, designated Eya2, was mapped to Chromosome (Chr) 2 in the mouse and to Chr 20q13.1 in human. Eya2 shows a dynamic pattern of expression during development. In the mouse, expression of Eya2 was first detected in 8.5-day embryos in the region of head ectoderm fated to become the forebrain. At later stages of development, Eya2 is expressed in the olfactory placode and in a variety of neural crest derivatives. In the eye, expression of Eya2 was first detected after formation of the lens vesicle. At day 17.5, the highest level of Eya2 mRNA was observed in primary lens fibers. Low levels of Eya2 expression was detected in retina, sclera, and cornea. By postnatal day 10, Eya2 was expressed in secondary lens fibers, cornea, and retina. Although Eya2 is expressed relatively late in eye development, it belongs to the growing list of factors that may be essential for eye development across metazoan phyla. Like members of the Pax-6 gene family, eyes absent gene family members were probably first involved in functions not related to vision, with recruitment for visual system formation and function occurring later.

  17. DNA Barcoding of Metazoan Zooplankton Copepods from South Korea

    PubMed Central

    Ryu, Shi Hyun; Kim, Sang Ki; Lee, Jin Hee; Lim, Young Jin; Lee, Jimin; Jun, Jumin; Kwak, Myounghai; Lee, Young-Sup; Hwang, Jae-Sam; Venmathi Maran, Balu Alagar; Chang, Cheon Young; Kim, Il-Hoi; Hwang, Ui Wook

    2016-01-01

    Copepods, small aquatic crustaceans, are the most abundant metazoan zooplankton and outnumber every other group of multicellular animals on earth. In spite of ecological and biological importance in aquatic environment, their morphological plasticity, originated from their various lifestyles and their incomparable capacity to adapt to a variety of environments, has made the identification of species challenging, even for expert taxonomists. Molecular approaches to species identification have allowed rapid detection, discrimination, and identification of cryptic or sibling species based on DNA sequence data. We examined sequence variation of a partial mitochondrial cytochrome C oxidase I gene (COI) from 133 copepod individuals collected from the Korean Peninsula, in order to identify and discriminate 94 copepod species covering six copepod orders of Calanoida, Cyclopoida, Harpacticoida, Monstrilloida, Poecilostomatoida and Siphonostomatoida. The results showed that there exists a clear gap with ca. 20 fold difference between the averages of within-specific sequence divergence (2.42%) and that of between-specific sequence divergence (42.79%) in COI, suggesting the plausible utility of this gene in delimitating copepod species. The results showed, with the COI barcoding data among 94 copepod species, that a copepod species could be distinguished from the others very clearly, only with four exceptions as followings: Mesocyclops dissimilis–Mesocyclops pehpeiensis (0.26% K2P distance in percent) and Oithona davisae–Oithona similis (1.1%) in Cyclopoida, Ostrincola japonica–Pseudomyicola spinosus (1.5%) in Poecilostomatoida, and Hatschekia japonica–Caligus quadratus (5.2%) in Siphonostomatoida. Thus, it strongly indicated that COI may be a useful tool in identifying various copepod species and make an initial progress toward the construction of a comprehensive DNA barcode database for copepods inhabiting the Korean Peninsula. PMID:27383475

  18. Compositional heterogeneity and phylogenomic inference of metazoan relationships.

    PubMed

    Nesnidal, Maximilian P; Helmkampf, Martin; Bruchhaus, Iris; Hausdorf, Bernhard

    2010-09-01

    Compositional heterogeneity of sequences between taxa may cause systematic error in phylogenetic inference. The potential influence of such bias might be mitigated by strategies to reduce compositional heterogeneity in the data set or by phylogeny reconstruction methods that account for compositional heterogeneity. We adopted several of these strategies to analyze a large ribosomal protein data set representing all major metazoan taxa. Posterior predictive tests revealed that there is compositional bias in this data set. Only a few taxa with strongly deviating amino acid composition had to be excluded to reduce this bias. Thus, this is a good solution, if these taxa are not central to the phylogenetic question at hand. Deleting individual proteins from the data matrix may be an appropriate method, if compositional heterogeneity among taxa is concentrated in a few proteins. However, half of the ribosomal proteins had to be excluded to reduce the compositional heterogeneity to a degree that the CAT model was no longer significantly violated. Recoding of amino acids into groups is another alternative but causes a loss of information and may result in badly resolved trees as demonstrated by the present data set. Bayesian inference with the CAT-BP model directly accounts for compositional heterogeneity between lineages by introducing breakpoints along the branches of the phylogeny at which the amino acid composition is allowed to change but is computationally expensive. Finally, a neighbor joining tree based on equal input distances that consider pattern and rate heterogeneity showed several unusual groupings, which are most likely artifacts, probably caused by the loss of information resulting from the transformation of the sequence data into distances. As long as no more efficient phylogenetic inference methods are available that can directly account for compositional heterogeneity in large data sets, using methods for reducing compositional heterogeneity in the data

  19. Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8

    PubMed Central

    Leclère, Lucas; Bause, Markus; Sinigaglia, Chiara; Steger, Julia; Rentzsch, Fabian

    2016-01-01

    ABSTRACT The development of the oral pole in cnidarians and the posterior pole in bilaterians is regulated by canonical Wnt signaling, whereas a set of transcription factors, including Six3/6 and FoxQ2, controls aboral development in cnidarians and anterior identity in bilaterians. However, it is poorly understood how these two patterning systems are initially set up in order to generate correct patterning along the primary body axis. Investigating the early steps of aboral pole formation in the sea anemone Nematostella vectensis, we found that, at blastula stage, oral genes are expressed before aboral genes and that Nvβ-catenin regulates both oral and aboral development. In the oral hemisphere, Nvβ-catenin specifies all subdomains except the oral-most, NvSnailA-expressing domain, which is expanded upon Nvβ-catenin knockdown. In addition, Nvβ-catenin establishes the aboral patterning system by promoting the expression of NvSix3/6 at the aboral pole and suppressing the Wnt receptor NvFrizzled5/8 at the oral pole. NvFrizzled5/8 expression thereby gets restricted to the aboral domain. At gastrula stage, NvSix3/6 and NvFrizzled5/8 are both expressed in the aboral domain, but they have opposing activities, with NvSix3/6 maintaining and NvFrizzled5/8 restricting the size of the aboral domain. At planula stage, NvFrizzled5/8 is required for patterning within the aboral domain and for regulating the size of the apical organ by modulation of a previously characterized FGF feedback loop. Our findings suggest conserved roles for Six3/6 and Frizzled5/8 in aboral/anterior development and reveal key functions for Nvβ-catenin in the patterning of the entire oral-aboral axis of Nematostella. PMID:26989171

  20. Crucial HSP70 co–chaperone complex unlocks metazoan protein disaggregation

    PubMed Central

    Nillegoda, Nadinath B.; Kirstein, Janine; Szlachcic, Anna; Berynskyy, Mykhaylo; Stank, Antonia; Stengel, Florian; Arnsburg, Kristin; Gao, Xuechao; Scior, Annika; Aebersold, Ruedi; Guilbride, D. Lys; Wade, Rebecca C.; Morimoto, Richard I.; Mayer, Matthias P.; Bukau, Bernd

    2016-01-01

    Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states1,2. Healthy metazoan cells effectively eliminate intracellular protein aggregates3,4, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems5,6, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro4,7. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control. PMID:26245380

  1. A pre-metazoan origin of the CRK gene family and co-opted signaling network

    PubMed Central

    Shigeno-Nakazawa, Yoko; Kasai, Takuma; Ki, Sewon; Kostyanovskaya, Elina; Pawlak, Jana; Yamagishi, Junya; Okimoto, Noriaki; Taiji, Makoto; Okada, Mariko; Westbrook, Jody; Satta, Yoko; Kigawa, Takanori; Imamoto, Akira

    2016-01-01

    CRK and CRKL adapter proteins play essential roles in development and cancer through their SRC homology 2 and 3 (SH2 and SH3) domains. To gain insight into the origin of their shared functions, we have investigated their evolutionary history. We propose a term, crk/crkl ancestral (crka), for orthologs in invertebrates before the divergence of CRK and CRKL in the vertebrate ancestor. We have isolated two orthologs expressed in the choanoflagellate Monosiga brevicollis, a unicellular relative to the metazoans. Consistent with its highly-conserved three-dimensional structure, the SH2 domain of M. brevicollis crka1 can bind to the mammalian CRK/CRKL SH2 binding consensus phospho-YxxP, and to the SRC substrate/focal adhesion protein BCAR1 (p130CAS) in the presence of activated SRC. These results demonstrate an ancient origin of the CRK/CRKL SH2-target recognition specificity. Although BCAR1 orthologs exist only in metazoans as identified by an N-terminal SH3 domain, YxxP motifs, and a C-terminal FAT-like domain, some pre-metazoan transmembrane proteins include several YxxP repeats in their cytosolic region, suggesting that they are remotely related to the BCAR1 substrate domain. Since the tyrosine kinase SRC also has a pre-metazoan origin, co-option of BCAR1-related sequences may have rewired the crka-dependent network to mediate adhesion signals in the metazoan ancestor. PMID:27686861

  2. Seawater pH at the advent of metazoan calcification

    NASA Astrophysics Data System (ADS)

    Ries, Justin; Gonzalez-Roubaud, Cécile; Douville, Eric; Montagna, Paolo

    2016-04-01

    The boron isotopic composition (δ11B) of bulk limestones provides a potentially powerful tool for reconstructing seawater pH deep into the geologic past (Kasemann et al., 2005; Paris et al., 2010; Ohnemueller et al., 2014). Here, we present δ11B of 35 calcitic limestones derived from a ca. 9 m.y. interval of the terminal Proterozoic Nama Group of southern Namibia. These units immediately precede the so-called Cambrian Radiation - the greatest diversification of metazoans in Earth history marked by the near-simultaneous advent of calcification across most animal phyla. The Nama Group represents one of the best preserved (average [Sr] = 1805 ppm; Mn/Sr < 2; δ18O > -10‰) and most continuous terminal Proterozoic limestone sequences known in the world. The carbonate units investigated here were deposited between ca. 552 and 543 Ma in a semi-divided foreland basin of the Kalahari Craton (Grotzinger and Miller, 2008). Depositional environments were shore-associated and ranged from upper shoreline/tidal flats to below-wave-base lower shoreface, and comprise calcisiltites, calcarenites, heterolithic interbeds, grainstones, and microbialites (Saylor et al., 1998; Grotzinger and Miller, 2008). The δ11B of the 35 sampled Nama Group carbonates were obtained via MC-ICP-MS. Samples were screened for contamination of the δ11B signal by clays (using [Al] as a proxy for clay content) (Paris et al., 2010) and by open-system meteoric diagenesis (δ11B-δ18O correlation). The δ11B values of the limestones ranged from 0.5 to 10.8‰ (avg. = 5.3‰), which is consistent with the previously observed increasing trend in carbonate δ11B (Paris et al., 2010) from the -6.2 to 2.7‰ values reported for Neoproterozoic cap carbonate dolostones (Kasemann et al., 2005) to the ca. 25‰ value reported for most modern marine carbonates. B/Ca ratios for the sampled limestones ranged from 3.4 to 24.0 ppm (avg. = 11.0). Assuming a seawater temperature of 25° C, a salinity of 35, a depth of 10

  3. Basal cell carcinoma: pathophysiology.

    PubMed

    Sehgal, Virendra N; Chatterjee, Kingshuk; Pandhi, Deepika; Khurana, Ananta

    2014-01-01

    Basal cell carcinoma (BCC) is the most common skin cancer in humans, which typically appears over the sun-exposed skin as a slow-growing, locally invasive lesion that rarely metastasizes. Although the exact etiology of BCC is unknown, there exists a well-established relationship between BCC and the pilo-sebaceous unit, and it is currently thought to originate from pluri-potential cells in the basal layer of the epidermis or the follicle. The patched/hedgehog intracellular signaling pathway plays a central role in both sporadic BCCs and nevoid BCC syndrome (Gorlin syndrome). This pathway is vital for the regulation of cell growth, and differentiation and loss of inhibition of this pathway is associated with development of BCC. The sonic hedgehog protein is the most relevant to BCC; nevertheless, the Patched (PTCH) protein is the ligand-binding component of the hedgehog receptor complex in the cell membrane. The other protein member of the receptor complex, smoothened (SMO), is responsible for transducing hedgehog signaling to downstream genes, leading to abnormal cell proliferation. The importance of this pathway is highlighted by the successful use in advanced forms of BCC of vismodegib, a Food and Drug Administration-approved drug, that selectively inhibits SMO. The UV-specific nucleotide changes in the tumor suppressor genes, TP53 and PTCH, have also been implicated in the development of BCC.

  4. Horizontal gene transfer in the acquisition of novel traits by metazoans

    PubMed Central

    Boto, Luis

    2014-01-01

    Horizontal gene transfer is accepted as an important evolutionary force modulating the evolution of prokaryote genomes. However, it is thought that horizontal gene transfer plays only a minor role in metazoan evolution. In this paper, I critically review the rising evidence on horizontally transferred genes and on the acquisition of novel traits in metazoans. In particular, I discuss suspected examples in sponges, cnidarians, rotifers, nematodes, molluscs and arthropods which suggest that horizontal gene transfer in metazoans is not simply a curiosity. In addition, I stress the scarcity of studies in vertebrates and other animal groups and the importance of forthcoming studies to understand the importance and extent of horizontal gene transfer in animals. PMID:24403327

  5. MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion.

    PubMed

    Peterson, Kevin J; Dietrich, Michael R; McPeek, Mark A

    2009-07-01

    One of the most interesting challenges facing paleobiologists is explaining the Cambrian explosion, the dramatic appearance of most metazoan animal phyla in the Early Cambrian, and the subsequent stability of these body plans over the ensuing 530 million years. We propose that because phenotypic variation decreases through geologic time, because microRNAs (miRNAs) increase genic precision, by turning an imprecise number of mRNA transcripts into a more precise number of protein molecules, and because miRNAs are continuously being added to metazoan genomes through geologic time, miRNAs might be instrumental in the canalization of development. Further, miRNAs ultimately allow for natural selection to elaborate morphological complexity, because by reducing gene expression variability, miRNAs increase heritability, allowing selection to change characters more effectively. Hence, miRNAs might play an important role in shaping metazoan macroevolution, and might be part of the solution to the Cambrian conundrum.

  6. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time

    NASA Astrophysics Data System (ADS)

    Riding, Robert

    2006-03-01

    Secular variation in microbial carbonate abundance may be reflected by stromatolite morphotype diversity and reefal microbial carbonate abundance. These datasets reveal long-term changes over the past 3000 Myr that include a peak of abundance 1250 Myr ago, Late Proterozoic decline, Cambrian resurgence, and fluctuating decline during the remainder of the Phanerozoic. It is conceivable that Proterozoic metazoan diversification coincided with inception of stromatolite decline ˜1250 Myr ago, but microbial carbonate increase during Cambrian metazoan radiation together with failure of microbial carbonates to increase in the aftermaths of the End-Ordovician, End-Triassic and End-Cretaceous Mass Extinctions suggest that factors in addition to metazoan competition significantly influenced long-term changes in microbial carbonate abundance.

  7. Metazoans evolved by taking domains from soluble proteins to expand intercellular communication network

    PubMed Central

    Nam, Hyun-Jun; Kim, Inhae; Bowie, James U.; Kim, Sanguk

    2015-01-01

    A central question in animal evolution is how multicellular animals evolved from unicellular ancestors. We hypothesize that membrane proteins must be key players in the development of multicellularity because they are well positioned to form the cell-cell contacts and to provide the intercellular communication required for the creation of complex organisms. Here we find that a major mechanism for the necessary increase in membrane protein complexity in the transition from non-metazoan to metazoan life was the new incorporation of domains from soluble proteins. The membrane proteins that have incorporated soluble domains in metazoans are enriched in many of the functions unique to multicellular organisms such as cell-cell adhesion, signaling, immune defense and developmental processes. They also show enhanced protein-protein interaction (PPI) network complexity and centrality, suggesting an important role in the cellular diversification found in complex organisms. Our results expose an evolutionary mechanism that contributed to the development of higher life forms. PMID:25923201

  8. Metazoans evolved by taking domains from soluble proteins to expand intercellular communication network.

    PubMed

    Nam, Hyun-Jun; Kim, Inhae; Bowie, James U; Kim, Sanguk

    2015-04-29

    A central question in animal evolution is how multicellular animals evolved from unicellular ancestors. We hypothesize that membrane proteins must be key players in the development of multicellularity because they are well positioned to form the cell-cell contacts and to provide the intercellular communication required for the creation of complex organisms. Here we find that a major mechanism for the necessary increase in membrane protein complexity in the transition from non-metazoan to metazoan life was the new incorporation of domains from soluble proteins. The membrane proteins that have incorporated soluble domains in metazoans are enriched in many of the functions unique to multicellular organisms such as cell-cell adhesion, signaling, immune defense and developmental processes. They also show enhanced protein-protein interaction (PPI) network complexity and centrality, suggesting an important role in the cellular diversification found in complex organisms. Our results expose an evolutionary mechanism that contributed to the development of higher life forms.

  9. Metazoan parasites of Brama australis from southern Chile: a tool for stock discrimination?

    PubMed

    Oliva, M E; Espinola, J F; Ñacari, L A

    2016-03-01

    The metazoan parasites of 403 specimens of the southern ray's bream Brama australis from three localities in southern Chile (Lebu 36° 70' S; 73° 40' W, Calbuco 41° 50' S; 73° 08' W and Punta Arenas 53° 10' S; 70° 50' W) were recorded. More than 23 400 parasite specimens belonging to 12 taxa were registered. Metazoan parasites were dominated by the copepod Hatschekia conifera, constituting 97% of the total number of parasites; the larval cestode Hepatoxylon trichiuri was the second most important parasite (2·1% of the total number of parasites). The remaining 10 species constituted <1% of the metazoan parasites. Parasitological evidence, based on univariate and multivariate analysis, does not support the existence of discrete stocks in the studied zone. © 2016 The Fisheries Society of the British Isles.

  10. The evolutionary history of the catenin gene family during metazoan evolution

    PubMed Central

    2011-01-01

    Background Catenin is a gene family composed of three subfamilies; p120, beta and alpha. Beta and p120 are homologous subfamilies based on sequence and structural comparisons, and are members of the armadillo repeat protein superfamily. Alpha does not appear to be homologous to either beta or p120 based on the lack of sequence and structural similarity, and the alpha subfamily belongs to the vinculin superfamily. Catenins link the transmembrane protein cadherin to the cytoskeleton and thus function in cell-cell adhesion. To date, only the beta subfamily has been evolutionarily analyzed and experimentally studied for its functions in signaling pathways, development and human diseases such as cancer. We present a detailed evolutionary study of the whole catenin family to provide a better understanding of how this family has evolved in metazoans, and by extension, the evolution of cell-cell adhesion. Results All three catenin subfamilies have been detected in metazoans used in the present study by searching public databases and applying species-specific BLAST searches. Two monophyletic clades are formed between beta and p120 subfamilies using Bayesian phylogenetic inference. Phylogenetic analyses also reveal an array of duplication events throughout metazoan history. Furthermore, numerous annotation issues for the catenin family have been detected by our computational analyses. Conclusions Delta2/ARVCF catenin in the p120 subfamily, beta catenin in the beta subfamily, and alpha2 catenin in the alpha subfamily are present in all metazoans analyzed. This implies that the last common ancestor of metazoans had these three catenin subfamilies. However, not all members within each subfamily were detected in all metazoan species. Each subfamily has undergone duplications at different levels (species-specific, subphylum-specific or phylum-specific) and to different extents (in the case of the number of homologs). Extensive annotation problems have been resolved in each of the

  11. Exploring metazoan evolution through dynamic and holistic changes in protein families and domains

    PubMed Central

    2012-01-01

    Background Proteins convey the majority of biochemical and cellular activities in organisms. Over the course of evolution, proteins undergo normal sequence mutations as well as large scale mutations involving domain duplication and/or domain shuffling. These events result in the generation of new proteins and protein families. Processes that affect proteome evolution drive species diversity and adaptation. Herein, change over the course of metazoan evolution, as defined by birth/death and duplication/deletion events within protein families and domains, was examined using the proteomes of 9 metazoan and two outgroup species. Results In studying members of the three major metazoan groups, the vertebrates, arthropods, and nematodes, we found that the number of protein families increased at the majority of lineages over the course of metazoan evolution where the magnitude of these increases was greatest at the lineages leading to mammals. In contrast, the number of protein domains decreased at most lineages and at all terminal lineages. This resulted in a weak correlation between protein family birth and domain birth; however, the correlation between domain birth and domain member duplication was quite strong. These data suggest that domain birth and protein family birth occur via different mechanisms, and that domain shuffling plays a role in the formation of protein families. The ratio of protein family birth to protein domain birth (domain shuffling index) suggests that shuffling had a more demonstrable effect on protein families in nematodes and arthropods than in vertebrates. Through the contrast of high and low domain shuffling indices at the lineages of Trichinella spiralis and Gallus gallus, we propose a link between protein redundancy and evolutionary changes controlled by domain shuffling; however, the speed of adaptation among the different lineages was relatively invariant. Evaluating the functions of protein families that appeared or disappeared at the

  12. Mitochondrial genome data support the basal position of acoelomorpha and the polyphyly of the platyhelminthes

    SciTech Connect

    Ruiz-Trillo, Inaki; Riutort, Marta; Fourcade, H. Matthew; Baguna, Jaume; Boore, Jeffrey L.

    2004-05-01

    We determined 9.7, 5.2, and 6.8 kb, respectively, of the mitochondrial genomes of the acoel Paratomella rubra, the nemertodermatid Nemertoderma westbladi and the free-living rhabditophoran platyhelminth Microstomum lineare. The identified gene arrangements are unique among metazoans, including each other, sharing no more than one or two single gene boundaries with a few distantly related taxa. Phylogenetic analysis of the amino acid sequences inferred from the sequenced genes confirms that the acoelomorph flatworms (acoels + nemertodermatids) do not belong to the Platyhelminthes, but are, instead, the most basal extant bilaterian group. Therefore, the Platyhelminthes, as traditionally constituted, is a polyphyletic phylum.

  13. Mitochondrial genome data support the basal position of Acoelomorpha and the polyphyly of the Platyhelminthes.

    PubMed

    Ruiz-Trillo, Iñaki; Riutort, Marta; Fourcade, H Matthew; Baguñà, Jaume; Boore, Jeffrey L

    2004-11-01

    We determined 9.7, 5.2, and 6.8 kb, respectively, of the mitochondrial genomes of the acoel Paratomella rubra, the nemertodermatid Nemertoderma westbladi, and the free-living rhabditophoran platyhelminth Microstomum lineare. The identified gene arrangements are unique among metazoans, including each other, sharing no more than one or two single gene boundaries with a few distantly related taxa. Phylogenetic analysis of the amino acid sequences inferred from the sequenced genes confirms that the acoelomorph flatworms (acoels+nemertodermatids) do not belong to the Platyhelminthes, but are, instead, the most basal extant bilaterian group. Therefore, the Platyhelminthes, as traditionally constituted, is a polyphyletic phylum.

  14. Human basal body basics.

    PubMed

    Vertii, Anastassiia; Hung, Hui-Fang; Hehnly, Heidi; Doxsey, Stephen

    2016-01-01

    In human cells, the basal body (BB) core comprises a ninefold microtubule-triplet cylindrical structure. Distal and subdistal appendages are located at the distal end of BB, where they play indispensable roles in cilium formation and function. Most cells that arrest in the G0 stage of the cell cycle initiate BB docking at the plasma membrane followed by BB-mediated growth of a solitary primary cilium, a structure required for sensing the extracellular environment and cell signaling. In addition to the primary cilium, motile cilia are present in specialized cells, such as sperm and airway epithelium. Mutations that affect BB function result in cilia dysfunction. This can generate syndromic disorders, collectively called ciliopathies, for which there are no effective treatments. In this review, we focus on the features and functions of BBs and centrosomes in Homo sapiens.

  15. Vismodegib in basal cell carcinoma.

    PubMed

    Amaria, R N; Bowles, D W; Lewis, K D; Jimeno, A

    2012-07-01

    Vismodegib is a novel, small-molecule inhibitor of smoothened, a key component of the hedgehog signaling pathway. Increased hedgehog pathway signaling is critical in the development of hereditary and spontaneous basal cell carcinomas of the skin, and has been implicated in the development of a number of other tumors. In preclinical models, vismodegib demonstrated potent antitumor activity in hedgehog-dependent tumors, particularly basal cell carcinomas. Clinically, phase I and II studies showed dramatic anticancer activity in patients with advanced basal cell carcinomas. In January 2012, vismodegib was approved by the FDA for the treatment of unresectable or metastatic basal cell carcinomas of the skin.

  16. Teaching the Toolkit: A Laboratory Series to Demonstrate the Evolutionary Conservation of Metazoan Cell Signaling Pathways

    ERIC Educational Resources Information Center

    LeClair, Elizabeth E.

    2008-01-01

    A major finding of comparative genomics and developmental genetics is that metazoans share certain conserved, embryonically deployed signaling pathways that instruct cells as to their ultimate fate. Because the DNA encoding these pathways predates the evolutionary split of most animal groups, it should in principle be possible to clone…

  17. Exploring metazoan evolution through dynamic and holistic changes in protein families and domains

    USDA-ARS?s Scientific Manuscript database

    Understanding proteome evolution is important for deciphering processes that drive species diversity and adaptation. Herein, the dynamics of change in protein families and protein domains over the course of metazoan evolution was explored. Change, as defined by birth/death and duplication/deletion ...

  18. A Polarized Epithelium Organized by β- and α-Catenin Predates Cadherin and Metazoan Origins

    PubMed Central

    Dickinson, Daniel J.; Nelson, W. James; Weis, William I.

    2011-01-01

    Summary A polarized epithelium in the non-metazoan Dictyostelium discoideum requires α-catenin and β-catenin but not classical cadherins, polarity proteins or Wnt signaling. A fundamental characteristic of metazoans is the formation of a simple, polarized epithelium. In higher animals, the structural integrity and functional polarization of simple epithelia require a cell-cell adhesion complex containing a classical cadherin, the Wnt-signaling protein β-catenin and the actin-binding protein α-catenin. We show that the non-metazoan Dictyostelium discoideum forms a polarized epithelium that is essential for multicellular development. Although D. discoideum lacks a cadherin homolog, we identify an α-catenin ortholog that binds a β-catenin-related protein. Both proteins are essential for formation of the epithelium, polarized protein secretion and proper multicellular morphogenesis. Thus the organizational principles of metazoan multicellularity may be more ancient than previously recognized, and the role of the catenins in cell polarity predates the evolution of Wnt signaling and classical cadherins. PMID:21393547

  19. [Structural models of simple sense organs by the example of first metazoans].

    PubMed

    Aronova, M Z

    2009-01-01

    Basic variants of the evolutional program for formation of simple sensor system--structural models of gravitation receptor, organ of vision, chemoreceptor organ as well as of the nervous system at early stages of the metazoan phylogenesis--are considered from results of our own morphofunctional studies and literature data.

  20. miRNAs: small genes with big potential in metazoan phylogenetics.

    PubMed

    Tarver, James E; Sperling, Erik A; Nailor, Audrey; Heimberg, Alysha M; Robinson, Jeffrey M; King, Benjamin L; Pisani, Davide; Donoghue, Philip C J; Peterson, Kevin J

    2013-11-01

    microRNAs (miRNAs) are a key component of gene regulatory networks and have been implicated in the regulation of virtually every biological process found in multicellular eukaryotes. What makes them interesting from a phylogenetic perspective is the high conservation of primary sequence between taxa, their accrual in metazoan genomes through evolutionary time, and the rarity of secondary loss in most metazoan taxa. Despite these properties, the use of miRNAs as phylogenetic markers has not yet been discussed within a clear conceptual framework. Here we highlight five properties of miRNAs that underlie their utility in phylogenetics: 1) The processes of miRNA biogenesis enable the identification of novel miRNAs without prior knowledge of sequence; 2) The continuous addition of miRNA families to metazoan genomes through evolutionary time; 3) The low level of secondary gene loss in most metazoan taxa; 4) The low substitution rate in the mature miRNA sequence; and 5) The small probability of convergent evolution of two miRNAs. Phylogenetic analyses using both Bayesian and parsimony methods on a eumetazoan miRNA data set highlight the potential of miRNAs to become an invaluable new tool, especially when used as an additional line of evidence, to resolve previously intractable nodes within the tree of life.

  1. Horizontal transfer of the msp130 gene supported the evolution of metazoan biomineralization.

    PubMed

    Ettensohn, Charles A

    2014-05-01

    It is widely accepted that biomineralized structures appeared independently in many metazoan clades during the Cambrian. How this occurred, and whether it involved the parallel co-option of a common set of biochemical and developmental pathways (i.e., a shared biomineralization "toolkit"), are questions that remain unanswered. Here, I provide evidence that horizontal gene transfer supported the evolution of biomineralization in some metazoans. I show that Msp130 proteins, first described as proteins expressed selectively by the biomineral-forming primary mesenchyme cells of the sea urchin embryo, have a much wider taxonomic distribution than was previously appreciated. Msp130 proteins are present in several invertebrate deuterostomes and in one protostome clade (molluscs). Surprisingly, closely related proteins are also present in many bacteria and several algae, and I propose that msp130 genes were introduced into metazoan lineages via multiple, independent horizontal gene transfer events. Phylogenetic analysis shows that the introduction of an ancestral msp130 gene occurred in the sea urchin lineage more than 250 million years ago and that msp130 genes underwent independent, parallel duplications in each of the metazoan phyla in which these genes are found. © 2014 Wiley Periodicals, Inc.

  2. Teaching the Toolkit: A Laboratory Series to Demonstrate the Evolutionary Conservation of Metazoan Cell Signaling Pathways

    ERIC Educational Resources Information Center

    LeClair, Elizabeth E.

    2008-01-01

    A major finding of comparative genomics and developmental genetics is that metazoans share certain conserved, embryonically deployed signaling pathways that instruct cells as to their ultimate fate. Because the DNA encoding these pathways predates the evolutionary split of most animal groups, it should in principle be possible to clone…

  3. Metazoan parasites of fishes from the Celestun coastal lagoon, Yucatan, Mexico.

    PubMed

    Sosa-Medina, Trinidad; Vidal-Martínez, Víctor M; Aguirre-Macedo, M Leopoldina

    2015-08-31

    The aims of this study were to produce a checklist of the metazoan parasites of fishes from the Celestun coastal lagoon and to determine the degree of faunal similarity among the fishes based on the metazoan parasites they share. A checklist was prepared including all available records (1996-2014) of parasites of marine, brackish water and freshwater fishes of the area. All of these data were included in a presence/absence database and used to determine similarity via Jaccard's index. The results indicate the presence of 62 metazoan parasite species infecting 22 fish species. The number of metazoan parasite species found in the fishes from the Celestún lagoon is apparently the highest reported worldwide for a tropical coastal lagoon. The parasites included 12 species of adult digeneans, 27 digeneans in the metacercarial stage, 6 monogeneans, 3 metacestodes, 9 nematodes, 2 acanthocephalans, 2 crustaceans and 1 annelid. Forty parasite species were autogenic and 23 were allogenic and 1 unknown. The overall similarity among all of the species of fish with respect to the metazoan parasites they share was low (0.08 ± 0.12), with few similarity values above 0.4 being obtained. This low similarity was due primarily to the presence of suites of parasites exclusive to specific species of fish. The autogenic component of the parasite fauna (40 species) dominated the allogenic component (21 species). The most likely explanation for the large number of fish parasites found at Celestún is the good environmental condition of the lagoon, which allows the completion of parasite life cycles and free circulation of euryhaline fishes from the marine environment bringing marine parasites into the lagoon.

  4. Archaea in metazoan diets: implications for food webs and biogeochemical cycling

    PubMed Central

    Thurber, Andrew R; Levin, Lisa A; Orphan, Victoria J; Marlow, Jeffrey J

    2012-01-01

    Although the importance of trophic linkages, including ‘top-down forcing', on energy flow and ecosystem productivity is recognized, the influence of metazoan grazing on Archaea and the biogeochemical processes that they mediate is unknown. Here, we test if: (1) Archaea provide a food source sufficient to allow metazoan fauna to complete their life cycle; (2) neutral lipid biomarkers (including crocetane) can be used to identify Archaea consumers; and (3) archaeal aggregates are a dietary source for methane seep metazoans. In the laboratory, we demonstrated that a dorvilleid polychaete, Ophryotrocha labronica, can complete its life cycle on two strains of Euryarchaeota with the same growth rate as when fed bacterial and eukaryotic food. Archaea were therefore confirmed as a digestible and nutritious food source sufficient to sustain metazoan populations. Both strains of Euryarchaeota used as food sources had unique lipids that were not incorporated into O. labronica tissues. At methane seeps, sulfate-reducing bacteria that form aggregations and live syntrophically with anaerobic-methane oxidizing Archaea contain isotopically and structurally unique fatty acids (FAs). These biomarkers were incorporated into tissues of an endolithofaunal dorvilleid polychaete species from Costa Rica (mean bulk δ13C=−92±4‰ polar lipids −116‰) documenting consumption of archaeal-bacterial aggregates. FA composition of additional soft-sediment methane seep species from Oregon and California provided evidence that consumption of archaeal-bacterial aggregates is widespread at methane seeps. This work is the first to show that Archaea are consumed by heterotrophic metazoans, a trophic process we coin as ‘archivory'. PMID:22402398

  5. Archaea in metazoan diets: implications for food webs and biogeochemical cycling.

    PubMed

    Thurber, Andrew R; Levin, Lisa A; Orphan, Victoria J; Marlow, Jeffrey J

    2012-08-01

    Although the importance of trophic linkages, including 'top-down forcing', on energy flow and ecosystem productivity is recognized, the influence of metazoan grazing on Archaea and the biogeochemical processes that they mediate is unknown. Here, we test if: (1) Archaea provide a food source sufficient to allow metazoan fauna to complete their life cycle; (2) neutral lipid biomarkers (including crocetane) can be used to identify Archaea consumers; and (3) archaeal aggregates are a dietary source for methane seep metazoans. In the laboratory, we demonstrated that a dorvilleid polychaete, Ophryotrocha labronica, can complete its life cycle on two strains of Euryarchaeota with the same growth rate as when fed bacterial and eukaryotic food. Archaea were therefore confirmed as a digestible and nutritious food source sufficient to sustain metazoan populations. Both strains of Euryarchaeota used as food sources had unique lipids that were not incorporated into O. labronica tissues. At methane seeps, sulfate-reducing bacteria that form aggregations and live syntrophically with anaerobic-methane oxidizing Archaea contain isotopically and structurally unique fatty acids (FAs). These biomarkers were incorporated into tissues of an endolithofaunal dorvilleid polychaete species from Costa Rica (mean bulk δ(13)C=-92±4‰; polar lipids -116‰) documenting consumption of archaeal-bacterial aggregates. FA composition of additional soft-sediment methane seep species from Oregon and California provided evidence that consumption of archaeal-bacterial aggregates is widespread at methane seeps. This work is the first to show that Archaea are consumed by heterotrophic metazoans, a trophic process we coin as 'archivory'.

  6. Moral Judgments and Basal Readers

    ERIC Educational Resources Information Center

    Jantz, Richard K.

    1976-01-01

    Contains a brief review of the research on moral themes in basal reading series and their influence on children and summarizes an investigation which explored the frequency of moral decisions in stories in basal readers and identified those characters who posed the moral questions and those who solved moral dilemmas. (Author/RB)

  7. Basal cell nevus syndrome.

    PubMed

    High, Alec; Zedan, Walid

    2005-03-01

    Basal cell nevus syndrome (BCNS), is a hereditary condition transmitted as an autosomal dominant trait exhibiting high penetrance and variable expressivity. Inherited or spontaneous mutations in the human homologue of the Drosophila patched gene underlie the disorder and in addition to tumor predisposition, are associated with a range of 'patterning' defects. Recent advances, with glimpses of possible therapies are emerging, but because of the wide-ranging nature of phenotypic expression and overlap with other syndromes, there is difficulty. Finally, because of the importance of PTCH and paralogous genes in many species other than humans, reports appear in a correspondingly wide range of journals, which makes 'keeping abreast' difficult. Progress has been achieved in understanding the role of Gli-1, 2, & 3 in development of 'sporadic' BCCs and BCNS. Expression of PTCH1 is now known to be regulated by alternative promoters and a single functional Gli-binding site. Expression of FOXE1 as a new transcriptional target of Gli2 has been demonstrated in human epidermis and BCCs. Finally, the discovery of Shh pathway inhibitors such as cyclopamine, a naturally occurring alkaloid and ornithine decarboxylase inhibition suggest possible interventional therapies. In BCNS, phenotype does not correlate with position of mutations within Patched, suggesting genetic makeup and environment modulate effects of premature protein truncation induced by PTCH mutation. These developmental abnormalities occur as a result of haplo-insufficiency in heterozygotes for the mutated gene, whereas neoplastic complications arise from a classical two-hit tumor suppressor gene model. Attention is therefore turning toward TP53 and PTCH associations.

  8. New basal temperature and basal melt rate maps of Antarctica

    NASA Astrophysics Data System (ADS)

    Martos, Yasmina M.; Martin, Carlos; Vaughan, David G.

    2017-04-01

    Ice sheet basal conditions are key to initialize ice flow models and be able to estimate the future of the cryosphere. The thermal conditions are of importance because of the widespread presence of water beneath the Antarctic continent that affects both the ice-dynamics and the mass budget. The melting or freezing at the base of the ice sheet is consequence of several contributions to the heat balance. This includes the geothermal heat flux, the heat conducted or advected through the ice sheet, the latent heat and the friction heat at the interface. Here we present a new basal temperature and a total basal melting rate distributions of Antarctica. For this we use the most recent heat flux map (Martos et al., 2016) and an advanced ice flow model to incorporate the effect of advection and estimate frictional heat. We assume steady state conditions to estimate the basal properties. We found higher basal melting rates in West Antarctica than in East Antarctica as well as in the coastal regions of the continent and ice shelves. The spatial variation of our new basal temperature and basal melting rate distributions are greater than previously proposed which will help to unveil the Antarctic subglacial hydrology.

  9. Sequential development of apical-basal and planar polarities in aggregating epitheliomuscular cells of Hydra.

    PubMed

    Seybold, Anna; Salvenmoser, Willi; Hobmayer, Bert

    2016-04-01

    Apical-basal and planar cell polarities are hallmarks of metazoan epithelia required to separate internal and external environments and to regulate trans- and intracellular transport, cytoskeletal organization, and morphogenesis. Mechanisms of cell polarization have been intensively studied in bilaterian model organisms, particularly in early embryos and cultured cells, while cell polarity in pre-bilaterian tissues is poorly understood. Here, we have studied apical-basal and planar polarization in regenerating (aggregating) clusters of epitheliomuscular cells of Hydra, a simple representative of the ancestral, pre-bilaterian phylum Cnidaria. Immediately after dissociation, single epitheliomuscular cells do not exhibit cellular polarity, but they polarize de novo during aggregation. Reestablishment of the Hydra-specific epithelial bilayer is a result of short-range cell sorting. In the early phase of aggregation, apical-basal polarization starts with an enlargement of the epithelial apical-basal diameter and by the development of belt-like apical septate junctions. Specification of the basal pole of epithelial cells occurs shortly later and is linked to synthesis of mesoglea, development of hemidesmosome-like junctions, and formation of desmosome-like junctions connecting the basal myonemes of neighbouring cells. Planar polarization starts, while apical-basal polarization is already ongoing. It is executed gradually starting with cell-autonomous formation, parallelization, and condensation of myonemes at the basal end of each epithelial cell and continuing with a final planar alignment of epitheliomuscular cells at the tissue level. Our findings reveal that epithelial polarization in Hydra aggregates occurs in defined steps well accessible by histological and ultrastructural techniques and they will provide a basis for future molecular studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The p53 Tumor Suppressor-Like Protein nvp63 Mediates Selective Germ Cell Death in the Sea Anemone Nematostella vectensis

    PubMed Central

    Pankow, Sandra; Bamberger, Casimir

    2007-01-01

    Here we report the identification and molecular function of the p53 tumor suppressor-like protein nvp63 in a non-bilaterian animal, the starlet sea anemone Nematostella vectensis. So far, p53-like proteins had been found in bilaterians only. The evolutionary origin of p53-like proteins is highly disputed and primordial p53-like proteins are variably thought to protect somatic cells from genotoxic stress. Here we show that ultraviolet (UV) irradiation at low levels selectively induces programmed cell death in early gametes but not somatic cells of adult N. vectensis polyps. We demonstrate with RNA interference that nvp63 mediates this cell death in vivo. Nvp63 is the most archaic member of three p53-like proteins found in N. vectensis and in congruence with all known p53-like proteins, nvp63 binds to the vertebrate p53 DNA recognition sequence and activates target gene transcription in vitro. A transactivation inhibitory domain at its C-terminus with high homology to the vertebrate p63 may regulate nvp63 on a molecular level. The genotoxic stress induced and nvp63 mediated apoptosis in N. vectensis gametes reveals an evolutionary ancient germ cell protective pathway which relies on p63-like proteins and is conserved from cnidarians to vertebrates. PMID:17848985

  11. A manual collection of Syt, Esyt, Rph3a, Rph3al, Doc2, and Dblc2 genes from 46 metazoan genomes--an open access resource for neuroscience and evolutionary biology.

    PubMed

    Craxton, Molly

    2010-01-15

    Synaptotagmin proteins were first identified in nervous tissue, residing in synaptic vesicles. Synaptotagmins were subsequently found to form a large family, some members of which play important roles in calcium triggered exocytic events. These members have been investigated intensively, but other family members are not well understood, making it difficult to grasp the meaning of family membership in functional terms. Further difficulty arises as families are defined quite legitimately in different ways: by common descent or by common possession of distinguishing features. One definition does not necessarily imply the other. The evolutionary range of genome sequences now available, can shed more light on synaptotagmin gene phylogeny and clarify family relationships. The aim of compiling this open access collection of synaptotagmin and synaptotagmin-like sequences, is that its use may lead to greater understanding of the biological function of these proteins in an evolutionary context. 46 metazoan genomes were examined and their complement of Syt, Esyt, Rph3a, Rph3al, Doc2 and Dblc2 genes identified. All of the sequences were compared, named, then examined in detail. Esyt genes were formerly named Fam62. The species in this collection are Trichoplax, Nematostella, Capitella, Helobdella, Lottia, Ciona, Strongylocentrotus, Branchiostoma, Ixodes, Daphnia, Acyrthosiphon, Tribolium, Nasonia, Apis, Anopheles, Drosophila, Caenorhabditis, Takifugu, Tetraodon, Gasterosteus, Oryzias, Danio, Xenopus, Anolis, Gallus, Taeniopygia,Ornithorhynchus, Monodelphis, Mus and Homo. All of the data described in this paper is available as additional files. Only a subset of synaptotagmin proteins appear able to function as calcium triggers. Syt1, Syt7 and Syt9 are ancient conserved synaptotagmins of this type. Some animals carry extensive repertoires of synaptotagmin genes. Other animals of no less complexity, carry only a small repertoire. Current understanding does not explain why this is

  12. Guide to the identification of fish protozoan and metazoan parasites in stained tissue sections

    USGS Publications Warehouse

    Bruno, D.W.; Nowak, B.; Elliott, D.G.

    2006-01-01

    The identification of protozoan and metazoan parasites is traditionally carried out using a series of classical keys based upon the morphology of the whole organism. However, in stained tissue sections prepared for light microscopy, taxonomic features will be missing, thus making parasite identification difficult. This work highlights the characteristic features of representative parasites in tissue sections to aid identification. The parasite examples discussed are derived from species affecting finfish, and predominantly include parasites associated with disease or those commonly observed as incidental findings in disease diagnostic cases. Emphasis is on protozoan and small metazoan parasites (such as Myxosporidia) because these are the organisms most likely to be missed or mis-diagnosed during gross examination. Figures are presented in colour to assist biologists and veterinarians who are required to assess host/parasite interactions by light microscopy.

  13. [Metazoan parasites of bream (Abramis brama Linnaeus, 1758) in Lake Durusu (Terkos)].

    PubMed

    Karatoy, Emine; Soylu, Erhan

    2006-01-01

    In this study, metazoan parasites of bream (Abramis brama Linnaeus, 1758) in the Lake Durusu (Terkos) were investigated between June 2002 and May 2003. During this study, a total of 67 bream were examined for the presence of metazoan parasites. Ten species of parasites were found on 64 of the 67 fish examined. These parasites are: Dactylogyrus sphyrna (Linstow, 1878) and D. distinguendus (Nybelin, 1936) Monogenoidea, Caryophyllaeus laticeps (Pallas, 1781) Cestoidea, Tetracotyle sp, Diplostomum sp. and Tylodelphys clavata (Nordmann, 1832) metacercaria Trematoda, Eustrongylides excisus (Jagerskiöld, 1909) Nematoda, Piscicola geometra (Linnaeus, 1758) Hirudinea, glochidia of mollusk, Bivalvia, Argulus foliaceus (L., 1758) Crustacea. Diplostomum sp., Dactylogyrus sphyrna and D. distinguendus were found to be the dominant parasites of A. brama. Both the prevalence and intensity of other parasites were not found to be high. All identified parasites are a new finding for A. brama in the Lake Durusu. This is the first time that D. distinguendus has been identified in Turkey.

  14. Large-scale parsimony analysis of metazoan indels in protein-coding genes.

    PubMed

    Belinky, Frida; Cohen, Ofir; Huchon, Dorothée

    2010-02-01

    Insertions and deletions (indels) are considered to be rare evolutionary events, the analysis of which may resolve controversial phylogenetic relationships. Indeed, indel characters are often assumed to be less homoplastic than amino acid and nucleotide substitutions and, consequently, more reliable markers for phylogenetic reconstruction. In this study, we analyzed indels from over 1,000 metazoan orthologous genes. We studied the impact of different species sampling, ortholog data sets, lengths of included indels, and indel-coding methods on the resulting metazoan tree. Our results show that, similar to sequence substitutions, indels are homoplastic characters, and their analysis is sensitive to the long-branch attraction artifact. Furthermore, improving the taxon sampling and choosing a closely related outgroup greatly impact the phylogenetic inference. Our indel-based inferences support the Ecdysozoa hypothesis over the Coelomata hypothesis and suggest that sponges are a sister clade to other animals.

  15. LRPPRC is a mitochondrial matrix protein that is conserved in metazoans

    SciTech Connect

    Sterky, Fredrik H.; Ruzzenente, Benedetta; Gustafsson, Claes M.; Samuelsson, Tore; Larsson, Nils-Goeran

    2010-08-06

    Research highlights: {yields} LRPPRC orthologs are restricted to metazoans. {yields} LRPPRC is imported to the mitochondrial matrix. {yields} No evidence of nuclear isoform. -- Abstract: LRPPRC (also called LRP130) is an RNA-binding pentatricopeptide repeat protein. LRPPRC has been recognized as a mitochondrial protein, but has also been shown to regulate nuclear gene transcription and to bind specific RNA molecules in both the nucleus and the cytoplasm. We here present a bioinformatic analysis of the LRPPRC primary sequence, which reveals that orthologs to the LRPPRC gene are restricted to metazoan cells and that all of the corresponding proteins contain mitochondrial targeting signals. To address the subcellular localization further, we have carefully analyzed LRPPRC in mammalian cells and identified a single isoform that is exclusively localized to mitochondria. The LRPPRC protein is imported to the mitochondrial matrix and its mitochondrial targeting sequence is cleaved upon entry.

  16. A chancelloriid-like metazoan from the early Cambrian Chengjiang Lagerstätte, China.

    PubMed

    Hou, Xianguang; Williams, Mark; Siveter, David J; Siveter, Derek J; Gabbott, Sarah; Holwell, David; Harvey, Thomas H P

    2014-12-09

    Nidelric pugio gen. et sp. nov. from the Cambrian Series 2 Heilinpu Formation, Chengjiang Lagerstätte, Yunnan Province, China, is an ovoid, sac-like metazoan that bears single-element spines on its surface. N. pugio shows no trace of a gut, coelom, anterior differentiation, appendages, or internal organs that would suggest a bilateral body plan. Instead, the sac-like morphology invites comparison with the radially symmetrical chancelloriids. However, the single-element spines of N. pugio are atypical of the complex multi-element spine rosettes borne by most chancelloriids and N. pugio may signal the ancestral chancelloriid state, in which the spines had not yet fused. Alternatively, N. pugio may represent a group of radial metazoans that are discrete from chancelloriids. Whatever its precise phylogenetic position, N. pugio expands the known disparity of Cambrian scleritome-bearing animals, and provides a new model for reconstructing scleritomes from isolated microfossils.

  17. The Antennapedia-type homeobox genes have evolved from three precursors separated early in metazoan evolution.

    PubMed Central

    Schubert, F R; Nieselt-Struwe, K; Gruss, P

    1993-01-01

    The developmental control genes containing an Antennapedia-type homeobox are clustered in insects and vertebrates. The evolution of these genes was studied by the construction of evolutionary trees and by statistical geometry in sequence space. The comparative analysis of the homeobox sequences reveals the subdivision of the Antennapedia-type homeobox genes into three classes early in metazoan evolution. This observation suggests an important function of these genes even in the most primitive metazoans. Subsequent duplication events generated a cluster of at least five homeobox genes in the last common ancestor of insects and vertebrates. These genes later independently gave rise to the 13 groups of paralogous genes in vertebrates and to the 11 Antennapedia-type genes in the Drosophila complexes. Images PMID:8093557

  18. Comparative RNAi screening identifies a conserved core metazoan actinome by phenotype

    PubMed Central

    Sims, David; Liu, Tao; Fedorova, Marina; Schöck, Frieder; Dopie, Joseph; Vartiainen, Maria K.; Kiger, Amy A.; Perrimon, Norbert

    2011-01-01

    Although a large number of actin-binding proteins and their regulators have been identified through classical approaches, gaps in our knowledge remain. Here, we used genome-wide RNA interference as a systematic method to define metazoan actin regulators based on visual phenotype. Using comparative screens in cultured Drosophila and human cells, we generated phenotypic profiles for annotated actin regulators together with proteins bearing predicted actin-binding domains. These phenotypic clusters for the known metazoan “actinome” were used to identify putative new core actin regulators, together with a number of genes with conserved but poorly studied roles in the regulation of the actin cytoskeleton, several of which we studied in detail. This work suggests that although our search for new components of the core actin machinery is nearing saturation, regulation at the level of nuclear actin export, RNA splicing, ubiquitination, and other upstream processes remains an important but unexplored frontier of actin biology. PMID:21893601

  19. A chancelloriid-like metazoan from the early Cambrian Chengjiang Lagerstätte, China

    PubMed Central

    Hou, Xianguang; Williams, Mark; Siveter, David J.; Siveter, Derek J.; Gabbott, Sarah; Holwell, David; Harvey, Thomas H. P.

    2014-01-01

    Nidelric pugio gen. et sp. nov. from the Cambrian Series 2 Heilinpu Formation, Chengjiang Lagerstätte, Yunnan Province, China, is an ovoid, sac-like metazoan that bears single-element spines on its surface. N. pugio shows no trace of a gut, coelom, anterior differentiation, appendages, or internal organs that would suggest a bilateral body plan. Instead, the sac-like morphology invites comparison with the radially symmetrical chancelloriids. However, the single-element spines of N. pugio are atypical of the complex multi-element spine rosettes borne by most chancelloriids and N. pugio may signal the ancestral chancelloriid state, in which the spines had not yet fused. Alternatively, N. pugio may represent a group of radial metazoans that are discrete from chancelloriids. Whatever its precise phylogenetic position, N. pugio expands the known disparity of Cambrian scleritome-bearing animals, and provides a new model for reconstructing scleritomes from isolated microfossils. PMID:25487514

  20. Comparative embryology of basal angiosperms.

    PubMed

    Friedman, W E

    2001-02-01

    Recent phylogenetic analyses of basal angiosperms have identified those lineages central to the study of the origin and early diversification of flowering plants. As we begin to understand the early evolution of endosperm developmental patterns in flowering plants, it is apparent that we know little about the other basic embryological features of basal angiosperms, such as the nature of the female gametophyte and even whether a process of double fertilization occurs.

  1. Metazoan Scc4 Homologs Link Sister Chromatid Cohesion to Cell and Axon Migration Guidance

    PubMed Central

    Seitan, Vlad C; Banks, Peter; Laval, Steve; Majid, Nazia A; Dorsett, Dale; Rana, Amer; Smith, Jim; Bateman, Alex; Krpic, Sanja; Hostert, Arnd; Rollins, Robert A; Erdjument-Bromage, Hediye; Tempst, Paul; Benard, Claire Y; Hekimi, Siegfried; Newbury, Sarah F

    2006-01-01

    Saccharomyces cerevisiae Scc2 binds Scc4 to form an essential complex that loads cohesin onto chromosomes. The prevalence of Scc2 orthologs in eukaryotes emphasizes a conserved role in regulating sister chromatid cohesion, but homologs of Scc4 have not hitherto been identified outside certain fungi. Some metazoan orthologs of Scc2 were initially identified as developmental gene regulators, such as Drosophila Nipped-B, a regulator of cut and Ultrabithorax, and delangin, a protein mutant in Cornelia de Lange syndrome. We show that delangin and Nipped-B bind previously unstudied human and fly orthologs of Caenorhabditis elegans MAU-2, a non-axis-specific guidance factor for migrating cells and axons. PSI-BLAST shows that Scc4 is evolutionarily related to metazoan MAU-2 sequences, with the greatest homology evident in a short N-terminal domain, and protein–protein interaction studies map the site of interaction between delangin and human MAU-2 to the N-terminal regions of both proteins. Short interfering RNA knockdown of human MAU-2 in HeLa cells resulted in precocious sister chromatid separation and in impaired loading of cohesin onto chromatin, indicating that it is functionally related to Scc4, and RNAi analyses show that MAU-2 regulates chromosome segregation in C. elegans embryos. Using antisense morpholino oligonucleotides to knock down Xenopus tropicalis delangin or MAU-2 in early embryos produced similar patterns of retarded growth and developmental defects. Our data show that sister chromatid cohesion in metazoans involves the formation of a complex similar to the Scc2-Scc4 interaction in the budding yeast. The very high degree of sequence conservation between Scc4 homologs in complex metazoans is consistent with increased selection pressure to conserve additional essential functions, such as regulation of cell and axon migration during development. PMID:16802858

  2. Determinants of tyrosylprotein sulfation coding and substrate specificity of tyrosylprotein sulfotransferases in metazoans.

    PubMed

    Hartmann-Fatu, Cristina; Bayer, Peter

    2016-11-25

    This short review likes to give a historical view on the discovery of metazoan Tyrosylprotein Sulfotransferases (TPSTs) setting its focus on the determinants of substrate specificity of these enzymes and on the hitherto knowledge of the sulfation coding mechanism. Weak points of the to-date models of sulfation coding will be outlined and a more detailed and complex view on tyrosylprotein-sulfation coding will be presented with respect to recent cellular investigations on TPSTs.

  3. The origin of the pelagobenthic metazoan life cycle: what's sex got to do with it?

    PubMed

    Degnan, Sandie M; Degnan, Bernard M

    2006-12-01

    The biphasic (pelagobenthic) life cycle is found throughout the animal kingdom, and includes gametogenesis, embryogenesis, and metamorphosis. From a tangled web of hypotheses on the origin and evolution of the metazoan pelagobenthic life cycle, current opinion appears to favor a simple, larval-like holopelagic ancestor that independently settled multiple times to incorporate a benthic phase into the life cycle. This hypothesis derives originally from Haeckel's (1874) Gastraea theory of ontogeny recapitulating phylogeny, in which the gastrula is viewed as the recapitulation of a gastraean ancestor that evolved via selection on a simple, planktonic hollow ball of cells to develop the capacity to feed. Here, we propose an equally plausible hypothesis that the origin of the metazoan pelagobenthic life cycle was a direct consequence of sexual reproduction in a likely holobenthic ancestor. In doing so, we take into account new insights from poriferan development and from molecular phylogenies. In this scenario, the gastrula does not represent a recapitulation, but simply an embryological stage that is an outcome of sexual reproduction. The embryo can itself be considered as the precursor to a biphasic lifestyle, with the embryo representing one phase and the adult another phase. This hypothesis is more parsimonious because it precludes the need for multiple, independent origins of the benthic form. It is then reasonable to consider that multilayered, ciliated embryos ultimately released into the water column are subject to natural selection for dispersal/longevity/feeding that sets them on the evolutionary trajectory towards the crown metazoan planktonic larvae. These new insights from poriferan development thus clearly support the intercalation hypothesis of bilaterian larval evolution, which we now believe should be extended to discussions of the origin of biphasy in the metazoan last common ancestor.

  4. Early and middle(?) Cambrian metazoan and protistan fossils from West Africa

    USGS Publications Warehouse

    Culver, S.J.; Repetski, J.E.; Pojeta, J.; Hunt, D.

    1996-01-01

    Supposed Upper Proterozoic strata in the southwest Taoudeni Basin, Guinea and Senegal, and from the Mauritanide fold belt, Mauritania, have yielded mostly poorly preserved small skeletal fossils of metazoan and protistan origin. Problematic, but possible echinoderm material and spicules of the heteractinid sponge Eiffelia dominate the Taoudeni Basin assemblage. The age of the material is not certain but the paleontologic data suggest an Early Cambrian age for the stratigraphically lowest faunas, and a Middle Cambrian age is possible for the stratigraphically highest collections.

  5. A horizontal gene transfer supported the evolution of an early metazoan biomineralization strategy

    PubMed Central

    2011-01-01

    Background The synchronous and widespread adoption of the ability to biomineralize was a defining event for metazoan evolution during the late Precambrian/early Cambrian 545 million years ago. However our understanding on the molecular level of how animals first evolved this capacity is poor. Because sponges are the earliest branching phylum of biomineralizing metazoans, we have been studying how biocalcification occurs in the coralline demosponge Astrosclera willeyana. Results We have isolated and characterized a novel protein directly from the calcified spherulites of A. willeyana. Using three independent lines of evidence (genomic architecture of the gene in A. willeyana, spatial expression of the gene product in A. willeyana and genomic architecture of the gene in the related demosponge Amphimedon queenslandica), we show that the gene that encodes this protein was horizontally acquired from a bacterium, and is now highly and exclusively expressed in spherulite forming cells. Conclusions Our findings highlight the ancient and close association that exists between sponges and bacteria, and provide support for the notion that horizontal gene transfer may have been an important mechanism that supported the evolution of this early metazoan biomineralisation strategy. PMID:21838889

  6. Non-reliance of metazoans on stromatolite-forming microbial mats as a food resource.

    PubMed

    Rishworth, Gavin M; Perissinotto, Renzo; Bird, Matthew S; Strydom, Nadine A; Peer, Nasreen; Miranda, Nelson A F; Raw, Jacqueline L

    2017-02-16

    Grazing and burrowing organisms usually homogenise microalgal mats that form on benthic sediments of many aquatic ecosystems. In the absence of this disruption, microalgal mats can accrete laminated deposits (stromatolites). Stromatolites are rare in modern coastal ecosystems, but persist at locations where metazoans are largely excluded. This study aimed to assess the trophic structure at stromatolite locations where metazoans co-occur, to determine the grazing influence exerted by the metazoans on the stromatolite-forming microalgae (cyanobacteria and diatoms). Stable isotope signatures (δ(13)C and δ(15)N) were used as food-web tracers and dietary composition of consumers was calculated using source mixing models. Results clearly demonstrate that the dominant macrofaunal grazers do not utilise stromatolite material as a food resource, but rather subsist on autochthonous macroalgae. For instance, the mean (±SD) dietary composition of two of the most abundant grazers, Melita zeylanica (Amphipoda) and Composetia cf. keiskama (Polychaeta), consisted of 80 ± 11% and 91 ± 7% macroalgae, respectively. This suggests that the stromatolite-forming benthic microalgae are not disrupted significantly by grazing pressures, allowing for the layered mineralisation process to perpetuate. Additionally, grazers likely have a restrictive influence on pool macroalgae, maintaining the competitive balance between micro- and macroalgal groups.

  7. Non-reliance of metazoans on stromatolite-forming microbial mats as a food resource

    PubMed Central

    Rishworth, Gavin M.; Perissinotto, Renzo; Bird, Matthew S.; Strydom, Nadine A.; Peer, Nasreen; Miranda, Nelson A. F.; Raw, Jacqueline L.

    2017-01-01

    Grazing and burrowing organisms usually homogenise microalgal mats that form on benthic sediments of many aquatic ecosystems. In the absence of this disruption, microalgal mats can accrete laminated deposits (stromatolites). Stromatolites are rare in modern coastal ecosystems, but persist at locations where metazoans are largely excluded. This study aimed to assess the trophic structure at stromatolite locations where metazoans co-occur, to determine the grazing influence exerted by the metazoans on the stromatolite-forming microalgae (cyanobacteria and diatoms). Stable isotope signatures (δ13C and δ15N) were used as food-web tracers and dietary composition of consumers was calculated using source mixing models. Results clearly demonstrate that the dominant macrofaunal grazers do not utilise stromatolite material as a food resource, but rather subsist on autochthonous macroalgae. For instance, the mean (±SD) dietary composition of two of the most abundant grazers, Melita zeylanica (Amphipoda) and Composetia cf. keiskama (Polychaeta), consisted of 80 ± 11% and 91 ± 7% macroalgae, respectively. This suggests that the stromatolite-forming benthic microalgae are not disrupted significantly by grazing pressures, allowing for the layered mineralisation process to perpetuate. Additionally, grazers likely have a restrictive influence on pool macroalgae, maintaining the competitive balance between micro- and macroalgal groups. PMID:28205600

  8. The Demosponge Amphimedon queenslandica: Reconstructing the Ancestral Metazoan Genome and Deciphering the Origin of Animal Multicellularity.

    PubMed

    Degnan, Bernard M; Adamska, Maja; Craigie, Alina; Degnan, Sandie M; Fahey, Bryony; Gauthier, Marie; Hooper, John N A; Larroux, Claire; Leys, Sally P; Lovas, Erica; Richards, Gemma S

    2008-12-01

    INTRODUCTIONSponges are one of the earliest branching metazoans. In addition to undergoing complex development and differentiation, they can regenerate via stem cells and can discern self from nonself ("allorecognition"), making them a useful comparative model for a range of metazoan-specific processes. Molecular analyses of these processes have the potential to reveal ancient homologies shared among all living animals and critical genomic innovations that underpin metazoan multicellularity. Amphimedon queenslandica (Porifera, Demospongiae, Haplosclerida, Niphatidae) is the first poriferan representative to have its genome sequenced, assembled, and annotated. Amphimedon exemplifies many sessile and sedentary marine invertebrates (e.g., corals, ascidians, bryozoans): They disperse during a planktonic larval phase, settle in the vicinity of conspecifics, ward off potential competitors (including incompatible genotypes), and ensure that brooded eggs are fertilized by conspecific sperm. Using genomic and expressed sequence tag (EST) resources from Amphimedon, functional genomic approaches can be applied to a wide range of ecological and population genetic processes, including fertilization, dispersal, and colonization dynamics, host-symbiont interactions, and secondary metabolite production. Unlike most other sponges, Amphimedon produce hundreds of asynchronously developing embryos and larvae year-round in distinct, easily accessible brood chambers. Embryogenesis gives rise to larvae with at least a dozen cell types that are segregated into three layers and patterned along the body axis. In this article, we describe some of the methods currently available for studying A. queenslandica, focusing on the analysis of embryos, larvae, and post-larvae.

  9. Neuroglobins, Pivotal Proteins Associated with Emerging Neural Systems and Precursors of Metazoan Globin Diversity

    PubMed Central

    Lechauve, Christophe; Jager, Muriel; Laguerre, Laurent; Kiger, Laurent; Correc, Gaëlle; Leroux, Cédric; Vinogradov, Serge; Czjzek, Mirjam; Marden, Michael C.; Bailly, Xavier

    2013-01-01

    Neuroglobins, previously thought to be restricted to vertebrate neurons, were detected in the brain of a photosymbiotic acoel, Symsagittifera roscoffensis, and in neurosensory cells of the jellyfish Clytia hemisphaerica. For the neuroglobin of S. roscoffensis, a member of a lineage that originated either at the base of the bilateria or of the deuterostome clade, we report the ligand binding properties, crystal structure at 2.3 Å, and brain immunocytochemical pattern. We also describe in situ hybridizations of two neuroglobins specifically expressed in differentiating nematocytes (neurosensory cells) and in statocytes (ciliated mechanosensory cells) of C. hemisphaerica, a member of the early branching animal phylum cnidaria. In silico searches using these neuroglobins as queries revealed the presence of previously unidentified neuroglobin-like sequences in most metazoan lineages. Because neural systems are almost ubiquitous in metazoa, the constitutive expression of neuroglobin-like proteins strongly supports the notion of an intimate association of neuroglobins with the evolution of animal neural systems and hints at the preservation of a vitally important function. Neuroglobins were probably recruited in the first protoneurons in early metazoans from globin precursors. Neuroglobins were identified in choanoflagellates, sponges, and placozoans and were conserved during nervous system evolution. Because the origin of neuroglobins predates the other metazoan globins, it is likely that neuroglobin gene duplication followed by co-option and subfunctionalization led to the emergence of globin families in protostomes and deuterostomes (i.e. convergent evolution). PMID:23288852

  10. Collagen cross-linking: insights on the evolution of metazoan extracellular matrix

    PubMed Central

    Rodriguez-Pascual, Fernando; Slatter, David Anthony

    2016-01-01

    Collagens constitute a large family of extracellular matrix (ECM) proteins that play a fundamental role in supporting the structure of various tissues in multicellular animals. The mechanical strength of fibrillar collagens is highly dependent on the formation of covalent cross-links between individual fibrils, a process initiated by the enzymatic action of members of the lysyl oxidase (LOX) family. Fibrillar collagens are present in a wide variety of animals, therefore often being associated with metazoan evolution, where the emergence of an ancestral collagen chain has been proposed to lead to the formation of different clades. While LOX-generated collagen cross-linking metabolites have been detected in different metazoan families, there is limited information about when and how collagen acquired this particular modification. By analyzing telopeptide and helical sequences, we identified highly conserved, potential cross-linking sites throughout the metazoan tree of life. Based on this analysis, we propose that they have importantly contributed to the formation and further expansion of fibrillar collagens. PMID:27876853

  11. Dorsoventral patterning by the Chordin-BMP pathway: a unified model from a pattern-formation perspective for Drosophila, vertebrates, sea urchins and Nematostella.

    PubMed

    Meinhardt, Hans

    2015-09-01

    Conserved from Cnidarians to vertebrates, the dorsoventral (DV) axis is patterned by the Chordin-BMP pathway. However, the functions of the pathway's components are very different in different phyla. By modeling it is shown that many observations can be integrated by the assumption that BMP, acting as an inhibitory component in more ancestral systems, became a necessary and activating component for the generation of a secondary and antipodal-located signaling center. The different realizations seen in vertebrates, Drosophila, sea urchins and Nematostella allow reconstruction of a chain of modifications during evolution. BMP-signaling is proposed to be based on a pattern-forming reaction of the activator-depleted substrate type in which BMP-signaling acts via pSmad as the local self-enhancing component and the depletion of the highly mobile BMP-Chordin complex as the long-ranging antagonistic component. Due to the rapid removal of the BMP/Chordin complex during BMP-signaling, an oriented transport and "shuttling" results, although only ordinary diffusion is involved. The system can be self-organizing, allowing organizer formation even from near homogeneous initial situations. Organizers may regenerate after removal. Although connected with some losses of self-regulation, for large embryos as in amphibians, the employment of maternal determinants is an efficient strategy to make sure that only a single organizer of each type is generated. The generation of dorsoventral positional information along a long-extended anteroposterior (AP) axis cannot be achieved directly by a single patch-like organizer. Nature found different solutions for this task. Corresponding models provide a rationale for the well-known reversal in the dorsoventral patterning between vertebrates and insects. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Basal Organelles of Bacterial Flagella

    PubMed Central

    Cohen-Bazire, Germaine; London, Jack

    1967-01-01

    Liberated by enzymatic lysis of the cells, the flagella of Rhodospirillum rubrum, R. molischianum, and R. fulvum all have a similar structure. The hook at the base of the flagellum is connected by a short, narrow collar to a paired disc in the basal organelle. This paired disc is in turn connected to a second paired disc. The disposition of flagella to which fragments of the cell membrane still adhere suggests that the narrow collar at the base of the hook traverses both the wall and the membrane, and that the upper pair of discs in the basal organelle lies just beneath the surface of the membrane. Images PMID:6039362

  13. [Basal cell carcinoma and rare form variants].

    PubMed

    Liersch, J; Schaller, J

    2014-09-01

    Basal cell carcinomas are the most common primary cutaneous malignant neoplasms. The diagnosis of basal cell carcinoma represents a common and routine task for pathologists and dermatopathologists. The aim of this review is the clinical and histopathological presentation of the most common subtypes of basal cell carcinoma. Furthermore, the rare variants of basal cell carcinoma and their differential diagnoses are also discussed.

  14. The challenge of proving the existence of metazoan life in permanently anoxic deep-sea sediments.

    PubMed

    Danovaro, Roberto; Gambi, Cristina; Dell'Anno, Antonio; Corinaldesi, Cinzia; Pusceddu, Antonio; Neves, Ricardo Cardoso; Kristensen, Reinhardt Møbjerg

    2016-06-07

    The demonstration of the existence of metazoan life in absence of free oxygen is one of the most fascinating and difficult challenges in biology. Danovaro et al. (2010) discovered three new species of the Phylum Loricifera, living in the anoxic sediments of the L'Atalante, a deep-hypersaline anoxic basin of the Mediterranean Sea. Multiple and independent analyses based on staining, incorporation of radiolabeled substrates, CellTracker Green incorporation experiments and ultra-structure analyses, allowed Danovaro et al. (2010) to conclude that these animals were able to spend their entire life cycle under anoxic conditions. Bernhard et al. (2015) investigated the same basin. Due to technical difficulties in sampling operations, they could not collect samples from the permanently anoxic sediment, and sampled only the redoxcline portion of the L'Atalante basin. They found ten individuals of Loricifera and provided alternative interpretations of the results of Danovaro et al. (2010). Here we analyze these interpretations, and present additional evidence indicating that the Loricifera encountered in the anoxic basin L'Atalante were actually alive at the time of sampling. We also discuss the reliability of different methodologies and approaches in providing evidence of metazoans living in anoxic conditions, paving the way for future investigations.This paper is a response to Bernhard JM, Morrison CR, Pape E, Beaudoin DJ, Todaro MA, Pachiadaki MG, Kormas KAr, Edgcomb VG. 2015. Metazoans of redoxcline sediments in Mediterranean deep-sea hypersaline anoxic basins. BMC Biology 2015 13:105.See research article at http://bmcbiol.biomedcentral.com/articles/10.1186/s12915-015-0213-6.

  15. Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans.

    PubMed

    Zolfaghari Emameh, Reza; Barker, Harlan; Tolvanen, Martti E E; Ortutay, Csaba; Parkkila, Seppo

    2014-01-21

    Despite the high prevalence of parasitic infections, and their impact on global health and economy, the number of drugs available to treat them is extremely limited. As a result, the potential consequences of large-scale resistance to any existing drugs are a major concern. A number of recent investigations have focused on the effects of potential chemical inhibitors on bacterial and fungal carbonic anhydrases. Among the five classes of carbonic anhydrases (alpha, beta, gamma, delta and zeta), beta carbonic anhydrases have been reported in most species of bacteria, yeasts, algae, plants, and particular invertebrates (nematodes and insects). To date, there has been a lack of knowledge on the expression and molecular structure of beta carbonic anhydrases in metazoan (nematodes and arthropods) and protozoan species. Here, the identification of novel beta carbonic anhydrases was based on the presence of the highly-conserved amino acid sequence patterns of the active site. A phylogenetic tree was constructed based on codon-aligned DNA sequences. Subcellular localization prediction for each identified invertebrate beta carbonic anhydrase was performed using the TargetP webserver. We verified a total of 75 beta carbonic anhydrase sequences in metazoan and protozoan species by proteome-wide searches and multiple sequence alignment. Of these, 52 were novel, and contained highly conserved amino acid residues, which are inferred to form the active site in beta carbonic anhydrases. Mitochondrial targeting peptide analysis revealed that 31 enzymes are predicted with mitochondrial localization; one was predicted to be a secretory enzyme, and the other 43 were predicted to have other undefined cellular localizations. These investigations identified 75 beta carbonic anhydrases in metazoan and protozoan species, and among them there were 52 novel sequences that were not previously annotated as beta carbonic anhydrases. Our results will not only change the current information in

  16. Comparisons of Allergenic and Metazoan Parasite Proteins: Allergy the Price of Immunity

    PubMed Central

    Tyagi, Nidhi; Farnell, Edward J; Fitzsimmons, Colin M; Ryan, Stephanie; Tukahebwa, Edridah; Maizels, Rick M; Dunne, David W; Thornton, Janet M; Furnham, Nicholas

    2015-01-01

    Allergic reactions can be considered as maladaptive IgE immune responses towards environmental antigens. Intriguingly, these mechanisms are observed to be very similar to those implicated in the acquisition of an important degree of immunity against metazoan parasites (helminths and arthropods) in mammalian hosts. Based on the hypothesis that IgE-mediated immune responses evolved in mammals to provide extra protection against metazoan parasites rather than to cause allergy, we predict that the environmental allergens will share key properties with the metazoan parasite antigens that are specifically targeted by IgE in infected human populations. We seek to test this prediction by examining if significant similarity exists between molecular features of allergens and helminth proteins that induce an IgE response in the human host. By employing various computational approaches, 2712 unique protein molecules that are known IgE antigens were searched against a dataset of proteins from helminths and parasitic arthropods, resulting in a comprehensive list of 2445 parasite proteins that show significant similarity through sequence and structure with allergenic proteins. Nearly half of these parasite proteins from 31 species fall within the 10 most abundant allergenic protein domain families (EF-hand, Tropomyosin, CAP, Profilin, Lipocalin, Trypsin-like serine protease, Cupin, BetV1, Expansin and Prolamin). We identified epitopic-like regions in 206 parasite proteins and present the first example of a plant protein (BetV1) that is the commonest allergen in pollen in a worm, and confirming it as the target of IgE in schistosomiasis infected humans. The identification of significant similarity, inclusive of the epitopic regions, between allergens and helminth proteins against which IgE is an observed marker of protective immunity explains the ‘off-target’ effects of the IgE-mediated immune system in allergy. All these findings can impact the discovery and design of

  17. Investigation of Antarctic Marine Metazoan Biodiversity Through Metagenomic Analysis of Environmental DNA

    NASA Astrophysics Data System (ADS)

    Cowart, D. A.; Cheng, C. C.; Murphy, K.

    2016-02-01

    Environmental DNA (eDNA), or DNA extracted from environmental collections, is frequently used to gauge biodiversity and identify the presence of rare or invasive species within a habitat. Previous studies have demonstrated that compared to traditional surveying methods, high-throughput sequencing of eDNA can provide increased detection sensitivity of aquatic taxa, holding promise for various conservation applications. To determine the potential of eDNA for assessing biodiversity of Antarctic marine metazoan communities, we have extracted eDNA from seawater sampled from four regions near Palmer Station in West Antarctic Peninsula. Metagenomic sequencing of the eDNA was performed on Illumina HiSeq2500, and produced 325 million quality-processed reads. Preliminary read mapping for two regions, Gerlache Strait and Bismarck Strait, identified approximately 4% of reads mapping to eukaryotes for each region, with >50% of the those reads mapping to metazoan animals. Key groups investigated include the nototheniidae family of Antarctic fishes, to which 0.2 and 0.8 % of the metazoan reads were assigned for each region respectively. The presence of the recently invading lithodidae king crabs was also detected at both regions. Additionally, to estimate the persistence of eDNA in polar seawater, a rate of eDNA decay will be quantified from seawater samples collected over 20 days from Antarctic fish holding tanks and held at ambient Antarctic water temperatures. The ability to detect animal signatures from eDNA, as well as the quantification of eDNA decay over time, could provide another method for reliable monitoring of polar habitats at various spatial and temporal scales.

  18. Children's Literature in the Basals.

    ERIC Educational Resources Information Center

    O'Brien, Maureen A.

    Three basal reading series, levels kindergarten through grade three, were studied to categorize the types of literature each contained. The following series were analyzed: "The Headway Program" (Open Court Publishing Company), "Series r Macmillan Reading," and "Basics in Reading" (Scott, Foresman and Company). It was…

  19. Teachers Reflect Standards in Basals

    ERIC Educational Resources Information Center

    Gewertz, Catherine

    2012-01-01

    Dozens of teachers and literacy specialists from across the country hunkered down in Baltimore at round tables, with laptops, pens, and paper, intent on rewriting the collections that wield tremendous influence over the way millions of U.S. children learn literacy skills: the big-name basal readers. Hailing from 18 school districts in 11 states,…

  20. Children's Literature in the Basals.

    ERIC Educational Resources Information Center

    O'Brien, Maureen A.

    Three basal reading series, levels kindergarten through grade three, were studied to categorize the types of literature each contained. The following series were analyzed: "The Headway Program" (Open Court Publishing Company), "Series r Macmillan Reading," and "Basics in Reading" (Scott, Foresman and Company). It was…

  1. Teachers Reflect Standards in Basals

    ERIC Educational Resources Information Center

    Gewertz, Catherine

    2012-01-01

    Dozens of teachers and literacy specialists from across the country hunkered down in Baltimore at round tables, with laptops, pens, and paper, intent on rewriting the collections that wield tremendous influence over the way millions of U.S. children learn literacy skills: the big-name basal readers. Hailing from 18 school districts in 11 states,…

  2. Nevoid Basal Cell Carcinoma Syndrome

    MedlinePlus

    ... other skin problems a person has experienced. Early treatment of basal cell skin cancer reduces the amount of surgery and scarring. Regular ... sun . People with NBCCS should not receive radiation therapy, as this will ... cell skin cancers. Screening recommendations may change over time as new ...

  3. The most primitive metazoan animals, the placozoans, show high sensitivity to increasing ocean temperatures and acidities.

    PubMed

    Schleicherová, Dáša; Dulias, Katharina; Osigus, Hans-Jűrgen; Paknia, Omid; Hadrys, Heike; Schierwater, Bernd

    2017-02-01

    The increase in atmospheric carbon dioxide (CO2) leads to rising temperatures and acidification in the oceans, which directly or indirectly affects all marine organisms, from bacteria to animals. We here ask whether the simplest-and possibly also the oldest-metazoan animals, the placozoans, are particularly sensitive to ocean warming and acidification. Placozoans are found in all warm and temperate oceans and are soft-bodied, microscopic invertebrates lacking any calcified structures, organs, or symmetry. We here show that placozoans respond highly sensitive to temperature and acidity stress. The data reveal differential responses in different placozoan lineages and encourage efforts to develop placozoans as a potential biomarker system.

  4. Early colonization of metazoans in the deep-water: Evidences from the lowermost Cambrian black shales of South China

    NASA Astrophysics Data System (ADS)

    Zhu, M.-Y.; Yang, A.-H.; Zhang, J.-M.; Li, G.-X.; Yang, X.-L.

    2003-04-01

    Diversity of metazoans is high in the deep-water of the present ocean. But it is unknown that when the metazoans began to colonize in the deep-water and what kinds of metazoans first colonized in the deep-water since origin and radiation of metazoans during the Precambrian-Cambrian transition interval. Up to the present, colonization of the deep-sea began in the Ordovician. Although it is suggested that animals were penetrated into the intermediate water depth during the Precambrian, evidences support such suggestion are based on the problematic Ediacaran-grade fossils. However, almost fossil materials that support the Cambrian Explosion hypothesis were discovered from the lowermost Cambrian shallow-water deposits. The abundant earliest Cambrian mineralized small shelly fossils (SSF) are globally from the shallow-water deposits, and the well-known Chengjiang fauna that may records most complete features of metazoans in the ocean after the Cambrian Explosion, occurs as well in the shallow basin near an old land on the Yangtze Platform. In order to understand ecology of the Cambrian Explosion time interval and how happened of the onshore-offshore trends of metazoans, we focused our attention on collecting fossils in the lowermost Cambrian deposits under the varied facies on the Yangtze Platformm during recent years. Investigations of the shallow-water carbonate facies and the oxygen-depleted deep-water black shale facies revealed additional biological and ecological information that are not recorded in the Chengjiang fauna in the siliclastic shallow-water facies. Here we report our discovery of a particular fossil association from more than 10 sections in the deep-water black shales (Qiongzhusian) in the out shelf and slope area of the Yangtze Platform. The fossil association is composed of pelagic and sessile organisms, including abundant sponges, 3 types of bivalved arthropods, 3 types of tubular animals and few problematic organisms. The fossils have either

  5. Fossils and phylogenies: integrating multiple lines of evidence to investigate the origin of early major metazoan lineages.

    PubMed

    Cartwright, Paulyn; Collins, Allen

    2007-11-01

    Understanding the nature and timing of metazoan origins is one of the most important, yet elusive, questions in evolutionary biology. Fossil data provide the most tangible evidence for the origin of early animal lineages, although additional evidence from molecular phylogenetics, molecular clock studies, and development has contributed to our current understanding. We review several lines of evidence to explore the nature and timing of early metazoan evolution and discuss how these data, when considered together, provide a more cohesive picture of the origin of animal diversity. We discuss how trace fossils and biomarkers provide compelling evidence for the origins of Bilateria and siliceous sponges. Using a molecular phylogenetic framework for metazoans, we discuss how fossils can be used to date the origin of clades. We use these fossil dates to perform a relaxed molecular clock analysis for estimating dates of nodes when no fossils are available. We also discuss current data from developmental biology that suggest that early metazoans possessed a sophisticated molecular toolkit for building complex body plans. We conclude that the best evidence for the origin of major metazoan lineages lies in the careful interpretation of the fossil record and that these data, when considered with phylogenetic and developmental evidence, support the notion that the Cambrian radiation is a real phenomenon that marks a critically important time in the history of life.

  6. Metazoan parasite infracommunities of Florida pompano (Trachinotus carolinus) from the coast of the Yucatan Peninsula, Mexico.

    PubMed

    Sánchez-Ramírez, Claudia; Vidal-Martínez, Victor M

    2002-12-01

    Metazoan parasite infracommunities of the Florida pompano (Trachinotus carolinus) were studied in terms of species composition, species richness, diversity, numerical dominance, and similarity. Seventy-five fishes were collected from 4 localities along the Yucatan Peninsula coast and 24 parasite species recovered. Most were digeneans (8 species) and nematodes (7). Other species were monogeneans (3). aspidogastreans (2), cestodes (1), acanthocephalans (1), and crustaceans (2). Only 4 species were common in at least I locality. Mean values for species richness, abundance, diversity, numerical dominance, and similarity in total (all species in the individual fish), gastrointestinal, and ectoparasite infracommunities were within ranges observed for most helminth infracommunities of marine fishes from temperate and tropical latitudes. These infracommunities had low species richness, abundance, diversity, and predictability (except ectoparasite infracommunities) and high dominance. Within the predictable element (common species), the specialist monogenean Pseudobicotylophora atlantica was the main reason for the increase in predictability because it was the only common species at all 4 localities. Host feeding habits, the distribution of intermediate hosts and infective stages, the local species pool, and a phylogenetic component seem to be determining the characteristics of these metazoan parasite infracommunities.

  7. Neuropeptides and epitheliopeptides: structural and functional diversity in an ancestral metazoan Hydra.

    PubMed

    Takahashi, Toshio

    2013-06-01

    Peptides are known to play important developmental and physiological roles in signaling. The rich diversity of peptides, with functions as diverse as intercellular communication, neurotransmission and signaling that spatially and temporally controls axis formation and cell differentiation, hints at the wealth of information passed between interacting cells. Little is known about peptides that control developmental processes such as cell differentiation and pattern formation in metazoans. The cnidarian Hydra is one of the most basic metazoans and is a key model system for study of the peptides involved in these processes. We developed a novel peptidomic approach for the isolation and identification of functional peptide signaling molecules from Hydra (the Hydra Peptide Project). Over the course of this project, a wide variety of novel neuropeptides were identified. Most of these peptides act directly on muscle cells and their functions include induction of contraction and relaxation. Some peptides are involved in cell differentiation and morphogenesis. Moreover, epitheliopeptides that are produced by epithelial cells were originally identified in Hydra. Some of these epitheliopeptides exhibit morphogen-like activities, whereas others are involved in regulating neuron differentiation, possibly through neuron-epithelial cell interactions. We also describe below our high-throughput reverse-phase nano-flow LCMALDI- TOF-MS/MS approach, which has proved a powerful tool for the discovery of novel peptide signaling molecules in Hydra.

  8. Splitting the cell, building the organism: Mechanisms of cell division in metazoan embryos.

    PubMed

    Kumar, Megha; Pushpa, Kumari; Mylavarapu, Sivaram V S

    2015-07-01

    The unicellular metazoan zygote undergoes a series of cell divisions that are central to its development into an embryo. Differentiation of embryonic cells leads eventually to the development of a functional adult. Fate specification of pluripotent embryonic cells occurs during the early embryonic cleavage divisions in several animals. Early development is characterized by well-known stages of embryogenesis documented across animals--morulation, blastulation, and morphogenetic processes such as gastrulation, all of which contribute to differentiation and tissue specification. Despite this broad conservation, there exist clearly discernible morphological and functional differences across early embryonic stages in metazoans. Variations in the mitotic mechanisms of early embryonic cell divisions play key roles in governing these gross differences that eventually encode developmental patterns. In this review, we discuss molecular mechanisms of both karyokinesis (nuclear division) and cytokinesis (cytoplasmic separation) during early embryonic divisions. We outline the broadly conserved molecular pathways that operate in these two stages in early embryonic mitoses. In addition, we highlight mechanistic variations in these two stages across different organisms. We finally discuss outstanding questions of interest, answers to which would illuminate the role of divergent mitotic mechanisms in shaping early animal embryogenesis.

  9. Thermal Limit for Metazoan Life in Question: In Vivo Heat Tolerance of the Pompeii Worm

    PubMed Central

    Ravaux, Juliette; Hamel, Gérard; Zbinden, Magali; Tasiemski, Aurélie A.; Boutet, Isabelle; Léger, Nelly; Tanguy, Arnaud; Jollivet, Didier; Shillito, Bruce

    2013-01-01

    The thermal limit for metazoan life, expected to be around 50°C, has been debated since the discovery of the Pompeii worm Alvinella pompejana, which colonizes black smoker chimney walls at deep-sea vents. While indirect evidence predicts body temperatures lower than 50°C, repeated in situ temperature measurements depict an animal thriving at temperatures of 60°C and more. This controversy was to remain as long as this species escaped in vivo investigations, due to irremediable mortalities upon non-isobaric sampling. Here we report from the first heat-exposure experiments with live A. pompejana, following isobaric sampling and subsequent transfer in a laboratory pressurized aquarium. A prolonged (2 hours) exposure in the 50–55°C range was lethal, inducing severe tissue damages, cell mortalities and triggering a heat stress response, therefore showing that Alvinella’s upper thermal limit clearly is below 55°C. A comparison with hsp70 stress gene expressions of individuals analysed directly after sampling in situ confirms that Alvinella pompejana does not experience long-term exposures to temperature above 50°C in its natural environment. The thermal optimum is nevertheless beyond 42°C, which confirms that the Pompeii worm ranks among the most thermotolerant metazoans. PMID:23734185

  10. Testing whether metazoan tyrosine loss was driven by selection against promiscuous phosphorylation.

    PubMed

    Pandya, Siddharth; Struck, Travis J; Mannakee, Brian K; Paniscus, Mary; Gutenkunst, Ryan N

    2015-01-01

    Protein tyrosine phosphorylation is a key regulatory modification in metazoans, and the corresponding kinase enzymes have diversified dramatically. This diversification is correlated with a genome-wide reduction in protein tyrosine content, and it was recently suggested that this reduction was driven by selection to avoid promiscuous phosphorylation that might be deleterious. We tested three predictions of this intriguing hypothesis. 1) Selection should be stronger on residues that are more likely to be phosphorylated due to local solvent accessibility or structural disorder. 2) Selection should be stronger on proteins that are more likely to be promiscuously phosphorylated because they are abundant. We tested these predictions by comparing distributions of tyrosine within and among human and yeast orthologous proteins. 3) Selection should be stronger against mutations that create tyrosine versus remove tyrosine. We tested this prediction using human population genomic variation data. We found that all three predicted effects are modest for tyrosine when compared with the other amino acids, suggesting that selection against deleterious phosphorylation was not dominant in driving metazoan tyrosine loss.

  11. Metazoan parasite assemblages of wild Seriola lalandi (Carangidae) from eastern and southern Australia.

    PubMed

    Hutson, Kate S; Ernst, Ingo; Mooney, Allan J; Whittington, Ian D

    2007-06-01

    Yellowtail kingfish, Seriola lalandi support significant commercial and recreational fisheries as well as aquaculture operations throughout the world. Metazoan parasite infections of S. lalandi are of considerable economic and ecological importance, yet very little is known about wild parasite assemblages. S. lalandi were collected from the east coast and south coast of Australia and examined for metazoan parasites. Forty-three parasite taxa were identified, including 26 new host records. Four of the parasite species recovered have been previously associated with disease or mortality in Seriola aquaculture. Comparisons are made between ectoparasite and endoparasite prevalence and intensity of S. lalandi from New South Wales and Victoria. S. lalandi sampled from the east coast of Australia shared ectoparasites previously documented from this species in New Zealand, providing support that S. lalandi in the Tasman Sea comprise a single stock. Based on previously used criteria to evaluate the suitability of parasites as biological tags, the monogenean Paramicrocotyloides reticularis Rohde and the copepod Parabrachiella seriolae Yamaguti and Yamasu may be potentially useful for stock discrimination.

  12. Metazoan mitochondrial gene sequence reference datasets for taxonomic assignment of environmental samples

    PubMed Central

    Machida, Ryuji J.; Leray, Matthieu; Ho, Shian-Lei; Knowlton, Nancy

    2017-01-01

    Mitochondrial-encoded genes are increasingly targeted in studies using high-throughput sequencing approaches for characterizing metazoan communities from environmental samples (e.g., plankton, meiofauna, filtered water). Yet, unlike nuclear ribosomal RNA markers, there is to date no high-quality reference dataset available for taxonomic assignments. Here, we retrieved all metazoan mitochondrial gene sequences from GenBank, and then quality filtered and formatted the datasets for taxonomic assignments using taxonomic assignment tools. The reference datasets—‘Midori references’—are available for download at www.reference-midori.info. Two versions are provided: (I) Midori-UNIQUE that contains all unique haplotypes associated with each species and (II) Midori-LONGEST that contains a single sequence, the longest, for each species. Overall, the mitochondrial Cytochrome oxidase subunit I gene was the most sequence-rich gene. However, sequences of the mitochondrial large ribosomal subunit RNA and Cytochrome b apoenzyme genes were observed for a large number of species in some phyla. The Midori reference is compatible with some taxonomic assignment software. Therefore, automated high-throughput sequence taxonomic assignments can be particularly effective using these datasets. PMID:28291235

  13. Thermal limit for metazoan life in question: in vivo heat tolerance of the Pompeii worm.

    PubMed

    Ravaux, Juliette; Hamel, Gérard; Zbinden, Magali; Tasiemski, Aurélie A; Boutet, Isabelle; Léger, Nelly; Tanguy, Arnaud; Jollivet, Didier; Shillito, Bruce

    2013-01-01

    The thermal limit for metazoan life, expected to be around 50°C, has been debated since the discovery of the Pompeii worm Alvinella pompejana, which colonizes black smoker chimney walls at deep-sea vents. While indirect evidence predicts body temperatures lower than 50°C, repeated in situ temperature measurements depict an animal thriving at temperatures of 60°C and more. This controversy was to remain as long as this species escaped in vivo investigations, due to irremediable mortalities upon non-isobaric sampling. Here we report from the first heat-exposure experiments with live A. pompejana, following isobaric sampling and subsequent transfer in a laboratory pressurized aquarium. A prolonged (2 hours) exposure in the 50-55°C range was lethal, inducing severe tissue damages, cell mortalities and triggering a heat stress response, therefore showing that Alvinella's upper thermal limit clearly is below 55°C. A comparison with hsp70 stress gene expressions of individuals analysed directly after sampling in situ confirms that Alvinella pompejana does not experience long-term exposures to temperature above 50°C in its natural environment. The thermal optimum is nevertheless beyond 42°C, which confirms that the Pompeii worm ranks among the most thermotolerant metazoans.

  14. Pellet microfossils: Possible evidence for metazoan life in Early Proterozoic time.

    PubMed

    Robbins, E I; Porter, K G; Haberyan, K A

    1985-09-01

    Microfossils resembling fecal pellets occur in acid-resistant residues and thin sections of Middle Cambrian to Early Proterozoic shale. The cylindrical microfossils average 50 x 110 mum and are the size and shape of fecal pellets produced by microscopic animals today. Pellets occur in dark gray and black rocks that were deposited in the facies that also preserves sulfide minerals and that represent environments analogous to those that preserve fecal pellets today. Rocks containing pellets and algal microfossils range in age from 0.53 to 1.9 gigayears (Gyr) and include Burgess Shale, Greyson and Newland Formations, Rove Formation, and Gunflint Iron-Formation. Similar rock types of Archean age, ranging from 2.68 to 3.8 Gyr, were barren of pellets. If the Proterozoic microfossils are fossilized fecal pellets, they provide evidence of metazoan life and a complex food chain at 1.9 Gyr ago. This occurrence predates macroscopic metazoan body fossils in the Ediacaran System at 0.67 Gyr, animal trace fossils from 0.9 to 1.3 Gyr, and fossils of unicellular eukaryotic plankton at 1.4 Gyr.

  15. A genome-wide RNA interference screen identifies two novel components of the metazoan secretory pathway

    PubMed Central

    Wendler, Franz; Gillingham, Alison K; Sinka, Rita; Rosa-Ferreira, Cláudia; Gordon, David E; Franch-Marro, Xavier; Peden, Andrew A; Vincent, Jean-Paul; Munro, Sean

    2010-01-01

    Genetic screens in the yeast Saccharomyces cerevisiae have identified many proteins involved in the secretory pathway, most of which have orthologues in higher eukaryotes. To investigate whether there are additional proteins that are required for secretion in metazoans but are absent from yeast, we used genome-wide RNA interference (RNAi) to look for genes required for secretion of recombinant luciferase from Drosophila S2 cells. This identified two novel components of the secretory pathway that are conserved from humans to plants. Gryzun is distantly related to, but distinct from, the Trs130 subunit of the TRAPP complex but is absent from S. cerevisiae. RNAi of human Gryzun (C4orf41) blocks Golgi exit. Kish is a small membrane protein with a previously uncharacterised orthologue in yeast. The screen also identified Drosophila orthologues of almost 60% of the yeast genes essential for secretion. Given this coverage, the small number of novel components suggests that contrary to previous indications the number of essential core components of the secretory pathway is not much greater in metazoans than in yeasts. PMID:19942856

  16. Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi

    PubMed Central

    2010-01-01

    Background Intercellular signaling pathways are a fundamental component of the integrating cellular behavior required for the evolution of multicellularity. The genomes of three of the four early branching animal phyla (Cnidaria, Placozoa and Porifera) have been surveyed for key components, but not the fourth (Ctenophora). Genomic data from ctenophores could be particularly relevant, as ctenophores have been proposed to be one of the earliest branching metazoan phyla. Results A preliminary assembly of the lobate ctenophore Mnemiopsis leidyi genome generated using next-generation sequencing technologies were searched for components of a developmentally important signaling pathway, the Wnt/β-catenin pathway. Molecular phylogenetic analysis shows four distinct Wnt ligands (MlWnt6, MlWnt9, MlWntA and MlWntX), and most, but not all components of the receptor and intracellular signaling pathway were detected. In situ hybridization of the four Wnt ligands showed that they are expressed in discrete regions associated with the aboral pole, tentacle apparati and apical organ. Conclusions Ctenophores show a minimal (but not obviously simple) complement of Wnt signaling components. Furthermore, it is difficult to compare the Mnemiopsis Wnt expression patterns with those of other metazoans. mRNA expression of Wnt pathway components appears later in development than expected, and zygotic gene expression does not appear to play a role in early axis specification. Notably absent in the Mnemiopsis genome are most major secreted antagonists, which suggests that complex regulation of this secreted signaling pathway probably evolved later in animal evolution. PMID:20920349

  17. Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi.

    PubMed

    Pang, Kevin; Ryan, Joseph F; Mullikin, James C; Baxevanis, Andreas D; Martindale, Mark Q

    2010-10-04

    Intercellular signaling pathways are a fundamental component of the integrating cellular behavior required for the evolution of multicellularity. The genomes of three of the four early branching animal phyla (Cnidaria, Placozoa and Porifera) have been surveyed for key components, but not the fourth (Ctenophora). Genomic data from ctenophores could be particularly relevant, as ctenophores have been proposed to be one of the earliest branching metazoan phyla. A preliminary assembly of the lobate ctenophore Mnemiopsis leidyi genome generated using next-generation sequencing technologies were searched for components of a developmentally important signaling pathway, the Wnt/β-catenin pathway. Molecular phylogenetic analysis shows four distinct Wnt ligands (MlWnt6, MlWnt9, MlWntA and MlWntX), and most, but not all components of the receptor and intracellular signaling pathway were detected. In situ hybridization of the four Wnt ligands showed that they are expressed in discrete regions associated with the aboral pole, tentacle apparati and apical organ. Ctenophores show a minimal (but not obviously simple) complement of Wnt signaling components. Furthermore, it is difficult to compare the Mnemiopsis Wnt expression patterns with those of other metazoans. mRNA expression of Wnt pathway components appears later in development than expected, and zygotic gene expression does not appear to play a role in early axis specification. Notably absent in the Mnemiopsis genome are most major secreted antagonists, which suggests that complex regulation of this secreted signaling pathway probably evolved later in animal evolution.

  18. Heterogenous oceanic redox conditions through the Ediacaran-Cambrian boundary limited the metazoan zonation.

    PubMed

    Zhang, Junpeng; Fan, Tailiang; Zhang, Yuandong; Lash, Gary G; Li, Yifan; Wu, Yue

    2017-08-17

    Recent studies have enhanced our understanding of the linkage of oxygenation and metazoan evolution in Early Cambrian time. However, little of this work has addressed the apparent lag of animal diversification and atmospheric oxygenation during this critical period of Earth history. This study utilizes the geochemical proxy and N isotope record of the Ediacaran-Cambrian boundary preserved in intra-shelf basin, slope, and slope basin deposits of the Yangtze Sea to assess the ocean redox state during the Early Cambrian metazoan radiation. Though ferruginous conditions appear to have prevailed through the water column during this time, episodes of local bottom-water anoxia extending into the photic-zone impacted the slope belt of the basin. Heterogenous oceanic redox conditions are expressed by trace element concentrations and Fe speciation, and spatial variation of N isotopes. We propose that the coupling of ocean chemistry and Early Cambrian animal diversification was not a simple cause-and-effect relationship, but rather a complex interaction. Specifically, it is likely that animal diversification expanded not only temporally but also spatially from the shallow shelf to deep-water environments in tandem with progressive oxygenation of the extensive continental margin.

  19. ADP-Ribose Activates the TRPM2 Channel from the Sea Anemone Nematostella vectensis Independently of the NUDT9H Domain

    PubMed Central

    Kühn, Frank J. P.; Kühn, Cornelia; Winking, Mathis; Hoffmann, Daniel C.; Lückhoff, Andreas

    2016-01-01

    The human redox-sensitive Transient receptor potential melastatin type 2 (hTRPM2) channel contains the C-terminal Nudix hydrolase domain NUDT9H which most likely binds ADP-ribose. During oxidative stress, the intracellular release of ADP-ribose triggers the activation of hTRPM2. The TRPM2 orthologue from Nematostella vectensis (nv) is also stimulated by ADP-ribose but not by the oxidant hydrogen peroxide. For further clarification of the structure-function relationships of these two distantly related channel orthologues, we performed whole-cell as well as single channel patch-clamp recordings, Ca2+-imaging and Western blot analysis after heterologous expression of wild-type and mutated channels in HEK-293 cells. We demonstrate that the removal of the entire NUDT9H domain does not disturb the response of nvTRPM2 to ADP-ribose. The deletion, however, created channels that were activated by hydrogen peroxide, as did mutations within the NUDT9H domain of nvTRPM2 that presumably suppress its enzymatic function. The same findings were obtained with the nvTRPM2 channel when the NUDT9H domain was replaced by the corresponding sequences of the original hNUDT9 enzyme. Whenever the enzyme domain was mutated to presumably inactive variants, channel activation by hydrogen peroxide could be achieved. Moreover, we found strong evidences for ADPRase activity of the isolated NUDT9H domain of nvTRPM2 in co-expression experiments with the C-terminally truncated nvTRPM2 channel. Thus, there is a clear correlation between the loss of enzymatic activity and the capability of nvTRPM2 to respond to oxidative stress. In striking contrast, the channel function of the hTRPM2 orthologue, in particular its sensitivity to ADP-ribose, was abrogated by already small changes of the NUDT9H domain. These findings establish nvTRPM2 as a channel gated by ADP-ribose through a novel mechanism. We conclude that the endogenous NUDT9H domain does not directly affect ADP-ribose-dependent gating of the nv

  20. Epidemiology of basal cell carcinoma.

    PubMed

    Chinem, Valquiria Pessoa; Miot, Hélio Amante

    2011-01-01

    Basal cell carcinoma is the most common malignant neoplasm in humans and its incidence has increased over the last decades. Its high frequency significantly burdens the health system, making the disease a public health issue. Despite the low mortality rates and the rare occurrence of metastases, the tumor may be locally invasive and relapse after treatment, causing significant morbidity. Exposure to ultraviolet radiation is the main environmental risk factor associated with its cause. However, other elements of risk are described, such as light skin phototypes, advanced age, family history of skin carcinoma, light eyes and blond hair, freckles in childhood and immunosuppression. Behavioral aspects such as occupational sun exposure, rural labor and sunburns at a young age also play a role. Between 30% and 75% of the sporadic cases are associated with patched hedgehog gene mutation, but other genetic changes are also described. The tumor is commonly found in concomitance with skin lesions related to chronic sun exposure, such as actinic keratoses, solar lentigines and facial telangiectasia. The prevention of basal cell carcinoma is based on the knowledge of risk factors, early diagnosis and treatment, as well as on the adoption of specific measures, particularly in susceptible populations. The authors present a review of the epidemiology of basal cell carcinoma.

  1. Apical and basal epitheliomuscular F-actin dynamics during Hydra bud evagination

    PubMed Central

    Aufschnaiter, Roland; Wedlich-Söldner, Roland; Zhang, Xiaoming

    2017-01-01

    ABSTRACT Bending of 2D cell sheets is a fundamental morphogenetic mechanism during animal development and reproduction. A critical player driving cell shape during tissue bending is the actin cytoskeleton. Much of our current knowledge about actin dynamics in whole organisms stems from studies of embryonic development in bilaterian model organisms. Here, we have analyzed actin-based processes during asexual bud evagination in the simple metazoan Hydra. We created transgenic Hydra strains stably expressing the actin marker Lifeact-GFP in either ectodermal or endodermal epitheliomuscular cells. We then combined live imaging with conventional phalloidin staining to directly follow actin reorganization. Bending of the Hydra epithelial double layer is initiated by a group of epitheliomuscular cells in the endodermal layer. These cells shorten their apical-basal axis and arrange their basal muscle processes in a circular configuration. We propose that this rearrangement generates the initial forces to bend the endoderm towards the ectoderm. Convergent tissue movement in both epithelial layers towards the centre of evagination then leads to elongation and extension of the bud along its new body axis. Tissue movement into the bud is associated with lateral intercalation of epithelial cells, remodelling of apical septate junctions, and rearrangement of basal muscle processes. The work presented here extends the analysis of morphogenetic mechanisms beyond embryonic tissues of model bilaterians. PMID:28630355

  2. Basal cell nevus syndrome - plantar pits (image)

    MedlinePlus

    ... pits in the palms and soles, and numerous basal cell carcinomas (skin cancers). This picture is a close-up of the pits found on the sole of the foot of an individual with basal cell nevus syndrome.

  3. The human airway epithelial basal cell transcriptome.

    PubMed

    Hackett, Neil R; Shaykhiev, Renat; Walters, Matthew S; Wang, Rui; Zwick, Rachel K; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G

    2011-05-04

    The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium.

  4. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem

  5. Molecular evolution of the metazoan PHD-HIF oxygen-sensing system.

    PubMed

    Rytkönen, Kalle T; Williams, Tom A; Renshaw, Gillian M; Primmer, Craig R; Nikinmaa, Mikko

    2011-06-01

    Metazoans rely on aerobic energy production, which requires an adequate oxygen supply. During reduced oxygen supply (hypoxia), the most profound changes in gene expression are mediated by transcription factors known as hypoxia-inducible factors (HIFs). HIF alpha proteins are commonly posttranslationally regulated by prolyl-4-hydroxylase (PHD) enzymes, which are direct "sensors" of cellular oxygen levels. We examined the molecular evolution of the metazoan PHD-HIF oxygen-sensing system by constructing complete phylogenies for PHD and HIF alpha genes and used computational tools to characterize the molecular changes underlying the functional divergence of PHD and HIF alpha duplicates. The presence of PHDs in metazoan genomes predates the emergence of HIF alphas. Our analysis revealed an unexpected diversity of PHD genes and HIF alpha sequence characteristics in invertebrates, suggesting that the simple oxygen-sensing systems of Caenorhabditis and Drosophila may not be typical of other invertebrate bilaterians. We studied the early vertebrate evolution of the system by sequencing these genes in early-diverging cartilaginous fishes, elasmobranchs. Cartilaginous fishes appear to have three paralogs of both PHD and HIF alpha. The novel sequences were used as outgroups for a detailed molecular analysis of PHD and HIF alpha duplicates in a major air-breathing vertebrate lineage, the mammals, and a major water-breathing vertebrate lineage, the teleosts. In PHDs, functionally divergent amino acid sites were detected near the HIF alpha-binding channel and beta2beta3 loop that defines its substrate specificity. In HIF alphas, more functional divergence was found in teleosts than in mammals, especially in the HIF-1 alpha PAS domain and HIF-2 alpha oxygen-dependent degradation (ODD) domains, which interact with PHDs. Overall, in the vertebrates, elevated substitution rates in the HIF-2 alpha N-terminal ODD domain, together with a functional divergence associated with the known

  6. Examining Dictionary Instruction in Basal Readers.

    ERIC Educational Resources Information Center

    Fisher, Peter J. L.; And Others

    This study explored the nature of dictionary instruction in several basal reading series. Three basal reading series from major academic publishers (Scott Foresman, Ginn, and Holt) with 1989 copyrights, were selected for detailed analysis. Results indicated that even where the professed aim of the basal reading series was to incorporate dictionary…

  7. The basal ganglia and apraxia.

    PubMed

    Pramstaller, P P; Marsden, C D

    1996-02-01

    Ever since Liepmann's original descriptions at the beginning of the century apraxia has usually been attributed to damage confined to the cerebral cortex and/or cortico-cortical connecting pathways. However, there have been suggestions that apraxia can be due to deep subcortical lesions, which raises the question as to whether damage to the basal ganglia or thalamus can cause apraxia. We therefore analysed 82 cases of such 'deep' apraxias reported in the literature. These reports consisted of a small number (n=9) of cases studied neuropathologically, and a much larger group (n=73) in which CT or MRI was used to identify the size and extent of the lesion. The reports were subdivided into (i) those with small isolated lesions which involved nuclei of the basal ganglia or thalamus only, and not extending to involve periventricular or peristriatal white matter; (ii) those with large lesions which involved two or more of the nuclei, or one or more of these deep structures plus damage to closely adjacent areas including the internal capsule, periventricular or peristriatal white matter; and (iii) lesions sparing basal ganglia and thalamus but involving adjacent white matter. The main conclusions to be drawn from this meta-analysis are that lesions confined to the basal ganglia (putamen, caudate nucleus and globus pallidus) rarely, if ever, cause apraxia. Lesions affecting the lenticular nucleus or putamen nearly always intruded into the adjacent lateral white matter to involve association fibres, in particular those of the superior longitudinal fasciculus and frontostriatal connections. Apraxia occurred with deep lesions of the basal ganglia apparently sparing white matter in only eight out of the 82 cases. Apraxia was most commonly seen when there were lesions in the lenticular nucleus or putamen (58 out of 72 cases) with additional involvement of capsular, and particularly of periventricular or peristriatal, white matter. Lesions of the globus pallidus (no cases) or

  8. The Unicellular Ancestry of Groucho-Mediated Repression and the Origins of Metazoan Transcription Factors

    PubMed Central

    Copley, Richard R.

    2016-01-01

    Groucho is a co-repressor that interacts with many transcription factors playing a crucial role in animal development. The evolutionary origins of Groucho are not clear. It is generally regarded as being a distinct animal-specific protein, although with similarities to the yeast Tup-like proteins. Here, it is shown that Groucho has true orthologs in unicellular relatives of animals. Based on their phylogenetic distribution, and an analysis of ligand-binding residues, these genes are unlikely to be orthologs of the fungal Tup-like genes. By identifying conserved candidate Groucho interaction motifs (GIMs) in nonmetazoan transcription factors, it is demonstrated that the details of molecular interactions between Groucho and transcription factors are likely to have been established prior to the origin of animals, but that the association of GIMs with many transcription factor types can be regarded as a metazoan innovation. PMID:27189982

  9. The Unicellular Ancestry of Groucho-Mediated Repression and the Origins of Metazoan Transcription Factors.

    PubMed

    Copley, Richard R

    2016-06-27

    Groucho is a co-repressor that interacts with many transcription factors playing a crucial role in animal development. The evolutionary origins of Groucho are not clear. It is generally regarded as being a distinct animal-specific protein, although with similarities to the yeast Tup-like proteins. Here, it is shown that Groucho has true orthologs in unicellular relatives of animals. Based on their phylogenetic distribution, and an analysis of ligand-binding residues, these genes are unlikely to be orthologs of the fungal Tup-like genes. By identifying conserved candidate Groucho interaction motifs (GIMs) in nonmetazoan transcription factors, it is demonstrated that the details of molecular interactions between Groucho and transcription factors are likely to have been established prior to the origin of animals, but that the association of GIMs with many transcription factor types can be regarded as a metazoan innovation.

  10. Methuselah/Methuselah-like G protein-coupled receptors constitute an ancient metazoan gene family

    PubMed Central

    de Mendoza, Alexandre; Jones, Jeffery W.; Friedrich, Markus

    2016-01-01

    Inconsistent conclusions have been drawn regarding the phylogenetic age of the Methuselah/Methuselah-like (Mth/Mthl) gene family of G protein-coupled receptors, the founding member of which regulates development and lifespan in Drosophila. Here we report the results from a targeted homolog search of 39 holozoan genomes and phylogenetic analysis of the conserved seven transmembrane domain. Our findings reveal that the Mth/Mthl gene family is ancient, has experienced numerous extinction and expansion events during metazoan evolution, and acquired the current definition of the Methuselah ectodomain during its exceptional expansion in arthropods. In addition, our findings identify Mthl1, Mthl5, Mthl14, and Mthl15 as the oldest Mth/Mthl gene family paralogs in Drosophila. Future studies of these genes have the potential to define ancestral functions of the Mth/Mthl gene family. PMID:26915348

  11. The Cambrian "explosion" of metazoans and molecular biology: would Darwin be satisfied?

    PubMed

    Conway-Morris, Simon

    2003-01-01

    The origins of metazoan bodyplans and the extent to which they are coincident with the Cambrian "explosion" are both areas of continuing debate. The fossil record has a unique advantage in terms of historical perspective, but remains highly contentious on account of the often controversial interpretations of particular groups (e.g. halkieriids, vetulicolians) and the heavy reliance on "windows" of exceptional preservation (e.g. Chengjiang, Burgess Shale). Molecular and developmental biology offer other unique insights, but may be problematic in terms of conflicting phylogenetic signals and questions revolving around gene co-option, evolution of developmental systems and even convergence. Such topics, far from frustrating the enterprise, actually widen our understanding of the nature of the evolutionary process with the exciting promise of the discovery of more general principles.

  12. Metazoan tRNA introns generate stable circular RNAs in vivo

    PubMed Central

    Lu, Zhipeng; Filonov, Grigory S.; Noto, John J.; Schmidt, Casey A.; Hatkevich, Talia L.; Wen, Ying; Jaffrey, Samie R.; Matera, A. Gregory

    2015-01-01

    We report the discovery of a class of abundant circular noncoding RNAs that are produced during metazoan tRNA splicing. These transcripts, termed tRNA intronic circular (tric)RNAs, are conserved features of animal transcriptomes. Biogenesis of tricRNAs requires anciently conserved tRNA sequence motifs and processing enzymes, and their expression is regulated in an age-dependent and tissue-specific manner. Furthermore, we exploited this biogenesis pathway to develop an in vivo expression system for generating “designer” circular RNAs in human cells. Reporter constructs expressing RNA aptamers such as Spinach and Broccoli can be used to follow the transcription and subcellular localization of tricRNAs in living cells. Owing to the superior stability of circular vs. linear RNA isoforms, this expression system has a wide range of potential applications, from basic research to pharmaceutical science. PMID:26194134

  13. 2'-phosphodiesterase and 2',5'-oligoadenylate synthetase activities in the lowest metazoans, sponge [porifera].

    PubMed

    Saby, Emilie; Poulsen, Jesper Buchhave; Justesen, Just; Kelve, Merike; Uriz, Maria Jesus

    2009-01-01

    Sponges [porifera], the most ancient metazoans, contain modules related to the vertebrate immune system, including the 2',5'-oligoadenylate synthetase (OAS). The components of the antiviral 2',5'-oligoadenylate (2-5A) system (OAS, 2'-Phosphodiesterase (2'-PDE) and RNAse L) of vertebrates have not all been identified in sponges. Here, we demonstrate for the first time that in addition to the OAS activity, sponges possess a 2'-PDE activity, which highlights the probable existence of a premature 2-5A system. Indeed, Suberites domuncula and Crella elegans exhibited this 2-5A degrading activity. Upon this finding, two out of three elements forming the 2-5A system have been found in sponges, only a endoribonuclease, RNAse L or similar, has to be found. We suspect the existence of a complex immune system in sponges, besides the self/non-self recognition system and the use of phagocytosis and secondary metabolites against pathogens.

  14. Metazoan parasite community of blue sea catfish, Sciades guatemalensis (Ariidae), from Tres Palos Lagoon, Guerrero, Mexico.

    PubMed

    Violante-González, Juan; Aguirre-Macedo, Ma Leopoldina; Rojas-Herrera, Agustín; Guerrero, Salvador Gil

    2009-10-01

    The seasonal dynamic of the metazoan parasite community of the blue sea catfish (Sciades guatemalensis) from Tres Palos Lagoon, Guerrero, Mexico, was studied at the component community and infracommunity levels. A total of 382 fish were collected during the regional dry and rainy seasons (a total of seven seasons) between April 2000 and September 2007. Nine helminths were collected: Neotetraonchus sp., Pseudoacanthostomum panamense, Austrodiplostomum compactum, Clinostomum complanatum, Metadena sp., Pseudoleptorhynchoides lamothei, Neoechinorhynchus cf. golvani, Hysterothylacium perezi, and Contracaecum sp. The infection dynamics of some dominant helminths was influenced by environmental changes generated by the dry/rainy season cycle. Nested (non-random) species composition was observed in the infracommunities during almost all of the sample period. Variation in the intensity of nestedness was attributed to a sequential colonization process over time by the dominant helminths.

  15. Non-autonomous consequences of cell death and other perks of being metazoan

    PubMed Central

    Su, Tin Tin

    2015-01-01

    Drosophila melanogaster remains a foremost genetic model to study basic cell biological processes in the context of multi-cellular development. In such context, the behavior of one cell can influence another. Non-autonomous signaling among cells occurs throughout metazoan development and disease, and is too vast to be covered by a single review. I will focus here on non-autonomous signaling events that occur in response to cell death in the larval epithelia and affect the life-death decision of surviving cells. I will summarize the use of Drosophila to study cell death-induced proliferation, apoptosis-induced apoptosis, and apoptosis-induced survival signaling. Key insights from Drosophila will be discussed in the context of analogous processes in mammalian development and cancer biology. PMID:26069889

  16. Metazoan parasites of blue jack mackerel Trachurus picturatus (Perciformes: Carangidae) from Portuguese mainland waters.

    PubMed

    Hermida, M; Pereira, A; Correia, A T; Cruz, C; Saraiva, A

    2016-07-01

    Blue jack mackerel, Trachurus picturatus, is a carangid fish which constitutes an important commercial resource in the north-east Atlantic. Its metazoan parasite community from Portuguese mainland waters was investigated here for the first time. Nine parasite taxa were found, most of which are common parasites of Trachurus spp. The parasite community was broadly similar to that of the Atlantic horse mackerel, T. trachurus, from the same region, but two digenean species were detected in blue jack mackerel, Monascus filiformis and Tergestia sp., which did not occur in horse mackerel from this region. A comparison with the two previous studies of T. picturatus parasite communities shows that continental-shelf regions are characterized by higher prevalences of digenean trematodes and an absence of trypanorhynch cestodes, in contrast with oceanic regions.

  17. Systematic analysis and evolution of 5S ribosomal DNA in metazoans

    PubMed Central

    Vierna, J; Wehner, S; Höner zu Siederdissen, C; Martínez-Lage, A; Marz, M

    2013-01-01

    Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12 766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades. PMID:23838690

  18. Extensive metazoan reefs from the Ediacaran Nama Group, Namibia: the rise of benthic suspension feeding.

    PubMed

    Wood, R; Curtis, A

    2015-03-01

    We describe new, ecologically complex reef types from the Ediacaran Nama Group, Namibia, dated at ~548 million years ago (Ma), where the earliest known skeletal metazoans, Cloudina riemkeae and Namacalathus, formed extensive reefs up to 20 m in height and width. C. riemkeae formed densely aggregating assemblages associated with microbialite and thrombolite, each from 30 to 100 mm high, which successively colonised former generations to create stacked laminar or columnar reef frameworks. C. riemkeae individuals show budding, multiple, radiating attachment sites and cementation between individuals. Isolated Namacalathus either intergrew with C. riemkeae or formed dense, monospecific aggregations succeeding C. riemkeae frameworks, providing a potential example of environmentally mediated ecological succession. Cloudina and Namacalathus also grow cryptically, either as pendent aggregations from laminar crypt ceilings in microbial framework reefs or as clusters associated with thrombolite attached to neptunian dyke walls. These reefs are notable for their size, exceeding that of the succeeding Lower Cambrian archaeocyath-microbial communities. The repeated colonisation shown by C. riemkeae of former assemblages implies philopatric larval aggregation to colonise limited favourable substrates. As such, not only were skeletal metazoans more important contributors to reef building in the Ediacaran, but there were also more variable reef types with more complex ecologies, than previously thought. Such an abundance of inferred suspension feeders with biomineralised skeletons indicates the efficient exploitation of new resources, more active carbon removal with a strengthened energy flow between planktic and benthic realms, and the rise of biological control over benthic carbonate production. These mark the prelude to the Cambrian Explosion and the modernisation of the global carbon cycle.

  19. Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa.

    PubMed

    Oliver, Peter L; Goodstadt, Leo; Bayes, Joshua J; Birtle, Zoë; Roach, Kevin C; Phadnis, Nitin; Beatson, Scott A; Lunter, Gerton; Malik, Harmit S; Ponting, Chris P

    2009-12-01

    The onset of prezygotic and postzygotic barriers to gene flow between populations is a hallmark of speciation. One of the earliest postzygotic isolating barriers to arise between incipient species is the sterility of the heterogametic sex in interspecies' hybrids. Four genes that underlie hybrid sterility have been identified in animals: Odysseus, JYalpha, and Overdrive in Drosophila and Prdm9 (Meisetz) in mice. Mouse Prdm9 encodes a protein with a KRAB motif, a histone methyltransferase domain and several zinc fingers. The difference of a single zinc finger distinguishes Prdm9 alleles that cause hybrid sterility from those that do not. We find that concerted evolution and positive selection have rapidly altered the number and sequence of Prdm9 zinc fingers across 13 rodent genomes. The patterns of positive selection in Prdm9 zinc fingers imply that rapid evolution has acted on the interface between the Prdm9 protein and the DNA sequences to which it binds. Similar patterns are apparent for Prdm9 zinc fingers for diverse metazoans, including primates. Indeed, allelic variation at the DNA-binding positions of human PRDM9 zinc fingers show significant association with decreased risk of infertility. Prdm9 thus plays a role in determining male sterility both between species (mouse) and within species (human). The recurrent episodes of positive selection acting on Prdm9 suggest that the DNA sequences to which it binds must also be evolving rapidly. Our findings do not identify the nature of the underlying DNA sequences, but argue against the proposed role of Prdm9 as an essential transcription factor in mouse meiosis. We propose a hypothetical model in which incompatibilities between Prdm9-binding specificity and satellite DNAs provide the molecular basis for Prdm9-mediated hybrid sterility. We suggest that Prdm9 should be investigated as a candidate gene in other instances of hybrid sterility in metazoans.

  20. An efficient method to find potentially universal population genetic markers, applied to metazoans

    PubMed Central

    2010-01-01

    Background Despite the impressive growth of sequence databases, the limited availability of nuclear markers that are sufficiently polymorphic for population genetics and phylogeography and applicable across various phyla restricts many potential studies, particularly in non-model organisms. Numerous introns have invariant positions among kingdoms, providing a potential source for such markers. Unfortunately, most of the few known EPIC (Exon Primed Intron Crossing) loci are restricted to vertebrates or belong to multigenic families. Results In order to develop markers with broad applicability, we designed a bioinformatic approach aimed at avoiding multigenic families while identifying intron positions conserved across metazoan phyla. We developed a program facilitating the identification of EPIC loci which allowed slight variation in intron position. From the Homolens databases we selected 29 gene families which contained 52 promising introns for which we designed 93 primer pairs. PCR tests were performed on several ascidians, echinoderms, bivalves and cnidarians. On average, 24 different introns per genus were amplified in bilaterians. Remarkably, five of the introns successfully amplified in all of the metazoan genera tested (a dozen genera, including cnidarians). The influence of several factors on amplification success was investigated. Success rate was not related to the phylogenetic relatedness of a taxon to the groups that most influenced primer design, showing that these EPIC markers are extremely conserved in animals. Conclusions Our new method now makes it possible to (i) rapidly isolate a set of EPIC markers for any phylum, even outside the animal kingdom, and thus, (ii) compare genetic diversity at potentially homologous polymorphic loci between divergent taxa. PMID:20836842

  1. Systematic analysis and evolution of 5S ribosomal DNA in metazoans.

    PubMed

    Vierna, J; Wehner, S; Höner zu Siederdissen, C; Martínez-Lage, A; Marz, M

    2013-11-01

    Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12,766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades.

  2. Phylogenetic and Biological Significance of Evolutionary Elements from Metazoan Mitochondrial Genomes

    PubMed Central

    Yuan, Jianbo; Zhu, Qingming; Liu, Bin

    2014-01-01

    The evolutionary history of living species is usually inferred through the phylogenetic analysis of molecular and morphological information using various mathematical models. New challenges in phylogenetic analysis are centered mostly on the search for accurate and efficient methods to handle the huge amounts of sequence data generated from newer genome sequencing. The next major challenge is the determination of relationships between the evolution of structural elements and their functional implementation, which is largely ignored in previous analyses. Here, we described the discovery of structural elements in metazoan mitochondrial genomes, termed key K-strings, that can serve as a basis for phylogenetic tree construction. Although comprising only a small fraction (0.73%) of all K-strings, these key K-strings are pivotal to the tree construction because they allow for a significant reduction in the computational time required to construct phylogenetic trees, and more importantly, they make significant improvement to the results of phylogenetic inference. The trees constructed from the key K-strings were consistent overall to our current view of metazoan phylogeny and exhibited a more rational topology than the trees constructed by using other conventional methods. Surprisingly, the key K-strings tended to accumulate in the conserved regions of the original sequences, which were most likely due to strong selection pressure. Furthermore, the special structural features of the key K-strings should have some potential applications in the study of the structures and functions relationship of proteins and in the determination of evolutionary trajectory of species. The novelty and potential importance of key K-strings lead us to believe that they are essential evolutionary elements. As such, they may play important roles in the process of species evolution and their physical existence. Further studies could lead to discoveries regarding the relationship between

  3. Migraine attacks the Basal Ganglia

    PubMed Central

    2011-01-01

    Background With time, episodes of migraine headache afflict patients with increased frequency, longer duration and more intense pain. While episodic migraine may be defined as 1-14 attacks per month, there are no clear-cut phases defined, and those patients with low frequency may progress to high frequency episodic migraine and the latter may progress into chronic daily headache (> 15 attacks per month). The pathophysiology of this progression is completely unknown. Attempting to unravel this phenomenon, we used high field (human) brain imaging to compare functional responses, functional connectivity and brain morphology in patients whose migraine episodes did not progress (LF) to a matched (gender, age, age of onset and type of medication) group of patients whose migraine episodes progressed (HF). Results In comparison to LF patients, responses to pain in HF patients were significantly lower in the caudate, putamen and pallidum. Paradoxically, associated with these lower responses in HF patients, gray matter volume of the right and left caudate nuclei were significantly larger than in the LF patients. Functional connectivity analysis revealed additional differences between the two groups in regard to response to pain. Conclusions Supported by current understanding of basal ganglia role in pain processing, the findings suggest a significant role of the basal ganglia in the pathophysiology of the episodic migraine. PMID:21936901

  4. Diversity of symbioses between chemosynthetic bacteria and metazoans at the Guiness cold seep site (Gulf of Guinea, West Africa).

    PubMed

    Duperron, Sébastien; Rodrigues, Clara F; Léger, Nelly; Szafranski, Kamil; Decker, Carole; Olu, Karine; Gaudron, Sylvie M

    2012-12-01

    Fauna from deep-sea cold seeps worldwide is dominated by chemosymbiotic metazoans. Recently, investigation of new sites in the Gulf of Guinea yielded numerous new species for which symbiosis was strongly suspected. In this study, symbioses are characterized in five seep-specialist metazoans recently collected from the Guiness site located at ≈ 600 m depth. Four bivalve and one annelid species belonging to families previously documented to harbor chemosynthetic bacteria were investigated using bacterial marker gene sequencing, fluorescence in situ hybridization, and stable isotope analyses. Results support that all five species display chemosynthetic, sulfur-oxidizing γ-proteobacteria. Bacteria are abundant in the gills of bivalves, and in the trophosome of the siboglinid annelid. As observed for their relatives occurring at deeper sites, chemoautotrophy is a major source of carbon for animal nutrition. Although symbionts found in each host species are related to symbionts found in other metazoans from the same families, several incongruencies are observed among phylogenetic trees obtained from the different bacterial genes, suggesting a certain level of heterogeneity in symbiont strains present. Results provide new insights into the diversity, biogeography, and role of symbiotic bacteria in metazoans from the Gulf of Guinea, at a site located at an intermediate depth between the continental shelf and the deep sea.

  5. Diversity of symbioses between chemosynthetic bacteria and metazoans at the Guiness cold seep site (Gulf of Guinea, West Africa)

    PubMed Central

    Duperron, Sébastien; Rodrigues, Clara F; Léger, Nelly; Szafranski, Kamil; Decker, Carole; Olu, Karine; Gaudron, Sylvie M

    2012-01-01

    Fauna from deep-sea cold seeps worldwide is dominated by chemosymbiotic metazoans. Recently, investigation of new sites in the Gulf of Guinea yielded numerous new species for which symbiosis was strongly suspected. In this study, symbioses are characterized in five seep-specialist metazoans recently collected from the Guiness site located at ∼600 m depth. Four bivalve and one annelid species belonging to families previously documented to harbor chemosynthetic bacteria were investigated using bacterial marker gene sequencing, fluorescence in situ hybridization, and stable isotope analyses. Results support that all five species display chemosynthetic, sulfur-oxidizing γ-proteobacteria. Bacteria are abundant in the gills of bivalves, and in the trophosome of the siboglinid annelid. As observed for their relatives occurring at deeper sites, chemoautotrophy is a major source of carbon for animal nutrition. Although symbionts found in each host species are related to symbionts found in other metazoans from the same families, several incongruencies are observed among phylogenetic trees obtained from the different bacterial genes, suggesting a certain level of heterogeneity in symbiont strains present. Results provide new insights into the diversity, biogeography, and role of symbiotic bacteria in metazoans from the Gulf of Guinea, at a site located at an intermediate depth between the continental shelf and the deep sea. PMID:23233246

  6. GCM Simulations of Neoproterozoic "Snowball Earth" Conditions: Implications for the Environmental Limits on Terrestrial Metazoans and Their Extraterrestrial Analogues

    NASA Technical Reports Server (NTRS)

    Sohl, L. E.; Chandler, M. A.

    2001-01-01

    The Neoproterozoic Snowball Earth intervals provide excellent opportunities to examine the environmental limits on terrestrial metazoans. A series of GCM simulations was run in order to quantify climatic conditions during these intervals. Additional information is contained in the original extended abstract.

  7. Basal lamina development in chicken muscle spindles.

    PubMed

    Maier, A; Mayne, R

    1995-03-01

    The development of basal laminas was examined in immunohistochemical sections of chicken leg muscle spindles from embryonic day (E) 13 to 8 weeks postnatal. Fragments of basal laminas as seen with immunostaining for isoforms of laminin were already observed in E6 muscles. When clusters of intrafusal myotubes were first recognized at E13-14, they were surrounded by basal laminas which were incomplete both in terms of coverage and molecular composition. More mature basal lamina tubes individually enclosed young myofibers at E18. After afferents made contact with myotubes, synaptic portions of basal laminas at myosensory junctions reacted strongly with antibodies against s-laminin and chondroitin sulfate proteoglycan, while extrasynaptic portions were negative or reacted only weakly. At synaptic basal laminas of neuromuscular junctions heparin sulfate proteoglycan and s-laminin became prominent after E16. Contrary to the early presence of basal lamina proteins around intrafusal fibers, initial deposition of basal lamina proteins in the outer spindle capsule was not recognized until E17-18, and significant amounts were not detected until postnatal week 1. Unlike intrafusal basal laminas, capsular basal laminas developed no distinct specialized regions; however, molecular compositions of intrafusal and capsular basal laminas were similar.

  8. [Therapy of basal cell carcinoma].

    PubMed

    Schmitz, L; Dirschka, T

    2016-06-01

    Basal cell carcinoma (BCC) represents the most common malignant skin tumour in fair-skinned people. Despite low metastatic potential, BCC can cause decisive tissue destruction and disfigurement by invasive growth. In addition to clinical and histologic diagnosis modern imaging techniques as optical coherence tomography and confocal laser microscopy have been introduced. BCCs with aggressive growth pattern and/or increased risk of relapse are preferentially treated surgically. For superficial BCCs various topical treatments and photodynamic therapy are available. Inhibitors of the sonic hedgehog pathway have been approved for symptomatic treatment of metastatic BCC and locally advanced BCC inappropriate for surgery or radiotherapy. Detailed knowledge of the clinical spectrum of BCC and an appropriate choice of therapy are mandatory for the successful treatment of BCC.

  9. Reassessing domain architecture evolution of metazoan proteins: major impact of gene prediction errors.

    PubMed

    Nagy, Alinda; Szláma, György; Szarka, Eszter; Trexler, Mária; Bányai, László; Patthy, László

    2011-07-13

    In view of the fact that appearance of novel protein domain architectures (DA) is closely associated with biological innovations, there is a growing interest in the genome-scale reconstruction of the evolutionary history of the domain architectures of multidomain proteins. In such analyses, however, it is usually ignored that a significant proportion of Metazoan sequences analyzed is mispredicted and that this may seriously affect the validity of the conclusions. To estimate the contribution of errors in gene prediction to differences in DA of predicted proteins, we have used the high quality manually curated UniProtKB/Swiss-Prot database as a reference. For genome-scale analysis of domain architectures of predicted proteins we focused on RefSeq, EnsEMBL and NCBI's GNOMON predicted sequences of Metazoan species with completely sequenced genomes. Comparison of the DA of UniProtKB/Swiss-Prot sequences of worm, fly, zebrafish, frog, chick, mouse, rat and orangutan with those of human Swiss-Prot entries have identified relatively few cases where orthologs had different DA, although the percentage with different DA increased with evolutionary distance. In contrast with this, comparison of the DA of human, orangutan, rat, mouse, chicken, frog, zebrafish, worm and fly RefSeq, EnsEMBL and NCBI's GNOMON predicted protein sequences with those of the corresponding/orthologous human Swiss-Prot entries identified a significantly higher proportion of domain architecture differences than in the case of the comparison of Swiss-Prot entries. Analysis of RefSeq, EnsEMBL and NCBI's GNOMON predicted protein sequences with DAs different from those of their Swiss-Prot orthologs confirmed that the higher rate of domain architecture differences is due to errors in gene prediction, the majority of which could be corrected with our FixPred protocol. We have also demonstrated that contamination of databases with incomplete, abnormal or mispredicted sequences introduces a bias in DA

  10. Reassessing Domain Architecture Evolution of Metazoan Proteins: Major Impact of Gene Prediction Errors

    PubMed Central

    Nagy, Alinda; Szláma, György; Szarka, Eszter; Trexler, Mária; Bányai, László; Patthy, László

    2011-01-01

    In view of the fact that appearance of novel protein domain architectures (DA) is closely associated with biological innovations, there is a growing interest in the genome-scale reconstruction of the evolutionary history of the domain architectures of multidomain proteins. In such analyses, however, it is usually ignored that a significant proportion of Metazoan sequences analyzed is mispredicted and that this may seriously affect the validity of the conclusions. To estimate the contribution of errors in gene prediction to differences in DA of predicted proteins, we have used the high quality manually curated UniProtKB/Swiss-Prot database as a reference. For genome-scale analysis of domain architectures of predicted proteins we focused on RefSeq, EnsEMBL and NCBI's GNOMON predicted sequences of Metazoan species with completely sequenced genomes. Comparison of the DA of UniProtKB/Swiss-Prot sequences of worm, fly, zebrafish, frog, chick, mouse, rat and orangutan with those of human Swiss-Prot entries have identified relatively few cases where orthologs had different DA, although the percentage with different DA increased with evolutionary distance. In contrast with this, comparison of the DA of human, orangutan, rat, mouse, chicken, frog, zebrafish, worm and fly RefSeq, EnsEMBL and NCBI's GNOMON predicted protein sequences with those of the corresponding/orthologous human Swiss-Prot entries identified a significantly higher proportion of domain architecture differences than in the case of the comparison of Swiss-Prot entries. Analysis of RefSeq, EnsEMBL and NCBI's GNOMON predicted protein sequences with DAs different from those of their Swiss-Prot orthologs confirmed that the higher rate of domain architecture differences is due to errors in gene prediction, the majority of which could be corrected with our FixPred protocol. We have also demonstrated that contamination of databases with incomplete, abnormal or mispredicted sequences introduces a bias in DA

  11. Basal ganglia lesions following carbon monoxide poisoning.

    PubMed

    Hopkins, Ramona O; Fearing, Michael A; Weaver, Lindell K; Foley, John F

    2006-03-01

    Carbon monoxide (CO) is the most common cause of poisoning and may result in basal ganglia lesions. This study reviewed the literature of carbon monoxide poisoning and basal ganglia lesions and prospectively assessed the prevalence of basal ganglia lesions in a cohort of patients with CO poisoning. Literature review and prospective cohort study. This study conducted a comprehensive review of the literature and assessed 73 CO-poisoned patients for basal ganglia lesions on sequential MR scans. Magnetic resonance scans were obtained on day 1, 2 weeks and 6 months post-CO poisoning. The literature review found basal ganglia lesions occur in 4-88% of subjects. Only one patient was found with globus pallidus lesions at 2 weeks and 6 months following CO poisoning, that were not present on the initial day 1 MR scan. Basal ganglia lesions, including lesions of the globus pallidus, may be less common than previously reported.

  12. Evolution of a family of metazoan active-site-serine enzymes from penicillin-binding proteins: a novel facet of the bacterial legacy

    PubMed Central

    2008-01-01

    Background Bacterial penicillin-binding proteins and β-lactamases (PBP-βLs) constitute a large family of serine proteases that perform essential functions in the synthesis and maintenance of peptidoglycan. Intriguingly, genes encoding PBP-βL homologs occur in many metazoan genomes including humans. The emerging role of LACTB, a mammalian mitochondrial PBP-βL homolog, in metabolic signaling prompted us to investigate the evolutionary history of metazoan PBP-βL proteins. Results Metazoan PBP-βL homologs including LACTB share unique structural features with bacterial class B low molecular weight penicillin-binding proteins. The amino acid residues necessary for enzymatic activity in bacterial PBP-βL proteins, including the catalytic serine residue, are conserved in all metazoan homologs. Phylogenetic analysis indicated that metazoan PBP-βL homologs comprise four alloparalogus protein lineages that derive from α-proteobacteria. Conclusion While most components of the peptidoglycan synthesis machinery were dumped by early eukaryotes, a few PBP-βL proteins were conserved and are found in metazoans including humans. Metazoan PBP-βL homologs are active-site-serine enzymes that probably have distinct functions in the metabolic circuitry. We hypothesize that PBP-βL proteins in the early eukaryotic cell enabled the degradation of peptidoglycan from ingested bacteria, thereby maximizing the yield of nutrients and streamlining the cell for effective phagocytotic feeding. PMID:18226203

  13. The cerebellum communicates with the basal ganglia.

    PubMed

    Hoshi, Eiji; Tremblay, Léon; Féger, Jean; Carras, Peter L; Strick, Peter L

    2005-11-01

    The cerebral cortex is interconnected with two major subcortical structures: the basal ganglia and the cerebellum. How and where cerebellar circuits interact with basal ganglia circuits has been a longstanding question. Using transneuronal transport of rabies virus in macaques, we found that a disynaptic pathway links an output stage of cerebellar processing, the dentate nucleus, with an input stage of basal ganglia processing, the striatum.

  14. BASAL BODIES, BUT NOT CENTRIOLES, IN NAEGLERIA

    PubMed Central

    Fulton, Chandler; Dingle, Allan D.

    1971-01-01

    Amebae of Naegleria gruberi transform into flagellates whose basal bodies have the typical centriole-like structure. The amebae appear to lack any homologous structure, even during mitosis. Basal bodies are constructed during transformation and, in cells transforming synchronously at 25°C, they are first seen about 10 min before flagella are seen. No structural precursor for these basal bodies has been found. These observations are discussed in the light of hypotheses about the continuity of centrioles. PMID:4942778

  15. Photodynamic therapy for basal cell carcinoma.

    PubMed

    Fargnoli, Maria Concetta; Peris, Ketty

    2015-11-01

    Topical photodynamic therapy is an effective and safe noninvasive treatment for low-risk basal cell carcinoma, with the advantage of an excellent cosmetic outcome. Efficacy of photodynamic therapy in basal cell carcinoma is supported by substantial research and clinical trials. In this article, we review the procedure, indications and clinical evidences for the use of photodynamic therapy in the treatment of basal cell carcinoma.

  16. Prevalence of the EH1 Groucho interaction motif in the metazoan Fox family of transcriptional regulators

    PubMed Central

    Yaklichkin, Sergey; Vekker, Alexander; Stayrook, Steven; Lewis, Mitchell; Kessler, Daniel S

    2007-01-01

    Background The Fox gene family comprises a large and functionally diverse group of forkhead-related transcriptional regulators, many of which are essential for metazoan embryogenesis and physiology. Defining conserved functional domains that mediate the transcriptional activity of Fox proteins will contribute to a comprehensive understanding of the biological function of Fox family genes. Results Systematic analysis of 458 protein sequences of the metazoan Fox family was performed to identify the presence of the engrailed homology-1 motif (eh1), a motif known to mediate physical interaction with transcriptional corepressors of the TLE/Groucho family. Greater than 50% of Fox proteins contain sequences with high similarity to the eh1 motif, including ten of the nineteen Fox subclasses (A, B, C, D, E, G, H, I, L, and Q) and Fox proteins of early divergent species such as marine sponge. The eh1 motif is not detected in Fox proteins of the F, J, K, M, N, O, P, R and S subclasses, or in yeast Fox proteins. The eh1-like motifs are positioned C-terminal to the winged helix DNA-binding domain in all subclasses except for FoxG proteins, which have an N-terminal motif. Two similar eh1-like motifs are found in the zebrafish FoxQ1 and in FoxG proteins of sea urchin and amphioxus. The identification of eh1-like motifs by manual sequence alignment was validated by statistical analyses of the Swiss protein database, confirming a high frequency of occurrence of eh1-like sequences in Fox family proteins. Structural predictions suggest that the majority of identified eh1-like motifs are short α-helices, and wheel modeling revealed an amphipathicity that supports this secondary structure prediction. Conclusion A search for eh1 Groucho interaction motifs in the Fox gene family has identified eh1-like sequences in greater than 50% of Fox proteins. The results predict a physical and functional interaction of TLE/Groucho corepressors with many members of the Fox family of transcriptional

  17. Functional Neuroanatomy of the Basal Ganglia

    PubMed Central

    Lanciego, José L.; Luquin, Natasha; Obeso, José A.

    2012-01-01

    The “basal ganglia” refers to a group of subcortical nuclei responsible primarily for motor control, as well as other roles such as motor learning, executive functions and behaviors, and emotions. Proposed more than two decades ago, the classical basal ganglia model shows how information flows through the basal ganglia back to the cortex through two pathways with opposing effects for the proper execution of movement. Although much of the model has remained, the model has been modified and amplified with the emergence of new data. Furthermore, parallel circuits subserve the other functions of the basal ganglia engaging associative and limbic territories. Disruption of the basal ganglia network forms the basis for several movement disorders. This article provides a comprehensive account of basal ganglia functional anatomy and chemistry and the major pathophysiological changes underlying disorders of movement. We try to answer three key questions related to the basal ganglia, as follows: What are the basal ganglia? What are they made of? How do they work? Some insight on the canonical basal ganglia model is provided, together with a selection of paradoxes and some views over the horizon in the field. PMID:23071379

  18. Pseudohypoparathyroidism with basal ganglia calcification

    PubMed Central

    Song, Cheng-Yuan; Zhao, Zhen-Xiang; Li, Wei; Sun, Cong-Cong; Liu, Yi-Ming

    2017-01-01

    Abstract Rationale: Parkinsonism can be secondary to many internal diseases, in some certain conditions, it seems that the clinical manifestations of parkinsonism presenting reversible. We report a case of patient with parkinsonism secondary to pseudohypoparathyroidism, who improved markedly after the supplement of serum calcium. Patient concerns and diagnoses: A 52-year-old woman with acute parkinsonism was diagnosed as pseudohypoparathyroidism after the conducting of brain computed tomography, laboratory examinations, and gene detection. The son of the patient was also examined and was diagnosed as pseudohypoparathyroidism, who had ever complained of the history of epilepsy. The clinical manifestations of parkinsonism of the patient was reevaluated after the supplement of serum calcium according to the diagnosis. Interventions and outcomes: The brain computed tomography revealed the basal ganglia calcification of the patient, accompanying by serum hypocalcemia and hyperphosphatemia. Loss of function mutation also confirmed the diagnosis. Five days after the therapy targeting at correction of serum hypocalcemia, the patient improved greatly in dyskinesia. Lessons: This study reported a patient presenting as acute reversible parkinsonism, who was finally diagnosed as pseudohypoparathyroidism. It indicated us that secondary parkinsonism should be carefully differentiated for its dramatic treatment effect. And the family history of seizures might be an indicator for the consideration of pseudohypoparathyroidism. PMID:28296742

  19. Basal cell carcinoma and rhinophyma.

    PubMed

    Leyngold, Mark; Leyngold, Ilya; Letourneau, Peter R; Zamboni, William A; Shah, Himansu

    2008-10-01

    Rhinophyma, the end stage in the development of acne rosacea, is characterized by sebaceous hyperplasia, fibrosis, follicular plugging, and telangiectasia. Although it is commonly considered a cosmetic problem, it can result in gross distortion of soft tissue and airway obstruction. Basal cell carcinoma (BCC) is a rare finding in patients with rhinophyma. The objective of this study is to review the literature of BCC in rhinophyma and report on a case. A 70-year-old male presented with long-standing rosacea that resulted in a gross nasal deformity. The patient suffered from chronic drainage and recurrent infections that failed conservative treatment with oral and topical antibiotics. The patient decided to proceed with surgical intervention and underwent tangential excision and dermabrasion in the operating room. Since 1955 there have been 11 cases reported in the literature. In our case, the pathology report noted that the specimen had an incidental finding of a completely resected BCC. The patient did well postoperatively and at follow-up remains tumor-free. Despite the uncommon occurrence of BCC in resection specimens for rhinophyma, we recommend that all specimens be reviewed by a pathologist. If BCC is detected, re-excision may be necessary and careful follow-up is mandatory. Larger studies would be needed to determine the correlation between the 2 conditions.

  20. Distinctive features of cilia in metazoans and their significance for systematics.

    PubMed

    Tyler, S

    1979-01-01

    A comparative study of epidermal cilia in the Turbellaria and Nemertea has revealed features in these organelles that are specific to certain taxonomic groups. Turbellarians of the order Acoela, in particular, have a characteristic pattern of axonemal filament termination in the distal tips of their cilia and a characteristic ciliary rootlet system that is not seen in other turbellarian orders nor in other metazoans. Each epidermal cilium in acoels has a typical 9 + 2 axonemal pattern through the main part of its length, but near its distal tip there is an abrupt shelf-life narrowing at which filaments 4-7 terminate; filaments 1, 2, 8 and 9 continue into the thinner distal-most part of the shaft along with singlet microtubules from the axonemal center. The rootlet system in acoel cilia involves an interconnecting pattern with lateral connectives. The unique structure of these cilia has systematic and phylogenetic significance for the Acoela, and it is argued that ultrastructural characters in general, including characters of organelles, can be validly applied to the phylogeny and systematics of the Metazoa.

  1. Living on a volcano's edge: genetic isolation of an extremophile terrestrial metazoan.

    PubMed

    Cunha, L; Montiel, R; Novo, M; Orozco-terWengel, P; Rodrigues, A; Morgan, A J; Kille, P

    2014-02-01

    Communities of organisms inhabiting extreme terrestrial environments provide a unique opportunity to study evolutionary forces that drive population structure and genetic diversity under the combined challenges posed by multiple geogenic stressors. High abundance of an invasive pantropical earthworm (and the absence of indigenous lumbricid species) in the Furnas geothermal field (Sao Miguel Island, Azores) indicates its remarkable tolerance to high soil temperature, exceptionally high carbon dioxide and low oxygen levels, and elevated metal bioavailability, conditions which are lethal for the majority of terrestrial metazoans. Mitochondrial and nuclear markers were used to analyze the relationship between populations living inside and outside the geothermal field. Results showed that Pontoscolex corethrurus (Annelida, Oligochaeta, Glossoscolecidae) to be a genetically heterogeneous complex within the Sao Miguel landscape and is probably differentiated into cryptic species. The population exposed to the hostile soil conditions within the volcanic caldera possesses the lowest within-population mitochondrial diversity but an unexpectedly high degree of nuclear variability with several loci evidencing positive selection, parameters indicative of a genetically unique population only distantly related to conspecifics living outside the caldera. In conclusion, P. corethrurus inhabiting active volcanic soil is a discrete extremophile population that has evolved by tolerating a mixture of non-anthropogenic chemical and physical stressors.

  2. Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues.

    PubMed

    Fidler, Aaron L; Darris, Carl E; Chetyrkin, Sergei V; Pedchenko, Vadim K; Boudko, Sergei P; Brown, Kyle L; Gray Jerome, W; Hudson, Julie K; Rokas, Antonis; Hudson, Billy G

    2017-04-18

    The role of the cellular microenvironment in enabling metazoan tissue genesis remains obscure. Ctenophora has recently emerged as one of the earliest-branching extant animal phyla, providing a unique opportunity to explore the evolutionary role of the cellular microenvironment in tissue genesis. Here, we characterized the extracellular matrix (ECM), with a focus on collagen IV and its variant, spongin short-chain collagens, of non-bilaterian animal phyla. We identified basement membrane (BM) and collagen IV in Ctenophora, and show that the structural and genomic features of collagen IV are homologous to those of non-bilaterian animal phyla and Bilateria. Yet, ctenophore features are more diverse and distinct, expressing up to twenty genes compared to six in vertebrates. Moreover, collagen IV is absent in unicellular sister-groups. Collectively, we conclude that collagen IV and its variant, spongin, are primordial components of the extracellular microenvironment, and as a component of BM, collagen IV enabled the assembly of a fundamental architectural unit for multicellular tissue genesis.

  3. Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans

    PubMed Central

    Gemmell, Brad J.; Costello, John H.; Colin, Sean P.; Stewart, Colin J.; Dabiri, John O.; Tafti, Danesh; Priya, Shashank

    2013-01-01

    Gelatinous zooplankton populations are well known for their ability to take over perturbed ecosystems. The ability of these animals to outcompete and functionally replace fish that exhibit an effective visual predatory mode is counterintuitive because jellyfish are described as inefficient swimmers that must rely on direct contact with prey to feed. We show that jellyfish exhibit a unique mechanism of passive energy recapture, which is exploited to allow them to travel 30% further each swimming cycle, thereby reducing metabolic energy demand by swimming muscles. By accounting for large interspecific differences in net metabolic rates, we demonstrate, contrary to prevailing views, that the jellyfish (Aurelia aurita) is one of the most energetically efficient propulsors on the planet, exhibiting a cost of transport (joules per kilogram per meter) lower than other metazoans. We estimate that reduced metabolic demand by passive energy recapture improves the cost of transport by 48%, allowing jellyfish to achieve the large sizes required for sufficient prey encounters. Pressure calculations, using both computational fluid dynamics and a newly developed method from empirical velocity field measurements, demonstrate that this extra thrust results from positive pressure created by a vortex ring underneath the bell during the refilling phase of swimming. These results demonstrate a physical basis for the ecological success of medusan swimmers despite their simple body plan. Results from this study also have implications for bioinspired design, where low-energy propulsion is required. PMID:24101461

  4. Novel Cell Types, Neurosecretory Cells and Body Plan of the Early-Diverging Metazoan, Trichoplax adhaerens

    PubMed Central

    Smith, Carolyn L.; Varoqueaux, Frédérique; Kittelmann, Maike; Azzam, Rita N.; Cooper, Benjamin; Winters, Christine A.; Eitel, Michael; Fasshauer, Dirk; Reese, Thomas S.

    2014-01-01

    Summary Background Trichoplax adhaerens is the best-known member of the Phylum Placozoa, one of the earliest-diverging metazoan phyla. It is a small disk-shaped animal that glides on surfaces in warm oceans to feed on algae. Prior anatomical studies of Trichoplax revealed that it has a simple three-layered organization with four somatic cell types. Results We reinvestigate the cellular organization of Trichoplax using advanced freezing and microscopy techniques to identify localize and count cells. Six somatic cell types are deployed in stereotyped positions. A thick ventral plate, comprising the majority of the cells, includes ciliated epithelial cells, newly identified lipophil cells packed with large lipid granules, and gland cells. Lipophils project deep into the interior where they alternate with regularly spaced fiber cells whose branches contact all other cell types, including cells of the dorsal and ventral epithelium. Crystal cells, each containing a birefringent crystal, are arrayed around the rim. Gland cells express several proteins typical of neurosecretory cells, and a subset of them, around the rim, also expresses an FMRFamide-like neuropeptide. Conclusions Structural analysis of Trichoplax with significantly improved techniques provides an advance in understanding its cell types and their distributions. We find two previously undetected cell types, lipohil and crystal cells, and an organized body plan in which different cell types are arranged in distinct patterns. The composition of gland cells suggests that they are neurosecretory cells and could control locomotor and feeding behavior. PMID:24954051

  5. Temperature-induced variation in gene expression burst size in metazoan cells.

    PubMed

    Arnaud, Ophélie; Meyer, Sam; Vallin, Elodie; Beslon, Guillaume; Gandrillon, Olivier

    2015-11-25

    Gene expression is an inherently stochastic process, owing to its dynamic molecular nature. Protein amount distributions, which can be acquired by cytometry using a reporter gene, can inform about the mechanisms of the underlying microscopic molecular system. By using different clones of chicken erythroid progenitor cells harboring different integration sites of a CMV-driven mCherry protein, we investigated the dynamical behavior of such distributions. We show that, on short term, clone distributions can be quickly regenerated from small population samples with a high accuracy. On longer term, on the contrary, we show variations manifested by correlated fluctuation in the Mean Fluorescence Intensity. In search for a possible cause of this correlation, we demonstrate that in response to small temperature variations cells are able to adjust their gene expression rate: a modest (2 °C) increase in external temperature induces a significant down regulation of mean expression values, with a reverse effect observed when the temperature is decreased. Using a two-state model of gene expression we further demonstrate that temperature acts by modifying the size of transcription bursts, while the burst frequency of the investigated promoter is less systematically affected. For the first time, we report that transcription burst size is a key parameter for gene expression that metazoan cells from homeotherm animals can modify in response to an external thermal stimulus.

  6. Living on a volcano's edge: genetic isolation of an extremophile terrestrial metazoan

    PubMed Central

    Cunha, L; Montiel, R; Novo, M; Orozco-terWengel, P; Rodrigues, A; Morgan, A J; Kille, P

    2014-01-01

    Communities of organisms inhabiting extreme terrestrial environments provide a unique opportunity to study evolutionary forces that drive population structure and genetic diversity under the combined challenges posed by multiple geogenic stressors. High abundance of an invasive pantropical earthworm (and the absence of indigenous lumbricid species) in the Furnas geothermal field (Sao Miguel Island, Azores) indicates its remarkable tolerance to high soil temperature, exceptionally high carbon dioxide and low oxygen levels, and elevated metal bioavailability, conditions which are lethal for the majority of terrestrial metazoans. Mitochondrial and nuclear markers were used to analyze the relationship between populations living inside and outside the geothermal field. Results showed that Pontoscolex corethrurus (Annelida, Oligochaeta, Glossoscolecidae) to be a genetically heterogeneous complex within the Sao Miguel landscape and is probably differentiated into cryptic species. The population exposed to the hostile soil conditions within the volcanic caldera possesses the lowest within-population mitochondrial diversity but an unexpectedly high degree of nuclear variability with several loci evidencing positive selection, parameters indicative of a genetically unique population only distantly related to conspecifics living outside the caldera. In conclusion, P. corethrurus inhabiting active volcanic soil is a discrete extremophile population that has evolved by tolerating a mixture of non-anthropogenic chemical and physical stressors. PMID:24045291

  7. Acanthoparyphium sp. and other metazoan symbionts of the American oyster, Crassostrea virginica, from South Texas.

    PubMed

    Fredensborg, B L; Ramirez, J J; Partida, L

    2013-12-01

    In this study, we investigated oysters, Crassostrea virginica , from Laguna Madre in South Texas, where a 45-yr old study recorded metacercarial infections of the echinostomatid trematode, Acanthoparyphium spinulosum , an Asian relative of which, Acanthoparyphium tyosenense, has been associated with human infections via the ingestion of raw mollusks. In an effort to examine the base-line infection parameters of Acanthoparyphium sp. in oysters, we examined the effect of distance from the shoreline, which is the habitat of the first intermediate host snail, Cerithidea pliculosa, as well as temporal changes in oyster infection levels, by conducting quarterly collections of oysters during a year. We found that almost all oysters (prevalence = 97.8-100%) were infected regardless of distance to the shoreline and season. However, the abundance of metacercariae was significantly higher close to the shoreline, while no significant temporal changes could be detected. In addition to the echinostomatid, we found a high abundance of the metacestode Tylocephalum sp. and the presence of 4 other metazoan parasites. None of the infections seemed to incur significant tissue damage to the oysters. Our study shows that at least locally, recreational harvesters of oysters may be exposed to Acanthoparyphium sp. Future studies should examine oysters from snail host habitats in the Gulf of Mexico, and the potential zoonotic risk of Acanthoparyphium sp. should be evaluated using experimental infections of animal models.

  8. Metazoan parasite species richness in Neotropical fishes: hotspots and the geography of biodiversity.

    PubMed

    Luque, J L; Poulin, R

    2007-06-01

    Although research on parasite biodiversity has intensified recently, there are signs that parasites remain an underestimated component of total biodiversity in many regions of the planet. To identify geographical hotspots of parasite diversity, we performed qualitative and quantitative analyses of the parasite-host associations in fishes from Latin America and the Caribbean, a region that includes known hotspots of plant and animal biodiversity. The database included 10,904 metazoan parasite-host associations involving 1660 fish species. The number of host species with at least 1 parasite record was less than 10% of the total known fish species in the majority of countries. Associations involving adult endoparasites in actinopterygian fish hosts dominated the database. Across the whole region, no significant difference in parasite species richness was detected between marine and freshwater fishes. As a rule, host body size and study effort (number of studies per fish species) were good predictors of parasite species richness. Some interesting patterns emerged when we included only the regions with highest fish species biodiversity and study effort (Brazil, Mexico and the Caribbean Islands). Independently of differences in study effort or host body sizes, Mexico stands out as a hotspot of parasite diversity for freshwater fishes, as does Brasil for marine fishes. However, among 57 marine fish species common to all 3 regions, populations from the Caribbean consistently harboured more parasite species. These differences may reflect true biological patterns, or regional discrepancies in study effort and local priorities for fish parasitology research.

  9. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition.

    PubMed

    Alberti, Adriana; Poulain, Julie; Engelen, Stefan; Labadie, Karine; Romac, Sarah; Ferrera, Isabel; Albini, Guillaume; Aury, Jean-Marc; Belser, Caroline; Bertrand, Alexis; Cruaud, Corinne; Da Silva, Corinne; Dossat, Carole; Gavory, Frédérick; Gas, Shahinaz; Guy, Julie; Haquelle, Maud; Jacoby, E'krame; Jaillon, Olivier; Lemainque, Arnaud; Pelletier, Eric; Samson, Gaëlle; Wessner, Mark; Acinas, Silvia G; Royo-Llonch, Marta; Cornejo-Castillo, Francisco M; Logares, Ramiro; Fernández-Gómez, Beatriz; Bowler, Chris; Cochrane, Guy; Amid, Clara; Hoopen, Petra Ten; De Vargas, Colomban; Grimsley, Nigel; Desgranges, Elodie; Kandels-Lewis, Stefanie; Ogata, Hiroyuki; Poulton, Nicole; Sieracki, Michael E; Stepanauskas, Ramunas; Sullivan, Matthew B; Brum, Jennifer R; Duhaime, Melissa B; Poulos, Bonnie T; Hurwitz, Bonnie L; Pesant, Stéphane; Karsenti, Eric; Wincker, Patrick

    2017-08-01

    A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009-2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world's planktonic ecosystems.

  10. Metazoan Nuclear Pores Provide a Scaffold for Poised Genes and Mediate Induced Enhancer-Promoter Contacts.

    PubMed

    Pascual-Garcia, Pau; Debo, Brian; Aleman, Jennifer R; Talamas, Jessica A; Lan, Yemin; Nguyen, Nha H; Won, Kyoung J; Capelson, Maya

    2017-04-06

    Nuclear pore complex components (Nups) have been implicated in transcriptional regulation, yet what regulatory steps are controlled by metazoan Nups remains unclear. We identified the presence of multiple Nups at promoters, enhancers, and insulators in the Drosophila genome. In line with this binding, we uncovered a functional role for Nup98 in mediating enhancer-promoter looping at ecdysone-inducible genes. These genes were found to be stably associated with nuclear pores before and after activation. Although changing levels of Nup98 disrupted enhancer-promoter contacts, it did not affect ongoing transcription but instead compromised subsequent transcriptional activation or transcriptional memory. In support of the enhancer-looping role, we found Nup98 to gain and retain physical interactions with architectural proteins upon stimulation with ecdysone. Together, our data identify Nups as a class of architectural proteins for enhancers and supports a model in which animal genomes use the nuclear pore as an organizing scaffold for inducible poised genes.

  11. Seasonality of metazoan ectoparasites in marine European flounder Platichthys flesus (Teleostei: Pleuronectidae).

    PubMed

    Cavaleiro, F I; Santos, M J

    2009-07-01

    Seasonal occurrence of metazoan ectoparasites is described for the first time in marine European flounder, Platichthys flesus (L.). The parasitofauna, in this study monitored during 1 year, was found to be similar to that previously recorded for flounder. Moreover, specimens of Caligus sp. Müller, 1785 and Lepeophtheirus pectoralis (Copepoda: Caligidae), Acanthochondria cornuta (Copepoda: Chondracanthidae), Holobomolochus confusus (Copepoda: Bomolochidae) and Nerocila orbignyi (Isopoda: Cymothoidae), and also, a praniza larva (Isopoda: Gnathiidae), were isolated. From these, L. pectoralis and A. cornuta were the dominant parasites in all samples of flounder, while Caligus sp., H. confusus, N. orbignyi and the gnathiid praniza seemed to infect the flounder only occasionally. As far as the seasonality of infections is concerned, it differed considerably from that described for estuarine environments. Indeed, both prevalence and abundance of L. pectoralis and A. cornuta reached significant peaks in the summer, whereas the literature identifies the autumn as the season of maximum infection on estuarine flounder. Thus, the former period seems more favourable for the occurrence of epizooties of L. pectoralis and A. cornuta in flounder culturing systems running on seawater and operated in the studied or similar environments.

  12. Ernst Haeckel's discovery of Magosphaera planula: a vestige of metazoan origins?

    PubMed

    Reynolds, Andrew; Hülsmann, Norbert

    2008-01-01

    In September of 1869, while studying sponges off the Norwegian island of Gisoe, Ernst Haeckel (1834-1919) discovered a tiny, flagellated ball-shaped organism swimming about in his samples. Appearing first to be the planula larva of an invertebrate marine animal further observation revealed it to be a colony of flagellated cells with a complex life cycle transitioning between multicellular and single-cell stages and several distinct forms of protozoa. Haeckel named it Magosphaera planula (the "magician's ball") and it eventually assumed a central role in his theories of animal evolution, appearing as the modern exemplar of the blastaea stage in his gastraea theory of metazoan evolution. Throughout the latter half of the nineteenth century and into the twentieth it was an object of considerable scientific interest, and yet it was only ever observed by Haeckel himself and then only the once. Eventually it faded altogether from scientific discussion. This paper traces the rise and fall of Magosphaera as an important epistemic object in the theories of Haeckel and other biologists, and an attempt is made to identify what exactly the organism (or organisms!) was that Haeckel observed in the fall of 1869.

  13. Definition of global and transcript-specific mRNA export pathways in metazoans.

    PubMed

    Farny, Natalie G; Hurt, Jessica A; Silver, Pamela A

    2008-01-01

    Eukaryotic gene expression requires export of messenger RNAs (mRNAs) from their site of transcription in the nucleus to the cytoplasm where they are translated. While mRNA export has been studied in yeast, the complexity of gene structure and cellular function in metazoan cells has likely led to increased diversification of these organisms' export pathways. Here we report the results of a genome-wide RNAi screen in which we identify 72 factors required for polyadenylated [poly-(A(+))] mRNA export from the nucleus in Drosophila cells. Using structural and functional conservation analysis of yeast and Drosophila mRNA export factors, we expose the evolutionary divergence of eukaryotic mRNA export pathways. Additionally, we demonstrate the differential export requirements of two endogenous heat-inducible transcripts--intronless heat-shock protein 70 (HSP70) and intron-containing HSP83--and identify novel export factors that participate in HSP83 mRNA splicing. We characterize several novel factors and demonstrate their participation in interactions with known components of the Drosophila export machinery. One of these factors, Drosophila melanogaster PCI domain-containing protein 2 (dmPCID2), associates with polysomes and may bridge the transition between exported messenger ribonucleoprotein particles (mRNPs) and polysomes. Our results define the global network of factors involved in Drosophila mRNA export, reveal specificity in the export requirements of different transcripts, and expose new avenues for future work in mRNA export.

  14. Fungal Rtt109 Histone Acetyltransferase is an Unexpected Structural Homolog of Metazoan p300/CBP

    SciTech Connect

    Tang,Y.; Holbert, M.; Wurtele, H.; Meeth, K.; Rocha, W.; Gharib, M.; Jiang, E.; Thibault, P.; Verreault, A.; et al

    2008-01-01

    Rtt109, also known as KAT11, is a recently characterized fungal-specific histone acetyltransferase (HAT) that modifies histone H3 lysine 56 (H3K56) to promote genome stability. Rtt109 does not show sequence conservation with other known HATs and depends on association with either of two histone chaperones, Asf1 or Vps75, for HAT activity. Here we report the X-ray crystal structure of an Rtt109-acetyl coenzyme A complex and carry out structure-based mutagenesis, combined with in vitro biochemical studies of the Rtt109-Vps75 complex and studies of Rtt109 function in vivo. The Rtt109 structure reveals noteworthy homology to the metazoan p300/CBP HAT domain but exhibits functional divergence, including atypical catalytic properties and mode of cofactor regulation. The structure reveals a buried autoacetylated lysine residue that we show is also acetylated in the Rtt109 protein purified from yeast cells. Implications for understanding histone substrate and chaperone binding by Rtt109 are discussed.

  15. Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues

    PubMed Central

    Fidler, Aaron L; Darris, Carl E; Chetyrkin, Sergei V; Pedchenko, Vadim K; Boudko, Sergei P; Brown, Kyle L; Gray Jerome, W; Hudson, Julie K; Rokas, Antonis; Hudson, Billy G

    2017-01-01

    The role of the cellular microenvironment in enabling metazoan tissue genesis remains obscure. Ctenophora has recently emerged as one of the earliest-branching extant animal phyla, providing a unique opportunity to explore the evolutionary role of the cellular microenvironment in tissue genesis. Here, we characterized the extracellular matrix (ECM), with a focus on collagen IV and its variant, spongin short-chain collagens, of non-bilaterian animal phyla. We identified basement membrane (BM) and collagen IV in Ctenophora, and show that the structural and genomic features of collagen IV are homologous to those of non-bilaterian animal phyla and Bilateria. Yet, ctenophore features are more diverse and distinct, expressing up to twenty genes compared to six in vertebrates. Moreover, collagen IV is absent in unicellular sister-groups. Collectively, we conclude that collagen IV and its variant, spongin, are primordial components of the extracellular microenvironment, and as a component of BM, collagen IV enabled the assembly of a fundamental architectural unit for multicellular tissue genesis. DOI: http://dx.doi.org/10.7554/eLife.24176.001 PMID:28418331

  16. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition

    PubMed Central

    Alberti, Adriana; Poulain, Julie; Engelen, Stefan; Labadie, Karine; Romac, Sarah; Ferrera, Isabel; Albini, Guillaume; Aury, Jean-Marc; Belser, Caroline; Bertrand, Alexis; Cruaud, Corinne; Da Silva, Corinne; Dossat, Carole; Gavory, Frédérick; Gas, Shahinaz; Guy, Julie; Haquelle, Maud; Jacoby, E'krame; Jaillon, Olivier; Lemainque, Arnaud; Pelletier, Eric; Samson, Gaëlle; Wessner, Mark; Bazire, Pascal; Beluche, Odette; Bertrand, Laurie; Besnard-Gonnet, Marielle; Bordelais, Isabelle; Boutard, Magali; Dubois, Maria; Dumont, Corinne; Ettedgui, Evelyne; Fernandez, Patricia; Garcia, Espérance; Aiach, Nathalie Giordanenco; Guerin, Thomas; Hamon, Chadia; Brun, Elodie; Lebled, Sandrine; Lenoble, Patricia; Louesse, Claudine; Mahieu, Eric; Mairey, Barbara; Martins, Nathalie; Megret, Catherine; Milani, Claire; Muanga, Jacqueline; Orvain, Céline; Payen, Emilie; Perroud, Peggy; Petit, Emmanuelle; Robert, Dominique; Ronsin, Murielle; Vacherie, Benoit; Acinas, Silvia G.; Royo-Llonch, Marta; Cornejo-Castillo, Francisco M.; Logares, Ramiro; Fernández-Gómez, Beatriz; Bowler, Chris; Cochrane, Guy; Amid, Clara; Hoopen, Petra Ten; De Vargas, Colomban; Grimsley, Nigel; Desgranges, Elodie; Kandels-Lewis, Stefanie; Ogata, Hiroyuki; Poulton, Nicole; Sieracki, Michael E.; Stepanauskas, Ramunas; Sullivan, Matthew B.; Brum, Jennifer R.; Duhaime, Melissa B.; Poulos, Bonnie T.; Hurwitz, Bonnie L.; Acinas, Silvia G.; Bork, Peer; Boss, Emmanuel; Bowler, Chris; De Vargas, Colomban; Follows, Michael; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Jaillon, Olivier; Kandels-Lewis, Stefanie; Karp-Boss, Lee; Karsenti, Eric; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stéphane; Raes, Jeroen; Sardet, Christian; Sieracki, Michael E.; Speich, Sabrina; Stemmann, Lars; Sullivan, Matthew B.; Sunagawa, Shinichi; Wincker, Patrick; Pesant, Stéphane; Karsenti, Eric; Wincker, Patrick

    2017-01-01

    A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009–2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world’s planktonic ecosystems. PMID:28763055

  17. Structure and expression of STK, a src-related gene in the simple metazoan Hydra attenuata.

    PubMed Central

    Bosch, T C; Unger, T F; Fisher, D A; Steele, R E

    1989-01-01

    Both cDNA clones and a genomic DNA clone encoding a 509-amino-acid protein that is 64% similar to chicken pp60c-src were isolated from the simple metazoan Hydra attenuata. We have designated this gene STK, for src-type kinase. Features of the amino acid sequence of the protein encoded by the STK gene suggest that it is likely to be myristoylated and regulated by phosphorylation in a manner similar to that found for pp60c-src. The genomic sequence encoding the protein was found to be interrupted by at least two introns, one of which was located in a position identical to that of one of the introns in the chicken src gene. The STK gene was expressed during early development of H. attenuata and at high levels in the epithelial cells of adult polyps. Probing of Hydra proteins with an antibody to phosphotyrosine indicated that the major phosphotyrosine-containing protein in H. attenuata may be the STK protein itself. H. attenuata is the simplest organism from which a protein-tyrosine kinase gene has been isolated. The presence of such a gene in the evolutionarily ancient phylum Cnidaria suggests that protein-tyrosine kinase genes arose concomitantly with or shortly after the appearance of multicellular organisms. Images PMID:2479820

  18. Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans.

    PubMed

    Gemmell, Brad J; Costello, John H; Colin, Sean P; Stewart, Colin J; Dabiri, John O; Tafti, Danesh; Priya, Shashank

    2013-10-29

    Gelatinous zooplankton populations are well known for their ability to take over perturbed ecosystems. The ability of these animals to outcompete and functionally replace fish that exhibit an effective visual predatory mode is counterintuitive because jellyfish are described as inefficient swimmers that must rely on direct contact with prey to feed. We show that jellyfish exhibit a unique mechanism of passive energy recapture, which is exploited to allow them to travel 30% further each swimming cycle, thereby reducing metabolic energy demand by swimming muscles. By accounting for large interspecific differences in net metabolic rates, we demonstrate, contrary to prevailing views, that the jellyfish (Aurelia aurita) is one of the most energetically efficient propulsors on the planet, exhibiting a cost of transport (joules per kilogram per meter) lower than other metazoans. We estimate that reduced metabolic demand by passive energy recapture improves the cost of transport by 48%, allowing jellyfish to achieve the large sizes required for sufficient prey encounters. Pressure calculations, using both computational fluid dynamics and a newly developed method from empirical velocity field measurements, demonstrate that this extra thrust results from positive pressure created by a vortex ring underneath the bell during the refilling phase of swimming. These results demonstrate a physical basis for the ecological success of medusan swimmers despite their simple body plan. Results from this study also have implications for bioinspired design, where low-energy propulsion is required.

  19. Cleavage patterns and the topology of the metazoan tree of life

    PubMed Central

    Valentine, James W.

    1997-01-01

    Several major alliances of metazoan phyla have been identified by small subunit rRNA sequence comparisons. It is possible to arrange the phyla to produce a parsimonious distribution of cleavage types, requiring only one change from a radial ancestral condition to spiral cleavage and one other to “idiosyncratic” cleavage; this arrangement is consistent with most of the recent molecular phylogenies. The cleavage shifts are correlated with changes in many of the features that once were used to distinguish Protostomia and Deuterostomia. It is hypothesized that changes in cleavage direction are causally associated with changes in blastomere fates and thus that cleavage type correlates with such features as the identity of mesoderm founder cells, which in turn can constrain the mode of origination of the eucelom. Cleavage changes may also affect the timing of cell fate specification. In a tree that emphasizes cleavage parsimony, radial cleavage, regulative development, and enterocely are ancestral within the Bilateria, and spiral or idiosyncratic cleavages, mosaic development, and schizocely are associated with a change in cleavage direction. Deuterostomy is presumably ancestral and is correlated with radial cleavage for this reason, rather than mechanistically. PMID:9223303

  20. Metazoan ectoparasites of Atlantic mackerel, Scomber scombrus (Teleostei: Scombridae): macro- and microhabitat distribution.

    PubMed

    Castro, Ricardo; Santos, Maria João

    2013-10-01

    Parasites are affected by the environment where their hosts live, having a specific distribution among their hosts and occupying a well-defined microhabitat. The present work aims to describe the metazoan ectoparasite fauna of Scomber scombrus, namely its distribution at the macro- and microhabitat levels. For that, fish from two different Portuguese regions, Matosinhos (n = 40) and Figueira da Foz (n = 39), were examined for macroectoparasites. S. scombrus of Matosinhos presented four different parasite species, whilst fish from Figueira da Foz presented five species. All parasites belonged to Monogenea, Copepoda, or Isopoda. The main differences between infection levels of fish from the two localities were found in Grubea cochlear (higher infection levels in Matosinhos) and Caligus pelamydis (where the highest values were found in Figueira da Foz). Regarding the microhabitat of the reported ectoparasites, it could be seen that every species has a very specific distribution within the host: G. cochlear and Kuhnia scombri have a preference for the inner medial areas of gills, Kuhnia sprostonae for the pseudobranchs, and C. pelamydis for the internal wall of opercula. The numerical and functional responses to interspecific competition were absent. These results support the idea that the parasite driving forces of community structure are the reinforcement of reproductive barriers and the enhancement of chances to mate.

  1. Metazoan parasites from herring (Clupea harengus L.) as biological indicators in the Baltic Sea.

    PubMed

    Unger, Patrick; Klimpel, Sven; Lang, Thomas; Palm, Harry Wilhelm

    2014-09-01

    Zoographical distribution of metazoan fish parasites in herring, Clupea harengus, from the Baltic Sea was analysed in order to use them as potential biological indicators. A total of 210 herring from six different sampling sites were investigated, harbouring 12 different parasite species [five digeneans (D), one cestode (C), three nematodes (N) and three acanthocephalans (A)]. The distribution of the parasite species differed according to region, with a distinct gradient of decreasing species richness towards the east of the Baltic Sea. The western localities at Kiel Bay, Rügen and Poland had the highest parasite diversity, including the marine parasite species Anisakis simplex (s.s.) (N), Brachyphallus crenatus and Hemiurus luehei (both D). The eastern localities had low parasite species richness, predominated by the freshwater digenean Diplostomum spathaceum. We could identify three different Baltic herring stocks, the spring-spawning herring of the western Baltic reaching from the Kattegat to the German and Polish coast, the stock of the central Baltic proper and the northern stock of C. harengus var. membras of the Gulf of Finland. The limited distribution of the herring parasites within the Baltic Sea enables their use as biological indicators for migration patterns and stock separation. The acanthocephalan Pomphorhynchus laevis that has already been used as an accumulation bioindicator for heavy metals was only recorded for the western herring stocks. However, the presence of mainly generalistic parasites and their uneven distribution patterns make their use as indicators for regional environmental and global change more difficult.

  2. How do environmental factors influence life cycles and development? An experimental framework for early-diverging metazoans

    PubMed Central

    Bosch, Thomas C. G.; Adamska, Maja; Augustin, René; Domazet-Loso, Tomislav; Foret, Sylvain; Fraune, Sebastian; Funayama, Noriko; Grasis, Juris; Hamada, Mayuko; Hatta, Masayuki; Hobmayer, Bert; Kawai, Kotoe; Klimovich, Alexander; Manuel, Michael; Shinzato, Chuya; Technau, Uli; Yum, Seungshic; Miller, David J.

    2014-01-01

    Ecological developmental biology (eco-devo) explores the mechanistic relationships between the processes of individual development and environmental factors. Recent studies imply that some of these relationships have deep evolutionary origins, and may even predate the divergences of the simplest extant animals, including cnidarians and sponges. Development of these early diverging metazoans is often sensitive to environmental factors, and these interactions occur in the context of conserved signaling pathways and mechanisms of tissue homeostasis whose detailed molecular logic remain elusive. Efficient methods for transgenesis in cnidarians together with the ease of experimental manipulation in cnidarians and sponges make them ideal models for understanding causal relationships between environmental factors and developmental mechanisms. Here, we identify major questions at the interface between animal evolution and development and outline a road map for research aimed at identifying the mechanisms that link environmental factors to developmental mechanisms in early diverging metazoans. PMID:25205353

  3. A Rough Guide to Metabolite Identification Using High Resolution Liquid Chromatography Mass Spectrometry in Metabolomic Profiling in Metazoans

    PubMed Central

    Watson, David G.

    2013-01-01

    Compound identification in mass spectrometry based metabolomics can be a problem but sometimes the problem seems to be presented in an over complicated way. The current review focuses on metazoans where the range of metabolites is more restricted than for example in plants. The focus is on liquid chromatography with high resolution mass spectrometry where it is proposed that most of the problems in compound identification relate to structural isomers rather than to isobaric compounds. Thus many of the problems faced relate to separation of isomers, which is usually required even if fragmentation is used to support structural identification. Many papers report the use of MS/MS or MS2 as an adjunct to the identification of known metabolites but there a few examples in metabolomics studies of metazoans of complete structure elucidation of novel metabolites or metabolites where no authentic standards are available for comparison. PMID:24688687

  4. How do environmental factors influence life cycles and development? An experimental framework for early-diverging metazoans.

    PubMed

    Bosch, Thomas C G; Adamska, Maja; Augustin, René; Domazet-Loso, Tomislav; Foret, Sylvain; Fraune, Sebastian; Funayama, Noriko; Grasis, Juris; Hamada, Mayuko; Hatta, Masayuki; Hobmayer, Bert; Kawai, Kotoe; Klimovich, Alexander; Manuel, Michael; Shinzato, Chuya; Technau, Uli; Yum, Seungshic; Miller, David J

    2014-12-01

    Ecological developmental biology (eco-devo) explores the mechanistic relationships between the processes of individual development and environmental factors. Recent studies imply that some of these relationships have deep evolutionary origins, and may even pre-date the divergences of the simplest extant animals, including cnidarians and sponges. Development of these early diverging metazoans is often sensitive to environmental factors, and these interactions occur in the context of conserved signaling pathways and mechanisms of tissue homeostasis whose detailed molecular logic remain elusive. Efficient methods for transgenesis in cnidarians together with the ease of experimental manipulation in cnidarians and sponges make them ideal models for understanding causal relationships between environmental factors and developmental mechanisms. Here, we identify major questions at the interface between animal evolution and development and outline a road map for research aimed at identifying the mechanisms that link environmental factors to developmental mechanisms in early diverging metazoans. Also watch the Video Abstract. © 2014 WILEY Periodicals, Inc.

  5. Archaeal surface layer proteins contain beta propeller, PKD, and beta helix domains and are related to metazoan cell surface proteins.

    PubMed

    Jing, Hua; Takagi, Junichi; Liu, Jin-huan; Lindgren, Sara; Zhang, Rong-guang; Joachimiak, A; Wang, Jia-huai; Springer, Timothy A

    2002-10-01

    The surface layer of archaeobacteria protects cells from extreme environments and, in Methanosarcina, may regulate cell adhesion. We identify three domain types that account for the complete architecture of numerous Methanosarcina surface layer proteins (SLPs). We solve the crystal structure for two of these domains, which correspond to the two N-terminal domains of an M. mazei SLP. One domain displays a unique, highly symmetrical, seven-bladed beta propeller fold, and the other belongs to the polycystic kidney disease (PKD) superfamily fold. The third domain is predicted to adopt a beta helix fold. These domains have homologs in metazoan cell surface proteins, suggesting remarkable relationships between domains in archaeal SLPs and metazoan cell surface proteins.

  6. High-resolution profiling of Drosophila replication start sites reveals a DNA shape and chromatin signature of metazoan origins.

    PubMed

    Comoglio, Federico; Schlumpf, Tommy; Schmid, Virginia; Rohs, Remo; Beisel, Christian; Paro, Renato

    2015-05-05

    At every cell cycle, faithful inheritance of metazoan genomes requires the concerted activation of thousands of DNA replication origins. However, the genetic and chromatin features defining metazoan replication start sites remain largely unknown. Here, we delineate the origin repertoire of the Drosophila genome at high resolution. We address the role of origin-proximal G-quadruplexes and suggest that they transiently stall replication forks in vivo. We dissect the chromatin configuration of replication origins and identify a rich spatial organization of chromatin features at initiation sites. DNA shape and chromatin configurations, not strict sequence motifs, mark and predict origins in higher eukaryotes. We further examine the link between transcription and origin firing and reveal that modulation of origin activity across cell types is intimately linked to cell-type-specific transcriptional programs. Our study unravels conserved origin features and provides unique insights into the relationship among DNA topology, chromatin, transcription, and replication initiation across metazoa.

  7. The Presence of a Functionally Tripartite Through-Gut in Ctenophora Has Implications for Metazoan Character Trait Evolution.

    PubMed

    Presnell, Jason S; Vandepas, Lauren E; Warren, Kaitlyn J; Swalla, Billie J; Amemiya, Chris T; Browne, William E

    2016-10-24

    The current paradigm of gut evolution assumes that non-bilaterian metazoan lineages either lack a gut (Porifera and Placozoa) or have a sac-like gut (Ctenophora and Cnidaria) and that a through-gut originated within Bilateria [1-8]. An important group for understanding early metazoan evolution is Ctenophora (comb jellies), which diverged very early from the animal stem lineage [9-13]. The perception that ctenophores possess a sac-like blind gut with only one major opening remains a commonly held misconception [4, 5, 7, 14, 15]. Despite descriptions of the ctenophore digestive system dating to Agassiz [16] that identify two openings of the digestive system opposite of the mouth-called "excretory pores" by Chun [17], referred to as an "anus" by Main [18], and coined "anal pores" by Hyman [19]-contradictory reports, particularly prominent in recent literature, posit that waste products are primarily expelled via the mouth [4, 5, 7, 14, 19-23]. Here we demonstrate that ctenophores possess a unidirectional, functionally tripartite through-gut and provide an updated interpretation for the evolution of the metazoan through-gut. Our results resolve lingering questions regarding the functional anatomy of the ctenophore gut and long-standing misconceptions about waste removal in ctenophores. Moreover, our results present an intriguing evolutionary quandary that stands in stark contrast to the current paradigm of gut evolution: either (1) the through-gut has its origins very early in the metazoan stem lineage or (2) the ctenophore lineage has converged on an arrangement of organs functionally similar to the bilaterian through-gut.

  8. Identification and Sequence Analysis of Metazoan tRNA 3′-End Processing Enzymes tRNase Zs

    PubMed Central

    Wang, Zhikang; Zheng, Jia; Zhang, Xiaojie; Peng, Jingjing; Liu, Jinyu; Huang, Ying

    2012-01-01

    tRNase Z is the endonuclease responsible for removing the 3'-trailer sequences from precursor tRNAs, a prerequisite for the addition of the CCA sequence. It occurs in the short (tRNase ZS) and long (tRNase ZL) forms. Here we report the identification and sequence analysis of candidate tRNase Zs from 81 metazoan species. We found that the vast majority of deuterostomes, lophotrochozoans and lower metazoans have one tRNase ZS and one tRNase ZL genes, whereas ecdysozoans possess only a single tRNase ZL gene. Sequence analysis revealed that in metazoans, a single nuclear tRNase ZL gene is likely to encode both the nuclear and mitochondrial forms of tRNA 3′-end processing enzyme through mechanisms that include alternative translation initiation from two in-frame start codons and alternative splicing. Sequence conservation analysis revealed a variant PxKxRN motif, PxPxRG, which is located in the N-terminal region of tRNase ZSs. We also identified a previously unappreciated motif, AxDx, present in the C-terminal region of both tRNase ZSs and tRNase ZLs. The AxDx motif consisting mainly of a very short loop is potentially close enough to form hydrogen bonds with the loop containing the PxKxRN or PxPxRG motif. Through complementation analysis, we demonstrated the likely functional importance of the AxDx motif. In conclusion, our analysis supports the notion that in metazoans a single tRNase ZL has evolved to participate in both nuclear and mitochondrial tRNA 3′-end processing, whereas tRNase ZS may have evolved new functions. Our analysis also unveils new evolutionarily conserved motifs in tRNase Zs, including the C-terminal AxDx motif, which may have functional significance. PMID:22962606

  9. Nevoid Basal Cell Carcinoma Syndrome (Gorlin Syndrome).

    PubMed

    Bresler, Scott C; Padwa, Bonnie L; Granter, Scott R

    2016-06-01

    Nevoid basal cell carcinoma syndrome, or basal cell nevus syndrome (Gorlin syndrome), is a rare autosomal dominantly inherited disorder that is characterized by development of basal cell carcinomas from a young age. Other distinguishing clinical features are seen in a majority of patients, and include keratocystic odontogenic tumors (formerly odontogenic keratocysts) as well as dyskeratotic palmar and plantar pitting. A range of skeletal and other developmental abnormalities are also often seen. The disorder is caused by defects in hedgehog signaling which result in constitutive pathway activity and tumor cell proliferation. As sporadic basal cell carcinomas also commonly harbor hedgehog pathway aberrations, therapeutic agents targeting key signaling constituents have been developed and tested against advanced sporadically occurring tumors or syndromic disease, leading in 2013 to FDA approval of the first hedgehog pathway-targeted small molecule, vismodegib. The elucidation of the molecular pathogenesis of nevoid basal cell carcinoma syndrome has resulted in further understanding of the most common human malignancy.

  10. Potential interactions between metazoan parasites of the Mayan catfish Ariopsis assimilis and chemical pollution in Chetumal Bay, Mexico.

    PubMed

    Vidal-Martínez, V M; Aguirre-Macedo, M L; Noreña-Barroso, E; Gold-Bouchot, G; Caballero-Pinzón, P I

    2003-06-01

    The effect of pollutants on the intensity of infection of metazoan parasites in the Mayan catfish, Ariopsis assimilis was investigated. Data were collected on pollutants and metazoan parasites from 76 catfish from five localities in Chetumal Bay in October, 1996. Nineteen pollutants (pesticides, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs)) were found in the catfish livers. Heavy metal content was not determined. Nineteen metazoan parasite species were recovered. After controlling for fish length and sampling station, there was a significant negative linear relationship between the intensity of the larval digenean Mesostephanus appendiculatoides and 1,1,1,-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) concentrations. This negative relationship may be explained either by the effect of the pesticide on the mortality of (i) free-living larval forms, (ii) metacercariae in the fish, (iii) infected fish or (iv) intermediate host snails. There were significant differences between fish parasitized and not parasitized with M. appendiculatoides with respect to their DDT concentrations. There were also significant differences between the variances of the mean Clark's coefficient of condition values between catfish parasitized and not parasitized by M. appendiculatoides, with the variance of non-parasitized catfish being significantly larger. The results provided statistical evidence that DDT has a detrimental effect on M. appendiculatoides infection intensity. Furthermore, the significantly larger variance value of Clark's coefficient for non-parasitized fish suggested that DDT affects both the parasite and general host condition.

  11. Metazoan parasite communities: support for the biological invasion of Barbus barbus and its hybridization with the endemic Barbus meridionalis.

    PubMed

    Gettová, L; Gilles, A; Šimková, A

    2016-11-17

    Recently, human intervention enabled the introduction of Barbus barbus from the Rhône River basin into the Barbus meridionalis habitats of the Argens River. After an introduction event, parasite loss and lower infection can be expected in non-native hosts in contrast to native species. Still, native species might be endangered by hybridization with the incomer and the introduction of novel parasite species. In our study, we aimed to examine metazoan parasite communities in Barbus spp. populations in France, with a special emphasis on the potential threat posed by the introduction of novel parasite species by invasive B. barbus to local B. meridionalis. Metazoan parasite communities were examined in B. barbus, B. meridionalis and their hybrids in three river basins in France. Microsatellites were used for the species identification of individual fish. Parasite abundance, prevalence, and species richness were compared. Effects of different factors on parasite infection levels and species richness were tested using GLM. Metazoan parasites followed the expansion range of B. barbus and confirmed its introduction into the Argens River. Here, the significantly lower parasite number and lower levels of infection found in B. barbus in contrast to B. barbus from the Rhône River supports the enemy release hypothesis. Barbus barbus × B. meridionalis hybridization in the Argens River basin was confirmed using both microsatellites and metazoan parasites, as hybrids were infected by parasites of both parental taxa. Trend towards higher parasite diversity in hybrids when compared to parental taxa, and similarity between parasite communities from the Barbus hybrid zone suggest that hybrids might represent "bridges" for parasite infection between B. barbus and B. meridionalis. Risk of parasite transmission from less parasitized B. barbus to more parasitized B. meridionalis indicated from our study in the Argens River might be enhanced in time as higher infection levels in B

  12. The foraminiferan macrofauna from three North Carolina (USA) slope sites with contrasting carbon flux: a comparison with the metazoan macrofauna

    NASA Astrophysics Data System (ADS)

    Gooday, Andrew J.; Hughes, J. Alan; Levin, Lisa A.

    2001-07-01

    Food supply exerts a strong influence on benthic faunal abundance and community structure. Here, we compare community-level responses of macrofaunal foraminiferans and metazoans (>300 μm fraction) in relation to a gradient of organic carbon flux [Site III>II>I] along the 850 m contour on the North Carolina slope. Foraminiferan density, species richness E(S 100), and dominance were positively correlated with organic carbon flux. Foraminiferans were more abundant at Site III, displayed lower diversity and higher dominance, and tended to live deeper in the sediment column than at either Sites I or II. The Site I fauna was dominated by agglutinated taxa (mainly simple monothalamous forms and hormosinaceans) and included large epifaunal species, some of which projected from the sediment surface and probably fed on fresh phytodetritus. Hormosinaceans and monothalamous taxa also were abundant at Site II, although large epifaunal taxa were not present. The Site III fauna was dominated by calcareous taxa. The most abundant species was Globobulimina auriculata, an infaunal, low-oxygen tolerant, deposit feeder with a calcareous test sometimes obscured by an agglutinated cyst. Plate-like or flattened fragments of small xenophyophore species occurred at Site I, an unusually shallow record for this taxon and the first from the North Carolina margin. Most of these fragments were dead. Xenophyophores were not present at Sites II and III. The metazoan macrofauna exhibited trends in density, diversity, dominance and vertical distribution within the sediment that parallel those of the foraminiferans and were correlated with between-site differences in food availability. However, metazoans were 4.5-6.5 times less abundant than the foraminiferans, were more diverse, exhibited lower dominance and (at least at Sites I and III) tended to penetrate the sediment less deeply. These differences suggest that foraminiferans, considered as a group, are more opportunistic than metazoans

  13. Geochronological constraints on terminal Neoproterozoic events and the rise of Metazoan

    NASA Astrophysics Data System (ADS)

    Bowring, S.; Myrow, P.; Landing, E.; Ramezani, J.; Grotzinger, J.

    2003-04-01

    A full understanding of Neoproterozoic history has been plagued by a lack of precise geochronological constraints. In particular the correlation and duration of global or "Snowball" glaciations has relied on physical stratigraphy and chemostratigraphy which has given rise to much debate about the number, magnitude, and duration of glacial deposits. New U-Pb constraints on the age of the Gaskiers Formation glacial deposits in Newfoundland, an age for the oldest Ediacaran fossils in the same area, and the age and significance of the Cambrian/Precambrian boundary in Oman have important implications for global correlation and the timing of the rise of Metazoans. In the central and eastern parts of the Avalon Peninsula, southeastern Newfoundland, the oldest rocks are arc-related tuffs, agglomerates, and flows of the Harbour Main Group (>1.5 km thick) that have published dates from 606-630 Ma. These are overlain by approximately 7.5 km of marine siliciclastic rocks of the Conception Group. Over 2,300 m of deep-water deposits of the Mall Bay and Drook formations are separated by the regionally extensive glacial diamictite of the Gaskiers Formation (up to 300 m-thick). This unit is often described as a Varanger-age glaciomarine deposit and is locally overlain by a thin cap carbonate bed with a highly negative C isotopic signature. Thin (1-15 cm) silicic ash beds are found interlayered with turbidites just below and above the glacial deposits and the glacial deposits locally contain volcanic bombs, pyroclastic debris, and lavas. U-Pb geochronology of zircons separated from ash-beds below, within, and above the glacial deposits indicates that they are ca 580 Ma. This is considerably younger than previous estimates and calls into question many of the global correlations with similar rocks. An ash-bed within the overlying Drook formation is preserved in depositional contact with spectacular surfaces exposing Ediacaran fossils. Zircons separated from it yield an age of 575 Ma

  14. Immunohistochemical expression of MYB in salivary gland basal cell adenocarcinoma and basal cell adenoma.

    PubMed

    Rooney, Sydney L; Robinson, Robert A

    2017-07-20

    Basal cell predominant salivary gland neoplasms can be difficult to separate histologically. One of the most aggressive of basaloid salivary gland neoplasms is adenoid cystic carcinoma. MYB expression by immunohistochemistry has been documented in adenoid cystic carcinoma. Some investigators have suggested that using this expression can help in establishing the diagnosis of adenoid cystic carcinoma. Utilizing tissue microarrays, we studied a group of basal cell adenocarcinomas and basal cell adenomas to determine: (i) whether either tumor expressed MYB and (ii) the frequency of any expression in either tumors. Seventeen salivary gland basal cell adenocarcinomas and 30 salivary gland basal cell adenomas were used to construct microarrays. These tissue microarrays were used to assess for immunohistochemical MYB expression. Fifty-three percent (nine of 17) of salivary gland basal cell adenocarcinomas and 57% (17 of 30) of salivary gland basal cell adenomas showed MYB overexpression. For comparison, we studied 11 adenoid cystic carcinomas for MYB expression and found that 64% (seven of 11) overexpressed MYB. We found no relation to clinical course for basal adenomas or basal cell adenocarcinomas that overexpressed MYB vs those that did not. MYB expression does not help separate basal cell adenocarcinomas from basal cell adenomas, and our data suggest it does not differentiate between either of these neoplasms and adenoid cystic carcinoma. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials

    PubMed Central

    McDougall, Carmel; Woodcroft, Ben J.

    2016-01-01

    In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of

  16. Structure, transcription, and variability of metazoan mitochondrial genome: perspectives from an unusual mitochondrial inheritance system.

    PubMed

    Ghiselli, Fabrizio; Milani, Liliana; Guerra, Davide; Chang, Peter L; Breton, Sophie; Nuzhdin, Sergey V; Passamonti, Marco

    2013-01-01

    Despite its functional conservation, the mitochondrial genome (mtDNA) presents strikingly different features among eukaryotes, such as size, rearrangements, and amount of intergenic regions. Nonadaptive processes such as random genetic drift and mutation rate play a fundamental role in shaping mtDNA: the mitochondrial bottleneck and the number of germ line replications are critical factors, and different patterns of germ line differentiation could be responsible for the mtDNA diversity observed in eukaryotes. Among metazoan, bivalve mollusc mtDNAs show unusual features, like hypervariable gene arrangements, high mutation rates, large amount of intergenic regions, and, in some species, an unique inheritance system, the doubly uniparental inheritance (DUI). The DUI system offers the possibility to study the evolutionary dynamics of mtDNAs that, despite being in the same organism, experience different genetic drift and selective pressures. We used the DUI species Ruditapes philippinarum to study intergenic mtDNA functions, mitochondrial transcription, and polymorphism in gonads. We observed: 1) the presence of conserved functional elements and novel open reading frames (ORFs) that could explain the evolutionary persistence of intergenic regions and may be involved in DUI-specific features; 2) that mtDNA transcription is lineage-specific and independent from the nuclear background; and 3) that male-transmitted and female-transmitted mtDNAs have a similar amount of polymorphism but of different kinds, due to different population size and selection efficiency. Our results are consistent with the hypotheses that mtDNA evolution is strongly dependent on the dynamics of germ line formation, and that the establishment of a male-transmitted mtDNA lineage can increase male fitness through selection on sperm function.

  17. New rationale for large metazoan embryo manipulations on chip-based devices

    PubMed Central

    Khoshmanesh, Khashayar; Akagi, Jin; Hall, Chris J.; Crosier, Kathryn E.; Crosier, Philip S.; Cooper, Jonathan M.; Wlodkowic, Donald

    2012-01-01

    The lack of technologies that combine automated manipulation, sorting, as well as immobilization of single metazoan embryos remains the key obstacle to high-throughput organism-based ecotoxicological analysis and drug screening routines. Noticeably, the major obstacle hampering the automated trapping and arraying of millimetre-sized embryos on chip-based devices is their substantial size and mass, which lead to rapid gravitational-induced sedimentation and strong inertial forces. In this work, we present a comprehensive mechanistic and design rationale for manipulation and passive trapping of individual zebrafish embryos using only hydrodynamic forces. We provide evidence that by employing innovative design features, highly efficient hydrodynamic positioning of large embryos on a chip can be achieved. We also show how computational fluid dynamics-guided design and the Lagrangian particle tracking modeling can be used to optimize the chip performance. Importantly, we show that rapid prototyping and medium scale fabrication of miniaturized devices can be greatly accelerated by combining high-speed laser prototyping with replica moulding in poly(dimethylsiloxane) instead of conventional photolithography techniques. Our work establishes a new paradigm for chip-based manipulation of large multicellular organisms with diameters well above 1 mm and masses often exceeding 1 mg. Passive docking of large embryos is an attractive alternative to provide high level of automation while alleviating potentially deleterious effects associated with the use of active chip actuation. This greatly expands the capabilities of bioanalyses performed on small model organisms and offers numerous and currently inaccessible laboratory automation advantages. PMID:22655014

  18. Codon usage is associated with the evolutionary age of genes in metazoan genomes

    PubMed Central

    2009-01-01

    Background Codon usage may vary significantly between different organisms and between genes within the same organism. Several evolutionary processes have been postulated to be the predominant determinants of codon usage: selection, mutation, and genetic drift. However, the relative contribution of each of these factors in different species remains debatable. The availability of complete genomes for tens of multicellular organisms provides an opportunity to inspect the relationship between codon usage and the evolutionary age of genes. Results We assign an evolutionary age to a gene based on the relative positions of its identified homologues in a standard phylogenetic tree. This yields a classification of all genes in a genome to several evolutionary age classes. The present study starts from the observation that each age class of genes has a unique codon usage and proceeds to provide a quantitative analysis of the codon usage in these classes. This observation is made for the genomes of Homo sapiens, Mus musculus, and Drosophila melanogaster. It is even more remarkable that the differences between codon usages in different age groups exhibit similar and consistent behavior in various organisms. While we find that GC content and gene length are also associated with the evolutionary age of genes, they can provide only a partial explanation for the observed codon usage. Conclusion While factors such as GC content, mutational bias, and selection shape the codon usage in a genome, the evolutionary history of an organism over hundreds of millions of years is an overlooked property that is strongly linked to GC content, protein length, and, even more significantly, to the codon usage of metazoan genomes. PMID:19995431

  19. Structure, Transcription, and Variability of Metazoan Mitochondrial Genome: Perspectives from an Unusual Mitochondrial Inheritance System

    PubMed Central

    Ghiselli, Fabrizio; Milani, Liliana; Guerra, Davide; Chang, Peter L.; Breton, Sophie; Nuzhdin, Sergey V.; Passamonti, Marco

    2013-01-01

    Despite its functional conservation, the mitochondrial genome (mtDNA) presents strikingly different features among eukaryotes, such as size, rearrangements, and amount of intergenic regions. Nonadaptive processes such as random genetic drift and mutation rate play a fundamental role in shaping mtDNA: the mitochondrial bottleneck and the number of germ line replications are critical factors, and different patterns of germ line differentiation could be responsible for the mtDNA diversity observed in eukaryotes. Among metazoan, bivalve mollusc mtDNAs show unusual features, like hypervariable gene arrangements, high mutation rates, large amount of intergenic regions, and, in some species, an unique inheritance system, the doubly uniparental inheritance (DUI). The DUI system offers the possibility to study the evolutionary dynamics of mtDNAs that, despite being in the same organism, experience different genetic drift and selective pressures. We used the DUI species Ruditapes philippinarum to study intergenic mtDNA functions, mitochondrial transcription, and polymorphism in gonads. We observed: 1) the presence of conserved functional elements and novel open reading frames (ORFs) that could explain the evolutionary persistence of intergenic regions and may be involved in DUI-specific features; 2) that mtDNA transcription is lineage-specific and independent from the nuclear background; and 3) that male-transmitted and female-transmitted mtDNAs have a similar amount of polymorphism but of different kinds, due to different population size and selection efficiency. Our results are consistent with the hypotheses that mtDNA evolution is strongly dependent on the dynamics of germ line formation, and that the establishment of a male-transmitted mtDNA lineage can increase male fitness through selection on sperm function. PMID:23882128

  20. Global view of the evolution and diversity of metazoan neuropeptide signaling

    PubMed Central

    Jékely, Gáspár

    2013-01-01

    Neuropeptides are signaling molecules that commonly act via G protein-coupled receptors (GPCRs) and are generated in neurons by proneuropeptide (pNP) cleavage. Present in both cnidarians and bilaterians, neuropeptides represent an ancient and widespread mode of neuronal communication. Due to the inherent difficulties of analyzing highly diverse and repetitive pNPs, the relationships among different families are often elusive. Using similarity-based clustering and sensitive similarity searches, I obtained a global view of metazoan pNP diversity and evolution. Clustering revealed a large and diffuse network of sequences connected by significant sequence similarity encompassing one-quarter of all families. pNPs belonging to this cluster were also identified in the early-branching neuronless animal Trichoplax adhaerens. Clustering of neuropeptide GPCRs identified several orthology groups and allowed the reconstruction of the phyletic distribution of receptor families. GPCR phyletic distribution closely paralleled that of pNPs, indicating extensive conservation and long-term coevolution of receptor–ligand pairs. Receptor orthology and intermediate sequences also revealed the homology of pNPs so far considered unrelated, including allatotropin and orexin. These findings, together with the identification of deuterostome achatin and luqin and protostome opioid pNPs, extended the neuropeptide complement of the urbilaterian. Several pNPs were also identified from the hemichordate Saccoglossus kowalevskii and the cephalochordate Branchiostoma floridae, elucidating pNP evolution in deuterostomes. Receptor–ligand conservation also allowed ligand predictions for many uncharacterized GPCRs from nonmodel species. The reconstruction of the neuropeptide-signaling repertoire at deep nodes of the animal phylogeny allowed the formulation of a testable scenario of the evolution of animal neuroendocrine systems. PMID:23637342

  1. Metazoan parasites in intertidal cockles Cerastoderma edule from the northern Wadden Sea

    NASA Astrophysics Data System (ADS)

    Thieltges, David W.; Reise, Karsten

    2006-11-01

    At four intertidal sites near the island of Sylt (eastern North Sea), 13 metazoan parasite taxa were found in 1400 cockles investigated, with digenean trematodes being dominant. Almost all cockles were infected by parasites and most individuals harboured more than one parasite species. We observed four conspicuous patterns: (1) Adult cockles harboured a two times higher species richness (2003: 6.1 ± 0.7 species/host; 2004: 7.1 ± 0.7) than juveniles (2003: 2.9 ± 0.8; 2004: 3.4 ± 0.8) and total parasite community composition significantly differed between age groups. (2) Infection levels were 2-52 times higher in adult cockles than in juveniles both in trematode species and in non-trematode species. In the dominant trematodes, species utilising cockles as first intermediate host ( Gymnophallus choledochus, Labratrema minimus, Monorchis parvus) only occurred in adult cockles, and prevalences were low (2-12%). Prevalences of up to 100% were reached by trematodes using cockles as second intermediate host ( Himasthla elongata, H. continua, H. interrupta, Renicola roscovita, Psilostomum brevicolle, Meiogymnophallus minutus, Gymnophallus gibberosus). Metacercariae of these species were segregated between body parts within cockles. (3) High spatial heterogeneity in parasite community composition and infection levels occurred between sampling sites. However, communities in juveniles were more similar than communities in adults. (4) Temporal variation in parasite community composition was low between two consecutive years, especially for adult cockles. The omnipresence of parasites in this dominant bivalve species has important implications for sampling designs and as a potentially confounding variable in e.g. physiological studies. It suggests strong and cumulative negative effects on the cockle hosts.

  2. Metazoan parasite communities of catfishes (Teleostei: Siluridae) in Benin (West Africa).

    PubMed

    Tossavi, Nounagnon Darius; Gbankoto, Adam; Adité, Alphonse; Ibikounlé, Moudachirou; Grunau, Christoph; Sakiti, Gilbert Nestor

    2014-11-01

    The need for more precise information on the effect of dry season on fish parasite communities in Benin lead us to undergo a focus during this season in one of the major sites of collection fry by fish farmers.Metazoan parasites were then inventoried in 166 specimens of catfishes which constituted of C larias gariepinus, Clarias ebriensis, Synodontis schall, Synodontis nigrita, and Chrysichthys nigrodigitatus (Teleostei: Siluridae). Those fishes were collected from fishermen of Agonlin-Lowé at the side of Oueme River in south Benin from November 2011 to March 2012. In total, 12 parasite species were listed comprising three Monogena (Gyrodactylus sp., Synodontella sp., and Protoancylodiscoides chrysichthes), three Cestoda (Stoeksia pujehuni, Lytocestus sp., and Cestode indeterminate), five Nematoda (Paracamallanus cyathopharynx, Procamallanus laevionchus, Cithariniella petterae, Synodontisia thelastomoides, and nematode indeterminate), and one indeterminated Copepod species. Total infestation rate varied between 83.87 and 100% for the different fish species. This was high but independent of fish sex (χ(2) = 1.669, df = 4, nonsignificant). The highest mean intensity and mean abundance were, respectively, 44 and 13.33. Monogenea and Nematoda have elevated frequency of dominance, and their presence in the host is significantly correlated (r = -0.999; p < 0.05). Clariids were highly infected by Nematoda. Except for P. laevionchus and Proteoancylodiscoides, respectively, in C. gariepinus and in C. nigrodigitatus, the parasites showed clumped distribution. The component community diversity, as measured by the Shannon index (H'), revealed that S. schall had the most parasite diversity.

  3. A Comparative Analysis of Transcription Factor Expression during Metazoan Embryonic Development

    PubMed Central

    Schep, Alicia N.; Adryan, Boris

    2013-01-01

    During embryonic development, a complex organism is formed from a single starting cell. These processes of growth and differentiation are driven by large transcriptional changes, which are following the expression and activity of transcription factors (TFs). This study sought to compare TF expression during embryonic development in a diverse group of metazoan animals: representatives of vertebrates (Danio rerio, Xenopus tropicalis), a chordate (Ciona intestinalis) and invertebrate phyla such as insects (Drosophila melanogaster, Anopheles gambiae) and nematodes (Caenorhabditis elegans) were sampled, The different species showed overall very similar TF expression patterns, with TF expression increasing during the initial stages of development. C2H2 zinc finger TFs were over-represented and Homeobox TFs were under-represented in the early stages in all species. We further clustered TFs for each species based on their quantitative temporal expression profiles. This showed very similar TF expression trends in development in vertebrate and insect species. However, analysis of the expression of orthologous pairs between more closely related species showed that expression of most individual TFs is not conserved, following the general model of duplication and diversification. The degree of similarity between TF expression between Xenopus tropicalis and Danio rerio followed the hourglass model, with the greatest similarity occuring during the early tailbud stage in Xenopus tropicalis and the late segmentation stage in Danio rerio. However, for Drosophila melanogaster and Anopheles gambiae there were two periods of high TF transcriptome similarity, one during the Arthropod phylotypic stage at 8–10 hours into Drosophila development and the other later at 16–18 hours into Drosophila development. PMID:23799133

  4. A comparative analysis of transcription factor expression during metazoan embryonic development.

    PubMed

    Schep, Alicia N; Adryan, Boris

    2013-01-01

    During embryonic development, a complex organism is formed from a single starting cell. These processes of growth and differentiation are driven by large transcriptional changes, which are following the expression and activity of transcription factors (TFs). This study sought to compare TF expression during embryonic development in a diverse group of metazoan animals: representatives of vertebrates (Danio rerio, Xenopus tropicalis), a chordate (Ciona intestinalis) and invertebrate phyla such as insects (Drosophila melanogaster, Anopheles gambiae) and nematodes (Caenorhabditis elegans) were sampled, The different species showed overall very similar TF expression patterns, with TF expression increasing during the initial stages of development. C2H2 zinc finger TFs were over-represented and Homeobox TFs were under-represented in the early stages in all species. We further clustered TFs for each species based on their quantitative temporal expression profiles. This showed very similar TF expression trends in development in vertebrate and insect species. However, analysis of the expression of orthologous pairs between more closely related species showed that expression of most individual TFs is not conserved, following the general model of duplication and diversification. The degree of similarity between TF expression between Xenopus tropicalis and Danio rerio followed the hourglass model, with the greatest similarity occuring during the early tailbud stage in Xenopus tropicalis and the late segmentation stage in Danio rerio. However, for Drosophila melanogaster and Anopheles gambiae there were two periods of high TF transcriptome similarity, one during the Arthropod phylotypic stage at 8-10 hours into Drosophila development and the other later at 16-18 hours into Drosophila development.

  5. Global isolation by distance despite strong regional phylogeography in a small metazoan

    PubMed Central

    Mills, Scott; Lunt, David H; Gómez, Africa

    2007-01-01

    Background Small vagile eukaryotic organisms, which comprise a large proportion of the Earth's biodiversity, have traditionally been thought to lack the extent of population structuring and geographic speciation observed in larger taxa. Here we investigate the patterns of genetic diversity, amongst populations of the salt lake microscopic metazoan Brachionus plicatilis s. s. (sensu stricto) (Rotifera: Monogononta) on a global scale. We examine the phylogenetic relationships of geographic isolates from four continents using a 603 bp fragment of the mitochondrial COI gene to investigate patterns of phylogeographic subdivision in this species. In addition we investigate the relationship between genetic and geographic distances on a global scale to try and reconcile the paradox between the high vagility of this species and the previously reported patterns of restricted gene flow, even over local spatial scales. Results Analysis of global sequence diversity of B. plicatilis s. s. reveals the presence of four allopatric genetic lineages: North American-Far East Asian, Western Mediterranean, Australian, and an Eastern Mediterranean lineage represented by a single isolate. Geographically orientated substructure is also apparent within the three best sampled lineages. Surprisingly, given this strong phylogeographic structure, B. plicatilis s. s. shows a significant correlation between geographic and genetic distance on a global scale ('isolation by distance' – IBD). Conclusion Despite its cosmopolitan distribution and potential for high gene flow, B. plicatilis s. s. is strongly structured at a global scale. IBD patterns have traditionally been interpreted to indicate migration-drift equilibrium, although in this system equilibrium conditions are incompatible with the observed genetic structure. Instead, we suggest the pattern may have arisen through persistent founder effects, acting in a similar fashion to geographic barriers for larger organisms. Our data indicates

  6. Hierarchical Partitioning of Metazoan Protein Conservation Profiles Provides New Functional Insights

    PubMed Central

    Witztum, Jonathan; Persi, Erez; Horn, David; Pasmanik-Chor, Metsada; Chor, Benny

    2014-01-01

    The availability of many complete, annotated proteomes enables the systematic study of the relationships between protein conservation and functionality. We explore this question based solely on the presence or absence of protein homologues (a.k.a. conservation profiles). We study 18 metazoans, from two distinct points of view: the human's and the fly's. Using the GOrilla gene ontology (GO) analysis tool, we explore functional enrichment of the “universal proteins”, those with homologues in all 17 other species, and of the “non-universal proteins”. A large number of GO terms are strongly enriched in both human and fly universal proteins. Most of these functions are known to be essential. A smaller number of GO terms, exhibiting markedly different properties, are enriched in both human and fly non-universal proteins. We further explore the non-universal proteins, whose conservation profiles are consistent with the “tree of life” (TOL consistent), as well as the TOL inconsistent proteins. Finally, we applied Quantum Clustering to the conservation profiles of the TOL consistent proteins. Each cluster is strongly associated with one or a small number of specific monophyletic clades in the tree of life. The proteins in many of these clusters exhibit strong functional enrichment associated with the “life style” of the related clades. Most previous approaches for studying function and conservation are “bottom up”, studying protein families one by one, and separately assessing the conservation of each. By way of contrast, our approach is “top down”. We globally partition the set of all proteins hierarchically, as described above, and then identify protein families enriched within different subdivisions. While supporting previous findings, our approach also provides a tool for discovering novel relations between protein conservation profiles, functionality, and evolutionary history as represented by the tree of life. PMID:24594619

  7. Cardiolipin binds selectively but transiently to conserved lysine residues in the rotor of metazoan ATP synthases

    PubMed Central

    Duncan, Anna L.

    2016-01-01

    The anionic lipid cardiolipin is an essential component of active ATP synthases. In metazoans, their rotors contain a ring of eight c-subunits consisting of inner and outer circles of N- and C-terminal α-helices, respectively. The beginning of the C-terminal α-helix contains a strictly conserved and fully trimethylated lysine residue in the lipid head-group region of the membrane. Larger rings of known structure, from c9-c15 in eubacteria and chloroplasts, conserve either a lysine or an arginine residue in the equivalent position. In computer simulations of hydrated membranes containing trimethylated or unmethylated bovine c8-rings and bacterial c10- or c11-rings, the head-groups of cardiolipin molecules became associated selectively with these modified and unmodified lysine residues and with adjacent polar amino acids and with a second conserved lysine on the opposite side of the membrane, whereas phosphatidyl lipids were attracted little to these sites. However, the residence times of cardiolipin molecules with the ring were brief and sufficient for the rotor to turn only a fraction of a degree in the active enzyme. With the demethylated c8-ring and with c10- and c11-rings, the density of bound cardiolipin molecules at this site increased, but residence times were not changed greatly. These highly specific but brief interactions with the rotating c-ring are consistent with functional roles for cardiolipin in stabilizing and lubricating the rotor, and, by interacting with the enzyme at the inlet and exit of the transmembrane proton channel, in participation in proton translocation through the membrane domain of the enzyme. PMID:27382158

  8. The protein subunit of telomerase displays patterns of dynamic evolution and conservation across different metazoan taxa.

    PubMed

    Lai, Alvina G; Pouchkina-Stantcheva, Natalia; Di Donfrancesco, Alessia; Kildisiute, Gerda; Sahu, Sounak; Aboobaker, A Aziz

    2017-04-26

    Most animals employ telomerase, which consists of a catalytic subunit known as the telomerase reverse transcriptase (TERT) and an RNA template, to maintain telomere ends. Given the importance of TERT and telomere biology in core metazoan life history traits, like ageing and the control of somatic cell proliferation, we hypothesised that TERT would have patterns of sequence and regulatory evolution reflecting the diverse life histories across the Animal Kingdom. We performed a complete investigation of the evolutionary history of TERT across animals. We show that although TERT is almost ubiquitous across Metazoa, it has undergone substantial sequence evolution within canonical motifs. Beyond the known canonical motifs, we also identify and compare regions that are highly variable between lineages, but show conservation within phyla. Recent data have highlighted the importance of alternative splice forms of TERT in non-canonical functions and although animals may share some conserved introns, we find that the selection of exons for alternative splicing appears to be highly variable, and regulation by alternative splicing appears to be a very dynamic feature of TERT evolution. We show that even within a closely related group of triclad flatworms, where alternative splicing of TERT was previously correlated with reproductive strategy, we observe highly diverse splicing patterns. Our work establishes that the evolutionary history and structural evolution of TERT involves previously unappreciated levels of change and the emergence of lineage specific motifs. The sequence conservation we describe within phyla suggests that these new motifs likely serve essential biological functions of TERT, which along with changes in splicing, underpin diverse functions of TERT important for animal life histories.

  9. Hierarchical partitioning of metazoan protein conservation profiles provides new functional insights.

    PubMed

    Witztum, Jonathan; Persi, Erez; Horn, David; Pasmanik-Chor, Metsada; Chor, Benny

    2014-01-01

    The availability of many complete, annotated proteomes enables the systematic study of the relationships between protein conservation and functionality. We explore this question based solely on the presence or absence of protein homologues (a.k.a. conservation profiles). We study 18 metazoans, from two distinct points of view: the human's and the fly's. Using the GOrilla gene ontology (GO) analysis tool, we explore functional enrichment of the "universal proteins", those with homologues in all 17 other species, and of the "non-universal proteins". A large number of GO terms are strongly enriched in both human and fly universal proteins. Most of these functions are known to be essential. A smaller number of GO terms, exhibiting markedly different properties, are enriched in both human and fly non-universal proteins. We further explore the non-universal proteins, whose conservation profiles are consistent with the "tree of life" (TOL consistent), as well as the TOL inconsistent proteins. Finally, we applied Quantum Clustering to the conservation profiles of the TOL consistent proteins. Each cluster is strongly associated with one or a small number of specific monophyletic clades in the tree of life. The proteins in many of these clusters exhibit strong functional enrichment associated with the "life style" of the related clades. Most previous approaches for studying function and conservation are "bottom up", studying protein families one by one, and separately assessing the conservation of each. By way of contrast, our approach is "top down". We globally partition the set of all proteins hierarchically, as described above, and then identify protein families enriched within different subdivisions. While supporting previous findings, our approach also provides a tool for discovering novel relations between protein conservation profiles, functionality, and evolutionary history as represented by the tree of life.

  10. The Basal Ganglia-Circa 1982

    NASA Technical Reports Server (NTRS)

    Mehler, William R.

    1981-01-01

    Our review has shown that recent studies with the new anterograde and retrograde axon transport methods have confirmed and extended our knowledge of the projection of the basal ganglia and clarified their sites of origin. They have thrown new light on certain topographic connectional relationships and revealed several new reciprocal connections between constituent nuclei of the basal ganglia. Similarly, attention has been drawn to the fact that there have also been many new histochemical techniques introduced in recent years that are now providing regional biochemical overlays for connectional maps of the central nervous system, especially regions in, or interconnecting with, the basal ganglia. However, although these new morphological biochemical maps are very complex and technically highly advanced, our understanding of the function controlled by the basal ganglia still remains primitive. The reader who is interested in some new ideas of the functional aspects of the basal ganglia is directed to Nauta's proposed conceptual reorganization of the basal ganglia telencephalon and to Marsden's more clinically orientated appraisal of the unsolved mysteries of the basal ganglia participation in the control of movement.

  11. Metastatic Basal cell carcinoma accompanying gorlin syndrome.

    PubMed

    Bilir, Yeliz; Gokce, Erkan; Ozturk, Banu; Deresoy, Faik Alev; Yuksekkaya, Ruken; Yaman, Emel

    2014-01-01

    Gorlin-Goltz syndrome or basal cell nevus syndrome is an autosomal dominant syndrome characterized by skeletal anomalies, numerous cysts observed in the jaw, and multiple basal cell carcinoma of the skin, which may be accompanied by falx cerebri calcification. Basal cell carcinoma is the most commonly skin tumor with slow clinical course and low metastatic potential. Its concomitance with Gorlin syndrome, resulting from a mutation in a tumor suppressor gene, may substantially change morbidity and mortality. A 66-year-old male patient with a history of recurrent basal cell carcinoma was presented with exophthalmus in the left eye and the lesions localized in the left lateral orbita and left zygomatic area. His physical examination revealed hearing loss, gapped teeth, highly arched palate, and frontal prominence. Left orbital mass, cystic masses at frontal and ethmoidal sinuses, and multiple pulmonary nodules were detected at CT scans. Basal cell carcinoma was diagnosed from biopsy of ethmoid sinus. Based on the clinical and typical radiological characteristics (falx cerebri calcification, bifid costa, and odontogenic cysts), the patient was diagnosed with metastatic skin basal cell carcinoma accompanied by Gorlin syndrome. Our case is a basal cell carcinoma with aggressive course accompanying a rarely seen syndrome.

  12. Phylogenetic distribution of microRNAs supports the basal position of acoel flatworms and the polyphyly of Platyhelminthes.

    PubMed

    Sempere, Lorenzo F; Martinez, Pedro; Cole, Charles; Baguñà, Jaume; Peterson, Kevin J

    2007-01-01

    Phylogenetic analyses based on gene sequences suggest that acoel flatworms are not members of the phylum Platyhelminthes, but instead are the most basal branch of triploblastic bilaterians. Nonetheless, this result has been called into question. An alternative test is to use qualitative molecular markers that should, in principle, exclude the possibility of convergent (homoplastic) evolution in unrelated groups. microRNAs (miRNAs), noncoding regulatory RNA molecules that are under intense stabilizing selection, are a newly discovered set of phylogenetic markers that can resolve such taxonomic disputes. The acoel Childia sp. has recently been shown to possess a subset of the conserved core of miRNAs found across deuterostomes and protostomes, whereas a polyclad flatworm-in addition to this core subset-possesses miRNAs restricted to just protostomes. Here, we examine another acoel, Symsagittifera roscoffensis, and three other platyhelminths. Our results show that the distribution of miRNAs in S. roscoffensis parallels that of Childia. In addition, two of 13 new miRNAs cloned from a triclad flatworm are also found in other lophotrochozoan protostomes, but not in ecdysozoans, deuterostomes, or in basal metazoans including acoels. The limited set of miRNAs found in acoels, intermediate between the even more reduced set in cnidarians and the larger and expanding set in the rest of bilaterians, is compelling evidence for the basal position of acoel flatworms and the polyphyly of Platyhelminthes.

  13. Functional Characterization of Cnidarian HCN Channels Points to an Early Evolution of Ih

    PubMed Central

    Baker, Emma C.; Layden, Michael J.; van Rossum, Damian B.; Kamel, Bishoy; Medina, Monica; Simpson, Eboni; Jegla, Timothy

    2015-01-01

    HCN channels play a unique role in bilaterian physiology as the only hyperpolarization-gated cation channels. Their voltage-gating is regulated by cyclic nucleotides and phosphatidylinositol 4,5-bisphosphate (PIP2). Activation of HCN channels provides the depolarizing current in response to hyperpolarization that is critical for intrinsic rhythmicity in neurons and the sinoatrial node. Additionally, HCN channels regulate dendritic excitability in a wide variety of neurons. Little is known about the early functional evolution of HCN channels, but the presence of HCN sequences in basal metazoan phyla and choanoflagellates, a protozoan sister group to the metazoans, indicate that the gene family predates metazoan emergence. We functionally characterized two HCN channel orthologs from Nematostella vectensis (Cnidaria, Anthozoa) to determine which properties of HCN channels were established prior to the emergence of bilaterians. We find Nematostella HCN channels share all the major functional features of bilaterian HCNs, including reversed voltage-dependence, activation by cAMP and PIP2, and block by extracellular Cs+. Thus bilaterian-like HCN channels were already present in the common parahoxozoan ancestor of bilaterians and cnidarians, at a time when the functional diversity of voltage-gated K+ channels was rapidly expanding. NvHCN1 and NvHCN2 are expressed broadly in planulae and in both the endoderm and ectoderm of juvenile polyps. PMID:26555239

  14. [Basal cell carcinoma with matrical differentiation].

    PubMed

    Goldman-Lévy, Gabrielle; Frouin, Eric; Soubeyran, Isabelle; Maury, Géraldine; Guillot, Bernard; Costes, Valérie

    2015-04-01

    Basal cell carcinoma with matrical differentiation is a very rare variant of basal cell carcinoma. To our knowledge, less than 30 cases have been reported. This tumor is composed of basaloid lobules showing a differentiation toward the pilar matrix cells. Recently, it has been demonstrated that beta-catenin would interfer with physiopathogenesis of matrical tumors, in particular pilomatricomas, but also basal cell carcinomas with matrical differentiation. This is a new case, with immunohistochemical and molecular analysis of beta-catenin, in order to explain its histogenesis.

  15. Plant basal resistance to nematodes: an update.

    PubMed

    Holbein, Julia; Grundler, Florian M W; Siddique, Shahid

    2016-03-01

    Most plant-parasitic nematodes are obligate biotrophs feeding on the roots of their hosts. Whereas ectoparasites remain on the root surface and feed on the outer cell layers, endoparasitic nematodes enter the host to parasitize cells around or within the central cylinder. Nematode invasion and feeding causes tissue damage which may, in turn, lead to the activation of host basal defence responses. Hitherto, research interests in plant-nematode interaction have emphasized effector-triggered immunity rather than basal plant defence responses. However, some recent investigations suggest that basal defence pathways are not only activated but also play an important role in determining interaction outcomes. In this review we discuss the major findings and point out future directions to dissect the molecular mechanisms underlying plant basal defence to nematodes further. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Synaptic organisation of the basal ganglia

    PubMed Central

    BOLAM, J. P.; HANLEY, J. J.; BOOTH, P. A. C.; BEVAN, M. D.

    2000-01-01

    The basal ganglia are a group of subcortical nuclei involved in a variety of processes including motor, cognitive and mnemonic functions. One of their major roles is to integrate sensorimotor, associative and limbic information in the production of context-dependent behaviours. These roles are exemplified by the clinical manifestations of neurological disorders of the basal ganglia. Recent advances in many fields, including pharmacology, anatomy, physiology and pathophysiology have provided converging data that have led to unifying hypotheses concerning the functional organisation of the basal ganglia in health and disease. The major input to the basal ganglia is derived from the cerebral cortex. Virtually the whole of the cortical mantle projects in a topographic manner onto the striatum, this cortical information is ‘processed’ within the striatum and passed via the so-called direct and indirect pathways to the output nuclei of the basal ganglia, the internal segment of the globus pallidus and the substantia nigra pars reticulata. The basal ganglia influence behaviour by the projections of these output nuclei to the thalamus and thence back to the cortex, or to subcortical ‘premotor’ regions. Recent studies have demonstrated that the organisation of these pathways is more complex than previously suggested. Thus the cortical input to the basal ganglia, in addition to innervating the spiny projection neurons, also innervates GABA interneurons, which in turn provide a feed-forward inhibition of the spiny output neurons. Individual neurons of the globus pallidus innervate basal ganglia output nuclei as well as the subthalamic nucleus and substantia nigra pars compacta. About one quarter of them also innervate the striatum and are in a position to control the output of the striatum powerfully as they preferentially contact GABA interneurons. Neurons of the pallidal complex also provide an anatomical substrate, within the basal ganglia, for the synaptic

  17. Relative maxima of diameter and basal area

    Treesearch

    Thomas B. Lynch; Difei Zhang

    2012-01-01

    It has often been observed that maximum dbh growth occurs at an earlier age than maximum individual tree basal area growth. This can be deduced from the geometry of the tree stem, by observing that a dbh increment at a given radius will be associated with a larger basal area increment than an equal dbh increment occurring at a shorter radius from the stem center. Thus...

  18. Automatic basal slice detection for cardiac analysis

    NASA Astrophysics Data System (ADS)

    Paknezhad, Mahsa; Marchesseau, Stephanie; Brown, Michael S.

    2016-03-01

    Identification of the basal slice in cardiac imaging is a key step to measuring the ejection fraction (EF) of the left ventricle (LV). Despite research on cardiac segmentation, basal slice identification is routinely performed manually. Manual identification, however, has been shown to have high inter-observer variability, with a variation of the EF by up to 8%. Therefore, an automatic way of identifying the basal slice is still required. Prior published methods operate by automatically tracking the mitral valve points from the long-axis view of the LV. These approaches assumed that the basal slice is the first short-axis slice below the mitral valve. However, guidelines published in 2013 by the society for cardiovascular magnetic resonance indicate that the basal slice is the uppermost short-axis slice with more than 50% myocardium surrounding the blood cavity. Consequently, these existing methods are at times identifying the incorrect short-axis slice. Correct identification of the basal slice under these guidelines is challenging due to the poor image quality and blood movement during image acquisition. This paper proposes an automatic tool that focuses on the two-chamber slice to find the basal slice. To this end, an active shape model is trained to automatically segment the two-chamber view for 51 samples using the leave-one-out strategy. The basal slice was detected using temporal binary profiles created for each short-axis slice from the segmented two-chamber slice. From the 51 successfully tested samples, 92% and 84% of detection results were accurate at the end-systolic and the end-diastolic phases of the cardiac cycle, respectively.

  19. Flying saucer located at the basal septum.

    PubMed

    Akcay, Murat; Senkaya, Emine Bilen; Bilge, Mehmet; Bozkurt, Mehmet; Arslantas, Ugur; Karakas, Fatih

    2008-08-01

    Left ventricular thrombus formation is a frequent complication in patients with ischemic heart disease and is associated with a high risk of systemic embolization. Generally, thrombi localize at the apical segment. However, thrombus localized at the basal septum has not been reported yet. In this case, we discuss a flying saucer shaped mass located at the basal septum, which was later diagnosed as thrombus after anticoagulant therapy.

  20. Epidemiology of basal-like breast cancer.

    PubMed

    Millikan, Robert C; Newman, Beth; Tse, Chiu-Kit; Moorman, Patricia G; Conway, Kathleen; Dressler, Lynn G; Smith, Lisa V; Labbok, Miriam H; Geradts, Joseph; Bensen, Jeannette T; Jackson, Susan; Nyante, Sarah; Livasy, Chad; Carey, Lisa; Earp, H Shelton; Perou, Charles M

    2008-05-01

    Risk factors for the newly identified "intrinsic" breast cancer subtypes (luminal A, luminal B, basal-like and human epidermal growth factor receptor 2-positive/estrogen receptor-negative) were determined in the Carolina Breast Cancer Study, a population-based, case-control study of African-American and white women. Immunohistochemical markers were used to subtype 1,424 cases of invasive and in situ breast cancer, and case subtypes were compared to 2,022 controls. Luminal A, the most common subtype, exhibited risk factors typically reported for breast cancer in previous studies, including inverse associations for increased parity and younger age at first full-term pregnancy. Basal-like cases exhibited several associations that were opposite to those observed for luminal A, including increased risk for parity and younger age at first term full-term pregnancy. Longer duration breastfeeding, increasing number of children breastfed, and increasing number of months breastfeeding per child were each associated with reduced risk of basal-like breast cancer, but not luminal A. Women with multiple live births who did not breastfeed and women who used medications to suppress lactation were at increased risk of basal-like, but not luminal A, breast cancer. Elevated waist-hip ratio was associated with increased risk of luminal A in postmenopausal women, and increased risk of basal-like breast cancer in pre- and postmenopausal women. The prevalence of basal-like breast cancer was highest among premenopausal African-American women, who also showed the highest prevalence of basal-like risk factors. Among younger African-American women, we estimate that up to 68% of basal-like breast cancer could be prevented by promoting breastfeeding and reducing abdominal adiposity.

  1. Evidence for participation of GCS1 in fertilization of the starlet sea anemone Nematostella vectensis: implication of a common mechanism of sperm-egg fusion in plants and animals.

    PubMed

    Ebchuqin, Eerdundagula; Yokota, Naoto; Yamada, Lixy; Yasuoka, Yuuri; Akasaka, Mari; Arakawa, Mio; Deguchi, Ryusaku; Mori, Toshiyuki; Sawada, Hitoshi

    2014-09-05

    It has been reported that GCS1 (Generative Cell Specific 1) is a transmembrane protein that is exclusively expressed in sperm cells and is essential for gamete fusion in flowering plants. The GCS1 gene is present not only in angiosperms but also in unicellular organisms and animals, implying the occurrence of a common or ancestral mechanism of GCS1-mediated gamete fusion. In order to elucidate the common mechanism, we investigated the role of GCS1 in animal fertilization using a sea anemone (Cnidaria), Nematostella vectensis. Although the existence of the GCS1 gene in N. vectensis has been reported, the expression of GCS1 in sperm and the role of GCS1 in fertilization are not known. In this study, we showed that the GCS1 gene is expressed in the testis and that GCS1 protein exists in sperm by in situ hybridization and proteomic analysis, respectively. Then we made four peptide antibodies against the N-terminal extracellular region of NvGCS1. These antibodies specifically reacted to NvGCS1 among sperm proteins on the basis of Western analysis and potently inhibited fertilization in a concentration-dependent manner. These results indicate that sperm GCS1 plays a pivotal role in fertilization, most probably in sperm-egg fusion, in a starlet sea anemone, suggesting a common gamete-fusion mechanism shared by eukaryotic organisms.

  2. Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges

    PubMed Central

    2014-01-01

    . Conclusions This is the first evidence of arrays of non-motile cilia in sponge oscula. Our findings provide support for the hypothesis that the cilia are sensory, and if true, the osculum may be considered a sensory organ that is used to coordinate whole animal responses in sponges. Arrays of primary cilia like these could represent the first step in the evolution of sensory and coordination systems in metazoans. PMID:24410880

  3. Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges.

    PubMed

    Ludeman, Danielle A; Farrar, Nathan; Riesgo, Ana; Paps, Jordi; Leys, Sally P

    2014-01-13

    arrays of non-motile cilia in sponge oscula. Our findings provide support for the hypothesis that the cilia are sensory, and if true, the osculum may be considered a sensory organ that is used to coordinate whole animal responses in sponges. Arrays of primary cilia like these could represent the first step in the evolution of sensory and coordination systems in metazoans.

  4. Functional chloroplasts in metazoan cells - a unique evolutionary strategy in animal life

    PubMed Central

    2009-01-01

    Background Among metazoans, retention of functional diet-derived chloroplasts (kleptoplasty) is known only from the sea slug taxon Sacoglossa (Gastropoda: Opisthobranchia). Intracellular maintenance of plastids in the slug's digestive epithelium has long attracted interest given its implications for understanding the evolution of endosymbiosis. However, photosynthetic ability varies widely among sacoglossans; some species have no plastid retention while others survive for months solely on photosynthesis. We present a molecular phylogenetic hypothesis for the Sacoglossa and a survey of kleptoplasty from representatives of all major clades. We sought to quantify variation in photosynthetic ability among lineages, identify phylogenetic origins of plastid retention, and assess whether kleptoplasty was a key character in the radiation of the Sacoglossa. Results Three levels of photosynthetic activity were detected: (1) no functional retention; (2) short-term retention lasting about one week; and (3) long-term retention for over a month. Phylogenetic analysis of one nuclear and two mitochondrial loci revealed reciprocal monophyly of the shelled Oxynoacea and shell-less Plakobranchacea, the latter comprising a monophyletic Plakobranchoidea and paraphyletic Limapontioidea. Only species in the Plakobranchoidea expressed short- or long-term kleptoplasty, most belonging to a speciose clade of slugs bearing parapodia (lateral flaps covering the dorsum). Bayesian ancestral character state reconstructions indicated that functional short-term retention arose once in the last common ancestor of Plakobranchoidea, and independently evolved into long-term retention in four derived species. Conclusion We propose a sequential progression from short- to long-term kleptoplasty, with different adaptations involved in each step. Short-term kleptoplasty likely arose as a deficiency in plastid digestion, yielding additional energy via the release of fixed carbon. Functional short

  5. Geochronological Constraints on Neoproterozoic Glaciations, the first appearance of Metazoans, and the Cambrian Explosion.

    NASA Astrophysics Data System (ADS)

    Bowring, S.; Condon, D.; Ramezani, J.; Myrow, P.; Landing, E.

    2004-05-01

    Studies of Neoproterozoic climate fluctuations, plate reconstructions, biological evolution and their interrelationships have been hindered by a lack of high-precision geochronological constraints. The correlation and estimates of duration for Neoproterozoic glaciations has relied on physical/chemo-stratigraphy, and thermal subsidence models respectively. New geochronological constraints from Neoproterozoic successions worldwide have sharpened the debate as to the number, synchroneity, and duration of glacial episodes and the relationship, if any, between Metazoan evolution and global glaciation(s). Crucial to the debate are correct interpretation of geochronological data that range from U-Pb zircon studies of intercalated volcanic ash-beds, U-Pb detrital zircon studies, Re-Os from black shales, Rb-Sr from clay-rich rocks, U-Pb and Pb-Pb from carbonates and phosphates, and Lu-Hf from phosphates. Development of a highly resolved Neoproterozoic timescale will require integration and cross-calibration of multiple dating techniques and consideration of what is actually being recorded by each chronometer. A review of available geological and geochronological data indicate that there were at least three and perhaps as many as five periods of Neoproterozoic glacial deposition including rocks from United States (Idaho and Virginia), Newfoundland and the Northwest Territories of Canada, Namibia, and Oman. What must be evaluated is how the paleogeographic distribution of glaciated regions varied with time during the Neoproterozoic. Do Neoproterozoic glacial successions distributed worldwide record a small number of globally synchronous, long-lived glaciations, or numerous diachronous glacial epochs, or a combination of both? At present, the duration of only one glacial deposit, the ca 581 Ma Gaskiers Formation (Newfoundland), is known and it is on the order of 1 Ma, at odds with a long-lived global glaciation predicted by the snowball Earth hypothesis. Other major issues are

  6. Performance of Single and Concatenated Sets of Mitochondrial Genes at Inferring Metazoan Relationships Relative to Full Mitogenome Data

    PubMed Central

    Havird, Justin C.; Santos, Scott R.

    2014-01-01

    Mitochondrial (mt) genes are some of the most popular and widely-utilized genetic loci in phylogenetic studies of metazoan taxa. However, their linked nature has raised questions on whether using the entire mitogenome for phylogenetics is overkill (at best) or pseudoreplication (at worst). Moreover, no studies have addressed the comparative phylogenetic utility of mitochondrial genes across individual lineages within the entire Metazoa. To comment on the phylogenetic utility of individual mt genes as well as concatenated subsets of genes, we analyzed mitogenomic data from 1865 metazoan taxa in 372 separate lineages spanning genera to subphyla. Specifically, phylogenies inferred from these datasets were statistically compared to ones generated from all 13 mt protein-coding (PC) genes (i.e., the “supergene” set) to determine which single genes performed “best” at, and the minimum number of genes required to, recover the “supergene” topology. Surprisingly, the popular marker COX1 performed poorest, while ND5, ND4, and ND2 were most likely to reproduce the “supergene” topology. Averaged across all lineages, the longest ∼2 mt PC genes were sufficient to recreate the “supergene” topology, although this average increased to ∼5 genes for datasets with 40 or more taxa. Furthermore, concatenation of the three “best” performing mt PC genes outperformed that of the three longest mt PC genes (i.e, ND5, COX1, and ND4). Taken together, while not all mt PC genes are equally interchangeable in phylogenetic studies of the metazoans, some subset can serve as a proxy for the 13 mt PC genes. However, the exact number and identity of these genes is specific to the lineage in question and cannot be applied indiscriminately across the Metazoa. PMID:24454717

  7. Metazoan parasites of the common carp (Cyprinus carpio L., 1758) from Tahtalı Dam Lake (İzmir).

    PubMed

    Karakişi, Hatice; Demir, Seda

    2012-01-01

    The aim of this study was identification of the parasites of the common carp from Tahtalı Dam Lake. The fish were transported live to the laboratory. They were investigated for ectoparasites and endoparasites. The parasite specimens were fixed and identified. During the study, 47 common carp were caught monthly and 3 species of metazoan parasites were found: Dactylogyrus extensus (Monogenea), Contracaecum sp. larvae (Nematoda) and Lernaea cyprinacea (Crustacea). The parasite species were new records for Tahtalı Dam Lake. Contracaecum sp. larvae were recorded for the first time from Cyprinus carpio in Turkey.

  8. Basal Forebrain Cholinergic Modulation of Sleep Transitions

    PubMed Central

    Ozen Irmak, Simal; de Lecea, Luis

    2014-01-01

    Objectives: The basal forebrain cholinergic system is involved in cognitive processes that require an attentive state, an increased level of arousal, and/or cortical activation associated with low amplitude fast EEG activity. The activity of most neurons in the basal forebrain cholinergic space is tightly correlated with the cortical EEG and the activity state. While most cholinergic neurons fire maximally during waking and REM sleep, the activity of other types of basal forebrain neurons vastly differs across different arousal and sleep states. Numerous studies have suggested a role for the basal forebrain cholinergic neurons in eliciting cortical activation and arousal. However, the intricate local connectivity within the region requires the use of cell-specific manipulation methods to demonstrate such a causal relationship. Design and Measurements: Here we have combined optogenetics with surface EEG recordings in freely moving mice in order to investigate the effects of acute cholinergic activation on the dynamics of sleep-to-wake transitions. We recorded from naturally sleeping animals and analyzed transitions from NREM sleep to REM sleep and/or wakefulness in response to photo-stimulation of cholinergic neurons in substantia innominata. Results and Conclusions: Our results show that optogenetic activation of basal forebrain cholinergic neurons during NREM sleep is sufficient to elicit cortical activation and facilitate state transitions, particularly transitions to wakefulness and arousal, at a time scale similar to the activation induced by other subcortical systems. Our results provide in vivo cell-specific demonstration for the role of basal forebrain cholinergic system in induction of wakefulness and arousal. Citation: Ozen Irmak S, de Lecea L. Basal forebrain cholinergic modulation of sleep transitions. SLEEP 2014;37(12):1941-1951. PMID:25325504

  9. Extrastriatal Dopaminergic Circuits of the Basal Ganglia

    PubMed Central

    Rommelfanger, Karen S.; Wichmann, Thomas

    2010-01-01

    The basal ganglia are comprised of the striatum, the external and internal segment of the globus pallidus (GPe and GPi, respectively), the subthalamic nucleus (STN), and the substantia nigra pars compacta and reticulata (SNc and SNr, respectively). Dopamine has long been identified as an important modulator of basal ganglia function in the striatum, and disturbances of striatal dopaminergic transmission have been implicated in diseases such as Parkinson's disease (PD), addiction and attention deficit hyperactivity disorder. However, recent evidence suggests that dopamine may also modulate basal ganglia function at sites outside of the striatum, and that changes in dopaminergic transmission at these sites may contribute to the symptoms of PD and other neuropsychiatric disorders. This review summarizes the current knowledge of the anatomy, functional effects and behavioral consequences of the dopaminergic innervation to the GPe, GPi, STN, and SNr. Further insights into the dopaminergic modulation of basal ganglia function at extrastriatal sites may provide us with opportunities to develop new and more specific strategies for treating disorders of basal ganglia dysfunction. PMID:21103009

  10. The Early Metazoan Trichoplax adhaerens Possesses a Functional O-GlcNAc System*

    PubMed Central

    Selvan, Nithya; Mariappa, Daniel; van den Toorn, Henk W. P.; Heck, Albert J. R.; Ferenbach, Andrew T.; van Aalten, Daan M. F.

    2015-01-01

    Protein O-GlcNAcylation is a reversible post-translational signaling modification of nucleocytoplasmic proteins that is essential for embryonic development in bilateria. In a search for a reductionist model to study O-GlcNAc signaling, we discovered the presence of functional O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), and nucleocytoplasmic protein O-GlcNAcylation in the most basal extant animal, the placozoan Trichoplax adhaerens. We show via enzymatic characterization of Trichoplax OGT/OGA and genetic rescue experiments in Drosophila melanogaster that these proteins possess activities/functions similar to their bilaterian counterparts. The acquisition of O-GlcNAc signaling by metazoa may have facilitated the rapid and complex signaling mechanisms required for the evolution of multicellular organisms. PMID:25778404

  11. Identification of triple-negative and basal-like canine mammary carcinomas using four basal markers.

    PubMed

    Kim, N H; Lim, H Y; Im, K S; Kim, J H; Sur, J-H

    2013-05-01

    Molecular-based classification of canine mammary carcinomas (CMCs) has been a recent research focus. In human breast cancer, triple-negative and basal-like phenotypes are distinct molecular subgroups that are known for their poor prognosis, but these tumours are not yet well defined in the dog. The aim of this study was to determine whether CMCs include triple-negative and basal-like phenotypes by immunohistochemical assessment of expression of the oestrogen receptor (OR), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and four basal markers, cytokeratin (CK) 14, CK5/6, p63 and the epidermal growth factor receptor (EGFR). In this study of 241 CMCs, 45 triple-negative tumours (OR(-), PR(-) and HER2(-)) were identified and this phenotype was associated with an unfavourable prognosis. In these tumours, the expression of CK14, CK5/6 and EGFR was related to clinicopathological parameters, while the expression of p63 was not relevant. The majority of the triple-negative tumours were of the basal-like phenotype, given that 75.6% of them expressed more than two basal markers. However, three of the basal markers were not uniformly expressed; therefore, the proportion of the basal-like phenotype was altered on the basis of the selection of the markers. Although both triple-negative and basal-like phenotypes are distinct entities in CMC, further study is needed to differentiate one from the other.

  12. Characterization of maspardin, responsible for human Mast syndrome, in an insect species and analysis of its evolution in metazoans

    NASA Astrophysics Data System (ADS)

    Chertemps, Thomas; Montagné, Nicolas; Bozzolan, Françoise; Maria, Annick; Durand, Nicolas; Maïbèche-Coisne, Martine

    2012-07-01

    Mast syndrome is a complicated form of human hereditary spastic paraplegias, caused by a mutation in the gene acid cluster protein 33, which encodes a protein designated as "maspardin." Maspardin presents similarity to the α/β-hydrolase superfamily, but might lack enzymatic activity and rather be involved in protein-protein interactions. Association with the vesicles of the endosomal network also suggested that maspardin may be involved in the sorting and/or trafficking of molecules in the endosomal pathway, a crucial process for maintenance of neuron health. Despite a high conservation in living organisms, studies of maspardin in other animal species than mammals were lacking. In the cotton armyworm Spodoptera littoralis, an insect pest model, analysis of an expressed sequence tag collection from antenna, the olfactory organ, has allowed identifying a maspardin homolog ( SlMasp). We have investigated SlMasp tissue distribution and temporal expression by PCR and in situ hybridization techniques. Noteworthy, we found that maspardin was highly expressed in antennae and associated with the structures specialized in odorant detection. We have, in addition, identified maspardin sequences in numerous "nonmammalian" species and described here their phylogenetic analysis in the context of metazoan diversity. We observed a strong conservation of maspardin in metazoans, with surprisingly two independent losses of this gene in two relatively distant ecdysozoan taxa that include major model organisms, i.e., dipterans and nematodes.

  13. Conveniently Pre-Tagged and Pre-Packaged: Extended Molecular Identification and Metagenomics Using Complete Metazoan Mitochondrial Genomes

    PubMed Central

    Dettai, Agnes; Gallut, Cyril; Brouillet, Sophie; Pothier, Joel; Lecointre, Guillaume; Debruyne, Régis

    2012-01-01

    Background Researchers sorely need markers and approaches for biodiversity exploration (both specimen linked and metagenomics) using the full potential of next generation sequencing technologies (NGST). Currently, most studies rely on expensive multiple tagging, PCR primer universality and/or the use of few markers, sometimes with insufficient variability. Methodology/Principal Findings We propose a novel approach for the isolation and sequencing of a universal, useful and popular marker across distant, non-model metazoans: the complete mitochondrial genome. It relies on the properties of metazoan mitogenomes for enrichment, on careful choice of the organisms to multiplex, as well as on the wide collection of accumulated mitochondrial reference datasets for post-sequencing sorting and identification instead of individual tagging. Multiple divergent organisms can be sequenced simultaneously, and their complete mitogenome obtained at a very low cost. We provide in silico testing of dataset assembly for a selected set of example datasets. Conclusions/Significance This approach generates large mitogenome datasets. These sequences are useful for phylogenetics, molecular identification and molecular ecology studies, and are compatible with all existing projects or available datasets based on mitochondrial sequences, such as the Barcode of Life project. Our method can yield sequences both from identified samples and metagenomic samples. The use of the same datasets for both kinds of studies makes for a powerful approach, especially since the datasets have a high variability even at species level, and would be a useful complement to the less variable 18S rDNA currently prevailing in metagenomic studies. PMID:23251474

  14. Characterization of STIP, a multi-domain nuclear protein, highly conserved in metazoans, and essential for embryogenesis in Caenorhabditis elegans

    SciTech Connect

    Ji Qiongmei; Huang, C.-H. . E-mail: chuang@nybloodcenter.org; Peng Jianbin; Hashmi, Sarwar; Ye Tianzhang; Chen Ying

    2007-04-15

    We report here the identification and characterization of STIP, a multi-domain nuclear protein that contains a G-patch, a coiled-coil, and several short tryptophan-tryptophan repeats highly conserved in metazoan species. To analyze their functional role in vivo, we cloned nematode stip-1 genes and determined the spatiotemporal pattern of Caenorhabditis elegans STIP-1 protein. RNA analyses and Western blots revealed that stip-1 mRNA was produced via trans-splicing and translated as a 95-kDa protein. Using reporter constructs, we found STIP-1 to be expressed at all developmental stages and in many tissue/cell types including worm oocyte nuclei. We found that STIP-1 is targeted to the nucleus and forms large polymers with a rod-like shape when expressed in mammalian cells. Using deletion mutants, we mapped the regions of STIP-1 involved in nuclear import and polymer assembly. We further showed that knockdown of C. elegans stip-1 by RNA interference arrested development and resulted in morphologic abnormalities around the 16-cell stage followed by 100% lethality, suggesting its essential role in worm embryogenesis. Importantly, the embryonic lethal phenotype could be faithfully rescued with Drosophila and human genes via transgenic expression. Our data provide the first direct evidence that STIP have a conserved essential nuclear function across metazoans from worms to humans.

  15. The house fly (Musca domestica) as a potential vector of metazoan parasites caught in a pig-pen in Germany.

    PubMed

    Förster, Maike; Klimpel, Sven; Sievert, Kai

    2009-03-09

    In the present study a total of 224 specimens of the synanthropic house fly (Musca domestica) were caught in a pig-pen of an organic farmer in Dormagen (Germany). The flies were examined for their potential as a carrier of metazoan parasites. On the exoskeletons and in the intestines of the flies the eggs and/or larvae of four endoparasite nematode species of domestic pigs (Ascaris suum, Strongyloides ransomi, Metastrongylus sp., undetermined Strongylida) were isolated. Also one ectoparasite species, the hog louse (Haematopinus suis), was detected on the exoskeleton of one fly. The analysis of the pig faeces as potential source revealed many eggs and larvae of nematodes. A high number of A. suum eggs (62.0% of all found nematode eggs), many eggs of strongylid nematodes (21.0%), some eggs of S. ransomi and few eggs of Trichuris suis were detected. However Metastrongylus sp. could not be identified in the faeces. Further laboratory experiments verified the potential of the house fly as a transmitter of the pig parasites A. suum and T. suis. In the intestines of 59 flies (49.2%) from 120 experimentally used house flies, nematode eggs of both nematode species were detected. The present study clearly demonstrates the potential of the house fly as a vector of metazoan pig parasites.

  16. Structural shifts of aldehyde dehydrogenase enzymes were instrumental for the early evolution of retinoid-dependent axial patterning in metazoans

    PubMed Central

    Sobreira, Tiago J. P.; Marlétaz, Ferdinand; Simões-Costa, Marcos; Schechtman, Deborah; Pereira, Alexandre C.; Brunet, Frédéric; Sweeney, Sarah; Pani, Ariel; Aronowicz, Jochanan; Lowe, Christopher J.; Davidson, Bradley; Laudet, Vincent; Bronner, Marianne; de Oliveira, Paulo S. L.; Schubert, Michael; Xavier-Neto, José

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification. PMID:21169504

  17. Evolutionary patterns of metazoan microRNAs reveal targeting principles in the let-7 and miR-10 families

    PubMed Central

    Le, Hoai Huang Thi; Linse, Alexander; Godlove, Victoria A.; Nguyen, Thuy-Duyen; Kotagama, Kasuen; Lynch, Alissa; Rawls, Alan

    2017-01-01

    MicroRNAs (miRNAs) regulate gene output by targeting degenerate elements in mRNAs and have undergone drastic expansions in higher metazoan genomes. The evolutionary advantage of maintaining copies of highly similar miRNAs is not well understood, nor is it clear what unique functions, if any, miRNA family members possess. Here, we study evolutionary patterns of metazoan miRNAs, focusing on the targeting preferences of the let-7 and miR-10 families. These studies reveal hotspots for sequence evolution with implications for targeting and secondary structure. High-throughput screening for functional targets reveals that each miRNA represses sites with distinct features and regulates a large number of genes with cooperative function in regulatory networks. Unexpectedly, given the high degree of similarity, single-nucleotide changes grant miRNA family members with distinct targeting preferences. Together, our data suggest complex functional relationships among miRNA duplications, novel expression patterns, sequence change, and the acquisition of new targets. PMID:27927717

  18. Metazoan Maelstrom is an RNA-binding protein that has evolved from an ancient nuclease active in protists

    PubMed Central

    Chen, Kuan-Ming; Campbell, Edgar; Pandey, Radha Raman; Yang, Zhaolin; McCarthy, Andrew A.; Pillai, Ramesh S.

    2015-01-01

    Piwi-interacting RNAs (piRNAs) guide Piwi argonautes to their transposon targets for silencing. The highly conserved protein Maelstrom is linked to both piRNA biogenesis and effector roles in this pathway. One defining feature of Maelstrom is the predicted MAEL domain of unknown molecular function. Here, we present the first crystal structure of the MAEL domain from Bombyx Maelstrom, which reveals a nuclease fold. The overall architecture resembles that found in Mg2+- or Mn2+-dependent DEDD nucleases, but a clear distinguishing feature is the presence of a structural Zn2+ ion coordinated by the conserved ECHC residues. Strikingly, metazoan Maelstrom orthologs across the animal kingdom lack the catalytic DEDD residues, and as we show for Bombyx Maelstrom are inactive as nucleases. However, a MAEL domain-containing protein from amoeba having both sequence motifs (DEDD and ECHC) is robustly active as an exoribonuclease. Finally, we show that the MAEL domain of Bombyx Maelstrom displays a strong affinity for single-stranded RNAs. Our studies suggest that the ancient MAEL nuclease domain evolved to function as an RNA-binding module in metazoan Maelstrom. PMID:25778731

  19. Metazoan Maelstrom is an RNA-binding protein that has evolved from an ancient nuclease active in protists.

    PubMed

    Chen, Kuan-Ming; Campbell, Edgar; Pandey, Radha Raman; Yang, Zhaolin; McCarthy, Andrew A; Pillai, Ramesh S

    2015-05-01

    Piwi-interacting RNAs (piRNAs) guide Piwi argonautes to their transposon targets for silencing. The highly conserved protein Maelstrom is linked to both piRNA biogenesis and effector roles in this pathway. One defining feature of Maelstrom is the predicted MAEL domain of unknown molecular function. Here, we present the first crystal structure of the MAEL domain from Bombyx Maelstrom, which reveals a nuclease fold. The overall architecture resembles that found in Mg(2+)- or Mn(2+)-dependent DEDD nucleases, but a clear distinguishing feature is the presence of a structural Zn(2+) ion coordinated by the conserved ECHC residues. Strikingly, metazoan Maelstrom orthologs across the animal kingdom lack the catalytic DEDD residues, and as we show for Bombyx Maelstrom are inactive as nucleases. However, a MAEL domain-containing protein from amoeba having both sequence motifs (DEDD and ECHC) is robustly active as an exoribonuclease. Finally, we show that the MAEL domain of Bombyx Maelstrom displays a strong affinity for single-stranded RNAs. Our studies suggest that the ancient MAEL nuclease domain evolved to function as an RNA-binding module in metazoan Maelstrom. © 2015 Chen et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  20. The nonlinear effects of evolutionary innovation biospheric feedbacks on qualitative environmental change: from the microbial to metazoan world.

    PubMed

    Kennedy, Martin

    2013-05-01

    The biomass of living organisms hosts only a small portion of the elemental abundance at the surface of the Earth, yet biology plays a defining role in the composition and stability of the biosphere by acting on sensitive geochemical feedbacks controlling global element cycles. This type of influence is evident in a class of evolutionary innovations that have a profoundly disproportionate effect on the biosphere, referred to here as evolutionary innovation biospheric feedbacks (EIBFs). A particular biological innovation need not be complex, rather its influence is amplified by its effect on geochemical feedbacks controlling elemental cycling. The lead-up to the metazoan radiation (~585 million years ago) provides an example of such an EIBF. While commonly attributed to an increase in free oxygen concentration, the reason for this step increase in O2 almost 2 billion years after the advent of oxygenic photosynthesis is traced to a seemingly unrelated evolutionary innovation resulting in a critical by-product of the first soils: secondary clay minerals. Detrital clay minerals deposited in continental margin sediments sequester organic carbon compounds and thus prevent consumption of atmospheric oxygen produced during photosynthesis. The transition from the abiotic to biotic land surface at the end of the Precambrian shifted biogeochemical cycling to this terrestrial-dominated modern mode that enabled sufficient oxygenation of the biosphere to trigger the metazoan radiation.

  1. Basal Forebrain Cholinergic System and Memory.

    PubMed

    Blake, M G; Boccia, M M

    2017-02-18

    Basal forebrain cholinergic neurons constitute a way station for many ascending and descending pathways. These cholinergic neurons have a role in eliciting cortical activation and arousal. It is well established that they are mainly involved in cognitive processes requiring increased levels of arousal, attentive states and/or cortical activation with desynchronized activity in the EEG. These cholinergic neurons are modulated by several afferents of different neurotransmitter systems. Of particular importance within the cortical targets of basal forebrain neurons is the hippocampal cortex. The septohippocampal pathway is a bidirectional pathway constituting the main septal efferent system, which is widely known to be implicated in every memory process investigated. The present work aims to review the main neurotransmitter systems involved in modulating cognitive processes related to learning and memory through modulation of basal forebrain neurons.

  2. Basal cell carcinoma of the nail unit.

    PubMed

    Forman, Seth B; Ferringer, Tammie C; Garrett, Algin B

    2007-05-01

    We report a case of a 70-year-old white male with a basal cell carcinoma of the left thumb nail unit. Excision of the tumor via Mohs micrographic surgery was completed in 2 stages. The defect was repaired with a full thickness skin graft. Five months later the nail unit healed without complications. Prior to this report, 21 cases of basal cell carcinoma have been reported in the world literature. This case, as well as the prior reports, are reviewed with a focus on time to diagnosis, location, excisional technique, and method of repair.

  3. Community ecology of the metazoan parasites of Brazilian sardinella, Sardinella brasiliensis (Steindachner, 1879) (Actinopterygii: Clupeidae) from the coastal zone of the State of Rio de Janeiro, Brazil.

    PubMed

    Moreira, J; Paschoal, F; Cezar, A D; Luque, J L

    2015-08-01

    Between March 2010 and August 2011 were necropsied 100 specimens of Sardinella brasiliensis (Steindachner, 1879), from the coast of the State of Rio de Janeiro, Brazil (22°51'S, 43°56'W), to study their community of metazoan parasites. All specimens of S. brasiliensis were parasitized by at least one species of metazoan parasite, with mean of 68.7 ± 71.2 parasites/fish. Eleven species were collected: 3 digeneans, 1 monogenean, 2 cestodes, 3 nematodes and 2 copepods. The digenean Myosaccium ecaude Montgomery was the most abundant, prevalent, and dominant species, representing 72.7% of metazoan parasites collected, showing positive correlation between host's total length and parasite abundance. Total parasite abundance was positively correlated with host's total length. Three pairs of adult endoparasites showed significant positive association and covariation. The parasite community of S. brasiliensis showed dominance by digeneans. Sardinella brasiliensis represents new host record for most found parasite species.

  4. Evidence for participation of GCS1 in fertilization of the starlet sea anemone Nematostella vectensis: Implication of a common mechanism of sperm–egg fusion in plants and animals

    SciTech Connect

    Ebchuqin, Eerdundagula; Yokota, Naoto; Yamada, Lixy; Yasuoka, Yuuri; Akasaka, Mari; Arakawa, Mio; Deguchi, Ryusaku; Mori, Toshiyuki; Sawada, Hitoshi

    2014-09-05

    Highlights: • GCS1 is a sperm transmembrane protein that is essential for gamete fusion in flowering plants. • The GCS1 gene is present not only in angiosperms but also in unicellular organisms and animals. • NvGCS1 gene is expressed in the testis and GCS1 protein exists in sperm of a sea anemone. • Anti-GCS1 antibodies inhibited the fertilization, showing the participation in fertilization. - Abstract: It has been reported that GCS1 (Generative Cell Specific 1) is a transmembrane protein that is exclusively expressed in sperm cells and is essential for gamete fusion in flowering plants. The GCS1 gene is present not only in angiosperms but also in unicellular organisms and animals, implying the occurrence of a common or ancestral mechanism of GCS1-mediated gamete fusion. In order to elucidate the common mechanism, we investigated the role of GCS1 in animal fertilization using a sea anemone (Cnidaria), Nematostella vectensis. Although the existence of the GCS1 gene in N. vectensis has been reported, the expression of GCS1 in sperm and the role of GCS1 in fertilization are not known. In this study, we showed that the GCS1 gene is expressed in the testis and that GCS1 protein exists in sperm by in situ hybridization and proteomic analysis, respectively. Then we made four peptide antibodies against the N-terminal extracellular region of NvGCS1. These antibodies specifically reacted to NvGCS1 among sperm proteins on the basis of Western analysis and potently inhibited fertilization in a concentration-dependent manner. These results indicate that sperm GCS1 plays a pivotal role in fertilization, most probably in sperm–egg fusion, in a starlet sea anemone, suggesting a common gamete-fusion mechanism shared by eukaryotic organisms.

  5. Microbial diversity and activity in the Nematostella vectensis holobiont: insights from 16S rRNA gene sequencing, isolate genomes, and a pilot-scale survey of gene expression

    PubMed Central

    Har, Jia Y.; Helbig, Tim; Lim, Ju H.; Fernando, Samodha C.; Reitzel, Adam M.; Penn, Kevin; Thompson, Janelle R.

    2015-01-01

    We have characterized the molecular and genomic diversity of the microbiota of the starlet sea anemone Nematostella vectensis, a cnidarian model for comparative developmental and functional biology and a year-round inhabitant of temperate salt marshes. Molecular phylogenetic analysis of 16S rRNA gene clone libraries revealed four ribotypes associated with N. vectensis at multiple locations and times. These associates include two novel ribotypes within the ε-Proteobacterial order Campylobacterales and the Spirochetes, respectively, each sharing <85% identity with cultivated strains, and two γ-Proteobacterial ribotypes sharing >99% 16S rRNA identity with Endozoicomonas elysicola and Pseudomonas oleovorans, respectively. Species-specific PCR revealed that these populations persisted in N. vectensis asexually propagated under laboratory conditions. cDNA indicated expression of the Campylobacterales and Endozoicomonas 16S rRNA in anemones from Sippewissett Marsh, MA. A collection of bacteria from laboratory raised N. vectensis was dominated by isolates from P. oleovorans and Rhizobium radiobacter. Isolates from field-collected anemones revealed an association with Limnobacter and Stappia isolates. Genomic DNA sequencing was carried out on 10 cultured bacterial isolates representing field- and laboratory-associates, i.e., Limnobacter spp., Stappia spp., P. oleovorans and R. radiobacter. Genomes contained multiple genes identified as virulence (host-association) factors while S. stellulata and L. thiooxidans genomes revealed pathways for mixotrophic sulfur oxidation. A pilot metatranscriptome of laboratory-raised N. vectensis was compared to the isolate genomes and indicated expression of ORFs from L. thiooxidans with predicted functions of motility, nutrient scavenging (Fe and P), polyhydroxyalkanoate synthesis for carbon storage, and selective permeability (porins). We hypothesize that such activities may mediate acclimation and persistence of bacteria in a N

  6. Parallel basal ganglia circuits for decision making.

    PubMed

    Hikosaka, Okihide; Ghazizadeh, Ali; Griggs, Whitney; Amita, Hidetoshi

    2017-02-02

    The basal ganglia control body movements, mainly, based on their values. Critical for this mechanism is dopamine neurons, which sends unpredicted value signals, mainly, to the striatum. This mechanism enables animals to change their behaviors flexibly, eventually choosing a valuable behavior. However, this may not be the best behavior, because the flexible choice is focused on recent, and, therefore, limited, experiences (i.e., short-term memories). Our old and recent studies suggest that the basal ganglia contain separate circuits that process value signals in a completely different manner. They are insensitive to recent changes in value, yet gradually accumulate the value of each behavior (i.e., movement or object choice). These stable circuits eventually encode values of many behaviors and then retain the value signals for a long time (i.e., long-term memories). They are innervated by a separate group of dopamine neurons that retain value signals, even when no reward is predicted. Importantly, the stable circuits can control motor behaviors (e.g., hand or eye) quickly and precisely, which allows animals to automatically acquire valuable outcomes based on historical life experiences. These behaviors would be called 'skills', which are crucial for survival. The stable circuits are localized in the posterior part of the basal ganglia, separately from the flexible circuits located in the anterior part. To summarize, the flexible and stable circuits in the basal ganglia, working together but independently, enable animals (and humans) to reach valuable goals in various contexts.

  7. TEMPORAL VARIABILITY IN BASAL ISOPRENE EMISSION FACTOR

    EPA Science Inventory

    Seasonal variability in basal isoprene emission factor (micrograms C /g hr or nmol/ m2 sec, leaf temperature at 30 degrees C and photosynthetically active radiation (PAR) at 1000 micromol/ m2 sec) was studied during the 1998 growing season at Duke Forest in the North Carolina Pie...

  8. Basal Ganglia Germinoma in an Adult.

    PubMed

    Vialatte de Pémille, Clément; Bielle, Franck; Mokhtari, Karima; Kerboua, Esma; Alapetite, Claire; Idbaih, Ahmed

    2016-08-01

    Intracranial germinoma is a rare primary brain cancer, usually located within the midline and mainly affecting Asian pediatric patients. Interestingly, we report here the peculiar case of a young North-African adult patient suffering from a basal ganglia germinoma without the classical ipsilateral cerebral hemiatrophy associated with this location.

  9. TEMPORAL VARIABILITY IN BASAL ISOPRENE EMISSION FACTOR

    EPA Science Inventory

    Seasonal variability in basal isoprene emission factor (micrograms C /g hr or nmol/ m2 sec, leaf temperature at 30 degrees C and photosynthetically active radiation (PAR) at 1000 micromol/ m2 sec) was studied during the 1998 growing season at Duke Forest in the North Carolina Pie...

  10. Teaching Social Studies Using Basal Readers.

    ERIC Educational Resources Information Center

    Garcia, Jesus; Logan, John W.

    1983-01-01

    A lesson, "Harriet Tubman: A Most Successful Conductor," illustrates how to employ a basal reader in social studies instruction in the elementary grades. This approach offers students a relevant curriculum, greater opportunities for concept development, practice in skills areas, and activities that offer greater opportunity to master…

  11. Poetry Instruction: Do Basals Follow Recommended Procedures?

    ERIC Educational Resources Information Center

    Shapiro, Sheila

    To determine whether the suggested poetry teaching procedures found in the teacher manuals of sixth-grade basal readers reflect the pedagogical procedures suggested by expert opinion and research, an indepth analysis was made of a total of 106 poetry lessons in eight teacher manuals. The poetry lessons were analyzed for the purposes of determining…

  12. Basal ganglia hemorrhage related to lightning strike.

    PubMed

    Ozgun, B; Castillo, M

    1995-01-01

    We describe a case of bilateral basal ganglia hemorrhage after a lightning strike to the head documented by a CT scan. Review of the literature shows this to be the most common brain imaging finding that can be attributed to a lightning strike. Several mechanistic theories are discussed, with the most plausible one being related to preferential conduction pathways through the brain.

  13. Multiethnic Literature; Supplements for Basal Readers.

    ERIC Educational Resources Information Center

    Florez-Tighe, Viola; And Others

    Children's literature can be used effectively to enrich the reading content of basal reading materials with stories and information by and about ethnic minorities. Developing an ethnic cultural web for a literary selection can stimulate language and enhance the thought processes of students. Using the webbing process, elementary school students…

  14. Basal Textbooks and the Social Studies

    ERIC Educational Resources Information Center

    Ediger, Marlow

    2010-01-01

    Basal textbooks are rather popular for social studies teachers to use in the classroom setting. There are selected reasons for this occurring. They do provide beginning and new teachers a framework for ongoing lessons and units of study. The accompanying Manual provides suggestions for learning activities for learners to pursue. Evaluation…

  15. Proximity Interactions among Basal Body Components in Trypanosoma brucei Identify Novel Regulators of Basal Body Biogenesis and Inheritance

    PubMed Central

    Dang, Hung Quang; Zhou, Qing; Rowlett, Veronica W.; Hu, Huiqing; Lee, Kyu Joon; Margolin, William

    2017-01-01

    ABSTRACT The basal body shares similar architecture with centrioles in animals and is involved in nucleating flagellar axonemal microtubules in flagellated eukaryotes. The early-branching Trypanosoma brucei possesses a motile flagellum nucleated from the basal body that consists of a mature basal body and an adjacent pro-basal body. Little is known about the basal body proteome and its roles in basal body biogenesis and flagellar axoneme assembly in T. brucei. Here, we report the identification of 14 conserved centriole/basal body protein homologs and 25 trypanosome-specific basal body proteins. These proteins localize to distinct subdomains of the basal body, and several of them form a ring-like structure surrounding the basal body barrel. Functional characterization of representative basal body proteins revealed distinct roles in basal body duplication/separation and flagellar axoneme assembly. Overall, this work identified novel proteins required for basal body duplication and separation and uncovered new functions of conserved basal body proteins in basal body duplication and separation, highlighting an unusual mechanism of basal body biogenesis and inheritance in this early divergent eukaryote. PMID:28049148

  16. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA

    SciTech Connect

    Medina, Monica; Collins, Allen G.; Silberman, Jeffrey; Sogin, Mitchell L.

    2001-06-21

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino-Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira-Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of amonophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny.

  17. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA.

    PubMed

    Medina, M; Collins, A G; Silberman, J D; Sogin, M L

    2001-08-14

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino-Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira-Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of a monophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny.

  18. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA

    PubMed Central

    Medina, Mónica; Collins, Allen G.; Silberman, Jeffrey D.; Sogin, Mitchell L.

    2001-01-01

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino–Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira–Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of a monophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny. PMID:11504944

  19. [Glucose metabolism in the basal ganglia].

    PubMed

    Yamada, Katsuya

    2009-04-01

    GABAergic neurons in the substantia nigra pars reticulata (SNr) -a major output nucleus of the basal ganglia- are involved in sensing severe hypoglycemic and hypoxic conditions in the brain via the ATP-sensitive potassium (KATP) channels that are abundantly expressed in these neurons. However, these neurons are also sensitive to mild changes in extracellular glucose concentrations through KATP channel-independent, yet unknown mechanisms. Lenard et al. reported that globus pallidus (GP) -another output nucleus of the basal ganglia- also senses glucose concentrations in the brain. It is unclear why these two major output nuclei sense glucose concentrations. It has been reported that some SNr and GP neurons respond to feeding-related, jaw or hand movement. Interestingly, Nishino demonstrated that SNr neurons responded oppositely, i.e., increased or decreased in their firings, to the same sweet food depending on blood glucose levels. Thus, glucose levels might influence feeding-related information processing in the basal ganglia through SNr and GP. Other issues reviewed are regarding associations between glucose metabolism and motor diseases in the basal ganglia. These include mutation in glucose transporter (GLUT) 1 causing paroxysmal kinesigenic choreoarthetosis, abnormal glycolysis in Huntington's disease, and a study showing increased glucose metabolism in SNr and GP in Parkinson's disease using high-resolution research positron emission tomography (HRRT). Although glucose is the sole energy source for the brain, its utilization at the single-cell level remains elusive. Modern methods for investigating intercellular metabolic communication might help understanding the selective vulnerability seen in the basal ganglia of patients suffering from such neurodegenerative disorders in near future.

  20. Stable loop in the crystal structure of the intercalated four-stranded cytosine-rich metazoan telomere

    SciTech Connect

    Kang, C.H.; Lockshin, C.; Rich, A.

    1995-04-25

    In most metazoans, the telomeric cytosine-rich strand repeating sequence is d(TAACCC). The crystal structure of this sequence was solved to 1.9-{angstrom} resolution. Four strands associate via the cytosine-containing parts to form a four-stranded intercalated structure held together by C-C{sup +} hydrogen bonds. The base-paired strands are parallel to each other, and the two duplexes are intercalated into each other in opposite orientations. One TAA end forms a highly stabilized loop with the 5{prime} thymine Hoogsteen-base-paired to the third adenine. The 5{prime} end of this loop is in close proximity to the 3{prime} end of one of the other intercalated cytosine strands. Instead of being entirely in a DNA duplex, this structure suggests the possibility of an alternative conformation for the cytosine-rich telomere strands. 25 refs., 5 figs.

  1. Epizooic metazoan meiobenthos associated with tubeworm and mussel aggregations from cold seeps of the northern Gulf of Mexico.

    PubMed

    Bright, M; Plum, C; Riavitz, L A; Nikolov, N; Martinez Arbizu, P; Cordes, E E; Gollner, S

    2010-11-01

    The abundance and higher taxonomic composition of epizooic metazoan meiobenthic communities associated with mussel and tubeworm aggregations of hydrocarbon seeps at Green Canyon, Atwater Valley, and Alaminos Canyon in depths between 1400 and 2800 m were studied and compared to the infaunal community of non-seep sediments nearby. Epizooic meiofaunal abundances of associated meiobenthos living in tubeworm bushes and mussel beds at seeps were extremely low (usually <100 ind. 10 cm(-2)), similar to epizooic meiofauna at deep-sea hydrothermal vents, and the communities were composed primarily of nematodes, copepods, ostracods, and halacarids. In contrast, epizooic meiobenthic abundance is lower than previous studies have reported for infauna from seep sediments. Interestingly, non-seep sediments contained higher abundances and higher taxonomic diversity than epizooic seep communities, although in situ primary production is restricted to seeps.

  2. Epizooic metazoan meiobenthos associated with tubeworm and mussel aggregations from cold seeps of the northern Gulf of Mexico

    PubMed Central

    Bright, M.; Plum, C.; Riavitz, L.A.; Nikolov, N.; Martinez Arbizu, P.; Cordes, E.E.; Gollner, S.

    2010-01-01

    The abundance and higher taxonomic composition of epizooic metazoan meiobenthic communities associated with mussel and tubeworm aggregations of hydrocarbon seeps at Green Canyon, Atwater Valley, and Alaminos Canyon in depths between 1400 and 2800 m were studied and compared to the infaunal community of non-seep sediments nearby. Epizooic meiofaunal abundances of associated meiobenthos living in tubeworm bushes and mussel beds at seeps were extremely low (usually <100 ind. 10 cm−2), similar to epizooic meiofauna at deep-sea hydrothermal vents, and the communities were composed primarily of nematodes, copepods, ostracods, and halacarids. In contrast, epizooic meiobenthic abundance is lower than previous studies have reported for infauna from seep sediments. Interestingly, non-seep sediments contained higher abundances and higher taxonomic diversity than epizooic seep communities, although in situ primary production is restricted to seeps. PMID:21264038

  3. Survey of the metazoan ectoparasites of the European flounder Platichthys flesus (Linnaeus, 1758) along the north-central Portuguese coast.

    PubMed

    Cavaleiro, Francisca I; Santos, Maria J

    2007-10-01

    A survey was undertaken to identify metazoan ectoparasite species on the European flounder, Platichthys flesus (Linnaeus, 1758), in 4 different locations off the north-central Portuguese coast. Parasites of 7 different taxa were found: Caligus diaphanus, Caligus sp., and Lepeophtheirus pectoralis (Copepoda: Caligidae); Acanthochondria cornuta (Copepoda: Chondracanthidae); Holobomolochus confusus (Copepoda: Bomolochidae); Nerocila orbignyi (Isopoda: Cymotholdae); and praniza larvae (Isopoda: Gnathiidae). Lernaeocera branchialis, a common European flounder parasite in the North and Baltic Seas, was not observed among the surveyed fish. Caligus diaphanus, Caligus sp., and Nerocila orbignyi are new host records. The high prevalence and intensity values recorded for L. pectoralis and A. cornuta suggest that both parasite species are common to the European flounder along the north-central Portuguese coast. In contrast, infection levels with respect to the other parasite taxa were, in most cases, comparatively lower, thereby indicating that they only occur occasionally among flounders in the surveyed area.

  4. Stable loop in the crystal structure of the intercalated four-stranded cytosine-rich metazoan telomere

    NASA Technical Reports Server (NTRS)

    Kang, C.; Berger, I.; Lockshin, C.; Ratliff, R.; Moyzis, R.; Rich, A.

    1995-01-01

    In most metazoans, the telomeric cytosine-rich strand repeating sequence is d(TAACCC). The crystal structure of this sequence was solved to 1.9-A resolution. Four strands associate via the cytosine-containing parts to form a four-stranded intercalated structure held together by C.C+ hydrogen bonds. The base-paired strands are parallel to each other, and the two duplexes are intercalated into each other in opposite orientations. One TAA end forms a highly stabilized loop with the 5' thymine Hoogsteen-base-paired to the third adenine. The 5' end of this loop is in close proximity to the 3' end of one of the other intercalated cytosine strands. Instead of being entirely in a DNA duplex, this structure suggests the possibility of an alternative conformation for the cytosine-rich telomere strands.

  5. Stable loop in the crystal structure of the intercalated four-stranded cytosine-rich metazoan telomere

    NASA Technical Reports Server (NTRS)

    Kang, C.; Berger, I.; Lockshin, C.; Ratliff, R.; Moyzis, R.; Rich, A.

    1995-01-01

    In most metazoans, the telomeric cytosine-rich strand repeating sequence is d(TAACCC). The crystal structure of this sequence was solved to 1.9-A resolution. Four strands associate via the cytosine-containing parts to form a four-stranded intercalated structure held together by C.C+ hydrogen bonds. The base-paired strands are parallel to each other, and the two duplexes are intercalated into each other in opposite orientations. One TAA end forms a highly stabilized loop with the 5' thymine Hoogsteen-base-paired to the third adenine. The 5' end of this loop is in close proximity to the 3' end of one of the other intercalated cytosine strands. Instead of being entirely in a DNA duplex, this structure suggests the possibility of an alternative conformation for the cytosine-rich telomere strands.

  6. In silico identification and analysis of new Artemis/Artemis-like sequences from fungal and metazoan species.

    PubMed

    Bonatto, Diego; Brendel, Martin; Henriques, João Antonio Pêgas

    2005-08-01

    The Artemis Group comprises mammalian proteins with important functions in the repair of ionizing radiation-induced DNA double-strand breaks and in the cleavage of DNA hairpin extremities generated during V(D)J recombination. Little is known about the presence of Artemis/Artemis-like proteins in non-mammalian species. We have characterized new Artemis/Artemis-like sequences from the genomes of some fungi and from non-mammalian metazoan species. An in-depth phylogenetic analysis of these new Artemis/Artemis-like sequences showed that they form a distinct clade within the Pso2p/Snm1p A and B Groups. Hydrophobic cluster analysis and three-dimensional modeling allowed to map and to compare conserved regions in these Artemis/Artemis-like proteins. The results indicate that Artemis probably belongs to an ancient DNA recombination mechanism that diversified with the evolution of multi-cellular eukaryotic lineage.

  7. Metastatic giant basal cell carcinoma: a case report

    PubMed Central

    Bellahammou, Khadija; Lakhdissi, Asmaa; Akkar, Othman; Rais, Fadoua; Naoual, Benhmidou; Elghissassi, Ibrahim; M’rabti, Hind; Errihani, Hassan

    2016-01-01

    Basal cell carcinoma is the most common skin cancer, characterised by a slow growing behavior, metastasis are extremely rare, and it occurs in less than 0, 1% of all cases. Giant basal cell carcinoma is a rare form of basal cell carcinoma, more aggressive and defined as a tumor measuring more than 5 cm at its largest diameter. Only 1% of all basal cell carcinoma develops to a giant basal cell carcinoma, resulting of patient's negligence. Giant basal cell carcinoma is associated with higher potential of metastasis and even death, compared to ordinary basal cell carcinoma. We report a case of giant basal cell carcinoma metastaticin lung occurring in a 79 years old male patient, with a fatal evolution after one course of systemic chemotherapy. Giant basal cell carcinoma is a very rare entity, early detection of these tumors could prevent metastasis occurrence and improve the prognosis of this malignancy. PMID:27795755

  8. Metastatic giant basal cell carcinoma: a case report.

    PubMed

    Bellahammou, Khadija; Lakhdissi, Asmaa; Akkar, Othman; Rais, Fadoua; Naoual, Benhmidou; Elghissassi, Ibrahim; M'rabti, Hind; Errihani, Hassan

    2016-01-01

    Basal cell carcinoma is the most common skin cancer, characterised by a slow growing behavior, metastasis are extremely rare, and it occurs in less than 0, 1% of all cases. Giant basal cell carcinoma is a rare form of basal cell carcinoma, more aggressive and defined as a tumor measuring more than 5 cm at its largest diameter. Only 1% of all basal cell carcinoma develops to a giant basal cell carcinoma, resulting of patient's negligence. Giant basal cell carcinoma is associated with higher potential of metastasis and even death, compared to ordinary basal cell carcinoma. We report a case of giant basal cell carcinoma metastaticin lung occurring in a 79 years old male patient, with a fatal evolution after one course of systemic chemotherapy. Giant basal cell carcinoma is a very rare entity, early detection of these tumors could prevent metastasis occurrence and improve the prognosis of this malignancy.

  9. Functional anatomy of thalamus and basal ganglia.

    PubMed

    Herrero, María-Trinidad; Barcia, Carlos; Navarro, Juana Mari

    2002-08-01

    THALAMUS: The human thalamus is a nuclear complex located in the diencephalon and comprising of four parts (the hypothalamus, the epythalamus, the ventral thalamus, and the dorsal thalamus). The thalamus is a relay centre subserving both sensory and motor mechanisms. Thalamic nuclei (50-60 nuclei) project to one or a few well-defined cortical areas. Multiple cortical areas receive afferents from a single thalamic nucleus and send back information to different thalamic nuclei. The corticofugal projection provides positive feedback to the "correct" input, while at the same time suppressing irrelevant information. Topographical organisation of the thalamic afferents and efferents is contralateral, and the lateralisation of the thalamic functions affects both sensory and motoric aspects. Symptoms of lesions located in the thalamus are closely related to the function of the areas involved. An infarction or haemorrhage thalamic lesion can develop somatosensory disturbances and/or central pain in the opposite hemibody, analgesic or purely algesic thalamic syndrome characterised by contralateral anaesthesia (or hypaesthesia), contralateral weakness, ataxia and, often, persistent spontaneous pain. BASAL GANGLIA: Basal ganglia form a major centre in the complex extrapyramidal motor system, as opposed to the pyramidal motor system (corticobulbar and corticospinal pathways). Basal ganglia are involved in many neuronal pathways having emotional, motivational, associative and cognitive functions as well. The striatum (caudate nucleus, putamen and nucleus accumbens) receive inputs from all cortical areas and, throughout the thalamus, project principally to frontal lobe areas (prefrontal, premotor and supplementary motor areas) which are concerned with motor planning. These circuits: (i) have an important regulatory influence on cortex, providing information for both automatic and voluntary motor responses to the pyramidal system; (ii) play a role in predicting future events

  10. Stem cell-specific activation of an ancestral myc protooncogene with conserved basic functions in the early metazoan Hydra.

    PubMed

    Hartl, Markus; Mitterstiller, Anna-Maria; Valovka, Taras; Breuker, Kathrin; Hobmayer, Bert; Bister, Klaus

    2010-03-02

    The c-myc protooncogene encodes a transcription factor (Myc) with oncogenic potential. Myc and its dimerization partner Max are bHLH-Zip DNA binding proteins controlling fundamental cellular processes. Deregulation of c-myc leads to tumorigenesis and is a hallmark of many human cancers. We have identified and extensively characterized ancestral forms of myc and max genes from the early diploblastic cnidarian Hydra, the most primitive metazoan organism employed so far for the structural, functional, and evolutionary analysis of these genes. Hydra myc is specifically activated in all stem cells and nematoblast nests which represent the rapidly proliferating cell types of the interstitial stem cell system and in proliferating gland cells. In terminally differentiated nerve cells, nematocytes, or epithelial cells, myc expression is not detectable by in situ hybridization. Hydra max exhibits a similar expression pattern in interstitial cell clusters. The ancestral Hydra Myc and Max proteins display the principal design of their vertebrate derivatives, with the highest degree of sequence identities confined to the bHLH-Zip domains. Furthermore, the 314-amino acid Hydra Myc protein contains basic forms of the essential Myc boxes I through III. A recombinant Hydra Myc/Max complex binds to the consensus DNA sequence CACGTG with high affinity. Hybrid proteins composed of segments from the retroviral v-Myc oncoprotein and the Hydra Myc protein display oncogenic potential in cell transformation assays. Our results suggest that the principal functions of the Myc master regulator arose very early in metazoan evolution, allowing their dissection in a simple model organism showing regenerative ability but no senescence.

  11. Stem cell-specific activation of an ancestral myc protooncogene with conserved basic functions in the early metazoan Hydra

    PubMed Central

    Hartl, Markus; Mitterstiller, Anna-Maria; Valovka, Taras; Breuker, Kathrin; Hobmayer, Bert; Bister, Klaus

    2010-01-01

    The c-myc protooncogene encodes a transcription factor (Myc) with oncogenic potential. Myc and its dimerization partner Max are bHLH-Zip DNA binding proteins controlling fundamental cellular processes. Deregulation of c-myc leads to tumorigenesis and is a hallmark of many human cancers. We have identified and extensively characterized ancestral forms of myc and max genes from the early diploblastic cnidarian Hydra, the most primitive metazoan organism employed so far for the structural, functional, and evolutionary analysis of these genes. Hydra myc is specifically activated in all stem cells and nematoblast nests which represent the rapidly proliferating cell types of the interstitial stem cell system and in proliferating gland cells. In terminally differentiated nerve cells, nematocytes, or epithelial cells, myc expression is not detectable by in situ hybridization. Hydra max exhibits a similar expression pattern in interstitial cell clusters. The ancestral Hydra Myc and Max proteins display the principal design of their vertebrate derivatives, with the highest degree of sequence identities confined to the bHLH-Zip domains. Furthermore, the 314-amino acid Hydra Myc protein contains basic forms of the essential Myc boxes I through III. A recombinant Hydra Myc/Max complex binds to the consensus DNA sequence CACGTG with high affinity. Hybrid proteins composed of segments from the retroviral v-Myc oncoprotein and the Hydra Myc protein display oncogenic potential in cell transformation assays. Our results suggest that the principal functions of the Myc master regulator arose very early in metazoan evolution, allowing their dissection in a simple model organism showing regenerative ability but no senescence. PMID:20142507

  12. Shared Gene Structures and Clusters of Mutually Exclusive Spliced Exons within the Metazoan Muscle Myosin Heavy Chain Genes

    PubMed Central

    Kollmar, Martin; Hatje, Klas

    2014-01-01

    Multicellular animals possess two to three different types of muscle tissues. Striated muscles have considerable ultrastructural similarity and contain a core set of proteins including the muscle myosin heavy chain (Mhc) protein. The ATPase activity of this myosin motor protein largely dictates muscle performance at the molecular level. Two different solutions to adjusting myosin properties to different muscle subtypes have been identified so far: Vertebrates and nematodes contain many independent differentially expressed Mhc genes while arthropods have single Mhc genes with clusters of mutually exclusive spliced exons (MXEs). The availability of hundreds of metazoan genomes now allowed us to study whether the ancient bilateria already contained MXEs, how MXE complexity subsequently evolved, and whether additional scenarios to control contractile properties in different muscles could be proposed, By reconstructing the Mhc genes from 116 metazoans we showed that all intron positions within the motor domain coding regions are conserved in all bilateria analysed. The last common ancestor of the bilateria already contained a cluster of MXEs coding for part of the loop-2 actin-binding sequence. Subsequently the protostomes and later the arthropods gained many further clusters while MXEs got completely lost independently in several branches (vertebrates and nematodes) and species (for example the annelid Helobdella robusta and the salmon louse Lepeophtheirus salmonis). Several bilateria have been found to encode multiple Mhc genes that might all or in part contain clusters of MXEs. Notable examples are a cluster of six tandemly arrayed Mhc genes, of which two contain MXEs, in the owl limpet Lottia gigantea and four Mhc genes with three encoding MXEs in the predatory mite Metaseiulus occidentalis. Our analysis showed that similar solutions to provide different myosin isoforms (multiple genes or clusters of MXEs or both) have independently been developed several times

  13. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features

    PubMed Central

    Cayrou, Christelle; Coulombe, Philippe; Vigneron, Alice; Stanojcic, Slavica; Ganier, Olivier; Peiffer, Isabelle; Rivals, Eric; Puy, Aurore; Laurent-Chabalier, Sabine; Desprat, Romain; Méchali, Marcel

    2011-01-01

    In metazoans, thousands of DNA replication origins (Oris) are activated at each cell cycle. Their genomic organization and their genetic nature remain elusive. Here, we characterized Oris by nascent strand (NS) purification and a genome-wide analysis in Drosophila and mouse cells. We show that in both species most CpG islands (CGI) contain Oris, although methylation is nearly absent in Drosophila, indicating that this epigenetic mark is not crucial for defining the activated origin. Initiation of DNA synthesis starts at the borders of CGI, resulting in a striking bimodal distribution of NS, suggestive of a dual initiation event. Oris contain a unique nucleotide skew around NS peaks, characterized by G/T and C/A overrepresentation at the 5′ and 3′ of Ori sites, respectively. Repeated GC-rich elements were detected, which are good predictors of Oris, suggesting that common sequence features are part of metazoan Oris. In the heterochromatic chromosome 4 of Drosophila, Oris correlated with HP1 binding sites. At the chromosome level, regions rich in Oris are early replicating, whereas Ori-poor regions are late replicating. The genome-wide analysis was coupled with a DNA combing analysis to unravel the organization of Oris. The results indicate that Oris are in a large excess, but their activation does not occur at random. They are organized in groups of site-specific but flexible origins that define replicons, where a single origin is activated in each replicon. This organization provides both site specificity and Ori firing flexibility in each replicon, allowing possible adaptation to environmental cues and cell fates. PMID:21750104

  14. Learning Reward Uncertainty in the Basal Ganglia

    PubMed Central

    Bogacz, Rafal

    2016-01-01

    Learning the reliability of different sources of rewards is critical for making optimal choices. However, despite the existence of detailed theory describing how the expected reward is learned in the basal ganglia, it is not known how reward uncertainty is estimated in these circuits. This paper presents a class of models that encode both the mean reward and the spread of the rewards, the former in the difference between the synaptic weights of D1 and D2 neurons, and the latter in their sum. In the models, the tendency to seek (or avoid) options with variable reward can be controlled by increasing (or decreasing) the tonic level of dopamine. The models are consistent with the physiology of and synaptic plasticity in the basal ganglia, they explain the effects of dopaminergic manipulations on choices involving risks, and they make multiple experimental predictions. PMID:27589489

  15. Neurochemical oscillations in the basal ganglia.

    PubMed

    Noori, Hamid Reza; Jäger, Willi

    2010-01-01

    This work represents an attempt to elucidate the neurochemical processes in the basal ganglia by mathematical modelling. The correlation between neurochemistry and electrophysiology has been used to construct a dynamical system based on the basal ganglia's network structure. Mathematical models were constructed for different physical scales to reformulate the neurochemical and electrophysiological behaviour from synapses up to multi-compartment systems. Transformation functions have been developed to transit between the different scales. We show through numerical simulations that this network produces oscillations in the electrical potentials as well as in neurotransmitter concentrations. In agreement with pharmacological experiments, a parameter sensitivity analysis reveals temporary changes in the neurochemical and electrophysiological systems after single exposure to antipsychotic drugs. This behaviour states the structural stability of the system. The correlation between the neurochemical dynamics and drug-induced behaviour provides the perspective for novel neurobiological hypotheses.

  16. Dermoscopic criteria and basal cell carcinoma.

    PubMed

    Del Busto-Wilhelm, Isabel; Malvehy, Josep; Puig, Susana

    2016-12-01

    Basal cell carcinoma (BCC) is nowadays the most frequent skin cancer in the fair-skinned population. Clinical suspicion for BCC diagnosis can be easy in advance cases, but it sometimes sets a real challenge wherein dermoscopy has proven to be a useful tool. Dermoscopy is a non-invasive diagnostic technique that improves the clinical diagnosis of pigmented and non-pigmented BCC representing a link between macroscopic clinical dermatology and microscopic dermatopathology. The dermoscopy of basal cell carcinoma is currently very well-known, as well as the clinical and histopathological features of BCC subtypes. Recently some flowcharts and algorithms for the most common subtypes of BCC have been proposed. We review the latest literature on the topic to describe the most frequent dermoscopy patterns for each subtype.

  17. [Molecular mechanism of idiopathic basal ganglia calcification].

    PubMed

    Wang, Cheng; Xu, Xuan; Li, Lulu; Wang, Tao; Zhang, Min; Shen, Lu; Tang, Beisha; Liu, Jingyu

    2015-08-01

    Idiopathic basal ganglia calcification (IBGC), also known as Fahr’s disease, is an inheritable neurodegenerative syndrome characterized by mineral deposits in the basal ganglia and other brain regions. Patients with IBGC are often accompanied with movement disorders, cognitive impairment as well as psychiatric abnormalities. So far, no therapeutic drug has been developed for the treatment of IBGC. Recently, genetic studies have identified several genes associated with IBGC, including SLC20A2, PDGFRB, PDGFB, ISG15 and XPR1. Loss-of-function mutations in these genes have been associated with disturbance in phosphate homeostasis in brain regions, the dysfunction of blood-brain barrier as well as enhanced IFN-α/β immunity. In this review, we summarize the latest research progress in the studies on molecular genetics of IBGC, and discuss the molecular mechanisms underlying the pathophysiology of mutations of different genes.

  18. Basal hydraulic conditions of Ice Stream B

    NASA Technical Reports Server (NTRS)

    Engelhardt, Hermann; Kamb, Barclay

    1993-01-01

    Fifteen boreholes have been drilled to the base of Ice Stream B in the vicinity of UpB Camp. The boreholes are spread over an area of about 500 x 1000 m. Several till cores were retrieved from the bottom of the 1000-m-deep holes. Laboratory tests using a simple shear box revealed a yield strength of basal till of 2 kPa. This agrees well with in-situ measurements using a shear vane. Since the average basal shear stress of Ice Stream B with a surface slope of 0.1 degree is about 20 kPa, the ice stream cannot be supported by till that weak. Additional support for this conclusion comes from the basal water pressure that has been measured in all boreholes as soon as the hot water drill reached bottom. In several boreholes, the water pressure has been continuously monitored; in two of them, over several years. The water pressure varies but stays within 1 bar of flotation where ice overburden pressure and water pressure are equal. The ratio of water and overburden pressure lies between 0.986 and 1.002. This is an extremely high value as compared to other fast-moving ice masses; e.g., Variegated Glacier in surge has a ratio of 0.8, and Columbia Glacier - a fast-moving tidewater glacier - has a ratio of 0.9. It implies that water flow under the glacier occurs in a thin film and not in conduits that would drain away water too rapidly. It also implies that basal sliding must be very effective. Water flow under the glacier was measured in a salt-injection experiment where a salt pulse was released at the bottom of a borehole while 60 m down-glacier, the electrical resistance was measured between two other boreholes. A flow velocity of 7 mm/s was obtained.

  19. RFamide peptides in agnathans and basal chordates.

    PubMed

    Osugi, Tomohiro; Son, You Lee; Ubuka, Takayoshi; Satake, Honoo; Tsutsui, Kazuyoshi

    2016-02-01

    Since a peptide with a C-terminal Arg-Phe-NH2 (RFamide peptide) was first identified in the ganglia of the venus clam in 1977, RFamide peptides have been found in the nervous system of both invertebrates and vertebrates. In vertebrates, the RFamide peptide family includes gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa), and kisspeptins (kiss1 and kiss2). They are involved in important functions such as the release of hormones, regulation of sexual or social behavior, pain transmission, reproduction, and feeding. In contrast to tetrapods and jawed fish, the information available on RFamide peptides in agnathans and basal chordates is limited, thus preventing further insights into the evolution of RFamide peptides in vertebrates. In this review, we focus on the previous research and recent advances in the studies on RFamide peptides in agnathans and basal chordates. In agnathans, the genes encoding GnIH, NPFF, and PrRP precursors and the mature peptides have been identified in lamprey (Petromyzon marinus) and hagfish (Paramyxine atami). Putative kiss1 and kiss2 genes have also been found in the genome database of lamprey. In basal chordates, namely, in amphioxus (Branchiostoma japonicum), a common ancestral form of GnIH and NPFF genes and their mature peptides, as well as the ortholog of the QRFP gene have been identified. The studies revealed that the number of orthologs of vertebrate RFamide peptides present in agnathans and basal chordates is greater than expected, suggesting that the vertebrate RFamide peptides might have emerged and expanded at an early stage of chordate evolution. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Insulin pumps: Beyond basal-bolus.

    PubMed

    Millstein, Richard; Becerra, Nancy Mora; Shubrook, Jay H

    2015-12-01

    Insulin pumps are a major advance in diabetes management, making insulin dosing easier and more accurate and providing great flexibility, safety, and efficacy for people who need basal-bolus insulin therapy. They are the preferred treatment for people with type 1 diabetes and many with type 2 diabetes who require insulin. This article reviews the basics of how insulin pumps work, who benefits from a pump, and how to manage inpatients and outpatients on insulin pumps.

  1. Ethanol induces cytostasis of cortical basal progenitors.

    PubMed

    Riar, Amanjot Kaur; Narasimhan, Madhusudhanan; Rathinam, Mary Latha; Henderson, George I; Mahimainathan, Lenin

    2016-01-19

    Developing brain is a major target for alcohol's actions and neurological/functional abnormalities include microencephaly, reduced frontal cortex, mental retardation and attention-deficits. Previous studies have shown that ethanol altered the lateral ventricular neuroepithelial cell proliferation. However, the effect of ethanol on subventricular basal progenitors which generate majority of the cortical layers is not known. We utilized spontaneously immortalized rat brain neuroblasts obtained from cultures of 18-day-old fetal rat cerebral cortices using in vitro ethanol exposures and an in utero binge model. In the in vitro acute model, cells were exposed to 86 mM ethanol for 8, 12 and 24 h. The second in vitro model comprised of chronic intermittent ethanol (CIE) exposure which consisted of 14 h of ethanol treatment followed by 10 h of withdrawal with three repetitions. E18 neuroblasts expressing Tbr2 representing immature basal progenitors displayed significant reduction of proliferation in response to ethanol in both the models. The decreased proliferation was accompanied by absence of apoptosis or autophagy as illustrated by FACS analysis and expression of apoptotic and autophagic markers. The BrdU incorporation assay indicated that ethanol enhanced the accumulation of cells at G1 with reduced cell number in S phase. In addition, the ethanol-inhibited basal neuroblasts proliferation was connected to decrease in cyclin D1 and Rb phosphorylation indicating cell cycle arrest. Further, in utero ethanol exposure in pregnant rats during E15-E18 significantly decreased Tbr2 and cyclin D1 positive cell number in cerebral cortex of embryos as assessed by cell sorting analysis by flow cytometry. Altogether, the current findings demonstrate that ethanol impacts the expansion of basal progenitors by inducing cytostasis that might explain the anomalies of cortico-cerebral development associated with fetal alcohol syndrome.

  2. Women pioneers in basal ganglia surgery.

    PubMed

    Hariz, Gun-Marie; Rehncrona, Stig; Blomstedt, Patric; Limousin, Patricia; Hamberg, Katarina; Hariz, Marwan

    2014-02-01

    Stereotactic functional neurosurgery on basal ganglia has a long history and the pioneers are mostly men. We aimed at finding out if there were women who have contributed pioneering work in this field. The literature was searched to identify women who have been first to publish innovative papers related to human basal ganglia surgery. Six women fulfilling our criteria were found: Marion Smith, a British neuropathologist, made unique observations on stereotactic lesions of basal ganglia and thalamus on autopsied brains, and the lesions' relation to the reported clinical outcome. Natalia Bechtereva, a Russian neurophysiologist, pioneered the technique of therapeutic chronic deep brain stimulation to treat various brain disorders, including Parkinson's disease (PD). Denise Albe-Fessard, a French neurophysiologist, pioneered the technique of microelectrode recording (MER) in stereotactic functional neurosurgery. Gunvor Kullberg, a Swedish neurosurgeon, contributed in early CT imaging as well as early functional imaging of stereotactic lesions in PD and psychiatric patients. Hilda Molina, a Cuban neurosurgeon, established the Centro Internacional de Restauración Neurológica (CIREN) and pioneered there MER-guided transplant surgery in PD patients. Veerle Vandewalle, a Belgian neurosurgeon, pioneered in 1999 deep brain stimulation (DBS) for Tourette Syndrome. Although men constitute the great majority of neurosurgeons, neurologists and other neuro-specialists who have made groundbreaking contributions in basal ganglia surgery, there are women who have made equally important and unique contributions to the field. The principal two techniques used today in functional stereotactic neurosurgery, MER and DBS, have once upon a time been pioneered by women. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Basal hydraulic conditions of Ice Stream B

    NASA Technical Reports Server (NTRS)

    Engelhardt, Hermann; Kamb, Barclay

    1993-01-01

    Fifteen boreholes have been drilled to the base of Ice Stream B in the vicinity of UpB Camp. The boreholes are spread over an area of about 500 x 1000 m. Several till cores were retrieved from the bottom of the 1000-m-deep holes. Laboratory tests using a simple shear box revealed a yield strength of basal till of 2 kPa. This agrees well with in-situ measurements using a shear vane. Since the average basal shear stress of Ice Stream B with a surface slope of 0.1 degree is about 20 kPa, the ice stream cannot be supported by till that weak. Additional support for this conclusion comes from the basal water pressure that has been measured in all boreholes as soon as the hot water drill reached bottom. In several boreholes, the water pressure has been continuously monitored; in two of them, over several years. The water pressure varies but stays within 1 bar of flotation where ice overburden pressure and water pressure are equal. The ratio of water and overburden pressure lies between 0.986 and 1.002. This is an extremely high value as compared to other fast-moving ice masses; e.g., Variegated Glacier in surge has a ratio of 0.8, and Columbia Glacier - a fast-moving tidewater glacier - has a ratio of 0.9. It implies that water flow under the glacier occurs in a thin film and not in conduits that would drain away water too rapidly. It also implies that basal sliding must be very effective. Water flow under the glacier was measured in a salt-injection experiment where a salt pulse was released at the bottom of a borehole while 60 m down-glacier, the electrical resistance was measured between two other boreholes. A flow velocity of 7 mm/s was obtained.

  4. A Basal Stem Canker of Sugar Maple

    Treesearch

    Kenneth J. Jr. Kessler

    1969-01-01

    A basal stem canker of sugar maple is common on trees in lightly stocked stands and on trees on the north side of roads and other clearings in the Lake States. The cankers are usually elongate, usually encompass about one-fourth of the stem circumference, and face the south. Most cankers originate following logging of old-growth stands on stems that had been present...

  5. Oscillators and Oscillations in the Basal Ganglia

    PubMed Central

    Wilson, Charles J.

    2015-01-01

    What is the meaning of an action potential? There must be different answers for neurons that oscillate spontaneously, firing action potentials even in the absence of any synaptic input, and those driven to fire from a resting membrane potential. In spontaneously firing neurons, the occurrence of the next action potential is guaranteed. Only variations in its timing can carry the message. Among cells of this type are all those making up the deeper nuclei of the basal ganglia, including both segments of the globus pallidus, the substantia nigra, and the subthalamic nucleus. These cells receive thousands of excitatory and inhibitory synaptic inputs, but no input is required to maintain the firing of the cells; they fire at approximately the same rate when the synapses are silenced. Instead, synaptic inputs produce brief changes in spike timing and firing rate. The interactions among oscillating cells within and among the basal ganglia nuclei produce a complex resting pattern of activity. Normally, this pattern is highly irregular and decorrelates the network, so that the firing of each cell is statistically independent of the others. This maximizes the potential information that may be transmitted by the basal ganglia to its target structures. In Parkinson’s disease, the resting pattern of activity is dominated by a slow oscillation shared by all the neurons. Treatment with deep brain stimulation may gain its therapeutic value by disrupting this shared pathological oscillation, and restoring independent action by each neuron in the network. PMID:25449134

  6. BRCA1 dysfunction in sporadic basal-like breast cancer.

    PubMed

    Turner, N C; Reis-Filho, J S; Russell, A M; Springall, R J; Ryder, K; Steele, D; Savage, K; Gillett, C E; Schmitt, F C; Ashworth, A; Tutt, A N

    2007-03-29

    Basal-like breast cancers form a distinct subtype of breast cancer characterized by the expression of markers expressed in normal basal/myoepithelial cells. Breast cancers arising in carriers of germline BRCA1 mutations are predominately of basal-like type, suggesting that BRCA1 dysfunction may play a role in the pathogenesis of sporadic basal-like cancers. We analysed 37 sporadic breast cancers expressing the basal marker cytokeratin 5/6, and age- and grade-matched controls, for downregulation of BRCA1. Although BRCA1 promoter methylation was no more common in basal-like cancers (basal 14% vs controls 11%, P=0.72), BRCA1 messenger RNA expression was twofold lower in basal-like breast cancers compared to matched controls (P=0.008). ID4, a negative regulator of BRCA1, was expressed at 9.1-fold higher levels in basal-like breast cancer (P<0.0001), suggesting a potential mechanism of BRCA1 downregulation. BRCA1 downregulation correlated with the presence of multiple basal markers, revealing heterogeneity in the basal-like phenotype. Finally, we found that 63% of metaplastic breast cancers, a rare type of basal-like cancers, had BRCA1 methylation, in comparison to 12% of controls (P<0.0001). The high prevalence of BRCA1 dysfunction identified in this study could be exploited in the development of novel approaches to targeted treatment of basal-like breast cancer.

  7. Basal cell nevus syndrome - close-up of palm (image)

    MedlinePlus

    ... skeletal abnormalities. Skin manifestations include pits in the palms and soles, and numerous basal cell carcinomas. This ... close-up of the pits found in the palm of an individual with basal cell nevus syndrome.

  8. Basal ganglia infarction demonstrated by radionuclide brain imaging

    SciTech Connect

    Kim, E.E.; Schacht, R.A.; Domstad, P.A.; DeLand, F.H.

    1982-11-01

    Four cases of basal ganglia infarction demonstrated by radionuclide brain imaging are presented. Bilateral basal ganglia infarctions in two patients were probably related to methanol intoxication and meningoencephalitis, and unilateral basal ganglia infarctions in two other patients were presumably due to cerebral atherosclerosis and/or hypertension. Various causes and mechanisms of basal ganglia infarction as well as positive findings of radionuclide brain imaging are briefly reviewed.

  9. Traumatic bilateral basal ganglia hematoma: A report of two cases

    PubMed Central

    Bhargava, Pranshu; Grewal, Sarvpreet Singh; Gupta, Bharat; Jain, Vikas; Sobti, Harman

    2012-01-01

    Traumatic Basal ganglia hemorrhage is relatively uncommon. Bilateral basal ganglia hematoma after trauma is extremely rare and is limited to case reports. We report two cases of traumatic bilateral basal ganglia hemorrhage, and review the literature in brief. Both cases were managed conservatively. PMID:23293672

  10. Dopamine release in the basal ganglia

    PubMed Central

    Rice, Margaret E.; Patel, Jyoti C.; Cragg, Stephanie J.

    2011-01-01

    Dopamine (DA) is a key transmitter in the basal ganglia, yet DA transmission does not conform to several aspects of the classic synaptic doctrine. Axonal DA release occurs through vesicular exocytosis and is action-potential and Ca2+ dependent. However, in addition to axonal release, DA neurons in midbrain exhibit somatodendritic release, by an incompletely understood, but apparently exocytotic mechanism. Even in striatum, axonal release sites are controversial, with evidence for DA varicosities that lack postsynaptic specialization, and largely extrasynaptic DA receptors and transporters. Moreover, DA release is often assumed to reflect a global response to a population of activities in midbrain DA neurons, whether tonic or phasic, with precise timing and specificity of action governed by other basal ganglia circuits. This view has been reinforced by anatomical evidence showing dense axonal DA arbors throughout striatum, and a lattice network formed by DA axons and glutamatergic input from cortex and thalamus. Nonetheless, localized DA transients are seen in vivo using voltammetric methods with high spatial and temporal resolution. Mechanistic studies using similar methods in vitro have revealed local regulation of DA release by other transmitters and modulators, as well as by proteins known to be disrupted in Parkinson’s disease and other movement disorders. Notably, the actions of most other striatal transmitters on DA release also do not conform to the synaptic doctrine, with the absence of direct synaptic contacts for glutamate, GABA and aceylcholie (ACh) on striatal DA axons. Overall, the findings reviewed here indicate that DA signaling in the basal ganglia is sculpted by cooperation between the timing and pattern of DA input and those of local regulatory factors. PMID:21939738

  11. [Descriptive study on basal cell eyelid carcinoma].

    PubMed

    Pfeiffer, M J; Pfeiffer, N; Valor, C

    2015-09-01

    To describe a series of cases of basal cell carcinomas of the eyelid. A descriptive and retrospective study was conducted by reviewing the medical outcome, histopathological history, and photographic images of 200 patients with basal cell eyelid carcinomas. All were treated in the Herzog Carl Theodor Eye Hospital in Munich, Germany, between 2000 and 2013. In the present study, it was found that females are more affected than males. The mean age of presentation of the tumor occurred at the age of 70 years. In 50% of the cases the tumor was found on the lower lid, especially medially from the center of the lid. The lid margin was involved in 47% of all tumors. The mean diameter was 9.2mm. The recurrence rate after surgery with histologically clear resection margins was 5%. There was a significant relationship between tumor diameter and age. As tumors where located farther away from medial and closer to the lid margin, they became larger. There is a predominance of women affected by this tumor. This may be related to the fact that the sample was taken from those attending an oculoplastic surgery clinic, where there are generally more women than men attending. The formation of basal cell carcinomas increases with age. The infrequent involvement of the upper lid could be explained by the protection of the the eyebrow. The frequent involvement of the lower lid may be due to the light reflection (total reflection) by the cornea on the lower lid margin. Also chemical and physical effects of the tears may be more harmful on the lower lid. Patients tend to ask for medical help when they are females, younger, when the tumor is closer to the medial canthus or when the tumor is away from the lid margin. Copyright © 2014 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  12. The Basal Ganglia and Adaptive Motor Control

    NASA Astrophysics Data System (ADS)

    Graybiel, Ann M.; Aosaki, Toshihiko; Flaherty, Alice W.; Kimura, Minoru

    1994-09-01

    The basal ganglia are neural structures within the motor and cognitive control circuits in the mammalian forebrain and are interconnected with the neocortex by multiple loops. Dysfunction in these parallel loops caused by damage to the striatum results in major defects in voluntary movement, exemplified in Parkinson's disease and Huntington's disease. These parallel loops have a distributed modular architecture resembling local expert architectures of computational learning models. During sensorimotor learning, such distributed networks may be coordinated by widely spaced striatal interneurons that acquire response properties on the basis of experienced reward.

  13. Mössbauer spectroscopy of Basal Ganglia

    NASA Astrophysics Data System (ADS)

    Miglierini, Marcel; Lančok, Adriana; Kopáni, Martin; Boča, Roman

    2014-10-01

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. 57Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 μm in size) of iron oxides, they are not manifested in the corresponding 57Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior.

  14. Fractionation of a Basal Magma Ocean

    NASA Astrophysics Data System (ADS)

    Laneuville, M.; Hernlund, J. W.; Labrosse, S.

    2014-12-01

    Earth's magnetic field is thought to be sustained by dynamo action in a convecting metallic outer core since at least 3.45 Ga (Tarduno et al., 2010). Convection induces an isentropic temperature gradient that drains 13±3 TW of heat from the core by thermal conduction (de Koker et al., 2012; Pozzo et al., 2012; Gomi et al., 2013), and suggests that Earth's core has cooled by ˜1,000 K or more since Earth's formation (Gomi et al., 2013). However, models of Earth's initial thermal evolution following a giant-impact predict rapid cooling to the mantle melting temperature (e.g., Solomatov, 2007). In order to understand how the core could have retained enough heat to explain the age of the geodynamo, we relax a key assumption of the basal magma ocean model of (Labrosse et al., 2007) to allow for the possibility that the magma is stably stratified. Recent giant impact simulations suggest extensive core-mantle mixing (Saitoh and Makino, 2013), which could have produced such a large stratified magma layer at the core-mantle boundary. In the presence of a stable density gradient, heat transfer through the basal magma ocean occurs through conduction and therefore delays heat loss from the core. Partitioning of iron in the liquid phase upon crystallization changes the density profile and triggers convection in the upper part of the basal magma ocean. Our hypothesis suggests that early core cooling is dominated by the diffusion timescale through the basal magma ocean, and predicts a delayed onset of the geodynamo (i.e, during the late Headean/early Archean). This model can therefore be falsified if the existence of a geomagnetic field can be inferred from magnetization of inclusions in Hadean zircons. N. de Koker et al., Proc. Natl. Acad. Sci. 190, 4070-4073 (2012).H. Gomi et al., Phys. Earth Planet. Inter. 224, 88-103 (2013).S. Labrosse et al., Nature 450, 866-869 (2007).M. Pozzo et al., Nature 485, 355-358 (2012).T. Saitoh and J. Makino. Astrophys. J. 768, 44 (2013).V

  15. Mössbauer spectroscopy of Basal Ganglia

    SciTech Connect

    Miglierini, Marcel; Lančok, Adriana; Kopáni, Martin; Boča, Roman

    2014-10-27

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. {sup 57}Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 μm in size) of iron oxides, they are not manifested in the corresponding {sup 57}Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior.

  16. Advanced treatment for basal cell carcinomas.

    PubMed

    Atwood, Scott X; Whitson, Ramon J; Oro, Anthony E

    2014-07-01

    Basal cell carcinomas (BCCs) are very common epithelial cancers that depend on the Hedgehog pathway for tumor growth. Traditional therapies such as surgical excision are effective for most patients with sporadic BCC; however, better treatment options are needed for cosmetically sensitive or advanced and metastatic BCC. The first approved Hedgehog antagonist targeting the membrane receptor Smoothened, vismodegib, shows remarkable effectiveness on both syndromic and nonsyndromic BCCs. However, drug-resistant tumors frequently develop, illustrating the need for the development of next-generation Hedgehog antagonists targeting pathway components downstream from Smoothened. In this article, we will summarize available BCC treatment options and discuss the development of next-generation antagonists.

  17. Advanced Treatment for Basal Cell Carcinomas

    PubMed Central

    Atwood, Scott X.; Whitson, Ramon J.; Oro, Anthony E.

    2014-01-01

    Basal cell carcinomas (BCCs) are very common epithelial cancers that depend on the Hedgehog pathway for tumor growth. Traditional therapies such as surgical excision are effective for most patients with sporadic BCC; however, better treatment options are needed for cosmetically sensitive or advanced and metastatic BCC. The first approved Hedgehog antagonist targeting the membrane receptor Smoothened, vismodegib, shows remarkable effectiveness on both syndromic and nonsyndromic BCCs. However, drug-resistant tumors frequently develop, illustrating the need for the development of next-generation Hedgehog antagonists targeting pathway components downstream from Smoothened. In this article, we will summarize available BCC treatment options and discuss the development of next-generation antagonists. PMID:24985127

  18. Reassessing Domain Architecture Evolution of Metazoan Proteins: Major Impact of Errors Caused by Confusing Paralogs and Epaktologs

    PubMed Central

    Nagy, Alinda; Bányai, László; Patthy, László

    2011-01-01

    In the accompanying paper (Nagy, Szláma, Szarka, Trexler, Bányai, Patthy, Reassessing Domain Architecture Evolution of Metazoan Proteins: Major Impact of Gene Prediction Errors) we showed that in the case of UniProtKB/TrEMBL, RefSeq, EnsEMBL and NCBI's GNOMON predicted protein sequences of Metazoan species the contribution of erroneous (incomplete, abnormal, mispredicted) sequences to domain architecture (DA) differences of orthologous proteins might be greater than those of true gene rearrangements. Based on these findings, we suggest that earlier genome-scale studies based on comparison of predicted (frequently mispredicted) protein sequences may have led to some erroneous conclusions about the evolution of novel domain architectures of multidomain proteins. In this manuscript we examine the impact of confusing paralogous and epaktologous multidomain proteins (i.e., those that are related only through the independent acquisition of the same domain types) on conclusions drawn about DA evolution of multidomain proteins in Metazoa. To estimate the contribution of this type of error we have used as reference UniProtKB/Swiss-Prot sequences from protein families with well-characterized evolutionary histories. We have used two types of paralogy-group construction procedures and monitored the impact of various parameters on the separation of true paralogs from epaktologs on correctly annotated Swiss-Prot entries of multidomain proteins. Our studies have shown that, although public protein family databases are contaminated with epaktologs, analysis of the structure of sequence similarity networks of multidomain proteins provides an efficient means for the separation of epaktologs and paralogs. We have also demonstrated that contamination of protein families with epaktologs increases the apparent rate of DA change and introduces a bias in DA differences in as much as it increases the proportion of terminal over internal DA differences. We have shown that confusing

  19. Basal Cell Carcinoma. Part 1: Basal Cell Carcinoma Has Come of Age.

    PubMed

    Deng, Min; Marsch, Amanda F; Petronic-Rosic, Vesna

    2015-01-01

    Almost 2 centuries after its recognition, basal cell carcinoma (BCC) remains the most common cancer worldwide, with a 30% overall lifetime risk in the United States and an incidence that continues to increase annually. The increasing incidence of BCC is multifactorial and likely correlates to multiple risk factors, including exposure to both ionizing and UV radiation. Despite its relatively indolent growth, what was once referred to as a rodent ulcer or basal cell epithelioma is now identified as a full-fledged malignancy. The authors describe the societal burden of this disease and characterize its malignant potential, emphasizing associated clinical and histopathologic prognostic features.

  20. Evolution of basal deuterostome nervous systems.

    PubMed

    Holland, Linda Z

    2015-02-15

    Understanding the evolution of deuterostome nervous systems has been complicated by the by the ambiguous phylogenetic position of the Xenocoelomorpha (Xenoturbellids, acoel flat worms, nemertodermatids), which has been placed either as basal bilaterians, basal deuterostomes or as a sister group to the hemichordate/echinoderm clade (Ambulacraria), which is a sister group of the Chordata. None of these groups has a single longitudinal nerve cord and a brain. A further complication is that echinoderm nerve cords are not likely to be evolutionarily related to the chordate central nervous system. For hemichordates, opinion is divided as to whether either one or none of the two nerve cords is homologous to the chordate nerve cord. In chordates, opposition by two secreted signaling proteins, bone morphogenetic protein (BMP) and Nodal, regulates partitioning of the ectoderm into central and peripheral nervous systems. Similarly, in echinoderm larvae, opposition between BMP and Nodal positions the ciliary band and regulates its extent. The apparent loss of this opposition in hemichordates is, therefore, compatible with the scenario, suggested by Dawydoff over 65 years ago, that a true centralized nervous system was lost in hemichordates.

  1. Multiphoton imaging of basal cell carcinoma (BCC)

    NASA Astrophysics Data System (ADS)

    Cicchi, R.; Carli, P.; Massi, D.; Sestini, S.; Stambouli, D.; Pavone, F. S.

    2006-02-01

    We used two-photon microscopy towards the imaging of cutaneous basal cell carcinoma (BCC). Our aim was to evaluate the morphology of BCC using two-photon fluorescence excitation and to establish a correlation with histopathology. We built a custom two-photon microscope and we measured the system capabilities. The system allowed to perform a preliminary measurement on a fresh human skin tissue sample. A human skin tissue sample of BCC excised during dermatological surgery procedures were used. The clinical diagnosis of BCC was confirmed by subsequent histopathological examination. The sample was imaged using endogenous tissue fluorescence within 2-3 hours from the excision with a two photon laser scanning fluorescence microscope. The acquired images allowed an obvious discrimination of the neoplastic areas toward normal tissue, based on morphological differences and aberrations of the intensity of the fluorescence signal. Our results showed that BCC tissue has a more homogeneous structure in comparison to normal tissue as well as a higher fluorescent response. The images obtained by two photon microscopy were further compared to the images acquired by an optical microscope after the conventional histopathological examination on one part of the respective sample. Our suggested method may represent a new diagnostic tool that improves the diagnostic accuracy of clinical examination alone, enabling the accurate discrimination of basal cell carcinoma from normal tissue.

  2. Basal cell nevus syndrome or Gorlin syndrome.

    PubMed

    Thalakoti, Srikanth; Geller, Thomas

    2015-01-01

    Basal cell nevus syndrome (BCNS) or Gorlin syndrome is a rare neurocutaneous syndrome sometimes known as the fifth phacomatosis, inherited in autosomal dominant fashion with complete penetrance and variable expressivity. Gorlin syndrome is characterized by development of multiple basal cell carcinomas (BCCs), jaw cysts, palmar or plantar pits, calcification of falx cerebri, various developmental skeletal abnormalities such as bifid rib, hemi- or bifid vertebra and predisposition to the development of various tumors. BCNS is caused by a mutation in the PTCH1 gene localized to 9q22.3. Its estimated prevalence varies between 1/55600 and 1/256000 with an equal male to female ratio. The medulloblastoma variant seen in Gorlin syndrome patients is of the desmoplastic type, characteristically presenting during the first 3 years of life. Therefore, children with desmoplastic medulloblastoma should be carefully screened for other features of BCNS. Radiation therapy for desmoplastic medulloblastoma should be avoided in BCNS patients as it may induce development of invasive BCCs and other tumors in the skin area exposed to radiation. This syndrome is a multisystem disorder so involvement of multiple specialists with a multimodal approach to detect and treat various manifestations at early stages will reduce the long-term sequelae and severity of the condition. Life expectancy is not significantly altered but morbidity from complications and cosmetic scarring can be substantial.

  3. Advanced Basal Cell Carcinoma: Epidemiology and Therapeutic Innovations.

    PubMed

    Mohan, Shalini V; Chang, Anne Lynn S

    2014-01-01

    Advanced basal cell carcinomas are a subset of basal cell carcinomas that can be difficult to treat either due to their local invasiveness, proximity to vital structures, or metastasis. The incidence of all basal cell carcinoma is increasing in the United States, although it is not known whether advanced basal cell carcinomas (aBCCs) are also increasing. Recently, highly targeted therapy based on knowledge of the basal cell carcinoma pathogenesis has become available either commercially or through human clinical trials. These orally available drugs inhibit the Hedgehog signaling pathway, and lead to advanced basal cell carcinoma shrinkage that can enable preservation of adjacent vital organs. In this review, we outline the role of Hedgehog pathway inhibitors as well as other treatment modalities such as excision, radiotherapy and more traditional chemotherapy in treating advanced basal cell carcinomas. We also highlight current gaps in knowledge regarding the use and side effects of this targeted therapy.

  4. High porosity of basal till at Burroughs glacier, southeastern Alaska

    SciTech Connect

    Ronnert, L.; Mickelson, D.M. )

    1992-09-01

    Debris-rich basal ice at Burroughs glacier, southeastern Alaska, has 60 vol% to 70 vol% debris. Recently deposited basal till exceeds 60 vol% sediment with 30% to almost 40% porosity. Where basal ice is very rich in debris, basal till is deposited through melt out with only slight compaction of the debris. Porosity this high in till is commonly associated with subglacially deforming and dilated sediment. However, the recently deposited basal melt-out till at Burroughs glacier has not been deformed after deposition, but has porosity values similar to tills elsewhere interpreted to be subglacially deforming and dilated in an unfrozen state. High porosity can occur in basal melt-out till deposited directly by basal melt out.

  5. Histone gene replacement reveals a post-transcriptional role for H3K36 in maintaining metazoan transcriptome fidelity

    PubMed Central

    Meers, Michael P; Henriques, Telmo; Lavender, Christopher A; McKay, Daniel J; Strahl, Brian D; Duronio, Robert J; Adelman, Karen; Matera, A Gregory

    2017-01-01

    Histone H3 lysine 36 methylation (H3K36me) is thought to participate in a host of co-transcriptional regulatory events. To study the function of this residue independent from the enzymes that modify it, we used a ‘histone replacement’ system in Drosophila to generate a non-modifiable H3K36 lysine-to-arginine (H3K36R) mutant. We observed global dysregulation of mRNA levels in H3K36R animals that correlates with the incidence of H3K36me3. Similar to previous studies, we found that mutation of H3K36 also resulted in H4 hyperacetylation. However, neither cryptic transcription initiation, nor alternative pre-mRNA splicing, contributed to the observed changes in expression, in contrast with previously reported roles for H3K36me. Interestingly, knockdown of the RNA surveillance nuclease, Xrn1, and members of the CCR4-Not deadenylase complex, restored mRNA levels for a class of downregulated, H3K36me3-rich genes. We propose a post-transcriptional role for modification of replication-dependent H3K36 in the control of metazoan gene expression. DOI: http://dx.doi.org/10.7554/eLife.23249.001 PMID:28346137

  6. The Evolution of the GPCR Signaling System in Eukaryotes: Modularity, Conservation, and the Transition to Metazoan Multicellularity

    PubMed Central

    de Mendoza, Alex; Sebé-Pedrós, Arnau; Ruiz-Trillo, Iñaki

    2014-01-01

    The G-protein-coupled receptor (GPCR) signaling system is one of the main signaling pathways in eukaryotes. Here, we analyze the evolutionary history of all its components, from receptors to regulators, to gain a broad picture of its system-level evolution. Using eukaryotic genomes covering most lineages sampled to date, we find that the various components of the GPCR signaling pathway evolved independently, highlighting the modular nature of this system. Our data show that some GPCR families, G proteins, and regulators of G proteins diversified through lineage-specific diversifications and recurrent domain shuffling. Moreover, most of the gene families involved in the GPCR signaling system were already present in the last common ancestor of eukaryotes. Furthermore, we show that the unicellular ancestor of Metazoa already had most of the cytoplasmic components of the GPCR signaling system, including, remarkably, all the G protein alpha subunits, which are typical of metazoans. Thus, we show how the transition to multicellularity involved conservation of the signaling transduction machinery, as well as a burst of receptor diversification to cope with the new multicellular necessities. PMID:24567306

  7. Metazoan parasites in the head region of the bullet tuna Auxis rochei (Osteichthyes: Scombridae) from the western Mediterranean Sea.

    PubMed

    Mele, S; Saber, S; Gómez-Vives, M J; Garippa, G; Alemany, F; Macías, D; Merella, P

    2015-11-01

    The head region of 72 bullet tuna Auxis rochei from the western Mediterranean Sea (south-east Spain and the Strait of Gibraltar) was examined for parasites. Seven metazoan species were found in the fish from south-east Spain: three monogeneans, two trematodes and two copepods, whereas only three species were isolated in the fish from the Strait of Gibraltar. A comparison of the levels of infection of the parasites according to fish size in south-east Spain showed that the prevalence of Didymozoon auxis and the mean abundance of Allopseudaxine macrova were higher in the larger hosts (range of fork length = 38-44 cm) than in the smaller ones (33-37 cm). A comparison of the parasite infections according to geographical region showed that the mean abundances of Nematobothriinae gen. sp. and Caligus bonito were higher in fish from south-east Spain than in those from the Strait of Gibraltar. A comparison of the parasite fauna of A. rochei from the Mediterranean Sea with the published data on Auxis spp. from the Atlantic, Indian and Pacific Oceans revealed the closest similarity between the Mediterranean A. rochei and the Atlantic A. thazard.

  8. Cambrian archaeocyathan metazoans: revision of morphological characters and standardization of genus descriptions to establish an online identification tool.

    PubMed Central

    Kerner, Adeline; Debrenne, Françoise; Vignes-Lebbe, Régine

    2011-01-01

    Abstract Archaeocyatha represent the oldest calcified sponges and the first metazoans to build bioconstructions in association with calcimicrobes. They are a key group in biology, evolutionary studies, biostratigraphy, paleoecology and paleogeography of the early Cambrian times. The establishing of a new standardized terminology for archaeocyathans description has permitted the creation of the first knowledge base in English including descriptions of all archaeocyathan genera. This base, using the XPER² software package, is an integral part of the -Archaeocyatha- a knowledge base website, freely available at url http://www.infosyslab.fr/archaeocyatha. The website is composed of common information about Archaeocyatha, general remarks about the knowledge base, the description of the 307 genera recognized with images of type-specimens of type-species for each genus, as well as additional morphological data, an interactive free access key and its user guide. The automatic analysis and comparison of the digitized descriptions have identified some genera with highly similar morphology. These results are a great help for future taxonomic revisions and suggest a number of possible synonymies that require further study. PMID:22207818

  9. Cambrian archaeocyathan metazoans: revision of morphological characters and standardization of genus descriptions to establish an online identification tool.

    PubMed

    Kerner, Adeline; Debrenne, Françoise; Vignes-Lebbe, Régine

    2011-01-01

    Archaeocyatha represent the oldest calcified sponges and the first metazoans to build bioconstructions in association with calcimicrobes. They are a key group in biology, evolutionary studies, biostratigraphy, paleoecology and paleogeography of the early Cambrian times. The establishing of a new standardized terminology for archaeocyathans description has permitted the creation of the first knowledge base in English including descriptions of all archaeocyathan genera. This base, using the XPER² software package, is an integral part of the -Archaeocyatha- a knowledge base website, freely available at url http://www.infosyslab.fr/archaeocyatha. The website is composed of common information about Archaeocyatha, general remarks about the knowledge base, the description of the 307 genera recognized with images of type-specimens of type-species for each genus, as well as additional morphological data, an interactive free access key and its user guide.The automatic analysis and comparison of the digitized descriptions have identified some genera with highly similar morphology. These results are a great help for future taxonomic revisions and suggest a number of possible synonymies that require further study.

  10. Microbial gardening in the ocean's twilight zone: Detritivorous metazoans benefit from fragmenting, rather than ingesting, sinking detritus

    PubMed Central

    Mayor, Daniel J; Sanders, Richard; Giering, Sarah L C; Anderson, Thomas R

    2014-01-01

    Sinking organic particles transfer ∼10 gigatonnes of carbon into the deep ocean each year, keeping the atmospheric CO2 concentration significantly lower than would otherwise be the case. The exact size of this effect is strongly influenced by biological activity in the ocean's twilight zone (∼50–1,000 m beneath the surface). Recent work suggests that the resident zooplankton fragment, rather than ingest, the majority of encountered organic particles, thereby stimulating bacterial proliferation and the deep-ocean microbial food web. Here we speculate that this apparently counterintuitive behaviour is an example of ‘microbial gardening’, a strategy that exploits the enzymatic and biosynthetic capabilities of microorganisms to facilitate the ‘gardener's’ access to a suite of otherwise unavailable compounds that are essential for metazoan life. We demonstrate the potential gains that zooplankton stand to make from microbial gardening using a simple steady state model, and we suggest avenues for future research. PMID:25220362

  11. Investigating the Spreading and Toxicity of Prion-like Proteins Using the Metazoan Model Organism C. elegans

    PubMed Central

    Nussbaum-Krammer, Carmen I.; Neto, Mário F.; Brielmann, Renée M.; Pedersen, Jesper S.; Morimoto, Richard I.

    2015-01-01

    Prions are unconventional self-propagating proteinaceous particles, devoid of any coding nucleic acid. These proteinaceous seeds serve as templates for the conversion and replication of their benign cellular isoform. Accumulating evidence suggests that many protein aggregates can act as self-propagating templates and corrupt the folding of cognate proteins. Although aggregates can be functional under certain circumstances, this process often leads to the disruption of the cellular protein homeostasis (proteostasis), eventually leading to devastating diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), or transmissible spongiform encephalopathies (TSEs). The exact mechanisms of prion propagation and cell-to-cell spreading of protein aggregates are still subjects of intense investigation. To further this knowledge, recently a new metazoan model in Caenorhabditis elegans, for expression of the prion domain of the cytosolic yeast prion protein Sup35 has been established. This prion model offers several advantages, as it allows direct monitoring of the fluorescently tagged prion domain in living animals and ease of genetic approaches. Described here are methods to study prion-like behavior of protein aggregates and to identify modifiers of prion-induced toxicity using C. elegans. PMID:25591151

  12. The evolution of the GPCR signaling system in eukaryotes: modularity, conservation, and the transition to metazoan multicellularity.

    PubMed

    de Mendoza, Alex; Sebé-Pedrós, Arnau; Ruiz-Trillo, Iñaki

    2014-03-01

    The G-protein-coupled receptor (GPCR) signaling system is one of the main signaling pathways in eukaryotes. Here, we analyze the evolutionary history of all its components, from receptors to regulators, to gain a broad picture of its system-level evolution. Using eukaryotic genomes covering most lineages sampled to date, we find that the various components of the GPCR signaling pathway evolved independently, highlighting the modular nature of this system. Our data show that some GPCR families, G proteins, and regulators of G proteins diversified through lineage-specific diversifications and recurrent domain shuffling. Moreover, most of the gene families involved in the GPCR signaling system were already present in the last common ancestor of eukaryotes. Furthermore, we show that the unicellular ancestor of Metazoa already had most of the cytoplasmic components of the GPCR signaling system, including, remarkably, all the G protein alpha subunits, which are typical of metazoans. Thus, we show how the transition to multicellularity involved conservation of the signaling transduction machinery, as well as a burst of receptor diversification to cope with the new multicellular necessities.

  13. Temporal variation in the dispersion patterns of metazoan parasites of a coastal fish species from the Gulf of Mexico.

    PubMed

    Vidal-Martínez, V M; Pal, P; Aguirre-Macedo, M L; May-Tec, A L; Lewis, J W

    2014-03-01

    Global climate change (GCC) is expected to affect key environmental variables such as temperature and rainfall, which in turn influence the infection dynamics of metazoan parasites in tropical aquatic hosts. Thus, our aim was to determine how temporal patterns of temperature and rainfall influence the mean abundance and aggregation of three parasite species of the fish Cichlasoma urophthalmus from Yucatán, México. We calculated mean abundance and the aggregation parameter of the negative binomial distribution k for the larval digeneans Oligogonotylus manteri and Ascocotyle (Phagicola) nana and the ectoparasite Argulus yucatanus monthly from April 2005 to December 2010. Fourier analysis of time series and cross-correlations were used to determine potential associations between mean abundance and k for the three parasite species with water temperature and rainfall. Both O. manteri and A. (Ph.) nana exhibited their highest frequency peaks in mean abundance at 6 and 12 months, respectively, while their peak in k occurred every 24 months. For A. yucatanus the frequency peaks in mean abundance and k occurred every 12 months. We suggest that the level of aggregation at 24 months of O. manteri increases the likelihood of fish mortality. Such a scenario is less likely for A. (Ph.) nana and A. yucatanus, due to their low infection levels. Our findings suggest that under the conditions of GCC it would be reasonable to expect higher levels of parasite aggregation in tropical aquatic hosts, in turn leading to a potential increase in parasite-induced host mortality.

  14. Can We Determine Temperatures Associated with Critical Transitions During the Evolution of Metazoan life? Application of 'Clumped' Isotope Thermometry to the Neoproterozoic and Paleozoic

    NASA Astrophysics Data System (ADS)

    Defliese, W.; Gutierrez, M.; Flores, S.; Retallack, G.; Tripati, A.

    2015-12-01

    The evolution and development of metazoan life during the Neoproterozoic and Paleozoic was one of the largest and monumental events in Earth history. Conditions surrounding these events are uncertain, as there remain many questions about the types of environment transitions such as the development of multicellular life, evolution of hard shells, and the transitions of life to land took place in. While mass-47 clumped isotope signatures are prone to thermal resetting and diagenesis, it remains the best tool for reconstructing temperatures in uncertain regimes, and can be integrated along with traditional tools such as textural petrography and cathodoluminescence to screen for diagenetic alteration. In this context, we analyze suites of Neoproterozoic and Paleozoic sediments and brachiopods for clumped isotope temperatures, and combine with microscopy and stratigraphic data to infer diagenetic and burial histories of these rocks. Samples judged to be unaltered will be further analyzed for the conditions prevalent during critical transitions during the evolution of metazoan life.

  15. Influence of changes in climate, sea level, and depositional systems on the fossil record of the Neoproterozoic-early Cambrian metazoan radiation, Australia

    SciTech Connect

    Mount, J.F.; McDonald, C. )

    1992-11-01

    On the Australian continent the fossil record of the initial appearance and radiation of higher metazoans is strongly influenced by the distribution of facies suitable for fossil preservation. The limited stratigraphic range of the [open quotes]Ediacaran[close quotes] fauna, the seemingly abrupt appearance and radiation of Cambrian-aspect traces, and the apparently late appearance of skeletogenous organisms are all functions of the spatial and temporal distributions of key habitats. The principal controls on the formation of these habitats appear to have been changes in climate and siliciclastic sediment supply coupled with cyclic changes in sea level. Aspects of the artifactual bias documented in Australia are recognized (but rarely documented) in Precambrian-Cambrian boundary sections worldwide. This bias may ultimately form a major stumbling block to detailed reconstruction of early metazoan evolution. 43 refs., 3 figs.

  16. Adenoid basal hyperplasia of the uterine cervix: a lesion of reserve cell type, distinct from adenoid basal carcinoma.

    PubMed

    Kerdraon, Olivier; Cornélius, Aurélie; Farine, Marie-Odile; Boulanger, Loïc; Wacrenier, Agnès

    2012-12-01

    Adenoid basal hyperplasia is an underrecognized cervical lesion, resembling adenoid basal carcinoma, except the absence of deep invasion into the stroma. We report a series of 10 cases, all extending less than 1 mm from the basement membrane. Our results support the hypothesis that adenoid basal hyperplasia arises from reserve cells of the cervix. Lesions were found close to the squamocolumnar junction, in continuity with the nearby subcolumnar reserve cells. They shared the same morphology and immunoprofile using a panel of 4 antibodies (keratin 5/6, keratin 14, keratin 7 and p63) designed to differentiate reserve cells from mature squamous cells and endocervical columnar cells. We detected no human papillomavirus infection by in situ hybridization targeting high-risk human papillomavirus, which was concordant with the absence of immunohistochemical p16 expression. We demonstrated human papillomavirus infection in 4 (80%) of 5 adenoid basal carcinoma, which is in the same range as previous studies (88%). Thus, adenoid basal hyperplasia should be distinguished from adenoid basal carcinoma because they imply different risk of human papillomavirus infection and of subsequent association with high-grade invasive carcinoma. In our series, the most reliable morphological parameters to differentiate adenoid basal hyperplasia from adenoid basal carcinoma were the depth of the lesion and the size of the lesion nests. Furthermore, squamous differentiation was rare in adenoid basal hyperplasia and constant in adenoid basal carcinoma. Finally, any mitotic activity and/or an increase of Ki67 labeling index should raise the hypothesis of adenoid basal carcinoma.

  17. The Skeleton Forming Proteome of an Early Branching Metazoan: A Molecular Survey of the Biomineralization Components Employed by the Coralline Sponge Vaceletia Sp.

    PubMed Central

    Wörheide, Gert; Jackson, Daniel John

    2015-01-01

    The ability to construct a mineralized skeleton was a major innovation for the Metazoa during their evolution in the late Precambrian/early Cambrian. Porifera (sponges) hold an informative position for efforts aimed at unraveling the origins of this ability because they are widely regarded to be the earliest branching metazoans, and are among the first multi-cellular animals to display the ability to biomineralize in the fossil record. Very few biomineralization associated proteins have been identified in sponges so far, with no transcriptome or proteome scale surveys yet available. In order to understand what genetic repertoire may have been present in the last common ancestor of the Metazoa (LCAM), and that may have contributed to the evolution of the ability to biocalcify, we have studied the skeletal proteome of the coralline demosponge Vaceletia sp. and compare this to other metazoan biomineralizing proteomes. We bring some spatial resolution to this analysis by dividing Vaceletia’s aragonitic calcium carbonate skeleton into “head” and “stalk” regions. With our approach we were able to identify 40 proteins from both the head and stalk regions, with many of these sharing some similarity to previously identified gene products from other organisms. Among these proteins are known biomineralization compounds, such as carbonic anhydrase, spherulin, extracellular matrix proteins and very acidic proteins. This report provides the first proteome scale analysis of a calcified poriferan skeletal proteome, and its composition clearly demonstrates that the LCAM contributed several key enzymes and matrix proteins to its descendants that supported the metazoan ability to biocalcify. However, lineage specific evolution is also likely to have contributed significantly to the ability of disparate metazoan lineages to biocalcify. PMID:26536128

  18. The Skeleton Forming Proteome of an Early Branching Metazoan: A Molecular Survey of the Biomineralization Components Employed by the Coralline Sponge Vaceletia Sp.

    PubMed

    Germer, Juliane; Mann, Karlheinz; Wörheide, Gert; Jackson, Daniel John

    2015-01-01

    The ability to construct a mineralized skeleton was a major innovation for the Metazoa during their evolution in the late Precambrian/early Cambrian. Porifera (sponges) hold an informative position for efforts aimed at unraveling the origins of this ability because they are widely regarded to be the earliest branching metazoans, and are among the first multi-cellular animals to display the ability to biomineralize in the fossil record. Very few biomineralization associated proteins have been identified in sponges so far, with no transcriptome or proteome scale surveys yet available. In order to understand what genetic repertoire may have been present in the last common ancestor of the Metazoa (LCAM), and that may have contributed to the evolution of the ability to biocalcify, we have studied the skeletal proteome of the coralline demosponge Vaceletia sp. and compare this to other metazoan biomineralizing proteomes. We bring some spatial resolution to this analysis by dividing Vaceletia's aragonitic calcium carbonate skeleton into "head" and "stalk" regions. With our approach we were able to identify 40 proteins from both the head and stalk regions, with many of these sharing some similarity to previously identified gene products from other organisms. Among these proteins are known biomineralization compounds, such as carbonic anhydrase, spherulin, extracellular matrix proteins and very acidic proteins. This report provides the first proteome scale analysis of a calcified poriferan skeletal proteome, and its composition clearly demonstrates that the LCAM contributed several key enzymes and matrix proteins to its descendants that supported the metazoan ability to biocalcify. However, lineage specific evolution is also likely to have contributed significantly to the ability of disparate metazoan lineages to biocalcify.

  19. The dermatoscopic universe of basal cell carcinoma.

    PubMed

    Lallas, Aimilios; Apalla, Zoe; Argenziano, Giuseppe; Longo, Caterina; Moscarella, Elvira; Specchio, Francesca; Raucci, Margaritha; Zalaudek, Iris

    2014-07-01

    Following the first descriptions of the dermatoscopic pattern of basal cell carcinoma (BCC) that go back to the very early years of dermatoscopy, the list of dermatoscopic criteria associated with BCC has been several times updated and renewed. Up to date, dermatoscopy has been shown to enhance BCC detection, by facilitating its discrimination from other skin tumors and inflammatory skin diseases. Furthermore, upcoming evidence suggests that the method is also useful for the management of the tumor, since it provides valuable information about the histopathologic subtype, the presence of clinically undetectable pigmentation, the expansion of the tumor beyond clinically visible margins and the response to non-ablative treatments. In the current article, we provide a summary of the traditional and latest knowledge on the value of dermatoscopy for the diagnosis and management of BCC.

  20. Basal Ganglia Beta Oscillations Accompany Cue Utilization

    PubMed Central

    Leventhal, Daniel K.; Gage, Gregory J.; Schmidt, Robert; Pettibone, Jeffrey R.; Case, Alaina C.; Berke, Joshua D.

    2012-01-01

    SUMMARY Beta oscillations in cortical-basal ganglia (BG) circuits have been implicated in normal movement suppression and motor impairment in Parkinson’s disease. To dissect the functional correlates of these rhythms we compared neural activity during four distinct variants of a cued choice task in rats. Brief beta (~20 Hz) oscillations occurred simultaneously throughout the cortical-BG network, both spontaneously and at precise moments of task performance. Beta phase was rapidly reset in response to salient cues, yet increases in beta power were not rigidly linked to cues, movements, or movement suppression. Rather, beta power was enhanced after cues were used to determine motor output. We suggest that beta oscillations reflect a postdecision stabilized state of cortical-BG networks, which normally reduces interference from alternative potential actions. The abnormally strong beta seen in Parkinson’s Disease may reflect overstabilization of these networks, producing pathological persistence of the current motor state. PMID:22325204

  1. The dermatoscopic universe of basal cell carcinoma

    PubMed Central

    Lallas, Aimilios; Apalla, Zoe; Argenziano, Giuseppe; Longo, Caterina; Moscarella, Elvira; Specchio, Francesca; Raucci, Margaritha; Zalaudek, Iris

    2014-01-01

    Following the first descriptions of the dermatoscopic pattern of basal cell carcinoma (BCC) that go back to the very early years of dermatoscopy, the list of dermatoscopic criteria associated with BCC has been several times updated and renewed. Up to date, dermatoscopy has been shown to enhance BCC detection, by facilitating its discrimination from other skin tumors and inflammatory skin diseases. Furthermore, upcoming evidence suggests that the method is also useful for the management of the tumor, since it provides valuable information about the histopathologic subtype, the presence of clinically undetectable pigmentation, the expansion of the tumor beyond clinically visible margins and the response to non-ablative treatments. In the current article, we provide a summary of the traditional and latest knowledge on the value of dermatoscopy for the diagnosis and management of BCC. PMID:25126452

  2. Topical tretinoin treatment in basal cell carcinoma.

    PubMed

    Brenner, S; Wolf, R; Dascalu, D I

    1993-03-01

    The efficiency of topical tretinoin was examined in a patient with basal cell carcinomas (BCC) for which conventional means of removal was inappropriate. Topical tretinoin was used to treat multiple arsenic-induced superficial BCCs in a 64-year-old woman. Topical tretinoin (0.05% twice daily) was administered to four lesions for 3 weeks followed by a 3-week interruption. After three cycles of treatment clinical healing of all the lesions was observed. Histopathological examination of the lesional biopsies showed no evidence of a tumor. However, 9 months later all four lesions relapsed and surgical excision disclosed BCC. The data indicate that topical tretinoin treatment of multiple superficial BCCs induces clinical and pathological regression of the lesions with a high rate of relapse. This report suggests that topical tretinoin is not an effective therapy for the cure of arsenic-induced superficial BCCs.

  3. Burden of basal cell carcinoma in USA.

    PubMed

    Wu, Xinyuan; Elkin, Elena E; Marghoob, Ashfaq A

    2015-11-01

    Basal cell carcinoma (BCC) is the most common malignancy diagnosed in the USA and its incidence continues to increase. While BCC is still most prevalent in the older segments of the population, it is becoming ever more frequent in younger individuals. The costs of treatment and morbidity associated with BCCs place a heavy public health and economic burden on patients, their families and the American healthcare system and underscore the importance of efficient management and prevention efforts directed toward this malignancy. In this article, we address economic aspects of BCC using evidence from large-scale epidemiological studies. This information may help clinicians in developing better and more cost-effective methods for dealing with the most common cancer in America and in the world.

  4. Metazoan parasite communities of rock cod Eleginops maclovinus along southern Chilean coast and their use as biological tags at a local spatial scale.

    PubMed

    Henriquez, V P; Gonzalez, M T; Licandeo, R; Carvajal, J

    2011-12-01

    The composition of the metazoan parasite fauna of the rock cod Eleginops maclovinus from three locations in southern Chile was compared to assess the local spatial variation of the community component of their parasitic faunas. A total of 13 108 metazoan parasites (5267 endoparasites and 7841 ectoparasites) belonging to 34 taxa were collected from 268 specimens of E. maclovinus between October 2008 and March 2009. The populations and community quantitative descriptors were estimated. Altogether, 97.4% of the fish were infected with at least one parasite taxon. The most prevalent species were Hypoechinorhynchus magellanicus (Acanthocephala), Caligus rogercresseyi, Lepeophtheirus mugiloides, Clavella adunca (Copepoda) and Similascarophis sp. (Nematoda). Five species are new records for this host: Argulus araucanus, Hirudinea gen. sp1., Hirudinea gen. sp2., Benedenia sp. and Camallanidae gen. sp. A linear discriminant analysis (LDA) showed that the metazoan parasite fauna of E. maclovinus varied qualitatively and quantitatively among three locations, with 89.7% of fish being correctly assigned to their respective locations. This suggested that parasites could be a reliable tool to discriminate individual fish from geographically close locations. There was a weak relationship between the parasite fauna and fish size and there were no accumulations of parasites in the host over time, which could be associated with ontogenetic changes of diet associated with habitat use. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  5. Gamma-Linolenic and Stearidonic Acids Are Required for Basal Immunity in Caenorhabditis elegans through Their Effects on p38 MAP Kinase Activity

    PubMed Central

    Nandakumar, Madhumitha; Tan, Man-Wah

    2008-01-01

    Polyunsaturated fatty acids (PUFAs) form a class of essential micronutrients that play a vital role in development, cardiovascular health, and immunity. The influence of lipids on the immune response is both complex and diverse, with multiple studies pointing to the beneficial effects of long-chain fatty acids in immunity. However, the mechanisms through which PUFAs modulate innate immunity and the effects of PUFA deficiencies on innate immune functions remain to be clarified. Using the Caenorhabditis elegans–Pseudomonas aeruginosa host–pathogen system, we present genetic evidence that a Δ6-desaturase FAT-3, through its two 18-carbon products—gamma-linolenic acid (GLA, 18:3n6) and stearidonic acid (SDA, 18:4n3), but not the 20-carbon PUFAs arachidonic acid (AA, 20:4n6) and eicosapentaenoic acid (EPA, 20:5n3)—is required for basal innate immunity in vivo. Deficiencies in GLA and SDA result in increased susceptibility to bacterial infection, which is associated with reduced basal expression of a number of immune-specific genes—including spp-1, lys-7, and lys-2—that encode antimicrobial peptides. GLA and SDA are required to maintain basal activity of the p38 MAP kinase pathway, which plays important roles in protecting metazoan animals from infections and oxidative stress. Transcriptional and functional analyses of fat-3–regulated genes revealed that fat-3 is required in the intestine to regulate the expression of infection- and stress-response genes, and that distinct sets of genes are specifically required for immune function and oxidative stress response. Our study thus uncovers a mechanism by which these 18-carbon PUFAs affect basal innate immune function and, consequently, the ability of an organism to defend itself against bacterial infections. The conservation of p38 MAP kinase signaling in both stress and immune responses further encourages exploring the function of GLA and SDA in humans. PMID:19023415

  6. Basal Cell Carcinoma Arising in a Tattooed Eyebrow

    PubMed Central

    Lee, Jong-Sun; Park, Jin; Kim, Seong-Min; Kim, Han-Uk

    2009-01-01

    Malignant skin tumors, including squamous cell carcinoma and malignant melanoma, have occurred in tattoos. Seven documented cases of basal cell carcinoma associated with tattoos have also been reported in the medical literature. We encountered a patient with basal cell carcinoma in a tattooed eyebrow. We report on this case as the eighth reported case of a patient with basal cell carcinoma arising in a tattooed area. PMID:20523804

  7. Accuracy of rate estimation using relaxed-clock models with a critical focus on the early metazoan radiation.

    PubMed

    Ho, Simon Y W; Phillips, Matthew J; Drummond, Alexei J; Cooper, Alan

    2005-05-01

    In recent years, a number of phylogenetic methods have been developed for estimating molecular rates and divergence dates under models that relax the molecular clock constraint by allowing rate change throughout the tree. These methods are being used with increasing frequency, but there have been few studies into their accuracy. We tested the accuracy of several relaxed-clock methods (penalized likelihood and Bayesian inference using various models of rate change) using nucleotide sequences simulated on a nine-taxon tree. When the sequences evolved with a constant rate, the methods were able to infer rates accurately, but estimates were more precise when a molecular clock was assumed. When the sequences evolved under a model of auto-correlated rate change, rates were accurately estimated using penalized likelihood and by Bayesian inference using lognormal and exponential models of rate change, while other models did not perform as well. When the sequences evolved under a model of uncorrelated rate change, only Bayesian inference using an exponential rate model performed well. Collectively, the results provide a strong recommendation for using the exponential model of rate change if a conservative approach to divergence time estimation is required. A case study is presented in which we use a simulation-based approach to examine the hypothesis of elevated rates in the Cambrian period, and it is found that these high rate estimates might be an artifact of the rate estimation method. If this bias is present, then the ages of metazoan divergences would be systematically underestimated. The results of this study have implications for studies of molecular rates and divergence dates.

  8. Pigmented basal cell carcinoma mimicking a superficial spreading melanoma.

    PubMed

    Hasbún Acuña, Paula; Cullen Aravena, Roberto; Maturana Donaire, César; Ares Mora, Raúl; Porras Kusmanic, Ninoska

    2016-12-20

    Basal cell carcinoma is the most common form of skin cancer, especially in elderly people. Pigmented basal cell carcinoma is a rare subtype and has been described in the literature as a nodular and hyperpigmented lesion; rarely, it can appear as an extensive pigmented plate, which may be clinically indistinguishable from superficial spreading melanoma and Bowen disease. Dermatoscopy has a high sensitivity in the diagnosis of basal cell carcinoma. When Menzies criteria are used; however, the final diagnosis is made by histopathology. The objective of the present report is to analyze the case of a patient with pigmented basal cell carcinoma simulating a superficial spreading melanoma.

  9. Basal bodies exhibit polarized positioning in zebrafish cone photoreceptors

    PubMed Central

    Ramsey, Michelle; Perkins, Brian D.

    2012-01-01

    The asymmetric positioning of basal bodies, and therefore cilia, is often critical for proper cilia function. This planar polarity is critical for motile cilia function but has not been extensively investigated for non-motile cilia or for sensory cilia such as vertebrate photoreceptors. Zebrafish photoreceptors form an organized mosaic ideal for investigating cilia positioning. We report that in the adult retina, the basal bodies of red, green-, and blue-sensitive cone photoreceptors localized asymmetrically on the cell edge nearest to the optic nerve. In contrast, no patterning was seen in the basal bodies of ultraviolet-sensitive cones or in rod photoreceptors. The asymmetric localization of basal bodies was consistent in all regions of the adult retina. Basal body patterning was unaffected in the cones of the XOPS-mCFP transgenic line, which lacks rod photoreceptors. Finally, the adult pattern was not seen in 7 day post fertilization (dpf) larvae as basal bodies were randomly distributed in all the photoreceptor subtypes. These results establish the asymmetrical localization of basal bodies in red-, green-, and blue-sensitive cones in adult zebrafish retinas but not in larvae. This pattern suggests an active cellular mechanism regulated the positioning of basal bodies after the transition to the adult mosaic and that rods do not seem to be necessary for the patterning of cone basal bodies. PMID:23171982

  10. Nevoid basal cell carcinoma syndrome (Gorlin syndrome)

    PubMed Central

    Lo Muzio, Lorenzo

    2008-01-01

    Nevoid basal cell carcinoma syndrome (NBCCS), also known as Gorlin syndrome, is a hereditary condition characterized by a wide range of developmental abnormalities and a predisposition to neoplasms. The estimated prevalence varies from 1/57,000 to 1/256,000, with a male-to-female ratio of 1:1. Main clinical manifestations include multiple basal cell carcinomas (BCCs), odontogenic keratocysts of the jaws, hyperkeratosis of palms and soles, skeletal abnormalities, intracranial ectopic calcifications, and facial dysmorphism (macrocephaly, cleft lip/palate and severe eye anomalies). Intellectual deficit is present in up to 5% of cases. BCCs (varying clinically from flesh-colored papules to ulcerating plaques and in diameter from 1 to 10 mm) are most commonly located on the face, back and chest. The number of BBCs varies from a few to several thousand. Recurrent jaw cysts occur in 90% of patients. Skeletal abnormalities (affecting the shape of the ribs, vertebral column bones, and the skull) are frequent. Ocular, genitourinary and cardiovascular disorders may occur. About 5–10% of NBCCS patients develop the brain malignancy medulloblastoma, which may be a potential cause of early death. NBCCS is caused by mutations in the PTCH1 gene and is transmitted as an autosomal dominant trait with complete penetrance and variable expressivity. Clinical diagnosis relies on specific criteria. Gene mutation analysis confirms the diagnosis. Genetic counseling is mandatory. Antenatal diagnosis is feasible by means of ultrasound scans and analysis of DNA extracted from fetal cells (obtained by amniocentesis or chorionic villus sampling). Main differential diagnoses include Bazex syndrome, trichoepithelioma papulosum multiplex and Torre's syndrome (Muir-Torre's syndrome). Management requires a multidisciplinary approach. Keratocysts are treated by surgical removal. Surgery for BBCs is indicated when the number of lesions is limited; other treatments include laser ablation, photodynamic

  11. Nevoid basal cell carcinoma syndrome (Gorlin syndrome).

    PubMed

    Lo Muzio, Lorenzo

    2008-11-25

    Nevoid basal cell carcinoma syndrome (NBCCS), also known as Gorlin syndrome, is a hereditary condition characterized by a wide range of developmental abnormalities and a predisposition to neoplasms. The estimated prevalence varies from 1/57,000 to 1/256,000, with a male-to-female ratio of 1:1. Main clinical manifestations include multiple basal cell carcinomas (BCCs), odontogenic keratocysts of the jaws, hyperkeratosis of palms and soles, skeletal abnormalities, intracranial ectopic calcifications, and facial dysmorphism (macrocephaly, cleft lip/palate and severe eye anomalies). Intellectual deficit is present in up to 5% of cases. BCCs (varying clinically from flesh-colored papules to ulcerating plaques and in diameter from 1 to 10 mm) are most commonly located on the face, back and chest. The number of BBCs varies from a few to several thousand. Recurrent jaw cysts occur in 90% of patients. Skeletal abnormalities (affecting the shape of the ribs, vertebral column bones, and the skull) are frequent. Ocular, genitourinary and cardiovascular disorders may occur. About 5-10% of NBCCS patients develop the brain malignancy medulloblastoma, which may be a potential cause of early death. NBCCS is caused by mutations in the PTCH1 gene and is transmitted as an autosomal dominant trait with complete penetrance and variable expressivity. Clinical diagnosis relies on specific criteria. Gene mutation analysis confirms the diagnosis. Genetic counseling is mandatory. Antenatal diagnosis is feasible by means of ultrasound scans and analysis of DNA extracted from fetal cells (obtained by amniocentesis or chorionic villus sampling). Main differential diagnoses include Bazex syndrome, trichoepithelioma papulosum multiplex and Torre's syndrome (Muir-Torre's syndrome). Management requires a multidisciplinary approach. Keratocysts are treated by surgical removal. Surgery for BBCs is indicated when the number of lesions is limited; other treatments include laser ablation, photodynamic

  12. Heterogeneity of basal keratinocytes: nonrandom distribution of thymidine-labeled basal cells in confluent cultures is not a technical artifact

    SciTech Connect

    Milstone, L.M.; LaVigne, J.F.

    1985-06-01

    Basal surface autoradiography of (/sup 3/H)dThd-labeled, confluent, keratinocyte cultures reveals that proliferating cells have a nonrandom, patterned distribution. Unlabeled cells, likewise, appear nonrandomly in clusters. The authors show here that failure to detect DNA synthesis in some basal cells in culture is not an artifact caused either by physical separation of the labeled nuclei from the radiographic emulsion or by a diffusion barrier that would prevent (/sup 3/H)dThd from reaching basal cells.

  13. [Basal metabolism during pregnancy: a systematic review].

    PubMed

    Sally, Enilce de Oliveira Fonseca; Anjos, Luiz Antonio dos; Wahrlich, Vivian

    2013-02-01

    Gestational energy expenditure (EE) is the basis for nutritional counseling and body weight control. The objective of this study was to systematically review the behavior of the basal metabolic rate (BMR), the major component of EE, during non gemelar pregnancy of healthy women. Based on the inclusion criteria, 37 articles were identified (24 cohort and 13 cross-sectional studies). Increases in BMR (between 8% and 35%) were observed in most cohort studies and it was related to the duration of follow-up and nutritional status. In the cross-sectionals, the increase in BMR varied from 8% to 28% close to delivery in comparison with the first trimester or post-partum. Lack of information on maternal age, loss of follow-up and short duration of follow-up during the pregnancy were serious limitations in the identified studies. In conclusion, BMR increases during pregnancy, and the increase is more intense after the second trimester. The most reliable data come from the few cohort studies that initiated before pregnancy.

  14. Stomatal architecture and evolution in basal angiosperms.

    PubMed

    Carpenter, Kevin J

    2005-10-01

    Stomatal architecture-the number, form, and arrangement of specialized epidermal cells associated with stomatal guard cells-of 46 species of basal angiosperms representing all ANITA grade families and Chloranthaceae was investigated. Leaf clearings and cuticular preparations were examined with light microscopy, and a sample of 100 stomata from each specimen was coded for stomatal type and five other characters contributing to stomatal architecture. New stomatal types were defined, and many species were examined and illustrated for the first time. Character evolution was examined in light of the ANITA hypothesis using MacClade software. Analysis of character evolution, along with other evidence from this study and evidence from the literature on fossil angiosperms and other seed plant lineages, suggests that the ancestral condition of angiosperms can be described as anomo-stephanocytic, a system in which complexes lacking subdidiaries (anomocytic) intergrade with those having weakly differentiated subsidiaries arranged in a rosette (stephanocytic). From this ancestral condition, tangential divisions of contact cells led to the profusion of different types seen in early fossil angiosperms and Amborellaceae, Austrobaileyales, and derived Chloranthaceae, while the state in Nymphaeales is little modified. Formation of new, derived types by tangential division appears to be a recurrent theme in seed plant evolution.

  15. New basal cell carcinoma susceptibility loci.

    PubMed

    Stacey, Simon N; Helgason, Hannes; Gudjonsson, Sigurjon A; Thorleifsson, Gudmar; Zink, Florian; Sigurdsson, Asgeir; Kehr, Birte; Gudmundsson, Julius; Sulem, Patrick; Sigurgeirsson, Bardur; Benediktsdottir, Kristrun R; Thorisdottir, Kristin; Ragnarsson, Rafn; Fuentelsaz, Victoria; Corredera, Cristina; Gilaberte, Yolanda; Grasa, Matilde; Planelles, Dolores; Sanmartin, Onofre; Rudnai, Peter; Gurzau, Eugene; Koppova, Kvetoslava; Nexø, Bjørn A; Tjønneland, Anne; Overvad, Kim; Jonasson, Jon G; Tryggvadottir, Laufey; Johannsdottir, Hrefna; Kristinsdottir, Anna M; Stefansson, Hreinn; Masson, Gisli; Magnusson, Olafur T; Halldorsson, Bjarni V; Kong, Augustine; Rafnar, Thorunn; Thorsteinsdottir, Unnur; Vogel, Ulla; Kumar, Rajiv; Nagore, Eduardo; Mayordomo, José I; Gudbjartsson, Daniel F; Olafsson, Jon H; Stefansson, Kari

    2015-04-09

    In an ongoing screen for DNA sequence variants that confer risk of cutaneous basal cell carcinoma (BCC), we conduct a genome-wide association study (GWAS) of 24,988,228 SNPs and small indels detected through whole-genome sequencing of 2,636 Icelanders and imputed into 4,572 BCC patients and 266,358 controls. Here we show the discovery of four new BCC susceptibility loci: 2p24 MYCN (rs57244888[C], OR=0.76, P=4.7 × 10(-12)), 2q33 CASP8-ALS2CR12 (rs13014235[C], OR=1.15, P=1.5 × 10(-9)), 8q21 ZFHX4 (rs28727938[G], OR=0.70, P=3.5 × 10(-12)) and 10p14 GATA3 (rs73635312[A], OR=0.74, P=2.4 × 10(-16)). Fine mapping reveals that two variants correlated with rs73635312[A] occur in conserved binding sites for the GATA3 transcription factor. In addition, expression microarrays and RNA-seq show that rs13014235[C] and a related SNP rs700635[C] are associated with expression of CASP8 splice variants in which sequences from intron 8 are retained.

  16. Basal terraces on melting ice shelves

    NASA Astrophysics Data System (ADS)

    Dutrieux, Pierre; Stewart, Craig; Jenkins, Adrian; Nicholls, Keith W.; Corr, Hugh F. J.; Rignot, Eric; Steffen, Konrad

    2014-08-01

    Ocean waters melt the margins of Antarctic and Greenland glaciers, and individual glaciers' responses and the integrity of their ice shelves are expected to depend on the spatial distribution of melt. The bases of the ice shelves associated with Pine Island Glacier (West Antarctica) and Petermann Glacier (Greenland) have similar geometries, including kilometer-wide, hundreds-of-meter high channels oriented along and across the direction of ice flow. The channels are enhanced by, and constrain, oceanic melt. New meter-scale observations of basal topography reveal peculiar glaciated landscapes. Channel flanks are not smooth, but are instead stepped, with hundreds-of-meters-wide flat terraces separated by 5-50 m high walls. Melting is shown to be modulated by the geometry: constant across each terrace, changing from one terrace to the next, and greatly enhanced on the ~45° inclined walls. Melting is therefore fundamentally heterogeneous and likely associated with stratification in the ice-ocean boundary layer, challenging current models of ice shelf-ocean interactions.

  17. Basal Terraces on Melting Ice Shelves

    NASA Astrophysics Data System (ADS)

    Dutrieux, P.; Stewart, C.; Jenkins, A.; Nicholls, K. W.; Corr, H. F. J.; Rignot, E. J.; Steffen, K.

    2014-12-01

    Ocean waters melt the margins of Antarctic and Greenland glaciers and individualglaciers' responses and the integrity of their ice shelves are expected to depend on thespatial distribution of melt. The bases of the ice shelves associated with Pine IslandGlacier (West Antarctica) and Petermann Glacier (Greenland) have similar geometries,including kilometers-wide, hundreds-of-meter-high channels oriented along and acrossthe direction of ice flow. The channels are enhanced by, and constrain, oceanic melt.New, meter-scale observations of basal topography reveal peculiar glaciated landscapes.Channel flanks are not smooth, but are instead stepped, with hundreds-of-meters-wideflat terraces separated by 5-50 m-high walls. Melting is shown to be modulated by thegeometry: constant across each terrace, changing from one terrace to the next, and greatlyenhanced on the ~45°-inclined walls. Melting is therefore fundamentally heterogeneousand likely associated with stratification in the ice-ocean boundary layer, challengingcurrent models of ice shelf-ocean interactions.

  18. New basal cell carcinoma susceptibility loci

    PubMed Central

    Stacey, Simon N.; Helgason, Hannes; Gudjonsson, Sigurjon A.; Thorleifsson, Gudmar; Zink, Florian; Sigurdsson, Asgeir; Kehr, Birte; Gudmundsson, Julius; Sulem, Patrick; Sigurgeirsson, Bardur; Benediktsdottir, Kristrun R.; Thorisdottir, Kristin; Ragnarsson, Rafn; Fuentelsaz, Victoria; Corredera, Cristina; Gilaberte, Yolanda; Grasa, Matilde; Planelles, Dolores; Sanmartin, Onofre; Rudnai, Peter; Gurzau, Eugene; Koppova, Kvetoslava; Nexø, Bjørn A.; Tjønneland, Anne; Overvad, Kim; Jonasson, Jon G.; Tryggvadottir, Laufey; Johannsdottir, Hrefna; Kristinsdottir, Anna M.; Stefansson, Hreinn; Masson, Gisli; Magnusson, Olafur T.; Halldorsson, Bjarni V.; Kong, Augustine; Rafnar, Thorunn; Thorsteinsdottir, Unnur; Vogel, Ulla; Kumar, Rajiv; Nagore, Eduardo; Mayordomo, José I.; Gudbjartsson, Daniel F.; Olafsson, Jon H.; Stefansson, Kari

    2015-01-01

    In an ongoing screen for DNA sequence variants that confer risk of cutaneous basal cell carcinoma (BCC), we conduct a genome-wide association study (GWAS) of 24,988,228 SNPs and small indels detected through whole-genome sequencing of 2,636 Icelanders and imputed into 4,572 BCC patients and 266,358 controls. Here we show the discovery of four new BCC susceptibility loci: 2p24 MYCN (rs57244888[C], OR=0.76, P=4.7 × 10−12), 2q33 CASP8-ALS2CR12 (rs13014235[C], OR=1.15, P=1.5 × 10−9), 8q21 ZFHX4 (rs28727938[G], OR=0.70, P=3.5 × 10−12) and 10p14 GATA3 (rs73635312[A], OR=0.74, P=2.4 × 10−16). Fine mapping reveals that two variants correlated with rs73635312[A] occur in conserved binding sites for the GATA3 transcription factor. In addition, expression microarrays and RNA-seq show that rs13014235[C] and a related SNP rs700635[C] are associated with expression of CASP8 splice variants in which sequences from intron 8 are retained. PMID:25855136

  19. Basal cell carcinoma in skin of color.

    PubMed

    Ahluwalia, Jesleen; Hadjicharalambous, Elena; Mehregan, Darius

    2012-04-01

    Non-melanoma skin cancer most commonly affects Caucasians, and only rarely affects darker-skinned individuals. However, skin cancer in these groups is associated with greater morbidity and mortality. Ultraviolet radiation is the major etiologic factor in basal cell carcinoma (BCC) and likely plays a pivotal role in the development of other forms of skin cancer. Yet it is commonly thought among patients as well as physicians that darker pigmentation inherently affords complete protection from skin cancer development. This low index of suspicion results in delayed diagnoses and poorer outcomes. This review follows a detailed computer search that cross-matched the diagnosis of BCC with skin color type in a large commercial dermatopatholo