Sample records for basalt source region

  1. Is plagioclase removal responsible for the negative Eu anomaly in the source regions of mare basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, C.K.; Papike, J.J.

    1989-12-01

    The nearly ubiquitous presence of a negative Eu anomaly in the mare basalts has been suggested to indicate prior separation and flotation of plagioclase from the basalt source region during its crystallization from a lunar magma ocean (LMO). Are there any mare basalts derived from a mantle source which did not experience prior plagioclase separation Crystal chemical rationale for REE substitution in pyroxene suggests that the combination of REE size and charge, M2 site characteristics of pyroxene, fO{sub 2}, magma chemistry, and temperature may account for the negative Eu anomaly in the source region of some types of primitive, lowmore » TiO{sub 2} mare basalts. This origin for the negative Eu anomaly does not preclude the possibility of the LMO as many mare basalts still require prior plagioclase crystallization and separation and/or hybridization involving a KREEP component.« less

  2. Using Apollo 17 high-Ti mare basalts as windows to the lunar mantle

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Taylor, Lawrence A.

    1992-01-01

    The Apollo 17 high-Ti mare basalts are derived from source regions containing plagioclase that was not retained in the residue. Ilmenite appears to remain as a residual phase, but plagioclase is exhausted. The open-system behavior of the type B2 basalts results in slightly higher Yb/Hf and La/Sm ratios. The nature of the added component is not clear, but may be a KREEP derivative or residue. The recognition of plagioclase in the source(s) of these basalts suggests that the location of the source region(s) would be more likely to be less than 150 km (i.e., closer to the plagioclase-rich crust), which would allow incorporation of plagioclase into the source through incomplete separation of crustal feldspar.

  3. A chemical model for generating the sources of mare basalts - Combined equilibrium and fractional crystallization of the lunar magmasphere

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Taylor, Lawrence A.; Neal, Clive R.

    1992-01-01

    A chemical model for simulating the sources of the lunar mare basalts was developed by considering a modified mafic cumulate source formed during the combined equilibrium and fractional crystallization of a lunar magma ocean (LMO). The parameters which influence the initial LMO and its subsequent crystallization are examined, and both trace and major elements are modeled. It is shown that major elements tightly constrain the composition of mare basalt sources and the pathways to their creation. The ability of this LMO model to generate viable mare basalt source regions was tested through a case study involving the high-Ti basalts.

  4. Planetary basalts - Chemistry and petrology

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Bence, A. E.

    1979-01-01

    Recent literature (1975-1978) on planetary basalts is reviewed. Terrestrial basalts are considered in relation to Nd and Sm isotopic studies, magma mixing, chemical and mineralogical heterogeneities in basalt source regions, and partial melting controls on basalt chemistry. Attention is also given to features of mare basalts, eucrites, and comparisons of basalts for the earth, the moon, and the parent body of basaltic achondrites.

  5. Lunar mare volcanism: Mixing of distinct, mantle source regions with KREEP-like component

    NASA Technical Reports Server (NTRS)

    Shervais, John W.; Vetter, Scott K.

    1993-01-01

    Mare basalts comprise less than 1% of the lunar crust, but they constitute our primary source of information on the moon's upper mantle. Compositional variations between mare basalt suites reflect variations in the mineralogical and geochemical composition of the lunar mantle which formed during early lunar differentiation (4.5-4.4 AE). Three broad suites of mare basalt are recognized: very low-Ti (VLT) basalts with TiO2 less than 1 wt%, low-Ti basalts with TiO2 = 2-4 wt%, and high-Ti basalts with TiO2 = 10-14 wt%. Important subgroups include the Apollo 12 ilmenite basalts (TiO2 = 5-6 wt%), aluminous low-Ti mare basalts (TiO2 = 2-4 wt%, Al2O3 = 10-14 wt%), and the newly discovered Very High potassium (VHK) aluminous low-Ti basalts, with K2O = 0.4-1.5 wt%. The mare basalt source region has geochemical characteristics complementary to the highlands crust and is generally thought to consist of mafic cumulates from the magma ocean which formed the felsic crust by feldspar flotation. The progressive enrichment of mare basalts in Fe/Mg, alkalis, and incompatible trace elements in the sequence VLT basalt yields low-Ti basalt yields high-Ti basalt is explained by the remelting of mafic cumulates formed at progressively shallower depths in the evolving magma ocean. This model is also consistent with the observed decrease in compatible element concentrations and the progressive increase in negative Eu anomalies.

  6. K-Rich Basaltic Sources beneath Ultraslow Spreading Central Lena Trough in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ling, X.; Snow, J. E.; Li, Y.

    2016-12-01

    Magma sources fundamentally influence accretion processes at ultraslow spreading ridges. Potassium enriched Mid-Ocean Ridge Basalt (K-MORB) was dredged from the central Lena Trough (CLT) in the Arctic Ocean (Nauret et al., 2011). Its geochemical signatures indicate a heterogeneous mantle source with probable garnet present under low pressure. To explore the basaltic mantle sources beneath the study area, multiple models are carried out predicting melting sources and melting P-T conditions in this study. P-T conditions are estimated by the experimental derived thermobarometer from Hoang and Flower (1998). Batch melting model and major element model (AlphaMELTs) are used to calculate the heterogeneous mantle sources. The modeling suggests phlogopite is the dominant H2O-K bearing mineral in the magma source. 5% partial melting of phlogopite and amphibole mixing with depleted mantle (DM) melt is consistent with the incompatible element pattern of CLT basalt. P-T estimation shows 1198-1212oC/4-7kbar as the possible melting condition for CLT basalt. Whereas the chemical composition of north Lena Trough (NLT) basalt is similar to N-MORB, and the P-T estimation corresponds to 1300oC normal mantle adiabat. The CLT basalt bulk composition is of mixture of 40% of the K-MORB endmember and an N-MORB-like endmember similar to NLT basalt. Therefore the binary mixing of the two endmembers exists in the CLT region. This kind of mixing infers to the tectonic evolution of the region, which is simultaneous to the Arctic Ocean opening.

  7. Geochemical characterization of a Quaternary monogenetic volcano in Erciyes Volcanic Complex: Cora Maar (Central Anatolian Volcanic Province, Turkey)

    NASA Astrophysics Data System (ADS)

    Gencalioglu-Kuscu, Gonca

    2011-11-01

    Central Anatolian Volcanic Province (CAVP) is a fine example of Neogene-Quaternary post-collisional volcanism in the Alpine-Mediterranean region. Volcanism in the Alpine-Mediterranean region comprises tholeiitic, transitional, calc-alkaline, and shoshonitic types with an "orogenic" fingerprint. Following the orogenic volcanism, subordinate, within-plate alkali basalts ( sl) showing little or no orogenic signature are generally reported in the region. CAVP is mainly characterized by widespread calc-alkaline andesitic-dacitic volcanism with orogenic trace element signature, reflecting enrichment of their source regions by subduction-related fluids. Cora Maar (CM) located within the Erciyes pull-apart basin, is an example to numerous Quaternary monogenetic volcanoes of the CAVP, generally considered to be alkaline. Major and trace element geochemical and geochronological data for the CM are presented in comparison with other CAVP monogenetic volcanoes. CM scoria is basaltic andesitic, transitional-calc-alkaline in nature, and characterized by negative Nb-Ta, Ba, P and Ti anomalies in mantle-normalized patterns. Unlike the "alkaline" basalts of the Mediterranean region, other late-stage basalts from the CAVP monogenetic volcanoes are classified as tholeiitic, transitional and mildly alkaline. They display the same negative anomalies and incompatible element ratios as CM samples. In this respect, CM is comparable to other CAVP monogenetic basalts ( sl), but different from the Meditterranean intraplate alkali basalts. Several lines of evidence suggest derivation of CM and other CAVP monogenetic basalts from shallow depths within the lithospheric mantle, that is from a garnet-free source. In a wider regional context, CAVP basalts ( sl) are comparable to Apuseni (Romania) and Big Pine (Western Great Basin, USA) volcanics, except the former have depleted Ba contents. This is a common feature for the CAVP volcanics and might be related to crustal contamination or source characteristics. Indeed, HFS and other incompatible element ratios suggest the role of crustal contamination in the genesis of the CAVP monogenetic basalts.

  8. Mapping the Concentration of Iron, Titanium, and Thorium in Mare Basalts in the Western Procellarum Region of the Moon

    NASA Technical Reports Server (NTRS)

    Flor, E. L.; Jolliff, B. L.; Gillis, J. J.

    2003-01-01

    Mare basalt flows in the Western Procellarum region (WPR) are extensive and include some of the youngest geologic features on the Moon. Compositional remote sensing by the Lunar Prospector gammaray spectrometer (LPGRS) indicates elevated Th concentrations in many of these flows relative to basalts sampled by the Apollo and Luna missions [1,2,3,4]. The primary goals of this investigation are to determine whether the Th enrichment in this region contributed to the extensive and prolonged volcanism in the WPR, and to determine whether the Th is inherent to the basalts themselves or a result of contamination from nonvolcanic material. Thorium enrichment indigenous to the basalts of the Western Procellarum Region would provide evidence that the general concentration of Th in the Procellarum region extends below the crust and possibly as deep as the sources for the basalts themselves.

  9. Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam

    NASA Astrophysics Data System (ADS)

    Hoang, Thi Hong Anh; Choi, Sung Hi; Yu, Yongjae; Pham, Trung Hieu; Nguyen, Kim Hoang; Ryu, Jong-Sik

    2018-01-01

    This study presents a comprehensive analysis of the major and trace element, mineral, and Sr, Nd, Pb and Mg isotopic compositions of late Cenozoic intraplate basaltic rocks from central and southern Vietnam. The Sr, Nd, and Pb isotopic compositions of these basalts define a tight linear array between Indian mid-ocean-ridge basalt (MORB)-like mantle and enriched mantle type 2 (EM2) components. These basaltic rocks contain low concentrations of CaO (6.4-9.7 wt%) and have high Fe/Mn ratios (> 60) and FeO/CaO-3MgO/SiO2 values (> 0.54), similar to partial melts derived from pyroxenite/eclogite sources. This similarity is also supported by the composition of olivine within these samples, which contains low concentration of Ca and high concentrations of Ni, and shows high Fe/Mn ratios. The basaltic rocks have elevated Dy/Yb ratios that fall within the range of melts derived from garnet lherzolite material, although their Yb contents are much higher than those of modeled melts derived from only garnet lherzolite material and instead plot near the modeled composition of eclogite-derived melts. The Vietnamese basaltic rocks have lighter δ26Mg values (- 0.38 ± 0.06‰) than is expected for the normal mantle (- 0.25 ± 0.07‰), and these values decrease with decreasing Hf/Hf* and Ti/Ti* ratios, indicating that these basalts were derived from a source containing carbonate material. On primitive mantle-normalized multi-element variation diagrams, the central Vietnamese basalts are characterized by positive Sr, Eu, and Ba anomalies. These basalts also plot within the pelagic sediment field in Pbsbnd Pb isotopic space. This suggests that the mantle source of the basalts contained both garnet peridotite and recycled oceanic crust. A systematic analysis of variations in geochemical composition in basalts from southern to central Vietnam indicates that the recycled oceanic crust (possibly the paleo-Pacific slab) source material contains varying proportions of gabbro, basalt, and sediment. The basalts from south-central Vietnam (12°N-14°N) may be dominated by the lowest portion of the residual slab that contains rutile-bearing plagioclase-rich gabbroic eclogite, whereas the uppermost portion of the recycled slab, including sediment and basaltic material with small amounts of gabbro, may be a major constituent of the source for the basalts within the central region of Vietnam (14°N-16°N). Finally, the southern region (10°N-12°N) contains basalts sourced mainly from recycled upper oceanic crust that is basalt-rich and contains little or no sediment.

  10. Germanium abundances in lunar basalts: Evidence of mantle metasomatism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickinson, T.; Taylor, G.J.; Keil, T.K.

    1988-01-01

    To fill in gaps in the present Ge data base, mare basalts were analyzed for Ge and other elements by RNAA and INAA. Mare basalts from Apollo 11, 12, 15, 17 landing sites are rather uniform in Ge abundance, but Apollo 14 aluminous mare basalts and KREEP are enriched in Ge by factors of up to 300 compared to typical mare basalts. These Ge enrichments are not associated with other siderophile element enrichments and, thus, are not due to differences in the amount of metal segregated during core formation. Based on crystal-chemical and inter-element variations, it does not appear thatmore » the observed Ge enrichments are due to silicate liquid immiscibility. Elemental ratios in Apollo 14 aluminous mare basalts, green and orange glass, average basalts and KREEP suggest that incorporation of late accreting material into the source regions or interaction of the magmas with primitive undifferentiated material is not a likely cause for the observed Ge enrichments. We speculate that the most plausible explanation for these Ge enrichments is complexing and concentration of Ge by F, Cl or S in volatile phases. In this manner, the KREEP basalt source regions may have been metasomatized and Apollo 14 aluminous mare basalt magmas may have become enriched in Ge by interacting with these metasomatized areas. The presence of volatile- and Ge-rich regions in the Moon suggests that the Moon was never totally molten. 71 refs., 1 fig., 6 tabs.« less

  11. Mare basalt magma source region and mare basalt magma genesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binder, A.B.

    1982-11-15

    Given the available data, we find that the wide range of mare basaltic material characteristics can be explained by a model in which: (1) The mare basalt magma source region lies between the crust-mantle boundary and a maximum depth of 200 km and consists of a relatively uniform peridotite containing 73--80% olivine, 11--14% pyroxene, 4--8% plagioclase, 0.2--9% ilmenite and 1--1.5% chromite. (2) The source region consists of two or more density-graded rhythmic bands, whose compositions grade from that of the very low TiO/sub 2/ magma source regions (0.2% ilmenite) to that of the very high TiO/sub 2/ magma source regionsmore » (9% ilmenite). These density-graded bands are proposed to have formed as co-crystallizing olivine, pyroxene, plagioclase, ilmenite, and chromite settled out of a convecting magma (which was also parental to the crust) in which these crystals were suspended. Since the settling rates of the different minerals were governed by Stoke's law, the heavier minerals settled out more rapidly and therefore earlier than the lighter minerals. Thus the crystal assemblages deposited nearest the descending side of each convection cell were enriched in heavy ilmenite and chromite with respect to lighter olivine and pyroxene and very much lighter plagioclase. The reverse being the case for those units deposited near the ascending sides of the convection cells.« less

  12. Mantle sources for Central Atlantic Magmatic Province basalts from Hf isotopes

    NASA Astrophysics Data System (ADS)

    Elkins, L. J.; Marzoli, A.; Bizimis, M.; Meyzen, C. M.; Callegaro, S.; Sorsen, N.; Lassiter, J. C.; Ernesto, M.

    2017-12-01

    The Central Atlantic Magmatic Province (CAMP) was one of the most voluminous LIP events in Earth history and likely triggered the end-Triassic mass extinction. The tectonic and mantle processes that produced such significant magmatic emplacement are thus of great interest. To further explore the origins of CAMP, we present new 176Hf/177Hf isotope data for a broad geographic sampling of CAMP dikes, sills, and basalt flows. We find that basaltic intrusions from the Carolinas in Eastern North America trend along a shallower slope than the terrestrial array on a diagram of 176Hf/177Hf vs. 143Nd/144Nd. This trend may reflect the presence of variable quantities of sediment-derived material in the mantle source region. This is consistent with previous suggestions that the asthenosphere beneath CAMP has been partially metasomatised by fluids derived from subducted sediments, as well as with isotopic trends observed in other LIP, such as Karoo [Jourdan et al., 2007, Jour. Petrology, doi:10.1093/petrology/egm010]. Distinct from the Carolina trend, we further observe that high-TiO2 basalts from Amazonia exhibit unusually radiogenic 176Hf/177Hf for a given 208Pb/206Pb ratio. The high-TiO­2 basalts, which trend towards EM1-type compositions, may be asthenospheric melts that have experienced the addition of melts from local subcontinental lithospheric mantle (SCLM). Similarly high-TiO2 CAMP rocks from Sierra Leone may likewise have incorporated enriched lithospheric melts of lamproite-like composition in the source region [Callegaro et al., JPet, accepted; GSA Abstract #302853, 2017]. Low-TiO2 basalts from the same region in Brazil and of similar age to the high-TiO2 basalts lack the observed radiogenic 176Hf/177Hf ratios. This suggests that the melt source region beneath Brazil was heterogeneous, containing variable material with relatively radiogenic 176Hf/177Hf ratios, perhaps due to the greater age of subcontinental lithosphere and the presence of garnet. It remains unclear, however, whether the hypothesized SCLM source represents lithospheric domains which are still intact, or if this material reentered the convecting mantle by delamination prior to melting.

  13. Derivation of Apollo 14 High-Al Basalts from Distinct Source Regions at Discrete Times: New Constraints

    NASA Technical Reports Server (NTRS)

    Neal, C. R.; Shih, C.-Y.; Reese, Y.; Nyquist, L. E.; Kramer, G. Y.

    2006-01-01

    Apollo 14 basalts occur predominantly as clasts in breccias, but represent the oldest volcanic products that were returned from the Moon [1]. These basalts are relatively enriched in Al2O3 (11-16 wt%) compared to other mare basalts (7-11 wt%) and were originally classified into 5 compositional groups [2,3]. Neal et al. [4] proposed that a continuum of compositions existed. These were related through assimilation (of KREEP) and fractional crystallization (AFC). Age data, however, show that at least three volcanic episodes are recorded in the sample collection [1,5,6]. Recent work has demonstrated that there are three, possibly four groups of basalts in the Apollo 14 sample collection that were erupted from different source regions at different times [7]. This conclusion was based upon incompatible trace element (ITE) ratios of elements that should not be fractionated from one another during partial melting (Fig. 1). These groups are defined as Group A (Groups 4 & 5 of [3]), Group B (Groups 1 & 2 of [3]), and Group C (Group 3 of [3]). Basalt 14072 is distinct from Groups A-C.

  14. The role of water in the petrogenesis of Marina trough magmas

    NASA Astrophysics Data System (ADS)

    Stolper, Edward; Newman, Sally

    1994-02-01

    Most variations in composition among primitive basalts from the Mariana back-arc trough can be explained by melting mixtures of an N-type mid-ocean ridge basalt (NMORB) mantle source and an H2O rich component, provided the degree of melting is positively and approximately linearly correlated with the proportion of the H2O-rich component in the mixture. We conclude that the degrees of melting by which Mariana trough magmas are generated increase from magmas similar to NMORB, through more H2O-enriched basalts, to 'arc-like' basalts, and that this increase is due to the lowering of the solidus of mantle peridotite that accompanies addition of the H2O-rich component. The H2O-rich component is likely to be ultimately derived from fluid from a subducting slab, but we propose that by the time fluids reach the source regions of Mariana trough basalts, they have interacted with sufficient mantle material that for all but the most incompatible of elements (with respect to fluid-mantle interaction), they are in equilibrium with the mantle. In contrast, fluids added to the source regions of Mariana island-arc magmas have typically interacted with less mantle and thus retain the signature of slab-derived fluids to varying degrees for all but the most compatible elements. Primitive Mariana arc basalts can be generated by melting mixtures of such incompletely exchanged slab-derived fluids and sources similar to NMORB-type mantle sources, but the degrees of melting are typically higher than those of Mariana trough NMORB and the sources have been variably depleted relative to the back-arc sources by previous melt extraction. This depletion may be related to earlier extraction of back-arc basin magmas or may evolve by repeated fluxing of the sources as fluid is continually added to them in the regions of arc magma generation. If fluid with partitioning behavior relative to the solid mantle similar to that deduced for the H2O-rich component involved in the generation of Mariana trough basalts were extracted from primitive mantle, the residual mantle would have many of the minor and trace element characteristics of typical oceanic upper mantle; primitive mantle enriched in such fluid would be a satisfactory source for the continental crust in terms of its trace and minor element chemical composition.

  15. Using Intensive Variables to Constrain Magma Source Regions

    NASA Astrophysics Data System (ADS)

    Edwards, B. R.; Russell, J. K.

    2006-05-01

    In the modern world of petrology, magma source region characterization is commonly the realm of trace element and isotopic geochemistry. However, major element analyses of rocks representing magmatic compositions can also be used to constrain source region charactertistics, which enhance the results of isotopic and trace element studies. We show examples from the northern Cordilleran volcanic province (NCVP), in the Canadian Cordillera, where estimations of thermodynamic intensive variables are used to resolve different source regions for mafic alkaline magmas. We have taken a non-traditional approach to using the compositions of three groups of mafic, alkaline rocks to characterize the source regions of magmas erupted in the NCVP. Based on measured Fe2O3 and FeO in rocks from different locations, the Atlin volcanic district (AVD), the Fort Selkirk volcanic complex (FSVC), the West Tuya volcanic field, (WTVF), we have estimated oxygen fugacities (fO2) for the source regions of magmas based on the model of Kress and Carmichael (1991) and the computational package MELTS/pMelts (Ghiorso and Sack, 1995; Ghiorso et al., 2002). We also have used Melts/pMelts to estimate liquidus conditions for the compositions represented by the samples as well as activities of major element components. The results of our calculations are useful for distinguishing between three presumably different magma series: alkaline basalts, basanites, and nephelinites (Francis and Ludden, 1990; 1995). Calculated intensive variables (fO2, activities SiO2, KAlSiO4, Na2SiO3) show clear separation of the samples into two groups: i) nephelinites and ii) basanites/alkaline basalts. The separation is especially evident on plots of log fO2 versus activity SiO2. The source region for nephelinitic magmas in the AVD is up to 2 log units more oxidized than that for the basanites/basalts as well as having a distinctly lower range of activities of SiO2. Accepting that our assumptions about the magmas representing source region conditions are valid, these thermodynamic constraints on the source regions clearly indicate two things: the nephelinites and basanites/basalts could not have originated from the same source regions, and the basanites and basalts could have originated from the same source regions. We suggest that computation of intensive variables for magma source regions is a logical complement to standard trace element and isotopic studies. -Francis, D. and Ludden, J., (1990) The mantle source for olivine nephelinite, basanite and alkaline olivine basalts at Fort Selkirk, Yukon, Canada: Journal of Petrology, 31, p. 371-400. -Francis, D. and Ludden, J., (1995) The signature of amphibole in mafic alkaline lavas, a study in the northern Canadian Cordillera: Journal of Petrology, 36, p. 1171-1191. -Ghiorso, MS., and Sack, RO. (1995) Chemical Mass Transfer in Magmatic Processes. IV. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures. Contributions to Mineralogy and Petrology, 119, 197-212. -Ghiorso, MS., Hirschmann, MM., Reiners, PW., and Kress, VC. III (2002) The pMELTS: An revision of MELTS aimed at improving calculation of phase relations and major element partitioning involved in partial melting of the mantle at pressures up to 3 GPa. Geochemistry, Geophysics, Geosystems 3(5), 10.1029/2001GC000217.

  16. Implications of Nb/U, Th/U and Sm/Nd in plume magmas for the relationship between continental and oceanic crust formation and the development of the depleted mantle

    NASA Astrophysics Data System (ADS)

    Campbell, Ian H.

    2002-05-01

    The Nb/U and Th/U of the primitive mantle are 34 and 4.04 respectively, which compare with 9.7 and 3.96 for the continental crust. Extraction of continental crust from the mantle therefore has a profound influence on its Nb/U but little influence on its Th/U. Conversely, extraction of midocean ridge-type basalts lowers the Th/U of the mantle residue but has little influence on its Nb/U. As a consequence, variations in Th/U and Nb/U with Sm/Nd can be used to evaluate the relative importance of continental and basaltic crust extraction in the formation of the depleted (Sm/Nd enriched) mantle reservoir. This study evaluates Nb/U, Th/U, and Sm/Nd variations in suites of komatiites, picrites, and their associated basalts, of various ages, to determine whether basalt and/or continental crust have been extracted from their source region. Emphasis is placed on komatiites and picrites because they formed at high degrees of partial melting and are expected to have Nb/U, Th/U, and Sm/Nd that are essentially the same as the mantle that melted to produce them. The results show that all of the studied suites, with the exception of the Barberton, have had both continental crust and basaltic crust extracted from their mantle source region. The high Sm/Nd of the Gorgona and Munro komatiites require the elevated ratios seen in these suites to be due primarily to extraction of basaltic crust from their source regions, whereas basaltic and continental crust extraction are of subequal importance in the source regions of the Yilgarn and Belingwe komatiites. The Sm/Nd of modern midocean ridge basalts lies above the crustal extraction curve on a plot of Sm/Nd against Nb/U, which requires the upper mantle to have had both basaltic and continental crust extracted from it. It is suggested that the extraction of the basaltic reservoir from the mantle occurs at midocean ridges and that the basaltic crust, together with its complementary depleted mantle residue, is subducted to the core-mantle boundary. When the two components reach thermal equilibrium with their surroundings, the lighter depleted component separates from the denser basaltic component. Both are eventually returned to the upper mantle, but the lighter depleted component has a shorter residence time in the lower mantle than the denser basaltic component. If the difference in the recycling times for the basaltic and depleted components is ˜1.0 to 1.5 Ga, a basaltic reservoir is created in the lower mantle, equivalent to the amount of basalt that is subducted in 1.0 to 1.5 Ga, and that reservoir is isolated from the upper mantle. It is this reservoir that is responsible for the Sm/Nd ratio of the upper mantle lying above the trend predicted by extraction of continental crust on the plot of Sm/Nd against Nb/U.

  17. Basalt generation at the Apollo 12 site. Part 2: Source heterogeneity, multiple melts, and crustal contamination

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Hacker, Matthew D.; Snyder, Gregory A.; Taylor, Lawrence A.; Liu, Yun-Gang; Schmitt, Roman A.

    1994-01-01

    The petrogenesis of Apollo 12 mare basalts has been examined with emphasis on trace-element ratios and abundances. Vitrophyric basalts were used as parental compositions for the modeling, and proportions of fractionating phases were determined using the MAGFOX prograqm of Longhi (1991). Crystal fractionation processes within crustal and sub-crustal magma chambers are evaluated as a function of pressure. Knowledge of the fractionating phases allows trace-element variations to be considered as either source related or as a product of post-magma-generation processes. For the ilmenite and olivine basalts, trace-element variations are inherited from the source, but the pigeonite basalt data have been interpreted with open-system evolution processes through crustal assimilation. Three groups of basalts have been examined: (1) Pigeonite basalts-produced by the assimilation of lunar crustal material by a parental melt (up to 3% assimilation and 10% crystal fractionation, with an 'r' value of 0.3). (2) Ilmenite basalts-produced by variable degrees of partial melting (4-8%) of a source of olivine, pigeonite, augite, and plagioclase, brought together by overturn of the Lunar Magma Ocean (LMO) cumulate pile. After generation, which did not exhaust any of the minerals in the source, these melts experienced closed-system crystal fractionation/accumulation. (3) Olivine basalts-produced by variable degrees of partial melting (5-10%) of a source of olivine, pigeonite, and augite. After generation, again without exhausting any of the minerals in the source, these melts evolved through crystal accumulation. The evolved liquid counterparts of these cumulates have not been sampled. The source compositions for the ilmenite and olivine basalts were calculated by assuming that the vitrophyric compositions were primary and the magmas were produced by non-modal batch melting. Although the magnitude is unclear, evaluation of these source regions indicates that both be composed of early- and late-stage Lunar Magma Ocean (LMO) cumulates, requiring an overturn of the cumulate pile.

  18. Mantle source heterogeneity of the Early Jurassic basalt of eastern North America

    NASA Astrophysics Data System (ADS)

    Gregory Shellnutt, J.; Dostal, Jaroslav; Yeh, Meng-Wan

    2018-04-01

    One of the defining characteristics of the basaltic rocks from the Early Jurassic Eastern North America (ENA) sub-province of the Central Atlantic Magmatic Province (CAMP) is the systematic compositional variation from South to North. Moreover, the tectono-thermal regime of the CAMP is debated as it demonstrates geological and structural characteristics (size, radial dyke pattern) that are commonly associated with mantle plume-derived mafic continental large igneous provinces but is considered to be unrelated to a plume. Mantle potential temperature ( T P) estimates of the northern-most CAMP flood basalts (North Mountain basalt, Fundy Basin) indicate that they were likely produced under a thermal regime ( T P ≈ 1450 °C) that is closer to ambient mantle ( T P ≈ 1400 °C) conditions and are indistinguishable from other regions of the ENA sub-province ( T Psouth = 1320-1490 °C, T Pnorth = 1390-1480 °C). The regional mantle potential temperatures are consistent along the 3000-km-long ENA sub-province suggesting that the CAMP was unlikely to be generated by a mantle plume. Furthermore, the mantle potential temperature calculation using the rocks from the Northern Appalachians favors an Fe-rich mantle (FeOt = 8.6 wt %) source, whereas the rocks from the South Appalachians favor a less Fe-rich (FeOt = 8.3 wt %) source. The results indicate that the spatial-compositional variation of the ENA basaltic rocks is likely related to differing amounts of melting of mantle sources that reflect the uniqueness of their regional accreted terranes (Carolinia and West Avalonia) and their post-accretion, pre-rift structural histories.

  19. Investigating the Mantle Source of the Lunar Crater Volcanic Field, Nevada: Evidence of a Thermal Plume?

    NASA Astrophysics Data System (ADS)

    Lee, J. W.; Roden, M.

    2016-12-01

    The Easy Chair Crater (ECC), located within the Lunar Crater Volcanic Field (LCVF) in central Nevada is particularly interesting because of the unusually high equilibrium temperatures and strain recorded by the mantle-derived xenoliths at LCVF1. In addition, a gravity and elevation anomaly suggests the possibility of an underlying thermal plume in the region2. In order to determine if the rocks at ECC are geochemically similar to rocks from other plume-related regions, we analyzed melt inclusions and olivine phenocrysts collected from basalts near the crater. Chlorine amounts in melt inclusions were normalized to the highly incompatible K to produce a ratio that is insensitive to crystallization within or along the walls of the inclusion3. Because Cl is implicated in lithosphere recycling, the Cl/K ratio can be used to differentiate magmatic source components. Initial results (Fig. 1) indicate that basalts from ECC are geochemically more similar to ocean island basalts than to MORB or arc basalts. Elemental ratios in olivine phenocrysts from basaltic magmas can be used to determine the petrology of the source rock for particular silicate melts. In turn, petrology of mantle sources is thought to correlate with source nature (e.g., plume versus upper mantle)4. Specifically, Ni and Mn amounts were evaluated in order to determine if magma sources were pyroxenite-rich. Preliminary calculations of the wt. fraction of pyroxenite in the source of ECC basalts ranged from 0.13 to 0.68 indicating the possibility of a significant amount of pyroxenite in the magmatic source which would be expected if a plume was present beneath LCVF. References:1Smith, D. (2000) JGR 105: 16769; 2Saltus, R.W. & Thompson, G.A. (1995) Tectonics 14:1235; 3Patiño Douce, A.E. & Roden, M.F. (2006) Geochim Cosmochim Acta 70: 3173; 4Gurenko et al. (2010) Contrib Mineral Petrol 159: 689

  20. Pyroclastic Deposits in Floor-Fractured Craters: A Unique Style or Lunar Basaltic Volcanism?

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; DonaldsonHanna, Kerri L.; Pieters, Carle M.; Moriarty, Daniel P.; Greenhagen, Benjamin T.; Bennett, Kristen A.; Kramer, Georgiana Y.; Paige, David A.

    2013-01-01

    The lunar maria were formed by effusive fissure flows of low-viscosity basalt. Regional pyroclastic deposits were formed by deep-sourced fire-fountain eruptions dominated by basaltic glass. Basaltic material is also erupted from small vents within floor-fractured impact craters. These craters are characterized by shallow, flat floors cut by radial, concentric and/or polygonal fractures. Schultz [1] identified and classified over 200 examples. Low albedo pyroclastic deposits originate from depressions along the fractures in many of these craters.

  1. Source, evolution and emplacement of Permian Tarim Basalts: Evidence from U-Pb dating, Sr-Nd-Pb-Hf isotope systematics and whole rock geochemistry of basalts from the Keping area, Xinjiang Uygur Autonomous region, northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Dayu; Zhou, Taofa; Yuan, Feng; Jowitt, Simon M.; Fan, Yu; Liu, Shuai

    2012-04-01

    Permian basalts distribute at least 250,000 km2, and underlie the southwest Tarim Basin in Xinjiang Uygur Autonomous region, northwest China. This vast accumulation of basalt is the main part of the Tarim Large Igneous Province (LIP). The basaltic units in the Lower Permian Kupukuziman and Kaipaizileike Formations in the Keping area, Tarim Basin; were the best exposure of the Permian basalt sequence in the basin. LA-ICP-MS U-Pb dating of zircon from the basal basaltic unit in the section gives an age of 291.9 ± 2.2 Ma (MSWD = 0.30, n = 17); this age, combined with previously published geochronological data, indicates that the basalts in the Tarim Basin were emplaced between 292 Ma and 272 Ma, with about 90% of the basalts being emplaced between 292 and 287 Ma. Basalts from the Keping area have high FeOT (10.8-18.6 wt.%), low Mg#s (0.26-0.60), and exhibit primitive mantle normalized patterns with positive Pb, P and Ti but negative Zr, Y and Ta anomalies. The basalts from both formations have similar 206Pb/204Pb (18.192-18.934), 207Pb/204Pb (15.555-15.598) and 208Pb/204Pb (38.643-38.793) ratios. The basalts also have high ɛSr(t) (45.7-62.1), low ɛNd(t) (-3.6 to -2.2) and low zircon ɛHf(t) (-4.84 to -0.65) values. These characteristics are typical of alkali basalts and suggest that the basalts within the Tarim Basin were derived from an OIB-type mantle source and interacted with enriched mantle (EMI-type) before emplacement. Rare earth element systematics indicate that the parental melts for the basalts were high-degree partial melts derived from garnet lherzolite mantle at the base of the lithosphere. Prior to emplacement, the Tarim Permian Basalts (TPB) underwent fractional crystallization and assimilated crustal material; the basalts were finally emplaced during crustal extension in an intra-plate setting. The wide distribution, deep source and high degree partial melting of the TPB was consistent with a mantle plume origin. The TPB and other coeval igneous rocks in the Tarim Basin constitute a Permian LIP formed by a mantle plume in a similar fashion to the plume-related Emeishan LIP in southwest China.

  2. New data supporting a Sm-146,147-Nd-142,143 formation interval for the lunar mantle

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Wiesmann, H.; Bansal, B. M.; Shih, C.-Y.

    1994-01-01

    Very small variations in Nd-142 abundance in SNC meteorites lunar basalts, and a terrestrial supracrustal rock, have been attributed to the decay of 103 Ma Sm-146 initially present in basalt source regions in varying abundances as a result of planetary differentiation. We previously interpreted variations in Nd-142 abundances in two Apollo 17 high-Ti basalts, three Apollo 12 low-Ti basalts, and two KREEP basalts as defining an isochron giving a formation interval of approximately 94 Ma for the lunar mantle. Here we report new data for a third Apollo 17 high-Ti basalt, two Apollo 15 low-Ti basalts, the VLT basaltic lunar meteorite A881757 (formerly Asuka 31), basalt-like KREEP impact melt rocks 14310 and 14078, and three terrestrial rock standards. Those lunar samples which were not exposed to large lunar surface thermal neutron fluences yield a revised mantle formation interval of 237 +/- 64 Ma.

  3. Curiosity at Gale crater, Mars: characterization and analysis of the Rocknest sand shadow.

    PubMed

    Blake, D F; Morris, R V; Kocurek, G; Morrison, S M; Downs, R T; Bish, D; Ming, D W; Edgett, K S; Rubin, D; Goetz, W; Madsen, M B; Sullivan, R; Gellert, R; Campbell, I; Treiman, A H; McLennan, S M; Yen, A S; Grotzinger, J; Vaniman, D T; Chipera, S J; Achilles, C N; Rampe, E B; Sumner, D; Meslin, P-Y; Maurice, S; Forni, O; Gasnault, O; Fisk, M; Schmidt, M; Mahaffy, P; Leshin, L A; Glavin, D; Steele, A; Freissinet, C; Navarro-González, R; Yingst, R A; Kah, L C; Bridges, N; Lewis, K W; Bristow, T F; Farmer, J D; Crisp, J A; Stolper, E M; Des Marais, D J; Sarrazin, P

    2013-09-27

    The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.

  4. Workshop on Mare Volcanism and Basalt Petrogenesis: Astounding Fundamental Concepts (AFC) Developed Over the Last Fifteen Years

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A. (Editor); Longi, John (Editor)

    1991-01-01

    Papers presented at the workshop on mare volcanism and basalt petrogenesis are compiled. The discussion of recent ideas and concepts within the context of this workshop permitted to catch up on the developments over the last 15 years. The following subject areas were covered: (1) geological setting; (2) magma evolution and source regions; (3) magma source and ascent processes; and (4) history of volcanism.

  5. Sr isotopic composition of Afar volcanics and its implication for mantle evolution

    NASA Astrophysics Data System (ADS)

    Barberi, F.; Civetta, L.; Varet, J.

    1980-10-01

    Investigations of Rb-Sr systematics of basalts from the Afar depression (Ethiopia) indicate the presence of a heterogeneous mantle source region. The Sr isotopic compositions of the basalts from the Afar axial and transverse ranges identify source regions which are enriched in LIL elements and radiogenic Sr (axial ranges) and others which are relatively depleted (transverse ranges). Sr isotopic composition of basalts from the Red Sea, Gulf of Aden and Gulf of Tadjoura, which range from 0.70300 to 0.70340 are also reported and compared with the more radiogenic Afar region, which is characterized by 87Sr/ 86Sr ranging from 0.70328 to 0.70410. Available geochemical and isotopic data suggest that a relation exists between magma composition and the advancement of the rifting process through progressive lithosphere attenuation leading to continental break-up. However, the petrogenetic process is not simple and probably implies a vertically zoned mantle beneath the Afar region. Sr isotopic evidence suggests that the vertically zoned mantle is more radiogenic and enriched in LIL elements in its upper part.

  6. Very high potassium (VHK) basalt - Complications in mare basalt petrogenesis

    NASA Technical Reports Server (NTRS)

    Shervais, J. W.; Taylor, L. A.; Laul, J. C.; Shih, C.-Y.; Nyquist, L. E.

    1985-01-01

    The first comprehensive report on the petrology and geochemistry of Apollo 14 VHK (Very High Potassium) basalts and their implications for lunar evolution is presented. The reported data are most consistent with the hypothesis that VHK basalts formed through the partial assimilation of granite by a normal low-Ti, high-Al mare basalt magma. Assimilation was preceded by the diffusion-controlled exchange of alkalis and Ba between basalt magma and the low-temperature melt fraction of the granite. Hypotheses involving volatile/nonvolatile fractionations or long-term enrichment of the source regions in K are inconsistent with the suprachondritic Ba/La ratios and low initial Sr-87/Sr-86 ratios of VHK basalt. An important implication of this conclusion is that granite should be a significant component of the lunar crust at the Apollo 14 site.

  7. Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow

    NASA Technical Reports Server (NTRS)

    Blake, David F.; Morris, Richard V.; Kocurek, G.; Morrison, S. M.; Downs, R. T.; Bish, D.; Ming, D. W.; Edgett, K. S.; Rubin, D.; Goetz, W.; hide

    2013-01-01

    The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MER) Spirit and Opportunity. The fraction of sand <150 micron in size contains approx. 55% crystalline material consistent with a basaltic heritage, and approx. 45% X-ray amorphous material. The amorphous component of Rocknest is Fe-rich and Si-poor, and is the host of the volatiles (H2O, O2, SO2, CO2, and Cl) detected by the Surface Analysis at Mars (SAM) instrument and of the fine-grained nanophase oxide (npOx) component first described from basaltic soils analyzed by MER. The similarity between soils and aeolian materials analyzed at Gusev crater, Meridiani Planum and Gale crater implies locally sourced, globally similar basaltic materials, or globally and regionally sourced basaltic components deposited locally at all three locations.

  8. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations. Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, B.M.; Wohletz, K.H.; Vaniman, D.T.

    1986-01-01

    Volcanic hazard investigations during FY 1984 focused on five topics: the emplacement mechanism of shallow basalt intrusions, geochemical trends through time for volcanic fields of the Death Valley-Pancake Range volcanic zone, the possibility of bimodal basalt-rhyolite volcanism, the age and process of enrichment for incompatible elements in young basalts of the Nevada Test Site (NTS) region, and the possibility of hydrovolcanic activity. The stress regime of Yucca Mountain may favor formation of shallow basalt intrusions. However, combined field and drill-hole studies suggest shallow basalt intrusions are rare in the geologic record of the southern Great Basin. The geochemical patterns ofmore » basaltic volcanism through time in the NTS region provide no evidence for evolution toward a large-volume volcanic field or increases in future rates of volcanism. Existing data are consistent with a declining volcanic system comparable to the late stages of the southern Death Valley volcanic field. The hazards of bimodal volcanism in this area are judged to be low. The source of a 6-Myr pumice discovered in alluvial deposits of Crater Flat has not been found. Geochemical studies show that the enrichment of trace elements in the younger rift basalts must be related to an enrichment of their mantle source rocks. This geochemical enrichment event, which may have been metasomatic alteration, predates the basalts of the silicic episode and is, therefore, not a young event. Studies of crater dimensions of hydrovolcanic landforms indicate that the worst case scenario (exhumation of a repository at Yucca Mountain by hydrovolcanic explosions) is unlikely. Theoretical models of melt-water vapor explosions, particularly the thermal detonation model, suggest hydrovolcanic explosion are possible at Yucca Mountain. 80 refs., 21 figs., 5 tabs.« less

  9. A lithospheric instability origin for Columbia River flood basalts and Wallowa Mountains uplift in northeast Oregon.

    PubMed

    Hales, T C; Abt, D L; Humphreys, E D; Roering, J J

    2005-12-08

    Flood basalts appear to form during the initiation of hotspot magmatism. The Columbia River basalts (CRB) represent the largest volume of flood basalts associated with the Yellowstone hotspot, yet their source appears to be in the vicinity of the Wallowa Mountains, about 500 km north of the projected hotspot track. These mountains are composed of a large granitic pluton intruded into a region of oceanic lithosphere affinity. The elevation of the interface between Columbia River basalts and other geological formations indicates that mild pre-eruptive subsidence took place in the Wallowa Mountains, followed by syn-eruptive uplift of several hundred metres and a long-term uplift of about 2 km. The mapped surface uplift mimics regional topography, with the Wallowa Mountains in the centre of a 'bull's eye' pattern of valleys and low-elevation mountains. Here we present the seismic velocity structure of the mantle underlying this region and erosion-corrected elevation maps of lava flows, and show that an area of reduced mantle melt content coincides with the 200-km-wide topographic uplift. We conclude that convective downwelling and detachment of a compositionally dense plutonic root can explain the timing and magnitude of Columbia River basalt magmatism, as well as the surface uplift and existence of the observed melt-depleted mantle.

  10. Origin and Role of Recycled Crust in Flood Basalt Magmatism: Case Study of the Central East Greenland Rifted Margin

    NASA Astrophysics Data System (ADS)

    Brown, E.; Lesher, C. E.

    2015-12-01

    Continental flood basalts (CFB) are extreme manifestations of mantle melting derived from chemically/isotopically heterogeneous mantle. Much of this heterogeneity comes from lithospheric material recycled into the convecting mantle by a range of mechanisms (e.g. subduction, delamination). The abundance and petrogenetic origins of these lithologies thus provide important constraints on the geodynamical origins of CFB magmatism, and the timescales of lithospheric recycling in the mantle. Basalt geochemistry has long been used to constrain the compositions and mean ages of recycled lithologies in the mantle. Typically, this work assumes the isotopic compositions of the basalts are the same as their mantle source(s). However, because basalts are mixtures of melts derived from different sources (having different fusibilities) generated over ranges of P and T, their isotopic compositions only indirectly represent the isotopic compositions of their mantle sources[1]. Thus, relating basalts compositions to mantle source compositions requires information about the melting process itself. To investigate the nature of lithologic source heterogeneity while accounting for the effects of melting during CFB magmatism, we utilize the REEBOX PRO forward melting model[2], which simulates adiabatic decompression melting in lithologically heterogeneous mantle. We apply the model to constrain the origins and abundance of mantle heterogeneity associated with Paleogene flood basalts erupted during the rift-to-drift transition of Pangea breakup along the Central East Greenland rifted margin of the North Atlantic igneous province. We show that these basalts were derived by melting of a hot, lithologically heterogeneous source containing depleted, subduction-modified lithospheric mantle, and <10% recycled oceanic crust. The Paleozoic mean age we calculate for this recycled crust is consistent with an origin in the region's prior subduction history, and with estimates for the mean age of recycled crust in the modern Iceland plume[3]. These results suggest that this lithospheric material was not recycled into the lower mantle before becoming entrained in the Iceland plume. [1] Rudge et al. (2013). GCA, 114, p112-143; [2] Brown & Lesher (2014). Nat. Geo., 7, p820-824; [3] Thirlwall et al. (2004). GCA, 68, p361-386

  11. Midcontinent rift volcanism in the Lake Superior region: Sr, Nd, and Pb isotopic evidence for a mantle plume origin

    USGS Publications Warehouse

    Nicholson, S.W.; Shirey, S.B.

    1990-01-01

    Between 1091 and 1098 Ma, most of a 15- to 20-km thickness of dominantly tholeiitic basalt erupted in the Midcontinent Rift System of the Lake Superior region, North America. The Portage Lake Volcanics in Michigan, which are the younget MRS flood basalts, fall into distinctly high- and low-TiO2 types having different liquid lines of descent. Incompatible trace elements in both types of tholeiites are enriched compared to depleted or primitive mantle and both basalt types are isotopically indistinguishable. The isotopic enrichment of the MRS source compared to depleted mantle is striking and must have occurred at least 700 m.y. before 1100 Ma. There are two likely sources for such magmatism: subcontinental lithospheric mantle enriched during the early Proterozoic or enriched mantle derived from an upwelling plume. Decompression melting of an upwelling enriched mantle plume in a region of lithosphere thinned by extension could have successfully generated the enormous volume (850 ?? 103 km3) of relatively homogeneous magma in a restricted time interval. -from Authors

  12. The Lowest δ7Li Yet Recorded in MORB Glasses: The Connection with Oceanic Core Complex Formation, Refractory Rutile-bearing Eclogitic Mantle Sources and Melt Supply

    NASA Astrophysics Data System (ADS)

    Casey, J. F.; Gao, Y.; Benavidez, R.; Dragoi, C.

    2010-12-01

    The region between 12°N and 16°N along the Mid-Atlantic Ridge is known for its prolific development of oceanic core complexes and for a geochemical anomaly centered at ~14°N. We examine the correlation of the geochemical anomaly with a region characterized by low magma supply. Basalt glasses over the geochemical anomaly are unusual in exhibiting E-MORB to T-MORB HIMU-DMM isotopic gradients. The most enriched MORBs exhibit positive Ta and Nb anomalies and negative Th and Pb anomalies that are similar to some OIB basalts. Some more primitive basalts exhibit positive Ti, Sr and Eu anomalies. The center of the geochemical anomaly is characterized by elevated La/Sm ratios that are strongly correlated with Nb/La, Nb/Nb*, Ta/Ta* and Sr, Nd, Pb isotopic anomalies. In addition, we have recently documented a regional anomaly in δ7Li, with the lowest values ever recorded in MORB glasses near the center of the anomaly. We interpret this data to indicate that the mantle source in the 12-16°N region of the Mid-Atlantic Ridge involves subducted slab components including a refractory rutile-bearing eclogitic source that has suffered significant dehydration and a previously depleted mantle source that has undergone an ancient depletion event that results in little melt supply being contributed to the ridge axis. We examine melt supply implications in the context of core complex development and these unusual mantle source characteristics.

  13. Petrogenesis of Mare Basalts, Mg-Rich Suites and SNC Parent Magmas

    NASA Technical Reports Server (NTRS)

    Hess, Paul C.

    2004-01-01

    The successful models for the internal evolution of the Moon must consider the volume, distribution, timing, composition and, ultimately, the petrogenesis of mare basaltic volcanism. Indeed, given the paucity of geophysical data, the internal state of the Moon in the past can be gleaned only be unraveling the petrogenesis of the various igneous products on the Moon and, particularly, the mare basalts. most useful in constraining the depth and composition of their source region [Delano, 1980] despite having undergone a certain degree of shallow level olivine crystallization.The bulk of the lunar volcanic glass suite can be modeled as the partial melting products of an olivine + orthopyroxene source region deep within the lunar mantle. Ti02 contents vary from 0.2 wt % -1 7.0wt [Shearer and Papike, 1993]. Values that extreme would seem to require a Ti- bearing phase such as ilmenite in the source of the high-Ti (but not in the VLT source) because a source region of primitive LMO olivine and orthopyroxene, even when melted in small degrees cannot account for the observed range of Ti02 compositions. The picritic glasses are undersaturated with respect to ilmenite at all pressures investigated therefore ilmenite must have been consumed during melting, leaving an ilmenite free residue and an undersaturated melt [Delano, 1980, Longhi, 1992, Elkins et al, 2000 among others]. Multi- saturation pressures for the glasses potentially represent the last depths at which the liquids equilibrated with a harzburgite residue before ascending to the surface. These occur at great depths within the lunar mantle. Because the liquids have suffered some amount of crystal fractionation, this is at best a minimum depth. If the melts are mixtures, then it is only an average depth of melting. Multisaturation, nevertheless, is still a strong constraint on source mineralogy, revealing that the generation of the lunar basalts was dominated by melting of olivine and orthopyroxene.

  14. Olivine and chromian spinel in primitive calc-alkaline and tholeiitic lavas from the southernmost cascade range, California: A reflection of relative fertility of the source

    USGS Publications Warehouse

    Clynne, M.A.; Borg, L.E.

    1997-01-01

    Chromian spinel and coexisting olivine phenocrysts from a geochemically diverse suite of primitive tholeiitic and calc-alkaline basalts and magnesian andesites from the Lassen region, in the southernmost Cascade Range, in California, show that the sub-arc mantle is zoned. Depleted calc-alkaline basalts and magnesian andesites erupt in the forearc region, and calc-alkaline basalts contain increasing abundances of incompatible elements toward the backarc. High-alumina olivine tholeiites erupt from the arc and backarc areas. Olivine from all these lavas displays a limited compositional range, from Fo86 to Fo91, and crystallized at high temperature, generally 1225-1275??C. Chromian spinel trapped in the olivine phenocrysts displays a large range of composition: Cr# values span the range 9-76. Excess Al in the spinel relative to that in 1-atm spinel suggests that it crystallized at elevated pressure. The phenocrysts in these lavas are in equilibrium with their host liquids. The full range of Cr# of the spinel compositions cannot be explained by differentiation or variable pressure, variations in f(O2), subsolidus equilibration or variations in degree of partial melting of a single peridotitic source. Rather, the systematic compositional differences among phenocrysts in these primitive lavas result from bulk chemical variability in their mantle sources. Correlations between spinel and host-rock compositions support the assertion that the geochemical diversity of Lassen basalts reflects the relative fertility of their mantle sources.

  15. The Interior of the Moon, Core Formation, and the Lunar Hotspot: What Samples Tell Us

    NASA Astrophysics Data System (ADS)

    Neal, C. R.

    1999-01-01

    Remotely-gathered Lunar Prospector data have demonstrated the existence of a lunar "hotspot" on the near side of the Moon. This hotspot contains relatively high abundances of KREEPy incompatible trace elements (i.e., Th). It is generally accepted that primordial KREEP or urKREEP represents the residual liquid after the crystallization of a lunar magma ocean (LMO). The crystalline products from the LMO formed the source regions for the mare basalts. Lunar volcanic glasses cannot be genetically related to the crystalline mare basalts, and experimental petrology indicates they are derived from greater (> 400 km) depths than the mare basalts. Questions to be addressed include: (1) What was the extent of LMO melting? (2) What is the composition of the core? (3) Are there distinct geochemical reservoirs in the Moon? (4) Is there evidence of garnet in the lunar interior? (5) What caused the formation of the lunar hotspot? The scale of the LMO has been suggested to be whole Moon melting or only the outer about 400 km. If whole Moon melting is invoked, then differentiation of the Moon into a flotation plagioclase-rich crust, a mafic mineral cumulate mantle, and a Fe-rich core is more easily facilitated. However, as pointed out, if the material that formed the Moon came primarily from the already-differentiated Earth mantle, there may not be enough Fe to form a metallic Fe core on the Moon. Authors have suggested that the lunar core is made up of dense, ilmenite-rich, late-stage cumulates from the LMO. This can be tested by examining the Zr/Hf ratios of mare basalts and, where possible, the volcanic glasses. Partition coefficients for Zr and Hf in ilmenite are 0.29-0.32 and 0.4-0.43, respectively, with Zr being less compatible. Therefore, extraction of an "ilmenite" core would have a profound effect on the Zr/Hf ratio of urKREEP as ilmenite is a late-stage fractionating LMO phase. Assuming either a "primitive mantle" or chondritic starting material with a Zr/Hf ratio of 36-37, ilmenite extraction will increase this ratio in the residual liquid. Conversely, derivation of a melt from a source rich in ilmenite will produce a melt of lower Zr/ Hf ratio. Hughes and Schmitt defined a mean Zr/Hf for KREEP of 41.0 +/- 0.4, about 39 for Apollo 15 basalts, and 30-32 for Apollo 11, 12, and 17 basalts, with the decreases in Zr/Hf broadly correlating with La/Yb. However, literature data for Apollo 15 KREEP basalts and the KREEP-rich Apollo 14 mare basalts exhibit little variation in Zr/Hf from 36, indicating the KREEP component did not result from a major fractionation of ilmenite and suggesting that the lunar core is probably metallic in overall composition. With volcanic glasses being unrelated to the mare basalts and derived from greater depths, compositional comparisons allow their source regions to be compared. Highly siderophile elements Au and Ir are more abundant in the glasses relative to the basalts. As these elements are generally incompatible in silicate minerals, crystal fractionation experienced by the basalts will tend to increase the Au and It abundances. Therefore, the glasses may be derived from a source enriched in highly siderophile elements such as the platinum-group elements (PGEs) represented by Ir, relative to the source of the basalts. This observation can be accommodated with the basalts being derived from the LMO cumulates and the glasses derived from a source that represents "primitive Moon" that did not melt and, therefore, did not have its budget of PGEs and Au reduced through core formation. This can be tested by analyzing mare basalts and glasses for the PGEs. Although analytically challenging, the first PGE patterns in lunar samples were demonstrated that the source regions for the different Apollo 12 basalts could not be differentiated on the basis of PGE budgets, although the profiles are typical of silicate melts. Analysis of other trace-element data indicate that the high-field-strength elements can be used to differentiate between high- and low-Ti basalts. Also, the volcanic glasses were derived from a source with a higher Zr/Y ratio relative to the basalts, consistent with retention of garnet in the residue. If the glasses were derived from > 400 km, garnet could be stable. It is concluded that the volcanic glasses were derived from a source that contained garnet, but escaped the melting that formed the LMO. The mare basalts were derived from the LMO cumulate pile. Basaltic samples from Apollo 14 exhibit a range in ITE. They also exhibit a range of ages from 4.33 Ga to 3.96 Ga with the older basalts being KREEP-poor and the younger being KREEP-rich. Prospector mapping has identified relatively high Th abundances in this area, suggesting a large KREEP component is present at or near the surface. LMO "layer cake models" have residual urKREEP sandwiched between the mafic cumulate mantle and the plagioclase flotation cumulate crust. However, late-stage cumulates and the residual liquid will be more dense that the early mafic cumulates resulting in gravitational instabilities and overturn of the cumulate pile. This could transport urKREEP to the base of the LMO cumulate pile, but above the glass source region. The effect of Earth on the symmetry of the Moon has displaced the low-density crust, producing a thicker crust on the farside. This has produced an offset of the center of mass for the Moon toward Earth. It is suggested that the gravitational forces of the Earth pooled the urKREEP beneath at the base of the LMO on the lunar nearside. Heating through radioactive decay produced thermal instabilities, resulting in a plume of hot, KREEPy material rising adiabatically beneath the Apollo 14 site. The oldest Apollo basalts contain no evidence of a KREEPy component, suggesting diapiric rise of the KREEPy plume had not occurred at this time. Additional information contained in original.

  16. The lunar crust - A product of heterogeneous accretion or differentiation of a homogeneous moon

    NASA Technical Reports Server (NTRS)

    Brett, R.

    1973-01-01

    The outer portion of the moon (including the aluminum-rich crust and the source regions of mare basalts) was either accreted heterogeneously or was the product of widespread differentiation of an originally homogeneous source. Existing evidence for and against each of these two models is reviewed. It is concluded that the accretionary model presents more problems than it solves, and the model involving differentiation of an originally homogeneous moon is considered to be more plausible. A hypothesis for the formation of mare basalts is advanced.

  17. Heterogeneous source components of intraplate basalts from NE China induced by the ongoing Pacific slab subduction

    NASA Astrophysics Data System (ADS)

    Chen, Huan; Xia, Qun-Ke; Ingrin, Jannick; Deloule, Etienne; Bi, Yao

    2017-02-01

    The subduction of oceanic slabs is widely accepted to be a main reason for chemical heterogeneities in the mantle. However, determining the contributions of slabs in areas that have experienced multiple subduction events is often difficult due to possible overlapping imprints. Understanding the temporal and spatial variations of source components for widespread intraplate small volume basalts in eastern China may be a basis for investigating the influence of the subducted Pacific slab, which has long been postulated but never confirmed. For this purpose, we investigated the Chaihe-aershan volcanic field (including more than 35 small-volume Quaternary basaltic volcanoes) in NE China and measured the oxygen isotopes and water content of clinopyroxene (cpx) phenocrysts using secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectroscopy (FTIR), respectively. The water content of magma was then estimated based on the partition coefficient of H2O between cpx and the basaltic melt. The δ18O of cpx phenocrysts (4.28‰ to 8.57‰) and H2O content of magmas (0.19 wt.%-2.70 wt.%) show large variations, reflecting the compositional heterogeneity of the mantle source. The δ18O values and H2O content within individual samples also display considerable variation, suggesting the mixing of magmas and that the magma mixing occurred shortly before the eruption. The relation between the δ18O values of cpx phenocrysts and the H2O/Ce ratio, Ba/Th ratio and Eu anomaly of whole rocks demonstrates the contributions of three components to the mantle source (hydrothermally altered upper oceanic crust and marine sediments, altered lower gabbroic oceanic crust, and ambient mantle). The proportions of these three components have varied widely over time (∼1.37 Ma to ∼0.25 Ma). The Pacific slab is constantly subducted under eastern Asia and continuously transports recycled materials to the deep mantle. The temporal heterogeneity of the source components may be caused by ongoing Pacific slab subduction. Combined with other basalt localities in eastern China (Shuangliao basalts, Taihang basalts and Shangdong basalts), the contributions of recycled oceanic components in their mantle source are heterogeneous. This spatial heterogeneity of mantle sources may be induced by variable alterations and dehydration during the recycling process of the Pacific slab. Our results show that the source components of Cenozoic intraplate small-volume basalts in eastern China are temporally and spatially heterogeneous, which is likely induced by the ongoing subduction of the Pacific slab. This demonstrates that integrating the temporal variations in geochemical characteristics and tectonic history of a study region can identify the subducted oceanic plate that induced enriched components in the mantle source of intraplate basalts.

  18. Chips off of Asteroid 4 Vesta: Evidence for the Parent Body of Basaltic Achondrite Meteorites.

    PubMed

    Binzel, R P; Xu, S

    1993-04-09

    For more than two decades, asteroid 4 Vesta has been debated as the source for the eucrite, diogenite, and howardite classes of basaltic achondrite meteorites. Its basaltic achondrite spectral properties are unlike those of other large main-belt asteroids. Telescopic measurements have revealed 20 small (diameters

  19. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review of the experimental constraints

    NASA Astrophysics Data System (ADS)

    Lambart, Sarah; Laporte, Didier; Schiano, Pierre

    2013-02-01

    Based on previous and new results on partial melting experiments of pyroxenites at high pressure, we attempt to identify the major element signature of pyroxenite partial melts and to evaluate to what extent this signature can be transmitted to the basalts erupted at oceanic islands and mid-ocean ridges. Although peridotite is the dominant source lithology in the Earth's upper mantle, the ubiquity of pyroxenites in mantle xenoliths and in ultramafic massifs, and the isotopic and trace elements variability of oceanic basalts suggest that these lithologies could significantly contribute to the generation of basaltic magmas. The question is how and to what degree the melting of pyroxenites can impact the major-element composition of oceanic basalts. The review of experimental phase equilibria of pyroxenites shows that the thermal divide, defined by the aluminous pyroxene plane, separates silica-excess pyroxenites (SE pyroxenites) on the right side and silica-deficient pyroxenites (SD pyroxenites) on the left side. It therefore controls the melting phase relations of pyroxenites at high pressure but, the pressure at which the thermal divide becomes effective, depends on the bulk composition; partial melt compositions of pyroxenites are strongly influenced by non-CMAS elements (especially FeO, TiO2, Na2O and K2O) and show a progressive transition from the liquids derived from the most silica-deficient compositions to those derived from the most silica-excess compositions. Another important aspect for the identification of source lithology is that, at identical pressure and temperature conditions, many pyroxenites produce melts that are quite similar to peridotite-derived melts, making the determination of the presence of pyroxenite in the source regions of oceanic basalts difficult; only pyroxenites able to produce melts with low SiO2 and high FeO contents can be identified on the basis of the major-element compositions of basalts. In the case of oceanic island basalts, high CaO/Al2O3 ratios can also reveal the presence of pyroxenite in the source-regions. Experimental and thermodynamical observations also suggest that the interactions between pyroxenite-derived melts and host peridotites play a crucial role in the genesis of oceanic basalts by generating a wide range of pyroxenites in the upper mantle: partial melting of such secondary pyroxenites is able to reproduce the features of primitive basalts, especially their high MgO contents, and to impart, at least in some cases, the major-element signature of the original pyroxenite melt to the oceanic basalts. Finally, we highlight that the fact the very silica depleted compositions (SiO2 < 42 wt.%) and high TiO2 contents of some ocean island basalts seem to require the contribution of fluids (CO2 or H2O) through melting of either carbonated lithologies (peridotite or pyroxenite) or amphibole-rich veins.

  20. New Hafnium Isotope and Trace Element Constraints on the Role of a Plume in Genesis of the Eastern Snake River Plain Basalts, Idaho

    NASA Astrophysics Data System (ADS)

    Taylor, R. D.; Reid, M. R.; Blichert-Toft, J.

    2009-12-01

    Bimodal volcanism associated with the eastern Snake River Plain (ESRP)-Yellowstone Plateau province has persisted since approximately 16 Ma. A time-transgressive track of rhyolitic eruptions which young progressively to the east and parallel the motion of the North American plate are overlain by younger basalts with no age progression. Interpretations for the origin of these basalts range from a thermo-chemical mantle plume to incipient melting of the shallow upper mantle, and remain controversial. The enigmatic ESRP basalts are characterized by high 3He/4He, diagnostic of a plume source, but also by lithophile radiogenic isotope signatures that are more enriched than expected for plume-derived OIBs. These features could possibly be caused by isotopic decoupling associated with shallow melting of a hybridized upper mantle, or derivation from an atypical mantle plume, or both by way of mixing. New Hf isotope and trace element data further constrain potential sources for the ESRP basalts. Their Hf isotopic signatures (ɛHf = +0.1 to -5.8) are moderately enriched and consistently fall above or in the upper part of the field of OIBs, with similar Nd isotope signatures (ɛNd = -2.0 to -5.8), indicating a source with high time-integrated Lu/Hf compared with Sm/Nd. The isotopic compositions of the basalts lie between those of Archean SCML and a more depleted end-member source, suggestive of contributions from at least two sources. The grouping of isotopic characteristics is compact compared to other regional volcanism, implying that the hybridization process is highly reproducible within the ESRP. Minor localized differences in isotopic composition may signify local variations in the relative proportions of the end-members. Trace element patterns also support genesis of the ESRP basalts from an enriched source. Our data detect evidence of deeper contributions derived from the garnet-stability field, and a greater affinity of the trace element signatures to plume sources than to sources in the mantle lithosphere. The Hf isotope and trace element characteristics of the ESRP basalts thus support a model of derivation from a deep mantle plume with additional melt contributions and isotopic overprinting from SCML.

  1. Petrology of basalts from Loihi Seamount, Hawaii

    NASA Astrophysics Data System (ADS)

    Hawkins, James; Melchior, John

    1983-12-01

    Loihi Seamount is the southeasternmost active volcano of the Emperor-Hawaii linear volcanic chain. It comprises a spectrum of basalt compositional varieties including basanite, alkali basalt, transitional basalt and tholeiite. Samples from four dredge collections made on Scripps Institution of Oceanography Benthic Expedition in October 1982 are tholeiite. The samples include highly vesicular, olivine-rich basalt and dense glass-rich pillow fragments containing olivine and augite phenocrysts. Both quartz-normative and olivine-normative tholeiites are present. Minor and trace element data indicate relatively high abundances of low partition coefficient elements (e.g., Ti, K, P. Rb, Ba, Zr) and suggest that the samples were derived by relatively small to moderate extent of partial melting, of an undepleted mantle source. Olivine composition, MgO, Cr and Ni abundances, and Mg/(Mg+Fe), are typical of moderately fractionated to relatively unfractionated "primary" magmas. The variations in chemistry between samples cannot be adequately explained by low-pressure fractional crystallization but can be satisfied by minor variations in extent of melting if a homogeneous source is postulated. Alternatively, a heterogeneous source with variable abundances of certain trace elements, or mixing of liquids, may have been involved. Data for 3He/ 4He, presented in a separate paper, implies a mantle plume origin for the helium composition of the Loihi samples. There is little variation in the helium isotope ratio for samples having different compositions and textures. The helium data are not distinctive enough to unequivocally separate the magma sources for the tholeiitic rocks from the other rock types such as Loihi alkalic basalts and the whole source region for Loihi may have a nearly uniform helium compositions even though other element abundances may be variable. Complex petrologic processes including variable melting, fractional crystallization and magma mixing may have blurred original helium isotopic signatures.

  2. Magma source evolution beneath the Caribbean oceanic plateau: New insights from elemental and Sr-Nd-Pb-Hf isotopic studies of ODP Leg 165, Site 1001 basalts

    NASA Astrophysics Data System (ADS)

    Kerr, A. C.; Pearson, G.; Nowell, G.

    2008-12-01

    Ocean Drilling Project Leg 165 sampled 38m of the basaltic basement of the Caribbean plate at Site 1001 on the Hess Escarpment. The recovered section consists of 12 basaltic flow units which yield a weighted mean Ar-Ar age of 80.9±0.9 Ma (Sinton et al., 2000). The basalts (6.4-8.5 wt.% MgO) are remarkably homogeneous in composition and are more depleted in incompatible trace elements than N-MORB. Markedly, depleted initial radiogenic isotope ratios reveal a long-term history of depletion. Although the Site 1001 basalts are superficially similar to N-MORB, radiogenic isotopes in conjunction with incompatible trace element ratios show that the basalts have more similarity to the depleted basalts and komatiites of Gorgona Island. This chemical composition strongly implies that the Site 1001 basalts are derived from a depleted mantle plume component and not from depleted ambient upper mantle. Therefore the Site 1001 basalts are, both compositionally and tectonically, a constituent part of the Caribbean oceanic plateau. Mantle melt modelling suggests that the Site 1001 lavas have a composition which is consistent with second-stage melting of compositionally heterogeneous mantle plume source material which had already been melted, most likely to form the 90Ma basalts of the plateau. The prolonged residence (>10m.y.) of residual mantle plume source material below the region, confirms computational model predictions and places significant constraints on tectonic models of Caribbean evolution in the late Cretaceous, and the consequent environmental impact of oceanic plateau volcanism. Reference Sinton, C.W., et al., 2000. Geochronology and petrology of the igneous basement at the lower Nicaraguan Rise, Site 1001. Proceedings of the Ocean Drilling Program, Scientific Results. Leg 165. pp. 233-236.

  3. Mid-ocean ridge basalt generation along the slow-spreading, South Mid-Atlantic Ridge (5-11°S): Inferences from 238U-230Th-226Ra disequilibria

    NASA Astrophysics Data System (ADS)

    Turner, Simon; Kokfelt, Thomas; Hauff, Folkmar; Haase, Karsten; Lundstrom, Craig; Hoernle, Kaj; Yeo, Isobel; Devey, Colin

    2015-11-01

    U-series disequilibria have provided important constraints on the physical processes of partial melting that produce basaltic magma beneath mid-ocean ridges. Here we present the first 238U-230Th-226Ra isotope data for a suite of 83 basalts sampled between 5°S and 11°S along the South Mid-Atlantic Ridge. This section of the ridge can be divided into 5 segments (A0-A4) and the depths to the ridge axis span much of the global range, varying from 1429 to 4514 m. Previous work has also demonstrated that strong trace element and radiogenic isotope heterogeneity existed in the source regions of these basalts. Accordingly, this area provides an ideal location in which to investigate the effects of both inferred melt column length and recycled materials. 226Ra-230Th disequilibria indicate that the majority of the basalts are less than a few millennia old such that their 230Th values do not require any age correction. The U-Th isotope data span a significant range from secular equilibrium up to 32% 230Th excess, also similar to the global range, and vary from segment to segment. However, the (230Th/238U) ratios are not negatively correlated with axial depth and the samples with the largest 230Th excesses come from the deepest ridge segment (A1). Two sub-parallel and positively sloped arrays (for segments A0-2 and A3 and A4) between (230Th/238U) and Th/U ratios can be modelled in various ways as mixing between melts from peridotite and recycled mafic lithologies. Despite abundant evidence for source heterogeneity, there is no simple correlation between (230Th/238U) and radiogenic isotope ratios suggesting that at least some of the trace element and radiogenic isotope variability may have been imparted to the source regions >350 kyr prior to partial melting to produce the basalts. In our preferred model, the two (230Th/238U) versus Th/U arrays can be explained by mixing of melts from one or more recycled mafic lithologies with melts derived from chemically heterogeneous peridotite source regions.

  4. Vestas Pinaria Region: Original Basaltic Achondrite Material Derived from Mixing Upper and Lower Crust

    NASA Technical Reports Server (NTRS)

    Mcfadden, L. A.; Combe, Jean-Philippe; Ammannito, Eleonora; Frigeri, Alessandro; Stephan, Katrin; Longobardo, Andrea; Palomba, Ernesto; Tosi, Federico; Zambon, Francesca; Krohn, Katrin; hide

    2015-01-01

    Analysis of data from the Dawn mission shows that the Pinaria region of Vesta spanning a portion of the rim of the Rheasilvia basin is bright and anhydrous. Reflectance spectra, absorption band centers, and their variations, cover the range of pyroxenes from diogenite-rich to howardite and eucrite compositions, with no evidence of olivine in this region. By examining band centers and depths of the floor, walls and rims of six major craters in the region, we find a lane of diogenite-rich material next to howardite-eucrite material that does not follow the local topography. The source of this material is not clear and is probably ejecta from post-Rheasilvia impacts. Material of a howardite-eucrite composition originating from beyond the Rheasilvia basin is evident on the western edge of the region. Overall, the Pinaria region exposes the complete range of basaltic achondrite parent body material, with little evidence of contamination of non-basaltic achondrite material. With both high reflectance and low abundance of hydrated material, this region of Vesta may be considered the "Pinaria desert".

  5. Back-arc basalts from the Loncopue graben (Province of Neuquen, Argentina)

    NASA Astrophysics Data System (ADS)

    Varekamp, J. C.; Hesse, A.; Mandeville, C. W.

    2010-11-01

    Young basaltic back-arc volcanoes occur east of the main Andes chain at about 37.5°-39°S in the Loncopue graben, Province of Neuquen, Argentina. These olivine-rich basalts and trachybasalts have up to 8% MgO, with high Ni and Cr contents, but highly variable incompatible element concentrations. Mafic lava flows and cinder cones at the southern end of the graben lack phenocrystic plagioclase. The northern samples have relative Ta-Nb depletions and K, Pb and LREE enrichment. These samples strongly resemble rocks of the nearby arc volcanoes Copahue and Caviahue, including their Fe-Ti enrichment relative to the main Andes arc rocks. The Sr, Nd and Pb isotope ratios show that the source regions of these back-arc basalts are enriched in subducted components that were depleted in the aqueous mobile elements such as Cs, Sr and Ba as a result of prior extractions from the subducted complex below the main arc. Some mafic flows show slightly low 206Pb/ 204Pb and 143Nd/ 144Nd values as well as incompatible trace element ratios similar to southern Patagonia plateau back-arc basalts, suggesting contributions from an EM1 mantle source. Geothermometry and barometry suggest that the basalts crystallized and fractionated small amounts of olivine and spinel at ˜ 35 km depth at temperatures of 1170-1220 °C, at about QFM + 0.5 to QFM + 1 with 1-2% H 2O, and then rose rapidly to the surface. The Loncopue graben back-arc basalts are transitional in composition between the South Patagonia back-arc plateau basalts and the Caviahue and Copahue arc volcanoes to the northwest. The EM1 source endmember is possibly the subcontinental lithospheric mantle. Strong variations in incompatible element enrichment and isotopic compositions between closely spaced cinder cones and lava flows suggest a heterogeneous mantle source for the Loncopue graben volcanics.

  6. An extremely low U Pb source in the Moon: UThPb, SmNd, RbSr, and 40Ar 39Ar isotopic systematics and age of lunar meteorite Asuka 881757

    USGS Publications Warehouse

    Misawa, K.; Tatsumoto, M.; Dalrymple, G.B.; Yanai, K.

    1993-01-01

    We have undertaken UThPb, SmNd, RbSr, and 40Ar 39Ar isotopic studies on Asuka 881757, a coarse-grained basaltic lunar meteorite whose chemical composition is close to low-Ti and very low-Ti (VLT) mare basalts. The PbPb internal isochron obtained for acid leached residues of separated mineral fractions yields an age of 3940 ?? 28 Ma, which is similar to the U-Pb (3850 ?? 150 Ma) and Th-Pb (3820 ?? 290 Ma) internal isochron ages. The Sm-Nd data for the mineral separates yield an internal isochron age of 3871 ?? 57 Ma and an initial 143Nd 144Nd value of 0.50797 ?? 10. The Rb-Sr data yield an internal isochron age of 3840 ?? 32 Ma (??(87Rb) = 1.42 ?? 10-11 yr-1) and a low initial 87Sr 86Sr ratio of 0.69910 ?? 2. The 40Ar 39Ar age spectra for a glass fragment and a maskelynitized plagioclase are relatively flat and give a weighted mean plateau age of 3798 ?? 12 Ma. We interpret these ages to indicate that the basalt crystallized from a melt 3.87 Ga ago (the Sm-Nd age) and an impact event disturbed the Rb-Sr system and completely reset the K-Ar system at 3.80 Ga. The slightly higher Pb-Pb age compared to the Sm-Nd age could be due to the secondary Pb (from terrestrial and/or lunar surface Pb contamination) that remained in the residues after acid leaching. Alternatively, the following interpretation is also possible; the meteorite crystallized at 3.94 Ga (the Pb-Pb age) and the Sm-Nd, Rb-Sr, and K-Ar systems were disturbed by an impact event at 3.80 Ga. The crystallization age obtained here is older than those reported for low-Ti basalts (3.2-3.5 Ga) and for VLT basalts (3.4 Ga), but similar to ages of some mare basalts, indicating that the basalt may have formed from a magma related to a basin-forming event (Imbrium?). The age span for VLT basalts from different sampling sites suggest that they were erupted over a wide area during an interval of at least ~500 million years. The impact event that thermally reset the K-Ar system of Asuka 881757 must have been post-Imbrium (perhaps Orientale) in age. The lead isotopic composition of Asuka 881757 is nonradiogenic compared with typical Apollo mare basalts and the estimated 238U 204Pb (??) value for the basalt source is 10 ?? 3. This source-?? value is the lowest so far measured for lunar rocks. A large positive ??{lunate}Nd value (7.4 ?? 0.5) and the time averaged 147Sm 144Nd ratio for the basalt source are similar to those for some Apollo 12, 15, and 17 basalts, suggesting a LREE-depleted mantle, which is consistent with the global magma ocean hypothesis. The U-Th-Pb, Sm-Nd, and Rb-Sr data on Asuka 881757 suggest that the basalt was derived from a low U Pb, low Rb Sr, and high Sm Nd source region, mainly composed of olivine and orthopyroxene with minor amounts of plagioclase (or clinopyroxene) and with sulfides enriched in volatile chalcophile elements. The basalt source may be deep in origin and different in chemistry from those previously estimated from studies of Apollo and Luna mare basalts, indicating heterogeneous sources for mare basalts. ?? 1993.

  7. A global geochemical model for the evolution of the mantle

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1979-01-01

    It is proposed that the upper mantle transition region, 220 to 670 km, is composed of eclogite which has been derived from primitive mantle by about 20 percent partial melting and that this is the source and sink of oceanic crust. The remainder of the upper mantle is garnet peridotite which is the source of continental basalts and hotspot magmas. This region is enriched in incompatible elements by hydrous and CO2 rich metasomatic fluids which have depleted the underlying layers in the L.I.L. elements and L.R.E.E. The volatiles make this a low-velocity, high attenuation, low viscosity region. The eclogite layer is internally heated and its controls the convection pattern in the upper mantle. Plate tectonics is intermittent. The continental thermal anomaly at a depth of 150-220 km triggers kimberlite and carbonatite activity, alkali and flood basalt volcanism, vertical tectonics and continental breakup. Hot spots remain active after the continents leave and build the oceanic islands. Mantle plumes rise from a depth of about 220 km. Midocean ridge basalts rise from the depleted layer below this depth. Material from this layer can also be displaced upwards by subducted oceanic lithosphere to form back-arc basins.

  8. Trace-element and Sr, Nd, Pb, and O isotopic composition of Pliocene and Quaternary alkali basalts of the Patagonian Plateau lavas of southernmost South America

    USGS Publications Warehouse

    Stern, C.R.; Frey, F.A.; Futa, K.; Zartman, R.E.; Peng, Z.; Kurtis, Kyser T.

    1990-01-01

    The Pliocene and Quaternary Patagonian alkali basalts of southernmost South America can be divided into two groups. The "cratonic" basalts erupted in areas of Cenozoic plateau volcanism and continental sedimentation and show considerable variation in 87Sr/86Sr (0.70316 to 0.70512), 143Nd/144Nd (e{open}Nd) and 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios (18.26 to 19.38, 15.53 to 15.68, and 38.30 to 39.23, respectively). These isotopic values are within the range of oceanic island basalts, as are the Ba/La, Ba/Nb, La/Nb, K/Rb, and Cs/Rb ratios of the "cratonic" basalts. In contrast, the "transitional" basalts, erupted along the western edge of the outcrop belt of the Pliocene and Quaternary plateau lavas in areas that were the locus of earlier Cenozoic Andean orogenic arc colcanism, have a much more restricted range of isotopic composition which can be approximated by 87Sr/86Sr=0.7039??0.0004, e{open}Nd, 206Pb/204Pb=18.60??0.08, 207Pb/204Pb=15.60??0.01, and 208Pb/204Pb=38.50??0.10. These isotopic values are similar to those of Andean orogenic are basalts and, compared to the "cratonic" basalts, are displaced to higher 87Sr/86Sr at a given 143Nd/144Nd and to higher 207Pb/204Pb at a given 208Pb/204Pb. The "transitional" basalts also have Ba/La, Ba/Nb, La/Nb, and Cs/Rb ratios higher than the "cratonic" and oceanic island basalts, although not as high as Andean orogenic are basalts. In contrast to the radiogenic isotopes, ??18O values for both groups of the Patagonian alkali basalts are indistinguishable and are more restricted than the range reported for Andean orogenic are basalts. Whole rock ??18O values calculated from mineral separates for both groups range from 5.3 to 6.5, while measured whole rock ??18O values range from 5.1 to 7.8. The trace element and isotopic data suggest that decreasing degrees of partial melting in association with lessened significance of subducted slabderived components are fundamental factors in the west to east transition from arc to back-arc volcanism in southern South America. The "cratonic" basalts do not contain the slab-derived components that impart the higher Ba/La, Ba/Nb, La/Nb, Cs/Rb, 87Sr/86Sr at a given 143Nd/144Nd, 207Pb/204Pb at a given 208Pb/204Pb, and ??18O to Andean orogenic arc basalts. Instead, these basalts are formed by relatively low degrees of partial melting of heterogeneous lower continental lithosphere and/or asthenosphere, probably due to thermal and mechanical pertubation of the mantle in response to subduction of oceanic lithosphere below the western margin of the continent. The "transitional" basalts do contain components added to their source region by either (1) active input of slab-derived components in amounts smaller than the contribution to the mantle below the arc and/or with lower Ba/La, Ba/Nb, La/Nb, and Cs/Rb ratios than below the arc due to progressive downdip dehydration of the subducted slab; or (2) subarc source region contamination processes which affected the mantle source of the "transitional" basalts earlier in the Cenozoic. ?? 1990 Springer-Verlag.

  9. Comparing the composition of the earliest basalts erupted by the Iceland and Afar mantle plumes.

    NASA Astrophysics Data System (ADS)

    Stuart, Finlay M.

    2013-04-01

    The first basalts erupted by mantle plumes are typically generated by mantle melting at temperatures 200-300°C higher than average ambient mantle. This is consistent with the derivation of from a thermal boundary layer at the core-mantle boundary. Mantle plume temperatures decrease with time, likely as large plume heads give way to thin plume conduits. Consequently the early, hot plume basalts are a window into the deep mantle. At it's simplest they provide a test of whether the discrete plume source regions are primordial mantle that have been isolated since soon after Earth accretion, or have substantial contributions from subducted slabs. Here I present new isotopic and trace element determinations of the earliest picritic basalts from the ~30 Ma Afar plume in Ethiopia. They will be compared with similar material from the ~60 Ma proto-Iceland plume (PIP) in an effort to test prevailing models regarding the source of mantle plumes. The extremely primordial nature of the helium in the PIP picrites (3He/4He ~ 50 Ra) contrasts with much lower values of the Ethiopian flood basalt province (~21 Ra). The Iceland plume 3He/4He has decreased (linearly) with time, mirroring the secular cooling of the Iceland mantle plume identified by decreasing MgO and FeO in primary melts. In 60 million years the Iceland plume 3He/4He is still higher than the maximum Afar plume value. The Sr-Nd-Pb isotopic composition of the high 3He/4He Ethiopian flood basalt province picrites are remarkably homogenous (e.g. 87Sr/86Sr = 0.70396-0.70412; 206Pb/204Pb = 18.82-19.01). In comparison the PIP picrites have ranges that span nearly the global range of E-MORB and N-MORB. The Afar and proto-Iceland mantle plumes are clearly not initiated in a single deep mantle domain with the same depletion/enrichment and degassing histories, and the same scale of heterogeneity. This implies that there is more than one plume source region/mechanism that is capable of generating comparable volumes of basalt melt at Earth surface.

  10. Uranium-lead isotope systematics of Mars inferred from the basaltic shergottite QUE 94201

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaffney, A M; Borg, L E; Connelly, J N

    2006-12-22

    Uranium-lead ratios (commonly represented as {sup 238}U/{sup 204}Pb = {mu}) calculated for the sources of martian basalts preserve a record of petrogenetic processes that operated during early planetary differentiation and formation of martian geochemical reservoirs. To better define the range of {mu} values represented by the source regions of martian basalts, we completed U-Pb elemental and isotopic analyses on whole rock, mineral and leachate fractions from the martian meteorite Queen Alexandra Range 94201 (QUE 94201). The whole rock and silicate mineral fractions have unradiogenic Pb isotopic compositions that define a narrow range ({sup 206}Pb/{sup 204}Pb = 11.16-11.61). In contrast, themore » Pb isotopic compositions of weak HCl leachates are more variable and radiogenic. The intersection of the QUE 94201 data array with terrestrial Pb in {sup 206}Pb/{sup 204}Pb-{sup 207}Pb/{sup 204}Pb-{sup 208}Pb/{sup 204}Pb compositional space is consistent with varying amounts of terrestrial contamination in these fractions. We calculate that only 1-7% contamination is present in the purified silicate mineral and whole rock fractions, whereas the HCl leachates contain up to 86% terrestrial contamination. Despite the contamination, we are able to use the U-Pb data to determine the initial {sup 206}Pb/{sup 204}Pb of QUE 94201 (11.086 {+-} 0.008) and calculate the {mu} value of the QUE 94201 mantle source to be 1.823 {+-} 0.008. This is the lowest {mu} value calculated for any martian basalt source, and, when compared to the highest values determined for martian basalt sources, indicates that {mu} values in martian source reservoirs vary by at least 100%. The range of source {mu} values further indicates that the {mu} value of bulk silicate Mars is approximately three. The amount of variation in the {mu} values of the mantle sources ({mu} {approx} 2-4) is greater than can be explained by igneous processes involving silicate phases alone. We suggest the possibility that a small amount of sulfide crystallization may generate large extents of U-Pb fractionation during formation of the mantle sources of martian basalts.« less

  11. Dynamic melting in plume heads: the formation of Gorgona komatiites and basalts

    NASA Astrophysics Data System (ADS)

    Arndt, Nicholas T.; Kerr, Andrew C.; Tarney, John

    1997-01-01

    The small Pacific island of Gorgona, off the coast of Colombia, is well known for its spectacular spinifex-textured komatiites. These high-Mg liquids, which have been linked to a late Cretaceous deep mantle plume, are part of a volcanic series with a wide range of trace-element compositions, from moderately enriched basalts ( La/SmN ˜ 1.5) to extremely depleted ultramafic tuffs and picrites ( La/SmN ˜ 0.2). Neither fractional crystallization, nor partial melting of a homogeneous mantle source, can account for this large variation: the source must have been chemically heterogeneous. Low 143Nd/144Nd in the more enriched basalts indicates some initial source heterogeneity but most of the variation in magma compositions is believed to result from dynamic melting during the ascent of a plume. Modelling of major- and trace-element compositions suggests that ultramafic magmas formed at ˜ 60-100 km depth, and that the melt extraction that gave rise to their depleted sources started at still greater depths. The ultra-depleted lavas represent magmas derived directly from the hottest, most depleted parts of the plume; the more abundant moderately depleted basalts are interpreted as the products of pooling of liquids from throughout the melting region.

  12. An experimental and petrologic investigation of the source regions of lunar magmatism in the context of the primordial differentiation of the moon

    NASA Astrophysics Data System (ADS)

    Elardo, Stephen M.

    The primordial differentiation of the Moon via a global magma ocean has become the paradigm under which all lunar data are interpreted. The success of this model in explaining multiple geochemical, petrologic, and isotopic characteristics lunar geology has led to magma oceans becoming the preferred model for the differentiation of Earth, Mars, Mercury, Vesta, and other large terrestrial bodies. The goal of this work is to combine petrologic analyses of lunar samples with high pressure, high temperature petrologic experiments to place new and detailed constraints the petrogenetic processes that operated during different stages of lunar magmatism, the processes that have acted upon these magmas to obscure their relationship to their mantle source regions, and how those source regions fit into the context of the lunar magma ocean model. This work focuses on two important phases of lunar magmatism: the ancient crust-building plutonic lithologies of the Mg-suite dating to ~4.3 Ga, and the most recent known mare basaltic magmas dating to ~3 Ga. These samples provide insight into the petrogenesis of magmas and interior thermal state when the Moon was a hot, juvenile planet, and also during the last gasps of magmatism from a cooling planet. Chapter 1, focusing on Mg-suite troctolite 76535, presents data on chromite symplectites, olivine-hosted melt inclusions, intercumulus mineral assemblages, and cumulus mineral chemistry to argue that the 76535 was altered by metasomatism by a migrating basaltic melt. This process could effectively raise radioisotope systems above their mineral-specific blocking temperatures and help explain some of the Mg-suite-FAN age overlap. Chapter 2 focuses on lunar meteorites NWA 4734, 032, and LAP 02205, which are 3 of the 5 youngest igneous samples from the Moon. Using geochemical and isotopic data combined with partial melting models, it is shown that these basalts do not have a link to the KREEP reservoir, and a model is presented for low-degree partial melting of late-stage LMO cumulates to generate Fe-rich partial melts. Chapter 3 presents datasets from NWA 032 that document one of the only occurrences of oscillatory zoning in lunar minerals. A model is presented that explains the zoning patterns in olivine and pyroxene by convection in a differentially cooling magma chamber. Constraints from mineral chemistry and isotopic compositions show that magma mixing was not a factor during this convection. Lastly, chapter 4 presents the results of high-pressure, high-temperature petrologic experiments on the compositions of the LAP 02205 group basalts, and NEA 003A, the latter of which is also one of the youngest basalts from the Moon. These results show that the LAP group basalts are likely the result of extreme olivine fractionation, whereas NEA 003A not only has the deepest known multiple saturation point amongst crystalline mare basalts, but also may be a near-primary melt. Possible parental melt compositions are calculated for these basalts, and models are presents for the petrogenesis of these basalts and discussed in the context of a cooling lunar mantle. These studies illustrate the importance of different LMO cumulate source regions in lunar magmatism at very different points in the thermal and magmatic evolution of the Moon.

  13. Devonian magmatism in the Timan Range, Arctic Russia - subduction, post-orogenic extension, or rifting?

    NASA Astrophysics Data System (ADS)

    Pease, V.; Scarrow, J. H.; Silva, I. G. Nobre; Cambeses, A.

    2016-11-01

    Devonian mafic magmatism of the northern East European Craton (EEC) has been variously linked to Uralian subduction, post-orogenic extension associated with Caledonian collision, and rifting. New elemental and isotopic analyses of Devonian basalts from the Timan Range and Kanin Peninsula, Russia, in the northern EEC constrain magma genesis, mantle source(s) and the tectonic process(es) associated with this Devonian volcanism to a rift-related context. Two compositional groups of low-K2O tholeiitic basalts are recognized. On the basis of Th concentrations, LREE concentrations, and (LREE/HREE)N, the data suggest two distinct magma batches. Incompatible trace elements ratios (e.g., Th/Yb, Nb/Th, Nb/La) together with Nd and Pb isotopes indicate involvement of an NMORB to EMORB 'transitional' mantle component mixed with variable amounts of a continental component. The magmas were derived from a source that developed high (U,Th)/Pb, U/Th and Sm/Nd over time. The geochemistry of Timan-Kanin basalts supports the hypothesis that the genesis of Devonian basaltic magmatism in the region resulted from local melting of transitional mantle and lower crust during rifting of a mainly non-volcanic continental rifted margin.

  14. The petrogenesis of Gorgona komatiites, picrites and basalts: new field, petrographic and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Kerr, A. C.; Marriner, G. F.; Arndt, N. T.; Tarney, J.; Nivia, A.; Saunders, A. D.; Duncan, R. A.

    1996-04-01

    Gorgona Island, Colombia is remarkable not only because it contains the only Phanerozoic komatiites, but also because it has mafic to ultramafic lavas with a wide range of compositions, from moderately enriched to extremely depleted (relative to Bulk Earth). The komatiite flows are, in many respects similar to Archaean komatiites; they formed from MgO-rich (18%) liquids and have upper spinifex zones and lower cumulate zones. The cumulate zones of Archaean komatiites contain many solid grains, in contrast more than 90% of the olivine in the Gorgona cumulates is highly skeletal. This combined with the fact that the Gorgona cumulate zones are thinner than those in Archaean komatiites, suggests that the komatiite magma became strongly superheated en route to the surface. The komatiites have trace element contents intermediate between those of the basalts and the ultramafic tuffs. Some basalts have isotope compositions indicative of long-term enrichment in incompatible elements, whereas other basalts and ultramafic volcanics have isotopic signatures that imply corresponding depletion. It is apparent that the plume source region of the Gorgona magmas was markedly heterogeneous, with at least two source components contributing to the observed variation in composition. This heterogeneity may have resulted from the incorporation of different components into the plume source, or it may be the result of complex melting and melt extraction processes during the ascent of a heterogeneous plume. Despite earlier suggestions that there may have been a significant age gap between depleted komatiite and basalt flows and the enriched basalts, new 40Ar- 39Ar dating of basalts and gabbros are more consistent with all being generated at 87 Ma during formation of the Caribbean/Colombian plateau, possibly at the Galapagos hotspot.

  15. Minerals as mantle fingerprints: Sr-Nd-Pb-Hf in clinopyroxene and He in olivine distinguish an unusual ancient mantle lithosphere beneath the East African Rift System

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Shirey, S. B.; Graham, D. W.

    2011-12-01

    The East African Rift System is a complex region that holds keys to understanding the fundamental geodynamics of continental break-up. In this region, the volcanic record preserves over 30 Myrs of geochemical variability associated with the interplay between shallow and deep asthenospheric sources, continental lithospheric mantle, and continental crust. One fundamental question that is still subject to debate concerns the relationship between the lithospheric mantle and the voluminous flood basalt province that erupted at ~30 Ma in Ethiopia and Yemen. Whole-rock Re-Os isotopic data demonstrate the high-Ti (HT2) flood basalts (187Os/188Ost = 0.1247-0.1329) and peridotite xenoliths (187Os/188Ost = 0.1235-0.1377) from NW Ethiopia have similar isotopic compositions. However, Sr-Nd-Pb-Hf isotopic signatures from peridotite clinopyroxene grains are different from those of the flood basalts. The peridotite clinopyroxene separates bear isotopic affinities to anciently depleted mantle (87Sr/86Sr = 0.7019-0.7029; ɛNd = 12.6-18.5; ɛHf = 13.8-27.6) - more depleted than the MORB source - rather than to the OIB-like 30 Ma flood basalts (87Sr/86Sr ~ 0.704; ɛNd = 4.7-6.7; ɛHf = 12.1-13.5). Peridotite clinopyroxenes display two groups of 206Pb/204Pb compositions: the higher 206Pb/204Pb group (18.7-19.3) is compositionally similar to the flood basalts (206Pb/204Pb = 18.97-19.02) whereas the lower 206Pb/204Pb group (17.1-17.9) overlaps with depleted mantle. This suggests that the Pb isotope systematics in some of the peridotites have been metasomatically perturbed. Helium isotopes were analyzed by crushing olivine separated from the peridotites and the flood basalts. Olivine in the peridotites has low He concentrations (0.78-4.7 ncc/g) and low 3He/4He (4.6-6.6 RA), demonstrating that they cannot be the petrogenetic precursor to the high 3He/4He (>12 RA) flood basalts. Notably, these peridotites have 3He/4He signatures consistent with a lithospheric mantle source. Therefore, although the flood basalts and lithospheric mantle bear some isotopic similarities, the basalts were not derived from this portion of the lithospheric mantle, nor are the peridotites crystalline cumulates derived from asthenosphere -derived magmas. The isotopic variations in these peridotites demonstrate that the Afro-Arabian lithosphere contains anciently depleted mantle, created during or prior to the late Proterozoic Pan-African orogeny.

  16. Field-trip guide to the vents, dikes, stratigraphy, and structure of the Columbia River Basalt Group, eastern Oregon and southeastern Washington

    USGS Publications Warehouse

    Camp, Victor E; Reidel, Stephen P.; Ross, Martin E.; Brown, Richard J.; Self, Stephen

    2017-06-22

    The Columbia River Basalt Group covers an area of more than 210,000 km2 with an estimated volume of 210,000 km3. As the youngest continental flood-basalt province on Earth (16.7–5.5 Ma), it is well preserved, with a coherent and detailed stratigraphy exposed in the deep canyonlands of eastern Oregon and southeastern Washington. The Columbia River flood-basalt province is often cited as a model for the study of similar provinces worldwide.This field-trip guide explores the main source region of the Columbia River Basalt Group and is written for trip participants attending the 2017 International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly in Portland, Oregon, USA. The first part of the guide provides an overview of the geologic features common in the Columbia River flood-basalt province and the stratigraphic terminology used in the Columbia River Basalt Group. The accompanying road log examines the stratigraphic evolution, eruption history, and structure of the province through a field examination of the lavas, dikes, and pyroclastic rocks of the Columbia River Basalt Group.

  17. Metasomatized ancient lithospheric mantle beneath the young Zealandia microcontinent and its role in HIMU-like intraplate magmatism

    NASA Astrophysics Data System (ADS)

    Scott, J. M.; Waight, T. E.; van der Meer, Q. H. A.; Palin, J. M.; Cooper, A. F.; Münker, C.

    2014-09-01

    There has been long debate on the asthenospheric versus lithospheric source for numerous intraplate basalts with ocean island basalt (OIB) and high time-integrated U/Pb (HIMU)-like source signatures that have erupted through the Zealandia continental crust. Analysis of 157 spinel facies peridotitic mantle xenoliths from 25 localities across Zealandia permits the first comprehensive regional description of the subcontinental lithospheric mantle (SCLM) and insights into whether it could be a source to the intraplate basalts. Contrary to previous assumptions, the Oligocene-Miocene Zealandia SCLM is highly heterogeneous. It is composed of a refractory craton-like domain (West Otago) adjacent to several moderately fertile domains (East Otago, North Otago, Auckland Islands). Each domain has an early history decoupled from the overlying Carboniferous and younger continental crust, and each domain has undergone varying degrees of depletion followed by enrichment. Clinopyroxene grains reveal trace element characteristics (low Ti/Eu, high Th/U) consistent with enrichment through reaction with carbonatite. This metasomatic overprint has a composition that closely matches HIMU in Sr, Pb ± Nd isotopes. However, clinopyroxene Hf isotopes are in part highly radiogenic and decoupled from the other isotope systems, and also mostly more radiogenic than the intraplate basalts. If the studied spinel facies xenoliths are representative of the thin Zealandia SCLM, the melting of garnet facies lithosphere could only be the intraplate basalt source if it had a less radiogenic Hf-Nd isotope composition than the investigated spinel facies, or was mixed with asthenosphere-derived melts containing less radiogenic Hf.

  18. Magnetic Signature of the Lunar South Pole-Aitken Basin: Character, Origin, and Age

    NASA Technical Reports Server (NTRS)

    Purucker, Michael E.; Head, James W., III; Wilson, Lionel

    2012-01-01

    A new magnetic map of the Moon, based on Lunar Prospector (LP) magnetometer observations, sheds light on the origin of the South Pole-Aitken Basin (SPA), the largest and oldest of the recognized lunar basins. A set of WNW-trending linear to arcuate magnetic features, evident in both the radial and scalar observations, covers much of a 1000 km wide region centered on the NW portion of SPA. The source bodies are not at the surface because the magnetic features show no first-order correspondence to any surface topographic or structural feature. Patchy mare basalts of possible late Imbrianage are emplaced within SPA and are inferred to have been emplaced through dikes, directly from mantle sources. We infer that the magnetic features represent dike swarms that served as feeders for these mare basalts, as evident from the location of the Thomson/ Mare Ingenii, Van de Graaff, and Leeuwenhoek mare basalts on the two largest magnetic features in the region. Modeling suggests that the dike zone is between 25 and 50 km wide at the surface, and dike magnetization contrasts are in the range of 0.2 A/m. We theorize that the basaltic dikes were emplaced in the lunar crust when a long-lived dynamo was active. Based on pressure, temperature, and stress conditions prevalent in the lunar crust, dikes are expected to be a dominantly subsurface phenomenon, consistent with the observations reported here.

  19. Planetary Geophysics and Tectonics

    NASA Technical Reports Server (NTRS)

    Parmentier, E. Marc

    2002-01-01

    We have carried out several studies that explore explanations for the role of chemical density variations in Moon s evolution. Meaningful models for the evolution of the Moon must explain a number of important magmatic characteristics. Volcanic activity subsequent to the formation of its anorthositic crust was dominated by the eruption of mare basalt. 1) The main phase of mare volcanism began approx. 500 Myr after the crystallization of the anorthositic crust and continued for approx. l Gyr. 2) The picitic glasses, considered to be representative of mare basalt least affected by low pressure, near-surface fractionation, were generated by melting, at 400-600 km depth, of a source containing components that, on the basis of the magma ocean hypothesis, should have crystallized at much shallower depth during fractionation of the anorthositic crust. 3) Mare basalts occur primarily in one region of the Moon. Recent topographic data demonstrate that the earlier idea that mare basalt flooded areas of low elevation is not correct. Large areas of very low elevation do not contain mare basalt. The hemispheric asymmetry of mare basalt distribution on the lunar surface must be explained in some other way. 4) A region of the surface roughly correlating with that containing mare basalts also is thought to contain high subsurface concentrations of KREEP which was excavated during the formation of large impact basins. This so-called Procellarum KREEP Terrane (PKT) is responsible for the Imbrium basin-centered thorium anomaly mapped by Lunar Prospector.

  20. Geochemical signals of progressive continental rupture in the Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Furman, T.; Bryce, J.; Yirgu, G.; Ayalew, D.; Cooper, L.

    2003-04-01

    Mafic volcanics of the Main Ethiopian Rift record the development of magmatic rift segments during continental extension. The Ethiopian Rift is one arm of a triple junction that formed above a Paleogene mantle plume, concurrent with eruption of flood basalts ca. 30 Ma across northern Ethiopian and Yemen. The geochemistry of Ethiopian Rift lavas thus provides insight into processes associated with the shift from mechanical (lithospheric) to magmatic (asthenospheric) segmentation in the transitional phase of continental rifting. Quaternary basalts from five volcanic centers representing three magmatic segments display along-axis geochemical variations that likely reflect the degree of rifting and magma supply, which increase abruptly with proximity to the highly-extended Afar region. To first order, the geochemical data indicate a decreasing degree of shallow-level fractionation and greater involvement of depleted or plume-like mantle source materials in basalts sampled closer to the Afar. These spatially controlled geochemical signatures observed in contemporaneous basalts are similar to temporal variations documented in southern Ethiopia, where Quaternary lavas indicate a greater degree of crustal extension than those erupted at the onset of plume activity. Primitive Ethiopian Rift basalts have geochemical signatures (e.g., Ce/Pb, La/Nb, Ba/Nb, Ba/Rb, U/Th) that overlap ocean island basalt compositions, suggesting involvement of sub-lithospheric source materials. The estimated depth of melting (65-75 km) is shallower than values obtained for young primitive mafic lavas from the Western Rift and southern Kenya as well as Oligocene Ethiopian flood basalts from the onset of plume-driven activity. Basalts from the Turkana region (N. Kenya) and Erta 'Ale (Danakil depression) reflect melting at shallower levels, corresponding to the greater degree of crustal extension in these provinces. Preliminary Sr and Nd isotopic data trend towards primitive earth values, consistent with values observed previously in central Ethiopia that are associated with moderately high 3He/4He values (<19 RA; Marty et al. 1996) and interpreted as reflecting involvement of a mantle plume. Taken together, these data support a model in which upwelling plume material sampled in central Ethiopia incorporates depleted mantle during ascent beneath the more highly extended portions of the African Rift.

  1. Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton: Discrimination of contributions from the subducted Pacific slab

    NASA Astrophysics Data System (ADS)

    Li, Hong-Yan; Xu, Yi-Gang; Ryan, Jeffrey G.; Huang, Xiao-Long; Ren, Zhong-Yuan; Guo, Hua; Ning, Zhen-Guo

    2016-04-01

    Contributions from fluid and melt inputs from the subducting Pacific slab to the chemical makeup of intraplate basalts erupted on the eastern Eurasian continent have long been suggested but have not thus far been geochemically constrained. To attempt to address this question, we have investigated Cenozoic basaltic rocks from the western Shandong and Bohai Bay Basin, eastern North China Craton (NCC), which preserve coherent relationships among the chemistries of their melt inclusions, their hosting olivines and their bulk rock compositions. Three groups of samples are distinguished: (1) high-Si and (2) moderate-Si basalts (tholeiites, alkali basalts and basanites) which were erupted at ∼23-20 Ma, and (3) low-Si basalts (nephelinites) which were erupted at <9 Ma. The high-Si basalts have lower alkalies, CaO and FeOT contents, lower trace element concentrations, lower La/Yb, Sm/Yb and Ce/Pb but higher Ba/Th ratios, and lower εNd and εHf values than the low-Si basalts. The olivines in the high-Si basalts have higher Ni and lower Mn and Ca at a given Fo value than those crystallizing from peridotite melts, and their corresponding melt inclusions have lower CaO contents than peridotite melts, suggesting a garnet pyroxenitic source. The magmatic olivines from low-Si basalts have lower Ni but higher Mn at a given Fo value than that of the high-Si basalts, suggesting more olivine in its source. The olivine-hosted melt inclusions of the low-Si basalts have major elemental signatures different from melts of normal peridotitic or garnet pyroxenitic mantle sources, pointing to their derivation from a carbonated mantle source consisting of peridotite and garnet pyroxenite. We propose a model involving the differential melting of a subduction-modified mantle source to account for the generation of these three suites of basalts. Asthenospheric mantle beneath the eastern NCC, which entrains garnet pyroxenite with an EM1 isotopic signature, was metasomatized by carbonatitic melts from carbonated eclogite derived from subducted Pacific slab materials present in the deeper mantle. High degree melting of garnet pyroxenites from a shallower mantle source produced the early (∼23-20 Ma) higher-Si basalts. Mixing of these materials with deeper-sourced melts of carbonated mantle source produced the moderate-Si basalts. A thicker lithosphere after 9 Ma precluded melting of shallower garnet pyroxenites, so melts of the deeper carbonated mantle source are responsible for the low-Si basalts.

  2. Lu-Hf AND Sm-Nd EVOLUTION IN LUNAR MARE BASALTS.

    USGS Publications Warehouse

    Unruh, D.M.; Stille, P.; Patchett, P.J.; Tatsumoto, M.

    1984-01-01

    Lu-Hf and Sm-Nd data for mare basalts combined with Rb-Sr and total REE data taken from the literature suggest that the mare basalts were derived by small ( less than equivalent to 10%) degrees of partial melting of cumulate sources, but that the magma ocean from which these sources formed was light REE and hf-enriched. Calculated source compositions range from lherzolite to olivine websterite. Nonmodal melting of small amounts of ilmenite ( less than equivalent to 3%) in the sources seems to be required by the Lu/Hf data. A comparison of the Hf and Nd isotopic characteristics between the mare basalts and terrestrial oceanic basalts reveals that the epsilon Hf/ epsilon Nd ratios in low-Ti mare basalts are much higher than in terrestrial ocean basalts.

  3. Rb-Sr and Sm-Nd chronology and genealogy of mare basalts from the Sea of Tranquility

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Depaolo, D. J.; Wasserburg, G. J.

    1977-01-01

    Rb-Sr and Sm-Nd ages of two Apollo 11 mare basalts, high-K basalt 10072 and low-K basalt 10062, are reported. Rb-Sr, Sm-Nd, and Ar-40-Ar-39 ages are in good agreement and indicate an extensive time interval for filling of the Sea of Tranquility, presumably by thin lava flows, in agreement with similar observations for the Ocean of Storms. Initial Sr and Nd isotopic compositions on Apollo 11 basalts reveal at least two parent sources producing basalts. The Sm-Nd isotopic data demonstrate that low-K and high-Ti basalts from Apollo 11 and 17 derived from distinct reservoirs, while low-Ti Apollo 15 mare basalt sources have Sm/Nd similar to the sources of Apollo 11 basalts. Groupings of mare basalt based on Ti content and on isotopic data do not coincide.

  4. Lu-Hf and Sm-Nd evolution in lunar mare basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unruh, D.M.; Stille, P.; Patchett, P.J.

    1984-02-15

    Lu-Hf and Sm-Nd data for mare basalts combined with Rb-Sr and total REE data taken from the literature suggest that the mare basalts were derived by small (< or =10%) degrees of partial melting of cumulate sources, but that the magma ocean from which these sources formed was light REE and Hf-enriched. Calculated source compositions range fromm lherzolite to olivine websterite. Nonmodal melting of small amounts of ilmenite (< or =3%) in the sources seems to be required by the Lu/Hf data. A comparison of the Hf and Nd isotopic characteristics between the mare basalts and terrestrial oceanic basalts revealsmore » that the epsilonHf/epsilonNd ratios of low-Ti mare basalts are much higher than in terrestrial oceanic basalts. The results are qualitatively consistent with the hypothesis that terrestrial basalt sources are partial melt residues whereas mare basalt sources are cumulates. Alternatively, the results may imply that the terrestrial mantle has evolved in two (or more) stages of evolution, and that the net effect was depletion of the mantle during the first approx.1-3 b.y. followed by enrichment during the last 1-2 b.y.; or simply that there is a difference in Lu-Hf crystal-liquid partitioning (relative to Sm-Nd) between the lunar and terrestrial mantles.« less

  5. Interisland and interarchipelago transfer of stone tools in prehistoric Polynesia.

    PubMed

    Weisler, M I; Kirch, P V

    1996-02-20

    Tracing interisland and interarchipelago movements of people and artifacts in prehistoric Polynesia has posed a challenge to archaeologists due to the lack of pottery and obsidian, two materials most readily used in studies of prehistoric trade or exchange. Here we report the application of nondestructive energy-dispersive x-ray fluorescence (EDXRF) analysis to the sourcing of Polynesian artifacts made from basalt, one of the most ubiquitous materials in Polynesian archaeological sites. We have compared excavated and surface-collected basalt adzes and adze flakes from two sites in Samoa (site AS-13-1) and the Cook Islands (site MAN-44), with source basalts from known prehistoric quarries in these archipelagoes. In both cases, we are able to demonstrate the importing of basalt adzes from Tutuila Island, a distance of 100 km to Ofu Island, and of 1600 km to Mangaia Island. These findings are of considerable significance for Polynesian prehistory, as they demonstrate the movement of objects not only between islands in the same group (where communities were culturally and linguistically related) but also between distant island groups. Further applications of EDXRF analysis should greatly aid archaeologists in their efforts to reconstruct ancient trade and exchange networks, not only in Polynesia but also in other regions where basalt was a major material for artifact production.

  6. Sr-Nd-Pb isotopic constraints on the nature of the mantle sources involved in the genesis of the high-Ti tholeiites from northern Paraná Continental Flood Basalts (Brazil)

    NASA Astrophysics Data System (ADS)

    Rocha-Júnior, Eduardo R. V.; Marques, Leila S.; Babinski, Marly; Nardy, Antônio J. R.; Figueiredo, Ana M. G.; Machado, Fábio B.

    2013-10-01

    There has been little research on geochemistry and isotopic compositions in tholeiites of the Northern region from the Paraná Continental Flood Basalts (PCFB), one of the largest continental provinces of the world. In order to examine the mantle sources involved in the high-Ti (Pitanga and Paranapanema) basalt genesis, we studied Sr, Nd, and Pb isotopic systematics, and major, minor and incompatible trace element abundances. The REE patterns of the investigated samples (Pitanga and Paranapanema magma type) are similar (parallel to) to those of Island Arc Basalts' REE patterns. The high-Ti basalts investigated in this study have initial (133 Ma) 87Sr/86Sr ratios of 0.70538-0.70642, 143Nd/144Nd of 0.51233-0.51218, 206Pb/204Pb of 17.74-18.25, 207Pb/204Pb of 15.51-15.57, and 208Pb/204Pb of 38.18-38.45. These isotopic compositions do not display any correlation with Nb/Th, Nb/La or P2O5/K2O ratios, which also reflect that these rocks were not significantly affected by low-pressure crustal contamination. The incompatible trace element ratios and Sr-Nd-Pb isotopic compositions of the PCFB tholeiites are different to those found in Tristan da Cunha ocean island rocks, showing that this plume did not play a substantial role in the PCFB genesis. This interpretation is corroborated by previously published osmium isotopic data (initial γOs values range from +1.0 to +2.0 for high-Ti basalts), which also preclude basalt generation by melting of ancient subcontinental lithospheric mantle. The geochemical composition of the northern PCFB may be explained through the involvement of fluids and/or small volume melts related to metasomatic processes. In this context, we propose that the source of these magmas is a mixture of sublithospheric peridotite veined and/or interlayered with mafic components (e.g., pyroxenites or eclogites). The sublithospheric mantle (dominating the osmium isotopic compositions) was very probably enriched by fluids and/or magmas related to the Neoproterozoic subduction processes. This sublithospheric mantle region may have been frozen and coupled to the base of the Parana basin lithospheric plate above which the Paleozoic subsidence and subsequent Early Cretaceous magmatism occurred.

  7. Mare basalt petrogenesis - A review of experimental studies. [lunar rock analyses

    NASA Technical Reports Server (NTRS)

    Kesson, S. E.; Lindsley, D. H.

    1976-01-01

    Experimental results relevant to the fundamental question of the origin of mare basalts are examined with particular reference to guidelines for an appropriate evaluation of experiments. The petrogenesis of mare basalts remains a controversial subject as no petrogenetic scenario has yet been able to satisfy all the geochemical and geophysical constraints. Several generalizations hold true if one accepts that high-pressure equilibria provide some useful but limited information on mare source regions in the lunar interior. Petrogenesis of lowand high-Ti suites is identified. If assimilative processes are involved in the petrogenesis of the high-Ti suite, the high-pressure experiments on the resultant hybrid liquids have little bearing on their origins.

  8. Plume dynamics beneath the African plate inferred from the geochemistry of the Tertiary basalts of southern Ethiopia

    NASA Astrophysics Data System (ADS)

    George, R. M.; Rogers, N. W.

    2002-09-01

    Southern Ethiopian flood basalts erupted in two episodes: the pre-rift Amaro and Gamo transitional tholeiites (45-35 million years) followed by the syn-extensional Getra-Kele alkali basalts (19-11 million years). These two volcanic episodes are distinct in both trace element and isotope ratios (Zr/Nb ratios in Amaro/Gamo lavas fall between 7 and 14, and 3-4.7 in the Getra-Kele lavas whereas 206Pb/204Pb ratios fall between 18-19 and 18.9-20, respectively). The distinctive chemistries of the two eruptive phases record the tapping of two distinct source regions: a mantle plume source for the Amaro/Gamo phase and an enriched continental mantle lithosphere source for the Getra-Kele phase. Isotope and trace element variations within the Amaro/Gamo lavas reflect polybaric fractional crystallisation initiated at high pressures accompanied by limited crustal contamination. We show that clinopyroxene removal at high (0.5 GPa) crustal pressures provides an explanation for the common occurrence of transitional tholeiites in Ethiopia relative to other, typically tholeiitic flood basalt provinces. The mantle plume signature inferred from the most primitive Amaro basalts is isotopically distinct from that contributing to melt generation in central Ethiopian and Afar. This, combined with Early Tertiary plate reconstructions and similarities with Kenyan basalts farther south, lends credence to derivation of these melts from the Kenyan plume rather than the Afar mantle plume. The break in magmatism between 35 and 19 Ma is consistent with the northward movement away from the Kenya plume predicted from plate tectonic reconstructions. In this model the Getra-Kele magmatism is a response to heating of carbonatitically metasomatised lithosphere by the Afar mantle plume beneath southern Ethiopia at this time.

  9. Genetic relations of oceanic basalts as indicated by lead isotopes

    USGS Publications Warehouse

    Tatsumoto, M.

    1966-01-01

    The isotopic compositions of lead and the concentrations of lead, uranium, and thorium in samples of oceanic tholeiite and alkali suites are determined, and the genetic relations of the oceanic basalts are discussed. Lead of the oceanic tholeiites has a varying lead-206 : lead-204 ratio between 17.8 and 18.8, while leads of the alkali basalt suites from Easter Island and Guadalupe Island are very radiogenic with lead-206 : lead-204 ratios between 19.3 and 20.4. It is concluded that (i) the isotopic composition of lead in oceanic tholeiite suggests that the upper mantle source region of the tholeiite was differentiated from an original mantle material more than 1 billion years ago and that the upper mantle is not homogeneous at the present time, (ii) less than 20 million years was required for the crystal differentiation within the alkali suite from Easter Island, (iii) no crustal contamination was involved in the course of differentiation of rocks from Easter Island; however, some crustal contamination may have affected Guadalupe Island rocks, and (iv) alkali basalt may be produced from the tholeiite in the oceanic region by crystal differentiation. Alternatively the difference in the isotopic composition of lead in oceanic basalts may be produced by partial melting at different depths of a differentiated upper mantle.

  10. Stratigraphy, petrography, and provenance of Archean sedimentary rocks of the Nsuze Group, Pongola Supergroup, in the Wit M'folozi Inlier, South Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamero de Villarroel, H.; Lowe, D.R.

    1993-02-01

    The Upper Archean Pongola Supergroup is a succession of clastic and volcanic rocks that represents the oldest relatively unmetamorphosed sedimentary sequence deposited on the basement of the 3.5-3.2 Ga-old Kaapvaal Craton. The Pongola Supergroup includes two subdivisions, the Nsuze and the Mozaan Groups. The Nsuze Group is composed of clastic rocks, minor carbonate units, and basalt. Nsuze sandstones are dominated by granite-derived sediments, and minor basaltic-derived detritus. Most Nsuze sedimentary rocks are sandstones that include both quartz-fieldspar and lithic-rich varieties. The mineralogy of Nsuze sandstones reflects the mixing of debris derived from two distinctive sources: (1) a sialic plutonic sourcemore » yielding quartz and microcline and (2) a basaltic source yielding basaltic lithic detritus and plagioclase. The most likely source rocks for the Nsuze sandstones in the Wit M'folozi Inlier were Archean granitic basement, represented by the Mpuluzi batholith, and Nsuze basaltic volcanic rocks. Both continental arc and rift settings have been proposed for the Pongola Supergroup. Nsuze sandstones show similarities to continental arc sandstone suites. However, there is no report of the existence of high standing stratovolcanoes, calc-alkaline plutonism, or contact and regional metamorphism of the intruded volcanic-sedimentary and basement rocks in the Pongola basin, features that are typically associated with continental arcs. The dominance of continent-derived detritus in the Nsuze Group argues that volcanic rocks made up a minor part of the exposed source area and that volcanism was largely restricted to the basin of deposition. Collectively, available evidence favors an intracratonic rift for the depositional setting of the Nsuze Group.« less

  11. 87Sr/86Sr ratios in basalts from islands in the Indian Ocean

    USGS Publications Warehouse

    Hedge, C.E.; Watkins, N.D.; Hildreth, R.A.; Doering, W.P.

    1973-01-01

    87Sr/86Sr ratios of basalts from islands in the Indian Ocean (0.7040) are higher than those of basalts dredged from the Mid-Indian Ocean Ridge (0.7034). The sources of the island basalts have apparently not been in equilibrium with the source of the ridge basalts for roughly 109 years. Both ridge and island basalts in the Indian Ocean are higher in 87Sr/86Sr than are rocks from similar settings in the eastern Pacific. ?? 1973.

  12. Experimental partitioning of rare earth elements and scandium among armalcolite, ilmenite, olivine and mare basalt liquid

    NASA Technical Reports Server (NTRS)

    Irving, A. J.; Merrill, R. B.; Singleton, D. E.

    1978-01-01

    An experimental study was carried out to measure partition coefficients for two rare-earth elements (Sm and Tm) and Sc among armalcolite, ilmenite, olivine and liquid coexisting in a system modeled on high-Ti mare basalt 74275. This 'primitive' sample was chosen for study because its major and trace element chemistry as well as its equilibrium phase relations at atmospheric pressure are known from previous studies. Beta-track analytical techniques were used so that partition coefficients could be measured in an environment whose bulk trace element composition is similar to that of the natural basalt. Partition coefficients for Cr and Mn were determined in the same experiments by microprobe analysis. The only equilibrium partial melting model appears to be one in which ilmenite is initially present in the source region but is consumed by melting before segregation of the high-Ti mare basalt liquid from the residue.

  13. Correlated compositional and mineralogical investigations at the Chang'e-3 landing site.

    PubMed

    Ling, Zongcheng; Jolliff, Bradley L; Wang, Alian; Li, Chunlai; Liu, Jianzhong; Zhang, Jiang; Li, Bo; Sun, Lingzhi; Chen, Jian; Xiao, Long; Liu, Jianjun; Ren, Xin; Peng, Wenxi; Wang, Huanyu; Cui, Xingzhu; He, Zhiping; Wang, Jianyu

    2015-12-22

    The chemical compositions of relatively young mare lava flows have implications for the late volcanism on the Moon. Here we report the composition of soil along the rim of a 450-m diameter fresh crater at the Chang'e-3 (CE-3) landing site, investigated by the Yutu rover with in situ APXS (Active Particle-induced X-ray Spectrometer) and VNIS (Visible and Near-infrared Imaging Spectrometer) measurements. Results indicate that this region's composition differs from other mare sample-return sites and is a new type of mare basalt not previously sampled, but consistent with remote sensing. The CE-3 regolith derived from olivine-normative basaltic rocks with high FeO/(FeO+MgO). Deconvolution of the VNIS data indicates abundant high-Ca ferropyroxene (augite and pigeonite) plus Fe-rich olivine. We infer from the regolith composition that the basaltic source rocks formed during late-stage magma-ocean differentiation when dense ferropyroxene-ilmenite cumulates sank and mixed with deeper, relatively ferroan olivine and orthopyroxene in a hybridized mantle source.

  14. Constraining the effects of permeability uncertainty for geologic CO2 sequestration in a basalt reservoir

    NASA Astrophysics Data System (ADS)

    Jayne, R., Jr.; Pollyea, R.

    2016-12-01

    Carbon capture and sequestration (CCS) in geologic reservoirs is one strategy for reducing anthropogenic CO2 emissions from large-scale point-source emitters. Recent developments at the CarbFix CCS pilot in Iceland have shown that basalt reservoirs are highly effective for permanent mineral trapping on the basis of CO2-water-rock interactions, which result in the formation of carbonates minerals. In order to advance our understanding of basalt sequestration in large igneous provinces, this research uses numerical simulation to evaluate the feasibility of industrial-scale CO2 injections in the Columbia River Basalt Group (CRBG). Although bulk reservoir properties are well constrained on the basis of field and laboratory testing from the Wallula Basalt Sequestration Pilot Project, there remains significant uncertainty in the spatial distribution of permeability at the scale of individual basalt flows. Geostatistical analysis of hydrologic data from 540 wells illustrates that CRBG reservoirs are reasonably modeled as layered heterogeneous systems on the basis of basalt flow morphology; however, the regional dataset is insufficient to constrain permeability variability at the scale of an individual basalt flow. As a result, permeability distribution for this modeling study is established by centering the lognormal permeability distribution in the regional dataset over the bulk permeability measured at Wallula site, which results in a spatially random permeability distribution within the target reservoir. In order to quantify the effects of this permeability uncertainty, CO2 injections are simulated within 50 equally probable synthetic reservoir domains. Each model domain comprises three-dimensional geometry with 530,000 grid blocks, and fracture-matrix interaction is simulated as interacting continua for the two low permeability layers (flow interiors) bounding the injection zone. Results from this research illustrate that permeability uncertainty at the scale of individual basalt flows may significantly impact both injection pressure accumulation and CO2 distribution.

  15. Chemical and isotopic diversity in basalts dredged from the East Pacific Rise at 10°S, the fossil Galapagos Rise and the Nazca plate

    USGS Publications Warehouse

    Batiza, Rodey; Oestrike, Richard; Futa, Kiyoto

    1982-01-01

    The dredges from the East Pacific Rise at about 10°S recovered unusual transitional, light rare-earth element (LREE) enriched basalts which show a range of fractionation. On the basis of their chemical and isotopic abundances, it is unlikely that the lavas are related by a single simple process of magmatic differentiation. We suggest that the mantle source region of these basalts was chemically and isotopically heterogeneous. The chemistry of LREE-depleted tholeiitic basalt dredged from near the axis of the extinct Galapagos Rise indicates complex petrogenesis and differentiation. The presence of tholeiitic basalts here indicates that unlike the Guadalupe and Mathematician fossil ridges, the Galapagos Rise has not been the site of voluminous post-abandonment alkalic volcanism. Alkalic basalts of picritic bulk composition dredged from an elongate seamount near the Galapagos Rise do not represent liquid compositions. Instead, we suggest that these alkalic liquids contain added olivine and plagioclase xenocrysts. Although most of the samples analyzed are very fresh, a few have been altered. The latter exhibit characteristic chemical and isotopic effects of seawater alteration.

  16. Can we identify source lithology of basalt?

    PubMed

    Yang, Zong-Feng; Zhou, Jun-Hong

    2013-01-01

    The nature of source rocks of basaltic magmas plays a fundamental role in understanding the composition, structure and evolution of the solid earth. However, identification of source lithology of basalts remains uncertainty. Using a parameterization of multi-decadal melting experiments on a variety of peridotite and pyroxenite, we show here that a parameter called FC3MS value (FeO/CaO-3*MgO/SiO2, all in wt%) can identify most pyroxenite-derived basalts. The continental oceanic island basalt-like volcanic rocks (MgO>7.5%) (C-OIB) in eastern China and Mongolia are too high in the FC3MS value to be derived from peridotite source. The majority of the C-OIB in phase diagrams are equilibrium with garnet and clinopyroxene, indicating that garnet pyroxenite is the dominant source lithology. Our results demonstrate that many reputed evolved low magnesian C-OIBs in fact represent primary pyroxenite melts, suggesting that many previous geological and petrological interpretations of basalts based on the single peridotite model need to be reconsidered.

  17. Can we identify source lithology of basalt?

    PubMed Central

    Yang, Zong-Feng; Zhou, Jun-Hong

    2013-01-01

    The nature of source rocks of basaltic magmas plays a fundamental role in understanding the composition, structure and evolution of the solid earth. However, identification of source lithology of basalts remains uncertainty. Using a parameterization of multi-decadal melting experiments on a variety of peridotite and pyroxenite, we show here that a parameter called FC3MS value (FeO/CaO-3*MgO/SiO2, all in wt%) can identify most pyroxenite-derived basalts. The continental oceanic island basalt-like volcanic rocks (MgO>7.5%) (C-OIB) in eastern China and Mongolia are too high in the FC3MS value to be derived from peridotite source. The majority of the C-OIB in phase diagrams are equilibrium with garnet and clinopyroxene, indicating that garnet pyroxenite is the dominant source lithology. Our results demonstrate that many reputed evolved low magnesian C-OIBs in fact represent primary pyroxenite melts, suggesting that many previous geological and petrological interpretations of basalts based on the single peridotite model need to be reconsidered. PMID:23676779

  18. Green glass vitrophyre 78526 - An impact of very low-Ti mare basalt composition

    NASA Technical Reports Server (NTRS)

    Warner, R. D.; Taylor, G. J.; Kiel, K.; Planner, H. H.; Nehru, C. E.; Ma, M.-S.; Schmitt, R. A.

    1978-01-01

    Rake sample 78526 is an 8.77 g rock consisting primarily of vitrophyric pale green glass with subordinate mineral and lithic relics. Petrographic and compositional evidence leads to the following conclusions: (1) the bulk composition represents that of a mixture formed by impact melting of at least two different textural and compositional varieties of VLT mare basalt that are now present in the rock as lithic relics and a poorly defined low-Ti mare basalt component observed in thin section only in the form of isolated mineral relics; (2) the admixed VLT mare basalts had REE abundances lower than those found in other mare basalts (but probably higher than emerald green glass) and REE patterns showing significant enrichment of the heavy relative to light REE's, suggesting that they were derived by comparatively high degrees of partial melting of a clinopyroxene-rich source region; and (3) the impact melt supercooled to produce the vitrophyre, with rather sharply contrasting textural domains present in the vitrophyre resulting from differences in nucleation kinetics and degrees of supercooling in various portions of the sample.

  19. Evidence for a sulfur-undersaturated lunar interior from the solubility of sulfur in lunar melts and sulfide-silicate partitioning of siderophile elements

    NASA Astrophysics Data System (ADS)

    Steenstra, E. S.; Seegers, A. X.; Eising, J.; Tomassen, B. G. J.; Webers, F. P. F.; Berndt, J.; Klemme, S.; Matveev, S.; van Westrenen, W.

    2018-06-01

    Sulfur concentrations at sulfide saturation (SCSS) were determined for a range of low- to high-Ti lunar melt compositions (synthetic equivalents of Apollo 14 black and yellow glass, Apollo 15 green glass, Apollo 17 orange glass and a late-stage lunar magma ocean melt, containing between 0.2 and 25 wt.% TiO2) as a function of pressure (1-2.5 GPa) and temperature (1683-1883 K). For the same experiments, sulfide-silicate partition coefficients were derived for elements V, Cr, Mn, Co, Cu, Zn, Ga, Ge, As, Se, Mo, Sn, Sb, Te, W and Pb. The SCSS is a strong function of silicate melt composition, most notably FeO content. An increase in temperature increases the SCSS and an increase in pressure decreases the SCSS, both in agreement with previous work on terrestrial, lunar and martian compositions. Previously reported SCSS values for high-FeO melts were combined with the experimental data reported here to obtain a new predictive equation to calculate the SCSS for high-FeO lunar melt compositions. Calculated SCSS values, combined with previously estimated S contents of lunar low-Ti basalts and primitive pyroclastic glasses, suggest their source regions were not sulfide saturated. Even when correcting for the currently inferred maximum extent of S degassing during or after eruption, sample S abundances are still > 700 ppm lower than the calculated SCSS values for these compositions. To achieve sulfide saturation in the source regions of low-Ti basalts and lunar pyroclastic glasses, the extent of degassing of S in lunar magma would have to be orders of magnitude higher than currently thought, inconsistent with S isotopic and core-to-rim S diffusion profile data. The only lunar samples that could have experienced sulfide saturation are some of the more evolved A17 high-Ti basalts, if sulfides are Ni- and/or Cu rich. Sulfide saturation in the source regions of lunar melts is also inconsistent with the sulfide-silicate partitioning systematics of Ni, Co and Cu. Segregation of significant quantities of (non)-stoichiometric sulfides during fractional crystallization would result in far larger depletions of Ni, Co and Cu than observed, whereas trends in their abundances are more likely explained by olivine fractionation. The sulfide exhaustion of the lunar magma source regions agrees with previously proposed low S abundances in the lunar core and mantle, and by extension with relatively minor degassing of S during the Moon-forming event. Our results support the hypothesis that refractory chalcophile and highly siderophile element systematics of low-Ti basalts and pyroclastic glasses reflect the geochemical characteristics of their source regions, instead of indicating the presence of residual sulfides in the lunar interior.

  20. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Chronology of surface history of the Moon. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    The sequence of events is described that occurred from the time that the ancient lunar crust solidified (about 4.4. billion years ago) and anorthositic high lands dominated the surface, until the global contraction (cooling) that began around 3.3 billion years ago when late stage basalts were emplaced at basin margins where fractures penetrated to subsurface tensional zones. The lunar intercrater plains may be linked with early KREEP volcanism, the LKFM basalt source region, and the first stages of mare volcanism. Ages of KREEP bracket the possible ages of the pre-Imbrian plains, and overlap the initial stages of mare basalt emplacement. Both plains are extruded under the same tensional tectonic regime.

  1. Reconciling the shadow of a subduction signature with rift geochemistry and tectonic environment in Eastern Marie Byrd Land, Antarctica

    NASA Astrophysics Data System (ADS)

    LeMasurier, Wesley E.; Choi, Sung Hi; Hart, Stanley R.; Mukasa, Sam; Rogers, Nick

    2016-09-01

    Basalt-trachyte volcanoes in the Marie Byrd Land (MBL) Cenozoic province lie along the Amundsen Sea coast on the north flank of the West Antarctic rift. Basalts here are characterized by OIB-like geochemistry, restricted ranges of 87Sr/86Sr (0.702535-0.703284) and 143Nd/144Nd (0.512839-0.513008) and a wide range of 206Pb/204Pb (19.357-20.934). Basalts at three MBL volcanoes display two anomalies compared with the above and with all other basalts in West Antarctica. They include 143Nd/144Nd (0.512778-0.512789) values at Mt. Takahe and Mt. Siple that are 2σ lower than other West Antarctic basalts, and Ba/Nb, Ba/La, and Ba/Th values at Mt. Murphy and Mt. Takahe that are 3-8 times higher than normal OIB. Isotope and trace element data do not support crustal and lithospheric mantle contamination, or the presence of residual mantle amphibole or phlogopite as explanations of these anomalies. The apparent coincidence of these anomalies with the site of a pre-Cenozoic convergence zone along the Gondwanaland margin suggests a subduction influence. Major episodes of subduction and granitic plutonism took place in MBL during the Devonian, Permian, and Late Cretaceous. Relicts in the source region, of components from these subducted slabs, provide a credible explanation for the uncoupling of Ba from other large ion lithophile elements (LILE), for its erratic distribution, and for the anomalously low 143Nd/144Nd at Mt. Takahe. The last episode of subduction ended 85 Ma, and was followed by continental break-up, rifting and lithospheric attenuation that produced the West Antarctic rift as we know it today. Thus, the enigmatic geochemical signatures in these three volcanoes seem to have been preserved roughly 61-85 m.y. after subduction ended. New calculations of source melting depth and a new determination of lithospheric thickness suggest that the source of the anomalies resides in a fossil mélange diapir that rose from the Cretaceous subducting slab, became attached to the base of the lithosphere at 80-100 km depth, and remained there during the subsequent plate motion and source remobilization history of this region.

  2. Simultaneous Quantification of Temperature, Pyroxenite Abundance, and Upwelling Rates in the Iceland Mantle Source

    NASA Astrophysics Data System (ADS)

    Brown, E.; Lesher, C. E.

    2014-12-01

    The compositions and volumes of basalts erupted at the earth's surface are a function of mantle temperature, mantle composition, and the rate at which the mantle upwells through the melting zone. Thus, basaltic magmatism has long been used to probe the thermal and physiochemical state of the earth's mantle. Great insight has been gained into the mantle beneath the global spreading ridge system, where the mantle source is assumed to be homogeneous peridotite that upwells passively [1]. However, it is now recognized that many basalt source regions are lithologically heterogeneous (i.e. containing recycled lithospheric material ranging from harzburgite to pyroxenite) and upwell at rates in excess of those governed by plate separation. To account for these complexities, we have developed a forward melting model for lithologically heterogeneous mantle that incorporates thermodynamically and experimentally constrained melting functions for a range of peridotite and pyroxenite lithologies. The model is unique because it quantifies mantle upwelling rates based on the net buoyancy of the source, thus providing a means for linking basalt compositions/volumes to mantle flow while accounting for source heterogeneity. We apply the model to investigate the mantle properties governing magmatism along different rift segments in Iceland, where lithologic heterogeneity and variable upwelling rates have been inferred through geochemical means [2,3]. Using constraints from seismically determined crustal thicknesses and recent estimates of the proportion of pyroxenite-derived melt contributing to Icelandic basalt compositions [4,5], we show that mantle sources beneath Iceland have excess potential temperatures >85 °C, contain <7% pyroxenite, and maximum upwelling rates ~14 times the passive rate. Our modeling highlights the dominant role of elevated mantle temperature and enhanced upwelling for high productivity magmatism in Iceland, and a subordinate role for mantle heterogeneity, which is required to account for much of the observed chemical and isotopic diversity. [1] Langmuir et al, 1992, AGU Geophys. Mono. Ser. 71 [2] Chauvel & Hemond, 2000, G-cubed, v 1 [3] Kokfelt et al, 2003, EPSL, v 214 [4] Sobolev et al, 2007, Science, v 316 [5] Shorttle et al, 2014, EPSL, v 395

  3. Evolution and Depths of the High-Ti Mare Picrite Glass Source Regions

    NASA Technical Reports Server (NTRS)

    Hess, Paul C.

    1997-01-01

    The objectives of this research were to examine the igneous evolution of the Moon with emphasis on the petrogenesis of Mare basalts, lunar troctolites and the Mg-rich suite and on the evolution of the crystallization products of the magma ocean.

  4. Geochemical and mineralogical evidence for Sahara and Sahel dust additions to Quaternary soils on Lanzarote, eastern Canary Islands, Spain

    USGS Publications Warehouse

    Muhs, D.R.; Budahn, J.; Skipp, G.; Prospero, J.M.; Patterson, D.; Bettis, E. Arthur

    2010-01-01

    Africa is the most important source of dust in the world today, and dust storms are frequent on the nearby Canary Islands. Previous workers have inferred that the Sahara is the most important source of dust to Canary Islands soils, with little contribution from the Sahel region. Soils overlying a late Quaternary basalt flow on Lanzarote, Canary Islands, contain, in addition to volcanic minerals, quartz and mica, exotic to the island's bedrock. Kaolinite in the soils also likely has an exotic origin. Trace-element geochemistry shows that the soils are derived from varying proportions of locally derived basalt and African dust. Major-element geochemistry, clay mineralogy and interpretation of satellite imagery suggest that dust additions to the Canary Islands come not only from the Sahara Desert, but also from the Sahel region. ?? Published 2010. This article is a US Government work and is in the public domain in the USA.

  5. Petrology of Hualalai volcano, Hawaii: Implication for mantle composition

    USGS Publications Warehouse

    Clague, D.A.; Jackson, E.D.; Wright, T.L.

    1980-01-01

    Hualalai is one of five volcanoes whose eruptions built the island of Hawaii. The historic 1800-1801 flows and the analyzed prehistoric flows exposed at the surface are alkalic basalts except for a trachyte cone and flow at Puu Waawaa and a trachyte maar deposit near Waha Pele. The 1800-1801 eruption produced two flows: the upper Kaupulehu flow and the lower Huehue flow. The analyzed lavas of the two 1800-1801 flows are geochemically identical with the exception of a few samples from the toe of the Huehue flow that appear to be derived from a separate magmatic batch. The analyzed prehistoric basalts are nearly identical to the 1800-1801 flows but include some lavas that have undergone considerable shallow crystal fractionation. The least fractionated alkalic basalts from Hualalai are in equilibrium with mantle olivine (Fo87) indicating that the Hawaiian mantle source region is not unusually iron-rich. The 1800-1801 and analyzed prehistoric basalts can be generated by about 5-10% partial fusion of a garnet-bearing source relatively enriched in the light-rare-earths. The mantle underlying the Hawaiian Islands is chemically and mineralogically heterogeneous before and after extraction of the magmas that make up the volcanoes. ?? 1980 Intern. Association of Volcanology and Chemistry of the Earth's Interior.

  6. Geochemical constraints on possible subduction components in lavas of Mayon and Taal Volcanoes, Southern Luzon, Philippines

    USGS Publications Warehouse

    Castillo, P.R.; Newhall, C.G.

    2004-01-01

    Mayon is the most active volcano along the east margin of southern Luzon, Philippines. Petrographic and major element data indicate that Mayon has produced a basaltic to andesitic lava series by fractional crystallization and magma mixing. Trace element data indicate that the parental basalts came from a heterogeneous mantle source. The unmodified composition of the mantle wedge is similar to that beneath the Indian Ocean. To this mantle was added a subduction component consisting of melt from subducted pelagic sediment and aqueous fluid dehydrated from the subducted basaltic crust. Lavas from the highly active Taal Volcano on the west margin of southern Luzon are compositionally more variable than Mayon lavas. Taal lavas also originated from a mantle wedge metasomatized by aqueous fluid dehydrated from the subducted basaltic crust and melt plus fluid derived from the subducted terrigenous sediment. More sediment is involved in the generation of Taal lavas. Lead isotopes argue against crustal contamination. Some heterogeneity of the unmodified mantle wedge and differences in whether the sediment signature is transferred into the lava source through an aqueous fluid or melt phase are needed to explain the regional compositional variation of Philippine arc lavas. ?? Oxford University Press 2004; all rights reserved.

  7. Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii: A solar component in the Earth

    USGS Publications Warehouse

    Honda, M.; McDougall, I.; Patterson, D.B.; Doulgeris, A.; Clague, D.A.

    1993-01-01

    Noble gas elemental and isotopic abundances have been analysed in twenty-two samples of basaltic glass dredged from the submarine flanks of two currently active Hawaiian volcanoes, Loihi Seamount and Kilauea. Neon isotopic ratios are enriched in 20Ne and 21Ne by as much as 16% with respect to atmospheric ratios. All the Hawaiian basalt glass samples show relatively high 3He 4He ratios. The high 20Ne 22Ne values in some of the Hawaiian samples, together with correlations between neon and helium systematics, suggest the presence of a solar component in the source regions of the Hawaiian mantle plume. The solar hypothesis for the Earth's primordial noble gas composition can account for helium and neon isotopic ratios observed in basaltic glasses from both plume and spreading systems, in fluids in continental hydrothermal systems, in CO2 well gases, and in ancient diamonds. These results provide new insights into the origin and evolution of the Earth's atmosphere. ?? 1993.

  8. Evidence for high-temperature fractionation of lithium isotopes during differentiation of the Moon

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Qiu, Lin; Ash, Richard D.; McDonough, William F.; Teng, Fang-Zhen; Rudnick, Roberta L.; Taylor, Lawrence A.

    2016-06-01

    Lithium isotope and abundance data are reported for Apollo 15 and 17 mare basalts and the LaPaz low-Ti mare basalt meteorites, along with lithium isotope data for carbonaceous, ordinary, and enstatite chondrites, and chondrules from the Allende CV3 meteorite. Apollo 15 low-Ti mare basalts have lower Li contents and lower δ7Li (3.8 ± 1.2‰; all uncertainties are 2 standard deviations) than Apollo 17 high-Ti mare basalts (δ7Li = 5.2 ± 1.2‰), with evolved LaPaz mare basalts having high Li contents, but similar low δ7Li (3.7 ± 0.5‰) to Apollo 15 mare basalts. In low-Ti mare basalt 15555, the highest concentrations of Li occur in late-stage tridymite (>20 ppm) and plagioclase (11 ± 3 ppm), with olivine (6.1 ± 3.8 ppm), pyroxene (4.2 ± 1.6 ppm), and ilmenite (0.8 ± 0.7 ppm) having lower Li concentrations. Values of δ7Li in low- and high-Ti mare basalt sources broadly correlate negatively with 18O/16O and positively with 56Fe/54Fe (low-Ti: δ7Li ≤4‰; δ56Fe ≤0.04‰; δ18O ≥5.7‰; high-Ti: δ7Li >6‰ δ56Fe >0.18‰ δ18O <5.4‰). Lithium does not appear to have acted as a volatile element during planetary formation, with subequal Li contents in mare basalts compared with terrestrial, martian, or vestan basaltic rocks. Observed Li isotopic fractionations in mare basalts can potentially be explained through large-degree, high-temperature igneous differentiation of their source regions. Progressive magma ocean crystallization led to enrichment in Li and δ7Li in late-stage liquids, probably as a consequence of preferential retention of 7Li and Li in the melt relative to crystallizing solids. Lithium isotopic fractionation has not been observed during extensive differentiation in terrestrial magmatic systems and may only be recognizable during extensive planetary magmatic differentiation under volatile-poor conditions, as expected for the lunar magma ocean. Our new analyses of chondrites show that they have δ7Li ranging between -2.5‰ and 4‰. The higher δ7Li in planetary basalts than in the compilation of chondrites (2.1 ± 1.3‰) demonstrates that differentiated planetary basalts are, on average, isotopically heavier than most chondrites.

  9. Discovery of Latest Cretaceous OIB-type alkaline gabbros in the Eastern Pontides Orogenic Belt, NE Turkey: Evidence for tectonic emplacement of seamounts

    NASA Astrophysics Data System (ADS)

    Eyuboglu, Yener; Dudas, Francis O.; Chatterjee, Nilanjan; Liu, Ze; Yılmaz-Değerli, Sedanur

    2018-06-01

    The Meso-Cenozoic geodynamic evolution of the Eastern Pontides Orogenic Belt, a mountain chain extending parallel to the southeastern margin of the Black Sea, has been controversial for the last forty years. Here we present data for a newly discovered alkaline gabbro body and its surrounding basaltic rocks in the northern part of the Eastern Pontides Orogenic Belt. We also provide a comprehensive assessment of the Late Mesozoic-Cenozoic geodynamic evolution of the Eastern Mediterranean region. The gabbroic body is bounded by reverse faults along its northern and southern borders and is surrounded by vesicular, pillow-fragment breccias and pillow basalts. Mineral compositions suggest that crystallization of the gabbros began at about 1170 °C, and the lowest preserved crystallization T is near 1000 °C. Estimated pressure at the beginning of crystallization is 5.7-7.4 kb. The 40Ar/39Ar dating of kaersutite and plagioclase and Usbnd Pb dating of titanite indicated that the Hayrat gabbro crystallized at 67 Ma (Late Maastrichtian). Whole rock major-trace-rare earth element and Sr-Nd-Pb isotope data indicate that the gabbros and basalts have different origins. The gabbros are alkaline and exhibit the geochemical features of OIB, whereas the basalts are tholeiitic and reveal depletions of HFSE that are similar to those of arc rocks. The gabbros are strongly fractionated, and derive from an enriched, lithospheric mantle source, with partial melting occurring in a garnet-stable environment. The basalts are less fractionated, and probably derive from a shallower source in which spinel peridotite was the predominant lithology. Considering all new and old geological, geochemical, geochronological and geophysical data from the Black Sea Basin and the Eastern Pontides-Lesser Caucasus-Alborz Orogenic Belt, we suggest that the alkaline Hayrat gabbro formed in an oceanic intraplate setting, and was accreted to the forearc region of the Eastern Pontides Orogenic Belt during southward subduction of Paleotethyan lithosphere. It was later tectonically juxtaposed with subaqueously erupted, arc-related basalts.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatsumi, Yoshiyuki; Kimura, Nobukazu; Itaya, Tetsumaru

    K-Ar dates and chemical compositions of basalts in the Gregory Rift, Kenya, demonstrate marked secular variation of lava chemistry. Two magmatic cycles characterized by incompatible element relative depletion are recognized; both occurring immediately after the peak of basaltic volcanism and coeval with both trachyte/phonolite volcanism and domal uplift of the region. These cycles may be attributed to increasing degree of partial melting of mantle source material in association with thinning of the lithosphere by thermal erosion through contact with hot upwelling asthenospheric mantle. Cyclic variation in asthenosphere upwelling may be considered an important controlling process in the evolution of themore » Gregory Rift.« less

  11. Lunar cryptomaria: Physical characteristics, distribution, and implications for ancient volcanism

    NASA Astrophysics Data System (ADS)

    Whitten, Jennifer L.; Head, James W.

    2015-02-01

    Cryptomaria, lunar volcanic deposits obscured by crater and basin impact ejecta, can provide important information about the thermal and volcanic history of the Moon. The timing of cryptomare deposition has implications for the duration and flux of mare basalt volcanism. In addition, knowing the distribution of cryptomaria can provide information about mantle convection and lunar magma ocean solidification. Here we use multiple datasets (e.g., M3, LOLA, LROC, Diviner) to undertake a global analysis to identify the general characteristics (e.g., topography, surface roughness, rock abundance, albedo, etc.) of lunar light plains in order to better distinguish between ancient volcanic deposits (cryptomaria) and impact basin and crater ejecta deposits. We find 20 discrete regions of cryptomaria, covering approximately 2% of the Moon, which increase the total area covered by mare volcanism to 18% of the lunar surface. Comparisons of light plains deposits indicate that the two deposit types (volcanic and impact-produced) are best distinguished by mineralogic data. On the basis of cryptomaria locations, the distribution of mare volcanism does not appear to have changed in the time prior to its exposed mare basalt distribution. There are several hypotheses explaining the distribution of mare basalts, which include the influence of crustal thickness, mantle convection patterns, asymmetric distribution of source regions, KREEP distribution, and the influence of a proposed Procellarum impact basin. The paucity of farside mare basalts means that multiple factors, such as crustal thickness variations and mantle convection, are likely to play a role in mare basalt emplacement.

  12. Nitrogen Stimulates the Growth of Subsurface Basalt-associated Microorganisms at the Western Flank of the Mid-Atlantic Ridge

    PubMed Central

    Zhang, Xinxu; Fang, Jing; Bach, Wolfgang; Edwards, Katrina J.; Orcutt, Beth N.; Wang, Fengping

    2016-01-01

    Oceanic crust constitutes the largest aquifer system on Earth, and microbial activity in this environment has been inferred from various geochemical analyses. However, empirical documentation of microbial activity from subsurface basalts is still lacking, particularly in the cool (<25°C) regions of the crust, where are assumed to harbor active iron-oxidizing microbial communities. To test this hypothesis, we report the enrichment and isolation of crust-associated microorganisms from North Pond, a site of relatively young and cold basaltic basement on the western flank of the Mid-Atlantic Ridge that was sampled during Expedition 336 of the Integrated Ocean Drilling Program. Enrichment experiments with different carbon (bicarbonate, acetate, methane) and nitrogen (nitrate and ammonium) sources revealed significant cell growth (one magnitude higher cell abundance), higher intracellular DNA content, and increased Fe3+/ΣFe ratios only when nitrogen substrates were added. Furthermore, a Marinobacter strain with neutrophilic iron-oxidizing capabilities was isolated from the basalt. This work reveals that basalt-associated microorganisms at North Pond had the potential for activity and that microbial growth could be stimulated by in vitro nitrogen addition. Furthermore, iron oxidation is supported as an important process for microbial communities in subsurface basalts from young and cool ridge flank basement. PMID:27199959

  13. Lunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan-1

    USGS Publications Warehouse

    Whitten, J.; Head, J.W.; Staid, M.; Pieters, C.M.; Mustard, J.; Clark, R.; Nettles, J.; Klima, R.L.; Taylor, L.

    2011-01-01

    Moon Mineralogy Mapper (M3) image and spectral reflectance data are combined to analyze mare basalt units in and adjacent to the Orientale multiring impact basin. Models are assessed for the relationships between basin formation and mare basalt emplacement. Mare basalt emplacement on the western nearside limb began prior to the Orientale event as evidenced by the presence of cryptomaria. The earliest post-Orientale-event mare basalt emplacement occurred in the center of the basin (Mare Orientale) and postdated the formation of the Orientale Basin by about 60-100 Ma. Over the next several hundred million years, basalt patches were emplaced first along the base of the Outer Rook ring (Lacus Veris) and then along the base of the Cordillera ring (Lacus Autumni), with some overlap in ages. The latest basalt patches are as young as some of the youngest basalt deposits on the lunar nearside. M3 data show several previously undetected mare patches on the southwestern margins of the basin interior. Regardless, the previously documented increase in mare abundance from the southwest toward the northeast is still prominent. We attribute this to crustal and lithospheric trends moving from the farside to the nearside, with correspondingly shallower density and thermal barriers to basaltic magma ascent and eruption toward the nearside. The wide range of model ages for Orientale mare deposits (3.70-1.66 Ga) mirrors the range of nearside mare ages, indicating that the small amount of mare fill in Orientale is not due to early cessation of mare emplacement but rather to limited volumes of extrusion for each phase during the entire period of nearside mare basalt volcanism. This suggests that nearside and farside source regions may be similar but that other factors, such as thermal and crustal thickness barriers to magma ascent and eruption, may be determining the abundance of surface deposits on the limbs and farside. The sequence, timing, and elevation of mare basalt deposits suggest that regional basin-related stresses exerted control on their distribution. Our analysis clearly shows that Orientale serves as an excellent example of the early stages of the filling of impact basins with mare basalt. Copyright ?? 2011 by the American Geophysical Union.

  14. The Sm-(146,147)-Nd-(142,143) formation interval for the lunar mantle and implications for lunar evolution

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Wiesmann, H.; Bansal, B. M.

    1993-01-01

    Small anomalies in the isotopic abundance of Nd-142 have been measured for two A17 high-Ti basalts, ilmenite basalt 12056, olivine-pigeonite basalt 12039, feldspathic basalt 12038, and two KREEP basalts. These anomalies correlate with Sm-147/Nd-144 for the basalt source regions as calculated from initial Nd-143/Nd-144 ratios in the basalts, and are interpreted to be from decay of Sm-146 (t sub 1/2 = 103 Ma) in distinct lunar mantle reservoirs. A three-stage model for evolution of Nd-143/Nd-144 and Nd-142/Nd-144 yields reservoir Sm-147/Nd-144 ratios which, with the Nd-142/Nd-144 ratios in the basalts, form a 'mantle isochron' giving a lunar mantle formation interval of 94+2230 Ma (2c(rho)). Calculated reservoir Sm/Nd ratios are in the range expected from some earlier models of basalt petrogenesis. The isochron value of Nd-142/Nd-144 at Sm-147/Nd-144 sub CHUR = 0.1967 is within error limits of the average Nd-142/Nd-144 measured for an L6 chondrite, an H5 chondrite, and the Orgueil carbonaceous chondrite. Evolution of Nd-143 and Nd-142 for high-Ti basalt 70135 was modeled precisely, starting from chondritic relative REE and Nd-isotopic abundances and using the initial (Sm-146/Sm-144) sub 0 ratio inferred from a previous study of angrite LEW86010 as the initial solar system value of this parameter. We infer that the initial Sm/Nd ratio in precursor lunar materials was very nearly chondritic (within approximately 8 percent) prior to lunar differentiation.

  15. Correlated compositional and mineralogical investigations at the Chang′e-3 landing site

    PubMed Central

    Ling, Zongcheng; Jolliff, Bradley L.; Wang, Alian; Li, Chunlai; Liu, Jianzhong; Zhang, Jiang; Li, Bo; Sun, Lingzhi; Chen, Jian; Xiao, Long; Liu, Jianjun; Ren, Xin; Peng, Wenxi; Wang, Huanyu; Cui, Xingzhu; He, Zhiping; Wang, Jianyu

    2015-01-01

    The chemical compositions of relatively young mare lava flows have implications for the late volcanism on the Moon. Here we report the composition of soil along the rim of a 450-m diameter fresh crater at the Chang′e-3 (CE-3) landing site, investigated by the Yutu rover with in situ APXS (Active Particle-induced X-ray Spectrometer) and VNIS (Visible and Near-infrared Imaging Spectrometer) measurements. Results indicate that this region's composition differs from other mare sample-return sites and is a new type of mare basalt not previously sampled, but consistent with remote sensing. The CE-3 regolith derived from olivine-normative basaltic rocks with high FeO/(FeO+MgO). Deconvolution of the VNIS data indicates abundant high-Ca ferropyroxene (augite and pigeonite) plus Fe-rich olivine. We infer from the regolith composition that the basaltic source rocks formed during late-stage magma-ocean differentiation when dense ferropyroxene-ilmenite cumulates sank and mixed with deeper, relatively ferroan olivine and orthopyroxene in a hybridized mantle source. PMID:26694712

  16. Basalt generation at the Apollo 12 site. Part 1: New data, classification, and re-evaluation

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Hacker, Matthew D.; Snyder, Gregory A.; Taylor, Lawrence A.; Liu, Yun-Gang; Schmitt, Roman A.

    1994-01-01

    New data are reported from five previously unanalyzed Apollo 12 mare basalts that are incorporated into an evaluation of previous petrogenetic models and classification schemes for these basalts. This paper proposes a classification for Apollo 12 mare basalts on the basis of whole-rock Mg# (molar 100*(Mg/(Mg+Fe))) and Rb/Sr ratio (analyzed by isotope dilution), whereby the ilmenite, olivine, and pigeonite basalt groups are readily distinguished from each other. Scrutiny of the Apollo 12 feldspathic 'suite' demonstrates that two of the three basalts previously assigned to this group (12031, 12038, 12072) can be reclassified: 12031 is a plagioclase-rich pigeonite basalt; and 12072 is an olivine basalt. Only basalt 12038 stands out as a unique sample to the Apollo 12 site, but whether this represents a single sample from another flow at the Apollo 12 site or is exotic to this site is equivocal. The question of whether the olivine and pigeonite basalt suites are co-magmatic is addressed by incompatible trace-element chemistry: the trends defined by these two suites when Co/Sm and Sm/Eu ratios are plotted against Rb/Sr ratio demonstrate that these two basaltic types cannot be co-magmatic. Crystal fractionation/accumulation paths have been calculated and show that neither the pigeonite, olivine, or ilmenite basalts are related by this process. Each suite requires a distinct and separate source region. This study also examines sample heterogeneity and the degree to which whole-rock analyses are representative, which is critical when petrogenetic interpretation is undertaken. Sample heterogeneity has been investigated petrographically (inhomogeneous mineral distribution) with consideration of duplicate analyses, and whether a specific sample (using average data) plots consistently upon a fractionation trend when a number of different compostional parameters are considered. Using these criteria, four basalts have been identified where reported analyses are not representative of the whole-rock composition: 12005, an ilmenite basalt; 12006 and 12036, olivine basalts; and 12031 previously classified as a feldspathic basalt, but reclassified as part of the pigeonite suite.

  17. REGIONAL MAGNETOTELLURIC SURVEYS IN HYDROCARBON EXPLORATION, PARANA BASIN, BRAZIL.

    USGS Publications Warehouse

    Stanley, William D.; Saad, Antonio; Ohofugi, Walter

    1985-01-01

    The mangetotelluric geophysical method has been used effectively as a hydrocarbon exploration tool in the intracratonic Parana basin of South America. The 1-2 km thick surface basalts and buried diabase sills pose no problem for the magnetotelluric method because the natural electromagnetic fields used as the energy source pass easily through the basalt. Data for the regional study were taken on six profiles with sounding spaced 8 to 15 km apart. The magnetotelluric sounding data outline a linear uplift known as the Ponta Grossa arch. This major structural feature cuts across the northeast-trending intracratonic basin almost perpendicularly, and is injected with numerous diabase dikes. Significant electrical contrasts occur between the Permian sediments and older units, so that magnetotelluric measurements can give an indication of the regional thickness of the Permian and younger sediments to aid in interpreting hydrocarbon migration patterns and possible trap areas. Refs.

  18. Geochemical Overview of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Furman, T.

    2003-12-01

    Mafic volcanics of the East African Rift System (EARS) record a protracted history of continental extension that is linked to mantle plume activity. The modern EARS traverses two post-Miocene topographic domes separated by a region of polyphase extension in northern Kenya and southern Ethiopia. Basaltic magmatism commenced ˜45 Ma in this highly extended region, while the onset of plume-related activity took place ˜30 Ma with eruption of flood basalts in central Ethiopia. A spatial and temporal synthesis of EARS volcanic geochemistry shows progressive lithospheric removal (by erosion and melting) as the degree of rifting increases, with basalts in the most highly extended areas recording melting of depleted asthenosphere. Plume contributions are indicated locally in the northern half of the EARS, but are absent from the southern half. The geochemical signatures are compatible with a physical model in which the entire EARS is fed by a discontinuous plume emanating from the core-mantle boundary as the South African Superswell. Quaternary basaltic lavas erupted in the Afar triangle, Red Sea and Gulf of Aden define the geochemical signature attributed to the Afar plume (87Sr/86Sr 0.7034-0.7037, 143Nd/144Nd 0.5129-0.5130; La/Nb 0.6-0.9; Nb/U 40-50). These suites commonly record mixing with ambient upper mantle having less radiogenic isotopes but generally overlapping incompatible trace element abundances. Within the Ethiopian dome both lithospheric and sub-lithoshperic contributions can be documented clearly; lithospheric contributions are manifest in more radiogenic isotope values (87Sr/86Sr up to 0.7050) and distinctive trace element abundances (e.g., La/Nb <2.0, Nb/U > 10). The degree of lithospheric contribution is lowest within the active Main Ethiopian Rift and increases towards the southern margin of the dome. The estimated depth of melting (65-75 km) is consistent with geophysical observations of lithospheric thickness. In regions of prolonged volcanism the lithospheric contributions and estimated melting depths decrease through time, corresponding to a higher degree of rifting. In the Kenyan dome, including the western rift, the degree of extension is low and lithospheric melting is the dominant source for basaltic magmatism. Mafic lavas from these regions have generally lower MgO but higher contents of alkalis, P2O5 and many incompatible trace elements than are observed in the Ethiopian Rift. High values of 87Sr/86Sr, 207Pb/204Pb and Zr/Hf relative to other parts of the EARS indicate melting of metasomatized lithosphere. Melting in this area occurs at depths up to 100+ km, consistent with the thick crustal section observed seismically. Between the topographic domes, basalts from the Turkana region record melting at shallow levels ( ˜35 km) consistent with seismic evidence for nearly complete rifting of the crustal section. The geochemistry of these lavas is dominated by asthenospheric source materials, with only minor lithospheric involvement. Temporal evolution of EARS geochemistry reflects progressive rifting of the thick craton. This change is manifest within lavas that are interpreted as plume-derived, as Tb/Yb values decrease from 30 Ma through the present. The modern thermal anomaly associated with Afar volcanism does not appear to extend below the shallow mantle, but may reflect a large blob of deep mantle material that became stuck to Africa 30 Ma and has contributed to regional volcanism ever since. Relative contributions from this deep mantle source, shallow asthenosphere and lithosphere are controlled by the extent of rifting and cannot be predicted solely on the basis of surface topography.

  19. Volatiles in basaltic glasses from a subglacial volcano in northern British Columbia (Canada): Implications for ice sheet thickness and mantle volatiles

    USGS Publications Warehouse

    Dixon, J.E.; Filiberto, J.R.; Moore, J.G.; Hickson, C.J.

    2002-01-01

    Dissolved H2O, CO2, S and Cl concentrations were measured in glasses from Tanzilla Mountain, a 500 m-high, exposed subglacial volcano from the Tuya-Teslin region, north central British Columbia, Canada. The absence of a flat-topped subaerial lava cap and the dominance of pillows and pillow breccias imply that the Tanzilla Mountain volcanic edifice did not reach a subaerial eruptive phase. Lavas are dominantly tholeiitic basalt with minor amounts of alkalic basalt erupted at the summit and near the base. Tholeiites have roughly constant H2O (c.0.56 ?? 0.07 wt%), CO2 (<30 ppm), S (980 ?? 30 ppm) and Cl (200 ?? 20 ppm) concentrations. Alkalic basalts have higher and more variable volatile concentrations that decrease with increasing elevation (0.62-0.92 wt% H2O, <30 ppm CO2, 870-1110 ppm S and 280-410 ppm Cl) consistent with eruptive degassing. Calculated vapour saturation pressures for the alkalic basalts are 36 to 81 bars corresponding to ice thicknesses of 400 to 900 m. Maximum calculated ice thickness (c. 1 km) is at the lower end of the range of predicted maximum Fraser glaciation (c. 1-2 km), and may indicate initiation of volcanism during the waning stages of glaciation. Temporal evolution from tholeiitic to alkalic compositions may reflect compositional gradients within a melting column, instead of convective processes within a stratified magma chamber. The mantle source region for the subglacial volcanoes is enriched in incompatible elements similar to that for enriched mid-oceanic ridge basalt (e.g. Endeavour Ridge) and does not contain residual amphibole. Thus, metasomatic enrichment most likely reflects small degree partial melts rather than hydrous fluids.

  20. The geochemistry of primitive volcanic rocks of the Ankaratra volcanic complex, and source enrichment processes in the genesis of the Cenozoic magmatism in Madagascar

    NASA Astrophysics Data System (ADS)

    Melluso, L.; Cucciniello, C.; le Roex, A. P.; Morra, V.

    2016-07-01

    The Ankaratra volcanic complex in central Madagascar consists of lava flows, domes, scoria cones, tuff rings and maars of Cenozoic age that are scattered over 3800 km2. The mafic rocks include olivine-leucite-nephelinites, basanites, alkali basalts and hawaiites, and tholeiitic basalts. Primitive samples have high Mg# (>60), high Cr and Ni concentrations; their mantle-normalized patterns peak at Nb and Ba, have troughs at K, and smoothly decrease towards the least incompatible elements. The Ankaratra mafic rocks show small variation in Sr-Nd-Pb isotopic compositions (e.g., 87Sr/86Sr = 0.70377-0.70446, 143Nd/144Nd = 0.51273-0.51280, 206Pb/204Pb = 18.25-18.87). These isotopic values differ markedly from those of Cenozoic mafic lavas of northern Madagascar and the Comoro archipelago, typical Indian Ocean MORB and oceanic basalt end-members. The patterns of olivine nephelinitic magmas can be obtained through 3-10% partial melting of a mantle source that was enriched by a Ca-rich alkaline melt, and that contained garnet, carbonates and phlogopite. The patterns of tholeiitic basalts can be obtained after 10-12% partial melting of a source enriched with lower amounts of the same alkaline melt, in the spinel- (and possibly amphibole-) facies mantle, hence in volumes where carbonate is not a factor. The significant isotopic change from the northernmost volcanic rocks of Madagascar and those in the central part of the island implicates a distinct source heterogeneity, and ultimately assess the role of the continental lithospheric mantle as source region. The source of at least some volcanic rocks of the still active Comoro archipelago may have suffered the same time-integrated geochemical and isotopic evolution as that of the northern Madagascar volcanic rocks.

  1. Mid-Tertiary magmatism in western Big Bend National Park, Texas, U.S.A.: Evolution of basaltic source regions and generation of peralkaline rhyolite

    NASA Astrophysics Data System (ADS)

    Parker, Don F.; Ren, Minghua; Adams, David T.; Tsai, Heng; Long, Leon E.

    2012-07-01

    Tertiary magmatism in the Big Bend region of southwestern Texas spanned 47 to 17 Ma and included representatives of all three phases (Early, Main and Late) of the Trans-Pecos magmatic province. Early phase magmatism was manifested in the Alamo Creek Basalt, an alkalic lava series ranging from basalt to benmoreite, and silicic alkalic intrusions of the Christmas Mountains. Main phase magmatism in the late Eocene/early Oligocene produced Bee Mountain Basalt, a lava series ranging from hawaiite and potassic trachybasalt to latite, widespread trachytic lavas of Tule Mountain Trachyte and silicic rocks associated with the Pine Mountain Caldera in the Chisos Mountains. Late main phase magmatism produced trachyte lava and numerous dome complexes of peralkaline Burro Mesa Rhyolite (~ 29 Ma) in western Big Bend National Park. Late stage basaltic magmatism is sparsely represented by a few lavas in the Big Bend Park area, the adjacent Black Gap area and, most notably, in the nearby Bofecillos Mountains, where alkalic basaltic rocks were emplaced as lava and dikes concurrent with active normal faulting. Trace element modeling, Nd isotope ratios and calculated depths of segregation for estimated ancestral basaltic magmas suggest that Alamo Creek basalts (ɛNdt ~ 6.15 to 2.33) were derived from depths (~ 120 to 90 km) near the lithosphere/asthenosphere boundary at temperatures of ~ 1600 to1560 °C, whereas primitive Bee Mountain basalts (ɛNdt ~ 0.285 to - 1.20) may have been segregated at shallower depths (~ 80 to 50 km) and lower temperatures (~ 1520 to 1430 °C) within the continental lithosphere. Nb/La versus Ba/La plots suggest that all were derived from OIB-modified continental lithosphere. Late stage basaltic rocks from the Bofecillos Mountains may indicate a return to source depths and temperatures similar to those calculated for Alamo Creek Basalt primitive magmas. We suggest that a zone of melting ascended into the continental lithosphere during main-phase activity and then descended as magmatism died out. Variation within Burro Mesa Rhyolite is best explained by fractional crystallization of a mix of alkali feldspar, fayalite and Fe-Ti oxide. Comendite of the Burro Mesa Rhyolite evolved from trachyte as batches in relatively small independent magma systems, as suggested by widespread occurrence of trachytic magma enclaves within Burro Mesa lava and results of fractionation modeling. Trachyte may have been derived by fractional crystallization of intermediate magma similar to that erupted as part of Bee Mountain Basalt. ɛNdt values of trachyte lava (0.745) and two samples of Burro Mesa Rhyolite (- 0.52 and 1.52) are consistent with the above models. In all, ~ 5 wt.% comendite may be produced from 100 parts of parental trachybasalt. Negative Nb anomalies in some Bee Mountain, Tule Mountain Trachyte and Burro Mesa incompatible element plots may have been inherited from lithospheric mantle rather than from a descending plate associated with subduction. Late phase basalts lack such a Nb anomaly, as do all of our Alamo Creek analyses but one. Even if some slab fluids partially metasomatized lithospheric mantle, these igneous rocks are much more typical of continental rifts than continental arcs. We relate Big Bend magmatism to asthenospheric mantle upwelling accompanying foundering of the subducted Farallon slab as the convergence rate between the North American and the Farallon plates decreased beginning about 50 Ma. Upwelling asthenosphere heated the base of the continental lithosphere, producing the Alamo Creek series; magmatism climaxed with main phase magmatism generated within middle continental lithosphere, and then, accompanying regional extension, gradually died out by 18 Ma.

  2. Magma-magma interaction in the mantle beneath eastern China

    NASA Astrophysics Data System (ADS)

    Zeng, Gang; Chen, Li-Hui; Yu, Xun; Liu, Jian-Qiang; Xu, Xi-Sheng; Erdmann, Saskia

    2017-04-01

    In addition to magma-rock and rock-rock reaction, magma-magma interaction at mantle depth has recently been proposed as an alternative mechanism to produce the compositional diversity of intraplate basalts. However, up to now no compelling geochemical evidence supports this novel hypothesis. Here we present geochemistry for the Longhai basalts from Fujian Province, southeastern China, which demonstrates the interaction between two types of magma at mantle depth. At Longhai, the basalts form two groups, low-Ti basalts (TiO2/MgO < 0.25) and high-Ti basalts (TiO2/MgO > 0.25). Calculated primary compositions of the low-Ti basalts have compositions close to L + Opx + Cpx + Grt cotectic, and they also have low CaO contents (7.1-8.1 wt %), suggesting a mainly pyroxenite source. Correlations of Ti/Gd and Zr/Hf with the Sm/Yb ratios, however, record binary mixing between the pyroxenite-derived melt and a second, subordinate source-derived melt. Melts from this second source component have low Ti/Gd and high Zr/Hf and Ca/Al ratios, thus likely representing a carbonated component. The Sr, Nd, Hf, and Pb isotopic compositions of the high-Ti basalts are close to the low-Ti basalts. The Sm/Yb ratio of the high-Ti basalts, however, is markedly elevated and characterized by crossing rare earth element patterns at Ho, suggesting that they have source components comparable to the low-Ti basalts, but that they have experienced garnet and clinopyroxene fractionation. We posit that mingling of SiO2-saturated tholeiitic magma with SiO2-undersaturated alkaline magma might trigger such fractionation. Therefore, the model of magma-magma interaction and associated deep evolution of magma in the mantle is proposed to explain the formation of Longhai basalts. It may, moreover, serve as a conceptual model for the formation of tholeiitic to alkaline intraplate basalts worldwide.

  3. Crust recycling induced compositional-temporal-spatial variations of Cenozoic basalts in the Trans-North China Orogen

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Liu, Yongsheng; Wang, Xiaohong; Zong, Keqing; Hu, Zhaochu; Chen, Haihong; Zhou, Lian

    2017-03-01

    It has been advocated that the stagnant Pacific slab within the mantle transition zone played a critical role in the genesis of the Cenozoic basalts in the eastern part of the North China Craton (NCC); however, it is not clear whether this recycled oceanic crust contributed to the chemical makeup of the Cenozoic basalts in the Trans-North China Orogen (TNCO, the central zone of the NCC). Here, we show that Cenozoic basalts from the TNCO are featured by low CaO contents, high TiO2 and FeOT contents and high Fe/Mn and Zn/Fe ratios, indicating a mantle source of pyroxenite. Temporally, these basalts evolved from alkali basalts of Late Eocene-Oligocene age to coexisting alkali and tholeiitic basalts of Late Miocene-Quaternary age. Spatially, their isotopic and chemical compositions vary symmetrically from the center to both the north and the south sides along the TNCO, i.e., SiO2 contents and 87Sr/86Sr ratios increase, FeOT contents and 143Nd/144Nd, Sm/Yb and Ce/Pb ratios decrease. The estimated average melting pressure of the TNCO tholeiitic basalts ( 3 GPa) agrees well with the present lithosphere thickness beneath the north region of the TNCO ( 90-120 km). The temporal and spatial chemical variations of Cenozoic basalts in the TNCO suggest that the recycled oceanic crust in the mantle of the TNCO is mainly related to the southward subduction of the Paleo-Asian oceanic plate and the northward subduction of the Tethyan ocean plate. The westward subduction of Pacific slab may not have contributed much than previously thought.

  4. Volatiles in High-K Lunar Basalts

    NASA Technical Reports Server (NTRS)

    Barnes, Jessica J.; McCubbin, Francis M.; Messenger, Scott R.; Nguyen, Ann; Boyce, Jeremy

    2017-01-01

    Chlorine is an unusual isotopic system, being essentially unfractionated ((delta)Cl-37 approximately 0 per mille ) between bulk terrestrial samples and chondritic meteorites and yet showing large variations in lunar (approximately -4 to +81 per mille), martian, and vestan (HED) samples. Among lunar samples, the volatile-bearing mineral apatite (Ca5(PO4)3[F,Cl,OH]) has been studied for volatiles in K-, REE-, and P (KREEP), very high potassium (VHK), low-Ti and high-Ti basalts, as well as samples from the lunar highlands. These studies revealed a positive correlation between in-situ (delta)Cl-37 measurements and bulk incompatible trace elements (ITEs) and ratios. Such trends were interpreted to originate from Cl isotopic fractionation during the degassing of metal chlorides during or shortly after the differentiation of the Moon via a magma ocean. In this study, we investigate the volatile inventories of a group of samples for which new-era volatile data have yet to be reported - the high-K (greater than 2000 ppm bulk K2O), high-Ti, trace element-rich mare basalts. We used isotope imaging on the Cameca NanoSIMS 50L at JSC to obtain the Cl isotopic composition [((Cl-37/(35)Clsample/C-37l/(35)Clstandard)-1)×1000, to get a value in per thousand (per mille)] which ranges from approximately -2.7 +/- 2 per mille to +16.1 +/- 2 per mille (2sigma), as well as volatile abundances (F & Cl) of apatite in samples 10017, 10024 & 10049. Simply following prior models, as lunar rocks with high bulk-rock abundances of ITEs we might expect the high-K, high-Ti basalts to contain apatite characterized by heavily fractionated (delta)Cl-37 values, i.e., Cl obtained from mixing between unfractionated mantle Cl (approximately 0 per mille) and the urKREEP reservoir (possibly fractionated to greater than +25 per mille.). However, the data obtained for the studied samples do not conform to either the early degassing or mixing models. Existing petrogentic models for the origin of the high-K, high-Ti basalts do not include urKREEP assimilation into their LMO cumulate sources. Therefore, Cl in these basalts either originated from source region heterogeneity or through assimilation or metasomatism by volatile and incompatible trace element rich materials. The new data presented here could provide evidence for the existence of region(s) in the lunar interior that are ITE-enriched and contain Cl that does not share isotopic affinities with lunar urKREEP, possibly representing the composition of the purported 'neuKREEP'.

  5. A mantle plume beneath California? The mid-Miocene Lovejoy Flood Basalt, northern California

    USGS Publications Warehouse

    Garrison, N.J.; Busby, C.J.; Gans, P.B.; Putirka, K.; Wagner, D.L.

    2008-01-01

    The Lovejoy basalt represents the largest eruptive unit identified in California, and its age, volume, and chemistry indicate a genetic affinity with the Columbia River Basalt Group and its associated mantle-plume activity. Recent field mapping, geochemical analyses, and radiometric dating suggest that the Lovejoy basalt erupted during the mid-Miocene from a fissure at Thompson Peak, south of Susanville, California. The Lovejoy flowed through a paleovalley across the northern end of the Sierra Nevada to the Sacramento Valley, a distance of 240 km. Approximately 150 km3 of basalt were erupted over a span of only a few centuries. Our age dates for the Lovejoy basalt cluster are near 15.4 Ma and suggest that it is coeval with the 16.1-15.0 Ma Imnaha and Grande Ronde flows of the Columbia River Basalt Group. Our new mapping and age dating support the interpretation that the Lovejoy basalt erupted in a forearc position relative to the ancestral Cascades arc, in contrast with the Columbia River Basalt Group, which erupted in a backarc position. The arc front shifted trenchward into the Sierran block after 15.4 Ma. However, the Lovejoy basalt appears to be unrelated to volcanism of the predominantly calc-alkaline Cascade arc; instead, the Lovejoy is broadly tholeiitic, with trace-element characteristics similar to the Columbia River Basalt Group. Association of the Lovejoy basalt with mid-Miocene flood basalt volcanism has considerable implications for North American plume dynamics and strengthens the thermal "point source" explanation, as provided by the mantle-plume hypothesis. Alternatives to the plume hypothesis usually call upon lithosphere-scale cracks to control magmatic migrations in the Yellowstone-Columbia River basalt region. However, it is difficult to imagine a lithosphere-scale flaw that crosses Precambrian basement and accreted terranes to reach the Sierra microplate, where the Lovejoy is located. Therefore, we propose that the Lovejoy represents a rapid migration of plume-head material, at ??20 cm/yr to the southwest, a direction not previously recognized. ?? 2008 The Geological Society of America.

  6. A potpourri of pristine moon rocks, including a VHK mare basalt and a unique, augite-rich Apollo 17 anorthosite

    NASA Astrophysics Data System (ADS)

    Warren, Paul H.; Shirley, David N.; Kallemeyn, Gregory W.

    1986-09-01

    Analysis of previously unstudied Apollo lithic fragments continues to yield surprising results. Among this year's samples is a small anorthosite fragment, 76504,18, the first pristine anorthosite found from Apollo 17. This unique lithology strongly resembles the main type of Apollo anorthosites ferroan anorthosites), but 76504,18 has a far higher ratio (about 9) of high-Ca pyroxene to low-Ca pyroxene, higher Na in its plagioclase, higher contents of incompatible elements such as REE, and a higher Eu/Al ratio. Assuming that 76504,18 is a cumulate with less than 45% trapped liquid, its parent melt probably had a negative Eu anomaly. In all these respects, 76504,18 seems more likely than (other) ferroan anorthosites to be closely related to typical mare basalts. Apparrently this anorthosite was among the latest to form by plagioclase flotation abovbe a primordial magmasphere; typical mare basalt source regions probably accumulated at about the same time or even earlier. Another previusly unstudied fragment, 14181c,is a VKH (very high potassium) basalt that is similar in most respects to typical (``aluminous'') Apollo 14 mare basalt but has a K/La ratio of 1050. This lithology probably formed after a normal Apollo 14 mare basaltic melt partially assimilated granite. New data for siderophile elements in Apollo 1 mare basalts indicate that only the lowest of earlier data are trustworthy a being free of laboratory contamination.

  7. Nickel and helium evidence for melt above the core-mantle boundary.

    PubMed

    Herzberg, Claude; Asimow, Paul D; Ionov, Dmitri A; Vidito, Chris; Jackson, Matthew G; Geist, Dennis

    2013-01-17

    High (3)He/(4)He ratios in some basalts have generally been interpreted as originating in an incompletely degassed lower-mantle source. This helium source may have been isolated at the core-mantle boundary region since Earth's accretion. Alternatively, it may have taken part in whole-mantle convection and crust production over the age of the Earth; if so, it is now either a primitive refugium at the core-mantle boundary or is distributed throughout the lower mantle. Here we constrain the problem using lavas from Baffin Island, West Greenland, the Ontong Java Plateau, Isla Gorgona and Fernandina (Galapagos). Olivine phenocryst compositions show that these lavas originated from a peridotite source that was about 20 per cent higher in nickel content than in the modern mid-ocean-ridge basalt source. Where data are available, these lavas also have high (3)He/(4)He. We propose that a less-degassed nickel-rich source formed by core-mantle interaction during the crystallization of a melt-rich layer or basal magma ocean, and that this source continues to be sampled by mantle plumes. The spatial distribution of this source may be constrained by nickel partitioning experiments at the pressures of the core-mantle boundary.

  8. Age and character of basaltic rocks of the Yucca Mountain region, southern Nevada

    USGS Publications Warehouse

    Fleck, R.J.; Turrin, B.D.; Sawyer, D.A.; Warren, R.G.; Champion, D.E.; Hudson, M.R.; Minor, S.A.

    1996-01-01

    Volcanism in the Yucca Mountain region of southern Nevada in the last 5 m.y. is restricted to moderate-to-small volumes of subalkaline basaltic magmas, produced during at least 6 intervals, and spanning an age range from 4.6 Ma to about 125 ka. Where paleomagnetic evidence is available, the period of volcanism at individual eruptive centers apparently was geologically short-lived, even where multiple eruptions involved different magma types. K-Ar studies are consistent with most other geochronologic information, such as the minimum ages of exposure-dating techniques, and show no evidence of renewed volcanism after a significant quiescence at any of the centers in the Yucca Mountain region. A volcanic recurrence interval of 860 ?? 350 kyr is computed from a large K-Ar data set and an evaluation of their uncertainties. Monte Carlo error propagations demonstrate the validity of uncertainties obtained for weighted-mean ages when modified using the goodness of fit parameter, MSWD. Elevated 87Sr/86Sr initial ratios (Sri) in the basalts, nearly constant at 0.707, combined with low SiO2 and Rb/Sr ratios indicate a subcontinental, lithospheric mantle source, previously enriched in radiogenic Sr and depleted in Rb. Beginning with eruptions of the most voluminous eruptive center, the newly dated Pliocene Thirsty Mountain volcano, basaltic magmas have decreased in eruptive volume, plagioclase-phenocryst content, various trace element ratios, and TiO2, while increasing in light rare earth elements, U, Th, P2O5, and light REE/heavy REE ratios. These time-correlated changes are consistent with either increasing depths of melting or a decreasing thermal gradient in the Yucca Mountain region during the last 5 m.y.

  9. Relationships among basaltic lunar meteorites

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn M.

    1991-01-01

    During the past two years four meteorites of dominantly mare basalt composition were identified in the Japanese and US Antarctic collections. Basalts represent a much higher proportion of the lunar meteorites than is expected from photogeologic mapping of mare and highland regions. Also, the basaltic lunar meteorites are all described as VLT mare basalt, which is a relatively uncommon type among returned lunar samples. The significance of the basaltic meteorites to the understanding of the lunar crust depends on the evaluation of possible relationships among the individual meteorites. None of the specimens are paired meteorites. They differ from each other in petrography and composition. It is important to determine whether they might be paired ejecta which were ejected from the same mare region by the same impact. The question of paired ejecta must be addressed using a combination of exposure histories and petrographic/compositional characteristics. It is possible that the basaltic lunar meteorites are paired ejecta from the same region of the Moon. However, the relationships among them are more complicated than the basaltic breccias being simply brecciated mare gabbros.

  10. Tectonic affinities of the accreted basalts in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yu; Yang, Huai-Jen; Liu, Yung-Hsin; Huang, Kuo-Fang; Takazawa, Eiichi

    2018-06-01

    Tectonic affinities of accreted basalts provide constraints on mass transport in convergent boundaries, improving our understandings on the evolution of regional geology. In this study, nineteen accreted basalts from the southernmost tip of Taiwan Island, which is on the convergent boundary between the Eurasian and Philippine Sea Plates, were analyzed for element concentrations as well as Sr, Nd, Hf, and Pb isotope ratios to investigate their tectonic affinities. All the samples contain > 3% LOI, reflecting post-magmatic alteration. LOI and Nb variation diagrams together with comparisons to oceanic basalt compositions indicated that the concentrations of most major elements and Rb, Sr, and Ba were modified by post-magmatic processes to varying extents, while P2O5, REE and HFSE remained immobile. Although some samples show Pb loss, most samples have Pb concentrations not affected by post-magmatic processes. Isotope ratios of Pb, Nd and Hf, generally reflect the mantle source characteristics. The εNd-εHf relationship and trace element abundance ratios indicated that the LREE-depleted samples were mostly scraped off the subducting South China Sea floor, reflecting the volumetric dominance of N-MORB on ocean floors. The overriding Philippine Sea Plate contributed both N-MORB and E-MORB to the accretionary prism. The tectonic affinities of the LREE-enriched samples, however, could not be unambiguously determined for the large geochemical variability of OIB from both subducting and overlying slabs. Based on our results, it is proposed that the tectonic affinity of the basalts in an accretionary prism can indicate the subduction polarity of the associated convergent boundary, providing a constraint for regional geology evolution.

  11. Geology of the Smythii and Marginis Region of the Moon: Using Integrated Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Gillis, Jeffrey J.; Spudis, Paul D.

    2000-01-01

    We characterized the diverse and complex geology of the eastern limb region of the Moon using a trio of remote-sensing data sets: Clementine, Lunar Prospector, and Apollo. On the basis of Clementine-derived iron and titanium maps we classify the highlands into low-iron (3-6 wt % FeO) and high-iron (6-9 wt % FeO) units. The association of the latter with basalt deposits west of Smythii basin suggests that the highland chemical variation is the result of mixing between basalt and highland lithologies. Mare Smythii and Mare Marginis soils are compositionally similar, containing moderate iron (15-18 wt % FeO) and titanium (2.5-3.5 wt % TiO2). Smythii basin, in addition to the basalt deposits, contains an older, moderate-albedo plains unit. Our investigation reveals that the dark basin plains unit has a distinct albedo, chemistry, and surface texture and formed as a result of impact-mixing between highland and mare lithologies in approximately equal proportions. Clementine iron and maturity maps show that swirls along the northern margin of Mare Marginis have the same iron composition as the surrounding nonswirl material and indicate that the swirl material is bright because of its low agglutinate content. Gravity data for the eastern limb show high, positive Bouguer gravity anomalies for areas of thin basalt cover (e.g., Smythii basin and complex craters Joliot, Lomonosov, and Neper). We deduce that the uplift of dense mantle material is the primary (and mare basaltic fill the secondary) source for generating the concentration of mass beneath large craters and basins.

  12. Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii: A solar component in the Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, M.; McDougall, I.; Patterson, D.B.

    1993-02-01

    Noble gas elemental and isotopic abundances have been analysed in twenty-two samples of basaltic glass dredged from the submarine flanks of two currently active Hawaiian volcanoes, Loihi Seamount and Kilauea. Neon isotopic ratios are enriched in [sup 20]Ne and [sup 21]Ne by as much as 16% with respect to atmospheric ratios. All the Hawaiian basalt glass samples show relatively high [sup 3]He/[sup 4]He ratios. The high [sup 20]Ne/[sup 22]Ne values in some of the Hawaiian samples, together with correlations between neon and helium systematics, suggest the presence of a solar component in the source regions of the Hawaiian mantle plume.more » The solar hypothesis for the Earth's primordial noble gas composition can account for helium and neon isotopic ratios observed in basaltic glasses from both plume and spreading systems, in fluids in continental hydrothermal systems, in CO[sub 2] well gases, and in ancient diamonds. These results provide new insights into the origin and evolution of the Earth's atmosphere.« less

  13. Thorium-uranium fractionation by garnet - Evidence for a deep source and rapid rise of oceanic basalts

    NASA Technical Reports Server (NTRS)

    Latourrette, T. Z.; Kennedy, A. K.; Wasserburg, G. J.

    1993-01-01

    Mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs) are derived by partial melting of the upper mantle and are marked by systematic excesses of thorium-230 activity relative to the activity of its parent, uranium-238. Experimental measurements of the distribution of thorium and uranium between the melt and solid residue show that, of the major phases in the upper mantle, only garnet will retain uranium over thorium. This sense of fractionation, which is opposite to that caused by clinopyroxene-melt partitioning, is consistent with the thorium-230 excesses observed in young oceanic basalts. Thus, both MORBs and OIBs must begin partial melting in the garnet stability field or below about 70 kilometers. A calculation shows that the thorium-230-uranium-238 disequilibrium in MORBs can be attributed to dynamic partial melting beginning at 80 kilometers with a melt porosity of 0.2 percent or more. This result requires that melting beneath ridges occurs in a wide region and that the magma rises to the surface at a velocity of at least 0.9 meter per year.

  14. Petrogenesis of mare basalts - A record of lunar volcanism

    NASA Astrophysics Data System (ADS)

    Neal, Clive R.; Taylor, Lawrence A.

    1992-06-01

    The classification, sources, and overall petrogenesis of mare basalts are reviewed. All mare basalt analyses are used to define a sixfold classification scheme using TiO2 contents as the primary division. A secondary division is made using Al2O3 contents, and a tertiary division is defined using K contents. Such divisions and subdivisions yield a classification containing 12 categories, of which six are accounted for by the existing Apollo and Luna collections. A variety of postmagma-generation such as fractional crystallization, either alone or combined with wallrock assimilation, are invoked to explain the compositional ranges of the various mare basalt suites. High-Ti mare basalts are found at Apollo 1 and Apollo 17 sites; the A-11 basalts contain lower TiO2 abundances, a considerably larger range in trace-element contents, and the only occurrence of high-Ti/high-K mare basalts. The low-Ti basalts exhibit a wide range of major-and trace-element compositions and require source heterogeneity, fractional crystallization, and some assimilation.

  15. Sr, Nd, Pb and Hf Isotopic Compositions of Late Cenozoic Alkali Basalts in South Korea: Evidence for Mixing Between the Two Dominant Asthenospheric Mantle Domains beneath East Asia

    NASA Astrophysics Data System (ADS)

    Choi, S.; Mukasa, S. B.; Kwon, S.; Andronikov, A. V.

    2004-12-01

    We determined the Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic basaltic rocks from six lava-field provinces in South Korea, including Baengnyeong Island, Jogokni, Ganseong area, Jeju Island, Ulleung Island and Dog Island, in order to understand the nature of the mantle source. The basalts have OIB-like trace element abundance patterns, and also contain mantle-derived xenoliths. Available isotope data of late Cenozoic basalts from East Asia, along with ours, show that the mantle source has a DMM-EM1 array for northeast China and a DMM-EM2 array for Southeast Asia. We note that the basalts falling on an array between DMM and an intermediate end member between EM1 and EM2, are located between the two large-scale isotopic provinces, i.e., around the eastern part of South Korea. The most intriguing observation on the isotopic correlation diagrams is spatial variation from predominantly EM2 signatures in the basaltic lavas toward increasingly important addition of EM1, starting from Jeju Island to Ulleung and Dog Islands to Ganseong area, and to Baengnyeong Island. This is without any corresponding changes in the basement and the lithospheric mantle beneath the region. These observations suggest that the asthenospheric mantle source is dominant for the Cenozoic intraplate volcanism in East Asia, which is characterized by two distinct, large-scale domains. Previous studies on East Asian Cenozoic volcanic rocks have invoked origins by either plume activity or decompressional melting in a rift environment. On the basis of our new trace element and isotopic compositions which have OIB-like characteristics, we prefer a plume origin for these lavas. However, because tomographic images do not show distinct thermal anomaly that would be interpreted as a plume, we suggest that the magmatism might be the product of small, difficult to image multiple plumes that tapped the shallow part of the asthenosphere (probably the transition zone in the upper mantle).

  16. Geomorphic Terrains and Evidence for Ancient Volcanism within Northeastern South Pole-Aitken Basin

    NASA Technical Reports Server (NTRS)

    Petro, Noah; Mest, Scott C.; Teich, Yaron

    2010-01-01

    The interior of the enigmatic South Pole-Aitken Basin has long been recognized as being compositionally distinct from its exterior. However, the source of the compositional anomaly has been subject to some debate. Is the source of the iron-enhancement due to lower-crustal/upper-mantle material being exposed at the surface, or was there some volume of ancient volcanism that covered portions of the basin interior? While several obvious mare basalt units are found within the basin and regions that appear to represent the original basin interior, there are several regions that appear to have an uncertain origin. Using a combination of Clementine and Lunar Orbiter images, several morphologic units are defined based on albedo, crater density, and surface roughness. An extensive unit of ancient mare basalt (cryptomare) is defined and, based on the number of superimposed craters, potentially represents the oldest volcanic materials within the basin. Thus, the overall iron-rich interior of the basin is not solely due to deeply derived crustal material, but is, in part due to the presence of ancient volcanic units.

  17. The Central Atlantic Magmatic Province (CAMP)

    NASA Astrophysics Data System (ADS)

    Marzoli, A.; Callegaro, S.; Davies, J.; Chiaradia, M.; Reisberg, L. C.; Merle, R.; Jourdan, F.; Bertrand, H.; Youbi, N.

    2017-12-01

    Basaltic lava flows, dykes, sills, and layered intrusion of the CAMP (Central Atlantic magmatic province) crop out in Europe, Africa, North and South America over > 10 million square km, making this one of Earth's largest igneous provinces. CAMP is characterized by 100-400 m thick preserved lava piles and by huge shallow intrusions (e.g., > 1.5 million cubic km sills). Magmatism occurred mainly between 201.6 and 201.1 Ma (according to U-Pb and Ar/Ar ages) during the end-Triassic extinction event and a few Ma before break-up of Pangea. Pulsed emplacement seems consistent with high-precision geochronology, but needs further confirmation. All over the province, basalts with quite similar composition reflect a common mantle source. These basalts have low Ti contents (TiO2 ca. 1.0-1.3 wt.%), moderately enriched Sr-Nd-Pb isotopic compositions close to the EM-II mantle end-member, and 187Os/188Os close to 0.130. We attribute these characteristics to a dominant shallow asthenospheric mantle source that was enriched by subduction-related components. Assimilation of crustal rocks generally played a minor role and rarely exceed 5-10%. Instead, assimilation of the sub-continental lithospheric mantle (SCLM) was instead recognized in the high-Ti basalts (TiO2> 2.0 wt.%) that were emplaced in a restricted area around the Man and Amazonian cratons (Sierra Leone, Liberia, Brazil, Guyana). The SCLM-like signature of these basalts suggests assimilation of metasomatically enriched parts of the SCLM. Also early basalts emplaced north of the West African craton (Morocco, Mali) are contaminated by enriched SCLM components even if to a lesser degree, while later basalts from the same African regions have low 187Os/188Os (ca. 0.120) and probably tapped a more depleted cratonic SCLM. Calculated mantle potential temperatures are low (ca. 1450 °C) and geochemical data do not support a significant contribution from mantle-plume material. The only available He isotopic data are just slightly higher than those of MORB. This argues against a substantial contribution from mantle-plume material. The only basalts trending to isotopic compositions similar to those of present-day Atlantic island basalts are quite limited in volume and restricted to a small area of Morocco.

  18. A Model for the Thermal and Chemical Evolution of the Moon's Interior: Implications for the Onset of Mare Volcanism

    NASA Technical Reports Server (NTRS)

    Hess, Paul C.; Parmentier, E. M.

    1995-01-01

    Crystallization of the lunar magma ocean creates a chemically stratified Moon consisting of an anorthositic crust and magma ocean cumulates overlying the primitive lunar interior. Within the magma ocean cumulates the last liquids to crystallize form dense, ilmenite-rich cumulates that contain high concentrations of incompatible radioactive elements. The underlying olivine-orthopyroxene cumulates are also stratified with later crystallized, denser, more Fe-rich compositions at the top. This paper explores the chemical and thermal consequences of an internal evolution model accounting for the possible role of these sources of chemical buoyancy. Rayleigh-Taylor instability causes the dense ilmenite-rich cumulate layer and underlying Fe-rich cumulates to sink toward the center of the Moon, forming a dense lunar core. After this overturn, radioactive heating within the ilmenite-rich cumulate core heats the overlying mantle, causing it to melt. In this model, the source region for high-TiO2 mare basalts is a convectively mixed layer above the core-mantle boundary which would contain small and variable amounts of admixed ilmenite and KREEP. This deep high-pressure melting, as required for mare basalts, occurs after a reasonable time interval to explain the onset of mare basalt volcanism if the content of radioactive elements in the core and the chemical density gradients above the core are sufficiently high but within a range of values that might have been present in the Moon. Regardless of details implied by particular model parameters, gravitational overturn driven by the high density of magma ocean Fe-rich cumulates should concentrate high-TiO2 mare basalt sources, and probably a significant fraction of radioactive heating, toward the center of the Moon. This will have important implications for both the thermal evolution of the Moon and for mare basalt genesis.

  19. Basement Basalts from IODP Site 1438, Amami-Sankaku Basin: Implications for Sources and Melting Processes during Subduction Initiation in the Izu-Bonin-Mariana System

    NASA Astrophysics Data System (ADS)

    McCarthy, A. J.; Hickey-Vargas, R.; Yogodzinski, G. M.; Ishizuka, O.; Hocking, B.; Bizimis, M.; Savov, I. P.; Kusano, Y.; Arculus, R. J.

    2016-12-01

    IODP Expedition 351 Site 1438 is located in the Amami-Sankaku basin, just west of the Kyushu-Palau Ridge (KPR), a remnant of the early Izu-Bonin-Mariana (IBM) volcanic arc. 150 meters of basement basalt were drilled beneath 1460 m of volcaniclastic sediments and sedimentary rock. The age range inferred for these basalts is 51-52 Ma, close to the 48-52 Ma age of basalts associated with subduction initiation in the IBM forearc (forearc basalts or FABs). Site 1438 basement basalts form several distinct subunits, all relatively mafic (MgO = 6-14 %; Mg# = 51-83). Non-fluid-mobile incompatible trace element patterns are profoundly depleted. Sm/Nd (0.34-0.43) and Lu/Hf (0.18-0.37) reach values higher than most normal MORBs while La/Yb (0.31-0.98) and Ti/V (15.8-27.0) are lower. These features are shared with basalts drilled just west of the KPR at ODP Site 1201 and DSDP Site 447, and many FABs. Abundances of fluid-mobile incompatible elements vary together and are correlated with subunits defined by flow margins and rock physical properties, suggesting control by post-eruptive seawater alteration rather than varying inputs of subduction fluids. Hf-Nd isotopes for Site 1438 basement basalts range from (present-day) ɛNd of 7.0 to 9.5 and ɛHf of 14.5 to 19.8 in a well-correlated array. Their more radiogenic Hf-isotope character could indicate an Indian-type MORB source, however, basalts with ɛHf >16.5, are more radiogenic than many Indian MORB. Pb isotope data will help distinguish differing mantle source domains and origins for fluid-mobile elements. Overall, the combined geochemical data indicate that the mantle source of basement basalts in drill sites west of the KPR (1438, 1201, 447) are closely similar to those for FAB, and that as a group, these rocks are more depleted than more than 90% of global MORB. Our interpretation is that both IBM forearc basalts and basalts from drill sites immediately west of the KPR formed by melting of the same uniquely depleted mantle source during subduction initiation. Melting may have been promoted by rapid decompression and by flux melting with a solute-poor hydrous subduction fluid. These basalts were erupted over a broad area in an extensional setting, which later narrowed as subduction and the subduction-related IBM volcanic arc became established.

  20. Rb-Sr and Sm-Nd Isotopic Studies of Lunar Green and Orange Glasses

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.

    2012-01-01

    Lunar volcanic glassy beads have been considered as quenched basaltic magmas derived directly from deep lunar mantle during fire-fountaining eruptions [1]. Since these sub-mm size glassy melt droplets were cooled in a hot gaseous medium during free flight [2], they have not been subject to mineral fractionations. Thus, they represent primary magmas and are the best samples for the investigation of the lunar mantle. Previously, we presented preliminary Rb- Sr and Sm-Nd isotopic results for green and orange glassy samples from green glass clod 15426,63 and orange soil 74220,44, respectively [3]. Using these isotopic data, initial Sr-87/Sr-86 and Nd ratios for these pristine mare glass sources can be calculated from their respective crystallization ages previously determined by other age-dating techniques. These isotopic data were used to evaluate the mineralogy of the mantle sources. In this report, we analyzed additional glassy samples in order to further characterize isotopic signatures of their source regions. Also, we'll postulate a relationship between these two major mare basalt source mineralogies in the context of lunar magma ocean dynamics.

  1. Geochemical insights into the lithology of mantle sources for Cenozoic alkali basalts in West Qinling, China

    NASA Astrophysics Data System (ADS)

    Dai, Li-Qun; Zheng, Fei; Zhao, Zi-Fu; Zheng, Yong-Fei

    2018-03-01

    Although alkali basalts are common in oceanic islands and continental rifts, the lithology of their mantle sources is still controversial. While the peridotite is usually viewed as a common source lithology, there are increasing studies suggesting significant contributions from ultramafic metasomatites such as carbonated peridotite, pyroxenite and hornblendite to the origin of alkali basalts. The present study indicates that carbonated peridotite plus hornblendite would have served as the mantle sources of Cenozoic alkali basalts from the West Qinling orogen in China. The target basalts show low SiO2 contents of 36.9 to 40.8 wt% and highly variable Na2O + K2O contents from 0.86 to 4.77 wt%, but high CaO contents of 12.5 to 16.3 wt% and CaO/Al2O3 ratios of 1.42 to 2.19. They are highly enriched in the majority of incompatible trace elements, but depleted in Rb, K, Pb, Zr, Hf, and Ti. Furthermore, they exhibit high (La/Yb)N, Zr/Hf, Ce/Pb and Nb/Ta ratios, but low Ti/Eu and Hf/Sm ratios. Generally, with increasing (La/Yb)N and CaO/Al2O3 ratios, their Ti/Eu and Hf/Sm ratios decrease whereas their Zr/Hf, Ce/Pb and Nb/Ta ratios increase. These major and trace element features are similar to those of carbonatites and hornblendite-derived melts to some extent, but significantly different from those of mid-ocean ridge basalts (MORB). This suggests that the alkali basalts would be originated from metasomatic mantle sources. A comparison of the major-trace elements in the alkali basalts with those of some representative mantle-derived melts indicates that the source lithology of alkali basalts is a kind of ultramafic metasomatites that are composed of carbonated peridotite and hornblendite. Such metasomatites would be generated by reaction of the depleted MORB mantle peridotite with hydrous, carbonate-bearing felsic melts derived from partial melting of the subducted Paleotethyan oceanic crust. Therefore, the melt-peridotite reaction at the slab-mantle interface in the Paleotethyan subduction channel plays the key role in transferring the geochemical signatures from the subducted Paleotethyan oceanic crust to the alkali basalts in the fossil convergent plate margin.

  2. Role of melting process and melt-rock reaction in the formation of Jurassic MORB-type basalts (Alpine ophiolites)

    NASA Astrophysics Data System (ADS)

    Renna, Maria Rosaria; Tribuzio, Riccardo; Sanfilippo, Alessio; Thirlwall, Matthew

    2018-04-01

    This study reports a geochemical investigation of two thick basalt sequences, exposed in the Bracco-Levanto ophiolite (northern Apennine, Italy) and in the Balagne ophiolite (central-northern Corsica, France). These ophiolites are considered to represent an oceanward and a continent-near paleogeographic domain of the Jurassic Liguria-Piedmont basin. Trace elements and Nd isotopic compositions were examined to obtain information about: (1) mantle source and melting process and (2) melt-rock reactions during basalt ascent. Whole-rock analyses revealed that the Balagne basalts are slightly enriched in LREE, Nb, and Ta with respect to the Bracco-Levanto counterparts. These variations are paralleled by clinopyroxene chemistry. In particular, clinopyroxene from the Balagne basalts has higher CeN/SmN (0.4-0.3 vs. 0.2) and ZrN/YN (0.9-0.6 vs. 0.4-0.3) than that from the Bracco-Levanto basalts. The basalts from the two ophiolites have homogeneous initial Nd isotopic compositions (initial ɛ Nd from + 8.8 to + 8.6), within typical depleted mantle values, thereby excluding an origin from a lithospheric mantle source. These data also reject the involvement of contaminant crustal material, as associated continent-derived clastic sediments and radiolarian cherts have a highly radiogenic Nd isotopic fingerprint ( ɛ Nd at the time of basalt formation = - 5.5 and - 5.2, respectively). We propose that the Bracco-Levanto and the Balagne basalts formed by partial melts of a depleted mantle source, most likely containing a garnet-bearing enriched component. The decoupling between incompatible elements and Nd isotopic signature can be explained either by different degrees of partial melting of a similar asthenospheric source or by reaction of the ascending melts with a lower crustal crystal mush. Both hypotheses are reconcilable with the formation of these two basalt sequences in different domains of a nascent oceanic basin.

  3. Origin of silicic magmas along the Central American volcanic front: Genetic relationship to mafic melts

    NASA Astrophysics Data System (ADS)

    Vogel, Thomas A.; Patino, Lina C.; Eaton, Jonathon K.; Valley, John W.; Rose, William I.; Alvarado, Guillermo E.; Viray, Ela L.

    2006-09-01

    Silicic pyroclastic flows and related deposits are abundant along the Central American volcanic front. These silicic magmas erupted through both the non-continental Chorotega block to the southeast and the Paleozoic continental Chortis block to the northwest. The along-arc variations of the silicic deposits with respect to diagnostic trace element ratios (Ba/La, U/Th, Ce/Pb), oxygen isotopes, Nd and Sr isotope ratios mimic the along-arc variation in the basaltic and andesitic lavas. This variation in the lavas has been interpreted to indicate relative contributions from the slab and asthenosphere to the basaltic magmas [Carr, M.J., Feigenson, M.D., Bennett, E.A., 1990. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contributions to Mineralogy and Petrology, 105, 369-380.; Patino, L.C., Carr, M.J. and Feigenson, M.D., 2000. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contributions to Mineralogy and Petrology, 138 (3), 265-283.]. With respect to along-arc trends in basaltic lavas the largest contribution of slab fluids is in Nicaragua and the smallest input from the slab is in central Costa Rica — similar trends are observed in the silicic pyroclastic deposits. Data from melting experiments of primitive basalts and basaltic andesites demonstrate that it is difficult to produce high K 2O/Na 2O silicic magmas by fractional crystallization or partial melting of low-K 2O/Na 2O sources. However fractional crystallization or partial melting of medium- to high-K basalts can produce these silicic magmas. We interpret that the high-silica magmas associated Central America volcanic front are partial melts of penecontemporaneous, mantle-derived, evolved magmas that have ponded and crystallized in the mid-crust — or are melts extracted from these nearly completely crystallized magmas.

  4. Timescales and mechanisms of formation of amorphous silica coatings on fresh basalts at Kīlauea Volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Chemtob, Steven M.; Rossman, George R.

    2014-10-01

    Young basalts from Kīlauea Volcano, Hawai'i, frequently feature opaque surface coatings, 1-80 μm thick, composed of amorphous silica and Fe-Ti oxides. These coatings are the product of interaction of the basaltic surface with volcanically-derived acidic fluids. Previous workers have identified these coatings in a variety of contexts on Hawai'i, but the timescales of coating development, coating growth rates, and factors controlling lateral coating heterogeneity were largely unconstrained. We sampled and analyzed young lava flows (of varying ages, from hours to ~ 40 years) along Kīlauea's southwest and east rift zones to characterize variation in silica coating properties across the landscape. Coating thickness varies as a function of flow age, flow surface type, and proximity to acid sources like local fissure vents and regional plumes emitted from Kīlauea Caldera and Pu'u Ō'ō. Silica coatings that form in immediate proximity to acid sources are more chemically pure than those forming in higher pH environments, which contain significant Al and Fe. Incipient siliceous alteration was observed on basalt surfaces as young as 8 days old, but periods of a year or more are required to develop contiguous coatings with obvious opaque coloration. Inferred coating growth rates vary with environmental conditions but were typically 1-5 μm/year. Coatings form preferentially on flow surfaces with glassy outer layers, such as spatter ramparts, volcanic bombs, and dense pahoehoe breakouts, due to glass strain weakening during cooling. Microtextural evidence suggests that the silica coatings form both by in situ dissolution-reprecipitation and by deposition of silica mobilized in solution. Thin films of water, acidified by contact with volcanic vapors, dissolved near-surface basalt, then precipitated amorphous silica in place, mobilizing more soluble cations. Additional silica was transported to and deposited on the surface by silica-bearing altering fluids derived from the basalt interior.

  5. Candidates source regions of martian meteorites as identified by OMEGA/MEx

    NASA Astrophysics Data System (ADS)

    Ody, A.; Poulet, F.; Quantin, C.; Bibring, J.-P.; Bishop, J. L.; Dyar, M. D.

    2015-09-01

    The objective of this study is to identify and map spectral analogues of some key martian meteorites (basaltic shergottites Los Angeles, Shergotty, QUE 94201, lherzolitic shergottite ALH A77005, Nakhla, Chassigny and the orthopyroxenite ALH 84001) in order to localize terrain candidates for their source regions. We develop a best fit procedure to reproduce the near-infrared (NIR) spectral properties of the martian surface as seen by the hyperspectral imaging spectrometer OMEGA/MEx from the NIR spectra of the martian meteorites. The fitting process is tested and validated, and Root Mean Square (RMS) global maps for each meteorite are obtained. It is found that basaltic shergottites have NIR spectral properties the most representative of the martian surface with the best spectral analogues found in early Hesperian volcanic provinces. Sites with spectral properties similar to those of ALH A77005 are scarce. They are mainly localized in olivine-bearing regions such as Nili Fossae and small Noachian/early Hesperian terrains. The only plausible source region candidate for Chassigny is the Nili Patera caldera dated to 1.6 Ga. Widespread spectral analogues for the ALH 84001 meteorite are found northeast of Syrtis Major and northwest of the Hellas basin. While this distribution is in agreement with the low-calcium-pyroxene-rich composition and old age (4.1 Ga) of this meteorite, the modal mineralogy of these candidates is not consistent with that of this meteorite. No convincing spectral analogue is found for the Amazonian-aged Nakhla meteorite suggesting that its olivine/high-calcium-pyroxene-rich composition could be representative of the Amazonian terrains buried under dust. Finally, some young rayed craters are proposed as possible candidates for source craters of the studied martian meteorites.

  6. Mantle heterogeneity in the source region of mid-ocean ridge basalts along the northern Central Indian Ridge (8°S-17°S)

    NASA Astrophysics Data System (ADS)

    Kim, Jonguk; Pak, Sang-Joon; Moon, Jai-Woon; Lee, Sang-Mook; Oh, Jihye; Stuart, Finlay M.

    2017-04-01

    The northern Central Indian Ridge (CIR) between 8°S and 17°S is composed of seven segments whose spreading rates increase southward from ˜35 to ˜40 mm/yr. During expeditions of R/V Onnuri to study hydrothermal activity on the northern CIR in 2009-2011, high-resolution multibeam mapping was conducted and ridge axis basalts were dredged. The major and trace element and Sr-Nd-Pb-He isotopic compositions of basaltic glasses dredged from the spreading axis require three mantle sources: depleted mantle and two distinct enriched mantle sources. The southern segments have Sr, Nd, and Pb that are a mix of depleted mantle and an enriched component as recorded in southern CIR MORB. This enrichment is indistinguishable from Rèunion plume mantle, except for He isotopes. This suggests that the southern segments have incorporated a contribution of the fossil Rèunion plume mantle, as the CIR migrated over hot-spot-modified mantle. The low 3He/4He (7.5-9.2 RA) of this enriched component may result from radiogenic 4He ingrowth in the fossil Rèunion mantle component. Basalts from the northern segments have high 206Pb/204Pb (18.53-19.15) and low 87Sr/86Sr (0.70286-0.70296) that are distinct from the Rèunion plume but consistent with derivation from mantle with FOZO signature, albeit with 3He/4He (9.2-11.8 RA) that are higher than typical. The FOZO-like enriched mantle cannot be attributed to the track of a nearby mantle plume. Instead, this enrichment may have resulted from recycling oceanic crust, possibly accompanied by small plume activity.

  7. Re — Os isotopic constraints on the origin of volcanic rocks, Gorgona Island, Colombia: Os isotopic evidence for ancient heterogeneities in the mantle

    NASA Astrophysics Data System (ADS)

    Walker, R. J.; Echeverria, L. M.; Shirey, S. B.; Horan, M. F.

    1991-04-01

    The Re — Os isotopic systematics of komatiites and spatially associated basalts from Gorgona Island, Colombia, indicate that they were produced at 155±43 Ma. Subsequent episodes of volcanism produced basalts at 88.1±3.8 Ma and picritic and basaltic lavas at ca. 58 Ma. The age for the ultramafic rocks is important because it coincides with the late-Jurassic, early-Cretaceous disassembly of Pangea, when the North- and South-American plates began to pull apart. Deep-seated mantle upwelling possibly precipitated the break-up of these continental plates and caused a tear in the subducting slab west of Gorgona, providing a rare, late-Phanerozoic conduit for the komatiitic melts. Mantle sources for the komatiites were heterogeneous with respect to Os and Pb isotopic compositions, but had homogeneous Nd isotopic compositions (ɛNd+9±1). Initial 187Os/186Os normalized to carbonaceous chondrites at 155 Ma (γOs) ranged from 0 to +22, and model-initial μ values ranged from 8.17 to 8.39. The excess radiogenic Os, compared with an assumed bulk-mantle evolution similar to carbonaceous chondrites, was likely produced in portions of the mantle with long-term elevated Re concentrations. The Os, Pb and Nd isotopic compositions, together with major-element constraints, suggest that the sources of the komatiites were enriched more than 1 Ga ago by low (<20%) and variable amounts of a basalt or komatiite component. This component was added as either subducted oceanic crust or melt derived from greater depths in the mantle. These results suggest that the Re — Os isotope system may be a highly sensitive indicator of the presence of ancient subducted oceanic crust in mantle-source regions.

  8. Re - Os isotopic constraints on the origin of volcanic rocks, Gorgona Island, Colombia: Os isotopic evidence for ancient heterogeneities in the mantle

    USGS Publications Warehouse

    Walker, R.J.; Echeverria, L.M.; Shirey, S.B.; Horan, M.F.

    1991-01-01

    The Re - Os isotopic systematics of komatiites and spatially associated basalts from Gorgona Island, Colombia, indicate that they were produced at 155??43 Ma. Subsequent episodes of volcanism produced basalts at 88.1??3.8 Ma and picritic and basaltic lavas at ca. 58 Ma. The age for the ultramafic rocks is important because it coincides with the late-Jurassic, early-Cretaceous disassembly of Pangea, when the North- and South-American plates began to pull apart. Deep-seated mantle upwelling possibly precipitated the break-up of these continental plates and caused a tear in the subducting slab west of Gorgona, providing a rare, late-Phanerozoic conduit for the komatiitic melts. Mantle sources for the komatiites were heterogeneous with respect to Os and Pb isotopic compositions, but had homogeneous Nd isotopic compositions (??Nd+9??1). Initial 187Os/186Os normalized to carbonaceous chondrites at 155 Ma (??Os) ranged from 0 to +22, and model-initial ?? values ranged from 8.17 to 8.39. The excess radiogenic Os, compared with an assumed bulk-mantle evolution similar to carbonaceous chondrites, was likely produced in portions of the mantle with long-term elevated Re concentrations. The Os, Pb and Nd isotopic compositions, together with major-element constraints, suggest that the sources of the komatiites were enriched more than 1 Ga ago by low (<20%) and variable amounts of a basalt or komatiite component. This component was added as either subducted oceanic crust or melt derived from greater depths in the mantle. These results suggest that the Re - Os isotope system may be a highly sensitive indicator of the presence of ancient subducted oceanic crust in mantle-source regions. ?? 1991 Springer-Verlag.

  9. Geology, geochronology, and geochemistry of basaltic flows of the Cat Hills, Cat Mesa, Wind Mesa, Cerro Verde, and Mesita Negra, central New Mexico

    USGS Publications Warehouse

    Maldonado, F.; Budahn, J.R.; Peters, L.; Unruh, D.M.

    2006-01-01

    The geochronology, geochemistry, and isotopic compositions of basaltic flows erupted from the Cat Hills, Cat Mesa, Wind Mesa, Cerro Verde, and Mesita Negra volcanic centres in central New Mexico indicate that each of these lavas had unique origins and that the predominant mantle involved in their production was an ocean-island basalt type. The basalts from Cat Hills (0.11 Ma) and Cat Mesa (3.0 Ma) are similar in major and trace element composition, but differences in MgO contents and Pb isotopic values are attributed to a small involvement of a lower crustal component in the genesis of the Cat Mesa rocks. The Cerro Verde rock is comparable in age (0.32 Ma) to the Cat Hills lavas, but it is more radiogenic in Sr and Nd, has higher MgO contents, and has a lower La/Yb ratio. This composition is explained by the melting of an enriched mantle source, but the involvement of another crustal component cannot be disregarded. The Wind Mesa rock is characterized by similar age (4.01 Ma) and MgO contents, but it has enriched rare-earth element contents compared with the Cat Mesa samples. These are attributed to a difference in the degree of partial melting of the Cat Mesa source. The Mesita Negra rock (8.11 Ma) has distinctive geochemical and isotopic compositions that suggest a different enriched mantle and that large amounts of a crustal component were involved in generating this magma. These data imply a temporal shift in magma source regions and crustal involvement, and have been previously proposed for Rio Grande rift lavas. ?? 2006 NRC Canada.

  10. The Last Gasp - the Terminal Magmatic Stages of the Keweenaw LIP

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.; Brown, E.; Moucha, R.; Stein, C. A.; Stein, S.

    2016-12-01

    The Keweenaw Flood Basalts, which represent the magmatic record of the best preserved example of a Precambrian Large Igneous Province (LIP), erupted contemporaneously with the development of the failed Mid-Continent Rift ca. 1.1 Ga. At 2 x 106 km3 in volume, the Keweenaw LIP is roughly equivalent in scale to the Parana-Etendeka LIP, but the origin and evolution of the magmatic source of the Keweenaw LIP remains poorly constrained. Specifically, while modern LIPs have a primary magmatic pulse lasting <5Ma, followed by a long phase of waning activity, the Keweenaw LIP underwent significant flood basalt eruptions for ca. 21 Myr. Here we examine the geochemical characteristics of the final phases of magmatic activity within the Keweenaw LIP - the Lake Shore Traps - which erupted ca. 1087 Ma within an alluvial fan sequence (Copper Harbor Conglomerate). The Lake Shore Traps are best exposed at High Rock Bay, where 62 flows ( 1-30m thick) are observed intercalated with thin paleosols over a 530m thickness. Thus, while this late-stage activity might represent a waning phase of magmatism, the thickness represents some half of the total average thickness of modern continental flood basalt provinces. Our initial data suggests a dominantly tholeiitic magma series spanning an unexpectedly wide and continuous range of compositions from basalt to andesite; rare alkaline lavas are also evident. Distinctive geochemical stratigraphic patterns were observed suggesting crystal fractionation and recharge events dominated the magma system. Our initial data do not show any unambiguous parallels between the geochemical characteristics of the Lake Shore Traps and prior phases of magmatic activity in the province. We explore the potential source characteristics of these lavas to refine the source and conditions of melt generation during the terminal phase of activity in the region.

  11. Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted emplacement processes and observations)

    NASA Astrophysics Data System (ADS)

    Head, James W.; Wilson, Lionel

    2017-02-01

    We utilize a theoretical analysis of the generation, ascent, intrusion and eruption of basaltic magma on the Moon to develop new insights into magma source depths, supply processes, transport and emplacement mechanisms via dike intrusions, and effusive and explosive eruptions. We make predictions about the intrusion and eruption processes and compare these with the range of observed styles of mare volcanism, and related features and deposits. Density contrasts between the bulk mantle and regions with a greater abundance of heat sources will cause larger heated regions to rise as buoyant melt-rich diapirs that generate partial melts that can undergo collection into magma source regions; diapirs rise to the base of the anorthositic crustal density trap (when the crust is thicker than the elastic lithosphere) or, later in history, to the base of the lithospheric rheological trap (when the thickening lithosphere exceeds the thickness of the crust). Residual diapiric buoyancy, and continued production and arrival of diapiric material, enhances melt volume and overpressurizes the source regions, producing sufficient stress to cause brittle deformation of the elastic part of the overlying lithosphere; a magma-filled crack initiates and propagates toward the surface as a convex upward, blade-shaped dike. The volume of magma released in a single event is likely to lie in the range 102 km3 to 103 km3, corresponding to dikes with widths of 40-100 m and both vertical and horizontal extents of 60-100 km, favoring eruption on the lunar nearside. Shallower magma sources produce dikes that are continuous from the source region to the surface, but deeper sources will propagate dikes that detach from the source region and ascend as discrete penny-shaped structures. As the Moon cools with time, the lithosphere thickens, source regions become less abundant, and rheological traps become increasingly deep; the state of stress in the lithosphere becomes increasingly contractional, inhibiting dike emplacement and surface eruptions. In contrast to small dike volumes and low propagation velocities in terrestrial environments, lunar dike propagation velocities are typically sufficiently high that shallow sill formation is not favored; local low-density breccia zones beneath impact crater floors, however, may cause lateral magma migration to form laccoliths (e.g., Vitello Crater) and sills (e.g., Humboldt Crater) in floor-fractured craters. Dikes emplaced into the shallow crust may stall and produce crater chains due to active and passive gas venting (e.g., Mendeleev Crater Chain) or, if sufficiently shallow, may create a near-surface stress field that forms linear and arcuate graben, often with pyroclastic and small-scale effusive eruptions (e.g., Rima Parry V). Effusive eruptions are modulated by effusion rates, eruption durations, cooling and supply limitations to flow length, and pre-existing topography. Relatively low effusion rate, cooling-limited flows lead to small shield volcanoes (e.g., Tobias Mayer, Milicius); higher effusion rate, cooling-limited flows lead to compound flow fields (e.g., most mare basins) and even higher effusion rate, long-duration flows lead to thermal erosion of the vent, effusion rate enhancement, and thermal erosion of the substrate to produce sinuous rilles (e.g., Rimae Prinz). Extremely high effusion rate flows on slopes lead to volume-limited flow with lengths of many hundreds of kilometers (e.g., the young Imbrium basin flows). Explosive, pyroclastic eruptions are common on the Moon. The low pressure environment in propagating dike crack-tips can cause gas formation at great depths and throughout dike ascent; at shallow crustal depths both the smelting reaction and the recently documented abundant magmatic volatiles in mare basalt magmas contribute to significant shallow degassing and pyroclastic activity associated with the dike as it erupts at the surface. Dikes penetrating to the surface produce a wide range of explosive eruption types whose manifestations are modulated by lunar environmental conditions: (1) terrestrial strombolian-style eruptions map to cinder/spatter cone-like constructs (e.g., Isis and Osiris); (2) Hawaiian-style eruptions map to broad flat pyroclastic blankets (e.g., Taurus-Littrow Apollo 17 dark mantle deposits); (3) gas-rich ultraplinian-like venting can cause Moon-wide dispersal of gas and foam droplets (e.g., many isolated glass beads in lunar soils); (4) vulcanian-like eruptions caused by solidification of magma in the dike tip, buildup of gas pressure and explosive disruption, can form dark-halo craters with mixed country rock (e.g., Alphonsus Crater floor); (5) ionian-like eruptions can be caused by artificial gas buildup in wide dikes, energetic explosive eruption and formation of a dark pyroclastic ring (e.g., Orientale dark ring); (6) multiple eruptions from many gas-rich fissures can form regional dark mantle deposits (e.g., Rima Bode, Sinus Aestuum); and (7) long duration, relatively high effusion rate eruptions accompanied by continuing pyroclastic activity cause a central thermally eroded lava pond and channel, a broader pyroclastic 'spatter' edifice, an even broader pyroclastic glass deposit and, if the eruption lasts sufficiently long, an associated inner thermally eroded vent and sinuous rille channel (e.g., Cobra Head and Aristarchus Plateau dark mantle). The asymmetric nearside-farside distribution of mare basalt deposits is most plausibly explained by crustal thickness differences; intrusion is favored on the thicker farside crust and extrusion is favored on the thinner nearside crust. Second-order effects include regional and global thermal structure (areal variations in lithospheric thickness as a function of time) and broad geochemical anomalies (the Procellarum-KREEP Terrain). Differences in mare basalt titanium content as a function of space and time are testimony to a laterally and vertically heterogeneous mantle source region. The rapidly decreasing integrated flux of mare basalts is a result of the thermal evolution of the Moon; continued cooling decreased diapiric rise and mantle melting, thickened the lithosphere, and caused the global state of stress to be increasingly contractional, all factors progressively inhibiting the generation, ascent and eruption of basaltic magma. Late-stage volcanic eruptions are typically widely separated in time and characterized by high-volume, high-effusion rate eruptions producing extensive volume-limited flows, a predictable characteristic of deep source regions below a thick lithosphere late in lunar history. This improved paradigm for the generation, ascent, intrusion and eruption of basaltic magma provides the basis for the broader interpretation of the lunar volcanic record in terms of variations in eruption conditions in space and time, and their relation to mantle heterogeneity and a more detailed understanding of lunar thermal evolution.

  12. Crystallization Age of NWA 1460 Shergottite: Paradox Revisited

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C-Y.; Reese, Y. D.; Irving, A. J.

    2004-01-01

    We have determined the Rb-Sr age of basaltic shergottite NWA 1460 to be 312 +/- 3 Ma, and the Sm-Nd age to be 352 +/- 30 Ma. The initial Sr and Nd isotopic compositions of NWA 1460 suggest it is an earlier melting product of a Martian mantle source region similar to those of the Iherzolitic shergottites and basaltic shergottite EETA79001, lithology B. The new ages of NWA 1460 and other recently analyzed Martian meteorites leads us to reexamine the paradox that most of the Martian meteorites appear to be younger from the majority of the Martian surface. This paradox continues to pose a challenge to determining a reliable Martian chronology.

  13. Implications of Eocene-age Philippine Sea and forearc basalts for initiation and early history of the Izu-Bonin-Mariana arc

    NASA Astrophysics Data System (ADS)

    Yogodzinski, Gene M.; Bizimis, Michael; Hickey-Vargas, Rosemary; McCarthy, Anders; Hocking, Benjamin D.; Savov, Ivan P.; Ishizuka, Osamu; Arculus, Richard

    2018-05-01

    Whole-rock isotope ratio (Hf, Nd, Pb, Sr) and trace element data for basement rocks at ocean drilling Sites U1438, 1201 and 447 immediately west of the KPR (Kyushu-Palau Ridge) are compared to those of FAB (forearc basalts) previously interpreted to be the initial products of IBM subduction volcanism. West-of-KPR basement basalts (drill sites U1438, 1201, 447) and FAB occupy the same Hf-Nd and Pb-Pb isotopic space and share distinctive source characteristics with εHf mostly > 16.5 and up to εHf = 19.8, which is more radiogenic than most Indian mid-ocean ridge basalts (MORB). Lead isotopic ratios are depleted, with 206Pb/204Pb = 17.8-18.8 accompanying relatively high 208Pb/204Pb, indicating an Indian-MORB source unlike that of West Philippine Basin plume basalts. Some Sr isotopes show affects of seawater alteration, but samples with 87Sr/86Sr < 0.7034 and εNd > 8.0 appear to preserve magmatic compositions and also indicate a common source for west-of-KPR basement and FAB. Trace element ratios resistant to seawater alteration (La/Yb, Lu/Hf, Zr/Nb, Sm/Nd) in west-of-KPR basement are generally more depleted than normal MORB and so also appear similar to FAB. At Site U1438, only andesite sills intruding sedimentary rocks overlying the basement have subduction-influenced geochemical characteristics (εNd ∼ 6.6, εHf ∼ 13.8, La/Yb > 2.5, Nd/Hf ∼ 9). The key characteristic that unites drill site basement rocks west of KPR and FAB is the nature of their source, which is more depleted in lithophile trace elements than average MORB but with Hf, Nd, and Pb isotope ratios that are common in MORB. The lithophile element-depleted nature of FAB has been linked to initiation of IBM subduction in the Eocene, but Sm-Nd model ages and errorchron relationships in Site U1438 basement indicate that the depleted character of the rocks is a regional characteristic that was produced well prior to the time of subduction initiation and persists today in the source of modern IBM arc volcanic rocks with Sm/Nd > 0.34 and εNd ∼ 9.0.

  14. A dynamic melting model for the origin of Apollo 15 olivine-normative and quartz-normative mare basalts

    NASA Technical Reports Server (NTRS)

    Vetter, Scott K.; Shervais, John W.

    1993-01-01

    Early studies of mare basalts from the Apollo 15 site established that two distinct groups are represented: the olivine-normative basalts (ONB) and the quartz-normative basalts (QNB). The ONB and QNB suites are distinguished petrographically by their phenocryst assemblages (the ONB's are olivine-phyric, the QNB's are generally pyroxene-phyric) and chemically by their major element compositions: the QNB's are higher in SiO2 and MgO/FeO, and lower in FeO and TiO2 than ONB's with similar MgO contents. Experimental data show that the QNB suite is derived from a more magnesian, olivine-normative parent magma, a conclusion which is supported by the recent discovery of high-SiO2 olivine-normative basalt clasts in breccia 15498. The high-SiO2 ONB's fall on olivine control lines with primitive QNB's, and least-squares mixing calculations are consistent with the high-SiO2 ONB's being parental to the more evolved QNB suite. These high-SiO2 ONB's are included as part of the 'QNB suite'. Our major element modeling results also are consistent with the conclusions of earlier studies which showed that the ONB and QNB suites cannot be related to one another by low pressure crystal fractionation. The combination of high Mg#, high SiO2, and low TiO2 in the QNB suite precludes a relationship to the ONB suite by simple removal of liquidus minerals (olivine and pigeonite). Despite these significant differences in petrography and major element composition, both groups have nearly identical trace element concentrations and chondrite-normalized abundance patterns. The major question to be addressed by any petrogenetic model for Apollo 15 mare basalts is how to form mare basalt suites with distinctly different major element characteristics but nearly identical trace element compositions. The similarity in trace element concentrations imply compositionally similar source regions and similar percent melting, but these conclusions are not easily reconciled with the observed differences in major element compositions, which require sources with distinct mineralogies or large differences in percent melt.

  15. Peridotites and basalts reveal broad congruence between two independent records of mantle fO2 despite local redox heterogeneity

    NASA Astrophysics Data System (ADS)

    Birner, Suzanne K.; Cottrell, Elizabeth; Warren, Jessica M.; Kelley, Katherine A.; Davis, Fred A.

    2018-07-01

    The oxygen fugacity (fO2) of the oceanic upper mantle has fundamental implications for the production of magmas and evolution of the Earth's interior and exterior. Mid-ocean ridge basalts and peridotites sample the oceanic upper mantle, and retain a record of oxygen fugacity. While fO2 has been calculated for mid-ocean ridge basalts worldwide (>200 locations), ridge peridotites have been comparatively less well studied (33 samples from 11 locations), and never in the same geographic location as basalts. In order to determine whether peridotites and basalts from mid-ocean ridges record congruent information about the fO2 of the Earth's interior, we analyzed 31 basalts and 41 peridotites from the Oblique Segment of the Southwest Indian Ridge. By measuring basalts and peridotites from the same ridge segment, we can compare samples with maximally similar petrogenetic histories. We project the composition and oxygen fugacity of each lithology back to source conditions, and evaluate the effects of factors such as subsolidus diffusion in peridotites and fractional crystallization in basalts. We find that, on average, basalts and peridotites from the Oblique Segment both reflect a source mantle very near the quartz-fayalite-magnetite (QFM) buffer. However, peridotites record a significantly wider range of values (nearly 3 orders of magnitude in fO2), with a single dredge recording a range in fO2 greater than that previously reported for mid-ocean ridge peridotites worldwide. This suggests that mantle fO2 may be heterogeneous on relatively short length scales, and that this heterogeneity may be obscured within aggregated basalt melts. We further suggest that the global peridotite fO2 dataset may not provide a representative sample of average basalt-source mantle. Our study motivates further investigation of the fO2 recorded by ridge peridotites, as peridotites record information about the fO2 of the Earth's interior that cannot be gleaned from analysis of basalts alone.

  16. Determination of Oxygen Fugacity using Olivine-Melt Equilibrium: Implications for the Redox States of Mid-Ocean Ridge Basalt, Ocean Island Basalt, and Island Arc Basalt Mantle Source Regions

    NASA Astrophysics Data System (ADS)

    Peterman, K. J.; Bryson, S.; Rilling-Hall, S.; Barton, M.

    2017-12-01

    In order to connect volcanic rocks to their mantle sources, it is essential to consider redox equilibria and their dependence on temperature, pressure, chemical composition, and oxygen fugacity. Oxygen fugacity (fO2) is an intensive variable that strongly affects the behavior of those elements in magmas that are sensitive to changes in redox state, such as Fe, and therefore Mg-Fe silicates, such as olivine. Since fO2 plays an important role in fractional crystallization, in principle it is possible to estimate fO2 from analyses of olivine in equilibrium with the melt. This research describes a new method based on this principle called the Olivine-Melt Equilibrium Method. The Fe3+ and Fe2+ contents of melt in equilibrium with olivine are calculated from the relationship of Gee and Sack (1988) that describes the partitioning of Mg and Fe2+ between olivine and melt. The Fe3+ and Fe2+ contents of the melt are then used to calculate the fO2 at which olivine and melt are in equilibrium using the model of Kress and Carmichael (1991) for the relationship between Fe3+/Fe2+ , fO2, T, P, and melt composition. We have calculated oxygen fugacities from published analyses of coexisting glass and olivine pairs in 1020 samples from three different tectonic settings. The results (expressed as ΔFMQ) for Mid-Ocean Ridge Basalts from the Mid-Atlantic Ridge (-1.55 ± 0.75), the East Pacific Rise (-0.65 ± 0.51), the Juan de Fuca Ridge (-0.77 ± 0.42), and the Galápagos Spreading Center (+0.08 ± 0.48) agree with results obtained using other methods and average -1.09 ± 0.89. Ocean Island Basalts from Iceland and the Galápagos Islands (ΔFMQ = -0.43 ± 0.71 and -0.33 ± 0.35 respectively) also yield values consistent with those obtained by other methods and fall in the same range as MORB. However, lavas from the Canary Islands are more oxidized than typical MORB and OIB, with values (average = +0.68 ± 0.52) approaching those for island arc magmas. We obtain ΔFMQ = +1.03 ± 0.52 for olivine-melt pairs from Sunda arc basalts. The results for MORB and OIB potentially provide evidence for redox heterogeneity in the mantle, possibly as the result of crustal recycling. However it is necessary to evaluate the possibility that fO2 changes during magma ascent before concluding that the oxygen fugacities of erupted magmas directly reflect those of the mantle source regions.

  17. Minor and trace element geochemistry of volcanic rocks dredged from the Galapagos spreading center: role of crystal fractionation and mantle heterogeneity.

    USGS Publications Warehouse

    Clague, D.A.; Frey, F.A.; Thompson, G.; Rindge, S.

    1981-01-01

    A wide range of rock types (abyssal tholeiite, Fe-Ti-rich basalt, andesite, and rhyodacite) were dredged from near 95oW and 85oW on the Galapagos spreading center. Computer modeling of major element compositions has shown that these rocks could be derived from common parental magmas by successive degrees of fractional crystallization. However, the P2O5/K2O ratio implies distinct mantle source compositions for the two areas. These source regions also have different rare earth element (REE) abundance patterns. The sequence of fractionated lavas differs for the two areas and indicates earlier fractionation of apatite and titanomagnetite in the lavas from 95oW. The mantle source regions for these two areas are interpreted to be depleted in incompatible (and volatile?) elements, although the source region beneath 95oW is less severely depleted in La and K. -Authors

  18. Deducing the magma chamber processes of middle Eocene volcanics, Sivas and Tokat regions; NE Turkey: Insights from clinopyroxene chemistry

    NASA Astrophysics Data System (ADS)

    Göçmengil, Gönenç; Karacık, Zekiye; Genç, Ş. Can; Prelevic, Dejan

    2016-04-01

    Middle Eocene Tokat and Sivas volcanic successions occur within the İzmir-Ankara-Erzincan suture zone. Different models are suggested for the development of the middle Eocene volcanism such as post-collisional, delamination and slab-breakoff models as well as the arc magmatism. In both areas, volcanic units cover all the basement units with a regional disconformity and comprise lavas spanning a compositional range from mainly basalt-basaltic andesite to a lesser amount trachyte. Here, we report mineral chemistry of different basaltic lavas through transect from northern continent (Tokat region, Pontides) to southern continent (Sivas region, Kırşehir block) to deduce the characteristics of the magma chamber processes which are active during the middle Eocene. Basaltic lavas include olivine bearing basalts (Ol-basalt: ± olivine + clinopyroxene + plagioclase); amphibole bearing basaltic andesite (Amp-basaltic andesite: amphibole + clinopyroxene + plagioclase ± biotite) and pyroxene bearing basaltic andesite (Px-basaltic andesite: clinopyroxene + plagioclase). Microlitic, glomeroporphyric and pilotaxitic texture are common. Clinopyroxene phenocrystals (macro ≥ 750 μm and micro ≤300 μm) are common in all three lava series which are investigated by transecting core to rim compositional profiles. They are generally augite and diopside; euhedral to subhedral in shape with oscillatory, normal and reverse zoning patterns. Also, all clinopyroxene phenocrystals are marked by moderately high Mg# (for Ol-basalt: 67-91; avg. 80; Amp-basaltic andesite: 76-83, avg: 80; Px -basaltic andesite 68-95, avg: 81). In Ol-basalt, clinopyroxene phenocrystals show normal zonation (high Mg# cores and low Mg# rims). In Amp-basaltic andesite, clinopyroxenes are generally homogenous in composition with minor variation of Mg# towards the rims. On the contrary, in Px-basaltic andesite, clinopyroxene macro phenocrystals show reverse zonation with the core with low Mg# and the rims with higher. Also, within the same unit, there are clinopyroxene micro phenocrystals compositionally resembling the rims of the macro phenocrystals. Barometric calculations from clinopyroxene phenocrystals display large range of crystallization pressure for the Ol-basalt (2-9 kbar; average ~4 kbar) and Amp-basaltic andesite (2-5 kbar; average ~4 kbar). Besides, in Px-basaltic andesite macro phenocrystals have high crystallization pressure in the cores (6.5-8 kbar) and low pressures at the rims (3-6.5 kbar). Similarly, micro phenocrystals also show the similar pressure ranges as macro phenocrystal rims. Regarding the data presented above, clinopyroxene phenocrystals from Ol- and Amp-basalts generally show normal zonation which can be explained by time depended fractionation of magma. Besides, in Px-basaltic andesites, macro phenocrystal cores might be inherited from antecrysts crystallized at the deeper level of the same system. Reverse zonation and high Mg# and lower pressure crystallization of macro phenocrystal rims and micro phenocrystals indicate that injection and/or mixing of primitive magma within the host magma chamber. Differences in crystallization pressures and chemical compositions from the same volcanic sequence show the existence of different conduit levels or magma reservoirs.

  19. Plan of study for the regional aquifer-system analysis of the Snake River plain, Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, Gerald F.

    1981-01-01

    The 15,600-square-mile Snake River Plain is largely in southern Idaho and includes one of the Nation 's major regional aquifers. A comprehensive investigation of the area 's ground-water resources will be made as part of the U.S. Geological Survey 's Regional Aquifer-System Analysis (RASA) program. Basaltic and sedimentary rocks in the Snake River Plain yield large quantities of water that are vital to the area 's agricultural economy. Basaltic rocks predominate in the eastern Snake River Plain and have especially high water-yielding capabilities. Surface water, largely from the Snake River, is extensively used for irrigation and is a major source of recharge to the ground-water system. Springs issuing from basaltic rocks that form the Snake River Canyon wall near Twin Falls are the major points of ground-water discharge. Increased use of ground water for irrigation is causing concern as to the effect of large-scale withdrawals on spring flow. Ground-water flow models will be used to improve understanding of the hydrologic system, and, if feasible, to aid in evaluating management alternatives. Ground-water quality will be defined and geochemical techniques used to determine the effects of water-rock reactions on water quality. Several reports are planned on different phases of the project, concluding with a summary report. (USGS)

  20. Petrology of the Basalt of Summit Creek: A [Slab] Window into Pacific Northwest Tectonics during the Eocene

    NASA Astrophysics Data System (ADS)

    Kant, L. B.; Tepper, J. H.; Nelson, B. K.

    2012-12-01

    Variation in composition of basalts within the Cascade arc reflects the regional effects of subducting slab windows. The earliest preserved Tertiary manifestation of this process is the 55-44 Ma Basalt of Summit Creek (BSC), located southeast of Mount Rainier. At the base of this steeply dipping 2000 m section of subaerial lavas are basalts / diabases with arc traits (e.g., HFSE depletions, 1.0-1.2 wt. % K2O) and isotopic compositions (207Pb/204Pb > 15.58; ɛNd = +5.8 to +6.7) that overlap those of modern Cascade arc rocks. Conformably overlying these arc rocks (and separated by ~35m of shale, sandstone and conglomerate) are tholeiitic basalts with OIB affinities (<0.4 wt. % K2O, Y/Nb = 1.1-2.3, concave spidergram profiles) and isotopic signatures of a more depleted mantle source (207Pb/204Pb < 15.56; ɛNd = +7.1 to +7.8). In major element, trace element, and isotopic composition the upper BSC lavas are broadly similar to the voluminous Crescent Formation basalts on the Olympic Peninsula, which are coeval with the BSC but located ~100 km farther west. Compositional diversity within the upper BSC section (Mg# 66-30) appears to reflect both fractional crystallization and source heterogeneity. Modeling with MELTS (Ghiroso and Sack, 1995) indicates that differentiation dominated by removal of clinopyroxene and plagioclase took place at mid crustal depths (P = 5 kbar) and that the parent magma had <0.2 wt. % water. However, this process cannot account for all incompatible element data, which indicate the existence of two distinct magma series that differ most notably in Sr, Zr, and K2O contents. Arc basalts of the lower BSC may represent the southernmost extension of the Cretaceous-Tertiary North Cascades arc (Miller et al., 2009); however, basalts higher in the section have OIB traits and reflect a different tectonic setting. We propose that the transition from arc to OIB magmatism in the BSC records the arrival beneath the arc of a slab window produced by subduction of the Kula-Farallon Ridge (KFR). Previous research on subduction of the KFR has been limited to the coast. Improved dating and petrology of the BSC will help to better constrain the location and behavior of the KFR slab window as it moved further inboard beneath the North American plate.

  1. Lu-Hf constraints on the evolution of lunar basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimaki, H.; Tatsumoto, M.

    1984-02-15

    Very low Ti basalts andd green glass samples from the moon show high Lu/Hf ratios and low Hf concentrations. Low-Ti lunar basalts show high and variable Lu/Hf ratios and higher Hf concentrations, whereas high-Ti lunar basalts show low Lu/Hf ratios and high Hf concentrations. KREEP basalts have constant Lu/Hf ratios and high but variable Hf concentrations. Using the Lu-Hf behavior as a constraint, we propose a model for the mare basalts evolution. This constraint requires extensive crystallization of the primary lunar magma ocean prior to formation of the lunar mare basalt sources and the KREEP basalts. Mare basalts are producedmore » by the melting of the cumulate rocks, and KREEP basalts represent the residual liquid of the magma ocean.« less

  2. An Apollo 15 Mare Basalt Fragment and Lunar Mare Provinces

    NASA Technical Reports Server (NTRS)

    Ryder, Graham; Burling, Trina Cox

    1996-01-01

    Lunar sample 15474,4 is a tiny fragment of olivine-augite vitrophyre that is a mare basalt. Although petroraphically distinct from all other Apollo 15 samples, it has been ignored since its first brief description. Our new petrographic and mineral chemical data show that the olivines and pyroxenes are distinct from those in other basalts. The basalt cooled and solidified extremely rapidly; some of the olivine might be cumulate or crystallized prior to extrusion. Bulk-chemical data show that the sample is probably similar to an evolved Apollo 15 olivine-normative basalt in major elements but is distinct in its rare earth element pattern. Its chemical composition and petrography both show that 15474,4 cannot be derived from other Apollo 15 mare basalts by shallow-level crystal fractionation. It represents a distinct extrusion of magma. Nonetheless, the chemical features that 15474,4 has in common with other Apollo 15 mare basalts, including the high FeO/Sc, the general similarity of the rare earth element pattern, and the common (and chondritic) TiO2/Sm ratio, emphasize the concept of a geochemical province at the Apollo 15 site that is distinct from basalts and provinces elsewhere. In making a consistent picture for the derivation of all of the Apollo 15 basalts, both the commonalities and the differences among the basalts must be explained. The Apollo 15 commonalities and differences suggest that the sources must have consisted of major silicate phases with the same composition but with varied amounts of a magma trapped from a contemporary magma ocean. They probably had a high olivine/pyroxene ratio and underwent small and reasonably consistent degrees of partial melting to produce the basalts. These inferences may be inconsistent with models that suggest greatly different depths of melting among basalts, primitive sources for the green glasses, or extensive olivine fractionation during ascent. An integrated approach to lunar mare provinces, of which the Apollo 15 mare basalts constitute only one, offers advances in our understanding of the physical and chemical processes of source formation and mare production but has so far not been utilized.

  3. Rare earth element contents and multiple mantle sources of the transform-related Mount Edgecumbe basalts, southeastern Alaska

    USGS Publications Warehouse

    Riehle, J.R.; Budahn, J.R.; Lanphere, M.A.; Brew, D.A.

    1994-01-01

    Pleistocene basalt of the Mount Edgecumbe volcanic field (MEF) is subdivided into a plagioclase type and an olivine type. Th/La ratios of plagioclase basalt are similar to those of mid-ocean-ridge basalt (MORB), whereas those of olivine basalt are of continental affinity. Rare earth element (REE) contents of the olivine basalt, which resemble those of transitional MORB, are modelled by 10-15% partial melting of fertile spinel-plagioclase lherzolite followed by removal of 8-13% olivine. It is concluded that olivine basalt originated in subcontinental spinel lherzolite and that plagioclase basalt may have originated in suboceanic lithosphere of the Pacific plate. -from Authors

  4. Coatings on Atacama Desert Basalt: A Possible Analog for Coatings on Gusev Plains Basalt

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.

    2007-01-01

    Surface coatings on Gusev Plains basalt have been observed and may contain hematite and nanophase Fe-oxides along with enrichments in P, S, Cl, and K relative to the underlying rock. The Gusev coatings may be derived from the dissolution of adhering soil and/or parent rock along with the addition of S and Cl from outside sources. Transient water for dissolution could be sourced from melting snow during periods of high obliquity, acid fog, and/or ground water (Haskin et al., 2005). Coatings on basalt in the hyper-arid (less than 2mm y(sup -1)) Atacama Desert may assist in understanding the chemistry, mineralogy and formation mechanisms of the Gusev basalt coatings. The Atacama Desert climate is proposed to be analogous to a paleo-Mars climate that was characterized by limited aqueous activity when the Gusev coatings could have formed. The objectives of this work are to (i) determine the chemical nature and extent of surface coatings on Atacama Desert basalt, and (ii) assess coating formation mechanisms in the Atacama Desert. Preliminary backscattered electron imaging of Atacama basalt thin-sections indicated that the coatings are as thick as 20 m. The boundary between the coating and the basalt labradorite, ilmenite, and augite grains was abrupt indicating that the basalt minerals underwent no chemical dissolution. The Atacama coatings have been added to the basalt instead of being derived from basalt chemical weathering. Semi-quantitative energy dispersive spectroscopy shows the coatings to be chemically homogeneous. The coating is depleted in Ca (0.9 wt% CaO) and enriched in K (1.3 wt.% K2O) and Si (69.1 wt.% SiO2) relative to the augite and labradorite grains. A dust source enriched in Si (e.g., poorly crystalline silica) and K and depleted in Ca appears to have been added to the basalt surface. Unlike the Gusev coatings, no P, S, and Cl enrichment was observed. However, Fe (3.2 wt.% FeO) was present in the Atacama coatings suggesting the present of Fe-oxides. While the chemistry of Atacama coating does not mirror the Gusev coating, the coating formation mechanism may be similar. The Atacama coatings of surface basalt are derived completely from exogenous sources. If surface Mars rocks have experienced limited wetting conditions as in the Atacama, then Mars coatings may be derived only from dissolution of material adhering to rock.

  5. Source characteristics and tectonic setting of mafic-ultramafic intrusions in North Xinjiang, NW China: Insights from the petrology and geochemistry of the Lubei mafic-ultramafic intrusion

    NASA Astrophysics Data System (ADS)

    Chen, Bao-Yun; Yu, Jin-Jie; Liu, Shuai-Jie

    2018-05-01

    The newly discovered Lubei sulfide-bearing mafic-ultramafic intrusion forms the western extension of the Huangshan-Jin'erquan mafic-ultramafic intrusion belt in East Tianshan, NW China. The Lubei intrusion comprises hornblende peridotite, lherzolite, and harzburgite in its southern portion, gabbro in its middle portion, and hornblende gabbro in its northern portion. Intrusive relationships indicate that three magma pulses were involved in the formation of the intrusion, and that they were likely evolved from a common primitive magma. Estimated compositions of the Lubei primitive magma are similar to those of island arc calc-alkaline basalt except for the low Na2O and CaO contents of the Lubei primitive magma. This paper reports on the mineral compositions, whole-rock major and trace element contents, and Rb-Sr and Sm-Nd isotopic compositions of the Lubei intrusion, and a zircon LA-MC-ICP-MS U-Pb age for hornblende gabbro. The Lubei intrusion is characterized by enrichment in large-ion lithophile elements, depletion in high-field-strength elements, and marked negative Nb and Ta anomalies, with enrichment in chondrite-normalized light rare earth elements. It exhibits low (87Sr/86Sr)i ratios of 0.70333-0.70636 and low (143Nd/144Nd)i ratios of 0.51214-0.51260, with positive εNd values of +4.01 to +6.33. LA-ICP-MS U-Pb zircon ages yielded a weighted-mean age of 287.9 ± 1.6 Ma for the Lubei intrusion. Contemporaneous mafic-ultramafic intrusions in different tectonic domains in North Xinjiang show similar geological and geochemical signatures to the Lubei intrusion, suggesting a source region of metasomatized mantle previously modified by hydrous fluids from the slab subducted beneath the North Xinjiang region in the early Permian. Metasomatism of the mantle was dominated by hydrous fluids and was related to subduction of the Paleo-Asian oceanic lithosphere during the Paleozoic. Sr-Nd-Pb isotopic compositions suggest that the mantle source was a mixture of depleted mid-ocean-ridge-basalt mantle and enriched-mantle I components. The Permian mafic-ultramafic intrusions in North Xinjiang were formed from tholeiitic basaltic magmas derived from decompression partial melting of the metasomatized mantle in a post-collision extensional tectonic setting. The tholeiitic basaltic magmas are equivalent to the voluminous underplated basaltic magmas that formed during vertical crustal growth of the Central Asian Orogenic Belt in the later Paleozoic.

  6. Apollo 12 feldspathic basalts 12031, 12038, and 12072; petrology, comparison and interpretations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaty, E.W.; Hill, S.M.R.; Albee, A.L.

    1979-01-01

    Modal and chemical data indicate that 12072, 12038, and 12031, the Apollo 12 feldspathic basalts, form a well-defined group which cannot be related to the other Apollo 12 rock types. 12072 contains phenocrysts of olivine and pigeonite and microphenocrysts of Cr-spinel set in a fine-grained, variolitic groundmass. 12038 is a medium-grained, equigranular basalt with a texture indicating it was multiply saturated. 12031 is a coarse-grained rock with granular to graphic intergrowths of pyroxene and plagioclase; it was also multiply saturated. Petrologic observations, as well as the bulk chemistry, are consistent with the interpretation that 12031 could be derived from 12072more » through fractionation of Cr-spinel, olivine, and pigeonite, the observed phenocryst assemblage. 12038, however, contains more pigeonite, less olivine, three times as much Ca-phosphate minerals, one-fifth as much troilite, and much more sodic plagioclase than 12072. These differences indicate that 12038 must have come from a separate igneous body. Consideration of the bulk compositions indicates that neither 12072 and 12031 nor 12038 could have been derived from the Apollo 12 olivine, pigeonite, or ilmenite basalts by crystal--liquid fractionation. The general petrologic similarities between 12072, 12031, and the other Apollo 12 basalts suggests that they were produced in either the same or similar source regions. 12038, however, is petrologically and chemically unique, and is probably exotic to the Apollo 12 landing site.« less

  7. Mineralogy of Mare Serenitatis on the near side of the Moon based on Chandrayaan-1 Moon Mineralogy Mapper (M3) observations

    NASA Astrophysics Data System (ADS)

    Kaur, Prabhjot; Bhattacharya, Satadru; Chauhan, Prakash; Ajai; Kiran Kumar, A. S.

    2013-01-01

    Spectral analysis of Mare Serenitatis has been carried out using Chandrayaan-1 Moon Mineralogy Mapper (M3) data in order to map the compositional diversity of the basaltic units that exist in the basin. Mare Serenitatis is characterized by multiple basaltic flows of different ages indicating a prolonged volcanism subsequent to the basin formation event. Reflectance spectra of fresh craters from the Mare Serenitatis have been analyzed to study the nature and location of the spectral absorption features around 1- and 2-μm respectively, arising due to the electronic charge transition of Fe2+ in the crystal lattice of pyroxenes and/or olivine. Chandrayaan-1 M3 data have been utilized to obtain an Integrated Band Depth (IBD) mosaic of the Serenitatis basin. Based on the spectral variations observed in the IBD mosaic, 13 spectral units have been mapped in the Mare Serenitatis. In the present study, we have also derived spectral band parameters, namely, band center, band strength, band area and band area ratio from the M3 data to study the mineralogical and compositional variations amongst the basaltic units of the studied basin. On the basis of spectral band parameter analysis, the pyroxene compositions of the basaltic units have been determined, which vary from low to intermediate end of the high-Ca pyroxene and probably represent a sub-calcic to calcic augite compositional range. Detailed spectral analyses reveal little variations in the mafic mineralogy of the mare basalts in terms of pyroxene chemistry. The uniformity in pyroxene composition across the basaltic units of Mare Serenitatis, therefore, suggest a probably stable basaltic source region, which might not have experienced large-scale fractionation during the prolonged volcanism that resulted in filling of the large Serenitatis basin.

  8. Mantle and crustal contributions to continental flood volcanism

    USGS Publications Warehouse

    Arndt, N.T.; Czamanske, G.K.; Wooden, J.L.; Fedorenko, V.A.

    1993-01-01

    Arndt, N.T., Czamanske, G.K., Wooden, J.L. and Fedorenko, V.A., 1993. Mantle and crustal contributions to continental flood volcanism. In: M.J.R. Wortel, U. Hansen and R. Sabadini (Editors), Relationships between Mantle Processes and Geological Processes at or near the Earth's Surface. Tectonophysics, 223: 39-52. Most continental flood basalts are enriched in incompatible elements and have high initial 87Sr/86Sr ratios and low ??{lunate}Nd values. Many are depleted in Nb and Ta. The commonly-held view that these characteristics are inherited directly from a source in metasomatized lithospheric mantle is inconsistent with the following arguments: (1) thermomechanical modelling demonstrates that flood basalt magmas come mainly from an asthenospheric or plume source, with minimal direct melting of the continental lithospheric mantle. The low water contents of most flood basalts argue against proposals that hydrous lithosphere was the source. (2) Lithospheric mantle normally has low concentrations of incompatible elements, and chondrite-normalized Nb and Ta contents similar to those of other incompatible elements. Such material cannot be the unmodified source of Nb-Ta-depleted basalts such as those from the Karoo, Ferrar, or Columbia River provinces. We suggest there are two main controls on the compositions of continental flood basalts. The first is lithospheric thickness, which strongly influences the depth and degree of mantle melting of a plume or asthenospheric source, and thus has an important influence on the composition of primary magmas. All liquids formed by partial melting of peridotite at sub-lithosphere depths are highly magnesian (20-25 wt.% MgO) but have variable trace-element contents. Where the lithosphere is thick, the source melts at high pressure, garnet is present, the degree of melting is low, and trace-element concentrations are high. This type of magma evolves to produce the high-Ti type of continental flood basalt. Where the lithosphere is thinner, the source ascends to shallower levels, the degree of melting is greater, garnet may be exhausted, and the magmas have lower trace-element contents; these magmas yield low-Ti basalts. The second control is processing of magmas in chambers that were periodically replenished and tapped, while continuously fractionating and assimilating their wall rocks. The uniform compositions of basalts that evolve in such chambers are far removed from those of their picritic parental magmas. Major elements in continental flood basalts reflect control by olivine, pyroxene, and plagioclase crystallization, and this assemblage places the magma chambers at crustal depth. We believe that trace-element and isotopic compositions are also buffered, and that the erupted basalts represent steady-state liquids tapped from these magma chambers. These processes impose a crustal signature on the magmas, as expressed most strongly in the concentrations of incompatible elements (e.g., Nb-Ta anomalies) and their isotopic characteristics. ?? 1993.

  9. Istopically Defined Source Reservoirs of Primitive Magmas in the East African Rift.

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.; Furman, T.; Hanan, B.

    2005-12-01

    Extension within the East African Rift is a function of the interaction between plume-driven uplift and far-field stresses associated with plate tectonic processes. Geochemical and isotopic investigation of primitive basalts from the Main Ethiopian Rift (MER) reveals systematic spatial variations in the contributions from distinct and identifiable source reservoirs that, in turn help identify the mechanisms by which along-axis rifting has progressed. The Sr-Nd-Pb isotopic characteristics of MER basalts can be described by a three-component mixing model involving the long-lived Afar plume, a depleted mantle component similar to the source region for Gulf of Aden MORB from east of 48° E and a reservoir that is likely lithospheric (sub-continental mantle lithosphere, magmatic underplate or lower crust). Quaternary basalts in the central MER exhibit a systematic decrease in plume influence southward from 9.5° N to 8° N, i.e., away from the modern surface expression of the Afar plume in Djibouti and Erta 'Ale. The composition of the Afar plume component is comparable to the "C" mantle reservoir. This southward decrease in plume influence is coupled with an increase in the influence of the lithospheric and depleted mantle components. Linear arrays observed within Pb-Pb isotopic space at each eruptive center require distinctive ratio of lithospheric + depleted mantle components mixing with variable amounts of the "C"-like plume component. This isotopic evidence suggests the depleted mantle and lithosphere mixed prior to the generation of the recent magmas. To the south, the Sr-Nd-Pb isotopic compositions of Turkana (Kenya) rift basalts record a mix of a similar "C"-like plume component and a fourth HIMU-like source component. Low 3He/4He values observed in the HIMU-dominated lavas from Turkana contrast with the higher ratios found in basalts associated with the "C"-like Afar plume. Further analysis of "C"-HIMU lavas at Turkana is required to fully constrain the He isotopic signatures. Thus, along-axis patterns in Quaternary EARS magmatism are compatible with two "C"-like plumes with contributions from the upper mantle and chemically distinct lithospheric components. Alternatively, a single "C"-like plume can account for these relationships. In the single plume scenario, the HIMU source component present in the 30 Ma Turkana lavas may represent melting of metasomatised lithosphere, derived from the accretion of island-arc-backarc basins during Pan-African events (e.g. Schilling et al., 1992). The recent plume-dominated activity in Turkana and Afar are separated by a region characterized by waning plume influence and a greater contribution from the depleted mantle. This intermediate zone, which is located in the south-central MER represents the modern site of contact between the northward propagating Kenya / Turkana Rift and the southward propagating Afar Rift zone.

  10. Major zircon megacryst suites of the Indo-Pacific lithospheric margin (ZIP) and their petrogenetic and regional implications

    NASA Astrophysics Data System (ADS)

    Sutherland, Lin; Graham, Ian; Yaxley, Gregory; Armstrong, Richard; Giuliani, Gaston; Hoskin, Paul; Nechaev, Victor; Woodhead, Jon

    2016-04-01

    Zircon megacrysts (± gem corundum) appear in basalt fields of Indo-Pacific origin over a 12,000 km zone (ZIP) along West Pacific continental margins. Age-dating, trace element, oxygen and hafnium isotope studies on representative zircons (East Australia-Asia) indicate diverse magmatic sources. The U-Pb (249 to 1 Ma) and zircon fission track (ZFT) ages (65 to 1 Ma) suggest thermal annealing during later basalt transport, with < 1 to 203 Ma gaps between the U-Pb and ZFT ages. Magmatic growth zonation and Zr/Hf ratios (0.01-0.02) suggest alkaline magmatic sources, while Ti—in—zircon thermometry suggests that most zircons crystallized within ranges between 550 and 830 °C. Chondrite-normalised multi-element plots show variable enrichment patterns, mostly without marked Eu depletion, indicating little plagioclase fractionation in source melts. Key elements and ratios matched against zircons from magmatic rocks suggest a range of ultramafic to felsic source melts. Zircon O-isotope ratios (δ18O in the range 4 to 11‰) and initial Hf isotope ratios (ɛHf in the range +2 to +14) encompass ranges for both mantle and crustal melts. Calculated Depleted Mantle (TDM 0.03-0.56 Ga) and Crustal Residence (0.20-1.02 Ga) model ages suggest several mantle events, continental break-ups (Rodinia and Gondwana) and convergent margin collisions left imprints in the zircon source melts. East Australian ZIP sites reflect prolonged intraplate magmatism (~85 Ma), often during times of fast-migrating lithosphere. In contrast, East Asian-Russian ZIP sites reflect later basaltic magmatism (<40 Ma), often linked to episodes of back-arc rifting and spreading, slow-migrating lithosphere and slab subduction.

  11. Origin of primitive ocean island basalts by crustal gabbro assimilation and multiple recharge of plume-derived melts

    NASA Astrophysics Data System (ADS)

    Borisova, Anastassia Y.; Bohrson, Wendy A.; Grégoire, Michel

    2017-07-01

    Chemical Geodynamics relies on a paradigm that the isotopic composition of ocean island basalt (OIB) represents equilibrium with its primary mantle sources. However, the discovery of huge isotopic heterogeneity within olivine-hosted melt inclusions in primitive basalts from Kerguelen, Iceland, Hawaii and South Pacific Polynesia islands implies open-system behavior of OIBs, where during magma residence and transport, basaltic melts are contaminated by surrounding lithosphere. To constrain the processes of crustal assimilation by OIBs, we employed the Magma Chamber Simulator (MCS), an energy-constrained thermodynamic model of recharge, assimilation and fractional crystallization. For a case study of the 21-19 Ma basaltic series, the most primitive series ever found among the Kerguelen OIBs, we performed sixty-seven simulations in the pressure range from 0.2 to 1.0 GPa using compositions of olivine-hosted melt inclusions as parental magmas, and metagabbro xenoliths from the Kerguelen Archipelago as wallrock. MCS modeling requires that the assimilant is anatectic crustal melts (P2O5 ≤ 0.4 wt.% contents) derived from the Kerguelen oceanic metagabbro wallrock. To best fit the phenocryst assemblage observed in the investigated basaltic series, recharge of relatively large masses of hydrous primitive basaltic melts (H2O = 2-3 wt%; MgO = 7-10 wt.%) into a middle crustal chamber at 0.2 to 0.3 GPa is required. Our results thus highlight the important impact that crustal gabbro assimilation and mantle recharge can have on the geochemistry of mantle-derived olivine-phyric OIBs. The importance of crustal assimilation affecting primitive plume-derived basaltic melts underscores that isotopic and chemical equilibrium between ocean island basalts and associated deep plume mantle source(s) may be the exception rather than the rule.

  12. Reduced chromium in olivine grains from lunar basalt 15555 - X-ray Absorption Near Edge Structure (XANES)

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Jones, K. W.; Gordon, B.; Rivers, M. L.; Bajt, S.; Smith, J. V.

    1993-01-01

    The oxidation state of Cr in 200-micron regions within individual lunar olivine and pyroxene grains from lunar basalt 15555 was inferred using X-ray Absorption Near Edge Structure (XANES). Reference materials had previously been studied by optical absorption spectroscopy and included Cr-bearing borosilicate glasses synthesized under controlled oxygen fugacity and Cr-doped olivines. The energy dependence of XANES spectral features defined by these reference materials indicated that Cr is predominantly divalent in the lunar olivine and trivalent in the pyroxene. These results, coupled with the apparent f(02)-independence of partitioning coefficients for Cr into olivine, imply that the source magma was dominated by divalent Cr at the time of olivine crystallization.

  13. Geochemistry of 24 Ma Basalts from Northeast Egypt: Implications for Small-Scale Convection Beneath the East African Rift System

    NASA Astrophysics Data System (ADS)

    Endress, C. A.; Furman, T.; Ali Abu El-Rus, M.

    2009-12-01

    Basalts ~24 Ma in the Cairo-Suez and Fayyum districts of NE Egypt represent the youngest and northernmost lavas potentially associated with the initiation of rifting of the Red Sea. The age of these basalts corresponds to a time period of significant regional magmatism that occurred subsequent to emplacement of 30 Ma flood basalts attributed to the Afar Plume in Ethiopia and Yemen. Beginning ~28 Ma, widespread magmatism occurred across supra-equatorial Africa in Hoggar (Algeria), Tibesti (Chad), Darfur (Sudan), Turkana (Kenya) and Samalat, Bahariya, Quesir and the Sinai Peninsula (Egypt) (e.g. Allegre et al., 1981; Meneisy, 1990; Baldridge et al., 1991; Wilson and Guiraud, 1992; Furman et al., 2006; Lucassen et al., 2008). Available geochemical and isotopic data indicate that Hoggar and Darfur basalts are similar to Turkana lavas, although no direct link between the N African lavas and the Kenya Plume has been made. New geochemical data on the NE Egyptian basalts provide insight into the thermochemical, isotopic, and mineralogical characteristics of the mantle beneath the region in which they were emplaced. The basalts are subalkaline with OIB-like incompatible trace element abundances and homogeneous major element, trace element and isotopic geochemistry. They display relatively flat ITE patterns, with notable positive Pb and negative P anomalies. Isotopic (143Nd/144Nd = 0.51274-0.51285, 87Sr/86Sr = 0.7049-0.7050) and trace element signatures (Ce/Pb = 16-22, Ba/Nb = 9-14, and La/Nb = 0.9-1.0) are consistent with melting of a sub-lithospheric source that has been slightly contaminated by continental crust during ascent and emplacement. The Pb isotopic ratios (206Pb/204Pb = 18.53-18.62, 207Pb/204Pb = 15.59-15.64, and 208Pb/204Pb = 38.80-39.00) in the Egyptian basalts are close to the range of those found in the 30 Ma Ethiopian flood basalts, which are distinct from the more highly radiogenic, high-μ type signature seen in basalts from Turkana, Darfur, and Hoggar. However, measured 207Pb/204Pb and 87Sr/86Sr values are higher than those observed in the Ethiopian flood basalts (Pik et al., 1999) and suites from the Red Sea and Gulf of Aden (Schilling et al., 1992; Volker and McCulloch, 1993; Volker et al., 1997), consistent with trace element evidence of crustal contamination. We aim to develop a broad framework for understanding tectono-magmatic activity throughout northern Africa since the Miocene. The NE Egyptian basalts show evidence of both lithospheric and sublithospheric contributions and represent a time period that is critical to ongoing debate surrounding the relationship between shallow magmatism, crustal extension, and deep mantle processes exemplified by the features within and beneath the African Plate. A plausible model for the widespread volcanism during the early Miocene is that each local magmatic event was related to small scale convection rising above a plume or plumes.

  14. Mantle End-Members: The Trace Element Perspective

    NASA Astrophysics Data System (ADS)

    Willbold, M.; Stracke, A.; Hofmann, A. W.

    2004-12-01

    On the basis of their isotopic composition, ocean island basalts (OIB) have been classified into three to four end-members; HIMU with the most radiogenic Pb isotope ratios of OIB and Enriched Mantle 1 and 2 (EM1, EM2) with less radiogenic but variable Pb isotope and highly radiogenic Sr isotope signatures. It has also been argued that each of these isotopic families has common trace element characteristics that distinguish them from one another and so substantiated this classification. Here, we present new high-precision trace element data for samples from St. Helena, Tristan da Cunha and Gough in the Atlantic Ocean. The overall data-set is augmented by OIB data from the GEOROC database and includes data from all major isotopic families (HIMU: St. Helena, Mangaia, Tubuai, and Rururtu; EM1: Tristan da Cunha, Gough, Pitcairn; and EM2: Samoa, Marquesas, and Society). For each locality we use only islands defining the most extreme isotopic compositions. The entire data-set has been screened to exclude altered and highly differentiated samples. HIMU basalts have a very uniform trace element composition. Compared to HIMU-type basalts, EM-type basalts are enriched in Rb, Ba, and K, and depleted in U, Nb, and Ta, relative to La. Different EM-type OIBs from the same isotopic family (EM1 or EM2), have distinct trace element characteristics that can ultimately only be caused by different source compositions. For example, Ba/Th ratios in samples from both Tristan da Cunha (EM1) and Samoa (EM2) are similarly high (ca. 110) whereas Ba/Th ratios in samples from Pitcairn (EM1) and Society (EM2) samples are consistently lower (ca. 70). Thus on the basis of their trace element composition, EM-type OIB cannot be classified into EM1 and EM2 type basalts, nor can any other grouping be identified. The remarkably uniform isotopic and trace element composition of HIMU-type basalts suggests derivation from a single common source reservoir, most likely subduction-modified oceanic crust. Although there are some trace element characteristics common to all EM-type basalts, which distinguish them from HIMU-type basalts (e.g. uniformly high Th/U ratios of 4.7 ± 0.3, and enrichment in Cs-U), each suite of EM-type basalts has unique trace element signatures that distinguish them from any other suite of EM-type basalts. This is especially obvious when comparing the trace element composition of EM basalts from one isotopic family, for example EM1-type basalts from Tristan, Gough and Pitcairn. Consequently, the trace element systematics of EM-type basalts suggest that there are many different EM-type sources, whereas the isotopic composition of EM-type basalts suggest derivation from two broadly similar sources, i.e. EM1 and EM2. The large variability in subducting sediments with respect to both parent-daughter (e.g. Rb/Sr, Sm/Nd, U/Pb, Th/Pb,...) and other trace element ratios makes it unlikely that there are reproducible mixtures of sediments leading to two different isotopic evolution paths (EM1 and EM2) while preserving a range of incompatible element contents for each isotopic family, as would be required to reconcile the isotopic and trace element characteristics of EM-type basalts. Although this does not a priori argue against sediments as possible source components for OIB, it does argue against two distinct groups of sediments as EM1 and EM2 sources. Further characterization of sources with the same general origin (e.g. a certain type of crust or lithosphere) or identification of processes leading to reservoirs with similar parent-daughter ratio characteristics but different incompatible trace element contents could resolve the apparent conundrum.

  15. REE and Isotopic Compositions of Lunar Basalts Demonstrate Partial Melting of Hybridized Mantle Sources after Cumulate Overturn is Required

    NASA Astrophysics Data System (ADS)

    Dygert, N. J.; Liang, Y.

    2017-12-01

    Lunar basalts maintain an important record of the composition of the lunar interior. Much of our understanding of the Moon's early evolution comes from studying their petrogenesis. Recent experimental work has advanced our knowledge of major and trace element fractionation during lunar magma ocean (LMO) crystallization [e.g., 1-3], which produced heterogeneous basalt sources in the Moon's mantle. With the new experimental constraints, we can evaluate isotopic and trace element signatures in lunar basalts in unprecedented detail, refining inferences about the Moon's dynamic history. Two petrogenetic models are invoked to explain the compositions of the basalts. The assimilation model argues they formed as primitive melts of early LMO cumulates that assimilated late LMO cumulates as they migrated upward. The cumulate overturn model argues that dense LMO cumulates sank into the lunar interior, producing hybridized sources that melted to form the basalts. Here we compare predicted Ce/Yb and Hf and Nd isotopes of partial melts of LMO cumulates with measured compositions of lunar basalts to evaluate whether they could have formed by end-member petrogenetic models. LMO crystallization models suggest all LMO cumulates have chondrite normalized Ce/Yb <1. Residual liquid from the magma ocean has Ce/Yb 1.5. Many primitive lunar basalts have Ce/Yb>1.5; these could not have formed by assimilation of any LMO cumulate or residual liquid (or KREEP basalt, which has isotopically negative ɛNd and ɛHf). In contrast, basalt REE patterns and isotopes can easily be modeled assuming partial melting of hybridized mantle sources, indicating overturn may be required. A chemical requirement for overturn independently confirms that late LMO cumulates are sufficiently low in viscosity to sink into the lunar interior, as suggested by recent rock deformation experiments [4]. Overturned, low viscosity late LMO cumulates would be relatively stable around the core [5]. High Ce/Yb basalts require that overturned cumulates were mixed back into the overlying mantle by convection within a few hundred Myr. [1] Dygert et al. (2014), GCA 132, 170-186. [2] Sun et al. (2017), GCA 206, 273-295. [3] Lin et al. (2017), EPSL 471, 104-116. [4] Dygert et al. (2016), GRL 43, 10.1002/2015GL066546. [5] Zhang et al. (2017), GRL 44, 10.1002/2017GL073702.

  16. Melting Conditions of Basaltic Volcanism from Collision to Escape in the Central Anatolian Volcanic Province

    NASA Astrophysics Data System (ADS)

    Maloney, P. M.; Reid, M. R.; Cosca, M. A.; Gencalioglu Kuscu, G.

    2013-12-01

    Both Miocene and Quaternary mafic volcanics have erupted in the vicinity of the present-day Central Anatolian fault zone since the cessation of Afro-Arabian subduction and continent-continent collision, and the initiation of tectonic escape. We report results for samples from the Central Anatolian Volcanic Province (near Hasan volcano) and the Sarkisla region of the Sivas basin (250 km NE of Hasandag) analyzed with the goal of understanding the melting conditions responsible for the post-collisional magmatism in these regions. New 40Ar/39Ar dates for basalts erupted near Hasan range in age from 2.58 +/- 0.08 Ma to 62 +/- 4 ka. A majority of the dates cluster at ~400 ka, ages similar to those documented by Notsu et al, 1995. These subalkaline basalts have Zn/Fe and FC3MS [(FeO*/CaO)-3x(MgO/SiO2)] concentrations (10.0-11.4 and 0.05-0.39, respectively) expected for basalts produced by melting of peridotite (Le Roux et al, 2011, Yang and Zhou, 2013). Using olivine-opx-melt thermobarometry (Lee et al, 2009), the samples are determined to have been extracted from the mantle at 1.2-1.8 GPa and 1314-1391 °C. Clinopyroxene thermobarometry (Putirka, 2003) shows that they then crystallized at 0.7 GPa and ~1200°C. Enrichments in LILE:HFSE, most likely imparted to the magmas from mantle lithosphere which has been enriched by previous subduction zone metasomatism, is present in all of the samples. Accordingly, basalts sampled near Hasan are derived from a shallow lithospheric mantle peridotite source that has been affected by Afro-Arabian subduction prior to collision. New 40Ar/39Ar dates for basanites and basalts from the Sarkisla region show that they erupted between 17.6 +/- 0.4 Ma and 14.09 +/- 0.09 Ma. They have elsewhere been reported to be Plio-Pleistocene in age (Parlak et al., 2001). Zn/Fe and FC3MS for these basalts (Zn/Fe: 10.4-12.6, FC3MS: 0.29-0.91) range to values above the maximum value produced by peridotite melts (~10.8 and 0.65, respectively). Therefore, olivine-poor lithologies may be abundant in the melting region. Basanites from Sarkisla were extracted at ~5.2 GPa and ~1590°C and then crystallized at 1.5 GPa and 1280 °C. However, since pyroxenite appears to be an important constituent in the melting region for the Sarkisla samples, this thermobarometer is not strictly applicable. The Sarkisla mafic lavas, in contrast to those near Hasan, have trace element signatures more similar to typical asthenospherically-derived lavas and thermobarometry points to deeper, asthenospheric melting conditions. Collectively, our results show that the melting conditions of mafic lavas associated with the Central Anatolian Fault have varied as the tectonic regime evolved over time.

  17. Petrogenesis of Neoarchean metavolcanic rocks in Changyukou, Northwestern Hebei: Implications for the transition stage from a compressional to an extensional regime for the North China Craton

    NASA Astrophysics Data System (ADS)

    Liou, Peng; Shan, Houxiang; Liu, Fu; Guo, Jinghui

    2017-03-01

    The 2.5 Ga metavolcanic rocks in Changyukou, Northwestern Hebei, can be classified into three groups based on major and trace elements: high-Mg basalts, tholeiitic basalts, and the calc-alkaline series (basaltic andesites-andesites and dacites-rhyolites). Both high-Mg basalts and tholeiitic basalts have negative anomalies of Nb, Zr, Ti and Heavy Rare Earth Elements (HREE) as well as enrichments of Sr, K, Pb, Ba and Light Rare Earth Elements (LREE) and show typical subduction zone affinities. The petrogenesis of high-Mg basalts can be ascribed to high-degree partial melting of an enriched mantle source in the spinel stability field that was previously enriched in Large Ion Lithophile Elements (LILE) and LREE by slab-derived hydrous fluids/melts/supercritical fluids, as well as the subsequent magma mixing processes of different sources at different source depths, with little or no influence of polybaric fractional crystallization. The flat HREE of tholeiitic basalts indicates they may also originate from the spinel stability field, but from obviously shallower depths than the source of high-Mg basalts. They may form at a later stage of the subduction process when rapid slab rollback leads to extension and seafloor spreading in the upper plate. We obtain the compositions of the Archean lower crust of the North China Craton based on the Archean Wutai-Jining section by compiling the average tonalite-trondhjemite-granodiorite (TTG) components, average mafic granulite components, and average sedimentary rock components. The modeling results show that the generation of high-Al basalts, basaltic andesites and andesites can be attributed to assimilation by high-Mg basalts (primary basalts) of relatively high-Al2O3 thickened lower crust and the subsequent crystallization of prevailing mafic mineral phases, while Al2O3-rich plagioclase crystallization is suppressed under high-pressure and nearly water-saturated conditions. Dacites and rhyolites may be the result of further fractional crystallization of basaltic andesites (high-Al basalts) and andesites. Mixing of magmas at various stages along the fractionation course of basaltic andesites (high-Al basalts) toward rhyolites promotes the trend of the calc-alkaline series. To reconcile the 2.55 to 2.5 Ga TTGs derived from overthickened crust, the 2.51 to 2.50 Ga calc-alkaline volcanic rocks derived from thickened crust, tholeiitic basalts representing low pressure and an extensional tectonic setting, 2493 Ma leucosyenogranites derived from overthickened crust, 2437 Ma biotite-monzogranites derived from slightly thinner crust than leucosyenogranites but still thickened, as well as the clockwise hybrid ITD and IBC P-T paths of the HP granulites and widespread extension and rifting setting within the NCC from 2300 Ma, we propose a model of an evolving subduction process. Among them, the composition of the 2.5 Ga Changyukou volcanic rocks and potassic granites as well as the clockwise hybrid ITD and IBC P-T paths of the HP granulites may reveal that the tectonic setting in Northwest Hebei was in a transition stage from a subduction-related compressional regime to an extensional regime related to plate rollback.

  18. Geologic structure of shallow maria. [topography of lunar maria

    NASA Technical Reports Server (NTRS)

    Dehon, R. A.; Waskom, J. A.

    1975-01-01

    Isopach maps and structural contour maps of the eastern mare basins (30 deg N to 30 deg S; 0 deg to 100 deg E), constructed from measurements of partially buried craters, are presented and discussed. The data, which are sufficiently scattered to yield gross thickness variations, are restricted to shallow maria with less than 1500-2000 m of mare basalts. The average thickness of basalt in the irregular maria is between 200 and 400 m. Correlations between surface topography, basalt thickness, and basin floor structure are apparent in most of the basins that were studied. The mare surface is commonly depressed in regions of thick mare basalts; mare ridges are typically located in regions of pronounced thickness changes; and arcuate mare rilles are confined to thin mare basalts. Most surface structures are attributed to shallow stresses developed within the mare basalts during consolidation and volume reduction.

  19. Rare-earth element geochemistry and the origin of andesites and basalts of the Taupo Volcanic Zone, New Zealand

    USGS Publications Warehouse

    Cole, J.W.; Cashman, K.V.; Rankin, P.C.

    1983-01-01

    Two types of basalt (a high-Al basalt associated with the rhyolitic centres north of Taupo and a "low-Al" basalt erupted from Red Crater, Tongariro Volcanic Centre) and five types of andesite (labradorite andesite, labradorite-pyroxene andesite, hornblende andesite, pyroxene low-Si andesite and olivine andesite/low-Si andesite) occur in the Taupo Volcanic Zone (TVZ), North Island, New Zealand. Rare-earth abundances for both basalts and andesites are particularly enriched in light rare-earth elements. High-Al basalts are more enriched than the "low-Al" basalt and have values comparable to the andesites. Labradorite and labradorite-pyroxene andesites all have negative Eu anomalies and hornblende andesites all have negative Ce anomalies. The former is probably due to changing plagioclase composition during fractionation and the latter to late-stage hydration of the magma. Least-squares mixing models indicate that neither high-Al nor "low-Al" basalts are likely sources for labradorite/labradorite-pyroxene andesites. High-Al basalts are considered to result from fractionation of olivine and clinopyroxene from a garnet-free peridotite at the top of the mantle wedge. Labradorite/labradorite-pyroxene andesites are mainly associated with an older NW-trending arc. The source is likely to be garnet-free but it is not certain whether the andesites result from partial melting of the top of the subducting plate or a hydrated lower portion of the mantle wedge. Pyroxene low-Si andesites probably result from cumulation of pyroxene and calcic plagioclase within labradorite-pyroxene andesites, and hornblende andesites by late-stage hydration of labradorite-pyroxene andesite magma. Olivine andesites, low-Si andesites and "low-Al" basalts are related to the NNE-trending Taupo-Hikurangi arc structure. Although the initial source material is different for these lavas they have probably undergone a similar history to the labradorite/labradorite-pyroxene andesites. All lavas show evidence of crustal contamination. ?? 1983.

  20. Trace element evidence for a depleted component intrinsic to the Hawaiian plume

    NASA Astrophysics Data System (ADS)

    DeFelice, C.; Mallick, S.; Saal, A. E.; Huang, S.

    2017-12-01

    The Hawaii Scientific Drilling Project (HSDP) recovered 3.5 km of Mauna Kea post-shield and shield stage basalts to investigate the geochemical evolution of a Hawaiian shield stage volcano and to constrain the geochemical structure of Hawaiian plume. A group of tholeiitic lavas from 1760-1810 meters below sea level (mbsl) have higher CaO content at given MgO content and are called high-CaO basalts. Isotopes of Pb, Sr, Hf, and Nd of these basalts show they are the most depleted shield basalts ever recovered in Hawaii. Their 206Pb/204Pb-208Pb/204Pb values indicate that they are not related to Pacific MORB. Their Ba/Th values (115-160) are characteristic of Hawaiian plume material and they are isotopically similar to Hawaiian rejuvenated stage lavas. To further investigate this relationship, we compare high-CaO basalts to the Honolulu Volcanics, a set of rejuvenated stage lavas. To determine their possible petrogenetic relation, we calculate their parental melt composition by adding or removing olivine until their geochemical composition is in equilibrium with Fo90. The High-CaO basalt parent magma composition has a much flatter REE pattern and much lower absolute REE contents than that of the Honolulu lavas. Batch melting forward models are calculated to determine potential sources that could contribute to both the Honolulu Volcanics and high-CaO basalts petrogenesis. Both parental magma compositions can be recreated by melting the same rejuvenated-stage source composition to varying degrees. Honolulu Volcanics are the result of a low degree of melting of the rejuvenated source, while higher degrees of melting reproduce the high-CaO basalts. The High-CaO basalts, erupted during shield-stage volcanism, show that the depleted component that rejuvenated stage basalts form from can be sampled during the most voluminous stage of volcanism, and is likely intrinsic to the plume.

  1. The facial levels of the melting of the Permian - Triassic trap basalts of West Siberian plate and Siberian platform.

    NASA Astrophysics Data System (ADS)

    Sharapov, Victor; Vasiliev, Yury

    2014-05-01

    Statistical processing of numerical information allow to indicate the following regional petro- geochemical characteristics of Permo-Triassic trap magmatism in West Siberian plate WSP: 1) Examined regional petrochemical trend of major element chemistry variation of trap magmatism from north to the south is appeared in increase of the acidity, a decrease of Mg and alumina and potassium of the igneous rocks, for other components existing data do not allow to determine regularities; 2) According to (La/Yb)n, (Gd/Yb)n and(Tb/Yb)n ratios all basic melts belong to the spinel facie. In general the trap basalts of Siberian Platform reveal the following structural facial features are characteristic: 1) From west and east the region of the basalt effusions practically coincides with the area of Devonian sea depressions, 2) from the west to east lava shields are framed by the zones of the variously differentiated intrusive basic bodies grouped within the zones of arched and linear faults; 3) the region of effusive volcanics appearance has the zone - distributed structural - material areas, the tholeitic "super-shield" (plateau Putorana) occupyingthe center part of the Tunguska syneclise), framed from the West, and NW by the local lava shields located in rounded depressions( mulda) in which the lavas are more magnesian, titaniferrous and alkaline. 4) examined overall petrochemical zonation of basic rocks in Siberian platform reveal general decrease from the Norilsk mulda to Angara- Ilim iron-ore deposit region, with the growth of Ti02 and alkalinity of the basic rocks. The statistical wavelet analysis of the cyclic recurrence of the effusive rock sections along the eastern board of Khatanga rift show substantially different characteristics of the spectra of time series, in Norilsk -Kharaelakh depression the low-frequency modules predominate, whereas for The Meimecha-Kotuy effusion section the high frequency values are characteristic. The comparison of the possible facial levels of the melting of the initial magmas of trap basalts in WSP and Siberian platform showed that the magnesian melts were generated in garnet mantle facie, and major part of the basalt melts, forming volcanic plateaus in Siberian Platform and traps of WSP were apparently generated in the spinel facie of lithospheric mantle. The most obvious evidence of two - level magmatic sources is found on the border with the eastern margin of Khatanga depression and in the region of junction of volcanic plateau and Anabar craton. RFBR grant 12-05-00625

  2. Carbon isotope and abundance systematics of Icelandic geothermal gases, fluids and subglacial basalts with implications for mantle plume-related CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Füri, E.; Halldórsson, S. A.; Grönvold, K.

    2014-06-01

    We report new carbon dioxide (CO2) abundance and isotope data for 71 geothermal gases and fluids from both high-temperature (HT > 150 °C at 1 km depth) and low-temperature (LT < 150 °C at 1 km depth) geothermal systems located within neovolcanic zones and older segments of the Icelandic crust, respectively. These data are supplemented by CO2 data obtained by stepped heating of 47 subglacial basaltic glasses collected from the neovolcanic zones. The sample suite has been characterized previously for He-Ne (geothermal) and He-Ne-Ar (basalt) systematics (Füri et al., 2010), allowing elemental ratios to be calculated for individual samples. Geothermal fluids are characterized by a wide range in carbon isotope ratios (δ13C), from -18.8‰ to +4.6‰ (vs. VPDB), and CO2/3He values that span eight orders of magnitude, from 1 × 104 to 2 × 1012. Extreme geothermal values suggest that original source compositions have been extensively modified by hydrothermal processes such as degassing and/or calcite precipitation. Basaltic glasses are also characterized by a wide range in δ13C values, from -27.2‰ to -3.6‰, whereas CO2/3He values span a narrower range, from 1 × 108 to 1 × 1012. The combination of both low δ13C values and low CO2 contents in basalts indicates that magmas are extensively and variably degassed. Using an equilibrium degassing model, we estimate that pre-eruptive basaltic melts beneath Iceland contain ∼531 ± 64 ppm CO2 with δ13C values of -2.5 ± 1.1‰, in good agreement with estimates from olivine-hosted melt inclusions (Metrich et al., 1991) and depleted MORB mantle (DMM) CO2 source estimates (Marty, 2012). In addition, pre-eruptive CO2 compositions are estimated for individual segments of the Icelandic axial rift zones, and show a marked decrease from north to south (Northern Rift Zone = 550 ± 66 ppm; Eastern Rift Zone = 371 ± 45 ppm; Western Rift Zone = 206 ± 24 ppm). Notably, these results are model dependent, and selection of a lower δ13C fractionation factor will result in lower source estimates and larger uncertainties associated with the initial δ13C estimate. Degassing can adequately explain low CO2 contents in basalts; however, degassing alone is unlikely to generate the entire spectrum of observed δ13C variations, and we suggest that melt-crust interaction, involving a low δ13C component, may also contribute to observed signatures. Using representative samples, the CO2 flux from Iceland is estimated using three independent methods: (1) combining measured CO2/3He values (in gases and basalts) with 3He flux estimates (Hilton et al., 1990), (2) merging basaltic emplacement rates of Iceland with pre-eruptive magma source estimates of ∼531 ± 64 ppm CO2, and (3) combining fluid CO2 contents with estimated regional fluid discharge rates. These methods yield CO2 flux estimates from of 0.2-23 × 1010 mol a-1, which represent ∼0.1-10% of the estimated global ridge flux (2.2 × 1012 mol a-1; Marty and Tolstikhin, 1998).

  3. Lunar initial Nd-143/Nd-144 - Differential evolution of the lunar crust and mantle

    NASA Technical Reports Server (NTRS)

    Lugmair, G. W.; Marti, K.

    1978-01-01

    The Sm-Nd evolution of Apollo 15 green glass is discussed. The ICE age (intercept with chondritic evolution) of 3.8 + or - 0.4 eons overlaps the range of reported (Ar-39)-(Ar-40) ages and implies a distinct source region for green glass, characterized by very low and unfractionated REE abundances. Evidence is presented that LINd (lunar initial Nd) is compatible with a 'chondritic'-type Nd isotopic evolution as observed in the Juvinas meteorite. This normalization is used to study the Sm-Nd system of various lunar rock types. The results obtained from a limited number of rocks clearly indicate differential Sm-Nd evolution for the lunar crust and mantle. High-Ti basalts returned by the Apollo 11 and 17 missions were derived from distinct source regions. The Nd-143 evolution in KREEP requires a source region which is clearly distinct from any mantle reservoir.

  4. Specific features of basalts from the western part of Andrew Bain Fault, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Peyve, A. A.; Skolotnev, S. G.

    2017-12-01

    This paper reports original data on the composition of volcanic rocks in the western part of the Andrew Bain Fault of the South-West Indian Ridge obtained in the 23rd voyage of R/V Akademik Nikolai Strakhov. In accordance with high La/Th and low Nb/U ratios, the basalt compositions of stations S2317, S2318, and S2330 could result from melting of the DM-type source with HIMU traces. Meanwhile, the enriched samples of station S2326 correspond to a mantle source with a considerable contribution of recycled sediments (EM). Sample S2326/35, which is composed of a melt almost completely depleted in EM material, corresponds to the volcanic rocks of the Marion and Prince Edward islands. The obtained and available data on the SWIR segment from Bouvet Island to Andrew Bain Fault are indicative of small mantle heterogeneities in this region. Two possible variants of their origin are considered: either preservation of the enriched material fragments in the depleted mantle during the split of Gondwana or "contamination" of the mantle with plume material with the formation of vein irregularities before opening of the ocean in this region. In the latter case, the plume material could cover a huge area not constrained by the young plume magmatism regions on Bouvet, Marion, and Prince Edward islands.

  5. The influence of a subduction component on magmatism in the Okinawa Trough: Evidence from thorium and related trace element ratios

    NASA Astrophysics Data System (ADS)

    Guo, Kun; Zeng, Zhi-Gang; Chen, Shuai; Zhang, Yu-Xiang; Qi, Hai-Yan; Ma, Yao

    2017-09-01

    The Okinawa Trough (OT) is a back-arc, initial continental marginal sea basin located behind the Ryukyu Arc-Trench System. Formation and evolution of the OT have been intimately related to subduction of the Philippine Sea Plate (PSP) since the late Miocene; thus, the magma source of the trough has been affected by subduction components, as in the case of other active back-arc basins, including the Lau Basin (LB) and Mariana Trough (MT). We review all the available geochemical data relating to basaltic lavas from the OT and the middle Ryukyu Arc (RA) in this paper in order to determine the influence of the subduction components on the formation of arc and back-arc magmas within this subduction system. The results of this study reveal that the abundances of Th in OT basalts (OTBs) are higher than that in LB (LBBs) and MT basalts (MTBs) due to the mixing of subducted sediments and EMI-like enriched materials. The geochemical characteristics of Th and other trace element ratios indicate that the OTB originated from a more enriched mantle source (compared to N-mid-ocean ridge basalt, N-MORB) and was augmented by subducted sediments. Data show that the magma sources of the south OT (SOT) and middle Ryukyu Arc (MRA) basalts were principally influenced by subducted aqueous fluids and bulk sediments, which were potentially added into magma sources by accretion and underplating. At the same time, the magma sources of the middle OT (MOT) and Kobi-syo and Sekibi-Syo (KBS+SBS) basalts were impacted by subducted aqueous fluids from both altered oceanic crust (AOC) and sediment. The variable geochemical characteristics of these basalts are due to different Wadati-Benioff depths and tectonic environments of formation, while the addition of subducted bulk sediment to SOT and MRA basalts may be due to accretion and underplating, and subsequent to form mélange formation, which would occur partial melting after aqueous fluids are added. The addition of AOC and sediment aqueous fluid to MOT and KBS+SBS basalts is therefore the result of cold subducted slab dehydration combined with a rapid subduction rate (82 mm/a), leading to the migration of fluids into the mantle wedge. The presence of these attributes is likely because the OT was a back-arc, initial continental marginal sea basin.

  6. Kaersutite-bearing xenoliths and megacrysts in volcanic rocks from the Funk Seamount in the souhtwest Indian Ocean

    NASA Technical Reports Server (NTRS)

    Reid, Arch M.; Le Roex, Anton P.

    1988-01-01

    The petrography, mineral chemistry, and whole-rock compositions of volcanic rocks dredged from the Funk Seamount, located 60 km NW of Marion Island in the southwestern Indian Ocean, are presented together with the mineral chemistry of their inclusions. On the basis of these characteristics, the possible relationships between the Funk Seamount's volcanic rocks and the megacrysts and xenoliths in these rocks are discussed. It is argued that the Funk Seamount lavas derive from a similar mantle source region as that of the Marion Island and Prince Edward Island hotspot lavas. The geochemical signature of these lavas implies derivation from a source that is enriched (e.g., in Ti, K, P, and Nb) over the depleted mantle source regions for the adjacent mid-ocean ridge basalts.

  7. Devonian volcanic rocks of the southern Chinese Altai, NW China: Petrogenesis and implication for a propagating slab-window magmatism induced by ridge subduction during accretionary orogenesis

    NASA Astrophysics Data System (ADS)

    Ma, Xiaomei; Cai, Keda; Zhao, Taiping; Bao, Zihe; Wang, Xiangsong; Chen, Ming; Buslov, M. M.

    2018-07-01

    Ridge-trench interaction is a common tectonic process of the present-day Pacific Rim accretionary orogenic belts, and this process may facilitate "slab-window" magmatism that can produce significant thermal anomalies and geochemically unusual magmatic events. However, ridge-trench interaction has rarely been well-documented in the ancient geologic record, leading to grossly underestimation of this process in tectonic syntheses of plate margins. The Chinese Altai was inferred to have undergone ridge subduction in the Devonian and a slab-window model is proposed to interpret its high-temperature metamorphism and geochemically unique magmatic rocks, which can serve as an excellent and unique place to refine the tectonic evolution associated with ridge subduction in an ancient accretionary orogeny. For this purpose, we carried out geochemical and geochronological studies on Devonian basaltic rocks in this region. Secondary ion mass spectrometry (SIMS) zircon U-Pb dating results yield an age of 376.2 ± 2.4 Ma, suggesting an eruption at the time of Late Devonian. Geochemically, the samples in this study have variable SiO2 (43.3-58.3 wt%), low K2O (0.02-0.07 wt%) and total alkaline contents (2.16-5.41 wt%), as well as Fe2O3T/MgO ratios, showing typical tholeiitic affinity. On the other hand, the basaltic rocks display MORB-like REE patterns ((La/Yb)N = 0.90-2.57) and (Ga/Yb)N = 0.97-1.28), and have moderate positive εNd(t) values (+4.4 to +5.4), which collectively suggest a derivation from a mixing source comprising MORB-like mantle of a mature back-arc basin and subordinate arc mantle wedge. These basaltic rocks are characterized by Low La/Yb (1.26-3.69), Dy/Yb (1.51-1.77) and Sm/Yb (0.83-1.32) ratios, consistent with magmas derived from low degree (∼10%) partial melting of the spinel lherzolite source at a quite shallow mantle depth. Considering the distinctive petrogenesis of the basaltic rocks in this region, the Late Devonian basalts in the southern Chinese Altai is suggested to have witnessed the propagating process of slab-window magmatism that was induced by ridge subduction in a nascent rifting stage of a back-arc basin.

  8. How did the Lunar Magma Ocean crystallize?

    NASA Astrophysics Data System (ADS)

    Davenport, J.; Neal, C. R.

    2012-12-01

    It is generally accepted that the lunar crust and at least the uppermost (500 km) mantle was formed by crystallization of a magma ocean. How the magma ocean cooled and crystallized is still under debate. Parameters such as bulk composition, lunar magma ocean (LMO) crystallization method (fractional vs. equilibrium), depth of the LMO, and time for LMO solidification (effects of tidal heating mechanisms, insulating crustal lid, etc.) are still under debate. Neal (2001, JGR 106, 27865-27885) argues for the presence of garnet in the deep lunar mantle via compositional differences between low- and high-Ti mare basalts and volcanic glasses. Neal (2001) suggests that these compositional differences are due to the presence of garnet in the source regions of certain volcanic glass bead groups. As Neal (2001, JGR 106, 27865-27885) points out, determining if there is garnet in the lunar mantle is important in determining if the LMO was a "whole-Moon" event or if it was limited to certain areas. In the latter case, garnet would have been preserved in the lunar mantle and would have been used in the source material for some of the volcanic glasses. High-pressure experimental work concludes that with the right T-P conditions (2.5-4.5 GPa and 1675-1800° C) there could be a garnet-bearing pyroxene rich protolith at ~500 km depth. This also has significant implications for the bulk Al2O3 composition of the initial bulk Moon. If the LMO was not global, the volcanic glass beads that show evidence of garnet in their sources were formed from the deep, primitive lunar mantle, it begs the questions how was the non-LMO regions of the Moon formed and what was it's bulk composition? To try to answer these questions, it is necessary to thoroughly model the evolution of the LMO and then use that work to model the sources and formation of mare basalts, the volcanic glass beads, and other regions in question. To begin to answer these questions, we developed a scenario we have termed reverse LMO modeling. Geochemical compositions such as KREEP, ur-KREEP and FAN will be run backwards through various LMO models that have been proposed in the literature. The concentration of the initial bulk Moon, according to the concentrations of the particular type of rock being used, can be modeled by taking this from 0 percent liquid (PCL; a completely solidified Moon) to 100 PCL. Using the KREEP composition reported by Warren and Wasson (1979, Rev. of Geophysics and Space Physics 17, 73-88), Warren (1988, Proc. 18th LPSC, 233-241) and Warren (1989, LPI Tech. Report 89, 149-153), the Mg numbers (Mg#) for the bulk initial Moon were calculated yielding 0.87, 0.76, and 0.86 respectively. The major element compositions of calculated bulk Moon compositions have elevated Al2O3, FeO, and TiO2, consistent with the presence of garnet in the lunar mantle as well as generating high-Ti basalts. Using these data we can model the petrogenesis of the low- and high-Ti mare basalt and volcanic glass source regions. Furthermore, using remote sensing and the calculated source data we can compare the modeled concentrations of these rocks to where these ranges of concentrations fall on the Moon's surfaces, so that we can constrain the areas where the presence of a magma ocean on the Moon was possible.

  9. Light Stable Isotopic Compositions of Enriched Mantle Sources: Resolving the Dehydration Paradox

    NASA Astrophysics Data System (ADS)

    Dixon, J. E.; Bindeman, I. N.; Kingsley, R. H.

    2017-12-01

    An outstanding puzzle in mantle geochemistry has been the origin and evolution of Earth's volatile components. The "dehydration paradox" refers to the following conundrum. Mantle compositions for some enriched mid-ocean ridge (MORB) and ocean island (OIB) basalts basalts require involvement of a mostly dehydrated slab component to explain the trace element ratios and radiogenic isotopic compositions, but a fully hydrated slab component to explain the stable isotopic compositions. Volatile and stable isotopic data on enriched MORB show a diversity of enriched components. Pacific PREMA-type basalts (H2O/Ce = 215 ± 30, δDSMOW = -45 ± 5 ‰) are similar to those in the north Atlantic (H2O/Ce = 220 ± 30; δDSMOW = -30 to -40 ‰). Basalts with EM-type signatures have regionally variable volatile compositions. North Atlantic EM-type basalts are wetter (H2O/Ce = 330 ± 30) and have isotopically heavier hydrogen (δDSMOW = -57 ± 5 ‰) than north Atlantic MORB. South Atlantic EM-type basalts are damp (H2O/Ce = 120 ± 10) with intermediate δDSMOW (-68 ± 2 ‰), similar to dDSMOW for Pacific MORB. North EPR EM-type basalts are dry (H2O/Ce = 110 ± 20) and isotopically light (δDSMOW = -94 ± 3 ‰). Boron and lithium isotopic ratios parallel the trends observed for dDSMOW. A multi-stage metasomatic and melting model accounts for the origin of the enriched components by extending the subduction factory concept down through the mantle transition zone, with slab temperature a key variable. The dehydration paradox is resolved by decoupling of volatiles from lithophile elements, reflecting primary dehydration of the slab followed by secondary rehydration and re-equilibration by fluids derived from subcrustal hydrous phases (e.g., antigorite) in cooler, deeper parts of the slab. The "expanded subduction factory" model includes melting at several key depths, including 1) 180 to 280 km, where EM-type mantle compositions are generated above slabs with average to hot thermal profiles by addition of <1% carbonated sediment-derived supercritical fluids/melts to depleted asthenospheric or subcontinental lithospheric mantle, and 2) 410 to 660 km, where PREMA-type mantle sources are generated, above slabs with average to cool thermal profiles, by addition of <1% carbonated eclogite ± sediment-derived supercritical fluids to depleted mantle.

  10. Submarine basalt from the Revillagigedo Islands region, Mexico

    USGS Publications Warehouse

    Moore, J.G.

    1970-01-01

    Ocean-floor dredging and submarine photography in the Revillagigedo region off the west coast of Mexico reveal that the dominant exposed rock of the submarine part of the large island-forming volcanoes (Roca Partida and San Benedicto) is a uniform alkali pillow basalt; more siliceous rocks are exposed on the upper, subaerial parts of the volcanoes. Basalts dredged from smaller seamounts along the Clarion fracture zone south of the Revillagigedo Islands are tholeiitic pillow basalts. Pillows of alkali basalts are more vesicular than Hawaiian tholeiitic pillows collected from the same depths. This difference probably reflects a higher original volatile content of the alkali basalts. Manganese-iron oxide nodules common in several dredge hauls generally contain nucleii of rhyolitic pumice or basalt pillow fragments. The pumice floated to its present site from subaerial eruptions, became waterlogged and sank, and was then coated with manganese-iron oxides. The thickness of palagonite rinds on the glassy pillow fragments is proportional to the thickness of manganese-iron oxide layers, and both are a measure of the age of the nodule. Both oldest basalts (10-100 m.y.) and youngest (less than 1 m.y.) are along the Clarion fracture zone, whereas basalts from Roca Partida and San Benedicto volcanoes are of intermediate age. ?? 1970.

  11. Palagonitic Mars: A Basalt Centric View of Surface Composition and Aqueous Alteration

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Graff, T. G.; Ming, D. W.; Bell, J. F., III; Le, L.; Mertzman, S. A.; Christensen, P. R.

    2004-01-01

    Palagonitic tephra from certain areas on Mauna Kea Volcano (Hawaii) are well-established spectral and magnetic analogues of high-albedo regions on Mars. By definition, palagonite is "a yellow or orange isotropic mineraloid formed by hydration and devitrification of basaltic glass." The yellow to orange pigment is nanometer-sized ferric oxide particles (np-Ox) dispersed throughout the hydrated basaltic glass matrix. The hydration state of the np-Ox particles and the matrix is not known, but the best Martian spectral analogues contain allophane-like materials and not crystalline phyllosilicates. Martian low-albedo regions are also characterized by a palagonite-like ferric absorption edge, but, unlike the highalbedo regions, they also show evidence for absorption by ferrous iron. Thermal emission spectra (TES) obtained by the Mars Global Surveyor Thermal Emission Spectrometer suggest that basaltic (surface Type 1) and andesitic (surface Type 2) volcanic compositions preferentially occur in southern (Syrtis Major) and northern (Acidalia) hemispheres, respectively. The absence of a ferric-bearing component in the modeling of TES spectra is in apparent conflict with VNIR spectra of Martian dark regions, as discussed above. However, the andesitic spectra have also been interpreted as oxidized basalt using phyllosilicates instead of high-SiO2 glass as endmembers in the spectral deconvolution of surface Type 2 TES spectra. We show here that laboratory VNIR and TES spectra of rinds on basaltic rocks are spectral endmembers that provide a consistent explanation for both VNIR and TES data of Martian dark regions.

  12. The temporal evolution of back-arc magmas from the Auca Mahuida shield volcano (Payenia Volcanic Province, Argentina)

    NASA Astrophysics Data System (ADS)

    Pallares, Carlos; Quidelleur, Xavier; Gillot, Pierre-Yves; Kluska, Jean-Michel; Tchilinguirian, Paul; Sarda, Philippe

    2016-09-01

    In order to better constrain the temporal volcanic activity of the back-arc context in Payenia Volcanic Province (PVP, Argentina), we present new K-Ar dating, petrographic data, major and trace elements from 23 samples collected on the Auca Mahuida shield volcano. Our new data, coupled with published data, show that this volcano was built from about 1.8 to 1.0 Ma during five volcanic phases, and that Auca Mahuida magmas were extracted from, at least, two slightly different OIB-type mantle sources with a low partial melting rate. The first one, containing more garnet, was located deeper in the mantle, while the second contains more spinel and was thus shallower. The high-MgO basalts (or primitive basalts) and the low-MgO basalts (or evolved basalts), produced from the deeper and shallower lherzolite mantle sources, respectively, are found within each volcanic phase, suggesting that both magmatic reservoirs were sampled during the 1 Myr lifetime of the Auca Mahuida volcano. However, a slight increase of the proportion of low-MgO basalts, as well as of magmas sampled from the shallowest source, can be observed through time. Similar overall petrological characteristics found in the Pleistocene-Holocene basaltic rocks from Los Volcanes and Auca Mahuida volcano suggest that they originated from the same magmatic source. Consequently, it can be proposed that the thermal asthenospheric anomaly is probably still present beneath the PVP. Finally, our data further support the hypothesis that the injection of hot asthenosphere with an OIB mantle source signature, which was triggered by the steepening of the Nazca subducting plate, induced the production of a large volume of lavas within the PVP since 2 Ma.

  13. The Mineralogy of the Youngest Lunar Basalts

    NASA Astrophysics Data System (ADS)

    Staid, M. I.; Pieters, C. M.

    1999-01-01

    The last stage of lunar volcanism produced spectrally distinct basalts on the western nearside of the Moon, which remain unsampled by landing missions. The spectral properties of these late-stage basalts are examined using high-spatial-resolution Clementine images to constrain their mineralogic composition. The young high-Ti basalts in the western Procellarum and Imbrium Basins display a significantly stronger ferrous absorption than earlier mare basalts, suggesting that they may be the most Fe-rich deposits on the Moon. The distinct long-wavelength shape of this ferrous absorption is found to be similar for surface soils and materials excavated from depth. The pervasive character of this absorption feature supports the interpretation of abundant olivine within these late-stage lunar deposits. Important distinctions exist between the early-stage eastern maria and the late-stage western basalts, even though both appear to be Ti-rich. For example, the western maria are more radiogenic than eastern deposits. Telescopic spectra of the high-Ti western maria also exhibit a unique combination of a strong 1 micron feature and a relatively weak or attenuated 2-micron absorption. Pieters et al. concluded that the unusual strength and shape of the 1-micron absorption in western basalts results from an additional absorption from abundant olivine and/or Fe-bearing glass. Either mineralogy could produce the strong long wavelength 1-micron band, but a glassy Fe-rich surface could only form by rapid cooling along the exterior surfaces of flows. Clementine UV-VIS data of late-stage basalts are examined for regions in Oceanus Procellarum and Mare Imbrium. The spectral properties of western regions are compared to the sampled Apollo 11 basalts in Mare Tranquillitatis, which contain similar albedos and UV-VIS spectral properties. For reference, the western basalts are also compared to the low-Ti and Fe-rich basalts in Mare Serenitatis (mISP). Serenitatis basalts have the strongest mafic absorption of any eastern nearside maria in Clementine imagery. Unlike previous Earth-based and Galileo imagery, Clementine data resolve the spectral properties of immature crater deposits small enough to sample individual volcanic flows. A strategy has been developed to reevaluate lunar basalt types using Clementine imagery of such fresh mare craters and their associated soils. To allow direct comparisons between regions, scatter plots of useful spectral parameters were constructed by sampling a fixed number of evenly spaced pixels from each mare region. Scatter plots comparing the mare study areas are shown. Since mature soils dominate the surfaces exposed, the density distribution of each data cloud has been presented after a root stretch to enhance the visibility of the less-abundant immature materials. Five-color spectra were also collected for all fresh craters within each mare region and grouped according to size. The UV-VIS ratio has been used extensively to estimate Ti in mature soils and plots of this parameter against 0.75-micron reflectance are included for each mare region. The UV-VIS ratio coupled with the 0.75-micron parameter has been applied more recently to estimate Ti content across many lunar materials. High-Ti basalts plot in the upper left portion because of their low-albedo and high-UV-VIS ratio values. Clementine UV-VIS ratio values for the Procellarum HDSA unit are similar to, but slightly lower than, HDWA Apollo 11 basalts. These values are consistent with previous evaluations of the western high Ti basalts using telescopic and Apollo gamma-ray data, which suggest only a minor difference in TiO, contents between these mare deposits. The Imbrium hDSA and Serenitatis mISP basalts are seen to be progressively less dark and blue, consistent with the previously noted decreasing amount of weight percent TiO2. The scatter plot captures the micron absorption strength and albedo of large areas for each study region over a range of optical maturities. This scatter plot allows trends related to maturity to be evaluated. Materials whose soil surfaces have not achieved optical maturity are slightly brighter and display a stronger ferrous band. For each basalt type, the result is a roughly parallel range of values for these spectral parameters forming a distinct "weathering cloud" of data. The western HDSA and hDSA basalts, show a much stronger mafic ratio than the Tranquillitatis basalts for both mature soils and immature crater materials. Despite a higher abundance of opaques (which should subdue absorption features) the western HDSA and hDSA mare units also exhibit a stronger mafic ratio than the Fe-rich Serenitatis basalts. These combined properties indicate an exceptionally high abundance of mafic minerals and suggest that the Eratosthenian deposits within Procellarum may be the most Fe-rich basalts extruded on the surface of the Moon. It is difficult to estimate the FeO content of these young basalts since returned samples demonstrate that all lunar soils contain a fraction of foreign materials and mare soils have a lower weight percent FeO than their associated basalts. We are in the process of considering such sample information and mixing issues in order to estimate the actual FeO abundances of the mafic-rich western basalts. Regions that represent the most immature materials within each mare area were selected by identifying pixels that correspond to the lower-right limit of each mare unit's 1 micron vs. 0.75 micron scatter plot cloud. These spectra, shown, allow comparisons of the strong ferrous absorption for the most crystalline materials within each basalt type. The shape of the 1 micron feature is much flatter and centered at a longer wavelength in the spectra of the western Procellarum basalts compared to the eastern Serenitatis and Tranquillitatis basalts. Additional information contained in original.

  14. Bounce Rock - A shergottite-like basalt encountered at Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Zipfel, Jutta; Schräder, Christian; Jolliff, Bradley L.; Gellert, Ralf; Herkenhoff, Kenneth E.; Rieder, Rudolf; Anderson, Robert; Bell, James F., III; Brückner, Johannes; Crisp, Joy A.; Christensen, Philip R.; Clark, Benton C.; de Souza, Paulo A., Jr.; Dreibus, Gerlind; D'Uston, Claude; Economou, Thanasis; Gorevan, Steven P.; Hahn, Brian C.; Klingelhäfer, Göstar; McCoy, Timothy J.; McSween, Harry Y., Jr.; Ming, Douglas W.; Morris, Richard V.; Rodionov, Daniel S.; Squyres, Steven W.; Wńnke, Heinrich; Wright, Shawn P.; Wyatt, Michael B.; Yen, Albert S.

    2011-01-01

    Abstract- The Opportunity rover of the Mars Exploration Rover mission encountered an isolated rock fragment with textural, mineralogical, and chemical properties similar to basaltic shergottites. This finding was confirmed by all rover instruments, and a comprehensive study of these results is reported here. Spectra from the miniature thermal emission spectrometer and the Panoramic Camera reveal a pyroxene-rich mineralogy, which is also evident in Mössbauer spectra and in normative mineralogy derived from bulk chemistry measured by the alpha particle X-ray spectrometer. The correspondence of Bounce Rock’s chemical composition with the composition of certain basaltic shergottites, especially Elephant Moraine (EET) 79001 lithology B and Queen Alexandra Range (QUE) 94201, is very close, with only Cl, Fe, and Ti exhibiting deviations. Chemical analyses further demonstrate characteristics typical of Mars such as the Fe/Mn ratio and P concentrations. Possible shock features support the idea that Bounce Rock was ejected from an impact crater, most likely in the Meridiani Planum region. Bopolu crater, 19.3 km in diameter, located 75 km to the southwest could be the source crater. To date, no other rocks of this composition have been encountered by any of the rovers on Mars. The finding of Bounce Rock by the Opportunity rover provides further direct evidence for an origin of basaltic shergottite meteorites from Mars.

  15. Hydrogeologic framework and hydrologic budget components of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    USGS Publications Warehouse

    Kahle, S.C.; Morgan, D.S.; Welch, W.B.; Ely, D.M.; Hinkle, S.R.; Vaccaro, J.J.; Orzol, L.L.

    2011-01-01

    The Columbia Plateau Regional Aquifer System (CPRAS) covers an area of about 44,000 square miles in a structural and topographic basin within the drainage of the Columbia River in Washington, Oregon, and Idaho. The primary aquifers are basalts of the Columbia River Basalt Group (CRBG) and overlying sediment. Eighty percent of the groundwater use in the study area is for irrigation, in support of a $6 billion per year agricultural economy. Water-resources issues in the Columbia Plateau include competing agricultural, domestic, and environmental demands. Groundwater levels were measured in 470 wells in 1984 and 2009; water levels declined in 83 percent of the wells, and declines greater than 25 feet were measured in 29 percent of the wells. Conceptually, the system is a series of productive basalt aquifers consisting of permeable interflow zones separated by less permeable flow interiors; in places, sedimentary aquifers overly the basalts. The aquifer system of the CPRAS includes seven hydrogeologic units-the overburden aquifer, three aquifer units in the permeable basalt rock, two confining units, and a basement confining unit. The overburden aquifer includes alluvial and colluvial valley-fill deposits; the three basalt units are the Saddle Mountains, Wanapum, and Grande Ronde Basalts and their intercalated sediments. The confining units are equivalent to the Saddle Mountains-Wanapum and Wanapum-Grande Ronde interbeds, referred to in this study as the Mabton and Vantage Interbeds, respectively. The basement confining unit, referred to as Older Bedrock, consists of pre-CRBG rocks that generally have much lower permeabilities than the basalts and are considered the base of the regional flow system. Based on specific-capacity data, median horizontal hydraulic conductivity (Kh) values for the overburden, basalt units, and bedrock are 161, 70, and 6 feet per day, respectively. Analysis of oxygen isotopes in water and carbon isotopes in dissolved inorganic carbon from groundwater samples indicates that groundwater in the CPRAS ranges in age from modern (10,000 years). The oldest groundwater resides in deep, downgradient locations indicating that groundwater movement and replenishment in parts of this regional aquifer system have operated on long timescales under past natural conditions, which is consistent with the length and depth of long flow paths in the system. The mean annual recharge from infiltration of precipitation for the 23-year period 1985-2007 was estimated to be 4.6 inches per year (14,980 cubic feet per second) using a polynomial regression equation based on annual precipitation and the results of recharge modeling done in the 1980s. A regional-scale hydrologic budget was developed using a monthly SOil WATer (SOWAT) Balance model to estimate irrigation-water demand, groundwater flux (recharge or discharge), direct runoff, and soil moisture within irrigated areas. Mean monthly irrigation throughout the study area peaks in July at 1.6 million acre-feet (MAF), of which 0.45 and 1.15 MAF are from groundwater and surface-water sources, respectively. Annual irrigation water use in the study area averaged 5.3 MAF during the period 1985-2007, with 1.4 MAF (or 26 percent) supplied from groundwater and 3.9 MAF supplied from surface water. Mean annual recharge from irrigation return flow in the study area was 4.2 MAF (1985-2007) with 2.1 MAF (50 percent) occurring within the predominately surface-water irrigated regions of the study area. Annual groundwater-use estimates were made for public supply, self-supplied domestic, industrial, and other uses for the period 1984 through 2009. Public supply groundwater use within the study area increased from 200,600 acre-feet per year (acre-ft/yr) in 1984 to 269,100 acre-ft/yr in 2009. Domestic self-supplied groundwater use increased from 54,580 acre-ft/yr in 1984 to 71,160 acre-ft/yr in 2009. Industrial groundwater use decreased from 53,390 acre-ft/yr in 1984 t

  16. An olivine-free mantle lithology as a source for mantle-derived magmas: the role of metasomes in the Ethiopian-Arabian large igneous province.

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.; Nelson, W. R.; Ayalew, D.; Yirgu, G.; Herzberg, C. T.; Hanan, B. B.

    2014-12-01

    Peridotite constitutes most of the Earth's upper mantle, and it is therefore unsurprising that most mantle-derived magmas exhibit evidence of past equilibrium with olivine-dominated source. There is mounting evidence, however, for the role of pyroxenite in magma generation within upwelling mantle plumes; a less documented non-peridotite source of melts are metasomatic veins (metasomes) within the lithospheric mantle. Melts derived from metasomes may exhibit extreme enrichment or depletion in major and trace elements. We hypothesize that phenocrysts such as olivine, which are commonly used to probe basalt source lithology, will reflect these unusual geochemical signals. Here we present preliminary major and trace element analyses of 60 lavas erupted from a small Miocene shield volcano located within the Ethiopian flood basalt province. Erupted lavas are intercalated with lahars and pyroclastic horizons that are overlain by a later stage of activity manifested in small cinder cones and flows. The lavas form two distinctive petrographic and geochemical groups: (A) an olivine-phyric, low Ti group (1.7-2.7 wt. % TiO2; 4.0-13.6 wt. % MgO), which geochemically resembles most of the basalts in the region. These low Ti lavas are the only geochemical unit identified in the later cinder cones and associated lava flows. (B) a clinopyroxene-phyric high Ti group (1-6.7 wt. % TiO2; 1.0-9.5 wt. % MgO), which resembles the Oligocene HT-2 flood basalts. This unit is found intercalated with low Ti lavas within the Miocene shield. In comparison to the low Ti group, the high Ti lavas exhibit a profound depletion in Ni, Cr, Al, and Si, and significant enrichment in Ca, Fe, V, and the most incompatible trace elements. When combined with a diagnostic negative K anomaly in primitive-mantle normalized diagrams and Na2O>K2O, the geochemical data point towards a source which is rich in amphibole, devoid of olivine, and perhaps containing some carbonate. Our preliminary results have identified a large suite of primitive lavas derived from a nominally olivine-free mantle source. Consequently, our future work will examine olivine geochemical characteristics and constrain the compositional space for these unusual mantle lithologies.

  17. Nitrogen enrichment regulates calcium sources in forests

    USGS Publications Warehouse

    Hynicka, Justin D.; Pett-Ridge, Julie C.; Perakis, Steven

    2016-01-01

    Nitrogen (N) is a key nutrient that shapes cycles of other essential elements in forests, including calcium (Ca). When N availability exceeds ecosystem demands, excess N can stimulate Ca leaching and deplete Ca from soils. Over the long term, these processes may alter the proportion of available Ca that is derived from atmospheric deposition vs. bedrock weathering, which has fundamental consequences for ecosystem properties and nutrient supply. We evaluated how landscape variation in soil N, reflecting long-term legacies of biological N fixation, influenced plant and soil Ca availability and ecosystem Ca sources across 22 temperate forests in Oregon. We also examined interactions between soil N and bedrock Ca using soil N gradients on contrasting basaltic vs. sedimentary bedrock that differed 17-fold in underlying Ca content. We found that low-N forests on Ca-rich basaltic bedrock relied strongly on Ca from weathering, but that soil N enrichment depleted readily weatherable mineral Ca and shifted forest reliance toward atmospheric Ca. Forests on Ca-poor sedimentary bedrock relied more consistently on atmospheric Ca across all levels of soil N enrichment. The broad importance of atmospheric Ca was unexpected given active regional uplift and erosion that are thought to rejuvenate weathering supply of soil minerals. Despite different Ca sources to forests on basaltic vs. sedimentary bedrock, we observed consistent declines in plant and soil Ca availability with increasing N, regardless of the Ca content of underlying bedrock. Thus, traditional measures of Ca availability in foliage and soil exchangeable pools may poorly reflect long-term Ca sources that sustain soil fertility. We conclude that long-term soil N enrichment can deplete available Ca and cause forests to rely increasingly on Ca from atmospheric deposition, which may limit ecosystem Ca supply in an increasingly N-rich world.

  18. Copahue volcano and its regional magmatic setting

    USGS Publications Warehouse

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin

    2016-01-01

    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  19. Digital-simulation and projection of water-level declines in basalt aquifers of the Odessa-Lind area, east-central Washington

    USGS Publications Warehouse

    Luzier, J.E.; Skrivan, James A.

    1975-01-01

    A digital computer program using finite-difference techniques simulates an intensively pumped, multilayered basalt-aquifer system near Odessa. The aquifers now developed are in the upper 1,000 feet of a regionally extensive series of southwesterly dipping basalt flows of the Columbia River Group. Most of the aquifers are confined. Those in the depth range of about 500 to 1,000 feet are the chief source of ground water pumped from irrigation wells. Transmissivity of these aquifers ranges from less than 2,700 feet squared per day to more than 40,000 feet squared per day, and storage coefficients range from 0.0015 to 0.006. Shallower aquifers are generally much less permeable, but they are a source of recharge to deeper aquifers with lower artesian heads; vertical leakage occurs along joints in the basalt and down uncased wells, which short circuit the aquifer system. For model analysis, the deeper, pumped aquifers were grouped and treated as a single layer with drawdown-dependent leakage from an overlying confining layer. Verification of the model was achieved primarily by closely matching observed pumpage-related head declines ranging from about 10 feet to more than 40 feet over the 4-year period from March 1967 to March 1971. Projected average annual rates of decline in the Odessa-Lind area during the 14-year period from March 1967 to March 1981 are: from 1 to 9 feet per year if pumpage is maintained at the 1970 rate of 117,000 acre-feet per year; or, from 3 to 33 feet per year if 1970 pumpage is increased to 233,000 acre-feet per year, which includes 116,000 acre-feet per year covered by water-right applications held in abeyance. In each case, projected drawdown on the northeast side of a major ground-water barrier is about double that on the southwest side because of differences in transmissivity and storage coefficient and in sources of recharge.

  20. Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions

    NASA Astrophysics Data System (ADS)

    Rosenthal, A.; Hauri, E. H.; Hirschmann, M. M.

    2015-02-01

    To determine partitioning of C between upper mantle silicate minerals and basaltic melts, we executed 26 experiments between 0.8 and 3 GPa and 1250-1500 °C which yielded 37 mineral/glass pairs suitable for C analysis by secondary ion mass spectrometry (SIMS). To enhance detection limits, experiments were conducted with 13C-enriched bulk compositions. Independent measurements of 13C and 12C in coexisting phases produced two C partition coefficients for each mineral pair and allowed assessment of the approach to equilibrium during each experiment. Concentrations of C in olivine (ol), orthopyroxene (opx), clinopyroxene (cpx) and garnet (gt) range from 0.2 to 3.5 ppm, and resulting C partition coefficients for ol/melt, opx/melt, cpx/melt and gt/melt are, respectively, 0.0007 ± 0.0004 (n = 2), 0.0003 ± 0.0002 (n = 45), 0.0005 ± 0.0004 (n = 17) and 0.0001 ± 0.00007 (n = 5). The effective partition coefficient of C during partial melting of peridotite is 0.00055 ± 0.00025, and therefore C is significantly more incompatible than Nb, slightly more compatible than Ba, and, among refractory trace elements, most similar in behavior to U or Th. Experiments also yielded partition coefficients for F and H between minerals and melts. Combining new and previous values of DFmineral/melt yields bulk DFperidotite/melt = 0.011 ± 0.002, which suggests that F behaves similarly to La during partial melting of peridotite. Values of DHpyx/melt correlate with tetrahedral Al along a trend consistent with previously published determinations. Small-degree partial melting of the mantle results in considerable CO2/Nb fractionation, which is likely the cause of high CO2/Nb evident in some Nb-rich oceanic basalts. CO2/Ba is much less easily fractionated, with incompatible-element-enriched partial melts having lower CO2/Ba than less enriched basalts. Comparison of calculated behavior of CO2, Nb, and Ba to systematics of oceanic basalts suggests that depleted (DMM-like) sources have 75 ± 25 ppm CO2 (CO2/Nb = 505 ± 168, CO2/Ba = 133 ± 44), whereas enriched sources of intraplate basalts similar in concentrations to primitive mantle have 600 ± 200 ppm CO2. If all mantle reservoirs are expressed in the current inventory of oceanic basalts for which nearly undegassed CO2 concentrations are available, then we estimate the likely range of mantle C concentrations to be 1.4-4.8 × 1023 grams of C, or 1.5-5.2 times the mass of the current C surface reservoir. Depending on the assumed Ba and Nb contents of average oceanic crust, resulting ridge fluxes of C range from 7.2 × 1013 to 2.9 × 1014 g/yr.

  1. North America's Midcontinent Rift: when Rift MET Lip

    NASA Astrophysics Data System (ADS)

    Stein, C. A.; Stein, S. A.; Kley, J.; Keller, G. R., Jr.; Bollmann, T. A.; Wolin, E.; Zhang, H.; Frederiksen, A. W.; Ola, K.; Wysession, M. E.; Wiens, D.; Alequabi, G.; Waite, G. P.; Blavascunas, E.; Engelmann, C. A.; Flesch, L. M.; Rooney, T. O.; Moucha, R.; Brown, E.

    2015-12-01

    Rifts are segmented linear depressions, filled with sedimentary and igneous rocks, that form by extension and often evolve into plate boundaries. Flood basalts, a class of Large Igneous Provinces (LIPs), are broad regions of extensive volcanism due to sublithospheric processes. Typical rifts are not filled with flood basalts, and typical flood basalts are not associated with significant crustal extension and faulting. North America's Midcontinent Rift (MCR) is an unusual combination. Its 3000-km length formed as part of the 1.1 Ga rifting of Amazonia (Precambrian NE South America) from Laurentia (Precambrian North America) and became inactive once seafloor spreading was established, but contains an enormous volume of igneous rocks. MCR volcanics are significantly thicker than other flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift geometry but a LIP's magma volume. Structural modeling of seismic reflection data shows an initial rift phase where flood basalts filled a fault-controlled extending basin, and a postrift phase where volcanics and sediments were deposited in a thermally subsiding basin without associated faulting. The crust thinned during rifting and rethickened during the postrift phase and later compression, yielding the present thicker crust. The coincidence of a rift and LIP yielded the world's largest deposit of native copper. This combination arose when a new rift associated with continental breakup interacted with a mantle plume or anomalously hot or fertile upper mantle. Integration of diverse data types and models will give insight into questions including how the magma source was related to the rifting, how their interaction operated over a long period of rapid plate motion, why the lithospheric mantle below the MCR differs only slightly from its surroundings, how and why extension, volcanism, and compression varied along the rift arms, and how successful seafloor spreading ended the rift phase. Papers, talks, and educational material are available at http://www.earth.northwestern.edu/people/seth/research/mcr.html

  2. Pliocene-Quaternary basalts from the Harrat Tufail, western Saudi Arabia: Recycling of ancient oceanic slabs and generation of alkaline intra-plate magma

    NASA Astrophysics Data System (ADS)

    Bakhsh, Rami A.

    2015-12-01

    Harrat Tufail represents a Caenozoic basalt suite at the western margin of the Arabian plate. This rift-related suite includes voluminous Quaternary non-vesicular basalt (with fragments of earlier Pliocene vesicular flow) that forms a cap sheet over Miocene rhyolite and minor vesicular basalt. The contact between rhyolite and the basaltic cap is erosional with remarkable denudations indicating long time gap between the felsic and mafic eruptions. The geochemical data prove alkaline, sodic and low-Ti nature of the olivine basalt cap sheet. The combined whole-rock and mineral spot analyses by the electron microprobe (EMPA) suggest magma generation from low degree of partial melting (∼5%) from spinel- and garnet-lherzolite mantle source. Derivation from a mantle source is supported by low Na content in clinopyroxene (ferroan diopside) whereas high Mg content in ilmenite is an evidence of fractional crystallization trajectory. Accordingly, the Pliocene basaltic cap of Harrat Tufail is a product of mantle melt that originates by recycling in the asthenosphere during subduction of ancient oceanic slab(s). The whole-rock chemistry suggests an ancient ocean island basaltic slab (OIB) whereas the EMPA of Al-rich spinel inclusions in olivine phenocrysts are in favour of a mid-ocean ridge basaltic source (MORB). Calculations of oxygen fugacity based on the composition of co-existing Fe-Ti oxide suggest fluctuation from highly to moderately oxidizing conditions with propagation of crystallization (log10 fO2 from -22.09 to -12.50). Clinopyroxene composition and pressure calculation indicates low-pressure (0.4-2 kbar). Cores of olivine phenocrysts formed at highest temperature (1086-1151 °C) whereas the rims and olivine micro-phenocrysts formed at 712-9-796 °C which is contemporaneous to formation of clinopyroxene at 611-782 °C. Fe-Ti oxides crystallized over a long range (652-992 °C) where it started to form at outer peripheries of olivine phenocrysts and as interstitial phase with clinopyroxene.

  3. Melting the lithosphere: Metasomes as a source for mantle-derived magmas

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.; Nelson, Wendy R.; Ayalew, Dereje; Hanan, Barry; Yirgu, Gezahegn; Kappelman, John

    2017-03-01

    Peridotite constitutes most of the Earth's upper mantle, and it is therefore unsurprising that most mantle-derived magmas exhibit evidence of past equilibrium with an olivine-dominated source. Although there is mounting evidence for the role of pyroxenite in magma generation within upwelling mantle plumes, a less documented non-peridotite source of melts are metasomatic veins (metasomes) within the lithospheric mantle. Here we present major and trace element analyses of 66 lavas erupted from a small Miocene shield volcano located within the Ethiopian flood basalt province. Erupted lavas are intercalated with lahars and pyroclastic horizons that are overlain by a later stage of activity manifested in small cinder cones and flows. The lavas form two distinctive petrographic and geochemical groups: (A) an olivine-phyric, low Ti group (1.7-2.7 wt.% TiO2; 4.0-13.6 wt.% MgO), which geochemically resembles most of the basalts in the region. These low Ti lavas are the only geochemical units identified in the later cinder cones and associated lava flows; (B) a clinopyroxene-phyric high Ti group (3.1-6.5 wt.% TiO2; 2.8-9.2 wt.% MgO), which resembles the Oligocene HT-2 flood basalts. This unit is found intercalated with low Ti lavas within the Miocene shield. In comparison to the low Ti group, the high Ti lavas exhibit a profound depletion in Ni, Cr, Al, and Si, and significant enrichment in Ca, Fe, V, and the most incompatible trace elements. A characteristic negative K anomaly in primitive-mantle normalized diagrams, and Na2O > K2O, suggests a source rich in amphibole, devoid of olivine, and perhaps containing some carbonate and magnetite. While melt generation during rift development in Ethiopia is strongly correlated with the thermo-chemical anomalies associated with the African Superplume, thermobaric destabilization and melting of mantle metasomes may also contribute to lithospheric thinning. In regions impacted by mantle plumes, such melts may be critical to weakening of the continental lithosphere and the development of rifts.

  4. The implications of basalt in the formation and evolution of mountains on Venus

    NASA Astrophysics Data System (ADS)

    Jull, Matthew G.; Arkani-Hamed, Jafar

    1995-06-01

    The highland region of Ishtar Terra on Venus has mountains that reach up to 11 km in height and are thought to be basaltic in composition. Assuming that dynamic uplift of crust to this height is unlikely, we examine the topography produced by an isostatically supported thickening basaltic crust. It is found that regardless of whether the crust thickens by crustal shortening or by volcanic construction, the high-density basalt-eclogite phase transition is the limiting factor for producing significant elevation of the mountains. The maximum height attained by basaltic mountains depends on the nature of the basalt-eclogite phase transition. Without a phase transition, a basaltic crust must thicken to greater than 100 km to reach heights over 10 km. An instantaneous phase transition of basalt to eclogite allows a maximum topographic height of less than about 2 km. However, with a time lag of 100 Ma owing to slow rates of solid-state diffusion, our calculations show that the mountains can reach elevations greater than 10 km only if they are less than 25 Ma old. Higher temperatures within the Venusian crust may decrease the extent of the stability fields of high-density basalt phases and allow high topography if the thickening crust melts. This can occur if the radioactive element concentrations measured on the surface of Venus are uniformly distributed throughout the crust, the crust thickens to greater than 65 km, and the thickened crust is older than about 400 Ma. The conflicting results of a young age predicted for high basaltic mountains and an almost uniform surface age of 500 Ma from crater populations, coupled with similarities in bulk physical properties of Venus and Earth, suggest that the basaltic surface composition found at several landing sites on the planet may not be representative of the entire crust. We suggest that Ishtar Terra formed from the collision of continent-like highly silicic cratons over a region of mantle downwelling. Lakshmi Planum resulted from the thickening of a basaltic crust and the peripheral mountain belts formed from the collision of granitic cratons that were pulled toward a downwelling region of mantle.

  5. Earth's first stable continents did not form by subduction

    NASA Astrophysics Data System (ADS)

    Johnson, Tim; Brown, Michael; Gardiner, Nicholas; Kirkland, Christopher; Smithies, Hugh

    2017-04-01

    The geodynamic setting in which Earth's first stable cratonic nuclei formed remains controversial. Most exposed Archaean continental crust comprises rocks of the tonalite-trondhjemite-granodiorite (TTGs) series that were produced from partial melting of low magnesium basaltic source rocks and have 'arc-like' trace element signatures that resemble continental crust produced in modern supra-subduction zone settings. The East Pilbara Terrane, Western Australia, is amongst the oldest fragments of preserved continental crust of Earth. Low magnesium basalts of the Paleoarchaean Coucal Formation, at the base of the Pilbara Supergroup, have trace element compositions consistent with the putative source rocks for TTGs. These basalts may be remnants of the ≥35 km-thick pre-3.5 Ga plateau-like basaltic crust that is predicted to have formed if mantle temperatures were much hotter than today. Using phase equilibria modelling of an average uncontaminated Coucal basalt, we confirm their suitability as TTG source rocks. The results suggest that TTGs formed by 20-30% melting along high geothermal gradients (≥700 °C/GPa), which accord with apparent geotherms recorded by >95% of Archaean rocks worldwide. Moreover, the trace element composition of the Coucal basalts demonstrates that they were derived from an earlier generation of mafic/ultramafic rocks, and that the arc-like signature in Archaean TTGs was inherited through an ancestral source lineage. The protracted multistage process required for production and stabilisation of Earth's first continents, coupled with the high geothermal gradients, are incompatible with modern-style subduction and favour a stagnant lid regime in the early Archaean.

  6. Back-arc basin development: Constraints on geochronology and geochemistry of arc-like and OIB-like basalts in the Central Qilian block (Northwest China)

    NASA Astrophysics Data System (ADS)

    Gao, Zhong; Zhang, Hong-Fei; Yang, He; Pan, Fa-Bin; Luo, Bi-Ji; Guo, Liang; Xu, Wang-Chun; Tao, Lu; Zhang, Li-Qi; Wu, Jing

    2018-06-01

    The Lajishan belt of the Central Qilian block was a back-arc basin during Early Paleozoic. The basaltic magmatism and temporal evolution in this basin provide an opportunity to study the development of back-arc basin in an active continental margin. In this study, we carry out an integrated study of geochronological, geochemical and Sr-Nd isotopic compositions for the Early Paleozoic arc-like and OIB-like basalts. The Lajishan arc-like basalts are enriched in large ion lithophile element (LILE) and show negative Nb and Ta anomalies whereas the OIB-like basalts have high LILE abundances and show positive Nb and Ta anomalies. The arc-like basalts have initial 87Sr/86Sr values of 0.7050-0.7054 and εNd(t) values of +0.51-+2.63, and the OIB-like basalts have initial 87Sr/86Sr values of 0.7049-0.7050 and εNd(t) values of +0.66-+1.57. The geochemical and Sr-Nd isotopic compositions suggest that the arc-like basalts are derived from partial melting of a depleted mantle source metasomatized by slab-derived components at shallow depth levels, and the OIB-like basalts also originated from a metasomatized mantle wedge source. U-Pb zircon dating yielded the ages of 494 ± 4 Ma for the arc-like basalts and 468 ± 6 Ma for the OIB-like basalts. We argue that the arc-like basalts are products of back-arc extension before the back-arc rifting initiated in earlier stage, resulting from the northward subduction of the Qaidam-West Qinling oceanic slab, while the OIB-like basalts represent products of further back-arc spreading in response to rollback of the Qaidam-West Qinling oceanic lithospheric slab. The association of arc-like and OIB-like basalts in the Lajishan belt records the development of back-arc basin from initial rifting to subsequent spreading, offering insight into how basaltic magmatism generates in the formation of back-arc basin in subduction zone setting.

  7. In-situ arc crustal section formed at the initial stage of oceanic island arc -Diving survey in the Izu-Bonin forearc-

    NASA Astrophysics Data System (ADS)

    Ishizuka, O.; Yuasa, M.; Tani, K.; Umino, S.; Reagan, M. K.; Kanayama, K.; Harigane, Y.; Miyajima, Y.

    2009-12-01

    The Bonin Ridge is an unusually prominent forearc massif in the Izu-Bonin arc that exposes early arc volcanic rocks on Bonin Islands. Submarine parts of the ridge, which could complement the record of volcanism preserved on the islands, had not been extensively investigated. In 2007, dredge sampling in the Izu-Bonin forearc brought us ample evidence of exposure of arc crustal section formed at initial stage of this arc along the landward slope of Izu-Ogasawara trench. Based on this discovery, we conducted Shinkai 6500 submersible survey in May, 2009. This expedition enabled us to obtain general understanding of the crustal section that formed when this oceanic arc began. We investigated 3 areas of the Bonin Ridge. Near 28o25’N, 4 dives were used to look at the lower to upper crustal section. The deepest dive observed both gabbro and basalt/dolerite, and appears to have passed over the boundary between the two. Lower slope is composed of fractured gabbro, whereas pillow lava was observed in the uppermost part of this dive track. Two dives surveyed up-slope of the previous dive found outcrop of numerous doleritic basalt dykes and fractured basaltic lava cut by dykes between water depth of 6000 and 5500m. The shallowest dive recovered volcanic breccia and conglomerate with boninitic and basaltic clasts. Combined with results from other dives and dredging, the members of forearc crustal section are from bottom to top: 1) gabbroic rocks, 2) a sheeted dyke complex, 3) basaltic lava flows, 4) volcanic breccia and conglomerate with boninitic and basaltic clasts, 5) boninite and tholeiitic andesite lava flows and dykes (on the Bonin Islands). In addition to this crustal section, dredge sampling and ROV Kaiko dives recovered mantle peridotite below the gabbro. These observations indicate that almost all of the forearc crust down to Moho has been preserved. Preliminary data indicate that basaltic rocks made of sheeted dykes and lava flows and lower gabbros are generally comagmatic. These basalts show chemical characteristics similar to MORB (i.e., with no slab signature). These basalts have lower Ti, LREE, LREE/HREE, Nb/Zr and Zr/Y than Philippine Sea MORB, but with comparable or slightly lower 143Nd/144Nd. Even though the likely source of these MORB-like basalts can be linked to an Indian Ocean-type mantle, the source for these basalt could be more depleted due to previous event of melt extraction. These basalts also have distinctly higher 87Sr/86Sr and 206Pb/204Pb than Philippine Sea MORB, which may imply the presence of lithospheric mantle with ancient enrichment. Age determination of basalt and gabbro by Ar/Ar and U-Pb methods has confirmed that these rocks predate boninite and could be older than 50Ma. Chemically and petrographically they are similar to tholeiites from the Mariana forearc that predate boninitic volcanism in that region that are considered to be related to subduction (Reagan et al., in prep). This strongly implies that MORB-like tholeiitic magmatism was associated with forearc spreading along the length of the Izu-Bonin-Mariana arc.

  8. Concordant Rb-Sr and Sm-Nd Ages for NWA 1460: A 340 Ma Old Basaltic Shergottite Related to Lherzolitic Shergottites

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C-Y; Reese, Y. D.; Irving, A. J.

    2006-01-01

    Preliminary Rb-Sr and Sm-Nd ages reported by [1] for the NWA 1460 basaltic shergottite are refined to 336+/-14 Ma and 345+/-21 Ma, respectively. These concordant ages are interpreted as dating a lava flow on the Martian surface. The initial Sr and Nd isotopic compositions of NWA 1460 suggest it is an earlier melting product of a Martian mantle source region similar to those of the lherzolitic shergottites and basaltic shergottite EETA79001, lithology B. We also examine the suggestion that generally "young" ages for other Martian meteorites should be reinterpreted in light of Pb-207/Pb-206 - Pb-204/Pb-206 isotopic systematics [2]. Published U-Pb isotopic data for nakhlites are consistent with ages of approx.1.36 Ga. The UPb isotopic systematics of some Martian shergottites and lherzolites that have been suggested to be approx.4 Ga old [2] are complex. We nevertheless suggest the data are consistent with crystallization ages of approx.173 Ma when variations in the composition of in situ initial Pb as well as extraneous Pb components are considered.

  9. Re-Os systematics of komatiites and komatiitic basalts at Dundonald Beach, Ontario, Canada: Evidence for a complex alteration history and implications of a late-Archean chondritic mantle source

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Amitava; Sproule, Rebecca A.; Walker, Richard J.; Lesher, C. Michael

    2005-11-01

    Osmium isotopic compositions, and Re and Os concentrations have been examined in one komatiite unit and two komatiitic basalt units at Dundonald Beach, part of the 2.7 Ga Kidd-Munro volcanic assemblage in the Abitibi greenstone belt, Ontario, Canada. The komatiitic rocks in this locality record at least three episodes of alteration of Re-Os elemental and isotope systematics. First, an average of 40% and as much as 75% Re may have been lost due to shallow degassing during eruption and/or hydrothermal leaching during or immediately after emplacement. Second, the Re-Os isotope systematics of whole rock samples with 187Re/ 188Os ratios >1 were reset at ˜2.5 Ga, possibly due to a regional metamorphic event. Third, there is evidence for relatively recent gain and loss of Re in some rocks. Despite the open-system behavior, some aspects of the Re-Os systematics of these rocks can be deciphered. The bulk distribution coefficient for Os (D Ossolid/liquid) for the Dundonald rocks is ˜3 ± 1 and is well within the estimated D values obtained for komatiites from the nearby Alexo area and stratigraphically-equivalent komatiites from Munro Township. This suggests that Os was moderately compatible during crystal-liquid fractionation of the magmas parental to the Kidd-Munro komatiitic rocks. Whole-rock samples and chromite separates with low 187Re/ 188Os ratios (<1) yield a precise chondritic average initial 187Os/ 188Os ratio of 0.1083 ± 0.0006 (γ Os = 0.0 ± 0.6) for their well-constrained ˜2715 Ma crystallization age. The chondritic initial Os isotopic composition of the mantle source for the Dundonald rocks is consistent with that determined for komatiites in the Alexo area and in Munro Township, suggesting that the mantle source region for the Kidd-Munro volcanic assemblage had evolved with a long-term chondritic Re/Os before eruption. The chondritic initial Os isotopic composition of the Kidd-Munro komatiites is indistinguishable from that of the projected contemporaneous convective upper mantle. The uniform chondritic Os isotopic composition of the Kidd-Munro komatiites contrasts with the typical large-scale Os isotopic heterogeneity in the mantle sources for ca. 89 Ma komatiites from the Gorgona Island, arc-related rocks and present-day ocean island basalts. This suggests that the Kidd-Munro komatiites sampled a late-Archean mantle source region that was significantly more homogeneous with respect to Re/Os relative to most modern mantle-derived rocks.

  10. Assessing δ18O heterogeneity in Icelandic olivine crystals

    NASA Astrophysics Data System (ADS)

    Bar Rasmussen, M.; Halldorsson, S. A.; Martin, W.; Gibson, S. A.; Hilton, D. R.

    2017-12-01

    δ18O systematics of Icelandic basalts are notably distinct from MORB-sourced basalts. This difference has previously been attributed to interaction with low δ18O meteoric water in the crust or slight heterogeneity within the Icelandic mantle [1]. Studies addressing this issue have mostly involved batch mineral laser-fluorination analysis which cannot resolve any intra-mineral δ18O variability that might be present due to shallow-level processes, e.g. crustal contamination [2]. We present a study of olivine crystals found in basalts covering the neovolcanic rift and flank zones as well as older Tertiary crust, in which we couple in-situ δ18O-measurements with major and trace elements using SIMS, high-precision EMP and LA ICP-MS. Most samples have previously been analysed for 3He/4He which ranges from 6.7 to 47.8 RA, the largest span reported for any oceanic island [3]. Our analysed olivine grains, range in Fo# between 79.9 to 91.8 with limited intra-grain variability. Independent of Fo#, we observe a variation in δ18O(Ol) of >3 ‰ across Iceland, with most crystals plotting below the expected depleted mantle-value ( 5.1 ± 0.2‰ [4]). The lowest δ18O(Ol) of +2.77 ‰, is found in crystals with Fo# 86 from central Iceland, closest to the inferred plume head [3]. Trace element ratios for these olivine grains (e.g. Zn/Fe) strongly indicate a peridotitic mantle source, which implies a shallow (likely crustal) origin of low δ18O(Ol) for this region. In contrast, olivine crystals from the South Iceland Volcanic Zone (a region of active rift propagation and transitional to alkalic volcanism) display trace element ratios that are indicative of a greater amount of pyroxenite in their melt source region. The δ18O(Ol) of these samples vary significantly (from +3.45 to +4.98 ‰) which, together with their elevated 3He/4He values, implies entrainment of a lower δ18O mantle-source by a less-degassed mantle plume source. Further modelling will be performed to evaluate the role of crustal-level processes in generating the low δ18O values. [1] Muehlenbachs et al., (1974), GCA 38, 677-588 [2] Bindemann et al., (2008), GCA 72, 4397-4420 [3] Harðardóttir et al., (2017), in press [4] Eiler, (2001), RMG, 43, 319-364

  11. Mantle plumes & lithospheric foundering: Determining the timing and amplitude of post-Miocene uplift in the Wallowa mountains, north-east Oregon with low-temperature thermochronometry.

    NASA Astrophysics Data System (ADS)

    Schoettle-Greene, P.; Duvall, A. R.

    2016-12-01

    The foundering of gravitationally unstable lithosphere, while frequently invoked to explain anomalous topography, proves difficult to verify from an Earth surface perspective. Theoretically, direct observables like sudden uplift associated with extension and mantle-sourced volcanism should help identify affected regions but these markers are often obscured by background stresses and heterogeneous lithosphere. To better understand topographic evolution following the removal of mantle lithosphere, we present new apatite U-Th/He thermocrhonometry data and field observations from the Wallowa mountains adjacent to Hells Canyon in the northwestern United States. The granodiorite-cored Wallowa are increasingly recognized as a type locality for the process of lithospheric foundering, as they are bound by extensional structures and were presumably uplifted contemporaneous with the intrusion of feeder dikes for the mantle-sourced Columbia River Basalts at 16 Ma. Cretaceous and early Cenozoic cooling ages from our study imply that in spite of the presumed 1-2 km of basalt flows eroded from the Wallowa and heating associated with the intrusion of the Chief Joseph dike swarm, and 2 km of proposed rapid post-foundering uplift, there has been little exhumation. We attempt to reconcile these conflicting observations with field mapping of folded basalt flows at the margins of the Wallowa mountains, modeling of geothermal response times following a thermal perturbation, and further study using the 4He/3He thermochronometer on a subset of samples to reveal more recent cooling histories. Our findings will improve our understanding of the landscape evolution of the Wallowa mountains, information pertinent to the geodynamics of lithosphere removal and the eruption of Columbia River Basalts.

  12. Regulation of arsenic mobility on basaltic glass surfaces by speciation and pH.

    PubMed

    Sigfusson, Bergur; Meharg, Andrew A; Gislason, Sigurdur R

    2008-12-01

    The importance of geothermal energy as a source for electricity generation and district heating has increased over recent decades. Arsenic can be a significant constituent of the geothermal fluids pumped to the surface during power generation. Dissolved As exists in different oxidation states, mainly as As(III) and As(V), and the charge of individual species varies with pH. Basaltic glass is one of the most important rock types in many high-temperature geothermal fields. Static batch and dynamic column experiments were combined to generate and validate sorption coefficients for As(III) and As(V) in contact with basaltic glass at pH 3-10. Validation was carried out by two empirical kinetic models and a surface complexation model (SCM). The SCM provided a better fit to the experimental column data than kinetic models at high pH values. However, in certain circumstances, an adequate estimation of As transport in the column could not be attained without incorporation of kinetic reactions. The varying mobility with pH was due to the combined effects of the variable charge of the basaltic glass with the pH point of zero charge at 6.8 and the individual As species as pH shifted, respectively. The mobility of As(III) decreased with increasing pH. The opposite was true for As(V), being nearly immobile at pH 3 to being highly mobile at pH 10. Incorporation of appropriate sorption constants, based on the measured pH and Eh of geothermal fluids, into regional groundwater-flow models should allow prediction of the As(III) and As(V) transport from geothermal systems to adjacent drinking water sources and ecosystems.

  13. Trace element composition of Luna 24 Crisium VLT basalt

    NASA Technical Reports Server (NTRS)

    Haskin, L. A.

    1978-01-01

    The origins of the individual particles analyzed from the Luna 24 core and the information they provide on the trace-element composition of Mare Crisium basalt are considered. Previous analyses of several Luna 24 soil fragments are reviewed. It is concluded that: (1) the average trace-element concentrations for 12 VLT basalt fragments are the best available estimates for bulk samples of Crisium VLT basalt; (2) there is weak evidence that the average Crisium basalt might have a small positive Eu anomaly relative to chondritic matter; (3) the soils contain components from sources other than the Crisium VLT basalt; and (4) there is no convincing information in concentrations of rare-earth elements, Co, Sc, FeO, or Na2O among the analyzed fragments to indicate more than one parent basalt.

  14. Geochemical identification of mare-type basalt groups from a lunar highland region (by INAA and SRXFA)

    NASA Astrophysics Data System (ADS)

    Tarasov, L. S.; Kudryashova, A. F.; Ulyanov, A. A.; Baryshev, V. B.; Bobrov, V. A.; Shipitsyn, Yu. G.; Vertman, E. G.; Sudyko, A. F.

    1989-10-01

    The distribution of Rb, Sr, Y, Zr and Nb in 15 fragments of lunar mare-type basalt rocks from the Apollonius highland region has been investigated by the SRXFA method. The work has been carried out on the element analysis station of the storage ring VEPP-3. Preliminary identification of lunar rock groups was based on INAA data. Investigation by SRXFA permits to distinguish VLT-LT groups of basalts by geochemical criteria.

  15. In-place alkalic lavas recovered from Hilina Bench off-shore Kilauea, Hawaii: significance in reconstructing ancient Kilauea history

    NASA Astrophysics Data System (ADS)

    Kimura, J.; Sisson, T. W.; Coombs, M.; Lipman, P. W.

    2002-12-01

    Lava samples recovered from off-shore Hawaii Island, using remote and manned submersibles during JAMSTEC cruises in 1998, 1999, and 2001, were analyzed for major and trace elements. On the scarp below the Hilina bench (~ 3000 m bmsl), clasts of alkali and transitional basalt were recovered from debris-flow breccias, but tholeiite basalt of modern Kilauea type is absent (Sisson et al., 2002). In 2001 (dive K508), a succession of in-place pillow lavas of alkali basalt was found for the first time on the slope above the Hilina bench, along a well-exposed a rib. These in-place samples of alklic material in relative shallow water depths provide a critical link between modern-day and ancestral Kilauea. The rib is part of ancient Kilauea volcano that has remained in place, while the Hilina Bench contains slide/slump material from Kilauea (Lipman et al., 2002). At the same water depths but ~15 km to the southwest, Dive K207 sampled a series of alkali basalt breccia clasts that are compositionally similar to the in-place lavas of K208. In contrast, a dive on Papa'u Seamount (K509), located at the upper southwest margin of the bench, traversed massive breccias of subaerially erupted tholeiitic basalt. The breccias are compositionally similar to Mauna Loa lavas, and must be ancient landslide material from this volcano. Geochemical characteristics of transitional basalts from the slope above the Hilina bench are related to historical Kilauea tholeiites in major and trace elements. Alkali basalts from both the lower flank of the Hilina bench and the upper rib are more Ti rich than the transitional basalts, with elevated light-rare-earth and large-ion-lithophile elements. Various binary plots between highly incompatible trace element pairs define confined straight lines, including historical Kilauea tholeiite, the transitional basalts, and the Hilina alkalic pillows, suggesting a common mantle source with different degrees of partial melting. However, chemistry of these basalts differ from the more alkalic basanite and nephelinite lava clasts from the lower flank (Sisson et al., 2002). The highly alkaline lavas would have derived from different mantle sources, perhaps from perimeters of the Hawaiian mantle plume, whereas alkali, transitional, and tholeiitic basalts are from more central parts of the plume. The in-place alkalic pillow basalts provides new insights on earlier growth history and changes in states of basalt sources during the magmatic evolution of Kilauea, which is still in progress.

  16. Improved Seismic Images of the Pacific Northwest Interior, With a Focus on the Region of the Columbia River Flood Basalts and Central Idaho

    NASA Astrophysics Data System (ADS)

    Stanciu, A. C.; Humphreys, E.; Clayton, R. W.

    2017-12-01

    We construct a P-wave model of the upper mantle based on new and previously acquired data from the USArray-TA stations and regional deployments, including the HLP, ID-OR, and the currently recording Wallowa stations. Our teleseismic arrival times are corrected for crustal structure (based on surface wave, receiver function, and controlled-source models from the region). Our modeling incorporates 3-D ray tracing and several simple considerations of radial anisotropy on travel time. As imaged previously, we find high P-wave velocity anomalies located beneath the Wallowa Mountains and beneath the Idaho Batholith in central west Idaho. Our improved imaging finds that these two anomalies are located down to 350 km depth, and are clearly separated from one another and from a shallower fast anomaly in the uppermost mantle beneath the westernmost Snake River Plain. Our preferred interpretation includes a combination of delamination and slab fragments in this region. As fast (and presumably cool) structures, these upper-mantle anomalies are thought to have a lithospheric origin. The anomaly beneath central Idaho is interpreted as the leading edge of the Farallon slab associated with the accretion of Siletzia terrane to North America. This anomaly may include some North American lithosphere that delaminated from the Laramide-thickened lithospheric mantle, perhaps related to Challis magmatism. The Wallowa anomaly is likely to represent Farallon lithosphere that delaminated during the Columbia River flood basalt event. The small anomaly between the two deeper fast anomalies, occurring at depths above 150km, could represent an isolated lithospheric fragment or a structure created by the Columbia River flood basalt event.

  17. Lower crustal mush generation and evolution

    NASA Astrophysics Data System (ADS)

    Karakas, Ozge; Bachmann, Olivier; Dufek, Josef; Wright, Heather; Mangan, Margaret

    2016-04-01

    Recent seismic, field, and petrologic studies on several active and fossil volcanic settings provide important constraints on the time, volume, and melt fraction of their lower crustal magma bodies. However, these studies provide an incomplete picture of the time and length scales involved during their thermal and compositional evolution. What has been lacking is a thermal model that explains the temporal evolution and state of the lower crustal magma bodies during their growth. Here we use a two-dimensional thermal model and quantify the time and length scales involved in the long-term thermal and compositional evolution of the lower crustal mush regions underlying the Salton Sea Geothermal Field (USA), Mt St Helens (USA), and the Ivrea-Verbano Zone (North Italy). Although a number of seismic, tectonic, petrologic, and field studies explained the tectonic and magmatic evolution of these regions, controversy remains on their lower crustal heat sources, melt fraction, and origin of erupted magmas. Our thermal modeling results suggest that given a geologically reasonable range of basalt fluxes (~10^-3 to 10^-4 km3/yr), a long-lived (>105 yr) crystalline mush is formed in the lower crust. The state of the lower crustal mush is strongly influenced by the magma flux, crustal thickness, and water content of intruded basalt, giving an average melt fraction of <0.2 in thin crust with dry injections (Salton Sea Geothermal Field) and up to 0.4-0.5 in thicker crust with wet injections (Mt St Helens and Ivrea Zone). The melt in the lower crustal mush is mainly evolving through fractional crystallization of basalt with minor crustal assimilation in all regions, in agreement with isotopic studies. Quantification of the lower crustal mush regions is key to understanding the mass and heat balance in the crust, evolution of magma plumbing systems, and geothermal energy exploration.

  18. Contrasting geochemical trends in the fertile and refractory parts of the NE Atlantic mantle source

    NASA Astrophysics Data System (ADS)

    Tronnes, R. G.; Debaille, V.; Brandon, A. D.; Waight, T. E.; Graham, D. W.; Williams, A.; Lee, C. A.

    2008-12-01

    Primitive alkaline basalts from the Icelandic off-rift volcanic zones and Jan Mayen represent low-degree melts from the fertile parts of the NE Atlantic mantle. Olivine tholeiites and picrites from the Icelandic rift zones and nearby oceanic spreading ridges are formed by protracted decompressional melting. The V-shaped ridges along the Reykjanes, Kolbeinsey and Aegir ridges indicate that ascending source material is supplied by a pulsating plume and deflected laterally for distances of about 1000 km from Iceland (Jones et al. GGG 2002; Breivik et al. JGR 2006). Plume material deflected in the direction of the rift zones and spreading ridges undergoes extensive melting at shallow level, whereas material deflected in other directions flows laterally at deeper levels and remains largely unmelted and more fertile. The comparison of a sample suite of primitive off-rift basalts from Iceland and Jan Mayen (Debaille et al., in prep.) with olivine tholeiites and picrites from the Icelandic rift zones (mainly Brandon et al. GCA 2007) demonstrate opposing geochemical trends. The degree of source enrichment, expressed by the La/Sm-ratio, is positively and negatively correlated with 87/86Sr and 143/144Nd throughout the entire range of depleted rift zone tholeiites and enriched off-rift basalts. In the rift zone tholeiites the La/Sm-ratio has negative correlations with Mg# and Mg-content and positive correlations with 187/188Os and 3/4He. These four trends have opposite equivalents for the off-rift basalts. The most enriched and alkaline basalts from Jan Mayen and Snæfellsnes have the lowest 3/4He of 6-9*Ra and 187/188Os of 0.12-0.13. The trends seem to require a source component with ancient melt depletion and subsequent enrichment. A subcontinental lithospheric mantle keel (SCLM) is the most likely origin for the enriched component with high LILE, La/Sm and 87/86Sr and low 143/144Nd, 3/4He and 187/188Os. The most enriched alkaline basalts have notably higher Mg# and Mg and lower Fe and Na (but higher Ti, K and P) than the least enriched off-rift basalts. The first order geochemical variation in the off-rift basalts can be modelled by progressive partial melting of a pseudo-binary source mixture of the SCLM- component and a composite component with high 143/144Nd and 3/4He and low 87/86Sr. Depleted MORB- like asthenosphere is required to model the further progressive melting of the rift-related tholeiitic basalts.

  19. Regional Seismic Studies in Central Asia

    DTIC Science & Technology

    1994-01-17

    volcanism occurred over a 5 to 10 million year duration, much longer than the duration of the Deccan Traps or Columbia River flood basalts and...the site of the Siberian Traps flhod basalts. These flows possibly represent the largest Mesozoic occurrence of conitinental flood .basalt, and now...areas of continental flood basalts [White & McKenzie, 1989] nor is there a clear connection between tEle Siberian Traps and a mantle hot spot although

  20. Geophysical Measurements of Basalt Intraflow Structures.

    DTIC Science & Technology

    1997-12-01

    COVERED Final 4. TITLE AND SUBTITLE Geophysical Measurements of Basalt Intraflow Structures 6. AUTHOR(S) William K. Hudson 7. PERFORMING...horm 29B (Hi ^ 29 ev. 5-88) by ANISE Sad Z39-18 Prescribed 298-102 GEOPHYSICAL MEASUREMENTS OF BASALT INTRAFLOW STRUCTURES by William K. Hudson A...region. The physical properties of basalt can change dramatically within a single flow and may be associated with changes in intraflow structure. The

  1. Lithospheric thickness controlled compositional variations in potassic basalts of Northeast China by melt-rock interactions

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Qiang; Chen, Li-Hui; Zeng, Gang; Wang, Xiao-Jun; Zhong, Yuan; Yu, Xun

    2016-03-01

    Melt-rock interaction is a common mantle process; however, it remains unclear how this process affects the composition of potassic basalt. Here we present a case study to highlight the link between compositional variations in the potassic basalts and melt-rock interaction in cold lithosphere. Cenozoic potassic basalts in Northeast China are strongly enriched in incompatible elements and show EM1-type Sr-Nd-Pb isotopes, suggesting an enriched mantle source. These rocks show good correlations between 87Sr/86Sr and K2O/Na2O and Rb/Nb. Notably, these ratios decrease with increasing lithospheric thickness, which may reflect melt-lithosphere interaction. Phlogopite precipitated when potassic melts passed through the lithospheric mantle, and K and Rb contents of the residual melts decreased over time. The thicker the lithosphere, the greater the loss of K and Rb from the magma. Therefore, the compositions of potassic basalts were controlled by both their enriched sources and reactions with lithospheric mantle.

  2. Mare basalts on the Apennine Front and the mare stratigraphy of the Apollo 15 landing site

    NASA Technical Reports Server (NTRS)

    Ryder, Graham

    1989-01-01

    Olivine-normative mare basalts are present on the Apennine Front as crystalline particles and shocked or shock-melted fragments. Picritic basalts, which may be related to the olivine-normative basalts by olivine accumulation, not only occur on the Front but such samples so far recognized are confined to it. Mare volcanic and impact glasses also occur on the Front; all are olivine-normative, though none are quite the equivalent of the typical olivine-normative mare group. The quartz-normative mare basalts are not present (or are extremely rare) on the Front either as crystalline basalts or shocked or glass equivalents. These observations are consistent with the olivine-normative mare basalts being both local and the youngest flows at the site, and the fragments being emplaced on the Front by impacts. The picritic basalts raise the distinct possibility that the olivine-normative basalts also ponded on the Front. An influx of olivine-normative basalts from exotic sources (e.g., a ray from Aristillus) is inconsistent with their abundance, their dominance in the mare soil chemistry, and their age, isotopic, and trace element similarities with the quartz-normative basalts. However, the thermal histories of the olivine-normative basalts require elucidation.

  3. Re-Os isotope and platinum group elements of a FOcal ZOne mantle source, Louisville Seamounts Chain, Pacific ocean

    NASA Astrophysics Data System (ADS)

    Tejada, Maria Luisa G.; Hanyu, Takeshi; Ishikawa, Akira; Senda, Ryoko; Suzuki, Katsuhiko; Fitton, Godfrey; Williams, Rebecca

    2015-02-01

    The Louisville Seamount Chain (LSC) is, besides the Hawaiian-Emperor Chain, one of the longest-lived hotspot traces. We report here the first Re-Os isotope and platinum group element (PGE) data for Canopus, Rigil, and Burton Guyots along the chain, which were drilled during IODP Expedition 330. The LSC basalts possess (187Os/188Os)i = 0.1245-0.1314 that are remarkably homogeneous and do not vary with age. A Re-Os isochron age of 64.9 ± 3.2 Ma was obtained for Burton seamount (the youngest of the three seamounts drilled), consistent with 40Ar-39Ar data. Isochron-derived initial 187Os/188Os ratio of 0.1272 ± 0.0008, together with data for olivines (0.1271-0.1275), are within the estimated primitive mantle values. This (187Os/188Os)i range is similar to those of Rarotonga (0.124-0.139) and Samoan shield (0.1276-0.1313) basalts and lower than those of Cook-Austral (0.136-0.155) and Hawaiian shield (0.1283-0.1578) basalts, suggesting little or no recycled component in the LSC mantle source. The PGE data of LSC basalts are distinct from those of oceanic lower crust. Variation in PGE patterns can be largely explained by different low degrees of melting under sulfide-saturated conditions of the same relatively fertile mantle source, consistent with their primitive mantle-like Os and primordial Ne isotope signatures. The PGE patterns and the low 187Os/188Os composition of LSC basalts contrast with those of Ontong Java Plateau (OJP) tholeiites. We conclude that the Re-Os isotope and PGE composition of LSC basalts reflect a relatively pure deep-sourced common mantle sampled by some ocean island basalts but is not discernible in the composition of OJP tholeiites.

  4. A progress report on results of test drilling and ground-water investigations of the Snake Plain aquifer, southeastern Idaho: Part 1: Mud Lake Region, 1969-70 and Part 2: Observation Wells South of Arco and West of Aberdeen

    USGS Publications Warehouse

    Crosthwaite, E.G.

    1973-01-01

    The results of drilling test holes to depths of approximately 1,000 feet in the Mud Lake region show that a large part of the region is underlain by both sedimentary deposits and basalt flows. At some locations, predominantly sedimentary deposits were penetrated; at others, basalt flows predominated. The so-called Mud Lake-Market Lake barrier denotes a change in geology. From the vicinity of the barrier area, as described by Stearns, Crandall, and Steward (1938, p. 111), up the water-table gradient for at least a few tens of miles, the saturated geologic section consists predominantly of beds of sediments that are intercalated with numerous basalt flows. Downgradient from the barrier, sedimentary deposits are not common and practically all the water-bearing formations are basalt, at least to the depths explored so far. Thus, the barrier is a transition zone from a sedimentary-basaltic sequence to a basaltic sequence. The sedimentary-basaltic sequence forms a complex hydrologic system in which water occurs under water-table conditions in the upper few tens of feet of saturated material and under artesian conditions in the deeper material in the southwest part of the region. The well data indicate that southwest of the barrier, artesian pressures are not significant. Southwest of the barrier, few sedimentary deposits occur in the basalt section and, as described by Mundorff, Crosthwaite, and Kilburn (1964). ground water occurs in a manner typical of the Snake Plain aquifer. In several wells, artesian pressures are higher in the deeper formations than in the shallower ones, but the reverse was found in a few wells. The available data are not adequate to describe the water-bearing characteristics of the artesian aquifer nor the effects that pumping in one zone would have on adjacent zones. The water-table aquifer yields large quantities of water to irrigation wells.

  5. Remote sensing and geologic studies of the Balmer-Kapteyn region of the Moon

    NASA Astrophysics Data System (ADS)

    Hawke, B. Ray; Gillis, J. J.; Giguere, T. A.; Blewett, D. T.; Lawrence, D. J.; Lucey, P. G.; Smith, G. A.; Spudis, P. D.; Taylor, G. Jeffrey

    2005-06-01

    The Balmer-Kapteyn (B-K) region is located just east of Mare Fecunditatis on the east limb of the Moon. It is centered on the Balmer-Kapteyn basin, a pre-Nectarian impact structure that exhibits two rings, approximately 225 km and 450 km in diameter. Clementine multispectral images and Lunar Prospector (LP) gamma-ray spectrometer (GRS) data were used to investigate the composition, age, and origin of geologic units in the region. A major expanse of cryptomare was mapped within the B-K basin. Spectral and chemical data obtained for dark-haloed craters (DHCs) established that these impact craters excavated mare basalt from beneath higher-albedo, highland-rich surface units. The buried basalts exposed by DHCs in the region are dominated by low-titanium mare basalts. The fresh DHC FeO values (15.0-15.7 wt.%) that best represent those of buried mare basalts are well within the range of values exhibited by high-alumina mare basalts. While most cryptomare deposits occur beneath surfaces that range in age from Imbrian to Nectarian, it is possible that some mare flows were emplaced during pre-Nectarian time. Most cryptomare deposits in the B-K region were formed by the contamination of mare surfaces by highland-rich distal ejecta from surrounding impact craters. These Balmer-type cryptomare deposits are usually associated with light plains units. Major LP-GRS FeO enhancements are associated with cryptomaria in the Balmer-Kapteyn, Lomonosov-Fleming, Schiller-Schickard, and Mendel-Rydberg regions.

  6. A gravity survey of parts of quadrangles 26E, 26F, 27E, and 27F, northeastern Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Miller, C.H.; Showail, A.A.; Kane, M.F.; Khoja, I.A.; Al Ghandi, S. A.

    1989-01-01

    The greatest complete Bouguer anomaly is associated with basaltic lava flows located in the northeastern part of the survey area. The thickness of the basalt in outcrop does not account for the anomalies with the highest amplitudes, but the latter may be due to the presence of a basalt-filled vent. Those anomalies that are present do not define the basalt flows well, but the largest free-air anomaly occurs over the southwestern margin of the Salma Caldera, located about 15 km from the basalt flows. The source of the free-air anomaly is unknown, but it may be related to another hidden basaltic vent.

  7. BASALT A: Basaltic Terrains in Idaho and Hawaii as Planetary Analogs for Mars Geology and Astrobiology

    NASA Technical Reports Server (NTRS)

    Hughes, Scott S.; Haberle, Christopher W.; Nawotniak, Shannon E. Kobs; Sehlke, Alexander; Garry, W. Brent; Elphic, Richard C.; Payler, Sam J.; Stevens, Adam H.; Cockell, Charles S.; Brady, Allyson L.; hide

    2018-01-01

    Assessments of field research target regions are described within two notably basaltic geologic provinces as Earth analogs to Mars. Regions within the eastern Snake River Plain of Idaho and the Big Island of Hawaii, USA, provinces that represent analogs of present-day and early Mars, respectively, were evaluated on the basis of geologic settings, rock lithology and geochemistry, rock alteration, and climate. Each of these factors provide rationale for the selection of specific targets for field research in five analog target regions: (1) Big Craters and (2) Highway lava flows at Craters of the Moon National Monument and Preserve, Idaho; and (3) Mauna Ulu low shield, (4) Kilauea Iki lava lake and (5) Kilauea caldera in the Kilauea Volcano summit region and the East Rift Zone of Hawaii. Our evaluation of compositional and textural differences, as well as the effects of syn- and post-eruptive rock alteration, shows that the basaltic terrains in Idaho and Hawaii provide a way to characterize the geology and major geologic substrates that host biological activity of relevance to Mars exploration. This work provides the foundation to better understand the scientific questions related to the habitability of basaltic terrains, the rationale behind selecting analog field targets, and their applicability as analogs to Mars.

  8. Redox Conditions on Small Bodies

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    2004-01-01

    The Eucrite Parent Body (4 Vesta). The eucrites are basalts that contain approx. 18 wt% FeO and contain trace metal. The eucrites are very depleted in siderophile elements, so it appears that the source regions of these basalts once equilibrated with Fe-Ni metal. Therefore, it is of interest to ask what fo2 is required to precipitate metal from a liquid of eucrite composition. Or in other words, what f02 did eucrites form under? This fo2 has been determined experimentally by and was found to be IW-1. Therefore, eucrites formed at about IW-1. In addition, it is interesting to note that assuming X(sub feo) = alpha(sub FeO) allows calculation of eucrite fo2 (assuming equilibrium with Fe metal). This calculation yields the same result as the experiments to within approx. 0.25 log units, reinforcing this result.

  9. Geochemistry of Woranso-Mille Pliocene basalts from west-central Afar, Ethiopia: Implications for mantle source characteristics and rift evolution

    NASA Astrophysics Data System (ADS)

    Alene, Mulugeta; Hart, William K.; Saylor, Beverly Z.; Deino, Alan; Mertzman, Stanley; Haile-Selassie, Yohannes; Gibert, Luis B.

    2017-06-01

    The Woranso-Mille (WORMIL) area in the west-central Afar, Ethiopia, contains several Pliocene basalt flows, tuffs, and fossiliferous volcaniclastic beds. We present whole-rock major- and trace-element data including REE, and Sr-Nd-Pb isotope ratios from these basalts to characterize the geochemistry, constrain petrogenetic processes, and infer mantle sources. Six basalt groups are distinguished stratigraphically and geochemically within the interval from 3.8 to 3 Ma. The elemental and isotopic data show intra- and inter-group variations derived primarily from source heterogeneity and polybaric crystallization ± crustal inputs. The combined Sr-Nd-Pb isotope data indicate the involvement of three main reservoirs: the Afar plume, depleted mantle, and enriched continental lithosphere (mantle ± crust). Trace element patterns and ratios further indicate the basalts were generated from spinel-dominated shallow melting, consistent with significantly thinned Pliocene lithosphere in western Afar. The on-land continuation of the Aden rift into western Afar during the Pliocene is reexamined in the context of the new geochemistry and age constraints of the WORMIL basalts. The new data reinforce previous interpretations that progressive rifting and transformation of the continental lithosphere to oceanic lithosphere allows for increasing asthenospheric inputs through time as the continental lithosphere is thinned. Accepted trace element values for BHVO-2 are those recently recommended by Jochum et al. (2016) rounded to provide the same significant figures as the data. Ternary model after Schilling et al. (1992); Endmembers from Rooney et al. (2012).

  10. Plume-stagnant slab-lithosphere interactions: Origin of the late Cenozoic intra-plate basalts on the East Eurasia margin

    NASA Astrophysics Data System (ADS)

    Kimura, Jun-Ichi; Sakuyama, Tetsuya; Miyazaki, Takashi; Vaglarov, Bogdan S.; Fukao, Yoshio; Stern, Robert J.

    2018-02-01

    Intra-plate basalts of 35-0 Ma in East Eurasia formed in a broad backarc region above the stagnant Pacific Plate slab in the mantle transition zone. These basalts show regional-scale variations in Nd-Hf isotopes. The basalts with the most radiogenic Nd-Hf center on the Shandong Peninsula with intermediate Nd-Hf at Hainan and Datong. The least radiogenic basalts occur in the perimeters underlain by the thick continental lithosphere. Shandong basalts possess isotopic signatures of the young igneous oceanic crust of the subducted Pacific Plate. Hainan and Datong basalts have isotopic signatures of recycled subduction materials with billions of years of storage in the mantle. The perimeter basalts have isotopic signatures similar to pyroxenite xenoliths from the subcontinental lithospheric mantle beneath East Eurasia. Hainan basalts exhibit the highest mantle potential temperature (Tp), while the Shandong basalts have the lowest Tp. We infer that a deep high-Tp plume interacted with the subducted Pacific Plate slab in the mantle transition zone to form a local low-Tp plume by entraining colder igneous oceanic lithosphere. We infer that the subducted Izanagi Plate slab, once a part of the Pacific Plate mosaic, broke off from the Pacific Plate slab at 35 Ma to sink into the lower mantle. The sinking Izanagi slab triggered the plume that interacted with the stagnant Pacific slab and caused subcontinental lithospheric melting. This coincided with formation of the western Pacific backarc marginal basins due to Pacific Plate slab rollback and stagnation.

  11. Extreme U-Th disequilibrium in rift-related basalts, rhyolites and granophyric granite and the timescale of rhyolite generation, intrusion and crystallization at Alid volcanic center, Eritrea

    USGS Publications Warehouse

    Lowenstern, J. B.; Charlier, B.L.A.; Clynne, M.A.; Wooden, J.L.

    2006-01-01

    Rhyolite pumices and co-erupted granophyric (granite) xenoliths yield evidence for rapid magma generation and crystallization prior to their eruption at 15·2 ± 2·9 ka at the Alid volcanic center in the Danikil Depression, Eritrea. Whole-rock U and Th isotopic analyses show 230Th excesses up to 50% in basalts <10 000 years old from the surrounding Oss lava fields. The 15 ka rhyolites also have 30–40% 230Th excesses. Similarity in U–Th disequilibrium, and in Sr, Nd, and Pb isotopic values, implies that the rhyolites are mostly differentiated from the local basaltic magma. Given the (230Th/232Th) ratio of the young basalts, and presumably the underlying mantle, the (230Th/232Th) ratio of the rhyolites upon eruption could be generated by in situ decay in about 50 000 years. Limited (∼5%) assimilation of old crust would hasten the lowering of (230Th/232Th) and allow the process to take place in as little as 30 000 years. Final crystallization of the Alid granophyre occurred rapidly and at shallow depths at ∼20–25 ka, as confirmed by analyses of mineral separates and ion microprobe data on individual zircons. Evidently, 30 000–50 000 years were required for extraction of basalt from its mantle source region, subsequent crystallization and melt extraction to form silicic magmas, and final crystallization of the shallow intrusion. The granophyre was then ejected during eruption of the comagmatic rhyolites.

  12. Origin of the South Atlantic igneous province

    NASA Astrophysics Data System (ADS)

    Foulger, Gillian R.

    2018-04-01

    The South Atlantic Igneous Province comprises the Paraná Basalts, Rio Grande Rise, Tristan archipelago and surrounding guyot province, Walvis Ridge, Etendeka basalts and, in some models, the alkaline igneous lineament in the Lucapa corridor, Angola. Although these volcanics are often considered to have a single generic origin, complexities that suggest otherwise are observed. The Paraná Basalts erupted 5 Ma before sea-floor spreading started in the neighborhood, and far more voluminous volcanic margins were emplaced later. A continental microcontinent likely forms much of the Rio Grande Rise, and variable styles of volcanism built the Walvis Ridge and the Tristan da Cunha archipelago and guyot province. Such complexities, coupled with the northward-propagating mid-ocean ridge crossing a major transverse transtensional intracontinental structure, suggest that fragmentation of Pangaea was complex at this latitude and that the volcanism may have occurred in response to distributed extension. The alternative model, a deep mantle plume, is less able to account for many observations and no model variant can account for all the primary features that include eruption of the Paraná Basalts in a subsiding basin, continental breakup by rift propagation that originated far to the south, the absence of a time-progressive volcanic chain between the Paraná Basalts and the Rio Grande Rise, derivation of the lavas from different sources, and the lack of evidence for a plume conduit in seismic-tomography- and magnetotelluric images. The region shares many common features with the North Atlantic Igneous Province which also features persistent, widespread volcanism where a propagating mid-ocean ridge crossed a transverse structural discontinuity in the disintegrating supercontinent.

  13. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China

    NASA Astrophysics Data System (ADS)

    Xu, Zheng; Zheng, Yong-Fei

    2017-09-01

    Continental basalts, erupted in either flood or rift mode, usually show oceanic island basalts (OIB)-like geochemical compositions. Although their depletion in Sr-Nd isotope compositions is normally ascribed to contributions from the asthenospheric mantle, their enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) is generally associated with variable enrichments in the Sr-Nd isotope compositions. This indicates significant contributions from crustal components such as igneous oceanic crust, lower continental crust and seafloor sediment. Nevertheless, these crustal components were not incorporated into the mantle sources of continental basalts in the form of solidus rocks. Instead they were processed into metasomatic agents through low-degree partial melting in order to have the geochemical fractionation of the largest extent to achieve the enrichment of LILE and LREE in the metasomatic agents. Therefore, the mantle sources of continental basalts were generated by metasomatic reaction of the depleted mid-ocean ridge basalts (MORB) mantle with hydrous felsic melts. Nevertheless, mass balance considerations indicate differential contributions from the mantle and crustal components to the basalts. While the depleted MORB mantle predominates the budget of major elements, the crustal components predominate the budget of melt-mobile incompatible trace elements and their pertinent radiogenic isotopes. These considerations are verified by model calculations that are composed of four steps in an ancient oceanic subduction channel: (1) dehydration of the subducting crustal rocks at subarc depths, (2) anataxis of the dehydrated rocks at postarc depths, (3) metasomatic reaction of the depleted MORB mantle peridotite with the felsic melts to generate ultramafic metasomatites in the lower part of the mantle wedge, and (4) partial melting of the metasomatites for basaltic magmatism. The composition of metasomatites is quantitatively dictated by the crustal metasomatism through melt-peridotite reaction at the slab-mantle interface in oceanic subduction channels. Continental basalts of Mesozoic to Cenozoic ages from eastern China are used as a case example to illustrate the above petrogenetic mechanism. Subduction of the paleo-Pacific oceanic slab beneath the eastern edge of Eurasian continent in the Early Mesozoic would have transferred the crustal signatures into the mantle sources of these basalts. This process would be associated with rollback of the subducting slab at that time, whereas the partial melting of metasomatites takes place mainly in the Late Mesozoic to Cenozoic to produce the continental basalts. Therefore, OIB-like continental basalts are also the product of subduction-zone magmatism though they occur in intraplate settings.

  14. Lunar ferroan anorthosites and mare basalt sources - The mixed connection

    NASA Technical Reports Server (NTRS)

    Ryder, Graham

    1991-01-01

    Global overturn of a hot, gravitationally unstable lunar mantle immediately following the solidification of a magma ocean explains several characteristics of lunar petrology. Lunar mare basalt sources are inferred to be depleted in europium and alumina. These depletions are consensually attributed to complementary plagioclase floating from a magma ocean. However, in contrast to the mare basalt source parent magma, the ferroan anorthosite parent magma was more evolved by virtue of its lower Mg/Fe ratio and Ni abundances, although less evolved in its poverty of clinopyroxene constituents, flat rare earth pattern, and lower incompatible element abundances. The europium anomaly in mare sources is inferred to be present at 400 km depth, too deep to have been directly influenced by plagioclase crystallization. Massive overturning of the post-magma ocean mantle would have carried down clinopyroxene, ilmenite, and phases containing fractionated rare earths, europium anomalies, and some heat-producing radionuclides.

  15. Investigating the Origin of Th in Mare Basalts of the Western Procellarum Region

    NASA Technical Reports Server (NTRS)

    Flor, E. L.; Gillis, J. J.; Jolliff, B. L.; Lawrence, D. L.

    2002-01-01

    Clementine spectral reflectance and compositional data and Lunar Prospector gamma-ray data are used to map individual basalt flows in the western Procellarum and to investigate whether Th was inherent to the basalts or the result of surface contamination. Additional information is contained in the original extended abstract.

  16. The Chinese North Tianshan Orogen was a rear-arc (or back-arc) environment in the Late Carboniferous: constraint from the volcanic rocks in the Bogda Mountains

    NASA Astrophysics Data System (ADS)

    Xie, W.

    2017-12-01

    The Tianshan Orogen is a key area for understanding the Paleozoic tectonics and long-lasting evolution of the Central Asian Orogenic Belt (CAOB). However, considerable debate persists as to its tectonic setting during the late Paleozoic, with active subduction system and intraplate large igneous provinces as two dominant schools (Ma et al., 1997; Gu et al., 2000; Xiao et al., 2004; Han et al., 2010; Shu et al., 2011; Chen et al., 2011; Xia et al., 2012). With aims of providing constraints on this issue, petrology, mineralogy, geochronological and geochemistry for the Late Carboniferous volcanics from the Bogda Mountains have been carried out. We find two suits of high-Al basalt (HAB, 315-319 Ma) and a suit of submarine pillow basalt ( 311 Ma) in this region. Both of the two basalts belong to the tholeiitic magma (the tholeiitic index THI > 1) and contain low pre-eruptive magmatic H2O (< 2%). High Al content of the Bogda HABs is due to high crystallization pressure rather than water content. It is different from the pillow lavas that are formed in a shallower and more stable magma chamber (Xie et al., 2016a, b). The felsic volcanism coexisted with the Bogda HABs is I-type intermediate ignimbrites and rhyolite lavas. The rhyolites are formed by partial melting of a hydrated and juvenile arc crust and the ignimbrites are affected by magma mingling and feldspar fractionation (Xie et al., 2016c). The two basalts both have the MORB-like Sr-Nd-Hf-Pb isotopes and arc-like trace element compositions. We discuss that they may have been generated from a dry and depleted mantle source metasomatized by <1% sediment-derived melts. Compared with basalts from the Permian large igneous provinces (e.g., the Siberia, Emeishan and Tarim), they are different from the mantle plume-related basalts in many aspects. Meanwhile, we also compare the Bogda basalts with the Izu-Bonin fore-arc and rear-arc/back-arc basalts. Our samples show great resemblance to the Izu-Bonin rear-arc basalt (including the arc-like back-arc basalt). These lines of evidence indicate that these basalts and coexisted felsic volcanics were likely formed in a rear-arc or back-arc environment, probably related to southward subduction of the Paleo-Tianshan Ocean (Xie et al., 2016a, b, c).

  17. Pb, Sr, and Nd isotopes in seamount basalts from the Juan de Fuca Ridge and Kodiak-Bowie seamount chain, northeast Pacific

    USGS Publications Warehouse

    Hegner, E.; Tatsumoto, M.

    1989-01-01

    Pb, Sr, and Nd isotopic ratios and their parent/daughter element concentrations for 28 basalts from 10 hotspot and nonhotspot seamounts are reported. Nd and Sr isotopic compositions (143Nd/144Nd = 0.51325-0.51304; 87Sr/86Sr = 0.70237-0.70275) plot in the envelope for Juan de Fuca-Gorda ridge basalts with tholeiitic basalts showing more depleted sources and a better negative correlation than transitional to alkalic basalts. Pb isotopic ratios in tholeiitic and alkalic basalts overlap (206Pb/204Pb = 18.29-19.44) and display a trend toward more radiogenic Pb in alkalic basalts. The isotopic data for hotspot and nonhotspot basalts are indistinguishable and correlate broadly with rock composition, implying that they are controlled by partial melting. The isotopic variation in the seamount basalts is about 60% (Nd-Sr) to 100% (Pb) of that in East Pacific Rise basalts and is interpreted as a lower limit for the magnitude of mantle heterogeneity in the northeast Pacific. The data indicate absence of a chemically distinct plume component in the linear seamount chains and strongly suggest an origin from mid-ocean ridge basalt-like east Pacific mantle. -Authors

  18. Bounce Rock-A shergottite-like basalt encountered at Meridiani Planum, Mars

    USGS Publications Warehouse

    Zipfel, J.; Schroder, C.; Jolliff, B.L.; Gellert, Ralf; Herkenhoff, K. E.; Rieder, R.; Anderson, R.; Bell, J.F.; Brückner, J.; Crisp, J.A.; Christensen, P.R.; Clark, B. C.; de Souza, P.A.; Dreibus, G.; D'uston, C.; Economou, T.; Gorevan, S.P.; Hahn, B.C.; Klingelhofer, G.; McCoy, T.J.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Rodionov, D.S.; Squyres, S. W.; Wanke, H.; Wright, S.P.; Wyatt, M.B.; Yen, A. S.

    2011-01-01

    The Opportunity rover of the Mars Exploration Rover mission encountered an isolated rock fragment with textural, mineralogical, and chemical properties similar to basaltic shergottites. This finding was confirmed by all rover instruments, and a comprehensive study of these results is reported here. Spectra from the miniature thermal emission spectrometer and the Panoramic Camera reveal a pyroxene-rich mineralogy, which is also evident in M??ssbauer spectra and in normative mineralogy derived from bulk chemistry measured by the alpha particle X-ray spectrometer. The correspondence of Bounce Rock's chemical composition with the composition of certain basaltic shergottites, especially Elephant Moraine (EET) 79001 lithology B and Queen Alexandra Range (QUE) 94201, is very close, with only Cl, Fe, and Ti exhibiting deviations. Chemical analyses further demonstrate characteristics typical of Mars such as the Fe/Mn ratio and P concentrations. Possible shock features support the idea that Bounce Rock was ejected from an impact crater, most likely in the Meridiani Planum region. Bopolu crater, 19.3km in diameter, located 75km to the southwest could be the source crater. To date, no other rocks of this composition have been encountered by any of the rovers on Mars. The finding of Bounce Rock by the Opportunity rover provides further direct evidence for an origin of basaltic shergottite meteorites from Mars. ?? The Meteoritical Society, 2011.

  19. The Chronology and Petrogenesis of the Mare Basalt Clast from Lunar Meteorite Dhofar 287: Rb-Sr and Sm- Nd Isotopic Studies

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.; Wiesmann, H.; Nazarov, M. A.; Taylor, L. A.

    2002-01-01

    The Sm-Nd isochron for lunar mare basalt meteorite Dhofar 287A yields T = 3.46 +/- 0.03 Ga and Nd = 0.6 +/- 0.3. Its Rb-Sr isotopic system is severely altered. The basalt is unique, probably coming from an enriched mantle source. Additional information is contained in the original extended abstract.

  20. Trace elements in ocean ridge basalts

    NASA Technical Reports Server (NTRS)

    Kay, R. W.; Hubbard, N. J.

    1978-01-01

    A study is made of the trace elements found in ocean ridge basalts. General assumptions regarding melting behavior, trace element fractionation, and alteration effects are presented. Data on the trace elements are grouped according to refractory lithophile elements, refractory siderophile elements, and volatile metals. Variations in ocean ridge basalt chemistry are noted both for regional and temporal characteristics. Ocean ridge basalts are compared to other terrestrial basalts, such as those having La/Yb ratios greater than those of chondrites, and those having La/Yb ratios less than those of chondrites. It is found that (1) as compared to solar or chondrite ratios, ocean ridge basalts have low ratios of large, highly-charged elements to smaller less highly-charged elements, (2) ocean ridge basalts exhibit low ratios of volatile to nonvolatile elements, and (3) the transition metals Cr through Zn in ocean ridge basalts are not fractionated more than a factor of 2 or 3 from the chondritic abundance ratios.

  1. Earth’s first stable continents did not form by subduction

    NASA Astrophysics Data System (ADS)

    Johnson, Tim E.; Brown, Michael; Gardiner, Nicholas J.; Kirkland, Christopher L.; Smithies, R. Hugh

    2017-02-01

    The geodynamic environment in which Earth’s first continents formed and were stabilized remains controversial. Most exposed continental crust that can be dated back to the Archaean eon (4 billion to 2.5 billion years ago) comprises tonalite-trondhjemite-granodiorite rocks (TTGs) that were formed through partial melting of hydrated low-magnesium basaltic rocks; notably, these TTGs have ‘arc-like’ signatures of trace elements and thus resemble the continental crust produced in modern subduction settings. In the East Pilbara Terrane, Western Australia, low-magnesium basalts of the Coucal Formation at the base of the Pilbara Supergroup have trace-element compositions that are consistent with these being source rocks for TTGs. These basalts may be the remnants of a thick (more than 35 kilometres thick), ancient (more than 3.5 billion years old) basaltic crust that is predicted to have existed if Archaean mantle temperatures were much hotter than today’s. Here, using phase equilibria modelling of the Coucal basalts, we confirm their suitability as TTG ‘parents’, and suggest that TTGs were produced by around 20 per cent to 30 per cent melting of the Coucal basalts along high geothermal gradients (of more than 700 degrees Celsius per gigapascal). We also analyse the trace-element composition of the Coucal basalts, and propose that these rocks were themselves derived from an earlier generation of high-magnesium basaltic rocks, suggesting that the arc-like signature in Archaean TTGs was inherited from an ancestral source lineage. This protracted, multistage process for the production and stabilization of the first continents—coupled with the high geothermal gradients—is incompatible with modern-style plate tectonics, and favours instead the formation of TTGs near the base of thick, plateau-like basaltic crust. Thus subduction was not required to produce TTGs in the early Archaean eon.

  2. Earth's first stable continents did not form by subduction.

    PubMed

    Johnson, Tim E; Brown, Michael; Gardiner, Nicholas J; Kirkland, Christopher L; Smithies, R Hugh

    2017-03-09

    The geodynamic environment in which Earth's first continents formed and were stabilized remains controversial. Most exposed continental crust that can be dated back to the Archaean eon (4 billion to 2.5 billion years ago) comprises tonalite-trondhjemite-granodiorite rocks (TTGs) that were formed through partial melting of hydrated low-magnesium basaltic rocks; notably, these TTGs have 'arc-like' signatures of trace elements and thus resemble the continental crust produced in modern subduction settings. In the East Pilbara Terrane, Western Australia, low-magnesium basalts of the Coucal Formation at the base of the Pilbara Supergroup have trace-element compositions that are consistent with these being source rocks for TTGs. These basalts may be the remnants of a thick (more than 35 kilometres thick), ancient (more than 3.5 billion years old) basaltic crust that is predicted to have existed if Archaean mantle temperatures were much hotter than today's. Here, using phase equilibria modelling of the Coucal basalts, we confirm their suitability as TTG 'parents', and suggest that TTGs were produced by around 20 per cent to 30 per cent melting of the Coucal basalts along high geothermal gradients (of more than 700 degrees Celsius per gigapascal). We also analyse the trace-element composition of the Coucal basalts, and propose that these rocks were themselves derived from an earlier generation of high-magnesium basaltic rocks, suggesting that the arc-like signature in Archaean TTGs was inherited from an ancestral source lineage. This protracted, multistage process for the production and stabilization of the first continents-coupled with the high geothermal gradients-is incompatible with modern-style plate tectonics, and favours instead the formation of TTGs near the base of thick, plateau-like basaltic crust. Thus subduction was not required to produce TTGs in the early Archaean eon.

  3. Seismic characterization of the j-reflector near the meizoseismal area of the 1886 Charleston earthquake for lithologic constraint

    NASA Astrophysics Data System (ADS)

    Cunningham, Craig

    Investigations into the relationship between geologic structure and seismicity in and around the meizoseismal area of the 1886 Charleston earthquake have been ongoing since the 1970s. Seismic reflection profiles collected in this area display a prominent, laterally continuous, high amplitude, low frequency, two cycle reflection at ~0.7-1.2 s TWT, termed the "J" reflector, which has been correlated with Lower to Middle Jurassic tholeiitic basalt flows encountered in the Clubhouse Crossroads wells. The "J" reflector was also extended offshore onto the continental shelf. Recent reevaluation of sub Coastal Plain wells within the South Georgia Rift (SGR) Basin, including wells around the meizoseismal area of the 1886 Charleston earthquake, has shown most do not encounter basalt rising suspicions as to the true lithology of the "J"-reflector. Moreover, this same reflector has been interpreted to be the unconformity at the base of the Cretaceous-age Coastal Plain sediments. In order to define the regional extent of the Clubhouse Crossroads basalt, seismic inversion and attribute analysis were performed on two recently acquired reflection profiles, SC02_1 and SC02_5. Beginning in December 2010 through February 2011, seven 2D reflection profiles: SC02_1 - SC02_7 (total length 240 km) were acquired to the immediate west and northwest of the Charleston meizoseismal zone and legacy seismic data as part of DOE Award DE-FE0001965: Geologic Characterization of the South Georgia Rift Basin for Source Proximal C02 Storage project. The first profile, SC02_1, passes Norris Lightsey #1 and Rizer #1, two wells that never encountered basalt at the base of coastal plain. SC02_5, passes Dorchester 211, a well that bottomed into basalt at the base of the coastal plain. Variations in seismic attributes provides evidence for a western termination of the clubhouse crossroads basalt flow on SC02_1 and key support for visible amplitude variations at the contact between coastal plain-unconformity and coastal plain-basalt. Amplitude variations were then used to reinterpret the extent of the clubhouse crossroads basalt flow on vintage seismic profiles. Given new interpretations, the clubhouse crossroads basalt flow is much smaller in extent than previously estimated, covering approximately 20.4 x 105 km2.

  4. On the original igneous source of Martian fines

    NASA Technical Reports Server (NTRS)

    Baird, A. K.; Clark, B. C.

    1981-01-01

    The composition of the silicate portion of Martian regolith fines indicates derivation of the fines from mafic to ultramafic rocks, probably rich in pyroxene. Rock types similar in chemical and mineralogical composition include terrestrial Archean basalts and certain achondrite meteorites. If these igneous rocks weathered nearly isochemically, the nontronitic clays proposed earlier as an analog to Martian fines could be formed. Flood basalts of pyroxenitic lavas may be widespread and characteristic of early volcanism on Mars, analogous to maria flood basalts on the moon and early Precambrian basaltic komatiites on earth. Compositional differences between lunar, terrestrial, and Martian flood basalts may be related to differences in planetary sizes and mantle compositions of the respective planetary objects.

  5. Origin and modal petrography of Luna 24 soils

    NASA Technical Reports Server (NTRS)

    Basu, A.; Mckay, D. S.; Fruland, R. M.

    1978-01-01

    Petrographic modal analyses of polished grain mounts of fractions in the 20 to 250 micron size range from Luna 24 soil samples are presented and used to infer the nature and relative contributions of source rocks. It is found that more than 90% of the identifiable rock fragments are mare basalts, with about 11% of the soil consisting of the crystalline form. Soil breccias, which make up nearly 10% of the soil, are found to be immature. Electron probe analysis of glass particles reveals principle clusters conforming to anorthosite, anorthositic gabbro and mare basalts. More than half of the soil is composed of monomineralic particles, with pyroxene as the most abundant mineral. It is concluded that 85% of the regolith is derived from local mare basalts and gabbros and about 10% is derived from early cumulates of local mare basalt magma. Highland sources are considered to contribute not more than 3% of the regolith.

  6. CO2 content of andesitic melts at graphite-saturated upper mantle conditions with implications for redox state of oceanic basalt source regions and remobilization of reduced carbon from subducted eclogite

    NASA Astrophysics Data System (ADS)

    Eguchi, James; Dasgupta, Rajdeep

    2017-03-01

    We have performed experiments to determine the effects of pressure, temperature and oxygen fugacity on the CO2 contents in nominally anhydrous andesitic melts at graphite saturation. The andesite composition was specifically chosen to match a low-degree partial melt composition that is generated from MORB-like eclogite in the convective, oceanic upper mantle. Experiments were performed at 1-3 GPa, 1375-1550 °C, and fO2 of FMQ -3.2 to FMQ -2.3 and the resulting experimental glasses were analyzed for CO2 and H2O contents using FTIR and SIMS. Experimental results were used to develop a thermodynamic model to predict CO2 content of nominally anhydrous andesitic melts at graphite saturation. Fitting of experimental data returned thermodynamic parameters for dissolution of CO2 as molecular CO2: ln( K 0) = -21.79 ± 0.04, Δ V 0 = 32.91 ± 0.65 cm3mol-1, Δ H 0 = 107 ± 21 kJ mol-1, and dissolution of CO2 as CO3 2-: ln (K 0 ) = -21.38 ± 0.08, Δ V 0 = 30.66 ± 1.33 cm3 mol-1, Δ H 0 = 42 ± 37 kJ mol-1, where K 0 is the equilibrium constant at some reference pressure and temperature, Δ V 0 is the volume change of reaction, and Δ H 0 is the enthalpy change of reaction. The thermodynamic model was used along with trace element partition coefficients to calculate the CO2 contents and CO2/Nb ratios resulting from the mixing of a depleted MORB and the partial melt of a graphite-saturated eclogite. Comparison with natural MORB and OIB data suggests that the CO2 contents and CO2/Nb ratios of CO2-enriched oceanic basalts cannot be produced by mixing with partial melts of graphite-saturated eclogite. Instead, they must be produced by melting of a source containing carbonate. This result places a lower bound on the oxygen fugacity for the source region of these CO2-enriched basalts, and suggests that fO2 measurements made on cratonic xenoliths may not be applicable to the convecting upper mantle. CO2-depleted basalts, on the other hand, are consistent with mixing between depleted MORB and partial melts of a graphite-saturated eclogite. Furthermore, calculations suggest that eclogite can remain saturated in graphite in the convecting upper mantle, acting as a reservoir for C.

  7. Characteristics in mineral compositions of lunar latest mare volcanism revealed from spectral data

    NASA Astrophysics Data System (ADS)

    Kato, S.; Morota, T.; Yamaguchi, Y.; Watanabe, S.; Otake, H.; Ohtake, M.; Nimura, T.

    2016-12-01

    Lunar mare basalts provide insights into the composition and thermal history of the lunar mantle. According to crater counting analysis with remote sensing data, the ages of mare basalts suggest a first peak of magma activity at 3.2-3.8 Ga and a second peak at 2 Ga. In order to understand the mechanism for causing the second peak and its magma source, we reassess the correlation between the titanium contents and the eruption ages of mare basalt units using the compositional and chronological data updated by SELENE (Kaguya). In the Procellarum KREEP Terrane, where the latest mare basalt units are concentrated, an increase in the mean titanium content is observed in the Eratosthenian Period, as reported by previous studies. We found that, however, a rapid increase in mean titanium content occurred near 2.3 Ga. This result suggests that the magma source of the mare basalts changed at this particular age. Moreover, the high-titanium basaltic eruptions are correlated with the second peak in mare volcanism at 2 Ga. The latest mare volcanism may have been induced by a super-hot plume originating from the core-mantle boundary. In this study, to reveal the difference between the volcanic activities before and after 2.3 Ga, we developed the method to estimate the mineral components and elemental compositions of lunar mare basalts by using the Kaguya Spectral Profiler data. We will introduce the detail of the method and discuss about the difference between the mineral compositions of mare basalts before and after 2.3 Ga based on our preliminary results.

  8. Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the Southern Andes

    USGS Publications Warehouse

    Futa, K.; Stern, C.R.

    1988-01-01

    Isotopic compositions of samples from six Quaternary volcanoes located in the northern and southern extremities of the Southern Volcanic Zone (SVZ, 33-46??S) of the Andes and from four centers in the Austral Volcanic Zone (AVZ, 49-54??S) range for 87Sr 86Sr from 0.70280 to 0.70591 and for 143Nd 144Nd from 0.51314 to 0.51255. The ranges are significantly greater than previously reported from the southern Andes but are different from the isotopic compositions of volcanoes in the central and northern Andes. Basalts and basaltic andesites from three centers just north of the Chile Rise-Trench triple junction have 87Sr 86Sr, 143Nd 144Nd, La Yb, Ba La, and Hf Lu that lie within the relatively restricted ranges of the basic magmas erupted from the volcanic centers as far north as 35??S in the SVZ of the Andes. The trace element and Sr and Nd isotopic characteristics of these magmas may be explained by source region contamination of subarc asthenosphere, with contaminants derived from subducted pelagic sediments and seawater-altered basalts by dehydration of subducted oceanic lithosphere. In the northern extremity of the SVZ between 33?? and 34??S, basaltic andesites and andesites have higher 87Sr 86Sr, Rb Cs, and Hf Lu, and lower 143Nd 144Nd than basalts and basaltic andesites erupted farther south in the SVZ, which suggests involvement of components derived from the continental crust. In the AVZ, the most primitive sample, high-Mg andesite from the southernmost volcanic center in the Andes (54??S) has Sr and Nd isotopic compositions and K Rb and Ba La similar to MORB. The high La Yb of this sample suggests formation by small degrees of partial melting of subducted MORB with garnet as a residue. Samples from centers farther north in the AVZ show a regionally regular northward increase in SiO2, K2O, Rb, Ba, Ba La, and 87Sr 86Sr and decrease in MgO, Sr, K Rb, Rb Cs, and 143Nd 144Nd, suggesting increasingly greater degrees of fractional crystallization and associated intra-crustal contamination. ?? 1988.

  9. Late Triassic (Carnian) lamproites from Noril'sk, polar Siberia: Evidence for melting of the recycled Archean crust and the question of lamproite source for some placer diamond deposits of the Siberian Craton

    NASA Astrophysics Data System (ADS)

    Ivanov, Alexei V.; Demonterova, Elena I.; Savatenkov, Valery M.; Perepelov, Alexander B.; Ryabov, Viktor V.; Shevko, Artem Y.

    2018-01-01

    Two typical lamproitic dykes were found in Noril'sk region of the north-western Siberian Craton, which according to mineralogical, geochemical and isotopic criteria belong to anorogenic, non-diamondiferous type of lamproites. According to the geologic relationships, they cut through the Noril'sk-1 intrusion of the Siberian flood basalt province and thus are younger than 251 Ma. 40Ar/39Ar dating of the two dykes yielded ages of 235.24 ± 0.19 Ma and 233.96 ± 0.19 Ma, showing that they were emplaced in Carnian of the Late Triassic, about 16 Ma after the flood basalt event. There are some indications that there were multiple lamproitic dyke emplacements, including probably emplacement of diamondiferous lamproites, which produced Carnian-age diamond-rich placer deposits in other parts of the Siberian Craton and in adjacent regions. Lead isotope modelling shows that the source of the studied lamproites was formed with participation of recycled crust, which underwent modification of its U/Pb ratio as early as 2.5 Ga. However, the exact mechanism of the recycling cannot be deciphered now. It could be either through delamination of the cratonic crust or subduction of a mix of ancient terrigenous sediments into the mantle transition zone.

  10. Re-Os systematics of komatiites and komatiitic basalts at Dundonald Beach, Ontario, Canada: Evidence for a complex alteration history and implications of a late-Archean chondritic mantle source

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, A.; Sproule, R. A.; Walker, R. J.; Lesher, C.

    2004-12-01

    Re-Os concentrations and isotopic compositions have been examined in one komatiite unit and one komatiitic basalt unit at Dundonald Beach, which is part of the spatially-extensive 2.7 Ga Kidd-Munro volcanic assemblage in the Abitibi greenstone belt, Ontario, Canada. The komatiitic rocks in this locality record at least three episodes of alteration of Re-Os elemental and isotope systematics. First, an average of 40% and as much as 75% Re was lost due to shallow degassing during eruption and/or hydrothermal leaching during or immediately after the lava emplacement. Second, the Re-Os isotope systematics of the rocks with 187Re/188Os ratios >1 were reset at ˜2.5 Ga, most likely due to a regional metamorphic event. Finally, there is evidence for relatively recent gain and loss of Re. The variations in Os concentrations in the Dundonald komatiites yield a relative bulk distribution coefficient for Os (DOs solid/liquid) of 2-4, consistent with those obtained for stratigraphically-equivalent komatiites in the nearby Alexo area and in Munro Township. This suggests that Os was moderately compatible during crystal-liquid fractionation of the magma parental to the Kidd-Munro komatiitic rocks. Furthermore, whole-rock samples and chromite separates with low 187Re/188Os ratios (<1) yield a precise chondritic average initial 187Os/188Os ratio of 0.1083 ± 0.0006 (\\gammaOs = 0.0 ± 0.6). The chondritic initial Os isotopic composition of the mantle source for the Dundonald rocks is consistent with that determined for komatiites in the Alexo area and in Munro Township. Our Os isotope results for the Dundonald komatiitic rocks, combined with those in the Alexo and Pyke Hill areas suggest that the mantle source region for the Kidd- Munro volcanic assemblage had evolved along a long-term chondritic Os isotopic trajectory until their eruption at ˜2.7 Ga. The chondritic initial Os isotopic composition of the Kidd-Munro komatiites is indistinguishable from that of the projected contemporaneous convective upper mantle. The uniform chondritic Os isotopic composition of the ˜2.7 Ga mantle source for the Kidd-Munro komatiites contrasts with the typical large-scale Os isotopic heterogeneity in the mantle sources for komatiites from the Gorgona Island, present-day ocean island basalts or arc-related lavas. This suggests a significantly more homogeneous mantle source in the Archean compared to the presentday mantle.

  11. Zircon evidence for incorporation of terrigenous sediments into the magma source of continental basalts.

    PubMed

    Xu, Zheng; Zheng, Yong-Fei; Zhao, Zi-Fu

    2018-01-09

    Crustal components may be incorporated into continental basalts by either shallow contamination or deep mixing. While the former proceeds at crustal depths with common preservation of refractory minerals, the latter occurs at mantle depths with rare survival of relict minerals. Discrimination between the two mechanisms has great bearing to subcontinental mantle geochemistry. Here we report the occurrence of relict zircons in Cenozoic continental basalts from eastern China. A combined study of zircon U-Pb ages and geochemistry indicates that detrital zircons were carried by terrigenous sediments into a subcontinental subduction zone, where the zircon were transferred by fluids into the magma sources of continental basalts. The basalts were sampled from three petrotectonic units with distinct differences in their magmatic and metamorphic ages, making the crustal contamination discernible. The terrigenous sediments were carried by the subducting oceanic crust into the asthenospheric mantle, producing both soluble and insoluble materials at the slab-mantle interface. These materials were served as metasomatic agents to react with the overlying mantle wedge peridotite, generating a kind of ultramafic metasomatites that contain the relict zircons. Therefore, the occurrence of relict zircons in continental basalts indicates that this refractory mineral can survive extreme temperature-pressure conditions in the asthenospheric mantle.

  12. Re-Os isotopic systematics of primitive lavas from the Lassen region of the Cascade arc, California

    USGS Publications Warehouse

    Borg, L.E.; Brandon, A.D.; Clynne, M.A.; Walker, R.J.

    2000-01-01

    Rhenium-osmium isotopic systematics of primitive calc-alkaline lavas from the Lassen region appear to be controlled by mantle wedge processes. Lavas with a large proportion of slab component have relatively low Re and Os abundances, and have radiogenic Os and mid ocean ridge basalt-like Sr and Pb isotopic compositions. Lavas with a small proportion of slab component have higher Re and Os elemental abundances and display mantle-like Os, Sr, Nd, and Pb isotopic compositions. Assimilation with fractional crystallization can only generate the Re-Os systematics of the Lassen lavas from a common parent if the distribution coefficient for Re in sulfide is ~40-1100 times higher than most published estimates and if most incompatible element abundances decrease during differentiation. High Re/Os ratios in mid ocean ridge basalts makes subducted oceanic crust a potential source of radiogenic Os in volcanic arcs. The slab beneath the southernmost Cascades is estimated to have 187Os/188Os ratios as high as 1.4. Mixing between a slab component and mantle wedge peridotite can generate the Os isotopic systematics of the Lassen lavas provided the slab component has a Sr/Os ratio of ~7.5X105 and Os abundances that are 100-600 times higher than mid ocean ridge basalts. For this model to be correct, Os must be readily mobilized and concentrated in the slab component, perhaps as a result of high water and HCl fugacities in this subduction environment. Another possible mechanism to account for the correlation between the magnitude of the subduction geochemical signature and Os isotopic composition involves increasing the stability of an Os-bearing phase in mantle wedge peridotites as a result of fluxing with the slab component. Melting of such a source could yield low Os magmas that are more susceptible to crustal contamination, and hence have more radiogenic Os isotopic compositions, than magmas derived from sources with a smaller contribution from the slab. Thus, the addition of the slab component to the mantle wedge appears to result in either the direct or indirect addition of radiogenic Os to arc magmas. (C) 2000 Elsevier Science B.V. All rights reserved.

  13. Magmatism and Dynamic Topography of Libya and Tibesti, North Africa

    NASA Astrophysics Data System (ADS)

    Ball, P.; White, N. J.; Maclennan, J.; Stuart, F. M.

    2016-12-01

    In the continents, dynamic topography is difficult to determine because the density structure of the lithosphere is poorly known. It is generally agreed that hot upwelling mantle produces dynamic uplift whilst cold downwelling mantle causes regional subsidence. Calculating asthenospheric potential temperatures from basalts provides one important constraint on dynamic uplift at the present day and in the geologic record. The spatial and temporal distribution of eruptive products together with the compositional variation of lavas allows the origin of continental volcanic events to be interpreted. The Cenozoic Libyan volcanic field is characterized by a series of long wavelength topographic swells that may reflect sub-lithospheric dynamic processes. Admittance analysis of gravity and topographic data as well as seismic tomographic imaging suggest that a low density anomaly sits beneath the lithospheric plate. A new regional basaltic database of 188 XRF and ICP-MS analyses together with 39 40Ar-39Ar dates has been assembled. The Libyan volcanic field has been active from at least 17 Ma until the present day. Inverse modeling of rare earth elemental distributions shows that Libyan basalts were generated by melting of a predominantly anhydrous mixed peridotitic mantle source with an asthenospheric potential temperature of 1400 oC. Our results suggest that the existence and distribution of volcanism is caused by the combination of warm, upwelling asthenospheric mantle and thinner (< 100 km) lithosphere beneath Libya whereby melts may ascend to the surface through metasomatized lithospheric channels.

  14. Formation and tectonic evolution of the Cretaceous Jurassic Muslim Bagh ophiolitic complex, Pakistan: Implications for the composite tectonic setting of ophiolites

    NASA Astrophysics Data System (ADS)

    Khan, Mehrab; Kerr, Andrew C.; Mahmood, Khalid

    2007-10-01

    The Muslim Bagh ophiolitic complex Balochistan, Pakistan is comprised of an upper and lower nappe and represents one of a number of ophiolites in this region which mark the boundary between the Indian and Eurasian plates. These ophiolites were obducted onto the Indian continental margin around the Late Cretaceous, prior to the main collision between the Indian and Eurasian plates. The upper nappe contains mantle sequence rocks with numerous isolated gabbro plutons which we show are fed by dolerite dykes. Each pluton has a transitional dunite-rich zone at its base, and new geochemical data suggest a similar mantle source region for both the plutons and dykes. In contrast, the lower nappe consists of pillow basalts, deep-marine sediments and a mélange of ophiolitic rocks. The rocks of the upper nappe have a geochemical signature consistent with formation in an island arc environment whereas the basalts of the lower nappe contain no subduction component and are most likely to have formed at a mid-ocean ridge. The basalts and sediments of the lower nappe have been intruded by oceanic alkaline igneous rocks during the northward drift of the Indian plate. The two nappes of the Muslim Bagh ophiolitic complex are thus distinctively different in terms of their age, lithology and tectonic setting. The recognition of composite ophiolites such as this has an important bearing on the identification and interpretation of ophiolites where the plate tectonic setting is less well resolved.

  15. Petrologic insights into basaltic volcanism at historically active Hawaiian volcanoes: Chapter 6 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Helz, Rosalind L.; Clague, David A.; Sisson, Thomas W.; Thornber, Carl R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Contributions to our knowledge of the nature of the mantle source(s) of Hawaiian basalts are reviewed briefly, although this is a topic where debate is ongoing. Finally, our accumulated petrologic observations impose constraints on the nature of the summit reservoirs at Kīlauea and Mauna Loa, specifically whether the summit chamber has been continuous or segmented during past decades.

  16. Tertiary or Mesozoic komatiites from Gorgona Island, Colombia: Field relations and geochemistry

    NASA Astrophysics Data System (ADS)

    Echeverría, Lina M.

    1980-08-01

    An exceptional occurrence of ultramafic lavas within the volcanic member of the Mesozoic (or younger) Gorgona Igneous Complex represents the first known komatiites of post-Precambrian age. Gorgona komatiites are virtually unaltered and display typical spinifex textures, with 7 10 cm long plates of olivine (Fo 88 to 91) surrounded by acicular aluminous augite, subordinate plagioclase (An 56 to 78), basaltic glass, and two spinel phases. The MgO contents of the komatiites range from 15 to 22 wt.%. Sr and Nd isotopic compositions are indicative of depletion of incompatible elements in the mantle source region, as is the case for “normal” mid-ocean ridge basalts. The komatiites are low in total REE abundances and extremely depleted in LREE. They represent primary melts generated by high degree of partial melting of the mantle. Eruption temperatures are estimated at 1,450° to 1,500° C.

  17. The quality of our Nation's waters: groundwater quality in the Columbia Plateau and Snake River Plain basin-fill and basaltic-rock aquifers and the Hawaiian volcanic-rock aquifers, Washington, Idaho, and Hawaii, 1993-2005

    USGS Publications Warehouse

    Rupert, Michael G.; Hunt, Charles D.; Skinner, Kenneth D.; Frans, Lonna M.; Mahler, Barbara J.

    2015-01-01

    The Columbia Plateau, Snake River Plain, and Hawaii are large volcanic areas in the western United States and mid-Pacific ocean that contain extensive regional aquifers of a hard, gray, volcanic rock called basalt. Residents of the Columbia Plateau, the Snake River Plain, and the island of Oahu depend on groundwater as their primary source of drinking water. Although the depth to the water table can be several hundred feet, the groundwater is highly vulnerable to contamination because the permeable sediments and rocks allow contaminants to move readily down to the water table. Intense agricultural and urban activities occur above the drinking-water supply and are increasing in some areas. Contaminants, such as nitrate, pesticides, and volatile organic compounds, associated with agricultural and urban activities, have adversely affected groundwater quality.

  18. Magma genesis at Gale Crater: Evidence for Pervasive Mantle Metasomatism

    NASA Astrophysics Data System (ADS)

    Filiberto, J.

    2017-12-01

    Basaltic rocks have been analyzed at Gale Crater with a larger range in bulk chemistry than at any other landing site [1]. Therefore, the rocks may have experienced significantly different formation conditions than those experienced by magmas at Gusev Crater or Meridiani Planum. Specifically, the rocks at Gale Crater have higher potassium than other Martian rocks, with a potential analog of the Nakhlite parental magma, and are consistent with forming from a metasomatized mantle source [2-4]. Mantle metasomatism would not only affect the bulk chemistry but mantle melting conditions, as metasomatism fluxes fluids into the source region. Here I will combine differences in bulk chemistry between Martian basalts to calculate formation conditions in the interior and investigate if the rocks at Gale Crater experienced magma genesis conditions consistent with metasomatism - lower temperatures and pressures of formation. To calculate average formation conditions, I rely on experimental results, where available, and silica-activity and Mg-exchange thermometry calculations for all other compositions following [5, 6]. The results show that there is a direct correlation between the calculated mantle potential temperature and the K/Ti ratio of Gale Crater rocks. This is consistent with fluid fluxed metasomatism introducing fluids to the system, which depressed the melting temperature and fluxed K but not Ti to the system. Therefore, all basalts at Gale Crater are consistent with forming from a metasomatized mantle source, which affected not only the chemistry of the basalts but also the formation conditions. References: [1] Cousin A. et al. (2017) Icarus. 288: 265-283. [2] Treiman A.H. et al. (2016) Journal of Geophysical Research: Planets. 121: 75-106. [3] Treiman A.H. and Medard E. (2016) Geological Society of America Abstracts with Programs. 48: doi: 10.1130/abs/2016AM-285851. [4] Schmidt M.E. et al. (2016) Geological Society of America Abstracts with Programs. 48: doi: 10.1130/abs/2016AM-285651. [5] Filiberto J. and Dasgupta R. (2011) Earth and Planetary Science Letters. 304: 527-537. [6] Filiberto J. and Dasgupta R. (2015) Journal of Geophysical Research: Planets. 120: DOI: 10.1002/2014JE004745.

  19. Petrology of the axial ridge of the Mariana Trough backarc spreading center

    NASA Astrophysics Data System (ADS)

    Hawkins, J. W.; Lonsdale, P. F.; Macdougall, J. D.; Volpe, A. M.

    1990-10-01

    The axial ridge of the Mariana Trough backarc basin, between 17°40'N and 18°30'N rises as much as 1 km above the floor of a 10-15 km wide rift valley. Physiographic segmentation, with minor ridge offsets and overlaps, coincides with a petrologic segmentation seen in trace element and isotope chemistry. Analyses of 239 glass and 40 aphyric basalt samples, collected with ALVIN and by dredging, show that the axial ridge is formed largely of (olivine) hypersthene-normative tholeiitic basalt. About half of these are enriched in both LIL elements and volatiles, but are depleted in HFS elements like other rocks found throughout much of the Mariana Trough. The LIL enrichments distinguish these rocks from N-MORB even though Nd and Sr isotope ratios indicate that much of the crust formed from a source similar to that for N-MORB. In addition to LIL-enriched basalt there is LIL depleted basalts even more closely resembling N-MORB in major and trace elements as well as Sr, Nd and Pb isotopes. Both basalt varieties have higher Al and lower total Fe than MORB at equivalent Mg level. Mg# ranges from relatively "primitive" (e.g. Mg# 65-70) to more highly fractionated (e.g. Mg# 45-50). Highest parts of the axial ridge are capped by pinnacles with elongated pillows of basaltic andesite (e.g. 52-56%) SiO 2. These are due to extreme fractional crystallization of basalts forming the axial ridge. Active hydrothermal vents with chimneys and mats of opaline silica, barite, sphalerite and lesser amounts of pyrite, chalcopyrite and galena formed near these silicic rocks. The vents are surrounded by distinctive vent animals, polychaete worms, crabs and barnacles. Isotope data indicate that the Mariana Trough crust was derived from a heterogeneous source including mantle resembling the MORB-source and an "arc-source" component. The latter was depleted in HFS elements in previous melting events and later modified by addition of H 2O and LIL elements.

  20. Fe(II) Oxidation and Sources of Acidity on Mars

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Peretyazkho, T. S.; Sutter, B.

    2017-01-01

    There is an apparent paradox be-tween the evidence that aqueous environments on Mars were predominantly acidic, and the fact that Mars is predominantly a basaltic (and olivine-rich) planet. The problem being that basalt and olivine will act to neutralize acidic solutions they come into contact with, and that there is a lot more basaltic crust on Mars than water or acid. This is especially true if there is an appreciable amount of water available to bring the acid in contact with the basaltic crust. Several hypotheses for ancient mar-tian environments call on long lived groundwater and aqueous systems.

  1. Magma source transition of lunar mare volcanism at 2.3 Ga

    NASA Astrophysics Data System (ADS)

    Kato, Shinsuke; Morota, Tomokatsu; Yamaguchi, Yasushi; Watanabe, Sei-Ichiro; Otake, Hisashi; Ohtake, Makiko

    2017-09-01

    Mare basalts provide insights into the composition and thermal history of the lunar mantle. The ages of mare basalts suggest a first peak of magma activity at 3.2-3.8 Ga and a second peak at 2 Ga. In this study, we reassess the correlation between the titanium contents and the eruption ages of mare basalt units using the compositional and chronological data updated by SELENE (Kaguya). Using morphological and geological criteria, we calculated the titanium content of 261 mare units across a representative area of each mare unit. In the Procellarum KREEP Terrane, where the latest eruptions are located, an increase in the mean titanium content is observed during the Eratosthenian period, as reported by previous studies. We found that the increase in the mean titanium content occurred within a relatively short period near approximately 2.3 Ga, suggesting that the magma source of the mare basalts changed at this particular age. Moreover, the high-titanium basaltic eruptions are correlated with a second peak in volcanic activity near 2 Ga. The high-titanium basaltic eruptions occurring during the last volcanic activity period can be explained by the three possible scenarios (1) the ilmenite-bearing cumulate rich layer in the core-mantle boundary formed after the mantle overturn, (2) the basaltic material layers beneath the lunar crust formed through upwelling magmas, and (3) ilmenite-bearing cumulate blocks remained in the upper mantle after the mantle overturn.

  2. Oxygen Fugacity of Mare Basalts and the Lunar Mantle Application of a New Microscale Oxybarometer Based on the Valence State of Vanadium

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Karner, J.; Papike, J. J.; Sutton, S. R.

    2004-01-01

    The ability to estimate oxygen fugacities for mare basalts and to extend these observations to the lunar mantle is limited using bulk analysis techniques based on buffering assemblages or the valence state of iron. These limitations are due to reequilibration of mineral assemblages at subsolidus conditions, deviations of mineral compositions from thermodynamic ideality, size requirements, and the limits of the iron valence at very low fO2. Still, these approaches have been helpful and indicate that mare basalts crystallized at fO2 between the iron-w stite buffer (IW) and the ilmenite breakdown reaction (ilmenite = rutile + iron). It has also been inferred from these estimates that the lunar mantle is also highly reduced lying at conditions below IW. Generally, these data cannot be used to determine if the mare basalts become increasingly reduced during transport from their mantle source and eruption at the lunar surface and if there are differences in fO2 among mare basalts or mantle sources. One promising approach to determining the fO2 of mare basalts is using the mean valence of vanadium (2+, 3+, 4+, 5+) determined on spots of a few micrometers in diameter using synchrotron x-ray absorption fine structure (XAFS) spectroscopy. The average valence state of V in basaltic glasses is a function of fO2, temperature, V coordination, and melt composition. Here, we report the initial results of this approach applied to lunar pyroclastic glasses.

  3. Petrology and geochemistry of the Tasse mantle xenoliths of the Canadian Cordillera: A record of Archean to Quaternary mantle growth, metasomatism, removal, and melting

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Frei, Robert; Longstaffe, Fred J.; Thorkelson, Derek J.; Friedman, Eyal

    2018-07-01

    Mantle xenoliths hosted by the Quaternary Tasse alkaline basalts in the Canadian Cordillera, southeastern British Columbia, are mostly spinel lherzolite originating from subcontinental lithospheric mantle. The xenoliths contain abundant feldspar veins, melt pockets and spongy clinopyroxene, recording extensive alkaline metasomatism and partial melting. Feldspar occurs as veins and interstitial crystal in melt pockets. Melt pockets occur mainly at triple junctions, along grain boundaries, and consist mainly of olivine, cpx, opx and spinel surrounded by interstitial feldspar. The Nd, Sr and Pb isotopic compositions of the xenoliths indicate that their sources are characterized by variable mixtures of depleted MORB mantle and EM1 and EM2 mantle components. Large variations in εNd values (-8.2 to +9.6) and Nd depleted mantle model ages (TDM = 66 to 3380 Ma) are consistent with multiple sources and melt extraction events, and long-term (>3300 Ma) isolation of some source regions from the convecting mantle. Samples with Archean and Paleoproterozoic Nd model ages are interpreted as either have been derived from relict Laurentian mantle pieces beneath the Cordillera or have been eroded from the root of the Laurentian craton to the east and transported to the base of the Cordilleran lithosphere by edge-driven convection currents. The oxygen isotope compositions of the xenoliths (average δ18O = +5.1 ± 0.5‰) are similar to those of depleted mantle. The average δ18O values of olivine (+5.0 ± 0.2‰), opx (+5.9 ± 0.6‰), cpx (+6.0 ± 0.6‰) and spinel (+4.5 ± 0.2‰) are similar to mantle values. Large fractionations for olivine-opx, olivine-cpx and opx-cpx pairs, however, reflect disequilibrium stemming from metasomatism and partial melting. Whole-rock trace element, Nd, Sr, Pb and O isotope compositions of the xenoliths and host alkaline basalts indicate different mantle sources for these two suites of rocks. The xenoliths were derived from shallow lithospheric sources, whereas the alkaline basalts originated from a deeper asthenospheric mantle source.

  4. Unraveling the unusual morphology of the Cretaceous Dirck Hartog extinct mid-ocean ridge

    NASA Astrophysics Data System (ADS)

    Watson, S. J.; Whittaker, J. M.; Halpin, J.; Williams, S.; Milan, L. A.; Daczko, N. R.; Wyman, D. A.

    2015-12-01

    The Perth Abyssal Plain (PAP), offshore southwest Australia formed during Mesozoic East Gondwana breakup and Kerguelen plume activity. This study combines petrographic and geochemical data from the first samples ever to be dredged from the flanks of the Dirck Hartog Ridge (DHR), a prominent linear bathymetric feature in the central PAP, with new bathymetric profiles across the PAP to better constrain the formation of the early Indian Ocean floor. The DHR exhibits high relief and distinctive asymmetry that is unusual compared to most active or extinct spreading centres and likely results from compression and deformation of the recently extinct DHR during changes in relative motion of the Indian plate (110 - 100 Ma). Exhumation of gabbros in the southern DHR and an increase in seafloor roughness towards the centre of the PAP, likely result from a half spreading rate decrease from 35 mm/yr (based on magnetic reversals) to 24 mm/yr at ~114 Ma. The results support a slowdown of spreading prior to full cessation at ~102 Ma. The composition of basaltic samples varies along the DHR: from sub-alkaline dolerites with incompatible element concentrations most similar to depleted-to-normal mid-ocean ridge basalts in the south, to alkali basalts similar to ocean island basalts in the north. Therefore, magma sources and degrees of partial melting varied in space and time, a result supporting the interpretation that the DHR is an extinct spreading ridge rather than a pseudofault. The enriched alkali basalt signatures may be attributed to melting of a heterogeneous mantle or to the influence of the Kerguelen plume over distances greater than 1000 km. The results demonstrate the significance of regional tectonic plate motions on the formation and deformation of young ocean crust, and provide insight into the unique DHR morphology.

  5. The Caribbean-Colombian cretaceous igneous province: The internal anatomy of an oceanic plateau

    NASA Astrophysics Data System (ADS)

    Kerr, Andrew C.; Tarney, John; Marriner, Giselle F.; Nivia, Alvaro; Saunders, Andrew D.

    The Late Cretaceous Caribbean—Colombian igneous province is one of the world's best-exposed examples of a plume-derived oceanic plateau. The buoyancy of the plateau (resulting from residual heat and thick crust) kept it from being totally subducted as it moved eastward with the Farallon Plate from its site of generation in the eastern Pacific and encountered a destructive plate margin. In effect, the plateau makes up much of the Caribbean Plate; it is well exposed around its margins, but more so in accreted terranes in western Colombia (including the well-known Gorgona komatiites and Bolívar mafic/ultramafic cumulates). Compositionally, the lavas of the plateau form three groups: (a) basalts, picrites, and komatiites with light-rare-earth-element (LREE)-depleted chondrite-normalised patterns; (b) basalts with LREE-enriched patterns; and (c) basalts with essentially flat REE patterns (the most dominant type) similar to many of the basalts from the Ontong Java Plateau. These three types demonstrate the heterogeneous nature of the mantle plume source region. The picrites and the komatiites seem to lie nearer the base of the plateau than the more homogeneous basalts; thus, the more MgO-rich melts may have been erupted before large magma chambers had a chance to develop. A reconstructed crustal cross section through the plateau consists of dunitic and pyroxenitic cumulates near the base which are overlain by layered olivine-rich gabbros and more isotropic gabbros. The lowermost eruptive sequence comprises compositionally heterogeneous picrites/komatiites overlain by more homogeneous pillow basalts. Spectacular hornblende-plagioclase veins cut the Bolívar assemblage and these may represent local partial melts of the plateau's base as it was thrusted onto the continent. Subduction-related batholiths and extrusive rocks found around the margin of the province are of two distinct ages; one suite represents pre-plateau collision-related volcanism whereas the other suite, slightly younger than the plateau, may be associated with obduction.

  6. Oxygen isotope geochemistry of the lassen volcanic center, California: Resolving crustal and mantle contributions to continental Arc magmatism

    USGS Publications Warehouse

    Feeley, T.C.; Clynne, M.A.; Winer, G.S.; Grice, W.C.

    2008-01-01

    This study reports oxygen isotope ratios determined by laser fluorination of mineral separates (mainly plagioclase) from basaltic andesitic to rhyolitic composition volcanic rocks erupted from the Lassen Volcanic Center (LVC), northern California. Plagioclase separates from nearly all rocks have ??18O values (6.1-8.4%) higher than expected for production of the magmas by partial melting of little evolved basaltic lavas erupted in the arc front and back-arc regions of the southernmost Cascades during the late Cenozoic. Most LVC magmas must therefore contain high 18O crustal material. In this regard, the ??18O values of the volcanic rocks show strong spatial patterns, particularly for young rhyodacitic rocks that best represent unmodified partial melts of the continental crust. Rhyodacitic magmas erupted from vents located within 3.5 km of the inferred center of the LVC have consistently lower ??18 O values (average 6.3% ?? 0.1%) at given SiO2 contents relative to rocks erupted from distal vents (>7.0 km; average 7.1% ?? 0.1%). Further, magmas erupted from vents situated at transitional distances have intermediate values and span a larger range (average 6.8% ?? 0.2%). Basaltic andesitic to andesitic composition rocks show similar spatial variations, although as a group the ??18O values of these rocks are more variable and extend to higher values than the rhyodacitic rocks. These features are interpreted to reflect assimilation of heterogeneous lower continental crust by mafic magmas, followed by mixing or mingling with silicic magmas formed by partial melting of initially high 18O continental crust (??? 9.0%) increasingly hybridized by lower ??18O (???6.0%) mantle-derived basaltic magmas toward the center of the system. Mixing calculations using estimated endmember source ??18O values imply that LVC magmas contain on a molar oxygen basis approximately 42 to 4% isotopically heavy continental crust, with proportions declining in a broadly regular fashion toward the center of the LVC. Conversely, the ??18O values of the rhyodacitic rocks suggest that the continental crust in the melt generation zones beneath the LVC has been substantially modified by intrusion of mantle-derived basaltic magmas, with the degree of hybridization ranging on a molar oxygen basis from approximately 60% at distances up to 12 km from the center of the system to 97% directly beneath the focus region. These results demonstrate on a relatively small scale the strong influence that intrusion of mantle-derived mafic magmas can have on modifying the composition of pre-existing continental crust in regions of melt production. Given this result, similar, but larger-scale, regional trends in magma compositions may reflect an analogous but more extensive process wherein the continental crust becomes progressively hybridized beneath frontal arc localities as a result of protracted intrusion of subduction-related basaltic magmas. ?? The Author 2008. Published by Oxford University Press. All rights reserved.

  7. Relationship between Famatinian Arc Magmatism and Recent Mafic Volcanism in Northwest Argentina: Implications for Lithospheric Composition and Evolution Beneath the Puna Plateau

    NASA Astrophysics Data System (ADS)

    Drew, S.; Schoenbohm, L.; Ducea, M.

    2008-12-01

    The tectonic and magmatic evolution of the Puna Plateau (NW Argentina) has generated much debate over the past two decades. This study focuses on the young (< 7 Ma), mafic magmatism that led to the creation of monogenetic and simple polygenetic volcanoes throughout the plateau. These volcanics provide a means to evaluate the recent petro-tectonic development of the plateau and, in combination with Ordovician intrusive rocks, determine the isotopic composition and long term evolution of the sub-continental lithospheric mantle (SCLM) beneath the Andean back-arc domain. Here we present new whole rock major and trace element data and isotopic values for volcanic samples collected from the Antofagasta and Pasto Ventura basins in the southern Puna Plateau. Major element chemistry shows most of our samples are basalt, trachybasalt, basaltic andesite and basaltic trachyandesites, some with < 50.0 wt% SiO2 and > 8.0 wt% MgO, which is indicative of a strong mantle component. The more primitive lavas likely have a sub-crustal origin and experienced minimal interaction with overlying crust during transport to the surface. Two of our samples with low wt% MgO, a silicic andesite and a dacite, indicate an extensive crustal component and possibly a lower crust origin for evolved magmas. All samples have light trace element enrichment compared to NMORB and elevated abundances of LIL and LRE elements compared to HFS and HRE elements, indicating the magmas originated from a metasomatized source region. The samples also have variable (low and high) Nb, Ta and Ti negative anomalies, which are interpreted to be a signature of the source region. Our samples do not have a lithospheric delamination (~OIB) trace element signature as proposed by previous workers in support of a delamination model. Additionally, the samples have isotopic values (e.g. 87Sr/86Sr >0.7055 and ɛNd <0) that are not comparable to depleted asthenosphere. It is impossible for asthenospheric magma to obtain these isotopic values through crustal assimilation or AFC processes while maintaining a basalt major element composition and high Ni and Cr concentrations. Therefore, we propose the mafic magmas are sourced from a SCLM that, in accord with the LIL and LRE element concentrations, has been metasomatized during dehydration and possibly melting of a subducting oceanic plate. The young volcanics have isotopic values nearly identical to those of Early Ordovician Famatinian gabbros and norites. We suggest the most primitive Puna volcanic and Famatinian samples originated from the same SCLM source region. This implies at least a thin portion of the SCLM has remained intact beneath NW Argentina for the last ~485 million years. Resultantly, the SCLM was likely thinned to its present thickness sometime between the Early Ordovician and the Late Miocene. Thinning may have occurred by long term mantle wedge processes. Steady shortening and thickening of the continental crust and gradual removal of the SCLM by convection is envisioned here. The occurrence of discrete, intermittent delamination events is not favored because removal and then regeneration of the SCLM would not have allowed for preservation of the Famatinian isotopic signature.

  8. High-Mg subduction-related Tertiary basalts in Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Morra, V.; Secchi, F. A. G.; Melluso, L.; Franciosi, L.

    1997-03-01

    The Oligo-Miocene volcanics (32-15 Ma), which occur in the Oligo-Miocene Sardinian Rift, were interpreted in the literature as an intracontinental volcanic arc built upon continental crust about 30 km thick. They are characterized by a close field association of dominantly andesites and acid ignimbrites, with subordinate basalts. In this paper we deal with the origin and evolution of recently discovered high-magnesia basalts aged ca. 18 Ma occurring in the Montresta area, northern Sardinia, relevant to the petrogenesis of the Cenozoic volcanics of Sardinia. The igneous rocks of the Montresta area form a tholeiitic, subduction-related suite. Major-element variation from the high-magnesia basalts (HMB) to high-alumina basalts (HAB) are consistent with crystal/liquid fractionation dominated by olivine and clinopyroxene. Proportions of plagioclase and titanomagnetite increase from HAB to andesites. Initial {87Sr }/{86Sr } ratios increase with differentiation from 0.70398 for the HMB to 0.70592 for the andesites. This suggests concomitant crustal contamination. The geochemical characteristics of the high-magnesia basalts are typical of subduction-related magmas, with negative Nb, Zr and Ti spikes in mantle-normalized diagrams. It is proposed that these high-magnesia basalts were produced by partial melting of a mantle source characterized by large-ion lithophile elements (LILE) enrichment related principally to dehydration of subducted oceanic crust. Chondrite-normalized rare earth elements (REE) patterns indicate that the lavas are somewhat enriched in light rare earth elements (LREE), with flat heavy rare earth elements (HREE) patterns. This evidence is consistent with a spinel-bearing mantle source. The sub-parallel chondrite-normalized patterns show enrichment with differentiation, with a greater increase of LREE than HREE. The occurrence of high-magnesia basalts at 18 Ma in Sardinia appears to be correlated with and favoured by pronounced extensional tectonics at that time.

  9. Oxygen fugacity of mare basalts and the lunar mantle application of a new microscale oxybarometer based on the valence state of vanadium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, C.K.; Karner, J.; Papike, J.J.

    2004-05-25

    Using the valence state of vanadium on a microscale in lunar volcanic glasses we have developed another approach to estimating the oxygen fugacity of mare basalts. The ability to estimate oxygen fugacities for mare basalts and to extend these observations to the lunar mantle is limited using bulk analysis techniques based on buffering assemblages or the valence state of iron. These limitations are due to reequilibration of mineral assemblages at subsolidus conditions, deviations of mineral compositions from thermodynamic ideality, size requirements, and the limits of the iron valence at very low fO{sub 2}. Still, these approaches have been helpful andmore » indicate that mare basalts crystallized at fO{sub 2} between the iron-wuestite buffer (IW) and the ilmenite breakdown reaction (ilmenite = rutile + iron). It has also been inferred from these estimates that the lunar mantle is also highly reduced lying at conditions below IW. Generally, these data cannot be used to determine if the mare basalts become increasingly reduced during transport from their mantle source and eruption at the lunar surface and if there are differences in fO{sub 2} among mare basalts or mantle sources. One promising approach to determining the fO2 of mare basalts is using the mean valence of vanadium (2+, 3+, 4+, 5+) determined on spots of a few micrometers in diameter using synchrotron x-ray absorption fine structure (XAFS) spectroscopy. The average valence state of V in basaltic glasses is a function of fO{sub 2}, temperature, V coordination, and melt composition. Here, we report the initial results of this approach applied to lunar pyroclastic glasses.« less

  10. Failed Silurian continental rifting at the NW margin of Gondwana: evidence from basaltic volcanism of the Prague Basin (Teplá-Barrandian Unit, Bohemian Massif)

    NASA Astrophysics Data System (ADS)

    Tasáryová, Zuzana; Janoušek, Vojtěch; Frýda, Jiří

    2018-06-01

    The Silurian volcanic rocks of the Prague Basin represent within-plate, transitional alkali to tholeiitic basalts, which erupted in a continental rift setting through the thick Cadomian crust of the Teplá-Barrandian Unit (Bohemian Massif). Despite the variable, often intense alteration resulting in post-magmatic replacement of the basalt mass due to carbonatization, the geochemical signatures of Silurian basalts are still sufficiently preserved to constrain primary magmatic processes and geotectonic setting. The studied interval of Silurian volcanic activity ranges from Wenlock (Homerian, 431 Ma) to late Ludlow (Gorstian, 425 Ma) with a distinct peak at the Wenlock/Ludlow boundary ( 428 Ma). Trace-element characteristics unambiguously indicate partial melting of a garnet peridotite mantle source. Wenlock basalts are similar to alkaline OIB with depleted radiogenic Nd signature compared to Ludlow basalts, which are rather tholeiitic, EMORB-like with enriched radiogenic Nd signature. The correlation of petrogenetically significant trace-element ratios with Nd isotopic compositions points to a mixing of partial melts of an isotopically heterogeneous, possibly two-component mantle source during the Wenlock-Ludlow melting. Lava eruptions were accompanied by intrusions of doleritic basalt and meimechite sills. The latter represent olivine-rich cumulates of basaltic magmas of probably predominantly Ludlow age. Meimechites with dolerites and, to a lesser extent, some lavas were subject to alteration due to wall-rock-fluid interaction. The trigger for the Wenlock-to-Ludlow (431-425 Ma) extension and related volcanism in the Prague Basin is related to far-field forces, namely slab-pull regime due to progressive closure of the Iapetus Ocean. The main stage of the Baltica-Laurentia collision then caused the Prague Basin rift failure at ca. 425 Ma that has never reached an oceanic stage.

  11. Relationship between the latest activity of mare volcanism and topographic features of the Moon

    NASA Astrophysics Data System (ADS)

    Kato, Shinsuke; Morota, Tomokatsu; Yamaguchi, Yasushi; Watanabe, Sei-ichiro; Otake, Hisashi; Ohtake, Makiko

    2016-04-01

    Lunar mare basalts provide insights into compositions and thermal history of lunar mantle. According to crater counting analysis with remote sensing data, the model ages of mare basalt units indicate a second peak of magma activity at the end of mare volcanism (~2 Ga), and the latest eruptions were limited in the Procellarum KREEP Terrane (PKT), which has high abundances of heat-producing elements. In order to understand the mechanism for causing the second peak and its magma source, we examined the correlation between the titanium contents and eruption ages of mare basalt units using compositional and chronological data updated by SELENE/Kaguya. Although no systematic relationship is observed globally, a rapid increase in mean titanium (Ti) content occurred at 2.3 Ga in the PKT, suggesting that the magma source of mare basalts changed at that time. The high-Ti basaltic eruption, which occurred at the late stage of mare volcanism, can be correlated with the second peak of volcanic activity at ~2 Ga. The latest volcanic activity can be explained by a high-Ti hot plume originated from the core-mantle boundary. If the hot plume was occurred, the topographic features formed by the hot plume may be remained. We calculated the difference between topography and selenoid and found the circular feature like a plateau in the center of the PKT, which scale is ~1000 km horizontal and ~500 m vertical. We investigated the timing of ridge formation in the PKT by using stratigraphic relationship between mare basalts and ridges. The ridges were formed before and after the high-Ti basaltic eruptions and seem to be along with the plateau. These results suggest that the plateau formation is connected with the high-Ti basaltic eruptions.

  12. REE chemistry and Sm-Nd systematics of late Archean weathering profiles in the Fortescue Group, Western Australia

    NASA Technical Reports Server (NTRS)

    MacFarlane, A. W.; Danielson, A.; Holland, H. D.; Jacobsen, S. B.

    1994-01-01

    Two weathering profiles, each consisting of an upper, sericite-rich zone and a lower, chlorite-rich zone, are preserved between flows of the Mt. Roe Basalt in the Fortescue Group, Hamersley Basin, Western Australia. REE concentrations in samples from these two profiles, which originally developed ca 2,760 Ma, show large variations depending on stratigraphic position. LREE abundances and (La/Yb)N are greatest at depths of 3-6 m below the paleosurface of the Mt. Roe #1 profile and are somewhat lower in samples above this level. The LREEs reach concentrations 6-9 times greater than in the underlying basalt, and thus appear to have been mobilized downward in the paleosol and concentrated in its middle part. LREE concentrations in the #2 profile show a similar distribution but with a sharp increase in all REE concentrations within 50 cm of the paleosurface. The distinction between the REE profiles in the two paleosols may be related to the difference in the overlying material. The #1 paleosol is overlain by a few meters of sediments and then by basalt, whereas the #2 paleosol is directly overlain by basalt. The LREEs appear to have been mobilized both during chemical weathering of the parental basalt and during later lower-greenschist-facies metamorphism and metasomatism of the paleosols. Remobilization of the REEs during the regional metamorphism of the Fortescue Group is confirmed by a whole-rock Sm-Nd reference isochron of Mt. Roe #1 samples with an age of 2,151 +/- 360 Ma. Variable initial 143Nd/144Nd values of unweathered basalt samples which may represent the paleosol protolith prevents a confident determination of the magnitude of LREE mobility. Both the initial mobilization of the REEs during weathering and the metasomatic remobilization appear to have taken place under redox conditions where Ce was present dominantly as Ce3+, because Ce anomalies are not developed within the sericite zone samples regardless of concentration. Europium anomalies in the paleoweathering profile are somewhat variable and were probably modified by mobilization of Eu2+ at metamorphic conditions. In all samples, the HREEs appear to have been relatively immobile and correlate with Al, Ti, Cr, V, Zr, and Nb. Sm-Nd systematics and REE patterns of four unweathered basalt samples indicate derivation of the Mt. Roe Basalts from a heterogeneous and enriched source having epsilon Nd between -4.0 and -7.4. Initial 143Nd/144Nd values of these basalts are even lower than those reported by NELSON et al. (1992) for Fortescue Group basalts and indicate a substantial crustal component in the generation of Mt. Roe Basalts.

  13. Lunar and Planetary Science XXXVI, Part II

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Some topics covered: Implications of internal fragmentation on the structure of comets; Atmospheric excitation of mars polar motion; Dunite viscosity dependence on oxygen fugacity; Cross profile and volume analysis of bahram valles on mars; Calculations of the fluxes of 10-250 kV lunar leakage gamma rays; Alluvian fans on mars; Investigating the sources of the apollo 14 high-Al mare basalts; Relationship of coronae, regional plains and rift zones on venus; and Chemical differentiation and internal structure of europa and callisto.

  14. Speculations on the origin of the North American Midcontinent rift

    USGS Publications Warehouse

    Cannon, W.F.; Hinze, W. J.

    1992-01-01

    The Midcontinent rift is an example of lithospheric extension and flood basalt volcanism induced when a new mantle plume arrived near the base of the lithosphere. Very large volumes of basaltic magma were generated and partly erupted before substantial lithospheric extension began. Volcanism continued, along with extension and deep rift subsidence, for the ensuing 15 m.y. Much of the basaltic magma, including some of the earliest flows, was formed by partial melting of isotopically primitive asthenosphere contained in the plume head. The intense but relatively short duration of rifting and magmatism is a result of the dissipation of thermal and mechanical energy in the plume head. As the plume head spread beneath the lithosphere, it stretched the overlying lithosphere radially away from the Lake Superior region, the triple junction of the rift system, and partially melted to form the great volume of basalt and related intrusive rocks of the region. The plume arrived beneath a continent that was under compression as a result of the ongoing Grenville orogeny that affected a large region east of the rift. That compression prevented full continental separation and eventually returned the region to compressional tectonics as the energy of the plume head waned. ?? 1992.

  15. Permian arc-back-arc basin development along the Ailaoshan tectonic zone: Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, Southwest China

    NASA Astrophysics Data System (ADS)

    Fan, Weiming; Wang, Yuejun; Zhang, Aimei; Zhang, Feifei; Zhang, Yuzhi

    2010-10-01

    This paper presents a set of new SHRIMP zircon U-Pb geochronological, elemental and Sr-Nd-Pb isotopic data for the Wusu and Yaxuanqiao basaltic rocks (the Mojiang area) along the Ailaoshan tectonic zone. The Wusu basaltic sequence is dominated by SiO 2-poor, MgO- and TiO 2-rich basalts with a major mineral assemblage of plagioclase + clinopyroxene. These rocks gave a SHRIMP zircon U-Pb age of 287 ± 5 Ma (MSWD = 0.58). In contrast, the Yaxuanqiao basaltic sequence is predominantly composed of high-Al basaltic andesite, which gave a SHRIMP zircon U-Pb age of 265 ± 7 Ma (MSWD = 0.34). The analyzed samples for both sequences exhibit significant enrichment in LILEs and depletion in HFSEs with (Nb/La)n of 0.38-0.81, similar to arc-like volcanics. They have positive ɛNd(t) values (+ 3.52 to + 5.54). In comparison with MORB-derived magmatic rocks, the Wusu basalts are more enriched in LILEs and REEs, and the Yaxuanqiao samples are more enriched in LILEs but variably depleted in Ti, Y and HREE. The Wusu samples show high Pb isotopic ratios, similar to the Tethyan basalts, whereas the Yaxuanqiao samples plot in the field of the global pelagic sediments. The geochemical and Sr-Nd-Pb isotopic characteristics suggest that the Wusu basalts originated from a MORB-like source metasomatised by slab-derived fluids, while the Yaxuanqiao rocks have a fluid-modified MORB source with the input of subducted sediments. The geochemical affinity to both MORB- and arc-like sources, together with other geological observations, appears to support the development of a Permian arc-back-arc basin along the Ailaoshan-Song Ma tectonic zone in response to the northward subduction of the Paleotethys main Ocean. The final closure of the arc-back-arc basin took place in the uppermost Triassic due to the diachronous amalgamation between the Yangtze and Simao-Indochina Blocks.

  16. Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry

    NASA Astrophysics Data System (ADS)

    Howarth, Geoffrey H.; Harris, Chris

    2017-10-01

    Continental Flood Basalts (CFB) result from voluminous outpourings of magma that often precede continental break-up. Notwithstanding the petrogenetic importance of CFBs, the nature of the mantle source for such magmas is contentious, particularly with regard to picrites with Ni-rich olivine phenocrysts. Previous studies have suggested that Ni-rich olivines associated with plume volcanism in regions of thickened (>90 km) lithosphere are related to either source mineralogy differences (peridotite versus pyroxenite) or change in olivine-melt partitioning due to pressure increase. In order to evaluate these two hypotheses, we present trace element data for olivines from the Karoo CFB Tuli and Mwenezi picrites and the Etendeka CFB Horingbaai/LTZ-L type picrites, all of which erupted in regions of thickened (>90 km) lithosphere in southern Africa. Karoo picrite olivines are Ni-rich, Ca- and Mn-poor, and have low (<1.4) 100*Mn/Fe. These compositions are consistent with a pyroxenitic source. Etendeka Horingbaai/LTZ-L picrite olivines do not show Ni-enrichment, but are characterized by high Al and Cr, and high (>1.4) 100*Mn/Fe, which is more consistent with high temperature melting of a dominantly peridotitic source. We also show that the Karoo and Etendeka olivines are characterized by distinct Mn/Zn ratios of <13 and >15, respectively. In addition, bulk rock geochemical data compilations and previously reported olivine δ18O for Karoo and Etendeka CFBs are discussed in order to further constrain source components based on previously described pyroxenite melt geochemical indices such as MgO-CaO systematics, FeO/MnO, Zn/Fe, and FC3MS (FeO/CaO-3*MgO/SiO2). These geochemical indices suggest a pyroxenite-dominated source for Karoo CFBs as well as for Etendeka ferropicrites whereas a peridotite-dominated source is indicated for Etendeka Horingbaai/LTZ-L type picrites analyzed in this study. Based on our data, Ni-enrichment of olivine in plume-related magmas in regions of thickened lithosphere in southern Africa is not ubiquitous. We therefore suggest that mineralogical variation of the source is a more likely major control of olivine chemistry and parent melt variations for Karoo and Etendeka CFBs. We also show that olivine Mn-Zn correlations are a useful discriminator for source variation and recommend the use of olivine Mn /Zn < 13 for a pyroxenite-dominated source relative to olivine Mn /Zn > 15 for a peridotite-dominated source.

  17. Bimodal TiO2 Contents of Mare Basalts at Apollo and Luna Sites and Implications for TiO2 Derived from Clementine Spectral Reflectance

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Jolliff, B. L.

    2001-01-01

    A revised algorithm to estimate Ti contents of mare regions centered on Apollo and Luna sites shows a bimodal distribution, consistent with mare-basalt sample data. A global TiO2 map shows abundant intermediate TiO2 basalts in western Procellarum. Additional information is contained in the original extended abstract.

  18. Lithospheric-folding-based understanding on the origin of the back-arc basaltic magmatism beneath Jeju volcanic island, Korea

    NASA Astrophysics Data System (ADS)

    Yun, S.; Shin, Y.; CHOI, K.; Koh, J.; Nakamura, E.; Na, S.

    2012-12-01

    Jeju Island is an intraplate volcanic island located at the eastern margin on the East Asia behind the Ryukyu Trench, the collisional/subduction boundary between the Eurasian plate and Philippine Sea plate. It is a symmetrical shield volcano, having numerous monogenetic cinder cones, over 365, on the Mt. Halla volcanic edifice. The basement rock mainly consists of Precambrian gneiss, Mesozoic granite and volcanic rocks. Unconsolidated sedimentary rock is found between basement rock and surface lava. The lava plateau is composed of voluminous basaltic lava flows, which extend to the coast region with a gentle slope. Based on the evidence obtained from volcanic stratigraphy, paleontology, and geochronology, the age of the Jeju basalts ranges from the early Pleistocene to Holocene(Historic). The alkaline and tholeiitic basalts exhibits OIB composition from intraplate volcanism which is not associated with plate subduction, while the basement xenolith contained in the volcanic rock indicates that there were volcanic activities associated with the Mesozoic plate subduction. The Geochemical characteristics have been explained with the plume model, lithospheric mantle origin, and melting of shallow asthenosphere by the rapid change of stress regimes between the collision of the India-Eurasia plates and subduction of the Pacific plate, while there has not been any geophysical investigation to disclose it. Compression near collisional plate boundaries causes lithospheric folding which results in the decrease of pressure beneath the ridge of the fold while the pressure increases beneath trough. The decompression beneath lithosphere is likely to accelerate basaltic magmatism along and below the ridge. We investigate the subsurface structure beneath Jeju volcanic island, South Korea and its vicinity and propose an alternative hypothesis that the basaltic magma beneath the island could be caused by episodic lithospheric folding. Unlike the prevailing hypothesis of the intraplate basaltic magmatism that requires extending lithosphere, ours can explain how the basaltic magma could be generated at the back-arc regions without the extension. A schematic diagram illustrating the magma formation beneath Arc and Back-arc regions due to the lithospheric folding: Basaltic magma could be generated at upper mantle beneath ridge of the lithospheric fold by decompression and pre-existing high temperature.

  19. A Heated Debate: Evidence for Two Thermal Upwellings in East Africa

    NASA Astrophysics Data System (ADS)

    Rooney, T.; Herzberg, C.; Bastow, I.

    2008-12-01

    East African Cenozoic magmatism records the thermal influence of one or more long-lived mantle plumes. We present primary magma compositions, mantle potential temperatures (Tp), and mantle melt fractions using PRIMELT2 in order to examine the geographic and historical distribution of upper mantle thermal anomalies in East Africa. Regional magmatism can be divided into an early flood basalt phase in Ethiopia/Yemen (~30 Ma), a longer-lived episode of basaltic magmatism in Kenya and Southern Ethiopia (~45 to 23 Ma), and a more recent phase (~23 Ma to Present) that is coincidental with the development of the East African Rift (EAR). We have carefully selected a total of 54 samples from these time periods, excluding erroneous results derived from lavas with evidence of clinopyroxene fractionation or volatile rich and pyroxenitic sources. Our results show that elevated Tp in the Ethiopian/Yemen flood basalt province (Tp max =1520°C) and in the early Kenya/S. Ethiopia magmatism (Tp max = 1510°C) are virtually identical. Our results indicate that the existing geochemical division between high and low Ti Ethiopia/Yemen flood basalts has a thermal basis: low-Ti lavas are hotter than the high-Ti lavas. Magmatism in the region subsequent to 23 Ma exhibits only minor cooling (Tp max = 1490°C), though more substantial cooling is observed in Turkana, Kenya (60°C) and Yemen (80°C). Rift lavas from Ethiopia exhibit a clear decrease in Tp away from Afar southwestward along the EAR before progressively rising again in Southern Ethiopia towards Turkana. South of Turkana, elevated Tp is observed in the western and eastern branches of the EAR surrounding the Tanzania Craton. The modern spatial distribution of Tp in EAR magmatism indicate two distinct heat sources, one in Afar and another under the Tanzania craton. We suggest that hot mantle plume material from Afar and Turkana (which may or may not merge at depth) is channeled beneath the thinned rift lithosphere and provides a significant thermal input to EAR magmatism resulting in elevated Tp, even in magmas clearly derived from the lithosphere. Our results add to the debate generated by numerous global-scale tomographic inversions that presently do not show consensus as to the number and location of low-velocity upwellings beneath East Africa.

  20. South Pole-Aitken Sample Return Mission: Collecting Mare Basalts from the Far Side of the Moon

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Jolliff, B. L.; Lucey, P. G.

    2003-01-01

    We consider the probability that a sample mission to a site within the South Pole-Aitken Basin (SPA) would return basaltic material. A sample mission to the SPA would be the first opportunity to sample basalts from the far side of the Moon. The near side basalts are more abundant in terms of volume and area than their far-side counterparts (16:1), and the basalt deposits within SPA represent approx. 28% of the total basalt surface area on the far side. Sampling far-side basalts is of particular importance because as partial melts of the mantle, they could have derived from a mantle that is mineralogically and chemically different than determined for the nearside, as would be expected if the magma ocean solidified earlier on the far side. For example, evidence to support the existence of high-Th basalts like those that appear to be common on the nearside in the Procellarum KREEP Terrane has been found. Although SPA is the deepest basin on the Moon, it is not extensively filled with mare basalt, as might be expected if similar amounts of partial melting occurred in the mantle below SPA as for basins on the near side. These observations may mean that mantle beneath the far-side crust is lower in Th and other heat producing elements than the nearside. One proposed location for a sample-return landing site is 60 S, 160 W. This site was suggested to maximize the science return with respect to sampling crustal material and SPA impact melt, however, basaltic samples would undoubtedly occur there. On the basis of Apollo samples, we should expect that basaltic materials would be found in the vicinity of any landing site within SPA, even if located away from mare deposits. For example, the Apollo 16 mission landed in an ancient highlands region 250-300 km away from the nearest mare-highlands boundary yet it still contains a small component of basaltic samples (20 lithic fragments ranging is size from <1 to .01 cm). A soil sample from the floor of SPA will likely contain an assortment of basaltic fragments from surrounding regions. In terms both of selecting the best landing sites and understanding the geologic context for returned samples, it is important to understand the compositional distribution of basalts within SPA basin.

  1. Previously unrecognized regional structure of the Coastal Belt of the Franciscan Complex, northern California, revealed by magnetic data

    USGS Publications Warehouse

    Langenheim, Victoria; Jachens, Robert C.; Wentworth, Carl M.; McLaughlin, Robert J.

    2013-01-01

    Magnetic anomalies provide surprising structural detail within the previously undivided Coastal Belt, the westernmost, youngest, and least-metamorphosed part of the Franciscan Complex of northern California. Although the Coastal Belt consists almost entirely of arkosic graywacke and shale of mainly Eocene age, new detailed aeromagnetic data show that it is pervasively marked by long, narrow, and regularly spaced anomalies. These anomalies arise from relatively simple tabular bodies composed principally of magnetic basalt or graywacke confi ned mainly to the top couple of kilometers, even though metamorphic grade indicates that these rocks have been more deeply buried, at depths of 5–8 km. If true, this implies surprisingly uniform uplift of these rocks. The basalt (and associated Cretaceous limestone) occurs largely in the northern part of the Coastal Belt; the graywacke is recognized only in the southern Coastal Belt and is magnetic because it contains andesitic grains. The magnetic grains were not derived from the basalt, and thus require a separate source. The anomalies defi ne simple patterns that can be related to folding and faulting within the Coastal Belt. This apparent simplicity belies complex structure mapped at outcrop scale, which can be explained if the relatively simple tabular bodies are internally deformed, fault-bounded slabs. One mechanism that can explain the widespread lateral extent of the thin layers of basalt is peeling up of the uppermost part of the oceanic crust into the accretionary prism, controlled by porosity and permeability contrasts caused by alteration in the upper part of the subducting slab. It is not clear, however, how this mechanism might generate fault-bounded layers containing magnetic graywacke. We propose that structural domains defined by anomaly trend, wavelength, and source reflect imbrication and folding during the accretion process and local plate interactions as the Mendocino triple junction migrated north, a hypothesis that should be tested by more detailed structural studies.

  2. Previously unrecognized regional structure of the Coastal Belt of the Franciscan Complex, northern California, revealed by magnetic data

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.; Wentworth, C.M.; McLaughlin, R.J.

    2013-01-01

    Magnetic anomalies provide surprising structural detail within the previously undivided Coastal Belt, the westernmost, youngest, and least-metamorphosed part of the Franciscan Complex of northern California. Although the Coastal Belt consists almost entirely of arkosic graywacke and shale of mainly Eocene age, new detailed aeromagnetic data show that it is pervasively marked by long, narrow, and regularly spaced anomalies. These anomalies arise from relatively simple tabular bodies composed principally of magnetic basalt or graywacke confined mainly to the top couple of kilometers, even though metamorphic grade indicates that these rocks have been more deeply buried, at depths of 5–8 km. If true, this implies surprisingly uniform uplift of these rocks. The basalt (and associated Cretaceous limestone) occurs largely in the northern part of the Coastal Belt; the graywacke is recognized only in the southern Coastal Belt and is magnetic because it contains andesitic grains. The magnetic grains were not derived from the basalt, and thus require a separate source. The anomalies define simple patterns that can be related to folding and faulting within the Coastal Belt. This apparent simplicity belies complex structure mapped at outcrop scale, which can be explained if the relatively simple tabular bodies are internally deformed, fault-bounded slabs. One mechanism that can explain the widespread lateral extent of the thin layers of basalt is peeling up of the uppermost part of the oceanic crust into the accretionary prism, controlled by porosity and permeability contrasts caused by alteration in the upper part of the subducting slab. It is not clear, however, how this mechanism might generate fault-bounded layers containing magnetic graywacke. We propose that structural domains defined by anomaly trend, wavelength, and source reflect imbrication and folding during the accretion process and local plate interactions as the Mendocino triple junction migrated north, a hypothesis that should be tested by more detailed structural studies.

  3. Unusual ruby-sapphire transition in alluvial megacrysts, Cenozoic basaltic gem field, New England, New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Sutherland, Frederick L.; Graham, Ian T.; Harris, Stephen J.; Coldham, Terry; Powell, William; Belousova, Elena A.; Martin, Laure

    2017-05-01

    Rare ruby crystals appear among prevailing sapphire crystals mined from placers within basaltic areas in the New England gem-field, New South Wales, Australia. New England ruby (NER) has distinctive trace element features compared to those from ruby elsewhere in Australia and indeed most ruby from across the world. The NER suite includes ruby (up to 3370 ppm Cr), pink sapphire (up to 1520 ppm Cr), white sapphire (up to 910 ppm) and violet, mauve, purple, or bluish sapphire (up to 1410 ppm Cr). Some crystals show outward growth banding in this respective colour sequence. All four colour zones are notably high in Ga (up to 310 ppm) and Si (up to 1820 ppm). High Ga and Ga/Mg values are unusual in ruby and its trace element plots (laser ablation-inductively coupled plasma-mass spectrometry) and suggests that magmatic-metasomatic inputs were involved in the NER suite genesis. In situ oxygen isotope analyses (secondary ion mass spectrometry) across the NER suite colour range showed little variation (n = 22; δ18O = 4.4 ± 0.4, 2σ error), and are values typical for corundum associated with ultramafic/mafic rocks. The isolated NER xenocryst suite, corroded by basalt transport and with few internal inclusions, presents a challenge in deciphering its exact origin. Detailed consideration of its high Ga chemistry in relation to the known geology of the surrounding region was used to narrow down potential sources. These include Late Palaeozoic-Triassic fractionated I-type granitoid magmas or Mesozoic-Cenozoic felsic fractionates from basaltic magmas that interacted with early Palaeozoic Cr-bearing ophiolite bodies in the New England Orogen. Other potential sources may lie deeper within lower crust-mantle metamorphic assemblages, but need to match the anomalous high-Ga geochemistry of the New England ruby suite.

  4. A combined basalt and peridotite perspective on 14 million years of melt generation at the Atlantis Bank segment of the Southwest Indian Ridge: Evidence for temporal changes in mantle dynamics?

    USGS Publications Warehouse

    Coogan, L.A.; Thompson, G.M.; MacLeod, C.J.; Dick, H.J.B.; Edwards, S.J.; Hosford, Scheirer A.; Barry, T.L.

    2004-01-01

    Little is known about temporal variations in melt generation and extraction at midocean ridges largely due to the paucity of sampling along flow lines. Here we present new whole-rock major and trace element data, and mineral and glass major element data, for 71 basaltic samples (lavas and dykes) and 23 peridotites from the same ridge segment (the Atlantis Bank segment of the Southwest Indian Ridge). These samples span an age range of almost 14 My and, in combination with the large amount of published data from this area, allow temporal variations in melting processes to be investigated. Basalts show systematic changes in incompatible trace element ratios with the older samples (from ???8-14 Ma) having more depleted incompatible trace element ratios than the younger ones. There is, however, no corresponding change in peridotite compositions. Peridotites come from the top of the melting column, where the extent of melting is highest, suggesting that the maximum degree of melting did not change over this interval of time. New and published Nd isotopic ratios of basalts, dykes and gabbros from this segment suggest that the average source composition has been approximately constant over this time interval. These data are most readily explained by a model in which the average source composition and temperature have not changed over the last 14 My, but the dynamics of mantle flow (active-to-passive) or melt extraction (less-to-more efficient extraction from the 'wings' of the melting column) has changed significantly. This hypothesised change in mantle dynamics occurs at roughly the same time as a change from a period of detachment faulting to 'normal' crustal accretion. We speculate that active mantle flow may impart sufficient shear stress on the base of the lithosphere to rotate the regional stress field and promote the formation of low angle normal faults. ?? 2004 Elsevier B.V. All rights reserved.

  5. Petrogenesis of pillow basalts from Baolai in southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Chun; Yang, Huai-Jen

    2016-04-01

    The pillow basalts from Baolai in southwestern Taiwan have been inferred to bear Dupal signautres based on their Th/Ce ratio, linking the Baolai basalts to the South China Sea (SCS) seamounts that are characterized by Dupal Pb isotope signatures (Smith and Lewis, 2007). In this study, thirty-two Baolai basalt samples were analyzed for abundances of major and trace elements as well as Pb and Nd isotope ratios to verify their Dupal characters and to constrain their petrogenesis significance. The Baolai basalts contain 4-10 % L.O.I.. Three stages of alteration are inferred from plots of L.O.I. abundance versus concentrations major oxides as well as mineral textures and compositions. The first alteration stage was characterized by albitization that converted Ca-rich plagioclase to albite. The second alteration stage was dominated by chloritization of olivine and augite, resulting in increases in L.O.I. abundance. The last alteration stage is represented by formation of secondary calcite in vesicles and cracks. These alteration processes reflect interaction with seawater and apparently did not affect the magmatic Pb isotope composition for the low Pb concentration in seawater. Relative to the North Hemisphere Reference Line (NHRL), the Baolai pillow basalts have higher 208Pb/204Pb ratios at a given 206Pb/204Pb value, showing Dupal anomaly. For their relatively higher 208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb ratios, the Baolai basalts are distinct from majority of the Cenozoic basalts in the Hainan-Leizhou peninsula, the Indochina peninsula, and the SCS seamounts, for which derivation from the Hainan mantle plume has been recently proposed (Wang et al., 2013). In contrast, the Baolai basalts and the Cenozoic basalts from eastern Guangdong at southeastern China have similar Pb and Nd isotope compositions, indicating derivation from similar mantle sources. However, the Baolai basalts have lower abundance ratios of Zr/Hf (40.3-45.6 versus 46.5-50.5), La/Yb (12.9-21.0 versus 26.0-33.5), and Dy/Yb (~2.7 versus 2.97-3.62) with higher Lu/Hf (~0.056 versus ~0.045). Based on model calculations, the eastern Guangdong basalts represent mixtures containing large proportions (> 90%) of melt generated by < 2% melting from a source with residual garnet and small proportions (< 10%) of low degree melts (< 1%) from spinel lherzolite. The Baolai basalts are explained as involving higher proportions (10-20%) of melt from spinel lherzolite by higher degrees (2-3%) of partial melting. The unusually high Nb/La ratio of > 1.6 in the Baolai basalts is best explained as reflecting a component in the recycled dehydrated residues, indicating derivation from asthenospheric mantle source that involves subduction components. It is inferred that the subduction components are associated with the subduction of paleo-Pacific Ocean. If this is the case, a relatively high mantle circulation rate (i.e., 1 cm/yr; Wang et al., 2013) is required. Smith and Lewis (2007), International Geology Review 49, 1-13. Wang et al. (2013), Earth and Planetary Science Letters 377-378, 248-259.

  6. Petrology and K-Ar ages of rift-related basaltic rocks, offshore northern Brazil, 3/sup 0/N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fodor, R.V.; McKee, E.H.

    1986-07-01

    Tholeiitic basaltic rock in three cores from Petrobras drill site APS-21, 1960-2480 m depths, Amapa basin, offshore Brazil is compositionally similar to rift-related basaltic rock associated with the opening of both the North and South Atlantic Oceans (SiO/sub 2/ 52-54 wt %; K/sub 2/O 0.7-1.3%; TiO/sub 2/ 1.3-2%). Whole-rock K-Ar ages are 185.4, 183.2, and 126.5 m.y. If these represent crystallization ages, then the older samples correspond to North Atlantic tectonism (as represented by the Liberian dike system) and the younger correlates with South Atlantic rift-related magmatism (of which Serra Geral flood basalts are the best example). Trace- and REE-elementsmore » identify T-type mantle source-areas (La/Sm/sub (n)/ approx. 2; Zr/Nb 8-11) that feasibly were mixes of N-type and P-type components (metasomatized or veined upper mantle). These Amapa basin mafic rocks document the southernmost magmatism related to North Atlantic rifting, as well as early Mesozoic mantle source-areas and processes beneath Gondwanaland such as those identified with basalts in the South Atlantic basin.« less

  7. Isotopic composition of strontium in three basalt-andesite centers along the Lesser Antilles arc

    USGS Publications Warehouse

    Hedge, C.E.; Lewis, J.F.

    1971-01-01

    Si87/Sr86 ratios have been determined for lavas and py lastic rocks from three basalt-andesite centers along the Lesser Antilles arc-Mt. Misery on the island of St. Kitts, Soufriere on the island of St. Vincent, and Carriacou, an island of The Grenadines. The average Si87/Sr86 content of these rocks is 0.7038 for Mt. Misery, 0.7041 for Soufriere, and 0.7053 for Carriacou. All the Sr87/Sr86 values from each center are the same within analytical uncertainty (??0.0002). The constancy of strontium isotopic data within each center supports the hypothesis that basalts and andesites for each specific center investigated are generated from the same source - in agreement with petrographic and major- and minor-element data. Strontium isotopic compositions and elemental concentrations, particularly of strontium and nickel, indicate that this source was mantle peridotite and that the relationship between the respective basalts and andesites is probably fractional crystallization. ?? 1971 Springer-Verlag.

  8. Structural Iron (II) of Basaltic Glass as an Energy Source for Zetaproteobacteria in an Abyssal Plain Environment, Off the Mid Atlantic Ridge

    PubMed Central

    Henri, Pauline A.; Rommevaux-Jestin, Céline; Lesongeur, Françoise; Mumford, Adam; Emerson, David; Godfroy, Anne; Ménez, Bénédicte

    2016-01-01

    To explore the capability of basaltic glass to support the growth of chemosynthetic microorganisms, complementary in situ and in vitro colonization experiments were performed. Microbial colonizers containing synthetic tholeitic basaltic glasses, either enriched in reduced or oxidized iron, were deployed off-axis from the Mid Atlantic Ridge on surface sediments of the abyssal plain (35°N; 29°W). In situ microbial colonization was assessed by sequencing of the 16S rRNA gene and basaltic glass alteration was characterized using Scanning Electron Microscopy, micro-X-ray Absorption Near Edge Structure at the Fe-K-edge and Raman microspectroscopy. The colonized surface of the reduced basaltic glass was covered by a rind of alteration made of iron-oxides trapped in a palagonite-like structure with thicknesses up to 150 μm. The relative abundance of the associated microbial community was dominated (39% of all reads) by a single operational taxonomic unit (OTU) that shared 92% identity with the iron-oxidizer Mariprofundus ferrooxydans PV-1. Conversely, the oxidized basaltic glass showed the absence of iron-oxides enriched surface deposits and correspondingly there was a lack of known iron-oxidizing bacteria in the inventoried diversity. In vitro, a similar reduced basaltic glass was incubated in artificial seawater with a pure culture of the iron-oxidizing M. ferrooxydans DIS-1 for 2 weeks, without any additional nutrients or minerals. Confocal Laser Scanning Microscopy revealed that the glass surface was covered by twisted stalks characteristic of this iron-oxidizing Zetaproteobacteria. This result supported findings of the in situ experiments indicating that the Fe(II) present in the basalt was the energy source for the growth of representatives of Zetaproteobacteria in both the abyssal plain and the in vitro experiment. In accordance, the surface alteration rind observed on the reduced basaltic glass incubated in situ could at least partly result from their activity. PMID:26834704

  9. Mafic mantle sources indicated by the olivine-spinifex basalt-ferropicrite lavas in the accreted Permian oceanic LIP fragments and Miocene low-Ni basalt and adakite lavas in central Japan

    NASA Astrophysics Data System (ADS)

    Ishiwatari, A.; Ichiyama, Y.; Yamazaki, R.; Katsuragi, T.; Tsuchihashi, H.

    2008-12-01

    Melting of mafic (eclogitic) rocks in the peridotite mantle diapir may be important to generate a large quantity of magma in a short period of time as required for the LIP basaltic magmatism (e.g. Takahashi et al. 1998; EPSL, 162, 63-). Ferropicritic rocks also occur in some LIPs, and Ichiyama et al. (2006; Lithos, 89, 47-) propose a non-peridotitic, Ti- and Fe-rich eclogitic source (recycled oceanic ferrogabbro?) entrained in the peridotitic LIP mantle plume for the origin of ferropicritic rocks, that occur with olivine-spinifex basalt (Ichiyama et al., 2007; Island Arc, 16, 493-) in a Permian LIP fragment that was captured in the Jurassic Tamba accretionary complex in central Japan. Although Ti-poor ferrokomatiitic magma might form through high- degree melting of a primitive chondritic mantle (25wt% MgO and 25wt% Fe+FeO), Ti- and HFSE-rich ferropicritic and meimechitic magmas can not form in this way. On the other hand, Miocene volcanic rocks distributed along the Japan Sea coast of central Japan also represent a product of large-scale arc magmatism that happened coeval to the spreading of the Japan Sea floor. The chemical and isotopic signatures of the magmas are consistent with the secular change of tectonic setting from continental arc (22- 20 Ma) to island arc (15-11 Ma) (Shuto et al. 2006; Lithos, 86, 1-). Some adakites have already been found from these Miocene volcanic rocks by Shuto"fs group, and mafic rock melting in either subducting slab or lower arc crust has been proposed. We have recently found a wide distribution of low-Ni basalt from Fukui City. The low-Ni basalt contains olivine phenocrysts which are one order of magnitude poorer in Ni (less than 0.02 wt% NiO at Fo87) than those in normal basalt (more than 0.2 wt% NiO at Fo87). The rock is also poor in bulk-rock Ni, rich in K and Ti, and may have formed from an olivine-free pyroxenitic source. Close association of adakite and low-Ni basalt with normal tholeiitic basalt, calc-alkaline andesite-dacite-rhyolite, high-Mg andesite and rare picritic basalt suggests melting of a heterogeneous mantle wedge that was abundantly endorsed with eclogitic and pyroxenitic rocks. Melting pressure greatly differs between the ferropicrite case (5 GPa or more) and the low-Ni basalt-adakite case (2 GPa or less), causing large chemical differences. However, common occurrences of non-peridotite-origin magmas in the LIP and island arc suggest pervasive and voluminous distribution of the mafic materials in the peridotitic mantle and their important role in magma genesis at various tectonic settings.

  10. Th-230 - U-238 series disequilibrium of the Olkaria basalts Gregory Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    Black, S.; Macdonald, R.; Kelly, M.

    1993-01-01

    U-Th disequilibrium analyses of the Naivasha basalts show a very small (U-238/Th-230) ratios which are lower than any previously analyzed basalts. The broadly positive internal isochron trend from one sample indicates that the basalts may have source heterogeneities, this is supported by earlier work. The Naivasha complex comprises a bimodal suite of basalts and rhyolites. The basalts are divided into two stratigraphic groups each of a transitional nature. The early basalt series (EBS) which were erupted prior to the Group 1 comendites and, the late basalt series (LBS) which erupted temporally between the Broad Acres and the Ololbutot centers. The basalts represent a very small percentage of the overall eruptive volume of material at Naivasha (less than 2 percent). The analyzed samples come from four stratigraphic units in close proximity around Ndabibi, Hell's Gate and Akira areas. The earliest units occur as vesicular flows from the Ndabibi plain. These basalts are olivine-plagioclase phyric with the associated hawaiites being sparsely plagioclase phyric. An absolute age of 0.5Ma was estimated for these basalts. The next youngest basalts flows occur as younger tuft cones in the Ndabibi area and are mainly olivine-plagioclase-clinopyroxcene phyric with one purely plagioclase phyric sample. The final phase of activity at Ndabibi resulted in much younger tuft cones consisting of air fall ashes and lapilli tufts. Many of these contain resorbed plagioclase phenocrysts with sample number 120c also being clinopyroxene phyric. The isotopic evidence for the basalt formation is summarized.

  11. Petrography and chemistry of SiO 2 filling phases in the amethyst geodes from the Serra Geral Formation deposit, Rio Grande do Sul, Brazil

    NASA Astrophysics Data System (ADS)

    Commin-Fischer, Adriane; Berger, Gilles; Polvé, Mireille; Dubois, Michel; Sardini, Paul; Beaufort, Daniel; Formoso, Milton

    2010-04-01

    The filling process of amethyst-bearing geodes from Serra Geral Formation basalts, Brazil, is investigated by different methods performed on the SiO 2 filling phases. Image analysis of quartz-amethyst deposits suggests a single growing mechanism ruled by geometric selection of randomly oriented crystals. Microthermometry of fluid inclusions reveals formation temperature lower than 100 °C, probably lower than 50 °C, and fluid salinity as high as 3 mass% NaCl eq. Composition in REE and trace-elements measured by ICP-MS on acid-digested or laser-ablated samples indicates a common genesis for amethyst, quartz and chalcedony, as well as the absence of significant variations from one geode to another. 87Sr/ 86Sr data on chalcedony shows that both the host basalt or the Botucatu sandstone are possible silica sources. These data, combined with thermo-kinetic considerations, permit us to discuss the filling process. We argue in favor of the contribution of a mineralized fluid of hydrothermal origin producing a regional silica source which decreased with time. The observed mineral sequence is related to the depletion of silica in the solution.

  12. Os isotope systematics in ocean island basalts

    NASA Astrophysics Data System (ADS)

    Reisberg, Laurie; Zindler, Alan; Marcantonio, Franco; White, William; Wyman, Derek; Weaver, Barry

    1993-12-01

    New Re-Os isotopic results for Os-poor basalts from St. Helena, the Comores, Samoa, Pitcairn and Kerguelen dramatically expand the known range of initial Os-186/Os-187 ratios in Ocean Island Basalts (OIBs) to values as high as 1.7. In contrast to the Os isotopic uniformity of Os-rich basalts from the HIMU islands of Tubuai and Mangaia found by Hauri and Hart, our values for St. Helena span most of the known range of Os isotopic variability in oceanic basalts (initial O-187/Os-186 ranges from 1.2 to 1.7). Generation of such radiogenic Os in the mantle requires melting of source materials that contain large proportions of recycled oceanic crust. The very low Os concentrations of most of the basalts analyzed here, however, leave them susceptible to modification via interaction with materials containing radiogenic Os in the near-surface environment. Thus the high Os-186/Os-187 ratios may result from assimilation of radiogenic Os-rich marine sediments, such as Mn oxides, within the volcanic piles traversed by these magmas en route to the surface. Furthermore, the Os isotopic signatures of Os-rich, olivine-laden OIBs may reflect the accumulation of lithospheric olivine, rather than simply their mantle source characteristics. The extent to which these processes alter the view of the mantle obtained via study of Re-Os systematics in oceanic basalts is uncertain. These effects must be quantified before Re-Os systematics in OIBs can be used with confidence to investigate the nature of mantle heterogeneity and its causes.

  13. Petit-spot geology reveals melts in upper-most asthenosphere dragged by lithosphere

    NASA Astrophysics Data System (ADS)

    Machida, Shiki; Hirano, Naoto; Sumino, Hirochika; Hirata, Takafumi; Yoneda, Shigekazu; Kato, Yasuhiro

    2015-09-01

    Petit-spot volcanism is a phenomenon ubiquitous on Earth. It originates from melt in the upper-most mantle asthenosphere, occurring where the plate flexes and fractures before subduction. Recent geochemical and petrological studies of petit-spot volcanism lava have shown that understanding this form of volcanism can contribute to the investigation of mantle dynamics and CO2 degassing of Earth. However, geological information constraining the magma source of petit-spot remains limited. Here, we present a comprehensive dataset of geochemistry (major and trace elements, and Sr and Nd isotopic compositions) and 40Ar/39Ar ages of alkaline basaltic rocks and glasses to define the geological characteristics of petit-spot volcanoes in the northwestern Pacific. The geochemical and geochronological variations of the basalts indicate that petit-spot volcanism is characterized by a petrogenetically and temporally isolated magma system for each volcano. The basalt geochemistry further indicates that the magmas at the volcanoes were derived from the melting of a heterogeneous regional-scale source under a range of conditions. In addition, slight temporal intra-field migration of petit-spot vent fields against the plate motion was detected. These features indicate that the magma originates from isolated melt ponds at the lithosphere-asthenosphere boundary, and that the speed at which the melt ponds are dragged by the plate is only slightly slower than that of the plate motion. Our results provide detailed insight into eruption processes of asthenosphere melts induced by plate-flexure, and also suggest the complete coupling of the lithosphere to the upper-most asthenosphere in the case of large plate subduction.

  14. Geohydrologic framework of the Snake River plain regional aquifer system, Idaho and eastern Oregon

    USGS Publications Warehouse

    Whitehead, R.L.

    1992-01-01

    Across most of the plain, Quaternary basalt aquifers overlie aquifers in the Tertiary Idavada Volcanics and Banbury Basalt of the Idaho Group. The older volcanic rocks are typically much less transmissive than the Quaternary basalt. Faults and frac- tures are permeable zones for water storage and conduits for water movement. In places near the margins of the plain, the Idavada Volcanics contains important geothermal aquifers.

  15. The Cenozoic volcanism in the Kivu rift: Assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions

    NASA Astrophysics Data System (ADS)

    Pouclet, A.; Bellon, H.; Bram, K.

    2016-09-01

    The Kivu rift is part of the western branch of the East African Rift system. From Lake Tanganyika to Lake Albert, the Kivu rift is set in a succession of Precambrian zones of weakness trending NW-SE, NNE-SSW and NE-SW. At the NW to NNE turn of the rift direction in the Lake Kivu area, the inherited faults are crosscut by newly born N-S fractures which developed during the late Cenozoic rifting and controlled the volcanic activity. From Lake Kivu to Lake Edward, the N-S faults show a right-lateral en echelon pattern. Development of tension gashes in the Virunga area indicates a clockwise rotation of the constraint linked to dextral oblique motion of crustal blocks. The extensional direction was W-E in the Mio-Pliocene and ENE-WSW in the Pleistocene to present time. The volcanic rocks are assigned to three groups: (1) tholeiites and sodic alkali basalts in the South-Kivu, (2) sodic basalts and nephelinites in the northern Lake Kivu and western Virunga, and (3) potassic basanites and potassic nephelinites in the Virunga area. South-Kivu magmas were generated by melting of spinel + garnet lherzolite from two sources: an enriched lithospheric source and a less enriched mixed lithospheric and asthenospheric source. The latter source was implied in the genesis of the tholeiitic lavas at the beginning of the South-Kivu tectono-volcanic activity, in relationships with asthenosphere upwelling. The ensuing outpouring of alkaline basaltic lavas from the lithospheric source attests for the abortion of the asthenospheric contribution and a change of the rifting process. The sodic nephelinites of the northern Lake Kivu originated from low partial melting of garnet peridotite of the sub-continental mantle due to pressure release during swell initiation. The Virunga potassic magmas resulted from the melting of garnet peridotite with an increasing degree of melting from nephelinite to basanite. They originated from a lithospheric source enriched in both K and Rb, suggesting the presence of phlogopite and the local existence of a metasomatized mantle. A carbonatite contribution is evidenced in the Nyiragongo lavas. New K-Ar ages date around 21 Ma the earliest volcanic activity made of nephelinites. A sodic alkaline volcanism took place between 13 and 9 Ma at the western side of the Virunga during the doming stage of the rift and before the formation of the rift valley. In the South-Kivu area, the first lavas were tholeiitic and dated at 11 Ma. The rift valley subsidence began around 8-7 Ma. The tholeiitic lavas were progressively replaced by alkali basaltic lavas until to 2.6 Ma. Renewal of the basaltic volcanism happened at ca. 1.7 Ma on a western step of the rift. In the Virunga area, the potassic volcanism appeared ca. 2.6 Ma along a NE-SW fault zone and then migrated both to the east and west, in jumping to oblique tension gashes. The uncommon magmatic evolution and the high diversity of volcanic rocks of the Kivu rift are explained by varying transtensional constraints during the rift history.

  16. Plume magmatism and crustal growth at 2.9 to 3.0 Ga in the Steep Rock and Lumby Lake area, Western Superior Province

    NASA Astrophysics Data System (ADS)

    Tomlinson, K. Y.; Hughes, D. J.; Thurston, P. C.; Hall, R. P.

    1999-01-01

    The greenstone belts of the western Superior Province are predominantly 2.78 to 2.69 Ga and provide evidence of oceanic and arc volcanism during the accretionary phase of development of the Superior Province. There is also scattered evidence of Meso-Archean crust (predominantly 2.9 to 3.0 Ga) within the western Superior Province. The Meso-Archean greenstone belts commonly contain platformal sediments and unconformably overlie granitoid basement. The platformal sediments occur associated with komatiitic and tholeiitic volcanic rocks that suggest a history of magmatism associated with rifting during the Meso-Archean. The central Wabigoon Subprovince is a key area of Meso-Archean crust and in its southern portion comprises the Steep Rock, Finlayson and Lumby Lake greenstone belts. The Steep Rock greenstone belt unconformably overlies 3 Ga continental basement and contains platformal sediments succeeded by komatiitic and tholeiitic volcanic rocks. The Lumby Lake greenstone belt contains thick sequences of mafic volcanics, a number of komatiite horizons, and thin platformal sedimentary units. The two belts are joined by the predominantly mafic volcanic Finlayson greenstone belt. The volcanics throughout these three greenstone belts may be correlated to some extent and a range of basaltic and komatiite types is present. Al-undepleted komatiites present in the Lumby Lake greenstone belt have an Al 2O 3/TiO 2 ratio ranging from 14 to 27 and (Gd/Yb) N from 0.7 to 1.3. These are divided into basaltic komatiites with generally unfractionated mantle-normalised multi-element profiles, and spinifex-textured high-Mg basalts with slightly light REE enriched multi-element profiles and small negative Nb and Ta anomalies. The unfractionated basaltic komatiites represent high degree partial melts of the upper mantle whereas the spinifex-textured high-Mg basalts represent evolutionary products of the komatiite liquids following olivine and chromite fractionation and crustal contamination. Al-depleted komatiites are present in both the Lumby Lake and Steep Rock belts and have Al 2O 3/TiO 2 ratio ranges from 2.5 to 5. These display strong enrichment in the light REE and Nb and strong depletion in the heavy REE and Y ((Gd/Yb) N=2-4). They represent a deep mantle plume source generated from a high degree of partial melting in the majorite garnet stability field. The basaltic flows in all three greenstone belts are predominantly slightly light REE depleted and represent a slightly depleted upper mantle source. Basalts spatially associated with the unfractionated basaltic komatiites and the slightly light REE enriched spinifex-textured high-Mg basalts are also slightly enriched in light REE and have negative Nb and Ta anomalies. These basalts represent evolved products of the primitive basaltic komatiites and enriched spinifex-textured high-Mg basalts after further crustal contamination and olivine and clinopyroxene fractionation. The geochemical stratigraphy in the Lumby Lake belt is consistent with an ascending mantle plume model. The light REE depleted basalts were derived from upper mantle melted by an ascending mantle plume. These are overlain by the unfractionated basaltic komatiites and their evolutionary products which represent hotter plume head material derived from a mixture of plume mantle and entrained depleted upper mantle. In turn, these are overlain by strongly light REE and HFSE enriched komatiites that represent a deep plume source that has not been mixed with depleted mantle and are, therefore, likely to have been derived from a plume core or tail. Volcanism was protracted in these three greenstone belts lasting ca. 70 Ma and combined stratigraphic evidence from the Lumby Lake and Steep Rock belts suggests that more than one plume may have ascended and tapped the same mantle sources, over time, within the area. Plume magmatism and rifting of continental platforms thus appears to have been an important feature of crustal development in the Meso-Archean.

  17. Notice of release of NBR-1 Germplasm basalt milkvetch

    Treesearch

    Douglas A. Johnson; Thomas A. Jones; Kevin J. Connors; Kishor Bhattarai; B. Shaun Bushman; Kevin B. Jensen

    2008-01-01

    A selected-class pre-variety germplasm of basalt milkvetch (Astragalus filipes Torr. ex A. Gray [Fabaceae]) has been released for reclamation, rehabilitation, and restoration of semiarid rangelands in the northern Great Basin Region of the western US.

  18. Valence State Partitioning of Cr and V Between Pyroxene - Melt: Estimates of Oxygen Fugacity for Martian Basalt QUE 94201

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Papike, J. J.; Shearer, C. K.; McKay, G.; Le, L.; Burger, P.

    2007-01-01

    Several studies, using different oxybarometers, have suggested that the variation of fO2 in martian basalts spans about 3 log units from approx. IW-1 to IW+2. The relatively oxidized basalts (e.g., pyroxene-phyric Shergotty) are enriched in incompatible elements, while the relatively reduced basalts (e.g., olivine-phyric Y980459) are depleted in incompatible elements. A popular interpretation of the above observations is that the martian mantle contains two reservoirs; 1) oxidized and enriched, and 2) reduced and depleted. The basalts are thus thought to represent mixing between these two reservoirs. Recently, Shearer et al. determined the fO2 of primitive olivine-phyric basalt Y980459 to be IW+0.9 using the partitioning of V between olivine and melt. In applying this technique to other basalts, Shearer et al. concluded that the martian mantle shergottite source was depleted and varied only slightly in fO2 (IW to IW+1). Thus the more oxidized, enriched basalts had assimilated a crustal component on their path to the martian surface. In this study we attempt to address the above debate on martian mantle fO2 using the partitioning of Cr and V into pyroxene in pyroxene-phyric basalt QUE 94201.

  19. Heterogeneous source components of intraplate basalts from NE China induced by the ongoing Pacific slab subduction

    NASA Astrophysics Data System (ADS)

    Chen, Huan; Xia, Qun-Ke; Ingrin, Jannick; Deloule, Etienne

    2016-04-01

    In recent few years, the recycled oceanic slab has been increasingly suggested to be the enriched component in the mantle source of widespread intra-plate small-volume basaltic magmatism in eastern China. The recycled oceanic slab is a mixture of sediment, upper oceanic crust and lower gabbro oceanic crust, and will undergo alteration and dehydration during the recycling progress. The influence of these different components on the mantle source needs to be further constrained. The Chaihe-aershan volcanic field in Northeast China is located close to the surface position of the front edge of the subducted Pacific slab and includes more than 35 small-volume Quaternary basaltic volcanoes, which provides an opportunity to study the evolution of mantle source in detail and the small-scale geochemical heterogeneity of the mantle source. We measured the oxygen isotopes and water content of clinopyroxene (cpx) phenocrysts by secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectrometry (FTIR), respectively. The water content of magma was then estimated based on the partition coefficient of H2O between cpx and basaltic melt. The measured δ18O of cpx phenocrysts (4.27 to 8.57) and the calculated H2O content of magmas (0.23-2.70 wt.%) show large variations, reflecting the compositional heterogeneity of the mantle source. The δ18O values within individual samples also display a considerable variation, from 1.28 to 2.31‰ suggesting mixing of magmas or the sustained injection of magmas with different δ18O values during the crystallization. The relationship between the averaged δ18O values of cpx phenocrysts and the H2O/Ce, Ba/Th, Nb/La ratios and Eu anomaly of whole-rocks demonstrates the contribution to three components in the mantle source (hydrothermally altered upper oceanic crust or marine sediments, altered lower gabbroic oceanic crust, ambient mantle). The proportions of these three components varied strongly within a limited period (˜1.27 Ma to ˜0.25 Ma). As only the Pacific slab is constantly subducted to the eastern Asia during that time, we suggested that its ongoing subduction is the only reasonable candidate to result in the compositional heterogeneity and rapid variation of enriched components in such a limited and recent time. Combines with previous studies on other basalt localities of eastern China, these new results confirm that the Pacific slab subduction play a key role in the triggering of the wide spread Cenozoic basaltic volcanism in eastern China.

  20. Slab break-off triggered lithosphere - asthenosphere interaction at a convergent margin: The Neoproterozoic bimodal magmatism in NW India

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Pandit, Manoj K.; Zhao, Jun-Hong; Chen, Wei-Terry; Zheng, Jian-Ping

    2018-01-01

    The Neoproterozoic Malani Igneous Suite (MIS) is described as the largest felsic igneous province in India. The linearly distributed Sindreth and Punagarh basins located along eastern margin of this province represent the only site of bimodal volcanism and associated clastic sediments within the MIS. The in-situ zircon U-Pb dating by LA-ICPMS reveals that the Sindreth rhyolites were erupted at 769-762 Ma. Basaltic rocks from both the basins show distinct geochemical signatures that suggest an E-MORB source for Punagarh basalts (low Ti/V ratios of 40.9-28.2) and an OIB source (high Ti/V ratios of 285-47.6) for Sindreth basalts. In the absence of any evidence of notable crustal contamination, these features indicate heterogeneous mantle sources for them. The low (La/Yb)CN (9.34-2.10) and Sm/Yb (2.88-1.08) ratios of Punagarh basalts suggest a spinel facies, relatively shallow level mantle source as compared to a deeper source for Sindreth basalts, as suggested by high (La/Yb)CN (7.24-5.24) and Sm/Yb (2.79-2.13) ratios. Decompression melting of an upwelling sub-slab asthenosphere through slab window seems to be the most plausible mechanism to explain the geochemical characteristics. Besides, the associated felsic volcanics show A2-type granite signatures, such as high Y/Nb (5.97-1.55) and Yb/Ta (9.36-2.57) ratios, consistent with magma derived from continental crust that has been through a cycle of continent-continent collision or an island-arc setting. A localized extension within an overall convergent scenario is interpreted for Sindreth and Punagarh volcanics. This general convergent setting is consistent with the previously proposed Andean-type continental margin for NW Indian block, the Seychelles and Madagascar, all of which lay either at the periphery of Rodinia supercontinent or slightly off the Supercontinent.

  1. Palaeomagnetic directions of the volcanic rocks from Gramado Xavier, Rio Grande do Sul State, South Brazil: implications for time duration of the volcanic activity.

    NASA Astrophysics Data System (ADS)

    Raposo, M. I. B.; Canon-Tapia, E.; Guimarães, L. F.; Janasi, V. A.

    2015-12-01

    The magmatism in the LIP Paraná-Etendeka comprises basic and acid rocks. On the Paraná side, these rocks are basalt tholeiitic with high (>2%) and low TiO2 content, and dacites, rhyodacites, rhyolites and quartz latites forming the acid types Chapecó and Palmas. The volcanic acid Palmas are found in the South part of Brazil, and based on TiO2 and P2O5 contents are subdivided into Caxias do Sul, Santa Maria, Anita Garibaldi, Jacuí, Clevelândia and Barros Cassal units. In the studied region, the first stratigraphic sequence is low TiO2 basalt followed by Caxias do Sul, Barros Cassal and Santa Maria on top. We sampled all these units in the Gramado Xavier (Rio Grande do Sul State, South Brazil) region. To determine the mean magnetization directions of each site, samples were demagnetized by both thermal and AF techniques. The results show that the basalt flows recorded both normal and reverse polarities of the geomagnetic field. All sites from Caxias do Sul registered an anomalous direction suggesting an excursion of the geomagnetic field. Sites from Barros Cassal present both normal and reverse polarities. All sites from Santa Maria unit show a reverse polarity of the geomagnetic field. The normal and reverse polarities recorded in the different units are similar indicating contemporaneity of the magmatic source. Due to the existence of only one reversal event, a short duration of volcanism is suspected.

  2. Submarine alkalic through tholeiitic shield-stage development of Kīlauea volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Sisson, Thomas W.; Lipman, Peter W.; Naka, Jiro

    The submarine Hilina region exposes a succession of magma compositions spanning the juvenile "Lō'ihi" through tholeiitic shield stages of Kīlauea volcano. Early products, preserved as glass grains and clasts in volcaniclastic rocks of the 3000 m deep Hilina bench, include nephelinite, basanite, phonotephrite, hawaiite, alkali basalt, transitional basalt, and rare alkali-poor Mauna Loa-like tholeiite. Transitional basalt pillow lavas overlie the volcaniclastic section and record an early phase of subsequent subalkaline magmatism. Rare degassed tholeiitic pillow lava and talus above the volcaniclastic section are products of subaerial shield volcanism. Major and trace element variations of clasts and pillow lavas point to a factor of 2-2.5 increase in degree of melting from juvenile alkalic to modern tholeiitic Kīlauea. Progressive changes in element ratios that distinguish Hawaiian shield volcanoes, without commensurate changes in elements fractionated by partial melting, also signal increased contributions from Mauna Loa-type source regions as Kīlauea matured from its juvenile alkalic to its tholeiitic shield stage. Ancestral Kīlauea basanites and nephelinites were not primitive magmas but might have evolved from plume-derived alkali picritic parents by lithospheric-level crystallization differentiation, or solidification and remelting, involving pyroxene and garnet, similar to the subcrustal differentiation origin of hawaiites [Frey et al., 1990]. Low magmatic productivity early in Kīlauea's history sustained a poorly integrated trans-lithospheric conduit system in which magmas stalled and differentiated, producing evolved hawaiites, nephelinites, and basanites. This contrasts with shield-stage Kīlauea where high magmatic productivity flushes the conduit system and delivers primitive magmas to shallow levels.

  3. Geochemistry and petrogenesis of lava flows around Linga, Chhindwara area in the Eastern Deccan Volcanic Province (EDVP), India

    NASA Astrophysics Data System (ADS)

    Ganguly, Sohini; Ray, Jyotisankar; Koeberl, Christian; Saha, Abhishek; Thöni, Martin; Balaram, V.

    2014-09-01

    Based on systematic three-tier arrangement of vesicles, entablature and columnar joints, three distinct quartz normative tholeiitic lava flows (I, II and III) were recognized in the area around Linga, in the Eastern Deccan Volcanic Province (EDVP). Each of the flows exhibits intraflow chemical variations marked by high Mg#-low Ti, and low Mg#-high Ti contents. The MgO (4.27-7.74 wt.%), Mg# (23.45-41.89) and Zr (161.5-246.3 ppm) of Linga flows suggest an evolved chemistry marked by fractional crystallization and crustal contamination processes. Positive Rb and Th anomalies, negative Nb anomalies, relative enrichment of LILE-LREE with respect to Nb, Nb/Th:3.71-6.77 indicate crustal contamination of magma by continental materials through magma-crust interaction during melt migration and contributions from sub-continental lithospheric mantle (SCLM). Negative K, Sr and Ti anomalies corroborate an intracontinental, rift-controlled tectonic setting for the genesis and evolution of Linga basalts. Chondrite-normalized REE patterns reflect low HREE abundances and prominent LREE/HREE, MREE/HREE fractionation thereby pointing towards partial melting of garnet peridotite mantle source. Nb, Zr, Y variations suggest 10-15% partial melting of mantle source for the derivation of parent tholeiitic melt that suffered crystal fractionation of phenocrystal phases and subsequent liquid immiscibility. Critical evaluation of Srinitial and Ndinitial (65 Ma) isotopic compositions (87Sr/86Srinitial between 0.705656 and 0.706980 and 143Nd/144Ndinitial between 0.512523 and 0.512598) suggests that these basalts were derived from an enriched mantle (∼EM I-EM II) source. The εSr (21.84-41.27) and εNd (-0.28 to 1.10) isotopic signatures defined by higher εSr and lower εNd fingerprint a plume-related source. Positive and negative values of εNd indicate an isotopically heterogeneous mantle source marked by mixing of depleted (DM) and enriched mantle (EM I-EM II) components at the source region and together with 87Sr/86Srinitial ranging from 0.705656 to 0.706980 suggest two stage contamination of parent magma which is much similar to that of Poladpur, Toranmal, Mhow, Chikaldara flows. Ba/Y versus 87Sr/86Sr and Nb/Y versus Rb/Y variations show an Ambenali-Poladpur contamination trend for the Linga basalts thereby suggesting the role of upper continental granitic crust as the contaminant of these flows through magma-crust interaction during melt migration. The lava flows of Linga are geochemically correlatable with the Poladpur flows of southwestern and Toranmal flows of northern Deccan and show genetic coherence with the basalts of Jabalpur, Seoni, Chakhla-Delakhari of eastern Deccan.

  4. Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust

    USGS Publications Warehouse

    Guffanti, M.; Clynne, M.A.; Muffler, L.J.P.

    1996-01-01

    We have analyzed the heat and mass demands of a petrologic model of basaltdriven magmatic evolution in which variously fractionated mafic magmas mix with silicic partial melts of the lower crust. We have formulated steady state heat budgets for two volcanically distinct areas in the Lassen region: the large, late Quaternary, intermediate to silicic Lassen volcanic center and the nearby, coeval, less evolved Caribou volcanic field. At Caribou volcanic field, heat provided by cooling and fractional crystallization of 52 km3 of basalt is more than sufficient to produce 10 km3 of rhyolitic melt by partial melting of lower crust. Net heat added by basalt intrusion at Caribou volcanic field is equivalent to an increase in lower crustal heat flow of ???7 mW m-2, indicating that the field is not a major crustal thermal anomaly. Addition of cumulates from fractionation is offset by removal of erupted partial melts. A minimum basalt influx of 0.3 km3 (km2 Ma)-1 is needed to supply Caribou volcanic field. Our methodology does not fully account for an influx of basalt that remains in the crust as derivative intrusives. On the basis of comparison to deep heat flow, the input of basalt could be ???3 to 7 times the amount we calculate. At Lassen volcanic center, at least 203 km3 of mantle-derived basalt is needed to produce 141 km3 of partial melt and drive the volcanic system. Partial melting mobilizes lower crustal material, augmenting the magmatic volume available for eruption at Lassen volcanic center; thus the erupted volume of 215 km3 exceeds the calculated basalt input of 203 km3. The minimum basalt input of 1.6 km3 (km2 Ma)-1 is >5 times the minimum influx to the Caribou volcanic field. Basalt influx high enough to sustain considerable partial melting, coupled with locally high extension rate, is a crucial factor in development of Lassen volcanic center; in contrast. Caribou volcanic field has failed to develop into a large silicic center primarily because basalt supply there has been insufficient.

  5. Geochemistry and geochronology of the Mesozoic Lanong ophiolitic mélange, northern Tibet: Implications for petrogenesis and tectonic evolution

    NASA Astrophysics Data System (ADS)

    Zhong, Yun; Liu, Wei-Liang; Xia, Bin; Liu, Jing-Nan; Guan, Yao; Yin, Zhen-Xing; Huang, Qiang-Tai

    2017-11-01

    The Lanong ophiolitic mélange is a typical ophiolitic mélange in the middle section of the Bangong-Nujiang suture zone in northern Tibet. It mainly consists of ultramafic and mafic rocks, and its tectonic setting and formation age remain poorly constrained. In this paper, new geochemical and LA-ICP-MS (laser ablation-inductively coupled plasma mass spectrometer) zircon U-Pb age data obtained from gabbro, gabbro-dolerite, dolerite and basalt of the Lanong ophiolitic mélange are provided. The pillow basalts exhibit N-MORB (normal mid-ocean ridge basalt)-like geochemical features with a zircon U-Pb age of 147.6 ± 2.3 Ma. They were generated by 20-30% partial melting of a depleted mantle source composed of spinel lherzolite. The gabbro, massive basalt and gabbro-dolerite samples are characterised by more depleted and "V"-shaped REE (rare earth element) patterns, and they exhibit variable degrees of boninite-like geochemical characteristics, with a zircon U-Pb age of 149.1 ± 1.2 Ma (gabbro-dolerite). They were derived from the remelting of a significantly refractory mantle source following one or more episodes of previous basaltic melt extraction. Geochemical data of these mafic rocks indicate that they were developed in a continental fore-arc setting, and magmas were derived from depleted mantle sources modified by subducted slab-derived fluids and melts with minor crustal contamination. On the other hand, the dolerites show distinct OIB (oceanic island basalt)-like geochemical features, with a zircon U-Pb age of 244.1 ± 3.0 Ma. They were formed in a rift setting on a continental shelf-slope and originated from a low degree of partial melting of a depleted asthenospheric magma source mixed with some ancient sub-continental lithospheric mantle materials. The signatures presented here, combined with the results of previous studies, suggest that the Lanong ophiolitic mélange probably developed in a convergent plate margin under the southward subduction of the Bangong-Nujiang Tethys Ocean beneath the Lhasa terrane during the Middle Triassic-Early Cretaceous. Namely, the OIB-like dolerites likely reflect an extensional rift setting featuring thin continental crust in the Middle Triassic, and the gabbros, gabbro-dolerites and basalts represent a later stage of a fore-arc basin during the Late Jurassic-Early Cretaceous.

  6. Geochemistry of the Seamounts at the Southeast Chatham Rise, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolis, E. M.; Hoernle, K.; Hauff, F.; Garbe-Schönberg, D.; Werner, R.; Gohl, K.

    2017-12-01

    The submarine Chatham Rise, east Zealandia, is a key location of the early continental breakup of the eastern Gondwana (< 100 Ma; [1]). It has been suggested that a mantle plume beneath Zealandia and West Antarctica existed and that a slab window formed as a consequence of the collision of the Hikurangi oceanic plateau with the Chatham Rise, allowing deeper mantle material to upwell and hence cause the rifting. However, the exact processes that have led to this rifting and the sequence of reorganization in the upper mantle in course of and after the breakup of Zealandia from West Antarctica are still unclear. We present new major and trace element and Sr-Nd and high-precision Pb isotope data from submarine samples recovered during the R/V Sonne research expedition SO246 at the southeast Chatham Rise, covering the Chatham Rise Terrace and adjacent areas of the margin and the abyssal plain. The samples include alkali and tholeiitic basalts and minor basanite and trachybasalt, all of which have a composition between ocean island basalt (OIB) and mid-ocean-ridge basalt (MORB). Trace element ratios (e.g., Th/Yb, Nb/Yb) indicate that all but one seamount were derived from enriched sources at a low degree of melting, while one of the seamounts close to the abyssal plain was derived from a depleted mantle source at a high degree of melting. Sr-Nd-Pb isotope variations further support contribution of at least three distinct mantle source components, including a HIMU (high time-integrated U/Pb)-type sources, an enriched mantle (EM)-type sources, and a depleted mantle (N-MORB)-type source. These observations appear to be consistent with previous published data and models proposed by [2] and [3]. These sources will be placed in a chronological framework by incorporating further geochemical data and 40Ar-39Ar ages, providing us better insights into the sequence of events and magmatic processes that occurred at this region. References:[1] Davy et al. (2008), Hikurangi Plateau: Crustal structure, rifted formation, and Gondwana subduction history, G3, 9, Q07004. [2] Hoernle et al. (2006), Cenozoic intraplate volcanism on New Zealand: Upwelling induced by lithospheric removal, EPSL, 248, 350-367. [3] Timm et al. (2010), Temporal and geochemical evolution of the Cenozoic intraplate volcanism of Zealandia, Earth-Sci. Rev., 98, 38-64.

  7. Bromine partitioning between olivine and melt at OIB source conditions: Indication for volatile recycling

    NASA Astrophysics Data System (ADS)

    Joachim, Bastian; Ruzié, Lorraine; Burgess, Ray; Pawley, Alison; Clay, Patricia L.; Ballentine, Christopher J.

    2016-04-01

    Halogens play a key role in our understanding of volatile transport processes in the Earth's mantle. Their moderate (fluorine) to highly (iodine) incompatible and volatile behavior implies that their distribution is influenced by partial melting, fractionation and degassing processes as well as fluid mobilities. The heavy halogens, particularly bromine and iodine, are far more depleted in the Earth's mantle than expected from their condensation temperature (Palme and O'Neill 2014), so that their very low abundances in basalts and peridotites (ppb-range) make it analytically challenging to investigate their concentrations in Earth's mantle reservoirs and their behavior during transport processes (Pyle and Mather, 2009). We used a new experimental technique, which combines the irradiation technique (Johnson et al. 2000), laser ablation and conventional mass spectrometry. This enables us to present the first experimentally derived bromine partition coefficient between olivine and melt. Partitioning experiments were performed at 1500° C and 2.3 GPa, a P-T condition that is representative for partial melting processes in the OIB source region (Davis et al. 2011). The bromine partition coefficient between olivine and silicate melt at this condition has been determined to DBrol/melt = 4.37•10-4± 1.96•10-4. Results show that bromine is significantly more incompatible than chlorine (˜1.5 orders of magnitude) and fluorine (˜2 orders of magnitude) due to its larger ionic radius. We have used our bromine partitioning data to estimate minimum bromine abundances in EM1 and EM2 source regions. We used minimum bromine bulk rock concentrations determined in an EM1 (Pitcairn: 1066 ppb) and EM2 (Society: 2063 ppb) basalt (Kendrick et al. 2012), together with an estimated minimum melt fraction of 0.01 in OIB source regions (Dasgupta et al. 2007). The almost perfect bromine incompatibility results in minimum bromine abundances in EM1 and EM2 OIB source regions of 11 ppb and 20 ppb, respectively. The effect on the partitioning behaviour of other minerals such as pyroxene, mantle inhomogeneity, incongruent melting, a potential effect of iron, temperature, pressure or the presence of fluids, would be to shift the estimated bromine mantle source concentration to higher but not to lower values. Comparing our minimum bromine OIB source region estimate with the estimated primitive mantle bromine abundance (3.6 ppb; Lyubetskaya and Korenaga, 2007) implies that the OIB source mantle is enriched in bromine relative to the primitive mantle by at least a factor of 3 in EM1 source regions and a factor of 5.5 in EM2 source regions. One explanation is that bromine may be efficiently recycled into the OIB source mantle region through recycling of subducted oceanic crust. Dasgupta R, Hirschmann MM, Humayun, ND (2007) J. Petrol. 48, pp. 2093-2124. Davis FA, Hirschmann MM, Humayun M (2011) Earth Planet. Sci. Lett. 308, pp. 380-390. Johnson L, Burgess R, Turner G, Milledge JH, Harris JW (2000) Geochim. Cosmochim. Acta 64, pp. 717-732. Kendrick MA, Woodhead JD, Kamenetsky VS (2012) Geol. 32, pp. 441-444. Lyubetskaya T, Korenaga J (2007) J. Geophys. Res.-Sol. Earth 112, B03211. Palme H, O'Neill HStC (2014). Cosmochemical Estimates of Mantle Composition. Treat. Geochem. 2nd edition, 3, pp. 1-39. Pyle DM, Mather TA (2009) Chem. Geol. 263, pp. 110-121.

  8. Petrology and geochemistry of komatiites and tholeiites from Gorgona Island, Colombia

    NASA Astrophysics Data System (ADS)

    Aitken, Bruce G.; Echeverría, Lina M.

    1984-04-01

    Komatiitic rocks from Gorgona Island, Colombia, in contrast to their Archaean counterparts, occur as rather structureless flows. In addition, textural and mineralogical features indicate that the Gorgona komatiites may have crystallized from superheated liquids. Komatiitic rocks have MgO contents which range from 24 to 11 wt.% and plot on well-defined olivine (Fo90) control lines. Calculations show that potential evolved liquids (MgO<11 wt%) will be SiO2-poor. Komatiites, in this case, cannot be regarded as parental to the associated tholeiitic basalt sequence. On the basis of REE concentrations and Sr, Nd isotopic compositions, the associated basalts are found to be of two types. One type (K-tholeiite) is characterized by noticeably fractionated REE patterns and relatively primitive isotopic compositions similar to those of the komatiites. K-tholeiites, together with komatiites, are regarded as comprising a distinctive komatiitic suite. REE patterns within this suite show progressive depletion in the LREE from K-tholeiites to komatiites, and represent increasingly higher degrees of melting of the same mantle source region. The other type (T-tholeiite), representative of the bulk of the exposed basalt sequence, has flat REE patterns and relatively evolved isotopic compositions. This tholeiitic suite is clearly genetically unrelated to the komatiitic suite.

  9. Understanding heat and groundwater flow through continental flood basalt provinces: insights gained from alternative models of permeability/depth relationships for the Columbia Plateau, USA

    USGS Publications Warehouse

    Burns, Erick R.; Williams, Colin F.; Ingebritsen, Steven E.; Voss, Clifford I.; Spane, Frank A.; DeAngelo, Jacob

    2015-01-01

    Heat-flow mapping of the western USA has identified an apparent low-heat-flow anomaly coincident with the Columbia Plateau Regional Aquifer System, a thick sequence of basalt aquifers within the Columbia River Basalt Group (CRBG). A heat and mass transport model (SUTRA) was used to evaluate the potential impact of groundwater flow on heat flow along two different regional groundwater flow paths. Limited in situ permeability (k) data from the CRBG are compatible with a steep permeability decrease (approximately 3.5 orders of magnitude) at 600–900 m depth and approximately 40°C. Numerical simulations incorporating this permeability decrease demonstrate that regional groundwater flow can explain lower-than-expected heat flow in these highly anisotropic (kx/kz ~ 104) continental flood basalts. Simulation results indicate that the abrupt reduction in permeability at approximately 600 m depth results in an equivalently abrupt transition from a shallow region where heat flow is affected by groundwater flow to a deeper region of conduction-dominated heat flow. Most existing heat-flow measurements within the CRBG are from shallower than 600 m depth or near regional groundwater discharge zones, so that heat-flow maps generated using these data are likely influenced by groundwater flow. Substantial k decreases at similar temperatures have also been observed in the volcanic rocks of the adjacent Cascade Range volcanic arc and at Kilauea Volcano, Hawaii, where they result from low-temperature hydrothermal alteration.

  10. Was Late Cretaceous Magmatism in the Northern Rocky Mountains Really Arc-Related?

    NASA Astrophysics Data System (ADS)

    Farmer, G.

    2011-12-01

    Calc-alkaline, Cretaceous magmatism affected much of the northern Rocky Mountain region in the western U.S. and is generally interpreted as continental arc magmatism despite the fact that it occurred as far east into the continental interior as the Late Cretaceous (75 Ma to 78 Ma) Sliderock Mountain volcanoplutonic complex in south-central Montana. Magmatism may have migrated so far inboard as a response to shallowing of the dip angle of underthrust oceanic lithosphere, but the exact sources, tectonic setting and trigger mechanisms for the Late Cretaceous igneous activity remain unclear. In this study, new trace element and Nd and Sr isotopic data, combined with existing age and major element data (duBray et al., 1998, USGS Prof. Paper 1602), from the most mafic lavas present at the Sliderock Mountain Volcano were used to further define the source regions of the Late Cretaceous magmatism. The most mafic lava flows are high K (~2-3 wt. % K2O), low Ti (< 1 wt. % TiO2), low Ni (< 20 ppm) basaltic andesites. Major element oxide contents for these rocks are only weakly correlated with increasing wt. % SiO2 on conventional Harker diagrams. All of the rocks are characterized by high LILE/HFSE ratios and high Pb contents (17-20 ppm), as expected for arc-related magmatism. The rocks also have high (La/Yb)N (7-20) but show decreasing (Dy/Yb)N with increasing wt.% SiO2, suggesting a cryptic role for amphibole fractionation during evolution of their parental magmas. Initial ɛNd values range from -19 to -29 but do not covary with rock bulk composition and as a result are unlikely to represent the result of interaction with local Archean continental crust. Initial 87Sr/86Sr, in contrast, vary over a restricted range from 0.7045 to 0.7065. The lowest 87Sr/86Sr correspond to samples with the highest Sr/Y (120-190). The low ɛNd values for the basaltic andesites suggest that if these volcanic rocks were ultimately derived from ultramafic mantle sources, melting must have occurred in Archean mantle lithosphere. Given the correlation between increasing Sr/Y and decreasing 87Sr/86Sr in the basaltic andesites, one possible trigger mechanism for lithospheric mantle melting is the influx into the thick Archean mantle keel of slab fluids (possibly including high Sr/Y slab melts) derived from oceanic lithosphere underthrust beneath this region in the Late Cretaceous. In this case, the Sliderock Mountain Volcano could, in fact, represent an example of continental interior "arc" magmatism.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copuroglu, Oguzhan, E-mail: O.Copuroglu@CiTG.TUDelft.NL; Andic-Cakir, Ozge; Broekmans, Maarten A.T.M.

    In this paper, the alkali-silica reaction performance of a basalt rock from western Anatolia, Turkey is reported. It is observed that the rock causes severe gel formation in the concrete microbar test. It appears that the main source of expansion is the reactive glassy phase of the basalt matrix having approximately 70% of SiO{sub 2}. The study presents the microstructural characteristics of unreacted and reacted basalt aggregate by optical and electron microscopy and discusses the possible reaction mechanism. Microstructural analysis revealed that the dissolution of silica is overwhelming in the matrix of the basalt and it eventually generates four consequences:more » (1) Formation of alkali-silica reaction gel at the aggregate perimeter, (2) increased porosity and permeability of the basalt matrix, (3) reduction of mechanical properties of the aggregate and (4) additional gel formation within the aggregate. It is concluded that the basalt rock is highly prone to alkali-silica reaction. As an aggregate, this rock is not suitable for concrete production.« less

  12. Pliocene and Pleistocene alkalic flood basalts on the seafloor north of the Hawaiian islands

    USGS Publications Warehouse

    Clague, D.A.; Holcomb, R.T.; Sinton, J.M.; Detrick, R. S.; Torresan, M.E.

    1990-01-01

    The North Arch volcanic field is located north of Oahu on the Hawaiian Arch, a 200-m high flexural arch formed by loading of the Hawaiian Islands. These flood basalt flows cover an area of about 25,000 km2; the nearly flat-lying sheet-like flows extend about 100 km both north and south from the axis of the flexural arch. Samples from 26 locations in the volcanic field range in composition from nephelinite to alkalic basalt. Ages estimated from stratigraphy, thickness of sediment on top of the flows, and thickness of palagonite alteration rinds on the recovered lavas, range from about 0.75-0.9 Ma for the youngest lavas to somewhat older than 2.7 Ma for the oldest lavas. Most of the flow field consists of extensive sheetflows of dense basanite and alkalic basalt. Small hills consisting of pillow basalt and hyaloclastite of mainly nephelinite and alkalic basalt occur within the flow field but were not the source vents for the extensive flows. Many of the vent lavas are highly vesicular, apparently because of degassing of CO2. The lavas are geochemically similar to the rejuvenated-stage lavas of the Koloa and Honolulu Volcanics and were generated by partial melting of sources similar to those of the Koloa Volcanics. Prior to eruption, these magmas may have accumulated at or near the base of the lithosphere in a structural trap created by upbowing of the lithosphere. ?? 1990.

  13. Scientific Drilling in the Snake River Plain: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Hanan, B. B.; Hughes, S. S.; Geist, D.; Vetter, S. K.

    2006-12-01

    The Snake River-Yellowstone volcanic province has long been linked to the concept of lithospheric drift over a fixed mantle thermal anomaly or hotspot. This concept is reinforced by seismic tomography that images this anomaly to depths around 500 km, but alternative proposals still present a serious challenge. Basaltic volcanism spans a significant age range and basaltic volcanism in the western SRP lies well off the hotspot track and cannot be related directly to the hotspot in any simple way. The plume-track age progression is documented by rhyolite volcanic centers, but even these represent extended time periods that overlap in age with adjacent centers. Scientific drilling projects carried out over the last two decades have made significant contributions to our understanding of both basaltic and rhyolitic volcanism associated with the Snake River-Yellowstone hotspot system. Because these drill holes also intercept sedimentary interbeds or, in the case of the western SRP, thick sections of Pliocene and Pleistocene sediments, they have also contributed to our understanding of basin formation by thermal collapse in the wake of the hotspot passage or by rifting, paleoclimate of the interior west, and groundwater systems in volcanic rocks. Many of these drill holes are associated with the Idaho National Laboratory (INL) in the eastern plain; others were drilled for geothermal or petroleum exploration. The latter include older holes that were not instrumented or logged in detail, but which still provide valuable stratigraphic controls. We focus here on the result of basalt drilling, which have been high-lighted in recent publications. Basaltic volcanism in the Snake River plain is dominated by olivine tholeiites that have major and trace element characteristics of ocean island basalt: the range in MgO is similar to MORB, but Ti, Fe, P, K, Sr, Zr and LREE/HREE ratios are all higher. Recent studies of basalts from the drill holes show that they evolved by fractionation in a mid-crustal sill complex that has been imaged seismically. Further, the chemical and isotopic systematics of these basalts require assimilation of consanguineous mafic material inferred to represent previously intruded sills. Major and trace element modeling suggest formation of the primary melts by melting of a source similar to E- MORB source. Trace element systematics document mixing between a plume-like source and a more depleted source that is not DMM. A similar more depleted source is inferred for Hawaii, suggesting that it is not continental lithosphere. Future scientific drilling in the SRP is the focus of Project HOTSPOT, a multi-disciplinary initiative that seeks to document time-space variations in the SRP-Yellowstone volcanic system. A workshop sponsored by the International Continental Drilling Program was held in May 2006 to develop a targeted program of scientific drilling that examines the entire plume-lithosphere system across a major lithospheric boundary, with holes targeting basalt, rhyolite, and sediments. These drill holes will complement geophysical studies of continental dynamics (e.g., Earthscope), as well as current studies centered on Yellowstone. Additional components of a targeted drilling program include studies of lacustrine sediments that document paleoclimate change in North America during the Pliocene—Pleistocene and fluid flow at deeper crustal levels.

  14. Characterization of multiple lithologies within the lunar feldspathic regolith breccia meteorite Northeast Africa 001

    NASA Astrophysics Data System (ADS)

    Snape, Joshua F.; Joy, Katherine H.; Crawford, Ian A.

    2011-09-01

    Abstract- Lunar meteorite Northeast Africa (NEA) 001 is a feldspathic regolith breccia. This study presents the results of electron microprobe and LA-ICP-MS analyses of a section of NEA 001. We identify a range of lunar lithologies including feldspathic impact melt, ferroan noritic anorthosite and magnesian feldspathic clasts, and several very-low titanium (VLT) basalt clasts. The largest of these basalt clasts has a rare earth element (REE) pattern with light-REE (LREE) depletion and a positive Euanomaly. This clast also exhibits low incompatible trace element (ITE) concentrations (e.g., <0.1 ppm Th, <0.5 ppm Sm), indicating that it has originated from a parent melt that did not assimilate KREEP material. Positive Eu-anomalies and such low-ITE concentrations are uncharacteristic of most basalts returned by the Apollo and Luna missions, and basaltic lunar meteorite samples. We suggest that these features are consistent with the VLT clasts crystallizing from a parent melt which was derived from early mantle cumulates that formed prior to the separation of plagioclase in the lunar magma ocean, as has previously been proposed for some other lunar VLT basalts. Feldspathic impact melts within the sample are found to be more mafic than estimations for the composition of the upper feldspathic lunar crust, suggesting that they may have melted and incorporated material from the lower lunar crust (possibly in large basin-forming events). The generally feldspathic nature of the impact melt clasts, lack of a KREEP component, and the compositions of the basaltic clasts, leads us to suggest that the meteorite has been sourced from the Outer-Feldspathic Highlands Terrane (FHT-O), probably on the lunar farside and within about 1000 km of sources of both Low-Ti and VLT basalts, the latter possibly existing as cryptomaria deposits.

  15. Mineral composition of lunar late mare volcanism revealed from Kaguya SP data

    NASA Astrophysics Data System (ADS)

    Kato, S.; Morota, T.; Yamaguchi, Y.; Watanabe, S.; Otake, H.; Ohtake, M.; Nimura, T.

    2017-12-01

    Lunar mare basalts provide insights into the composition and thermal history of the lunar mantle. According to previous studies of crater counting analysis using remote sensing data, the ages of mare basalts suggest a first peak of magma activity at 3.2-3.8 Ga and a second peak at 2 Ga. To understand the mechanism for causing the second peak and its magma source is essential to constrain the thermal history of the lunar mantle. In our previous study [Kato et al., 2017], we reassess the correlation between the titanium contents and the eruption ages of mare basalt units using the compositional and chronological data updated by SELENE (Kaguya). The results show a rapid increase in mean titanium content near 2.3 Ga in the Procellarum KREEP Terrane (PKT), where the latest eruptions are concentrated. Moreover, the high-titanium basaltic eruptions are correlated with the second peak in volcanic activity at 2 Ga. Here we designate volcanisms before and after 2.3 Ga as Phase-1 and Phase-2 volcanism. To understand the mechanism of Phase-2 mare volcanism and its magma source, determining the mineral components and elemental compositions of mare basalts in the PKT is important. Nimura [2011] improved the modified Gaussian model (MGM) [Sunshine et al., 1990] by obtaining the relations between chemical compositions of minerals (the ratio of Fe/(Fe+Mg) in olivine and the ratios of Ca/(Ca+Fe+Mg) and Fe/(Ca+Fe+Mg) in pyroxene) and absorption band parameters (center, width and strength ratio of Gaussian curves). In this study, we re-derived the relations using experimental spectral data and applied the method to spectral data of mare basalts obtained by Kaguya Spectral Profiler (SP) to estimate the mineral components and elemental compositions of lunar mare basalts.

  16. Generation and Evolution of Quaternary Magmas Beneath Tengchong: Sr-Nd-Pb-Hf Isotope and Zircon U-series Age Constraints

    NASA Astrophysics Data System (ADS)

    Zou, H.; Ma, M.; Fan, Q.; Xu, B.; Li, S. Q.; Zhao, Y.; King, D. T., Jr.

    2017-12-01

    The Tengchong volcanic field on the southeastern margin of the Tibetan Plateau represents rare Quaternary volcanic eruptions on the plateau. The Quaternary Tengchong volcanic field formed high-potassium calc-alkaline volcanic rocks that include trachybasalts, basaltic trachyandesites, trachyandesites, and dacites. Herein, we present comprehensive Nd-Sr-Pb-Hf isotopic and elemental data for trachybasalts, basaltic trachyandesites, and trachyandesites from four young Tengchong volcanoes at Maanshan, Dayingshan, Heikongshan, and Laoguipo, in order to understand their magma genesis and evolution. Nd-Sr-Pb-Hf isotopes for the primitive Tengchong magma (trachybasalts with SiO2 <52.5 wt. % and MgO >5.5% wt. %) reflect a heterogeneous enriched mantle source. High Th/U, Th/Ta, and Rb/Nb ratios and Nd-Sr-Pb-Hf isotope characteristics of the primitive magmas suggest that the enriched mantle beneath Tengchong formed as a result of subduction of clay-rich sediments, which probably came from the Indian continental plate. Partial melting of the enriched mantle was generated by deep continental subduction coupled with recent regional extension in the Tengchong area. With regard to the evolved magmas (basaltic trachyandesites and trachyandesites), good correlations between SiO2 content and the ratios 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, and 177Hf/176Hf strongly suggest that the combined assimilation and fractional crystallization (AFC) was an important process during magma evolution to form these basaltic trachyandesites and trachyandesites. Uranium-series zircon dating on these evolved lavas from Tengchong is used to constrain their magma evolution and residence timescales.

  17. Assimilation by lunar mare basalts: Melting of crustal material and dissolution of anorthite

    NASA Astrophysics Data System (ADS)

    Finnila, A. B.; Hess, P. C.; Rutherford, M. J.

    1994-07-01

    We discuss techniques for calculating the amount of crustal assimilation possible in lunar magma chambers and dikes based on thermal energy balances, kinetic rates, and simple fluid mechanical constraints. Assuming parent magmas of picritic compositions, we demonstrate the limits on the capacity of such magmas to melt and dissolve wall rock of anorthitic, troctolitic, noritic, and KREEP (quartz monzodiorite) compositions. Significant melting of the plagioclase-rich crustal lithologies requires turbulent convection in the assimilating magma and an efficient method of mixing in the relatively buoyant and viscous new melt. Even when this occurs, the major element chemistry of the picritic magmas will change by less than 1-2 wt %. Diffusion coefficients measured for Al2O3 from an iron-free basalt and an orange glass composition are 10-12 sq m/s at 1340 C and 10-11 sq m/s at 1390 C. These rates are too slow to allow dissolution of plagioclase to significantly affect magma compositions. Picritic magmas can melt significant quantities of KREEP, which suggests that their trace element chemistry may still be affected by assimilation processes; however, mixing viscous melts of KREEP composition with the fluid picritic magmas could be prohibitively difficult. We conclude that only a small part of the total major element chemical variation in the mare basalt and volcanic glass collection is due to assimilation/fractional crystallization processes near the lunar surface. Instead, most of the chemical variation in the lunar basalts and volcanic glasses must result from assimilation at deeper levels or from having distinct source regions in a heterogeneous lunar mantle.

  18. Assimilation by lunar mare basalts: Melting of crustal material and dissolution of anorthite

    NASA Technical Reports Server (NTRS)

    Finnila, A. B.; Hess, P. C.; Rutherford, M. J.

    1994-01-01

    We discuss techniques for calculating the amount of crustal assimilation possible in lunar magma chambers and dikes based on thermal energy balances, kinetic rates, and simple fluid mechanical constraints. Assuming parent magmas of picritic compositions, we demonstrate the limits on the capacity of such magmas to melt and dissolve wall rock of anorthitic, troctolitic, noritic, and KREEP (quartz monzodiorite) compositions. Significant melting of the plagioclase-rich crustal lithologies requires turbulent convection in the assimilating magma and an efficient method of mixing in the relatively buoyant and viscous new melt. Even when this occurs, the major element chemistry of the picritic magmas will change by less than 1-2 wt %. Diffusion coefficients measured for Al2O3 from an iron-free basalt and an orange glass composition are 10(exp -12) sq m/s at 1340 C and 10(exp -11) sq m/s at 1390 C. These rates are too slow to allow dissolution of plagioclase to significantly affect magma compositions. Picritic magmas can melt significant quantities of KREEP, which suggests that their trace element chemistry may still be affected by assimilation processes; however, mixing viscous melts of KREEP composition with the fluid picritic magmas could be prohibitively difficult. We conclude that only a small part of the total major element chemical variation in the mare basalt and volcanic glass collection is due to assimilation/fractional crystallization processes near the lunar surface. Instead, most of the chemical variation in the lunar basalts and volcanic glasses must result from assimilation at deeper levels or from having distinct source regions in a heterogeneous lunar mantle.

  19. Pyroclastic Deposits in the Floor-fractured Crater Alphonsus

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Donaldson-Hanna, Kerri L.; Pieters, Carle M.; Moriarty, Daniel P.; Greenhagen, Benjamin T.; Bennett, Kristen A.; Kramer, Georgiana Y.; Paige, David A.

    2013-01-01

    Alphonsus, the 118 km diameter floor-fractured crater, is located immediately east of Mare Nubium. Eleven pyroclastic deposits have been identified on the crater's floor. Early telescopic spectra suggest that the floor of Alphonsus is noritic, and that the pyroclastic deposits contain mixtures of floor material and a juvenile component including basaltic glass. Head and Wilson contend that Nubium lavas intruded the breccia zone beneath Alphonsus, forming dikes and fractures on the crater floor. In this model, the magma ascended to the level of the mare but cooled underground, and a portion broke thru to the surface in vulcanian (explosive) eruptions. Alternatively, the erupted material could be from a source unrelated to the mare, in the style of regional pyroclastic deposits. High-resolution images and spectroscopy from the Moon Mineralogy Mapper (M3), Diviner Lunar Radiometer, and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (NAC) provide data to test these formation models. Spectra from M3 confirm that the crater floor is primarily composed of noritic material, and that the Nubium lavas are basaltic. Spectra from the three largest pyroclastic deposits in Alphonsus are consistent with a minor low- Ca pyroxene component in a glass-rich matrix. The centers of the 2 micron absorption bands have wavelengths too short to be of the same origin as the Nubium basalts. Diviner Christiansen feature (CF) values were used to estimate FeO abundances for the crater floor, Nubium soil, and pyroclastic deposits. The estimated abundance for the crater floor (7.5 +/- 1.4 wt.%) is within the range of FeO values for Apollo norite samples. However, the estimated FeO abundance for Nubium soil (13.4 +/- 1.4 wt.%) is lower than those measured in most mare samples. The difference may reflect contamination of the mare soil by highland ejecta. The Diviner-derived FeO abundance for the western pyroclastic deposit is 13.8 +/- 3.3 wt.%. This is lower than the values for mare soil samples, but within the range of analyzed pyroclastic glasses. The NAC images of the pyroclastic vents highlight their bright wall materials. The M3 spectra of the southeastern vent indicate that this bright material is noritic, likely crater floor material exposed by explosive eruption. These observations address the hypothesis that Nubium lavas intruded the fracture network beneath Alphonsus, leading to localized vulcanian-style eruptions. This model implies that the eruption products should be dominated by crystalline basalt fragments similar in elemental composition and mineralogy to mare lavas. The bright noritic material exposed in the vent walls is consistent with explosive eruptions. The estimated FeO abundances for the pyroclastic deposits are too low to be consistent with FeO abundances measured in mare basalts, but are within the range of pyroclastic glass samples. The visible- to near-infrared (VIS-NIR) spectra of the pyroclastic deposits and Nubium soils are significantly different, suggesting that the pyroclastics are unrelated to the mare basalts. The pyroclastic spectra are consistent with Fe-bearing glass plus small amounts of noritic wall rock. Similar glassy materials dominate regional pyroclastic deposits, suggesting a deep source for the pyroclastics observed in Alphonsus.

  20. Radar Probing of Planetary Regoliths: An Example from the Northern Rim of Imbrium Basin

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas W.; Campbell, Bruce A.; Ghent, Rebecca R.; Hawke, B. Ray; Leverington, David W.

    2006-01-01

    Imaging radar measurements at long wavelengths (e.g., >30 cm) allow deep (up to tens of meters) probing of the physical structure and dielectric properties of planetary regoliths. We illustrate a potential application for a Mars orbital synthetic aperture radar (SAR) using new Earth-based 70-cm wavelength radar data for the Moon. The terrae on the northern margin of Mare Imbrium, the Montes Jura region, have diffuse radar backscatter echoes that are 2-4 times weaker at 3.8-cm, 70-cm, and 7.5-m wavelengths than most other lunar nearside terrae. Possible geologic explanations are (1) a pyroclastic deposit associated with sinuous rilles in this region, (2) buried mare basalt or a zone of mixed highland/basaltic debris (cryptomaria), or (3) layers of ejecta associated with the Iridum and Plato impacts that have fewer meter-sized rocks than typical highlands regolith. While radar data at 3.8-cm to 7.5-m wavelengths suggest significant differences between the Montes Jura region and typical highlands, the surface geochemistry and rock abundance inferred from Clementine UV-VIS data and eclipse thermal images are consistent with other lunar terrae. There is no evidence for enhanced iron abundance, expected for basaltic pyroclastic deposits, near the source vents of the sinuous rilles radial to Plato. The regions of low 70-cm radar return are consistent with overlapping concentric ''haloes'' about Iridum and Plato and do not occur referentially in topographically low areas, as is observed for radar-mapped cryptomaria. Thus we suggest that the extensive radar-dark area associated with the Montes Jura region is due to overlapping, rock-poor ejecta deposits from Iridum and Plato craters. Comparison of the radial extent of low-radar-return crater haloes with a model for ejecta thickness shows that these rock-poor layers are detected by 70-cm radar where they are on the order of 10 m and thicker. A SAR in orbit about Mars could use similar deep probing to reveal the nature of crater - and basin-related deposits.

  1. The Cocos Ridge hydrothermal system revealed by microthermometry of fluid and melt inclusions

    NASA Astrophysics Data System (ADS)

    Brandstätter, J.; Kurz, W.; Krenn, K.

    2017-12-01

    Microthermometric analyses of fluid and melt inclusions in hydrothermal veins and in the Cocos Ridge (CCR) basalt were used to reveal the CCR thermal history at IODP Site 344-U1414 and to constrain fluid source and flow. Hydrothermal veins are hosted by lithified sediments and CCR basalt . Site 344-U1414, located 1 km seaward of the Middle American Trench offshore Costa Rica, serves to evaluate fluid/rock interaction, the hydrologic system and geochemical processes linked with the tectonic evolution of the incoming Cocos Plate from the Early Miocene up to recent times. The veins in the sedimentary rocks are mainly filled by blocky calcite, containing numerous fluid inclusions, and sometimes crosscut fibrous quartz/chalcedony veins. The veins in the basalt can be differentiated into three types: antitaxial fibrous calcite veins, composite veins with fibrous calcite and clay minerals at the vein margins and spherulitic quartz in the center, and syntaxial blocky aragonite veins surrounded by a clay selvage in the uppermost CCR basalt sections. Secondary minerals, clay minerals, fibrous calcite, quartz/chalcedony and pyrite also filled vesicles in the basalt. Fluid inclusions were mainly found in the aragonite veins and rarely in quartz in the composite veins and vesicles. Blocky veins with embedded wall rock fragments appear in the sediments and in the basalt indicate hydraulic fracturing. The occurrence of decrepitated fluid inclusions show high homogenization temperatures up to 400 °C. Decrepitated fluid inclusions are formed by increased internal overpressure, related to isobaric heating. Elongated fluid inclusion planes, arc-like fluid inclusions and low homogenization temperatures indicate subsequent isobaric cooling. The results obtained so far from Raman spectroscopy and microthermometry indicate CO2 inclusions and petrographic observations suggest the presence of silicate melt inclusions in phenocrysts in the basalt (mainly in clinopyroxene and plagioclase). The microthermometric data indicate a seawater/pore water like fluid source in communication with a deeper sourced, up to 400 °C hot fluid. This implies that seawater within the Cocos Ridge aquifer communicated with high-temperature fluids and/or were modified by heat advection.

  2. Experimental Melting Study of Basalt-Peridotite Hybrid Source: Constrains on Chemistry of Recycled Component

    NASA Astrophysics Data System (ADS)

    Gao, S.; Takahashi, E.; Matsukage, K. N.; Suzuki, T.; Kimura, J. I.

    2015-12-01

    It is believed that magma genesis of OIB is largely influenced by recycled oceanic crust component involved in the mantle plume (e.g., Hauri et al., 1996; Takahashi & Nakajima., 2002; Sobolev et al., 2007). Mallik & Dasgupta (2012) reported that the wall-rock reaction in MORB-eclogite and peridotite layered experiments produced a spectrum of tholeiitic to alkalic melts. However, the proper eclogite source composition is still under dispute. In order to figure out the geochemistry of recycled component as well as their melting process, we conducted a series of high-P, high-T experiments. Melting experiments (1~10hrs) were performed under 2.9GPa with Boyd-England type piston-cylinder (1460~1540°C for dry experiments, 1400~1500°C for hydrous experiments) and 5GPa with Kawai-type multi-anvil (1550~1650°C for dry experiments, 1350~1550°C for hydrous experiments), at the Magma Factory, Tokyo Tech. Spinel lherzolite KLB-1 (Takahashi 1986) was employed as peridotite component. Two basalts were used as recycled component: Fe-enriched Columbia River basalt (CRB72-180, Takahashi et al., 1998) and N-type MORB (NAM-7, Yasuda et al., 1994). In dry experiments below peridotite dry solidus, melt compositions ranged from basaltic andesite to tholeiite. Opx reaction band generated between basalt and peridotite layer hindered chemical reaction. On the other hand, alkali basalt was formed in hydrous run products because H2O promoted melting process in both layers. Compared with melts formed by N-MORB-peridotite runs, those layered experiments with CRB are enriched in FeO, TiO2, K2O and light REE at given MgO. In other words, melts produced by CRB-peridotite layered experiments are close to alkali basalts in OIB and tholeiite in Hawaii, while those by layered experiments with N-MORB are poor in above elements. Thus we propose that Fe-rich Archean or Proterozoic tholeiite (BVSP 1980) would be a possible candidate for recycled component in OIB source.

  3. Petrogenesis of meta-volcanic rocks from the Maimón Formation (Dominican Republic): Geochemical record of the nascent Greater Antilles paleo-arc

    NASA Astrophysics Data System (ADS)

    Torró, Lisard; Proenza, Joaquín A.; Marchesi, Claudio; Garcia-Casco, Antonio; Lewis, John F.

    2017-05-01

    Metamorphosed basalts, basaltic andesites, andesites and plagiorhyolites of the Early Cretaceous, probably pre-Albian, Maimón Formation, located in the Cordillera Central of the Dominican Republic, are some of the earliest products of the Greater Antilles arc magmatism. In this article, new whole-rock element and Nd-Pb radiogenic isotope data are used to give new insights into the petrogenesis of the Maimón meta-volcanic rocks and constrain the early evolution of the Greater Antilles paleo-arc system. Three different groups of mafic volcanic rocks are recognized on the basis of their immobile element contents. Group 1 comprises basalts with compositions similar to low-Ti island arc tholeiites (IAT), which are depleted in light rare earth elements (LREE) and resemble the forearc basalts (FAB) and transitional FAB-boninitic basalts of the Izu-Bonin-Mariana forearc. Group 2 rocks have boninite-like compositions relatively rich in Cr and poor in TiO2. Group 3 comprises low-Ti island arc tholeiitic basalts with near-flat chondrite-normalized REE patterns. Plagiorhyolites and rare andesites present near-flat to subtly LREE-depleted chondrite normalized patterns typical of tholeiitic affinity. Nd and Pb isotopic ratios of plagiorhyolites, which are similar to those of Groups 1 and 3 basalts, support that these felsic lavas formed by anatexis of the arc lower crust. Geochemical modelling points that the parental basic magmas of the Maimón meta-volcanic rocks formed by hydrous melting of a heterogeneous spinel-facies mantle source, similar to depleted MORB mantle (DMM) or depleted DMM (D-DMM), fluxed by fluids from subducted oceanic crust and Atlantic Cretaceous pelagic sediments. Variations of subduction-sensitive element concentrations and ratios from Group 1 to the younger rocks of Groups 2 and 3 generally match the geochemical progression from FAB-like to boninite and IAT lavas described in subduction-initiation ophiolites. Group 1 basalts likely formed at magmatic stages transitional between FAB and first-island arc magmatism, whereas Group 2 boninitic lavas resulted from focused flux melting and higher degrees of melt extraction in a more mature stage of subduction. Group 3 basalts probably represent magmatism taking place immediately before the establishment of a steady-state subduction regime. The relatively high extents of flux melting and slab input recorded in the Maimón lavas support a scenario of hot subduction beneath the nascent Greater Antilles paleo-arc. Paleotectonic reconstructions and the markedly depleted, though heterogeneous character of the mantle source, indicate the rise of shallow asthenosphere which had sourced mid-ocean ridge basalts (MORB) and/or back-arc basin basalts (BABB) in the proto-Caribbean domain prior to the inception of SW-dipping subduction. Relative to the neighbouring Aptian-Albian Los Ranchos Formation, we suggest that Maimón volcanic rocks extruded more proximal to the vertical projection of the subducting proto-Caribbean spreading ridge.

  4. Origin of silicic crust by rifting and bimodal plume volcanism in the Afar Depression

    NASA Astrophysics Data System (ADS)

    Ghatak, A.; Basu, A. R.; Ebinger, C. J.

    2010-12-01

    The youngest mantle plume province worldwide occurs at the seismically and volcanically active East African - Red Sea - Gulf of Aden (Afar) triple junction, where one or more upwellings has impinged the thick cratonic lithosphere since ~45 Ma. A spectacular example of magmatism in the Afar depression is seen in the present to < 2 Ma old bimodal fissural mafic and peralkaline silicic eruptions in the ~60 km-long Dabbahu-Manda Hararo (DMH) Rift. In this study we report major, trace elements, and Nd-Sr-Pb isotopes in recent basaltic and silicic rocks originating from the center of the DMH rift segment, exposed along the rift axis and flanks of this segment. The rare earth element (REE) patterns of the silicic rocks and basalts are different in two significant ways: (1) the silicic rocks show a prominent positive Ce-anomaly that is extremely rare in volcanic rocks; and (2) this positive Ce-anomaly is accompanied by a strong negative Eu-anomaly. These anomalies are absent in the basaltic rocks. The positive Ce-anomaly is probably due to interaction in a magma chamber, similar in composition to the basalts, with deep saline aquifer or brines that typically show positive Ce-anomaly. The REE patterns of the two lava groups are interpreted to be due to fractional crystallization of plagioclase in a magma chamber similar in REE composition as the basalts that erupted in the DMH segments. We interpret the silicic rocks to be residues after ~20% fractional crystallization of plagioclase in the DMH basalts. The Nd-Pb isotopic composition of the basalts and rhyolites of the DMH are similar to the Ethiopian plume as defined by the ~30 Ma old Ethiopian flood basalts. Based on their high 3He/4He ratios (R/RA ~30) and Nd-Sr-Pb isotopic data, the source of the Ethiopian plume is generally believed to be in the lower mantle. Therefore, the similarity of the Nd-Pb and Pb-Pb isotopic variations between the Ethiopian plume and the DMH lavas indicates that these lavas were sourced from the lower mantle, and this source zone showed little variation over the past 30 Ma. Some of the silicic lavas fall distinctly outside the plume field toward more radiogenic 87Sr/86Sr at relatively restricted Nd and Pb isotopic compositions. This excursion in Sr-isotopic ratios of the silicic lavas, in concert with their positive Ce-anomaly, is interpreted to be due to mixing of the Afar plume derived basaltic magma with fluids from saline aquifers. We conclude that the bimodal lavas are consanguineous, the silicic lavas being generated by fractional crystallization of plagioclase in a lower mantle plume-derived basaltic magma-chamber, caused by the interaction with saline aquifers. The generation of bimodal volcanism from parental primitive basalts without any contribution from pre-existing continental crust in Dabbahu may explain other similar intraplate magmatism including early Archean-Hadean continental crust formation prior to onset of arc-volcanism.

  5. Titanium stable isotope investigation of magmatic processes on the Earth and Moon

    NASA Astrophysics Data System (ADS)

    Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.

    2016-09-01

    We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.

  6. Regional stratigraphy and geologic history of Mare Crisium

    NASA Technical Reports Server (NTRS)

    Head, J. W., III; Adams, J. B.; Mccord, T. B.; Pieters, C.; Zisk, S.

    1978-01-01

    Remote sensing and Luna 24 sample data are used to develop a summary of the regional stratigraphy and geologic history of Mare Crisium. Laboratory spectra of Luna 24 samples, telescopic reflectance spectra in the 0.3 to 1.1 micron range and orbital X-ray data have identified three major basalt groups in the region. Group I soil is derived from iron- and magnesium-rich titaniferous basalts and was apparently emplaced over the majority of the basin, however is presently exposed as a shelf in the southwest part. Group II soils, derived from very low titanium ferrobasalts, were emplaced in two stages subsequent to Group I emplacement and now appear as part of the outer shelf and topographic annulus. Subsidence of the basin interior preceded and continued after the emplacement of the third basalt group, a soil derived from a low titanium ferrobasalt. The Luna 24 site is found to be within a patch of Group II material.

  7. Opening of the South China Sea and Upwelling of the Hainan Plume

    NASA Astrophysics Data System (ADS)

    Yu, Mengming; Yan, Yi; Huang, Chi-Yue; Zhang, Xinchang; Tian, Zhixian; Chen, Wen-Huang; Santosh, M.

    2018-03-01

    Opening of the South China Sea and upwelling of the Hainan Plume are among the most challenging issues related to the tectonic evolution of East Asia. However, when and how the Hainan Plume affected the opening of the South China Sea remains unclear. Here we investigate the geochemical and isotopic features of the 25 Ma mid-ocean ridge basalt (MORB) in the Kenting Mélange, southern Taiwan, 16 Ma MORB drilled by the IODP Expedition 349, and 9 Ma ocean island basalt-type dredged seamount basalt. The 25 Ma MORBs reveal a less metasomatic depleted MORB mantle-like source. In contrast, the Miocene samples record progressive mantle enrichment and possibly signal the contribution of the Hainan Plume. We speculate that MORBs of the South China Sea which could have recorded plume-ridge source mixing perhaps appear since 23.8 Ma. On the contrary, the Paleocene-Eocene ocean island basalt-type intraplate volcanism of the South China continental margin is correlated to decompression melting of a passively upwelling fertile asthenosphere due to continental rifting.

  8. Apollo 15 yellow-brown volcanic glass - Chemistry and petrogenetic relations to green volcanic glass and olivine-normative mare basalts

    NASA Technical Reports Server (NTRS)

    Hughes, S. S.; Schmitt, R. A.; Delano, J. W.

    1988-01-01

    Electron microprobe and INAA were used to analyze forty spherules of Apollo 15 yellow-brown glass for major and trace elements. The glass is one of twenty-five high-Mg primary magmas emplaced on the lunar surface in pyroclastic eruptions. The abundances show that the magma was produced by partial melting of differentiated cumulates in the lunar mantle. Models to explain the possible source-regions of several Apollo 15 and Apollo 12 low-Ti mare magmas are presented.

  9. Lead isotopes tracing the life cycle of a catchment: From source rock via weathering to human impact

    NASA Astrophysics Data System (ADS)

    Negrel, P. J.; Petelet-Giraud, E.; Guerrot, C.; Millot, R.

    2015-12-01

    Chemical weathering of rocks involves consumption of CO2, a greenhouse gas with a strong influence on climate. Among rocks exposed to weathering, basalt plays a major role in the carbon cycle as it is more easily weathered than other crystalline silicate rocks. This means that basalt weathering acts as a major atmospheric CO2 sink. The present study investigated the lead isotopes in rock, soil and sediment for constraining the life cycle of a catchment, covering source rocks, erosion processes and products, and anthropogenic activities. For this, we investigated the Allanche river drainage basin in the Massif Central, the largest volcanic areas in France, that offers opportunities for selected geochemical studies since it drains a single type of virtually unpolluted volcanic rock, with agricultural activity increasing downstream. Soil and sediment are derived exclusively from basalt weathering, and their chemistry, coupled to isotope tracing, should shed light on the behavior of chemical species during weathering from parental bedrock. Bedrock samples of the basin, compared to regional bedrock of the volcanic province, resulted from a complex history and multiple mantle reservoir sources and mixing. Regarding soils and sediments, comparison of Pb and Zr normalized to mobile K shows a linear evolution of weathering processes, whereby lead enrichment from atmospheric deposition is the other major contributor. Lead-isotope ratios showed that most of the lead budget in sediment and soil results from bedrock weathering with an influence of past mining and mineral processing of ores in the Massif Central, and deposition of lead-rich particles from gasoline combustion, but no lead input from agricultural activity. A classic box model was used to investigate the dynamics of sediment transfer at the catchment scale, the lead behavior in the continuum bedrock-soil-sediment and the historical evolution of anthropogenic aerosol emissions.

  10. Geologic History of Asteroid 4 Vesta

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    2014-01-01

    Some types of meteorites - most irons, stony irons, some achondrites - hail from asteroids that were heated to the point where magmatism occurred within a very few million years of the formation of the earliest solids in the solar system. The largest clan of achondrites, the howardite, eucrite and diogenite (HED) meteorites, represent the crust of their parent asteroid]. Diogenites are cumulate harzburgites and orthopyroxenites from the lower crust whilst eucrites are basalts, diabases and cumulate gabbros from the upper crust. Howardites are impact-engendered breccias mostly of diogenites and eucrites. There remains only one large asteroid with a basaltic crust, 4 Vesta, which is thought to be the source of the HED clan. Differentiation models for Vesta are based on HED compositions. Proto-Vesta consisted of chondritic materials containing Al-26, a potent, short-lived heat source. Inferences from compositional data are that Vesta was melted to high degree (=50%) allowing homogenization of the silicate phase and separation of a metallic core. Convection of the silicate magma ocean allowed equilibrium crystallization, forming a harzburgitic mantle. After convective lockup occurred, melt collected between the mantle and the cool thermal boundary layer and underwent fractional crystallization forming an orthopyroxene-rich (diogenite) lower crust. The initial thermal boundary layer of chondritic material was replaced by a mafic upper crust through impact disruption and foundering. The mafic crust thickened over time as additional residual magma intrudes and penetrates the mafic crust forming plutons, dikes, sills and flows of cumulate and basaltic eucrite composition. This magmatic history may have taken only 2-3 Myr. This magma ocean scenario is at odds with a model of heat and magma transport that indicates that small degrees of melt would be rapidly expelled from source regions, precluding development of a magma ocean. Constraints from radiogenic Mg-26 distibutions suggest that the parent asteroid of HEDs was much smaller than Vesta. Thus, first-order questions regarding asteroid differentiation remain.

  11. Nd-Sr-Pb isotopic variations along the Gulf of Aden - Evidence for Afar mantle plume-continental lithosphere interaction

    NASA Astrophysics Data System (ADS)

    Schilling, Jean-Guy; Kingsley, Richard H.; Hanan, Barry B.; McCully, Brian L.

    1992-07-01

    The rare-earth-element concentrations and Nd, Sr, and Pb isotopic compositions of the basalts in the Gulf of Aden are described and related to asthenospheric and lithospheric interactions with a thermal toruslike plume. Specific attention is given to the spatial and temporal traits of the mantle sources, and isotopic and geochemical data are used to determine the extent to which basaltic volcanism is derived from a mantle plume, the mantle lithosphere, and upwelling of the depleted atmosphere. The impingement and dispersion of a plume head is confirmed beneath the Afar region, and the geological record shows continental stretching and rifting prior to the impingement in the outskirts of the Horn of Africa. The data suggest that the isotopic variations along the Gulf of Aden/Red Sea/Ethiopia Rift system can be explained by the interaction of a thermal toruslike plume with the depleted asthenosphere and the overlying continental mantle lithosphere.

  12. Rb-Sr Isotopic Studies Of Antarctic Lherzolitic Shergottite Yamato 984028

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.; Misawa, K.

    2009-01-01

    Yamato 984028 is a Martian meteorite found in the Yamato Mountains of Antarctica. It is classified as a lherzolitic shergottite and petrographically resembles several other lherzolitic shergottites, i.e. ALHA 77005, LEW 88516, Y-793605 and Y-000027/47/97 [e.g. 2-5]. These meteorites have similarly young crystallization ages (152-185 Ma) as enriched basaltic shergottites (157-203 Ma), but have very different ejection ages (approximately 4 Ma vs. approximately 2.5 Ma), thus they came from different martian target crater areas. Lherzolitic shergottites have mg-values approximately 0.70 and represent the most mafic olivine-pyroxene cumulates. Their parental magmas were melts derived probably from the primitive Martian mantle. Here we present Rb-Sr isotopic data for Y-984028 and compare these data with those obtained from other lherzolitic and olivine-phyric basaltic shergottites to better understand the isotopic characteristics of their primitive mantle source regions. Corresponding Sm-Nd analyses for Y-984028 are in progress.

  13. Archaean tectonic systems: A view from igneous rocks

    NASA Astrophysics Data System (ADS)

    Moyen, Jean-François; Laurent, Oscar

    2018-03-01

    This work examines the global distribution of Archaean and modern igneous rock's compositions, without relying on preconceptions about the link between rock compositions and tectonic sites (in contrast with "geotectonic" diagrams). Rather, Archaean and modern geochemical patterns are interpreted and compared in terms of source and melting conditions. Mafic rocks on the modern Earth show a clear chemical separation between arc and non-arc rocks. This points to the first order difference between wet (arc) and dry (mid-ocean ridges and hotspots) mantle melting. Dry melts are further separated in depleted (MORB) and enriched (OIB) sources. This three-fold pattern is a clear image of the ridge/subduction/plume system that dominates modern tectonics. In contrast, Archaean mafic and ultramafic rocks are clustered in an intermediate position, between the three main modern types. This suggests that the Archaean mantle had lesser amounts of clearly depleted or enriched portions; that true subductions were rare; and that the distinction between oceanic plateaus and ridges may have been less significant. Modern granitic rocks dominantly belong to two groups: arc-related granitoids, petrologically connected to arc basalts; and collision granitoids, related to felsic sources. In contrast, the Archaean record is dominated by the TTG suite that derives from an alkali-rich mafic source (i.e. altered basalt). The geochemical diversity of the TTG suite points to a great range of melting depths, from ca. 5 to > 20 kbar. This reveals the absence of large sedimentary accumulations, again the paucity of modern-like arc situations, and the importance played by reworking of an earlier basaltic shell, in a range of settings (including some proto-subduction mechanisms). Nonetheless, granitoids in each individual region show a progressive transition towards more modern-looking associations of arc-like and peraluminous granites. Collectively, the geochemical evidence suggests an Archaean Earth with somewhat different tectonic systems. In particular, the familiar distinction between collision, arcs, ridges and hotspots seems to blur in the Archaean. Rather, the large-scale geochemical pattern reveals a long-lived, altered and periodically resurfaced basaltic crust. This protocrust is reworked, through a range of processes occurring at various depths that correspond to a progressive stabilization of burial systems and the establishment of true subductions. A punctuated onset of global plate tectonics is unlikely to have occurred, but rather short-term episodes of proto-subduction in the late Archaean evolved over time into longer-term, more stable style of plate tectonics as mantle temperature decayed.

  14. Petrologic evolution of Miocene-Pliocene mafic volcanism in the Kangal and Gürün basins (Sivas-Malatya), central east Anatolia: Evidence for Miocene anorogenic magmas contaminated by continental crust

    NASA Astrophysics Data System (ADS)

    Kocaarslan, Ayça; Ersoy, E. Yalçın

    2018-06-01

    This study discusses the geochemical features of the Early-Middle Miocene and Pliocene basaltic (SiO2 = 46-52; MgO = 6-10 wt%) to andesitic (SiO2 = 59; MgO = 4 wt%) rocks exposed in the Gürün and Kangal basins (Sivas, eastern part of central Anatolia), respectively. The basaltic rocks are characterized by alkaline to tholeiitic affinities, while the more evolved andesitic samples show calc-alkaline affinity. Trace element variations reveal that they can be evaluated in three sub-groups, each represented by different contents of trace elements for given Nb contents. Primary magmas of each groups were likely produced by different degrees of partial melting ( 1-2, 2-3, 7-10% respectively) from a common mantle source, subsequently underwent different degrees of fractionation and crustal contamination. Derivation from a common mantle source of the primitive magmas of each group is supported by similar Sr, Nd and Pb isotopic ratios. Increasing degrees of partial melting seem to be responsible for the alkaline to tholeiitic variation among the basaltic samples, while higher degrees of crustal contamination (AFC) resulted in calc-alkaline affinity of the more evolved samples. Most primitive Pliocene samples show intra-plate (anorogenic) geochemical features, while the more evolved Miocene calc-alkaline samples resemble geochemically subduction-related (orogenic) magmatic rocks. However, on the basis of detailed geochemical models, we propose that the calc-alkaline affinity among the Miocene samples can also be gained by crustal contamination of their primary magmas which were also anorogenic in character. If this is true, overall, the Miocene and Pliocene basaltic to andesitic rocks in the Gürün and Kangal basins appear to may have formed by variable degrees of partial melting of a common anorogenic mantle that had not been subject to subduction-related metasomatism. This is an alternative approach to the general view assuming the Early-Middle Miocene magmatic activity in the region was derived from subduction-modified mantle sources in response to subduction of the Arabian Plate under the Anatolian Plate. This hypothesis further implies that either delamination of the sub-continental lithosphere or slab break-off processes beneath the central to eastern Anatolia might took place well before the Miocene, thus allowing upwelling unaltered mantle to provide the source of the Miocene to Pliocene volcanic rocks.

  15. Volatile contents of mafic-to-intermediate magmas at San Cristóbal volcano in Nicaragua

    NASA Astrophysics Data System (ADS)

    Robidoux, P.; Aiuppa, A.; Rotolo, S. G.; Rizzo, A. L.; Hauri, E. H.; Frezzotti, M. L.

    2017-02-01

    San Cristóbal volcano in northwest Nicaragua is one of the most active basaltic-andesitic stratovolcanoes of the Central American Volcanic Arc (CAVA). Here we provide novel constraints on the volcano's magmatic plumbing system, by presenting the first direct measurements of major volatile contents in mafic-to-intermediate glass inclusions from Holocene and historic-present volcanic activity. Olivine-hosted (forsterite [Fo] < 80; Fo< 80) glass inclusions from Holocene tephra layers contain moderate amounts of H2O (0.1-3.3 wt%) and S and Cl up to 2500 μg/g, and define the mafic (basaltic) endmember component. Historic-present scoriae and tephra layers exhibit more-evolved olivines (Fo69-72) that contain distinctly lower volatile contents (0.1-2.2 wt% H2O, 760-1675 μg/g S, and 1021-1970 μg/g Cl), and represent a more-evolved basaltic-andesitic magma. All glass inclusions are relatively poor in CO2, with contents reaching 527 μg/g (as measured by nanoscale secondary ion mass spectrometry), suggesting pre- to postentrapment CO2 loss to a magmatic vapor. We use results of Raman spectroscopy obtained in a population of small (< 50 μm) inclusions with CO2-bearing shrinkage bubbles (3-12 μm) to correct for postentrapment CO2 loss to bubbles, and to estimate the original minimum CO2 content in San Cristóbal parental melts at 1889 μg/g, which is consistent with the less-CO2-degassed melt inclusions (MI) (> 1500 μg/g) found in Nicaragua at Cerro Negro, Nejapa, and Granada. Models of H2O and CO2 solubilities constrain the degassing pathway of magmas up to 425 MPa ( 16 km depth), which includes a deep CO2 degassing step (only partially preserved in the MI record), followed by coupled degassing of H2O and S plus crystal fractionation at magma volatile saturation pressures from ∼ 195 to < 10 MPa. The variation in volatile contents from San Cristóbal MI is interpreted to reflect (1) Holocene eruptive cycles characterized by the rapid emplacement of basaltic magma batches, saturated in volatiles, at depths of 3.8-7.4 km, and (2) the ascent of more-differentiated and cogenetic volatile-poor basaltic andesites during historic-present eruptions, having longer residence times in the shallowest (< 3.4 km) and hence coolest regions of the magmatic plumbing system. We also report the first measurements of the compositions of noble-gas isotopes (He, Ne, and Ar) in fluid inclusions in olivine and pyroxene crystals. While the measured 40Ar/36Ar ratios (300-304) and 4He/20Ne ratios (9-373) indicate some degree of air contamination, the 3He/4He ratios (7.01-7.20 Ra) support a common mantle source for Holocene basalts and historic-present basaltic andesites. The magmatic source is interpreted as generated by a primitive MORB-like mantle, that is influenced to variable extents by distinct slab fluid components for basalts (Ba/La 76 and U/Th 0.8) and basaltic andesites (Ba/La 86 and U/Th 1.0) in addition to effects of magma differentiation. These values for the geochemical markers are particularly high, and their correlation with strong plume CO2/S ratios from San Cristóbal is highly consistent with volatile recycling at the CAVA subduction zone, where sediment involvement in mantle fluids influences the typical relatively C-rich signature of volcanic gases in Nicaragua.

  16. Searching for neuKREEP: An EMP study of Apollo 11 Group A basalts

    NASA Technical Reports Server (NTRS)

    Jerde, Eric A.; Taylor, Lawrence A.

    1993-01-01

    The Apollo 11 and 17 landing sites are characterized by the presence of high-Ti basalts (TiO2 greater than 6 percent). The Group A basalts of Apollo 11 have elevated K compositions (greater than 2000 ppm); and are enriched in incompatible trace elements relative to the other types of high-Ti basalt found in the region. These unique basalts also are the youngest of all high-Ti basalts, with an age of 3.56 +/- 0.02 Ga. Recent modelling of the Apollo 11 Group A basalts by Jerde et al. has demonstrated that this unique variety of high-Ti basalt may have formed through fractionation of a liquid with the composition of the Apollo 11 orange glass, coupled with assimilation of evolved material (dubbed neuKREEP and having similarities to lunar quartz monzodiorite). Assimilation of this material would impart its REE signature on the liquid, resulting in the elevated REE abundances observed. Minerals such as whitlockite which contain a large portion of the REE budget can be expected to reflect the REE characteristics of the assimilant. To this end, an examination of the whitlockite present in the Apollo 11 Group A basalts was undertaken to search for evidence of the neuKREEP material assimilated.

  17. Transition Element Abundances in MORB Basalts

    NASA Astrophysics Data System (ADS)

    Yang, S.; Humayun, M.; Salters, V. J.; Fields, D.; Jefferson, G.; Perfit, M. R.

    2012-12-01

    The mineralogy of the mantle sources of basalts is an important, but hard to constrain parameter, especially with the basalts as chemical probes of major element mantle composition. Geophysical models imply that the deep mantle may have significant variations in Fe and Si relative to the ambient mantle sampled by MORB. Some petrological models of sub-ridge melting involve both pyroxenite and peridotite, implying that basalts preferentially sample a pyroxenite endmember. The First-Row Transition Elements (FRTE), Ga and Ge are compatible to moderately incompatible during partial melting, and are sensitive to mineralogical variability in the mantle and thus can provide constraints on mantle source mineralogy for MORB. We have analyzed major elements, FRTE, Ga and Ge on 231 basaltic glasses from the Middle Atlantic Ridge (MAR between -23°S to 36.44°N), 30 Mid-Cayman Rise basaltic glasses, 12 glasses from the Siqueiros Fracture Zone (EPR), 9 glasses from the Blanco Trough, Juan de Fuca ridge, and Galapagos Spreading Centers (EPR), and 4 Indian Ocean MORB. Large spots (150 μm) were precisely (±1%) analyzed by a New Wave UP193FX excimer (193 nm) laser ablation system coupled to a high-resolution ICP-MS at the National High Magnetic Field Laboratory using a high ablation rate (50 Hz) to yield blank contributions <1% for all elements, particularly Ge. The data demonstrate that the Ge/Si (6.96 x 10E-6 ± 3%, 1σ) and Fe/Mn (55 ± 2%) ratios for MORB are insensitive to fractional crystallization within the MgO range 6%-10%. MORB have Zn/Fe (9.9 x 10E-4 ± 7%), Ga/Sc (0.37-0.50), Ga/Al (2.2 x 10E-4 ± 11%) ratios, with the variations mostly due to the effects of fractional crystallization. Recent experimental determination of FRTE, Ga and Ge partition coefficients provide a framework within which to interpret these data [1]. Using these new partition coefficients, we have modeled the sensitivity of each element to mineralogical variations in the mantle source. Olivine primarily controls the partitioning of Fe, Zn, Ga and Ge; garnet dominates the Sc abundance; spinel exerts exceptionally strong control over Ga and Zn, and cannot be neglected as a source mineral for these elements. MORB FRTE, Ga and Ge abundances are consistent with partial melting of a spinel peridotite source (<1% garnet) similar to that estimated for DMM, although the abundances of many of these elements need to be better constrained in the model sources. [1] Davis et al. GCA (submitted)

  18. Assessing Causes and Consequences of Columbia River Basalt Volcanism with Zircon Geochronology

    NASA Astrophysics Data System (ADS)

    Kasbohm, J.; Schoene, B.

    2017-12-01

    The Columbia River Basalt (CRB) is the youngest and best-preserved continental flood basalt province, but its mechanism of origin remains disputed. While some workers favor a mantle plume source to generate the large volume of flood basalts, others prefer subduction-related processes such as slab breakoff. Additionally, based on current geochronological (K-Ar and 40Ar/39Ar) estimates for the age of the CRB, there appears to be a very broad temporal coincidence between the main eruptive phase of the CRB and the Mid-Miocene Climate Optimum (MMCO), a period of elevated global temperatures and atmospheric CO2. Currently, large analytical uncertainties preclude the detailed calculation of volumetric eruption rates, which will be essential to test models of origin and to pinpoint correlation to climate records. To develop a complete record of eruption rates through the CRB, we use CA-ID-TIMS U-Pb zircon geochronology, which is capable of yielding 2σ uncertainties on single analyses of ca. 10 kyr. While basalt does not typically saturate zircon, interflow sediments, paleosols, and volcaniclastic layers in the CRB stratigraphy contain felsic zircon-bearing ash, likely sourced from both the Cascades arc and incipient Snake River plain volcanism. We use U-Pb zircon dates from these horizons to bracket the age of basalt flows. Preliminary results show that 88% of the total volume of the CRB (the Imnaha, Grande Ronde, and Wanapum Basalts) erupted in 700 kyr, beginning 16.6 Ma, with an average effusion rate of 0.26 km3/yr and with occurrence of lava flows propagating from south to north at a minimum rate of 0.3 m/yr. Thus far, these results do not preclude a mantle plume origin, but do place quantitative constraints on geodynamic numerical models hoping to constrain flood basalt origins. Although models based on prior geochronology have suggested that degassing from the CRB was insufficient to cause the MMCO, our calculated reduction in the duration of the main phase of CRB eruptions suggest that the flood basalt had a more concentrated environmental forcing effect than previously realized.

  19. Project Hotspot: Temporal Compositional Variation in Basalts of the Kimama Core and Implications for Magma Source Evolution, Snake River Scientific Drilling Project, Idaho

    NASA Astrophysics Data System (ADS)

    Potter, K. E.; Shervais, J. W.; Champion, D.; Duncan, R. A.; Christiansen, E. H.

    2012-12-01

    Project Hotspot produced continuous core from three drill sites in the Snake River plain, including 1912 m of core from the Kimama drill site on the axis of the plain. Ongoing major and trace element chemical characterization of the Kimama core and new 40Ar/39Ar and paleomagnetic age data demonstrate temporal variations in the evolution of Snake River Plain volcanism. Cyclic fluctuations in magma chemistry identify over a hundred chemically distinct basalt flow groups (comprising 550 individual lava flows) within 54 periods of volcanic activity, separated by hiatuses of decades to many millennia. From a surface age of 700 ka to a bottom-hole age of 6.5 Ma, the Kimama core records the presence of several nearly coeval but compositionally different lava flows, ranging from highly evolved lavas to non-evolved tholeiites. Determining whether Kimama lavas are genetically unrelated or extreme differentiates of a single magma batch relies upon a combination of detailed chemostratigraphy and absolute and relative age data. Age and geochemical data introduce new ideas on the role of multiple magma sources and/or differentiation processes in the development of central Snake River Plain volcanic systems. The relatively short gestation of evolved liquids is demonstrated throughout the Kimama core, with evidence for cyclic fractionation of mafic lavas at depths of 318 m, 350 m, 547 m, and 1078 m. Here, highly evolved lava flows (FeOT 16.0-18.4 wt %; TiO2 3.43-4.62 wt %) are stratigraphically bounded by more primitive tholeiitic basalts (FeOT 9.9-14.8 wt%; TiO2 1.22-3.56 wt%) within the same inclination range, suggesting that cyclic fractionation is a regular feature of shield volcano development on the central Snake River Plain. Between 1.60 ± 0.13 Ma (453.5 m depth) and 1.54 ± 0.15 Ma (320.0 m depth), Kimama lavas ranged in composition from primitive tholeiite (FeOT 11.7 wt %; TiO2 1.76 wt %) to evolved basalt (FeOT 16.0 wt %; TiO2 4.00 wt %). At depths of 1119 m and 1138 m, evolved lava flows (FeOT 17.2 and 17.0 wt %; TiO2 4.20 and 4.09 wt %, respectively) of negative polarity are stratigraphically bounded by more primitive tholeittic lava flows (FeOT 13.6 and 14.5 wt %; TiO2 2.92 and 3.24 wt %, respectively) of positive polarity, a chronological transition that may represent many millennia and magma source variability. Kimama core stratigraphy as well as paleomagnetic, and radiometric age data demonstrate that mafic volcanism on the central Snake River Plain has been relatively continuous for the last 6.5 Ma. The compositional variability in Kimama basalts introduces broader implications for the timing of cyclic fractionation processes and the development of regional magma sources.

  20. Geology, tectonism and composition of the northwest Imbrium region

    NASA Astrophysics Data System (ADS)

    Wu, Yunzhao; Li, Lin; Luo, Xiaoxing; Lu, Yu; Chen, Yuan; Pieters, Carle M.; Basilevsky, Alexander T.; Head, James W.

    2018-03-01

    The objective of this study is to explore the regional geology of the northwest Imbrium region in which the Chang'E-3 (CE-3) landing site is located. CE-3 successfully landed on December 14, 2013 on the unsampled Eratosthenian basalts whose study is important for understanding the evolution of the Moon. New geologic and structural maps of the research area were produced through the integrated analysis of diverse datasets. The highlands surrounding Imbrium differ from typical Farside Highlands Terrain (FHT). The Iridum highland region (as well as the surrounding Imbrium region) exhibits elevated concentrations of Fe, and abundant local exposures of low-Ca pyroxene and olivine bearing lithologies. In this study these highlands are named as mafic highlands (MH). Our dating results using crater size-frequency distributions (CSFDs) show that the Iridum basin (hosting Sinus Iridum) was formed ∼3.8 Ga, shortly following the Imbrium basin formation and before the last large multiringed basin, Orientale. The Eratosthenian period of lunar basalt eruptions, which lasted longer than other stratigraphic units, is suggested to divide into the Lower Eratosthenian mare (LEm) and Upper Eratosthenian mare (UEm) units. This subdivision is based on whether lava fronts can be clearly seen or not and the age separating the units is 2.35 Ga. The mafic mineralogy of the mare basalts in Imbrium is characterized by abundant olivine in the Eratosthenian-aged basalts and average pyroxene compositions near pigeonite to sub-calcic augite in the Imbrian and Em1 units. The thickness of individual lava for UEm units is 8-11 m, indicative of high effusion rates. The thickness of the Em3 unit ranges from ∼17 m to ∼45 m with lesser thickness to the west and greater thickness in the interior and to the east. The estimated volume and average flux of the Eratosthenian-aged basalts are greater than previously thought. The presence of these youngest basalts in the Procellarum-KREEP terrain (PKT) is hypothesized to be a causal relationship, with the PKT terrain reducing the thickness of the lithosphere and permitting preferential dike emplacement and extrusion there. We speculate that high-Ti and olivine-rich composition in late stage basalts may be consistent with low Si and high Ti and low degrees of partial melting. Large numbers of sinuous rilles and small ridges are identified and mapped. Many young ridges were found inside Imbrium, suggesting a very extended period (at least as young as the last 50 Ma) of the Moon's tectonic activity. The distinct compositions of both highlands and mare basalts and extended tectonism emphasize how the Imbrium basin is an important area for understanding the Moon.

  1. Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.P. McGrail; E. C. Sullivan; F. A. Spane

    2009-12-01

    The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling ofmore » Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow reservoir zones and 3 flow-interior/caprock intervals were performed during drilling and immediately following reaching the final borehole drilling depth (i.e., 4,110 ft). In addition, six of the 12 basalt interflow zones were selected for detailed hydrochemical characterization. Results from the detailed hydrologic test characterization program provided the primary information on basalt interflow zone transmissivity/injectivity, and caprock permeability characteristics.« less

  2. Experimental Partitioning of Chalcophile Elements between Mantle Silicate Minerals and Basaltic Melt at High Pressures and Temperatures - Implications for Sulfur Geochemistry of Mantle and Crust

    NASA Astrophysics Data System (ADS)

    Dasgupta, R.; Jego, S.; Ding, S.; Li, Y.; Lee, C. T.

    2015-12-01

    The behavior of chalcophile elements during mantle melting, melt extraction, and basalt differentiation is critical for formation of ore deposits and geochemical model and evolution of crust-mantle system. While chalcophile elements are strongly partitioned into sulfides, their behavior with different extent of melting, in particular, in the absence of sulfides, can only be modeled with complete knowledge of the partitioning behavior of these elements between dominant mantle minerals and basaltic melt with or without dissolved sulfide (S2-). However, experimental data on mineral-melt partitioning are lacking for many chalcophile elements. Crystallization experiments were conducted at 3 GPa and 1450-1600 °C using a piston cylinder and synthetic silicate melt compositions similar to low-degree partial melt of peridotite. Starting silicate mixes doped with 100-300 ppm of each of various chalcophile elements were loaded into Pt/graphite double capsules. To test the effect of dissolved sulfur in silicate melt on mineral-melt partitioning of chalcophile elements, experiments were conducted on both sulfur-free and sulfur-bearing (1100-1400 ppm S in melt) systems. Experimental phases were analyzed by EPMA (for major elements and S) and LA-ICP-MS (for trace elements). All experiments produced an assemblage of cpx + melt ± garnet ± olivine ± spinel and yielded new partition coefficients (D) for Sn, Zn, Mo, Sb, Bi, Pb, and Se for cpx/melt, olivine/melt, and garnet/melt pairs. Derived Ds (mineral/basalt) reveal little effect of S2- in the melt on mineral-melt partition coefficients of the measured chalcophile elements, with Ds for Zn, Mo, Bi, Pb decreasing by less than a factor of 2 from S-free to S-bearing melt systems or remaining similar, within error, between S-free and S-bearing melt systems. By combining our data with existing partitioning data between sulfide phases and silicate melt we model the fractionation of these elements during mantle melting and basalt crystallization. The model results are compared with the chalcophile element abundance in oceanic basalts. We will discuss the implications of our new partitioning data and model results on sulfur and chalcophile element geochemistry of mantle source regions of ocean floor basalts and the fate of sulfides during mantle melting.

  3. Petrologically-based Electrical Profiles vs. Geophysical Observations through the Upper Mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Gaillard, F.; Massuyeau, M.; Sifre, D.; Tarits, P.

    2013-12-01

    Mineralogical transformations in the up-welling mantle play a critical role on the dynamics of mass and heat transfers at mid-ocean-ridgeS. The melting event producing ridge basalts occur at 60 km depth below the ridge axis, but because of small amounts of H2O and CO2 in the source region of MOR-basalts, incipient melting can initiate at much greater depth. Such incipient melts concentrate incompatible elements, and are particularly rich in volatile species. These juices evolve from carbonatites, carbonated basalts, to CO2-H2O-rich basalts as recently exposed by petrological surveys; the passage from carbonate to silicate melts is a complex pathway that is strongly non-linear. This picture has recently been complicated further by studies showing that oxygen increasingly partitions into garnet as pressure increases; this implies that incipient melting may be prevented at depth exceeding 200 km because not enough oxygen is available in the system to stabilize carbonate melts. The aim of this work is twofold: - We modelled the complex pathway of mantle melting in presence of C-O-H volatiles by adjusting the thermodynamic properties of mixing in the multi-component C-O-H-melt system. This allows us to calculate the change in melt composition vs. depth following any sortS of adiabat. - We modelled the continuous change in electrical properties from carbonatites, carbonated basalts, to CO2-H2O-rich basalts. We then successfully converted this petrological evolution along a ridge adiabat into electrical conductivity vs. depth signal. The discussion that follows is about comparison of this petrologically-based conductivity profile with the recent profiles obtained by inversion of the long-period electromagnetic signals from the East-Pacific-Rise. These geophysically-based profiles reveal the electrical conductivity structure down to 400 km depth and they show some intriguing highly conductive sections. We will discuss heterogeneity in electrical conductivity of the upper mantle underneath the ridge in terms of melting processes. Our prime conclusion is that the redox melting process, universally predicted by petrological models, might not be universal and that incipient melting can extend down to the transition zone.

  4. Results of test drilling in the Basalt aquifer near Fallon, Nevada

    USGS Publications Warehouse

    Maurer, Douglas K.

    2002-01-01

    Drilling of two test holes into the Fallon basalt aquifer commenced August 14, 2001. The basalt aquifer is located beneath the Carson Desert, near Fallon, Nevada, and is the sole source of drinking water for the City of Fallon, the Naval Air Station (NAS) Fallon, and the Fallon Paiute-Shoshone Tribe. Basalt comprising the aquifer is exposed at Rattlesnake Hill, an eroded volcanic cone, about 1 mile northeast of Fallon, and the remainder is buried beneath sediments deposited by the Carson River and ancient Lake Lahontan to depths of 600 feet near its edges (fig. 1). The basalt-aquifer system is a mushroom-shaped body of highly permeable volcanic rock. Viewed from above, the lateral extent of the basalt body is oval-shaped, about 4-miles wide and 10-miles long (fig. 1). Drilling was part of a cooperative study between the U.S. Geological Survey (USGS), the Bureau of Reclamation, and NAS Fallon. The study was started because of concern about the continued viability of the basalt-aquifer system as a source of municipal water supply. Increased pumping from about 1,700 acre-feet per year (acre-ft/yr) in the 1970?s to over 3,000 acre-ft/yr in the late 1990?s has caused water levels in the basalt to decline as much as 12 feet (fig. 2). During this same time period, water pumped from the aquifer at NAS Fallon and the City of Fallon wells showed that concentrations of dissolved chloride increased, although chloride concentrations were well within the U.S. Environmental Protection Agency?s (EPA) drinking-water standards; at this rate of increase, it would take decades to exceed the present standard (Maurer and Welch, 2001, p. 46). Concentrations of arsenic in the aquifer are about 0.1 milligrams per liter (mg/L), exceeding the drinking-water standard of 0.01 mg/L, but show no apparent change over time (Maurer and Welch, 2001, p. 10 and 48; U. S. Environmental Protection Agency, 2001). Increasing concentrations of chloride may be caused by increased pumping, that induces inflow of more saline water from aquifers surrounding or underlying the basalt, or from greater depths within the basalt itself. Prior to the drilling on August 14, 2001, few wells penetrated the basalt more than 70 feet below its upper surface (Maurer and Welch, 2001, p. 34). This prevented monitoring changes in water quality deeper in the aquifer that might be moving upward with continued pumping. Purposes of drilling were to fully penetrate the basalt, determine its hydrogeological character, the distribution of water quality in the basalt and in the underlying sedimentary aquifer, install monitoring wells.

  5. The nature of magmatism at Palinpinon geothermal field, Negros Island, Philippines: implications for geothermal activity and regional tectonics

    NASA Astrophysics Data System (ADS)

    Rae, Andrew J.; Cooke, David R.; Phillips, David; Zaide-Delfin, Maribel

    2004-01-01

    The Palinpinon geothermal field, Negros Island, Philippines is a high-temperature, liquid-dominated geothermal system in an active island-arc volcanic setting. This paper presents a regional context for the Palinpinon geology, discusses the petrogenetic evolution of magmatism in the district and assesses the genetic relationships between intrusion and geothermal circulation. The oldest rock formation, the Lower Puhagan Volcanic Formation (Middle Miocene), is part of a volcanic sequence that is traceable throughout the Visayas region and is related to subduction of the Sulu Sea oceanic basin in a southeasterly direction beneath the Sulu arc. Late Miocene to Early Pliocene times mark a period of regional subsidence and marine sedimentation. A thick sequence of calcareous sediments (Okoy Formation) was deposited during this period. Magmatism in Early Pliocene to Recent times coincided with commencement of subduction at the Negros-Sulu Arc. This produced basaltic andesites and andesites belonging to the Southern Negros and Cuernos Volcanic Formations. During this time the Puhagan dikes and the Nasuji Pluton intruded Middle Miocene, Late Miocene and Early-Late Pliocene formations. Based on radiogenic ( 40Ar/ 39Ar) dating of hornblende, the Puhagan dikes are 4.1-4.2 Ma and the Nasuji Pluton 0.3-0.7 Ma. This age difference confirms these intrusions are not genetically related. The Early Pliocene age of the Puhagan dikes also confirms they are not the heat source for the current geothermal system and that a much younger intrusion is situated beyond drill depths. Igneous rock formations in southern Negros are the products of regional island-arc magmatism with medium K, calc-alkaline, basaltic to dacitic compositions. Their adakitic affinity implies that the melting of subducted oceanic basalt has influenced magmatism in this region. Considering the regional tectonic history the most likely scenarios for the generation of slab melts are: (1) during the Middle Miocene, by the melting of relatively young (<20 Ma) oceanic crust; (2) during Early Pliocene times, by the initiation of subduction along the Negros-Sulu Trench; and (3) during Late Pliocene times, by the melting of young (<10-20 Ma) oceanic crust. The adakitic composition of the magmas at Palinpinon has promoted the formation of a porphyry copper-style magmatic-hydrothermal system that is comparable to mineralised porphyry deposits elsewhere in the Philippines.

  6. Seawater sulfate reduction and sulfur isotope fractionation in basaltic systems: interaction of seawater with fayalite and magnetite at 200–350°C

    USGS Publications Warehouse

    Shanks, Wayne C.; Bischoff, James L.; Rosenbauer, Robert J.

    1981-01-01

    Systematics of sulfur isotopes in the 250 and 350°C experiments indicate that isotopic equilibrium is reached, and can be modeled as a Rayleigh distillation process. Isotopic composition of hydrothermally produced H2S in natural systems is strongly dependent upon the seawater/basalt ratio in the geothermal system, which controls the relative sulfide contributions from the two important sulfur sources, seawater sulfate and sulfide phases in basalt. Anhydrite precipitation during geothermal heating severely limits sulfate ingress into high temperature interaction zones. Quantitative sulfate reduction can thus be accomplished without producing strongly oxidized rocks and resultant sulfide sulfur isotope values represent a mixture of seawater and basaltic sulfur.

  7. Upper Carboniferous retroarc volcanism with submarine and subaerial facies at the western Gondwana margin of Argentina

    NASA Astrophysics Data System (ADS)

    Koukharsky, M.; Kleiman, L.; Etcheverría, M.; Quenardelle, S.; Bercowski, F.

    2009-04-01

    During Late Carboniferous times a continental magmatic arc developed at the western margin of Gondwana in South America, as several marine sedimentary basins were formed at the same time in the retroarc region. North of 33°S, at Cordón Agua del Jagüel, Precordillera of Mendoza, Argentina, a volcanic sequence crops out which was emplaced in a submarine environment with some subaerial exposures, and it is intercalated in marine sediments of Agua del Jagüel Formation, which fills of one of these retroarc basins. This paper presents, for the first time, a facies analyses together with geochemical and isotopic data of this volcanic suite, suggesting its deposition in an ensialic retroarc marine basin. The volcanic succession comprises debris flows with either sedimentary or volcanic fragments, base surge, resedimented massive and laminated dacitic-andesitic hyaloclastite, pillow lava, basic hyaloclastite and dacitic-andesitic lavas and hyaloclastite facies. Its composition is bimodal, either basaltic or dacitic-andesitic. The geochemistry data indicate a subalkaline, low K calk-alkaline and metaluminous affinity. The geochemistry of the basalts points to an origin of the magmas from a depleted mantle source with some crustal contamination. Conversely, the geochemistry of the dacites-andesites shows an important participation of both crustal components and subduction related fluids. A different magmatic source for the basalts than for the dacites-andesites is also supported by Sr and Nd isotopic initial ratios and Nd model ages. The characteristics of this magmatic suite suggest its emplacement in an extensional setting probably associated with the presence of a steepened subduction zone at this latitude during Upper Carboniferous times.

  8. The Origin of Basalt and Cause of Melting Beneath East Antarctica as Revealed by the Southernmost Volcanoes on Earth

    NASA Astrophysics Data System (ADS)

    Reindel, J. L.; Panter, K. S.; Smellie, J. L.; McIntosh, W. C.

    2017-12-01

    Mt. Early and Sheridan Bluff are two basaltic monogenetic volcanoes located at 87° South latitude at the head of the Scott Glacier. These Early Miocene volcanoes lie 800 km from any other volcano and 200 km inland from the shoulder of the West Antarctic Rift System (WARS), which is the foci of most Cenozoic alkaline volcanism in Antarctica. Preliminary 40Ar/39Ar dates suggest that Mt. Early is older than previously determined and closer in age to Sheridan Bluff ( 19 Ma). Petrography, mineral chemistry and whole rock major and trace element concentrations are used to characterize the basalts and to determine whether they are genetically related to mafic volcanism in the WARS. The basalts are porphyritic with phenocrysts of olivine (Fo 58-84%), plagioclase (An 48-67%) ± clinopyroxene (Wo 43-48%). Whole rock MgO range from 10 to 4 wt.% and have restricted SiO2 (48 to 50 wt.%) contents. The basalts vary from alkaline (up to 6 wt.% Ne-normative) to subalkaline (up to 6 wt.% Hy-normative). The alkaline basalts that occur at both Mt. Early and Sheridan Bluff are more strongly enriched in incompatible elements (La 33-49 ppm, Ba 270-484 ppm, Sr 712-1009 ppm), have LaN/YbN ratios >10 and show prominent Pb negative anomalies with only slight K negative anomalies on primitive mantle normalized, multi-element diagrams. Subalkaline basalts (only at Sheridan Bluff) have lower concentrations of incompatible elements (La 14-16 ppm, Ba 110-144 ppm, and Sr 358-380 ppm), LaN/YbN ratios <5, and lack Pb and K negative anomalies but show minor P negative anomalies. The generation of both alkaline and subalkaline basalts is likely controlled by changes in the degree of partial melting of a compositionally similar mantle source. However, it is difficult to explain what caused the change since it would have to occur suddenly to account for the coexistence of both compositional types at Sheridan Bluff. Extension related to the WARS may be the cause, however, an alternative mechanism that could trigger melting is lithospheric delamination. The removal of old and cold mantle lithosphere from the base of the East Antarctic craton and its replacement by warmer asthenosphere has been proposed for this region based on geophysical evidence (Heeszel et al., 2016). The volcanism may constrain the timing of this event. Heeszel et al. (2016) JGR, 121, 1758-1775.

  9. The Tricky Business of Identifying Rocks on Mars

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2002-05-01

    The Mars Global Surveyor mission carries a remote-sensing gizmo called the Thermal Emission Spectrometer (TES). TES detects heat waves flowing from the surface of the Red Planet. The TES team, led by Phil Christensen (Arizona State University), identified two large regions on Mars that have distinctive spectral properties. Using mathematical mixing calculations based on the thermal emission spectra of numerous materials, the TES team reported in papers led by Josh Bandfield and Victoria Hamilton that the two regions had mineral abundances similar to basalt (Surface Type 1) and andesite (Surface Type 2), two common volcanic rock types on Earth. Andesite has more silicon than does basalt, giving rise to a distinctive mineralogy. Scientists had mixed reactions to the possibility of andesite on Mars, greeting the news with fascination, consternation, or skepticism. One question raised is how uniquely the spectra of Surface Type 2 matches andesite. Michael Wyatt and Harry Y. McSween (University of Tennessee) have taken another look at the TES spectra by using a larger collection of aqueous alteration (weathering) products in the spectral mixing calculations. They show that weathered basalt also matches the spectral properties of Surface Type 2. Wyatt and McSween also note that Type 2 regions are generally confined to a large, low region that is the site of a purported Martian ocean that sloshed around billions of years ago. They suggest that basalts like those in Surface Type 1 were altered in the ancient Martian sea. Independent data are needed to test the andesite vs. altered-basalt hypotheses. For now, we may have to be satisfied with at least two working hypotheses and a lively debate.

  10. 40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotope geochemistry of the Neogene bimodal volcanism in the Yükselen area, NW Konya (Central Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Gençoğlu Korkmaz, Gülin; Asan, Kürşad; Kurt, Hüseyin; Morgan, Ganerød

    2017-05-01

    Bimodal volcanic suites occur in both orogenic and anorogenic geotectonic settings. Although their formation can be attributed to either fractional crystallization from basaltic parents to felsic derivatives or partial melting of different sources, the origin of bimodal suites is still unclear. By reporting mineral chemistry, 40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotope geochemistry data, this study aims to investigate the genesis of bimodal basalt-dacite association from the Yükselen area located on the northern end of the Sulutas Volcanic Complex (Konya, Central Anatolia). The Yükselen area volcanic rocks are represented by basaltic lava flows, and dacitic dome with enclaves and pyroclastics. Basaltic flows and pyroclastic rocks are interlayered with the Neogene fluvio-lacustrine sedimentary units, while dacitic rocks cut the pre-Neogene basement in the area. A biotite separation from dacites yielded 40Ar/39Ar plateau age of 16.11 ± 0.18 Ma. On the other hand, a whole rock sample from basalts gave two plateau ages of 16.45 ± 0.76 Ma and 22.37 ± 0.65 Ma for the first steps and next steps, respectively. The investigated basalts are sodic alkaline, and characterized by ocean island basalt (OIB)-like anorogenic geochemical signatures. However, dacites are calc-alkaline and metaluminous, and carry geochemical signatures of orogenic adakites. Sr-Nd-Pb isotopic systematics suggest that the basalts were derived from an asthenospheric mantle source enriched by recycled crustal rocks. The dacites show more enriched Sr and Pb ratios and more depleted Nd ones relative to the basalts, which at the first glance might be attributed to crustal contamination of the associated basalts. However, trace element features of the dacites rule out cogenetic relationship between the two rock types, and point to an origin by melting of lower crust. On the other hand, enclaves share several elemental and isotopic characteristics with the dacites, and appear to be fragments of sub-volcanic intrusions closely related to the dacitic host magma. Based on the obtained geochemical data combined with the published geological and geophysical data, the investigated bimodal volcanic activity can be explained by slab break-off process in the convergence system between the African and Anatolian plates.

  11. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0)

    DTIC Science & Technology

    2008-09-01

    23 Table 5. Example of the Prevalence Index using the same data as in Table 4. .................................25 Table 6. Proportion of fibers ...Mountains in Washington, Oregon, and southern Idaho. Much of the subregion is covered by deposits of loess, volcanic ash, and basalt . The climate is semi...usually underlain by an impermeable layer such as a hardpan, claypan, or basalt . Vernal pools often fill and empty several times during the rainy

  12. The Summerville Formation: Evidence for a sub-horizontal stratigraphic sequence below the post-rift unconformity in the Middleton Place Summerville Seismic Zone

    NASA Astrophysics Data System (ADS)

    Getz, Joseph Edward

    The Middleton Place Summerville Seismic Zone (MPSSZ) near Summerville, South Carolina was the site of renewed extensive investigation, beginning in the 1970's, for the source of the 1886 Charleston earthquake. Reactivation of faults associated with a putative fault-bounded Triassic rift basin through analysis of seismic reflection, seismic refraction, and well data has since become the favored interpretation for the source of MPSSZ seismicity. Critical to this interpretation is the association of continental redbed sedimentary rocks with Triassic basins identified throughout the North American Atlantic margin. Reanalysis of 18 seismic reflection profiles and 25 seismic refraction profiles within the MPSSZ suggests that the red beds found here are a thin, sub-horizontal, regionally extensive, generally unbroken subsurface stratigraphic sequence distinct from the sedimentary architecture observed in analog Triassic rift systems. In addition, this sequence appears to unconformably overly a structural depression (the Jedberg basin) previously interpreted as a Triassic rift basin in the vicinity of the MPSSZ. In addition to the geometries observed on seismic reflection profiles, seismic refraction velocities ranging from 4.2 to 6.1 km/s can be correlated with (1) Jurassic basalt flows, (2) the newly proposed Summerville Formation, and (3) the Basement (B) sequences respectively. The current study maps the Summerville red bed section and its bounding reflectors. In addition to mapping the regional extent of the newly proposed Summerville Formation, refraction velocities and changes in reflection character, the lateral extent of the basalt flows can be changed to a more localized flow rather than a regionally extensive flow of which was previously thought. Reanalysis of data in the MPSSZ suggests that the area may not be part of the Triassic South Georgia Rift system due to the sub-horizontal geometry of the red bed reflections, the apparent lack of faulting, and their regional extent.

  13. Valence of Ti, V, and Cr in Apollo 14 aluminous basalts 14053 and 14072

    NASA Astrophysics Data System (ADS)

    Simon, Steven B.; Sutton, Stephen R.

    2017-09-01

    The valences of Ti, V, and Cr in olivine and pyroxene, important indicators of the fO2 of the source region of their host rocks, can be readily measured nondestructively by XANES (X-ray absorption near edge structure) spectroscopy, but little such work has been done on lunar rocks, and there is some uncertainty regarding the presence of Ti3+ in lunar silicates and the redox state of the lunar mantle. This is the first study involving direct XANES measurement of valences of multivalent cations in lunar rocks. Because high alumina activity facilitates substitution of Ti cations into octahedral rather than tetrahedral sites in pyroxene and Ti3+ only enters octahedral sites, two aluminous basalts from Apollo 14, 14053 and 14072, were studied. Most pyroxene contains little or no detectable Ti3+, but in both samples relatively early, magnesian pyroxene was found that has Ti valences that are not within error of 4; in 14053, this component has an average Ti valence of 3.81 ± 0.06 (i.e., Ti3+/[Ti3+ + Ti4+ = 0.19]). This pyroxene has relatively low atomic Ti/Al ratios (<0.4) due to crystallization before plagioclase, contrary to the long-held belief that lunar pyroxene with Ti/Al > 0.5 contains Ti3+ and pyroxene with lower ratios does not. Later pyroxene, with lower Mg/Fe and higher Ti/Al ratios, has higher proportions of Ti (all Ti4+) in tetrahedral sites. All pyroxene analyzed contains divalent Cr, ranging from 15 to 30% of the Cr present, and all but one analysis spot contains divalent V, accounting for 0 to 40% (typically 20-30%) of the V present. Three analyses of olivine in 14053 do not show any Ti3+, but Ti valences in 14072 olivine range from 4 down to 3.70 ± 0.10. In 14053 olivine, 50% of the Cr and 60% of the V are divalent. In 14072 olivine, the divalent percentages are 20% for Cr and 20-60% for V. These results indicate significant proportions of divalent Cr and V and limited amounts of trivalent Ti in the parental melts, especially when crystal/liquid partitioning preferences are taken into account. These features are consistent with an fO2 closer to IW - 2 than to IW - 1. Apollo 15 basalt 15555, analyzed for comparison with A-14 materials, has olivine with strongly reduced Cr (Cr2+/(Cr2+ + Cr3+) 0.9). Basalts from different sites may record redox differences between source regions.

  14. The provenance and chemical variation of sandstones associated with the Mid-continent Rift System, U.S.A.

    USGS Publications Warehouse

    Cullers, R.L.; Berendsen, P.

    1998-01-01

    Sandstones along the northern portion of the Precambrian Mid-continent Rift System (MRS) have been petrographically and chemically analyzed for major elements and a variety of trace elements, including the REE. After the initial extrusion of the abundant basalts along the MRS, dominantly volcaniclastic sandstones of the Oronto Group were deposited. These volcaniclastic sandstones are covered by quartzose and subarkosic sandstones of the Bayfield Group. Thus the sandstones of the Oronto Group were derived from previously extruded basalts, whereas, the sandstones of the Bayfield Group were derived from Precambrian granitic gneisses located on the rift flanks. The chemical variation of these sandstones closely reflects the changing detrital modes with time. The elemental composition of the sandstones confirms the source lithologies suggested by the mineralogy and clasts. The Oronto Group sandstones contain lower ratios of elements concentrated in silicic source rocks (La or Th) relative to elements concentrated in basic source rocks (Co, Cr, or Sc) than the Bayfield Group. Also, the average size of the negative Eu anomaly of the sandstones of the Oronto Group is significantly less (Eu/Eu* mean ?? standard deviation = 0.79 ?? 0.13) than that of the Bayfield Group (mean + standard deviation = 0.57 ?? 0.09), also suggesting a more basic source for the former than the latter. Mixing models of elemental ratios give added insight as to the evolution of the rift. These models suggest that the volcanistic sandstones of the lower portion of the Oronto Group are derived from about 80 to 90 percent basalt and 10 to 20 percent granitoids. The rest of the Oronto Group and the lower to middle portion of the Bayfield Group could have formed by mixing of about 30 to 60 percent basalt and 40 to 70 percent granitoids. The upper portion of the Bayfield Group is likely derived from 80 to 100 percent granitoids and zero to 20 percent basalt.

  15. Multiple enrichment of the Carpathian-Pannonian mantle: Pb-Sr-Nd isotope and trace element constraints

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Jeffrey M.; Wilson, Marjorie; Downes, Hilary

    1997-07-01

    Pb isotope compositions of acid-leached clinopyroxene and amphibole mineral separates from spinel peridotite mantle xenoliths entrained in Tertiary-Quaternary alkali basalts from the Carpathian-Pannonian Region of eastern Europe provide important constraints on the processes of metasomatic enrichment of the mantle lithosphere in an extensional tectonic setting associated with recent subduction. Principal component analysis of Pb-Sr-Nd isotope and rare earth element compositions of the pyroxenes is used to identify the geochemical characteristics of the original lithospheric mantle protolith and a spectrum of infiltrating metasomatic agents including subduction-related aqueous fluids and silicate melts derived from a subduction-modified mantle wedge which contains a St. Helena-type (HIMU) plume component. The mantle protolith is highly depleted relative to mid-ocean ridge basalt-source mantle with Pb-Nd-Sr isotope compositions consistent with an ancient depletion event. Silicate melt infiltration into the protolith accounts for the primary variance in the Pb-Sr-Nd isotope compositions of the xenoliths and has locally generated metasomatic amphibole. Infiltration of aqueous fluids has introduced radiogenic Pb and Sr without significantly perturbing the rare earth element signature of the protolith. The Pb isotope compositions of the fluid-modified xenoliths suggest that they reacted with aqueous fluids released from a subduction zone which had equilibrated with sediment derived from an ancient basement terrain. We propose a model for mantle lithosphere evolution consistent with available textural and geochemical data for the xenolith population. The Pb-Sr-Nd isotope compositions of both alkaline mafic magmas and rare, subduction-related, calc-alkaline basaltic andesites from the region provide important constraints for the nature of the asthenospheric mantle wedge and confirm the presence of a HIMU plume component. These silicate melts contribute to the metasomatism of the mantle lithosphere rather than being derived therefrom.

  16. Using Calcium Isotopic Composition of Calcium Carbonate Veins to Assess the Roles of Vein Formation and Seafloor Alteration in Regulation of the Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Chen, F.; Coggon, R. M.; Teagle, D. A. H.; Turchyn, A. V.

    2016-12-01

    Calcium carbonate vein formation in the oceanic crust has been proposed as a climate-sensitive feedback mechanism that regulates the carbon cycle on million-year timescales. The suggestion has been that higher pCO2 levels may drive changes in ocean temperature and pH that increase seafloor alteration, releasing more calcium from oceanic basalt. This results in more removal of carbon from Earth's surface through calcium carbonate formation, which includes calcium carbonate vein formation in oceanic crust. The importance of this feedback mechanism remains enigmatic. Measurements of the δ44Ca of calcium carbonate veins in the oceanic crust may constrain the sources of calcium and timing of vein formation. Seawater and basalt are the only sources present shortly after crustal formation, whereas other sources, such as anhydrite dissolution and sedimentary carbonates become available when the crust ages, at which point carbonate veins may form far from the ridge axis. We report the calcium isotopic composition of 65 calcium carbonate veins, ranging from 108 to 1.2 million years old, in hydrothermally altered basalt from the Mid-Atlantic and Juan de Fuca ridges. We also present 43 δ44Ca measurements of 5.9 million year old basalts and dikes from the Costa Rica Rift that have undergone hydrothermal alteration over a range of conditions in upper crust. The δ44Ca of the calcium carbonate veins ranges from -1.59 to 1.01‰ (versus Bulk Silicate Earth), whereas the δ44Ca of altered basalts ranges from -0.18 to 0.28‰. Depth and temperature of formation seem to be major influences on calcium carbonate vein δ44Ca, with veins formed at cool, shallower depths having higher δ44Ca, closer to seawater. In contrast, we note no temporal variation in δ44Ca of calcium carbonate veins when comparing samples from older and younger crust. The majority of veins (54 out of 65) have δ44Ca between that of seawater and basalt, which implies that they may have formed quite soon after crustal formation before other sources of calcium became available. We conclude that calcium carbonate vein formation may derive a significant fraction of calcium from seafloor alteration of basalts. This may cause rates of carbonate vein formation to be sensitive to aspects of ocean chemistry that vary due to changing climate conditions.

  17. Genesis of Central Indian Ocean basin seamounts: morphological, petrological, and geochemical evidence

    NASA Astrophysics Data System (ADS)

    Iyer, Sridhar D.; Amonkar, Ankeeta Ashok; Das, Pranab

    2018-04-01

    We present the petrological investigation carried out of the seamounts located between water depths of 4300 and 5385 m in the Central Indian Ocean Basin (CIOB). The seamounts have variable shapes (conical and elongated) and heights (625-1200 m). The basalts have a glassy veneer that forms the outer rind, while the holocrystalline interior shows variable textures. The basalts are plagioclase phyric and compositionally have low FeO* (8.0-10.5 wt%) and TiO2 (1.3-2.0 wt%), and variable K2O (0.1-1.0 wt%) contents and are slightly enriched in the light rare-earth elements. These characteristics are similar to the basalts from the CIOB seafloor and the Central Indian and Southeast Indian Ridges. These facts attest to the simultaneous formation of the CIOB seafloor and associated seamounts that shared a common source between 56 and 51 Ma when the spreading (half) rate was 95 mm/year. Similar to the East Pacific Rise (EPR), the source melt was perhaps ferrobasalts which over a period of time fractionated to N-MORB during the emplacement of the seamounts. The production of the seamounts may have involved a periodic tapping of a regularly replenished and shallow seated source melt. These basalts from the older seamounts of the CIOB are analogous to their present-day counterparts that form at the fast-spreading EPR and other locales in the world oceans.

  18. Lithospheric control on basaltic magma compositions within a long-lived monogenetic magmatic province: the Cainozoic basalts of eastern Victoria, south-eastern Australia

    NASA Astrophysics Data System (ADS)

    Price, R. C.; Nicholls, I. A.; Maas, R.

    2012-12-01

    Basaltic volcanism, ranging in age from Late Jurassic to Holocene and extending across southern Victoria in south-eastern Australia was initiated ~ 95 Ma ago during the earliest stages of rifting associated with opening of the Tasman Sea and Southern Ocean. Volcanic activity has continued sporadically since that time with the only major hiatus being between 18 and 7 Ma (Price et al, 2003). Basaltic rocks with ages in the range 18-90 Ma occur in small lava fields scattered across eastern and south-eastern Victoria and have also been recovered from bore holes in the west of the state. These have in the past been referred to as the "Older Volcanics" to differentiate them from more volumetrically extensive and younger (< 5 Ma) lava fields to the west. Older Volcanics vary in composition from SiO2-undersaturated basanites, basalts and hawaiites through transitional basalts to hypersthene normative tholeiites. Strontium, Nd and Pb isotopic compositions lie between DM and EM 2 in Sr-Nd-Pb isotopic space. They are isotopically similar to Samoan OIB but different from intra-plate rocks of the New Zealand-Antarctic diffuse alkaline magmatic province (DAMP). Trace element compositions are generally characterised by enrichment of Cs, Ba, Rb, Th, U, Nb, K and light REE over heavy REE, Ti, Zr and Y but there is subtle diversity within and between particular lava fields. (La/Yb)n and K/Nb ratios show significant variation and some basalts are relatively enriched in Sr, P and Pb. Potassium and Rb show distinctive relative depletions in some samples and this could be indicating low degree melting with residual phlogopite. When Sr isotope data for Older Volcanics are projected onto an east-west profile they outline distinctive discontinuities that can be related to surface and subsurface structural features within the basement. This has previously been identified in the "Newer Volcanics" (< 5 Ma) province of western Victoria (Price et al., 1997, 2003). Both Proterozoic and Palaeozoic lithospheric blocks are present beneath southern Victoria and the lowest 87Sr/86Sr ratios are observed in basalts erupted above the Proterozoic (Selwyn) block. The inference is that there is a lithospheric control on basaltic magma chemistry and since a substantial proportion of Older Volcanics have the geochemical characteristics of primary magmas, this could indicate that magmas have been sourced from regionally heterogeneous sub-continental lithospheric mantle. References Price, RC, Gray, CM, Frey, FA. (1997). Strontium isotopic and trace element heterogeneity in the plains basalts of the Newer Volcanic Province, Victoria, Australia. Geochimica et Cosmochimica Acta 61, 171-192. Price RC, Nicholls, IA, Gray, CM. (2003). Cainozoic igneous activity: widespread volcanism resulting from long-term mantle instability and rifting. In: Birch, WD (ed.). Geology of Victoria, Geological Society of Australia Special Publication 23, 360-375.

  19. Characteristics of Individual Eruptive Events on the Lunar Western Limb and Farside: Implications for Magma Ascent and Eruption Mechanisms

    NASA Astrophysics Data System (ADS)

    Yingst, R. A.; Head, J. W., III

    1996-03-01

    The connection between lunar magma source regions and the location and emplacement conditions of volcanic surface features remains unclear, both conceptually and quantitatively with respect to our understanding of transport mechanisms. Investigation of these issues requires use of surface feature characteristics to reconstruct the conditions of transport and eruption, so that thermal evolution models may be tested. Specifically, mare deposits are asymmetrically distributed over the lunar surface, with the nearside displaying the vast majority of surface basalts. Apollo and recent Clementine data have confirmed a dichotomy between the nearside and the farside with respect to crustal thickness. This implies a possible relationship between the efficiency of magma transport and the amount of crust through which magma must pass. It has been suggested that mare emplacement has been controlled by propagation of dikes driven by the overpressurization of diapir-like source regions stalled below the cooling lunar highland crust. Thus, regions of thinner crust would be expected to allow a greater number of dikes to reach the surface under the same source region conditions, than areas with thicker crust. Recent analyses of the characteristics of lava ponds in the South Pole/Aitken and Orientale/Mendel-Rydberg basins based on Clementine, Lunar Orbiter and Zond data have provided evidence that supports this theory.

  20. Mineralogy and geochemistry of the Mahi River sediments in tectonically active western India: Implications for Deccan large igneous province source, weathering and mobility of elements in a semi-arid climate

    NASA Astrophysics Data System (ADS)

    Sharma, Anupam; Sensarma, Sarajit; Kumar, Kamlesh; Khanna, P. P.; Saini, N. K.

    2013-03-01

    Large igneous provinces (LIPs) hosting mafic rocks over million km2 are likely to influence global sediment production and distribution and help in resolving discrepancies in upper continental crust (UCC) compositions. This work focuses on the texture, mineralogy, and compositions including REE of fine sand/silt deposited by a small to medium-sized river, the Mahi River (about 600 km) in a tectonically active, semi-arid region draining the Deccan Traps in western India, one of the largest LIPs in the world. The results are also applied to a sedimentary rock of fluvial origin (Siwalik mudstone/siltstone) to ascertain the source characteristics of this alluvium and evaluate comparative element (K, Ba, Sr, Na, Ca and Mg) mobility. The Mahi sediments are lithiarenite, mostly composed of quartz and basalt fragments with lesser pyroxene, biotite, feldspar, calcite and clay minerals (smectite ± illite). The Mahi sediments have higher FeOt (⩽10.9 wt.%), TiO2 (⩽2.41 wt.%), Al2O3 (⩽15.2 wt.%), Cr (⩽737 ppm), Co (⩽36 ppm), Cu (⩽107 ppm) than the UCC and PAAS; Ni (⩽54 ppm) higher than the UCC (33.5 ppm), but similar to PAAS (60 ppm). The low CIA (37-59) values and presence of basalt fragments and smectite in the samples suggest incipient weathering in the semi-arid Mahi catchment. In agreement with the mineralogy, the UCC-normalized LREE depleted patterns (LREE/HREE < 1) in the Mahi sediments confirm Deccan basalt contributions from the provenance with about 70-75% basalts and 25-30% Archean biotite-rich granitoids. The mafic contribution, in addition to the UCC, is important for the Siwalik rocks too. Similarly limited depletion of Ba, K and Ca (Ba ⩾ K > Ca) in weathering-limited Mahi (aver CIA 47.5) and transport-limited Siwalik (aver CIA 69) systems indicate their climate insensitivity. At the same time, more Ba depletion than Ca is new for the Deccan Traps River. Decoupling of Ca and Sr, however, could be mineralogy controlled.

  1. Volcanic stratigraphy and geochemical variations in Miocene-age rocks in western and southeastern Fort Irwin, California

    NASA Astrophysics Data System (ADS)

    Buesch, D.

    2015-12-01

    Lava flows and tuffaceous deposits ranging in composition from basalt to rhyolite, including basaltic trachyandesite to trachyte, are exposed in 800 km2 of western Fort Irwin area, California, and form the eastern edge of the Eagle Crags volcanic field (ECVF). The main ECVF has 40Ar/39Ar ages from ~18.7-12.4 Ma (mostly 18.7-18.5 Ma; Sabin et al. 1994), and on Fort Irwin, the ages are from 21.0-15.8 Ma (mostly 18.6-15.8 Ma; Schermer et al. 1996). 68 samples (56 lava flow, 4 dome-collapse breccia, 3 ignimbrite, and 5 fallout tephra) were analyzed for major, minor, and trace elements. Typically, stratigraphic sequences dip <30° (mostly <15°) except near faults, with local buttress unconfomities and no large unconfomities. Compositions are moderate-to-high-K type, and similar to Na2O+K2O from Sabin et al. (1994) but with slightly smaller ranges. The generalized stratigraphic sequence is rhyolite (R), dacite (D), or trachyte (T) that form domes, lava flows (up to 3.5 km long), dome-collapse deposits, or pyroclastic deposits, overlain by andesite (A), trachyandesite (TA), basaltic andesite (BA), basaltic trachyandesite (BT), or basalt (B) lava flows (up to 7 km long), and minor cinder cones. A general upward felsic to mafic compositional sequence occurs throughout the area, but is not continuous as B is locally in a R-D sequence and B is at the base of and interstratified with a BA-A sequence. Also, there are compositional variations at different locations along the edges of the field. In the Goldstone Mesa, Pink Canyon, and Stone Ridge areas (~70 km2), B-BA forms the youngest lava flows, but ~21 km to the north in the Garry Owen area (~25 km2), BTA forms the youngest lava flows. Compared to the Stone Ridge area with a D-A-TA-BA trend, ~6 km west in the Pioneer Plateau area is R-TA-D, ~3 km south in the Pink Canyon area is R-B-BA-A, and ~8 km east at Dacite Dome is D only (all areas have slightly different Na2O+K2O in each rock type). A non-ECVF, 5.6 Ma BA flow in SE Fort Irwin also has distinct compositions. Chemical variations indicate the region had similar general evolution of magma sources, but (1) there were numerous small, isolated chambers that fed flows along the edges of the field, (2) several tuffs are similar to local lavas but some differ and might have distant sources, and (3) basalt flows locally encroached into adjacent areas.

  2. Key new pieces of the HIMU puzzle from olivines and diamond inclusions.

    PubMed

    Weiss, Yaakov; Class, Cornelia; Goldstein, Steven L; Hanyu, Takeshi

    2016-09-29

    Mantle melting, which leads to the formation of oceanic and continental crust, together with crust recycling through plate tectonics, are the primary processes that drive the chemical differentiation of the silicate Earth. The present-day mantle, as sampled by oceanic basalts, shows large chemical and isotopic variability bounded by a few end-member compositions. Among these, the HIMU end-member (having a high U/Pb ratio, μ) has been generally considered to represent subducted/recycled basaltic oceanic crust. However, this concept has been challenged by recent studies of the mantle source of HIMU magmas. For example, analyses of olivine phenocrysts in HIMU lavas indicate derivation from the partial melting of peridotite, rather than from the pyroxenitic remnants of recycled oceanic basalt. Here we report data that elucidate the source of these lavas: high-precision trace-element analyses of olivine phenocrysts point to peridotite that has been metasomatized by carbonatite fluids. Moreover, similarities in the trace-element patterns of carbonatitic melt inclusions in diamonds and HIMU lavas indicate that the metasomatism occurred in the subcontinental lithospheric mantle, fused to the base of the continental crust and isolated from mantle convection. Taking into account evidence from sulfur isotope data for Archean to early Proterozoic surface material in the deep HIMU mantle source, a multi-stage evolution is revealed for the HIMU end-member, spanning more than half of Earth's history. Before entrainment in the convecting mantle, storage in a boundary layer, upwelling as a mantle plume and partial melting to become ocean island basalt, the HIMU source formed as Archean-early Proterozoic subduction-related carbonatite-metasomatized subcontinental lithospheric mantle.

  3. Mineralogy of young lunar mare basalts: Assessment of temporal and spatial heterogeneity using M3 data from Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Varatharajan, Indhu; Srivastava, Neeraj; Murty, Sripada V. S.

    2014-07-01

    A comparative assessment of the mineralogy of young basalts (∼1.2 Ga to ∼2.8 Ga) from the western nearside, Moscoviense basin, and the Orientale basin of the Moon has been made using Level 2 Moon Mineralogy Mapper (M3) data from the Chandrayaan-1 mission. Spectral data characteristics of the individual units have been generated from fresh small craters to minimize the complications due to space weathering. Representative spectra for individual units and the derived spectral parameters (band centers and integrated band depth ratio) have been used to study composition of these young basalts. A modified approach of Gaffey et al. (Gaffey, M.J., Cloutis, E.A., Kelley, M.S., Reed, K.L. [2002]. Mineralogy of asteroids. In: Asteroids III. The University of Arizona Press, Tucson, pp. 183-204) (for olivine-pyroxene mixtures) and the methodology of Adams (Adams, J.B. [1974]. J. Geophys. Res. 79, 4829-4836. http://dx.doi.org/10.1029/JB079i032p04829) (for interpreting pyroxene type) have been used to improve our understanding of the spectral behavior of these basalts. Most of the young basalts of Oceanus Procellarum are characterized by abundant olivines and they show complex volcanic history. Vast exposures of olivine concentrated units having higher abundance of olivine content than high-Ca pyroxenes are emplaced in the northern Oceanus Procellarum region. Mostly, they show distinct stratigraphic gradation with the immediately underlying units of relatively lower olivine content. The Moscoviense unit shows signatures of Fe-rich glasses along with clinopyroxenes. The basalts of Orientale basin are typically devoid of olivine and are rich in high-Ca pyroxene. Thus, mineralogy of these mare basalts which erupted during the late stage volcanism vary across the Moon’s surface; however, broader observations reveal apparently higher FeO content in the younger basalts of western nearside and Orientale region.

  4. Early Precambrian crustal evolution of south India

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.

    1986-01-01

    The Early Precambrian sequence in Karnataka, South India provides evidences for a distinct trend of evolution which differs from trends exhibited in many other Early Precambrian regions of the world. The supracrustal rock associations preserved in greenstone belts and as inclusions in gneisses and granulites suggest the evolution of the terrain from a stable to a mobile regime. The stable regime is represented by (1) layered ultramafic-mafic complexes, (2) orthoquartzite-basalt-rhyodacite-iron formation, and (30 ortho-quartzite-carbonate-Mn-Fe formation. The mobile regime, which can be shown on sedimentological grounds to have succeeded the stable regime, witnessed the accumulation of a greywacke-pillow basalt-dacite-rhyolite-iron formation association. Detrital sediments of the stable zone accumulated dominantly in fluvial environment and the associated volcanics are ubaerial. The volcanics of the stable regime are tholeiites derived from a zirconium and LREE-enriched sources. The greywackes of the mobile regime are turbidities, and the volcanic rocks possess continental margin (island-arc or back-arc) affinity; they show a LREE depleted to slightly LREE-enriched pattern. The evolution from a stable to a mobile regime is in contrast to the trend seen in most other regions of the world, where an early dominantly volcanic association of a mobile regime gives way upward in the sequence to sediments characteristic of a stable regime.

  5. Effect of water on the fluorine and chlorine partitioning behavior between olivine and silicate melt.

    PubMed

    Joachim, Bastian; Stechern, André; Ludwig, Thomas; Konzett, Jürgen; Pawley, Alison; Ruzié-Hamilton, Lorraine; Clay, Patricia L; Burgess, Ray; Ballentine, Christopher J

    2017-01-01

    Halogens show a range from moderate (F) to highly (Cl, Br, I) volatile and incompatible behavior, which makes them excellent tracers for volatile transport processes in the Earth's mantle. Experimentally determined fluorine and chlorine partitioning data between mantle minerals and silicate melt enable us to estimate Mid Ocean Ridge Basalt (MORB) and Ocean Island Basalt (OIB) source region concentrations for these elements. This study investigates the effect of varying small amounts of water on the fluorine and chlorine partitioning behavior at 1280 °C and 0.3 GPa between olivine and silicate melt in the Fe-free CMAS+F-Cl-Br-I-H 2 O model system. Results show that, within the uncertainty of the analyses, water has no effect on the chlorine partitioning behavior for bulk water contents ranging from 0.03 (2) wt% H 2 O (D Cl ol/melt = 1.6 ± 0.9 × 10 -4 ) to 0.33 (6) wt% H 2 O (D Cl ol/melt = 2.2 ± 1.1 × 10 -4 ). Consequently, with the effect of pressure being negligible in the uppermost mantle (Joachim et al. Chem Geol 416:65-78, 2015), temperature is the only parameter that needs to be considered for the determination of chlorine partition coefficients between olivine and melt at least in the simplified iron-free CMAS+F-Cl-Br-I-H 2 O system. In contrast, the fluorine partition coefficient increases linearly in this range and may be described at 1280 °C and 0.3 GPa with ( R 2  = 0.99): [Formula: see text]. The observed fluorine partitioning behavior supports the theory suggested by Crépisson et al. (Earth Planet Sci Lett 390:287-295, 2014) that fluorine and water are incorporated as clumped OH/F defects in the olivine structure. Results of this study further suggest that fluorine concentration estimates in OIB source regions are at least 10% lower than previously expected (Joachim et al. Chem Geol 416:65-78, 2015), implying that consideration of the effect of water on the fluorine partitioning behavior between Earth's mantle minerals and silicate melt is vital for a correct estimation of fluorine abundances in OIB source regions. Estimates for MORB source fluorine concentrations as well as chlorine abundances in both mantle source regions are within uncertainty not affected by the presence of water.

  6. Enriched and depleted characters of the Amnay Ophiolite upper crustal section and the regionally heterogeneous nature of the South China Sea mantle

    NASA Astrophysics Data System (ADS)

    Perez, Americus d. C.; Faustino-Eslava, Decibel V.; Yumul, Graciano P.; Dimalanta, Carla B.; Tamayo, Rodolfo A.; Yang, Tsanyao Frank; Zhou, Mei-Fu

    2013-03-01

    The volcanic section of the Middle Oligocene Amnay Ophiolite in Mindoro, Philippines has previously been shown to be of normalmid-oceanic ridge basalt (NMORB) composition. Here we report for the first time an enriched mantle component that is additionally recorded in this crustal section. New whole rock major and trace element data are presented for nine mafic volcanic rocks from a section of the ophiolite that has not been previously examined. These moderately evolved tholeiitic basalts were found to have resulted from the bulk mixing of ˜10% ocean island basalt components with depleted mantle. Drawing together various geochemical characteristics reported for different rock suites taken as representatives of the South China Sea crust, including the enriched MORB (EMORB) and NMORB of the East Taiwan Ophiolite, the NMORB from previous studies of the Amnay Ophiolite and the younger ocean floor eruptives of the Scarborough Seamount-Reed Bank region, a veined mantle model is proposed for the South China Sea mantle. The NMORB magmatic products are suggested to have been derived from the more depleted portions of the mantle whereas the ocean island basalt (OIB) and EMORB-type materials from the mixing of depleted and veined/enriched mantle regions.

  7. Assimilation by Lunar Mare Basalts: Melting of Crustal Material and Dissolution of Anorthite

    NASA Technical Reports Server (NTRS)

    Finnila, A. B.; Hess, P. C.; Rutherford, M. J.

    1994-01-01

    We discuss techniques for calculating the amount of crustal assimilation possible in lunar magma chambers and dikes based on thermal energy balances, kinetic rates, and simple fluid mechanical constraints. Assuming parent magmas of picritic compositions, we demonstrate the limits on the capacity of such magmas to melt and dissolve wall rock of anorthitic, troctolitic, noritic, and KREEP (quartz monzodiorite) compositions. Significant melting of the plagioclase-rich crustal lithologies requires turbulent convection in the assimilating magma and an efficient method of mixing in the relatively buoyant and viscous new melt. Even when this occurs, the major element chemistry of the picritic magmas will change by less than 1-2 wt %. Diffusion coefficients measured for Al2O3 from an iron-free basalt and an orange glass composition are 10(exp -12) m(exp 2) s(exp -1) at 1340 C and 10(exp -11) m(exp 2) s(exp -1) at 1390 C. These rates are too slow to allow dissolution of plagioclase to significantly affect magma compositions. Picritic magmas can melt significant quantities of KREEP, which suggests that their trace element chemistry may still be affected by assimilation processes; however, mixing viscous melts of KREEP composition with the fluid picritic magmas could be prohibitively difficult. We conclude that only a small part of the total major element chemical variation in the mare basalt and volcanic glass collection is due to assimilation/fractional crystallization processes near the lunar surface. Instead, most of the chemical variation in the lunar basalts and volcanic glasses must result from assimilation at deeper levels or from having distinct source regions in a heterogeneous lunar mantle.

  8. ´Áā lava flows in the Deccan Volcanic Province, India, and their significance for the nature of continental flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Brown, Richard J.; Blake, S.; Bondre, N. R.; Phadnis, V. M.; Self, S.

    2011-08-01

    Newly identified ´áā lava flows outcrop intermittently over an area of ~110 km2 in the western Deccan Volcanic Province (DVP), India. They occur in the upper Thakurvadi Formation in the region south of Sangamner. The flows, one of which is compound, are 15-25 m thick, and exhibit well-developed basal and flow-top breccias. The lavas have microcrystalline groundmasses and are porphyritic or glomerocrystic and contain phenocrysts of olivine, clinopyroxene or plagioclase feldspar. They are chemically similar to compound pāhoehoe flows at a similar stratigraphic horizon along the Western Ghats. Petrographic and geochemical differences between ´áā flows at widely spaced outcrops at the same stratigraphic horizon suggest that they are the product of several eruptions, potentially from different sources. Their presence in the DVP could suggest relative proximity to vents. This discovery is significant because ´áā lavas are generally scarce in large continental flood basalt provinces, which typically consist of numerous inflated compound pāhoehoe lobes and sheet lobes. Their scarcity is intriguing, and may relate to either their occurrence only in poorly preserved or exposed proximal areas or to the flat plateau-like topography of flood basalt provinces that may inhibit channelization and ´áā formation, or both. In this context, the ´áā flow fields described here are inferred to be the products of eruptions that produced unusually high-effusion-rate lavas compared to typical flood basalt eruptions. Whether these phases were transitional to lower intensity, sustained eruptions that fed extensive low effusion rate pāhoehoe flow fields remains unclear.

  9. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau Volcanic Field

    USGS Publications Warehouse

    Hildreth, W.; Halliday, A.N.; Christiansen, R.L.

    1991-01-01

    Since 2.2 Ma, the Yellowstone Plateau Volcanic Field has produced ~6000 km3 of rhyolite tuffs and lavas in >60 separate eruptions, as well as ~100 km3 of tholeiitic basalt from >50 vents peripheral to the silicic focus. Intermediate eruptive products are absent. Early postcollapse rhyolites show large shifts in Nd, Sr, Pb, and O isotopic composition caused by assimilation of roof rocks and hydrothermal brines during collapse and resurgence. Younger intracaldera rhyolite lavas record partial isotopic recovery toward precaldera ratios. Thirteen extracaldera rhyolites show none of these effects and have sources independent of the subcaldera magma system. Contributions from the Archaean crust have extreme values and wide ranges of Nd-, Sr, and Pb-isotope ratios, but Yellowstone rhyolites have moderate values and limited ranges. This requires their deep-crustal sources to have been pervasively hybridized by distributed intrusion of Cenozoic basalt, most of which was probably contemporaneous with the Pliocene and Quaternary volcanism. Most Yellowstone basalts had undergone cryptic clinopyroxene fractionation in the lower crust or crust-mantle transition zone and, having also ascended through or adjacent to crustal zones of silicic-magma generation, most underwent some crustal contamination. -from Authors

  10. Remote Sensing and Geologic Studies of the Schiller-Schickard Region of the Moon

    NASA Technical Reports Server (NTRS)

    Blewett, David T.; Hawke, B. Ray; Lucey, Paul G.; Taylor, G. Jeffrey; Jaumann, Ralf; Spudis, Paul D.

    1995-01-01

    Near-infrared reflectance spectra, multispectral images, and photogeologic data for the Schiller-Schickard (SS) region were obtained and analyzed in order to determine the composition and origin of a variety of geologic units. These include light plains deposits, Orientale-related deposits, mare units, and dark-haloed impact craters (DHCs). Spectral data indicate that the pre-Orientale highland surface was dominated by noritic anorthosite. Near-IR spectra show that DHCs in the region have excavated ancient (greater than 3.8 Ga) mare basalts from beneath highland-bearing material emplaced by the Orientale impact. Ancient mare basalts were widespread in the SS region prior to the Orientale event, and their distribution appears to have been controlled by the presence of several old impact basins, including the Schiller-Zucchius basin and a basin previously unrecognized. Both near-IR spectra and multispectral images indicate that light plains and other Orientale-related units in the SS region contain major amounts of local, pre-Orientale mare basalt. The amounts of local material in these deposits approach, but seldom exceed, the maximum values predicted by the local mixing hypothesis of Oberbeck and co-workers.

  11. Contemporaneous alkaline and calc-alkaline series in Central Anatolia (Turkey): Spatio-temporal evolution of a post-collisional Quaternary basaltic volcanism

    NASA Astrophysics Data System (ADS)

    Dogan-Kulahci, Gullu Deniz; Temel, Abidin; Gourgaud, Alain; Varol, Elif; Guillou, Hervé; Deniel, Catherine

    2018-05-01

    This study focuses on spatio-temporal evolution of basaltic volcanism in the Central Anatolian post-collisional Quaternary magmatic province which developed along a NE-SW orientation in Turkey. This magmatic province consists of the stratovolcanoes Erciyes (ES) and Hasandag (HS), and the basaltic volcanic fields of Obruk-Zengen (OZ) and Karapınar (KA). The investigated samples range between basic to intermediate in composition (48-56 wt% SiO2), and exhibit calc-alkaline affinity at ES whereas HS, OZ and KA are alkaline in composition. Based on new Ksbnd Ar ages and major element data, the oldest basaltic rock of ES is 1700 ± 40 ka old and exhibits alkaline character, whereas the youngest basaltic trachyandesite is 12 ± 5 ka old and calc-alkaline in composition. Most ES basaltic rocks are younger than 350 ka. All samples dated from HS are alkaline basalts, ranging from 543 ± 12 ka to 2 ± 7 ka old. With the exception of one basalt, all HS basalts are 100 ka or younger in age. Ksbnd Ar ages range from 797 ± 20 ka to 66 ± 7 ka from OZ. All the basalt samples are alkaline in character and are older than the HS alkaline basalts, with the exception of the youngest samples. The oldest and youngest basaltic samples from KA are 280 ± 7 ka and 163 ± 10 ka, respectively, and are calc-alkaline in character. Based on thermobarometric estimates samples from OZ exhibit the highest cpx-liqidus temperature and pressure. For all centers the calculated crystallization depths are between 11 and 28 km and increase from NE to SW. Multistage crystallization in magma chamber(s) located at different depths can explain this range in pressure. Harker variation diagrams coupled with least-squares mass balance calculations support fractional crystallization for ES and, to lesser extend for HS, OZ and KA. All basaltic volcanic rocks of this study are enriched in large-ion lithophile elements (LILE) and light rare earth elements (LREE). The lack of negative anomalies for high field strength elements (HFSE; Y, Yb) and the La/Nb >1 favor a shallow lithospheric source for ES, HS, OZ and KA basaltic volcanic rocks, whereas some samples bear the trace element signature of an asthenospheric mantle source. The lithospheric mantle beneath Central Anatolia may have not been affected from asthenospheric mantle directly. Negative Nb-Ta-Ti anomalies and a positive Pb spike of ES, HS, OZ and KA may be ascribed to crustal contamination or as the imprints of the previous subduction processes. According to this study, and previous studies, the effect of subduction and/or crustal contamination in Central Anatolia decreased from the Miocene to the Quaternary, and the origin of the Quaternary basaltic rocks mainly derived from subduction-related magmas enriched with sediment input rather than to slab-derived fluids. Our calculated eruption ages for the four basaltic complexes show that spatial differences predominate, whereas temporal trends are difficult to discern due to limited age resolution. According to the available geochronological, petrological and geochemical data, alkaline and calc-alkaline volcanism occurred simultaneously from distinct parental magmas.

  12. Isotopic evolution of Mauna Loa volcano

    NASA Astrophysics Data System (ADS)

    Kurz, Mark D.; Kammer, David P.

    1991-04-01

    In an effort to understand the temporal helium isotopic variations in Mauna Loa volcano, we have measured helium, strontium and lead isotopes in a suite of Mauna Loa lavas that span most of the subaerial eruptive history of the volcano. The lavas range in age from historical flows to Ninole basalt which are thought to be several hundred thousand years old. Most of the samples younger than 30 ka in age (Kau Basalt) are radiocarbon-dated flows, while the samples older than 30 ka are stratigraphically controlled (Kahuku and Ninole Basalt). The data reveal a striking change in the geochemistry of the lavas approximately 10 ka before present. The lavas older than 10 ka are characterized by high 3He/ 4He ( ˜ 16-20 times atmospheric), higher 206Pb/ 204Pb ( ˜ 18.2), and lower 87Sr/ 86Sr ( ˜ 0.70365) ratios than the younger Kau samples (having He, Pb and Sr ratios of approximately 8.5 × atmospheric, 18.1 and 0.70390, respectively). The historical lavas are distinct in having intermediate Sr and Pb isotopic compositions with 3He/ 4He ratios similar to the other young Kau basalt ( ˜ 8.5 × atmospheric). The isotopic variations are on a shorter time scale (100 to 10,000 years) than has previously been observed for Hawaiian volcanoes, and demonstrate the importance of geochronology and stratigraphy to geochemical studies. The data show consistency between all three isotope systems, which suggests that the variations are not related to magma chamber degassing processes, and that helium is not decoupled from the other isotopes. However, the complex temporal evolution suggests that three distinct mantle sources are required to explain the isotopic data. Most of the Mauna Loa isotopic variations could be explained by mixing between a plume type source, similar to Loihi, and an asthenospheric source with helium isotopic composition close to MORB and elevated Sr isotopic values. An asthenospheric source, or variation within the plume source, is considered more likely than lithospheric sources due to the elevated 87Sr/ 86Sr ratios in the recent Kau Basalts. However, the distinct isotopic characteristics of the historical lavas are inferred to be related to lithospheric involvement in the latest stages of shield-building volcanism.

  13. Mars' Volcanic Surface Compositions: Distributions and Boundaries Examined Using Multiple Orbiter Datasets

    NASA Technical Reports Server (NTRS)

    Rogers, D.; Christensen, P.; Bandfield, J. L.; Christensen, P.

    2001-01-01

    MGS TES data is used at high resolution to map small regions of basalt in Mars' northern hemisphere. With the exception of 2 outliers, the northern extent of the highland basalt appears to correspond with the northern edge of the cratered highlands. Additional information is contained in the original extended abstract.

  14. Spectral reflectance studies of the Humorum Basin region

    NASA Technical Reports Server (NTRS)

    Peterson, C. A.; Hawke, B. R.; Lucey, P. G.; Taylor, G. J.; Blewett, D. T.; Spudis, P. D.

    1993-01-01

    A portion of the mare-bounding (MB) ring of Humorum Basin is composed of pure anorthosite while other parts of the ring are composed of noritic anorthosite. An episode of mare volcanism emplaced basaltic units in the region northwest of the MB ring after the Humorum impact event. Subsequently, large impacts emplaced a veneer of highlands material atop the basalt flows. Some mare material could have been mixed with this highlands debris either by local mixing by secondary craters or by vertical mixing. Spectra for most other highlands units in the region indicate a noritic anorthosite lithology. Spectra of mare basalts in Mare Humorum and nearby mare flooded craters show relatively deep absorption bands due to the presence of abundant high-Ca pyroxene. An analysis of spectra for a small number of craters in the highlands west of the outer ring of Humorum reveals the presence of high-Ca pyroxene. This suggests the possible presence of an extensive gabbroic province.

  15. The spatial and temporal distribution of lunar mare basalts as deduced from analysis of data for lunar meteorites

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Neukum, G.; Nyquist, L.

    2010-12-01

    In this work we analyze data for lunar meteorites with emphasis on the spatial and temporal distribution of lunar mare basalts. The data are mostly from the Lunar Meteorite Compendium ( http://www-curator.jsc.nasa.gov/antmet/lmc/contents.cfm cited hereafter as Compendium) compiled by Kevin Righter, NASA Johnson Space Center, and from the associated literature. Analysis of the data showed that (i) a significant part of the lunar meteorite source craters are not larger than hundreds of meters in diameter; (ii) cryptomaria seem to be rather abundant in lunar highlands; (iii) the ratios of lunar meteorites belonging to three broad petrologic groups (mare basalt/gabbro, feldspatic highland breccias, and mingled breccias which are a mixture of mare and highland components) seem to be roughly proportional to the areal distribution of these rocks on the lunar surface; and (iv) the meteorite mare basalt ages show a range from ˜2.5 to 4.3 Ga and fill the gaps in the Apollo/Luna basalt age distribution. The ages of mare basalt clasts from mingled breccias seem to be systematically higher than those of "normal" mare basalts, which supports the suggestion that mingled breccias originated mostly from cryptomaria.

  16. Evidence for an abrupt transition in the mantle-derived source to the Long Valley Caldera rhyolites after the climactic eruption: from subduction-modified lithosphere to asthenosphere

    NASA Astrophysics Data System (ADS)

    Waters, L.; Lange, R. A.

    2014-12-01

    Shortly after the climactic eruption of ~600 km3 of Bishop Tuff zoned rhyolitic magma, ~100 km3 of crystal-poor Early Rhyolite erupted inside Long Valley Caldera between ~750-650 ka as domes, glassy lavas, and tuffs (Hildreth, 2004). Despite similarities in bulk composition (e.g., 73-75 wt% SiO2; ~100 ppm Sr), there are marked differences between the Late (≥ 790°C) Bishop Tuff and postcaldera Early Rhyolites. Although crystal-poor (<5%), the Early Rhyolites are often saturated with 7-8 mineral phases (plag + opx + ilm + tmte + biotite + apatite + zircon ± pyrrhotite), but without the quartz, sanidine, and cpx additionally found in the more crystal-rich (12-24%) Late Bishop Tuff. Pre-eruptive temperatures, on the basis of two Fe-Ti oxides, range from 720-860°C, and ΔNNO values range from-0.4 to -0.9 (consistent with abundant ilmenite). Thus the Early Rhyolites record fO2 values that are nearly two orders of magnitude lower than those in the Late Bishop Tuff (ΔNNO = +1; Hildreth and Wilson, 2007). Application of the plagioclase-liquid hygrometer to Early Rhyolites gives pre-eruptive water contents ≤ 4.4 wt% H2O. The phenocrysts in Early Rhyolite obsidians often display euhedral and/or diffusion-limited growth textures, suggesting degassing-induced crystallization during rapid ascent. Isotopic data from the literature (e.g., Simon et al., 2014 and references therein) show that Long Valley rhyolites were derived from both crustal and mantle sources. We hypothesize that the drop in fO2 between the Late Bishop Tuff and Early Rhyolites may reflect a transition in their respective mantle source, from subduction-modified lithosphere to asthenosphere. Such a time-progressive transition in the mantle source of erupted basalts is seen throughout the Great Basin, occurring earliest in its central region and more recently toward its western margin (e.g. Cousens et al., 2012). Although the geochemistry of Quaternary basalts erupted around Long Valley indicate a subduction-modified lithosphere source (Cousens, 1996), the Early Rhyolites may be recording the crustal emplacement of basalts from the asthenosphere before any have yet erupted. If so, the Early Rhyolites may be derived from a greater proportion of crustal sources than calculated from isotopic data on the assumption of a lithospheric mantle source.

  17. Combined Li-He isotopes in Iceland and Jan Mayen basalts and constraints on the nature of the North Atlantic mantle

    NASA Astrophysics Data System (ADS)

    Magna, T.; Wiechert, U.; Stuart, F. M.; Halliday, A. N.; Harrison, D.

    2011-02-01

    Lithium (Li) isotopes are thought to provide a powerful proxy for the recycling of crustal material, affected by low temperature alteration, through the mantle. We present Li isotope compositions for basaltic volcanic rocks from Hengill, Iceland, and Jan Mayen in order to examine possible links between ocean island volcanism and recycled oceanic crust and to address recent suggestions that mantle 3He/ 4He is also related to recycling of ancient slabs. Basaltic glasses spanning a range of chemical enrichment from the Hengill fissure system define an inverse correlation between δ 7Li (3.8-6.9‰) and 3He/ 4He (12-20 RA). The high- 3He/ 4He basalts have low δ 18O as well as excess Eu and high Nb/U, but carry no Li isotope evidence of being the product of recycling of altered slab or wedge material. In fact, there is no clear correlation between Li or He isotopes on the one hand and any of the other fingerprints of recycled slab components. The low- 3He/ 4He samples do have elevated Nb/U, Sr/Nd, positive Eu anomalies and high δ 7Li (˜6.9‰), providing evidence of a cumulate-enriched source that could be part of an ancient altered ocean floor slab. Basalts from Jan Mayen are characterized by large degrees of enrichment in incompatible trace elements typical of EM-like basalts but have homogeneous δ 7Li typical of depleted mantle (3.9-4.7‰) providing evidence for a third mantle source in the North Atlantic. It appears that oceanic basalts can display a wide range in isotope and trace element compositions associated with recycled components whilst exhibiting no sign of modern surface-altered slab or wedge material from the Li isotope composition.

  18. Re-Os isotope evidence from Mesozoic and Cenozoic basalts for secular evolution of the mantle beneath the North China Craton

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Xu, Ji-Feng; Liu, Yong-Sheng; Li, Jie; Chen, Jian-Lin; Li, Xi-Yao

    2017-05-01

    The mechanism and process of lithospheric thinning beneath the North China Craton (NCC) are still debated. A key criterion in distinguishing among the proposed mechanisms is whether associated continental basalts were derived from the thinning lithospheric mantle or upwelling asthenosphere. Herein, we investigate the possible mechanisms of lithospheric thinning based on a systematic Re-Os isotopic study of Mesozoic to Cenozoic basalts from the NCC. Our whole-rock Re-Os isotopic results indicate that the Mesozoic basalts generally have high Re and Os concentrations that vary widely from 97.2 to 839.4 ppt and 74.4 to 519.6 ppt, respectively. They have high initial 187Os/188Os ratios ranging from 0.1513 to 0.3805, with corresponding variable γOs(t) values (+20 to +202). In contrast, the Re-Os concentrations and radiogenic Os isotope compositions of the Cenozoic basalts are typically lower than those of the Mesozoic basalts. The lowest initial 187Os/188Os ratios of the Cenozoic basalts are 0.1465 and 0.1479, with corresponding γOs(t) values of +15 and +16, which are within the range of ocean island basalts. These new Re-Os isotopic results, combined with the findings of previous studies, indicate that the Mesozoic basalts were a hybrid product of the melting of pyroxenite and peridotite in ancient lithospheric mantle beneath the NCC. The Cenozoic basalts were derived mainly from upwelling asthenosphere mixed with small amounts of lithospheric materials. The marked differences in geochemistry between the Mesozoic and Cenozoic basalts suggest a greatly reduced involvement of lithospheric mantle as the magma source from the Mesozoic to the Cenozoic. The subsequent lithospheric thinning of the NCC and replacement by upwelling asthenospheric mantle resulted in a change to asthenosphere-derived Cenozoic basalts.

  19. Mantle and crustal contribution in the genesis of Recent basalts from off-rift zones in Iceland: Constraints from Th, Sr and O isotopes

    NASA Astrophysics Data System (ADS)

    Sigmarsson, Olgeir; Condomines, Michel; Fourcade, Serge

    1992-05-01

    Along the two volcanic off-rift zones in Iceland, the Sn˦fellsnes volcanic zone (SNVZ) and the South Iceland volcanic zone (SIVZ), geochemical parameters vary regularly along the strike towards the centre of the island. Recent basalts from the SNVZ change from alkali basalts to tholeiites where the volcanic zone reaches the active rift axis, and their 87Sr/ 86Sr and Th/U ratios decrease in the same direction. These variations are interpreted as the result of mixing between mantle melts from two distinct reservoirs below Sn˦fellsnes. The mantle melt would be more depleted in incompatible elements, but with a higher 3He/ 4He ratio ( R/Ra≈ 20) beneath the centre of Iceland than at the tip of the Sn˦fellsnes volcanic zone ( R/Ra≈ 7.5). From southwest to northeast along the SIVZ, the basalts change from alkali basalts to FeTi basalts and quartz-normative tholeiites. The Th/U ratio of the Recent basalts increases and both ( 230Th/ 232Th ) and δ 18O values decrease in the same direction. This reflects an important crustal contamination of the FeTi-rich basalts and the quartz tholeiites. The two types of basalts could be produced through assimilation and fractional crystallization in which primary alkali basaltic and olivine tholeiitic melts 'erode' and assimilate the base of the crust. The increasingly tholeiitic character of the basalts towards the centre of Iceland, which reflects a higher degree of partial melting, is qualitatively consistent with increasing geothermal gradient and negative gravity anomaly. The highest Sr isotope ratio in Recent basalts from Iceland is observed inÖr˦fajökull volcano, which has a 3He/ 4He ratio ( R/Ra≈ 7.8) close to the MORB value, and this might represent a mantle source similar to that of Mauna Loa in Hawaii.

  20. Discovery of a basaltic asteroid in the outer main belt

    PubMed

    Lazzaro; Michtchenko; Carvano; Binzel; Bus; Burbine; Mothe-Diniz; Florczak; Angeli; Harris

    2000-06-16

    Visible and near-infrared spectroscopic observations of the asteroid 1459 Magnya indicate that it has a basaltic surface. Magnya is at 3. 15 astronomical units (AU) from the sun and has no known dynamical link to any family, to any nearby large asteroid, or to asteroid 4 Vesta at 2.36 AU, which is the only other known large basaltic asteroid. We show that the region of the belt around Magnya is densely filled by mean-motion resonances, generating slow orbital diffusion processes and providing a potential mechanism for removing other basaltic fragments that may have been created on the same parent body as Magnya. Magnya may represent a rare surviving fragment from a larger, differentiated planetesimal that was disrupted long ago.

  1. Age and isotopic marks of K-rich Manning Massif trachybasalts: an evidence for Lambert-Amery rift-system initiation (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Leitchenkov, German; Belyatsky, Boris; Lepekhina, Elena; Antonov, Anton; Krymsky, Robert; Andronikov, Alex; Sergeev, Sergey

    2017-04-01

    Volcanic rocks from the Manning Massif, which is situated in the western flank of the Paleozoic-Late Mesozoic Lambert Rift (East Antarctica), belong to a rare type of alkaline magmatism within the Precambrian East Antarctic Craton. K-rich olivine trachybasalts compose some flows resting upon a surface of Precambrian granulite terrain, each flow of 2.5-7 m in thickness and total section not less than 30 m. Each flow sequence comprises of glassy chilled base with vitroporphyritic texture, fine-plated vesicular basalt with interstitial texture, massive fine-grained basalt with porphyritic microlitic texture, amigdaloidal aphanitic basalt with poikilophytic texture, and vesicular mandelstone of slag crust with vitroporphyritic texture [Andronikov et al., 1998]. Rb-Sr and K-Ar isotopic age of this eruption was estimated as 40-50 Ma and the main reason for this Cenozoic continental volcanism was supposed the post-rift tectonic activity [Andronikov et al., 1998]. But the isotopic characteristics of these trachybasalts are very similar to those obtained for the part of spinel lherzolite and spinel-garnet lherzolite xenoliths from the Mesozoic alkaline picrite of the adjacent Jetty Peninsula region. That could be evidence of the trachybasalt mantle source in long-lived enriched upper mantle beneath the region, either under the lowermost levels of spinel lherzolite facies or on the highest levels of garnet lherzolite facies conditions. To reveal tectonic position of these enigmatic volcanics, we have studied 16 samples from different parts of basaltic flows for U-Pb geochronology and Pb-Sr-Nd-Os isotopic characteristics. U-Pb SIMS SHRIMP-II analysis was performed for 68 apatite grains from 5 samples. All obtained data-points are approximated by discordia line (MSWD=1.6) on Tera-Wasserburg diagram, corresponding to the age of 346±46 Ma. Common Pb isotope composition of these apatites differs from the model by increased 206Pb/204Pb (19.8) and 207Pb/204Pb (18.3) that means the source of contamination was an ancient material (> 2.4 Ga) and/or with high μ (26.5). The initial isotope characteristics of the studied basalts are the same for different individual flows: ɛNd=-3.4±0.4; 87Sr/86Sri=0.7061±0.0003, 206Pb/204Pbi=18.421±0.001; 207Pb/204Pbi=15.667±0.001; 208Pb/204Pbi=39.845±0.001; 187Os/186Osi = 0.2012±0.0004 and reflect minimal influence of host-rock contamination during or after melts crystallization and correspond to enriched mantle source signatures akin to plume-like. Thus the Manning Massif K-rich basalts correlate with the time of formation of the Late-Paleozoic coal-bearing sediments of the Lambert Glacier Rift and basic dykes of Jetty Peninsula [Mikhalsky, Sheraton, 1993] and can be interpreted to mark the earliest, Lower Carboniferous stage of the rifting. This event corresponds to the initial intracontinental stretching in the Eastern Gondwana wich was previously detected only in Perth Basin of western Australia. The research was done under financial support by RSF grant N 16-17-10139. References: Andronikov A.V., Foley S.F., Beliatsky B.V. 1998. Sm-Nd and Rb-Sr isotopic systematics of the East Antarctic Manning Massif alkaline trachybasalts and the development of the mantle beneath the Lambert-Amery rift. Mineral. Petrol. 63. 243-261. Mikhalsky E.V., Sheraton J.W. 1993. Association of dolerite and lamprophyre dykes, Jetty Peninsula (Prince Charles Mountains, East Antarctica). Antarctic Sciences. 5(3). 297-307.

  2. Mars: Difference Between Lowland and Highland Basalts Confirms A Tendency Observed In Terrestrial and Lunar Basaltic Compositions

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable 1 to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. 2 MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, 3 kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- 4 terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular 5 momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- 6 paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 7 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for 8 these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. 9 MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, 10 kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. v 11

  3. Further considerations of the Ce/Yb vs. Ba/Ce plot in volcanology and tectonics

    USGS Publications Warehouse

    Doe, B.R.

    2002-01-01

    A plot of Ce/Yh vs. Bd/Ce, for locality averages, effectively separates mid-ocean ridge basalts (MORB) (Ce/Yb 10, Ba/Ce 4.2). The conventional interpretation is that these three types of volcanic environments involve oceanic rift-related, large-volume partial melts (???20-30%) of a depleted source. (MORB), small volume melts (???5% for alkalic volcanics) of enriched sources related to plumes (OIV), and melts of hydrous-enriched sources during subduction, especially for Ba (IAV). There OIV sites, however, have average ratios that fall in the MORB field (e.g., Krafla Volcano, Iceland), and these localities also tend to have other geochemical data similar to MORB. Average ratios of Hawaiian tholeiitic shield basalts of Mauna Kea and Koolau volcanoes occupy a restricted field on a plot of Ce/Yb vs. Ba/Ce of 1O-18 for Ce/Yb and 2.8-3.1 for Ba/Ce, a field toward which other shield basalts and cone-building volcanics regress. In general, post-shield alkalic rocks have higher values of Ce/Yb than do tholeiites. Peralkalic basalts (basanites, melilitites, and phonolites) have even higher values of Ce/Yb, reflecting smaller degrees of partial melting (perhaps 1-2%) and melting of sources containing phlogopite that were enriched by CO2-dominated fluids. The minor post-erosion nephelinitic suites of Hawaii (e.g., the Honolulu Series on Oahu, and the Koloa suite on Kauai) generally have values both greater than IAV for Ce/Yb and greater than other kinds of OIV for Ba/Ce in a part of the plot previously not found to be occupied by data. Alkali basalts of both these nephelinitic series have the lowest and similar ratios (Ce/Yb ??? 25; Ba/Ce ??? 10). In the Hawaiian Islands. there are two trends. One (a), where phlogopite has heen interpreted tp remain in the source. generally has Ba/Ce decrease away from the alkali basalts as Ce/Yb increases. The other (b), where phlogopite has heen interpreted to enter the melt, occupies a field that is high in both Ce/Yb (>30) relative to IAV and in Ba/Ce (>8) relative to the OIV field. There are some exceptions, also, for IAV that plot outside the IAV field. The values of Ce/Yb in Mariana Islands samples, for example, are exceptionally low for the IAV (Ce/Yb <5 with many samples <2). Examples of two cross-chain Kasuga Islands, however, have average, values of Ce/Yb considerably greater than for any other Mariana Islands data, and individual samples extend from within the IAV field into the OIV field, which may indicate a mixture of IAV and OIV sources (rather than involvement of a hotspot, these island volcanics have been interpreted as magma of OIV entrapped "plums" in an IAV "pudding" by Stern et al., 1993). Not Surprisingly, continental are volcanics, (CAV) are generally similar to IAV, but with somewhat greater dispersion in Ce/Yb, perhaps representing a larger contribution of continental materials to the volcanics. Continental rift volcanics (CRV) are complex. The Antarctic rift data fall in the OIV field, and clearly define a hotspot origin for the rift with little contamination in the continental lithosphere, but most CRV data fall in the IAV field (Rio Grande rift tholeiites, Yellowstone Plateau basalts, Columbia River basalts. East African rift hasalts). The Yellowstone basalt samples judged to be least crustally contaminated from other considerations (e.g., through Pb and Sr isotopes) approach closest to the OIV or hotspot field in the Ce/Yb vs. Ba/Ce plot, compatible with a hotspot origin with variable continental lithosphere interactions. The data from the Rio Grande rift have no such trend in Ce/Yb vs. Ba/Ce. Other trace element and isotopic data are suggestive of a different kind of origin, perhaps melting in the continental lithosphere from pressure release or other causes as suggested in the literature. Carbonatites, kimberlites, and ultrap

  4. Accreted fragments of the Late Cretaceous Caribbean Colombian Plateau in Ecuador

    NASA Astrophysics Data System (ADS)

    Mamberti, Marc; Lapierre, Henriette; Bosch, Delphine; Jaillard, Etienne; Ethien, Raynald; Hernandez, Jean; Polvé, Mireille

    2003-02-01

    The eastern part of the Western Cordillera of Ecuador includes fragments of an Early Cretaceous (≈123 Ma) oceanic plateau accreted around 85-80 Ma (San Juan-unit). West of this unit and in fault contact with it, another oceanic plateau sequence (Guaranda unit) is marked by the occurrence of picrites, ankaramites, basalts, dolerites and shallow level gabbros. A comparable unit is also exposed in northwestern coastal Ecuador (Pedernales unit). Picrites have LREE-depleted patterns, high ɛNd i and very low Pb isotopic ratios, suggesting that they were derived from an extremely depleted source. In contrast, the ankaramites and Mg-rich basalts are LREE-enriched and have radiogenic Pb isotopic compositions similar to the Galápagos HIMU component; their ɛNd i are slightly lower than those of the picrites. Basalts, dolerites and gabbros differ from the picrites and ankaramites by flat rare earth element (REE) patterns and lower ɛNd; their Pb isotopic compositions are intermediate between those of the picrites and ankaramites. The ankaramites, Mg-rich basalts, and picrites differ from the lavas from the San Juan-Multitud Unit by higher Pb ratios and lower ɛNd i. The Ecuadorian and Gorgona 88-86 Ma picrites are geochemically similar. The Ecuadorian ankaramites and Mg-rich basalts share with the 92-86 Ma Mg-rich basalts of the Caribbean-Colombian Oceanic Plateau (CCOP) similar trace element and Nd and Pb isotopic chemistry. This suggests that the Pedernales and Guaranda units belong to the Late Cretaceous CCOP. The geochemical diversity of the Guaranda and Pedernales rocks illustrates the heterogeneity of the CCOP plume source and suggests a multi-stage model for the emplacement of these rocks. Stratigraphic and geological relations strongly suggest that the Guaranda unit was accreted in the late Maastrichtian (≈68-65 Ma).

  5. Red Sea rift-related Quseir basalts, central Eastern Desert, Egypt: Petrogenesis and tectonic processes

    NASA Astrophysics Data System (ADS)

    Farahat, Esam S.; Ali, Shehata; Hauzenberger, Christoph

    2017-01-01

    Mineral and whole-rock chemistry of Red Sea rift-related Tertiary basalts from south Quseir city, central Eastern Desert of Egypt is presented to investigate their petrogenesis and relationship to tectonic processes. The south Quseir basalts (SQB) are classified as high-Ti (TiO2 >2 wt.%) subalkaline transitional lava emplaced in an anorogenic tectonic setting. Their Mg# varies from 48 to 53 indicating the evolved nature of the SQB. Pearce element ratios suggest that the SQB magmas evolved via fractional crystallization of olivine + clinopyroxene ± plagioclase, but the absence of Eu anomalies argues against significant plagioclase fractionation. Clinopyroxene compositions provide evidence for polybaric fractionation of the parental mafic magmas. Estimated temperatures of crystallization are 1015 to 1207 °C for clinopyroxene and 1076 to 1155 °C for plagioclase. These values are interpreted to result from early stage crystallization of clinopyroxene followed by concurrent crystallization of clinopyroxene and plagioclase. The incompatible trace element signatures of the SQB (La/Ba = 0.08-0.10 and La/Nb = 0.89-1.04) are comparable to those of ocean island basalts (OIB) generated from an asthenospheric mantle source unaffected by subduction components. Modeling calculations indicate that the SQB primary magmas were derived from 4-5% partial melting of a garnet-bearing lherzolite mantle source. The NE Egyptian basaltic volcanism is spatially and temporally related to Red Sea rifting and to the local E-W striking faults, confirming a relationship to tectonic activity. Our results suggest that the extensional regime associated with Red Sea rifting controlled the generation of the Egyptian basalts, likely as a result of passive upwelling of asthenospheric mantle.

  6. Petrogenesis of the Northwest Africa 4898 high-Al mare basalt

    NASA Astrophysics Data System (ADS)

    Li, Shaolin; Hsu, Weibiao; Guan, Yunbin; Wang, Linyan; Wang, Ying

    2016-07-01

    Northwest Africa (NWA) 4898 is the only low-Ti, high-Al basaltic lunar meteorite yet recognized. It predominantly consists of pyroxene (53.8 vol%) and plagioclase (38.6 vol%). Pyroxene has a wide range of compositions (En12-62Fs25-62Wo11-36), which display a continuous trend from Mg-rich cores toward Ca-rich mantles and then to Fe-rich rims. Plagioclase has relatively restricted compositions (An87-96Or0-1Ab4-13), and was transformed to maskelynite. The REE zoning of all silicate minerals was not significantly modified by shock metamorphism and weathering. Relatively large (up to 1 mm) olivine phenocrysts have homogenous inner parts with Fo ~74 and sharply decrease to 64 within the thin out rims (~30 μm in width). Four types of inclusions with a variety of textures and modal mineralogy were identified in olivine phenocrysts. The contrasting morphologies of these inclusions and the chemical zoning of olivine phenocrysts suggest NWA 4898 underwent at least two stages of crystallization. The aluminous chromite in NWA 4898 reveals that its high alumina character was inherited from the parental magma, rather than by fractional crystallization. The mineral chemistry and major element compositions of NWA 4898 are different from those of 12038 and Luna 16 basalts, but resemble those of Apollo 14 high-Al basalts. However, the trace element compositions demonstrate that NWA 4898 and Apollo 14 high-Al basalts could not have been derived from the same mantle source. REE compositions of its parental magma indicate that NWA 4898 probably originated from a unique depleted mantle source that has not been sampled yet. Unlike Apollo 14 high-Al basalts, which assimilated KREEPy materials during their formation, NWA 4898 could have formed by closed-system fractional crystallization.

  7. The Mohorovičić discontinuity beneath the continental crust: An overview of seismic constraints

    NASA Astrophysics Data System (ADS)

    Carbonell, Ramon; Levander, Alan; Kind, Rainer

    2013-12-01

    The seismic signature of the Moho from which geologic and tectonic evolution hypotheses are derived is to a large degree a result of the seismic methodology which has been used to obtain the image. Seismic data of different types, passive source (earthquake) broad-band recordings, and controlled source seismic refraction, densely recorded wide-angle deep seismic reflection, and normal incidence reflection (using VibroseisTM, explosives, or airguns), have contributed to the description of the Moho as a relatively complex transition zone. Of critical importance for the quality and resolution of the seismic image are the acquisition parameters, used in the imaging experiments. A variety of signatures have been obtained for the Moho at different scales generally dependent upon bandwidth of the seismic source. This variety prevents the development of a single universally applicable interpretation. In this way source frequency content, and source and sensor spacing determine the vertical and lateral resolution of the images, respectively. In most cases the different seismic probes provide complementary data that gives a fuller picture of the physical structure of the Moho, and its relationship to a petrologic crust-mantle transition. In regional seismic studies carried out using passive source recordings the Moho is a relatively well defined structure with marked lateral continuity. The characteristics of this boundary change depending on the geology and tectonic evolution of the targeted area. Refraction and wide-angle studies suggest the Moho to be often a relatively sharp velocity contrast, whereas the Moho in coincident high quality seismic reflection images is often seen as the abrupt downward decrease in seismic reflectivity. The origin of the Moho and its relation to the crust-mantle boundary is probably better constrained by careful analysis of its internal details, which can be complex and geographically varied. Unlike the oceanic Moho which is formed in a relatively simple, well understood process, the continental Moho can be subject to an extensive variety of tectonic processes, making overarching conclusions about the continental Moho difficult. Speaking very broadly: 1) In orogenic belts still undergoing compression and active continental volcanic arcs, the Moho evolves with the mountain belt, 2) In collapsed Phanerozoic orogenic belts the Moho under the collapse structure was formed during the collapse, often by a combination of processes. 3) In regions having experienced widespread basaltic volcanism, the Moho can result from underplated basalt and basaltic residuum. In Precambrian terranes the Moho may be as ancient as the formation of the crust, in others Precambrian tectonic and magmatic processes have reset it. We note that seismic reflection data in Phanerosoic orogens as well as from Precambrian cratonic terranes often show thrust type structures extending as deep as the Moho, and suggest that even where crust and mantle xenoliths provide similar age of formation dates, the crust may be semi-allochothonous.

  8. The Thickness and Volume of Young Basalts Within Mare Imbrium

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Li, Chunlai; Ren, Xin; Liu, Jianjun; Wu, Yunzhao; Lu, Yu; Cai, Wei; Zhang, Xunyu

    2018-02-01

    Basaltic volcanism is one of the most important geologic processes of the Moon. Research on the thickness and volume of late-stage basalts of Mare Imbrium helps better understand the source of lunar volcanism and eruption styles. Based on whether apparent flow fronts exist or not, the late-stage basalts within Mare Imbrium were divided into two groups, namely, Upper Eratosthenian basalts (UEm) and Lower Eratosthenian basalts (LEm). Employing the topographic profile analysis method for UEm and the crater excavation technique for LEm, we studied the thickness and distribution of Eratosthenian basalts in Mare Imbrium. For the UEm units, their thicknesses were estimated to be 16-34 (±2) m with several layers of individual lava ( 8-13 m) inside. The estimated thickness of LEm units was 14-45(±1) m, with a trend of reducing thickness from north to south. The measured thickness of late-stage basalts around the Chang'E-3 landing site ( 37 ± 1 m) was quite close to the results acquired by the lunar penetrating radar carried on board the Yutu Rover ( 35 m). The total volume of the late-stage basalts in Mare Imbrium was calculated to be 8,671 (±320) km3, which is 4 times lower than that of Schaber's estimation ( 4 × 104 km3). Our results indicate that the actual volume is much lower than previous estimates of the final stage of the late basaltic eruption of Mare Imbrium. Together, the area flux and transport distance of the lava flows gradually decreased with time. These results suggest that late-stage volcanic evolution of the Moon might be revised.

  9. Laboratory Simulated Acid-Sulfate Weathering of Basaltic Materials: Implications for Formation of Sulfates at Meridiani Planum and Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Mertzman, A.

    2006-01-01

    Acid-sulfate weathering of basaltic materials is a candidate formation process for the sulfate-rich outcrops and rocks at the MER rover Opportunity and Spirit landing sites. To determine the style of acid-sulfate weathering on Mars, we weathered basaltic materials (olivine-rich glassy basaltic sand and plagioclase feldspar-rich basaltic tephra) in the laboratory under different oxidative, acid-sulfate conditions and characterized the alteration products. We investigated alteration by (1) sulfuric-acid vapor (acid fog), (2) three-step hydrothermal leaching treatment approximating an open system and (3) single-step hydrothermal batch treatment approximating a "closed system." In acid fog experiments, Al, Fe, and Ca sulfates and amorphous silica formed from plagioclase-rich tephra, and Mg and Ca sulfates and amorphous silica formed from the olivine-rich sands. In three-step leaching experiments, only amorphous Si formed from the plagioclase-rich basaltic tephra, and jarosite, Mg and Ca sulfates and amorphous silica formed from olivine-rich basaltic sand. Amorphous silica formed under single-step experiments for both starting materials. Based upon our experiments, jarosite formation in Meridiani outcrop is potential evidence for an open system acid-sulfate weathering regime. Waters rich in sulfuric acid percolated through basaltic sediment, dissolving basaltic phases (e.g., olivine) and forming jarosite, other sulfates, and iron oxides. Aqueous alteration of outcrops and rocks on the West Spur of the Columbia Hills may have occurred when vapors rich in SO2 from volcanic sources reacted with basaltic materials. Soluble ions from the host rock (e.g., olivine) reacted with S to form Ca-, Mg-, and other sulfates along with iron oxides and oxyhydroxides.

  10. Melting behavior and phase relations of lunar samples. [Apollo 12 rock samples

    NASA Technical Reports Server (NTRS)

    Hays, J. F.

    1975-01-01

    Cooling rate studies of 12002 were conducted and the results interpreted in terms of the crystallization history of this rock and certain other picritic Apollo 12 samples. Calculations of liquid densities and viscosities during crystallization, crystal settling velocities, and heat loss by the parent rock body are discussed, as are petrographic studies of other Apollo 12 samples. The process of magmatic differentiation that must have accompanied the early melting and chemical fractionation of the moon's outer layers was investigated. The source of regions of both high- and low-titanium mare basalts were also studied.

  11. Geochronology and petrogenesis of Apollo 14 very high potassium mare basalts

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Bansal, B. M.; Wiesmann, H.; Nyquist, L. E.; Bogard, D. D.

    1986-01-01

    Rb-Sr, K-Ar, and Sm-Nd isotopic studies were undertaken for two Apollo 14 very high potassium (VHK) highly radiogenic mare basaltic clasts from breccias 14305 and 14168. Rb-Sr data indicate ages of 3.83 + or - 0.08 b.y., and 3.82 + or - 0.12 b.y. for samples 14305 and 14168 respectively, for lambda(Rb-87) = 0.0 139/b.y. Their corresponding initial Sr-87/Sr-86 ratios are nearly identical, as well as their Ar-39 to Ar-40 age spectra, and it is proposed that they were derived from the same flow. The Sm-Nd isotopic data of whole rock and mineral separates for the two VHK basalts define an internal isochrone age of 3.94 + or - 0.16 b.y. for lambda (Sm-147) = 0.00654/b.y. and an initial Nd-143/Nd-144 of 0.50673 + or - 21. The similarity in isotopic ages suggests that VHK basalts crystallized from a melt about 3.85 b.y. ago. VHK basalts show very large Rb/Sr fractionation but no significant Sm/Nd fractionation at the time of crystallization. The source material had a Rb/Sr ratio similar to those of Apollo 14 high-Al mare basalts and a nearly chrondritic Sm/Nd ratio. Basalt/granite interaction was found to be responsible for the extreme enrichments of Rb/Sr and K/La during the formation of VHK basalts. It is concluded that K, Rb-rich components of granitic wall rocks in the highland crust were selectively introduced into ascending hot high-Al mare basaltic magma upon contact.

  12. New numerical approaches for modeling thermochemical convection in a compositionally stratified fluid

    NASA Astrophysics Data System (ADS)

    Puckett, Elbridge Gerry; Turcotte, Donald L.; He, Ying; Lokavarapu, Harsha; Robey, Jonathan M.; Kellogg, Louise H.

    2018-03-01

    Geochemical observations of mantle-derived rocks favor a nearly homogeneous upper mantle, the source of mid-ocean ridge basalts (MORB), and heterogeneous lower mantle regions. Plumes that generate ocean island basalts are thought to sample the lower mantle regions and exhibit more heterogeneity than MORB. These regions have been associated with lower mantle structures known as large low shear velocity provinces (LLSVPS) below Africa and the South Pacific. The isolation of these regions is attributed to compositional differences and density stratification that, consequently, have been the subject of computational and laboratory modeling designed to determine the parameter regime in which layering is stable and understanding how layering evolves. Mathematical models of persistent compositional interfaces in the Earth's mantle may be inherently unstable, at least in some regions of the parameter space relevant to the mantle. Computing approximations to solutions of such problems presents severe challenges, even to state-of-the-art numerical methods. Some numerical algorithms for modeling the interface between distinct compositions smear the interface at the boundary between compositions, such as methods that add numerical diffusion or 'artificial viscosity' in order to stabilize the algorithm. We present two new algorithms for maintaining high-resolution and sharp computational boundaries in computations of these types of problems: a discontinuous Galerkin method with a bound preserving limiter and a Volume-of-Fluid interface tracking algorithm. We compare these new methods with two approaches widely used for modeling the advection of two distinct thermally driven compositional fields in mantle convection computations: a high-order accurate finite element advection algorithm with entropy viscosity and a particle method that carries a scalar quantity representing the location of each compositional field. All four algorithms are implemented in the open source finite element code ASPECT, which we use to compute the velocity, pressure, and temperature associated with the underlying flow field. We compare the performance of these four algorithms on three problems, including computing an approximation to the solution of an initially compositionally stratified fluid at Ra =105 with buoyancy numbers B that vary from no stratification at B = 0 to stratified flow at large B .

  13. Stratigraphy of Oceanus Procellarum basalts - Sources and styles of emplacement

    NASA Technical Reports Server (NTRS)

    Whitford-Stark, J. L.; Head, J. W., III

    1980-01-01

    The basaltic fill of Oceanus Procellarum has been formally subdivided into four lithostratigraphic formations: The Repsold Formation, the Telemann Formation, the Hermann Formation, and the Sharp Formation. The Repsold Formation is composed of high-Ti basalts and pyroclastic deposits with an estimated age of 3.75 + or - 0.05 b.y. and an estimated volume of about 2.1 x 10 to the 5th cu km. This is overlain by the Telemann Formation composed of very low-Ti basalts and pyroclastic deposits with an estimated age of 3.6 + or - 0.2 b.y. and a volume of 4.2 x 10 to the 5th cu km. The Hermann Formation, composed of intermediate basalts with an estimated age of 3.3 + or - 0.3 b.y., represents the next youngest unit with an estimated volume of 2.2 x 10 to the 5th cu km. The youngest materials in Procellarum are the medium-to-high-Ti basalts comprising the Sharp Formation with an estimated age of 2.7 + or - 0.7 b.y. and a volume of 1.8 x 10 to the 4th cu km.

  14. Biotic Nitrogen Enrichment Regulates Calcium Sources to Forests

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J. C.; Perakis, S. S.; Hynicka, J. D.

    2015-12-01

    Calcium is an essential nutrient in forest ecosystems that is susceptible to leaching loss and depletion. Calcium depletion can affect plant and animal productivity, soil acid buffering capacity, and fluxes of carbon and water. Excess nitrogen supply and associated soil acidification are often implicated in short-term calcium loss from soils, but the long-term role of nitrogen enrichment on calcium sources and resupply is unknown. Here we use strontium isotopes (87Sr/86Sr) as a proxy for calcium to investigate how soil nitrogen enrichment from biological nitrogen fixation interacts with bedrock calcium to regulate both short-term available supplies and the long-term sources of calcium in montane conifer forests. Our study examines 22 sites in western Oregon, spanning a 20-fold range of bedrock calcium on sedimentary and basaltic lithologies. In contrast to previous studies emphasizing abiotic control of weathering as a determinant of long-term ecosystem calcium dynamics and sources (via bedrock fertility, climate, or topographic/tectonic controls) we find instead that that biotic nitrogen enrichment of soil can strongly regulate calcium sources and supplies in forest ecosystems. For forests on calcium-rich basaltic bedrock, increasing nitrogen enrichment causes calcium sources to shift from rock-weathering to atmospheric dominance, with minimal influence from other major soil forming factors, despite regionally high rates of tectonic uplift and erosion that can rejuvenate weathering supply of soil minerals. For forests on calcium-poor sedimentary bedrock, we find that atmospheric inputs dominate regardless of degree of nitrogen enrichment. Short-term measures of soil and ecosystem calcium fertility are decoupled from calcium source sustainability, with fundamental implications for understanding nitrogen impacts, both in natural ecosystems and in the context of global change. Our finding that long-term nitrogen enrichment increases forest reliance on atmospheric calcium helps explain reports of greater ecological calcium limitation in an increasingly nitrogen-rich world.

  15. Compositional diversity of Late Cenozoic basalts in a transect across the southern Washington Cascades: Implications for subduction zone magmatism

    NASA Astrophysics Data System (ADS)

    Leeman, William P.; Smith, Diane R.; Hildreth, Wes; Palacz, Zen; Rogers, Nick

    1990-11-01

    Major volcanoes of the Southern Washington Cascades (SWC) include the large Quaternary stratovolcanoes of Mount St. Helens (MSH) and Mount Adams (MA) and the Indian Heaven (IH) and Simcoe Mountain (SIM) volcanic fields. There are significant differences among these volcanic centers in terms of their composition and evolutionary history. The stratovolcanoes consist largely of andesitic to dacitic lavas and pyroclastics with minor basalt flows. IH consists dominantly of basaltic with minor andesite lavas, all erupted from monogenetic rift and cinder cone vents. SIM has a poorly exposed andesite to rhyolite core but mainly consists of basaltic lavas erupted from numerous widely dispersed vents; it has the morphology of a shield volcano. Distribution of mafic lavas across the SWC is related to north-northwest trending faults and fissure zones that indicate a significant component of east-west extension within the area. There is overlap in eruptive history for the areas studied, but it appears that peak activity was progressively older (MSH (<40 Ka), IH (mostly <0.5 Ma), MA (<0.5 Ma), SIM (1-4 Ma)) and more alkalic toward the east. A variety of compositionally distinct mafic magma types has been identified in the SWC, including low large ion lithophile element (LILE) tholeiitic basalts, moderate LILE calcalkalic basalts, basalts transitional between these two, LILE-enriched mildly alkalic basalts, and basaltic andesites. Compositional diversity among basaltic lavas, both within individual centers as well as across the arc, is an important characteristic of the SWC traverse. The fact that the basaltic magmas either show no correlation between isotopic and trace element components or show trends quite distinct from those of the associated evolved lavas, suggests that their compositional variability is attributable to subcrustal processes. Both the primitive nature of the erupted basalts and the fact that they are relatively common in the SWC sector also imply that such magmas had little residence time in the crust. A majority of the SWC basaltic samples studies are indistinguishable from oceanic island basalts (OIB) in terms of trace element and isotopic compositions, and more importantly, most do not display the typical high field strength element (HFSE) depletion seen in subduction-related magmas in volcanic arcs elsewhere. LILE enrichment and HRSE depletion characteristics of most arc magmas are generally attributed to the role of fluids released by dehydration of subducted oceanic lithosphere and to the effects of sediment subduction. Because most SWC basalts lack these compositional features, we conclude that subducted fluids and sediments do not play an essential role in producing these magmas. Rather, we infer that they formed by variable degree melting of a mixed mantle source consisting mainly of heterogeneously distributed OIB and mid-ocean ridge basalt source domains. Relatively minor occurrences of HFSE-depleted arclike basalts may reflect the presence of a small proportion of slab-metasomatized subarc mantle. The juxtaposition of such different mantle domains within the lithospheric mantle is viewed as a consequence of (1) tectonic mixing associated with accretion of oceanic and island arc terranes along the Pacific margin of North America prior to Neogene time, and possibly (2) a seaward jump in the locus of subduction at about 40 Ma. The Cascades arc is unusual in that the subducting oceanic plate is very young and hot. We suggest that slab dehydration outboard of the volcanic front resulted in a diminished role of aqueous fluids in generating or subsequently modifying SWC magmas compared to the situation at most convergent margins. Furthermore, with low fluid flux conditions, basalt generation is presumably triggered by other processes that increase the temperature of the mantle wedge (e.g., convective mantle flow, shear heating, etc.).

  16. The provenance of low-calcic black shales

    NASA Astrophysics Data System (ADS)

    Quinby-Hunt, M. S.; Wilde, P.

    1991-04-01

    The elemental concentration of sedimentary rocks depends on the varying reactivity of each element as it goes from the source through weathering, deposition, diagenesis, lithification, and even low rank metamorphism. However, non-reactive components of detrital particles ideally are characteristic of the original igneous source and thus are useful in provenance studies. To determine the source of detrital granitic and volcanic components of low-calcic (<1% CaCO3) marine black shales, the concentrations of apparently non-reactive (i.e. unaffected by diagenetic, redox and/or low-rank metamorphic processes) trace elements were examined using standard trace element discrimination diagrams developed for igneous rocks. The chemical data was obtained by neutron activation analyses of about 200 stratigraphically well-documented black shale samples from the Cambrian through the Jurassic. A La-Th-Sc ternary diagram distinguishes among contributions from the upper and bulk continental crust and the oceanic crust (Taylor and McLennan 1985). All the low-calcic black shales cluster within the region of the upper crust. Th-Hf-Co ternary diagrams also are commonly used to distinguish among the upper and bulk continental crust and the oceanic crust (Taylor and McLennan 1985). As Co is redox sensitive in black shale environments, it was necessary to substitute an immobile element (i.e. example Rb) in the diagram. With this substitution of black shales all cluster in the region of the upper continental crust. To determine the provenance of the granitic component (Pearce et al. 1984), plots of Ta vs Yb and Rb vs Yb + Ta shows a cluster at the junction of the boundaries separating the volcanic arc granite (VAG), syn-collision granite (syn-COLG), and within-plate granite (WPG) fields. The majority fall within the VAG field. There are no occurrences of ocean ridge granite (ORG). The minimal contribution of basalts to marine black shales is confirmed by the ternary Wood diagram Th-Hf/3-Ta (Wood et al. 1979). The black shales plot in a cluster in a high Th region outside the various basalt fields, which suggests contribution from the continental crust.

  17. Evaluation of Aster Images for Characterization and Mapping of Amethyst Mining Residues

    NASA Astrophysics Data System (ADS)

    Markoski, P. R.; Rolim, S. B. A.

    2012-07-01

    The objective of this work was to evaluate the potential of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), subsystems VNIR (Visible and Near Infrared) and SWIR (Short Wave Infrared) images, for discrimination and mapping of amethyst mining residues (basalt) in the Ametista do Sul Region, Rio Grande do Sul State, Brazil. This region provides the most part of amethyst mining of the World. The basalt is extracted during the mining process and deposited outside the mine. As a result, mounts of residues (basalt) rise up. These mounts are many times smaller than ASTER pixel size (VNIR - 15 meters and SWIR - 30 meters). Thus, the pixel composition becomes a mixing of various materials, hampering its identification and mapping. Trying to solve this problem, multispectral algorithm Maximum Likelihood (MaxVer) and the hyperspectral technique SAM (Spectral Angle Mapper) were used in this work. Images from ASTER subsystems VNIR and SWIR were used to perform the classifications. SAM technique produced better results than MaxVer algorithm. The main error found by the techniques was the mixing between "shadow" and "mining residues/basalt" classes. With the SAM technique the confusion decreased because it employed the basalt spectral curve as a reference, while the multispectral techniques employed pixels groups that could have spectral mixture with other targets. The results showed that in tropical terrains as the study area, ASTER data can be efficacious for the characterization of mining residues.

  18. The Snake River Plain Volcanic Province: Insights from Project Hotspot

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Potter, K. E.; Hanan, B. B.; Jean, M. M.; Duncan, R. A.; Champion, D. E.; Vetter, S.; Glen, J. M. G.; Christiansen, E. H.; Miggins, D. P.; Nielson, D. L.

    2017-12-01

    The Snake River Plain (SRP) Volcanic Province is the best modern example of a time-transgressive hotspot track beneath continental crust. The SRP began 17 Ma with massive eruptions of Columbia River basalt and rhyolite. After 12 Ma volcanism progressed towards Yellowstone, with early rhyolite overlain by basalts that may exceed 2 km thick. The early rhyolites are anorogenic with dry phenocryst assemblages and eruption temperatures up to 950C. Tholeiitic basalts have major and trace element compositions similar to ocean island basalts (OIB). Project Hotspot cored three deep holes in the central and western Snake River Plain: Kimama (mostly basalt), Kimberly (mostly rhyolite), and Mountain Home (lake sediments and basaslt). The Kimberly core documents rhyolite ash flows up to 700 m thick, possibly filling a caldera or sag. Chemical stratigraphy in Kimama and other basalt cores document fractional crystallization in relatively shallow magma chambers with episodic magma recharge. Age-depth relations in the Kimama core suggest accumulation rates of roughly 305 m/Ma. Surface and subsurface basalt flows show systematic variations in Sr-Nd-Pb isotopes with distance from Yellowstone interpreted to reflect changes in the proportion of plume source and the underlying heterogeneous cratonic lithosphere, which varies in age, composition, and thickness from west to east. Sr-Nd-Pb isotopes suggest <5% lithospheric input into a system dominated by OIB-like plume-derived basalts. A major flare-up of basaltic volcanism occurred 75-780 ka throughout the entire SRP, from Yellowstone in the east to Boise in the west. The youngest western SRP basalts are transitional alkali basalts that range in age from circa 900 ka to 2 ka, with trace element and isotopic compositions similar to the plume component of Hawaiian basalts. These observations suggest that ancient SCLM was replaced by plume mantle after the North America passed over the hotspot in the western SRP, which triggered renewed basaltic volcanism throughout the system. This young volcanism supports an active geothermal system fueled by a shallow crustal sill complex that underlies most of the SRP today.

  19. Evolution of the Craters of the Moon Lavas from primitive Snake River Plain basalts: inferences from plagioclase-melt thermobarometers and whole rock compositions

    NASA Astrophysics Data System (ADS)

    Vaid, N.; Putirka, K.; Kuntz, M.

    2005-12-01

    The volcanic rocks of the Craters of the Mon Lava field provide an ideal laboratory for testing models of magma transport and evolution. Their compositions, relative ages and volumes are well known, as are the fractionation processes leading to their evolution (Leeman, 1976). The COM is somewhat distinctive in the Snake River Plain (SRP) region, due to its evolved character, and an apparent compositional segregation from associated SRP basalts. Some have suggested that the high Fe liquids of the COM demand an origin separate from that of SRP basalts, possibly involving an Fe-enriched mantle, while others have suggested that the COM lavas may be derived by fractionation at moderate depths (30 km). In either case, there are important implications in regard to mantle composition and the nature and distribution of thermal energy. We use plagioclase-melt pairs and an analysis of whole rock compositions in attempt to test models of COM magmatic evolution. Plagioclase-melt thermobarometers provide rough estimates of crystallization depths, and show that COM and SRP lavas partially crystallized at similar depths of 14 +/- 6 km. However, plagioclase crystallization temperatures for SRP basalts (1400 +/- 25 K; Kings Bowl, Cerro Grande, North and South Robbers) exceed temperatures for COM lavas (1358 +/- 45 K) by 40 K. Our data also show that fractional crystallization (ol + plag) can explain the evolution of surrounding SRP basalt flows, and that the most evolved SRP basalts approach primitive COM lava compositions. The most primitive of COM magmas appear to be characterized by the appearance of apatite + magnetite as fractionating phases. Our results thus confirm the geochemical model of Leeman (1976) and the physical model of Kuntz (1992), with the added insight that SRP basalts are parental to the more evolved COM lavas, through low-pressure fractional crystallization in the upper crust. The principal differences between SRP and COM magmas appear to relate more to the presence or absence of density contrasts in the crust than differences in composition or temperature of mantle source materials. SRP basalts lie near the axis of the SRP where the granitic upper crust may have been obliterated by earlier volcanic episodes. In contrast, COM lavas, whose vents lie off axis, appear to have been trapped within the upper crust for longer periods, sufficient for further differentiation. Finally, SRP rhyolite compositions lie on the same fractionation trend as COM and SRP lavas, at very low values of MgO. We propose that highly evolved lavas throughout the SRP may form by fractional crystallization mechanisms alone, rather than through the partial melting and remobilization of preexisting felsic crustal materials.

  20. New high pressure experiments on sulfide saturation of high-FeO∗ basalts with variable TiO2 contents - Implications for the sulfur inventory of the lunar interior

    NASA Astrophysics Data System (ADS)

    Ding, Shuo; Hough, Taylor; Dasgupta, Rajdeep

    2018-02-01

    In order to constrain sulfur concentration in intermediate to high-Ti mare basalts at sulfide saturation (SCSS), we experimentally equilibrated FeS melt and basaltic melt using a piston cylinder at 1.0-2.5 GPa and 1400-1600 °C, with two silicate compositions similar to high-Ti (Apollo 11: A11, ∼11.1 wt.% TiO2, 19.1 wt.% FeO∗, and 39.6 wt.% SiO2) and intermediate-Ti (Luna 16, ∼5 wt.% TiO2, 18.7 wt.% FeO∗, and 43.8 wt.% SiO2) mare basalts. Our experimental results show that SCSS increases with increasing temperature, and decreases with increasing pressure, which are similar to the results from previous experimental studies. SCSS in the A11 melt is systematically higher than that in the Luna 16 melt, which is likely due to higher FeO∗, and lower SiO2 and Al2O3 concentration in the former. Compared to the previously constructed SCSS models, including those designed for high-FeO∗ basalts, the SCSS values determined in this study are generally lower than the predicted values, with overprediction increasing with increasing melt TiO2 content. We attribute this to the lower SiO2 and Al2O3 concentration of the lunar magmas, which is beyond the calibration range of previous SCSS models, and also more abundant FeTiO3 complexes in our experimental melts that have higher TiO2 contents than previous models' calibration range. The formation of FeTiO3 complexes lowers the activity of FeO∗, a FeO∗silicatemelt , and therefore causes SCSS to decrease. To accommodate the unique lunar compositions, we have fitted a new SCSS model for basaltic melts of >5 wt.% FeO∗ and variable TiO2 contents. Using previous chalcophile element partitioning experiments that contained more complex Fe-Ni-S sulfide melts, we also derived an empirical correction that allows SCSS calculation for basalts where the equilibrium sulfides contain variable Ni contents of 10-50 wt.%. At the pressures and temperatures of multiple saturation points, SCSS of lunar magmas with compositions from picritic glasses, mare basalts, to young lunar meteorites vary from 2600 to 4800 ppm for basalt equilibration with a pure FeS melt and from 1400 to 2600 ppm for basalt equilibration with a Fe-rich sulfide melt containing 30 wt.% Ni. The measured S contents in these proposed near-primary lunar magmas are lower than the predicted SCSS at the conditions of their last equilibration with the lunar mantle, indicating no sulfide retention in the lunar mantle source during partial melting. Sulfide exhaustion during partial melting in the lunar mantle also supports the notion that the bulk silicate moon is depleted in highly siderophile elements. Based on the measured S contents and the estimated degree of melting, the estimated S contents for the mantle source of A15 green glass and A15 mare basalts is 10-23 ppm; for A17 orange glass is 25-62 ppm, for A12 mare basalts is 27-92 ppm, and for A11 basalt is 35-120 ppm. Consideration of SCSS decrease due to the presence of Ni in the sulfide melt does not change these mantle S abundance estimates for <30 wt.% Ni in the sulfide. The inferred S contents suggest that the lunar mantle is heterogeneous in terms of S. Although variable among different groups, the inferred S abundance of up to 120 ppm in the lunar mantle falls near the lower end of the S content of the depleted terrestrial mantle such as the MORB source.

  1. Basaltic ring structures of the Serra Geral Formation at the southern Triângulo Mineiro, Água Vermelha region, Brazil

    NASA Astrophysics Data System (ADS)

    Pacheco, Fernando Estevão Rodrigues Crincoli; Caxito, Fabricio de Andrade; Moraes, Lucia Castanheira de; Marangoni, Yara Regina; Santos, Roberto Paulo Zanon dos; Pedrosa-Soares, Antonio Carlos

    2018-04-01

    The Serra Geral Formation constitutes a continental magmatic province on the southern part of South America within the Paraná basin. Basaltic magmatism of the Serra Geral Formation occurred as extrusions at around 134.5 to 131.5 My ago. The formation is part of the Paraná-Etendeka large igneous province, spanning South America and southwestern Africa. The main extrusion mechanism was probably through fissures related to extensional regime during the breakup of Gondwana in the Cretaceous. Basaltic ring structures (BRS) with tens of meters of diameter, cropping out downstream of Grande river at Água Vermelha hydroelectric dam in southern Triângulo Mineiro region, enable the study of the mechanism of extrusion. The origin of the BRS has been subject to differing interpretations in the past, either collapsed lava flows or central conduits. Detailed geological mapping at 1:1000 scale, stratigraphic, petrographic and gravimetric analysis of the most well preserved of the BRS, with a 200 m diameter, has enabled the description of thirteen different basalt lava flows, along with single a central lava lake and a ring dyke structure. The central flow, interpreted as a preserved lava lake, comprises vesicle- and amygdale-rich basalt, spatter, ropy and degassing structures. The most basal of the thirteen lava flows has massive basalt containing geodes filled with quartz. Above, the lava flows show massive basalt with vertical columnar jointing where is possible to identify the top and bottom of each individual flow, with gentle dips towards the perimeter of the structure. A prominent ring dyke dipping towards the lava lake presents horizontal columnar jointing and cuts the basal and central flows. The gravimetric analysis shows a weak negative Bouguer anomaly on the center of the BRS. The proposed model describes the volcanism of the region in three main steps: (1) fissure flow occurs with lava input; (2) this lava cools and crystallizes cementing most of the fissures, promoting the formation of localized central conduits; and (3) the presence of dissolved gas in lava produces ring and radial fractures around the solidified lava lake. The magma uses some of the ring fissures to ascend and the following lava flows assume the ring shape of the dyke vent. Thus, the BRS in Água Vermelha region can be interpreted as remnants of central conduits representing the late stage magmatism of the Serra Geral Formation.

  2. Wide Angle Converted Shear Wave Analysis of North Atlantic Volcanic Rifted Continental Margins

    NASA Astrophysics Data System (ADS)

    Eccles, J. D.; White, R. S.; Christie, P. A.

    2007-12-01

    High-quality, wide-angle, ocean bottom seismometer (OBS) data have been acquired with a low frequency (9 Hz) seismic source across the Faroes and Hatton Bank volcanic rifted continental margins in the North Atlantic. In these regions thick Tertiary flood basalt sequences provide a challenge to deep seismic imaging. S-wave arrivals, which are dominantly converted from P- to S-waves at the sediment-top basalt interface, were recorded at 170 4-component OBS locations. Variation in the conversion efficiency was observed along the profiles. Tomographic inversion of over 70,000 converted S-wave crustal diving waves and Moho reflections was performed to produce S-wave velocity models and hence, when combined with pre-existing P-wave velocity models, a measure of the Vp/Vs ratio structure of the crust. Resolution testing shows the structure of the oceanic crust and continent-ocean transition is generally well resolved on both profiles. Lateral and vertical changes in Vp/Vs resolves changing crustal composition within, and between, oceanic and continental crust, including regions in the lower crust at the continent-ocean transition with high P-wave velocities of up to 7.5 km/s and low Vp/Vs ratios of ~ 1.75 associated with intense high-temperature intrusion at the time of break-up. Vp/Vs ratios of 1.75-1.80 at the base of the thickened oceanic crust are also lower than generally reported in normal oceanic crust. The P-wave travel-time tomography revealed a low velocity zone (LVZ) beneath the basalt on the Faroes margin and additional constraint on the Vp/Vs of the LVZ beneath the Fugloy Ridge has been gained by analysing the relative travel-time delays between basalt and basement refractions for P- and S-waves. This approach is less subject to the velocity-depth ambiguity associated with velocity inversions than is the determination of P- or S- wave velocity alone. Comparison of the calculated Vp/Vs ratio and P-wave velocity with measurements from relevant lithologies reveals that the LVZ is likely to contain sill-intruded Paleocene sedimentary rock rather than igneous hyaloclastites similar to those found beneath the basalt in a nearby well. Immediately beneath the LVZ, a unit with Vp/Vs ratios of 1.80-1.85 and P-wave velocities of 5.5-6.0 km/s is interpreted as sill-intruded sedimentary rock of a pre-breakup Mesozoic basin. We thank C.J. Parkin, A.W. Roberts and L.K. Smith for their contributions.

  3. Early Jurassic Volcanism in the South Lhasa Terrane, Southern Tibet: Record of Back-arc Extension in the Active Continental Margin

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Zhao, Z.; Zhu, D. C.; Wang, Z.; Liu, D.; Mo, X.

    2015-12-01

    Indus-Yarlung Zangbo Suture Zone (IYZSZ) represents the Mesozoic remnants of the Neo-Tethyan Ocean lithosphere after its northward subduction beneath the Lhasa Terrane. The evolution of the Neo-Tethyan Ocean prior to India-Asia collision remains unclear. To explore this period of history, we investigate zircon U-Pb geochronology, geochemistry and Nd-Hf isotopes of the Early Jurassic bimodal-like volcanic sequence around Dagze area, south Tibet. The volcanic sequence comprises calc-alkaline basalts to rhyolites whereas intermediate components are volumetrically restricted. Zircons from a basaltic andesite yielded crystallization age of 178Ma whereas those from 5 silicic rocks were dated at 183-174Ma, which suggest that both the basaltic and the silicic rocks are coeval. The basaltic rocks are enriched in LREE and LILE, and depleted in HFSE, with Epsilon Nd(t) of 1.6-4.0 and zircon Epsilon Hf(t) of 0.7-11.8, which implies that they were derived from a heterogenetic mantle source metasomatized by subduction components. Trace element geochemistry shows that the basaltic rocks are compositionally transitional from normal mid-ocean ridge basalts (N-MORB) to island arc basalts (IAB, e.g. Zedong arc basalts of ~160-155Ma in the south margin of Lhasa Terrane), with the signature of immature back-arc basin basalts. The silicic rocks display similar Nd-Hf isotopic features of the Gangdese batholith with Epsilon Nd(t) of 0.9-3.4 and zircon Epsilon Hf(t) of 2.4-17.7, indicating that they were possibly generated by anatexis of basaltic juvenile lower crust, instead of derived from the basaltic magma. These results support an Early to Middle Jurassic (183-155Ma) model that the back-arc extension tectonic setting were existing in the active continental margin in the south Lhasa Terrane.

  4. Some volcanologic aspects of Columbia River basalt volcanism relevant to the extinction controversy

    NASA Technical Reports Server (NTRS)

    Swanson, Donald A.

    1988-01-01

    The Columbia River Basalt Group is the youngest and most thoroughly studied flood-basalt province known; information about it should be relevant to questions about the possible relation of flood-basalt volcanism to mass extinctions. The group has a total volume of about 174,000 cu km and covers an area of about 164,000 sq km. It was erupted between 17.5 and 6 Ma, as measured by K-Ar and Ar-40/Ar-39 dates. Early eruptions formed the Imnaha Basalt. More than 85 percent of the group was produced during a 1.5 my period between 17 and 15.5 Ma, forming the Grande Ronde and greatly subordinate Picture Gorge Basalts. Later flows formed the Wanapum Basalt, which includes the well-known Roza Member, and the Saddle Mountains Basalt. Linear vent systems for many of the flows are known and are located only in the eastern third of the Columbia Plateau. No systematic migration of vents occurred throughout the 11.5 my period of activity; this and other considerations make it unlikely that the province is related to a hot spot. Model calculations based on observations that little cooling occurred during flow of hundreds of kilometers suggest eruption and emplacement durations of a few days. Some voluminous flows occur in all formations, but most such flows apparently were erupted during Grande Ronde time. The eruption and emplacement of more than 1,000 cu km of 1100 C basaltic lava on the surface within several days doubtless had at least local meteorologic effects. Whether the effects were broader can at present only be hypothesized. Grande Ronde Basalt and Picture Gorge Basalts contain moderately common but thin sedimentary interbeds between flows, whereas earlier and later formations contain numerous, locally thick sediment accumulations. Volcaniclastic debris derived from extra-plateau sources commonly occurs in the testbeds.

  5. Lunar and Planetary Science Conference, 15th, Houston, TX, March 12-16, 1984, Proceedings. Part 2

    NASA Technical Reports Server (NTRS)

    Ryder, G. (Editor); Schubert, G. (Editor)

    1985-01-01

    Subjects of lunar petrology are discussed, taking into account Apollo 14 aluminous mare basalts and their possible relationship to KREEP, the petrology and geochemistry of clasts from consortium breccia, the depths of the mare basalt source region, the origin of olivine at Copernicus, a transient heating event in the history of a highlands troctolite from Apollo 12 soil, and the composition and evolution of the lunar crust in the Descartes highlands. Other topics explored are related to early earth and magmatic processes, differentiated meteorites, chondritic meteorites, other planets and remote sensing, and cratering. Attention is given to the gravity field of Venus at constant altitude and comparison with earth, a spectral analog of Martian soil, dark halo craters and the thickness of grooved terrain on Ganymede, the geomorphology of Rhea, a Monte Carlo model of lunar megaregolith development, the scaling of complex craters, crustal radiogenic heat production and the selective survival of ancient continental crust, and the formation of an impact-generated H2O atmosphere and its implications for the early thermal history of the earth.

  6. Apatite-Melt Partitioning of Volatiles in Basaltic Systems: Implications for Determining Volatile Abundances in Planetary Bodies from Apatite

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.

    2017-01-01

    Apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials, and due to the presence of volatiles within its crystal structure (X-site), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources [i.e., 1]. Experimental studies have investigated the apatite-melt partitioning behavior of F, Cl, and OH in basaltic systems [e.g., 2- 3], reporting that apatite-melt partitioning of volatiles is best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, exchange coefficients may vary as a function of temperature, pressure, melt composition, and/or oxygen fugacity. Furthermore, exchange coefficients may vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite [3]. In these regions of ternary space, we anticipate that crystal chemistry could influence partitioning behavior. Consequently, we conducted experiments to investigate the effect of apatite crystal chemistry on apatite-melt partitioning of F, Cl, and OH.

  7. Composition and evolution of the eucrite parent body - Evidence from rare earth elements. [extraterrestrial basaltic melts

    NASA Technical Reports Server (NTRS)

    Consolmagno, G. J.; Drake, M. J.

    1977-01-01

    Quantitative modeling of the evolution of rare earth element (REE) abundances in the eucrites, which are plagioclase-pigeonite basalt achondrites, indicates that the main group of eucrites (e.g., Juvinas) might have been produced by approximately 10% equilibrium partial melting of a single type of source region with initial REE abundances which were chondritic relative and absolute. Since the age of the eucrites is about equal to that of the solar system, extensive chemical differentiation of the eucrite parent body prior to the formation of eucrites seems unlikely. If homogeneous accretion is assumed, the bulk composition of the eucrite parent body can be estimated; two estimates are provided, representing different hypotheses as to the ratio of metal to olivine in the parent body. Since a large number of differentiated olivine meteorites, which would represent material from the interior of the parent body, have not been detected, the eucrite parent body is thought to be intact. It is suggested that the asteroid 4 Vesta is the eucrite parent body.

  8. Seismic imaging beneath an InSAR anomaly in eastern Washington State: Shallow faulting associated with an earthquake swarm in a low-hazard area

    USGS Publications Warehouse

    Stephenson, William J.; Odum, Jackson K.; Wicks, Chuck; Pratt, Thomas L.; Blakely, Richard J.

    2016-01-01

    In 2001, a rare swarm of small, shallow earthquakes beneath the city of Spokane, Washington, caused ground shaking as well as audible booms over a five‐month period. Subsequent Interferometric Synthetic Aperture Radar (InSAR) data analysis revealed an area of surface uplift in the vicinity of the earthquake swarm. To investigate the potential faults that may have caused both the earthquakes and the topographic uplift, we collected ∼3  km of high‐resolution seismic‐reflection profiles to image the upper‐source region of the swarm. The two profiles reveal a complex deformational pattern within Quaternary alluvial, fluvial, and flood deposits, underlain by Tertiary basalts and basin sediments. At least 100 m of arching on a basalt surface in the upper 500 m is interpreted from both the seismic profiles and magnetic modeling. Two west‐dipping faults deform Quaternary sediments and project to the surface near the location of the Spokane fault defined from modeling of the InSAR data.

  9. The apollo 15 lunar samples: A preliminary description

    USGS Publications Warehouse

    Gast, P.W.; Phinney, W.C.; Duke, M.B.; Silver, L.T.; Hubbard, N.J.; Heiken, G.H.; Butler, P.; McKay, D.S.; Warner, J.L.; Morrison, D.A.; Horz, F.; Head, J.; Lofgren, G.E.; Ridley, W.I.; Reid, A.M.; Wilshire, H.; Lindsay, J.F.; Carrier, W.D.; Jakes, P.; Bass, M.N.; Brett, P.R.; Jackson, E.D.; Rhodes, J.M.; Bansal, B.M.; Wainwright, J.E.; Parker, K.A.; Rodgers, K.V.; Keith, J.E.; Clark, R.S.; Schonfeld, E.; Bennett, L.; Robbins, Martha M.; Portenier, W.; Bogard, D.D.; Hart, W.R.; Hirsch, W.C.; Wilkin, R.B.; Gibson, E.K.; Moore, C.B.; Lewis, C.F.

    1972-01-01

    Samples returned from the Apollo 15 site consist of mare basalts and breccias with a variety of premare igneous rocks. The mare basalts are from at least two different lava flows. The bulk chemical compositions and textures of these rocks confirm the previous conclusion that the lunar maria consist of a series of extrusive volcanic rocks that are rich in iron and poor in sodium. The breccias contain abundant clasts of anorthositic fragments along with clasts of basaltic rocks much richer in plagioclase than the mare basalts. These two rock types also occur as common components in soil samples from this site. The rocks and soils from both the front and mare region exhibit a variety of shock characteristics that can best be ascribed to ray material from the craters Aristillus or Autolycus.

  10. A model for Cryogenian iron formation

    NASA Astrophysics Data System (ADS)

    Cox, Grant M.; Halverson, Galen P.; Poirier, André; Le Heron, Daniel; Strauss, Justin V.; Stevenson, Ross

    2016-01-01

    The Neoproterozoic Tatonduk (Alaska) and Holowilena (South Australia) iron formations share many characteristics including their broadly coeval (Sturtian) ages, intimate association with glaciogenic sediments, and mineralogy. We show that these shared characteristics extend to their neodymium (εNd) and iron isotope (δ56Fe) systematics. In both regions δ56Fe values display a distinct up-section trend to isotopically heavier values, while εNd values are primitive and similar to non-ferruginous mudstones within these successions. The δ56Fe profiles are consistent with oxidation of ferruginous waters during marine transgression, and the εNd values imply that much of this iron was sourced from the leaching of continental margin sediments largely derived from continental flood basalts. Rare earth element data indicate a secondary hydrothermal source for this iron.

  11. Mineralogy and composition of the oceanic mantle

    USGS Publications Warehouse

    Putirka, Keith; Ryerson, F.J.; Perfit, Michael; Ridley, W. Ian

    2011-01-01

    The mineralogy of the oceanic basalt source region is examined by testing whether a peridotite mineralogy can yield observed whole-rock and olivine compositions from (1) the Hawaiian Islands, our type example of a mantle plume, and (2) the Siqueiros Transform, which provides primitive samples of normal mid-ocean ridge basalt. New olivine compositional data from phase 2 of the Hawaii Scientific Drilling Project (HSDP2) show that higher Ni-in-olivine at the Hawaiian Islands is due to higher temperatures (T) of melt generation and processing (by c. 300°C) related to the Hawaiian mantle plume. DNi is low at high T, so parental Hawaiian basalts are enriched in NiO. When Hawaiian (picritic) parental magmas are transported to shallow depths, olivine precipitation occurs at lower temperatures, where DNi is high, leading to high Ni-in-olivine. Similarly, variations in Mn and Fe/Mn ratios in olivines are explained by contrasts in the temperatures of magma processing. Using the most mafic rocks to delimit Siqueiros and Hawaiian Co and Ni contents in parental magmas and mantle source compositions also shows that both suites can be derived from natural peridotites, but are inconsistent with partial melting of natural pyroxenites. Whole-rock compositions at Hawaii and Siqueiros are also matched by partial melting experiments conducted on peridotite bulk compositions. Hawaiian whole-rocks have elevated FeO contents compared with Siqueiros, which can be explained if Hawaiian parental magmas are generated from peridotite at 4-5 GPa, in contrast to pressures of slightly greater than 1 GPa for melt generation at Siqueiros; these pressures are consistent with olivine thermometry, as described in an earlier paper. SiO2-enriched Koolau compositions are reproduced if high-Fe Hawaiian parental magmas re-equilibrate at 1-1·5 GPa. Peridotite partial melts from experimental studies also reproduce the CaO and Al2O3 contents of Hawaiian (and Siqueiros) whole-rocks. Hawaiian magmas have TiO2 contents, however, that are enriched compared with melts from natural peridotites and magmas derived from the Siqueiros depleted mantle, and consequently may require an enriched source. TiO2 is not the only element that is enriched relative to melts of natural peridotites. Moderately incompatible elements, such as Ti, Zr, Hf, Y, and Eu, and compatible elements, such as Yb and Lu, are all enriched at the Hawaiian Islands. Such enrichments can be explained by adding 5-10% mid-ocean ridge basalt (crust) to depleted mantle; when the major element composition of such a mixture is recast into mineral components, the result is a fertile peridotite mineralogy.

  12. Temporal Variations in the Mantle Source of MORB near the Vema Fracture Zone (Central Atlantic): Nd and Sr Isotopes in Peridotites and Basaltic Glasses

    NASA Astrophysics Data System (ADS)

    Cipriani, A.; Cipriani, A.; Brunelli, D.; Brueckner, H. K.; Brueckner, H. K.; Bonatti, E.; Bonatti, E.

    2001-12-01

    Sr-Nd-Pb isotopic ratios of zero age basalts sampled along Mid-Ocean Ridges (MOR) have demonstrated that the mantle is heterogeneous at a regional scale. However, how the mantle evolves through time below a single segment of MOR it is still matter of debate. Peridotites and basaltic glasses were collected along a lithospheric section uplifted and exposed on the southern side of the Vema transform (10o North, Atlantic Ocean) along a seafloor spreading flow line for a stretch of almost 200 km (corresponding to roughly 10 my). This set of samples offers a unique opportunity to detect changes through time of the mantle signature in a segment of Mid Atlantic Ridge, by analyzing radiogenic isotopes in the clinopyroxenes (cpx) from peridotites and glasses from the overlying basalts. Work is in progress; initial Sr and Nd measurements from cpxs within peridotites indicate several things. First, the cpxs display "depleted" mantle signatures. Second, there is a considerable variation of the isotopic ratios along the exposed section (143Nd/144Nd varies from 0.51293 to 0.51345, 87Sr/86Sr varies from 0.70228 to 0.70422) and these variations occur over a short time scale (some occur within an interval of one million year). Next, the Sr and Nd ratios are inversely correlated and fall along the mantle array. Finally, cpx Nd ratios are inversely correlated with the Cr/Al ratio of the spinel and ortopyroxene (opx) from the peridotites while Sr ratios are positively correlated. Thus, the chemically most depleted peridotite with high Cr/Al ratios show the most enriched isotopic signatures, a pattern that has also been observed in alpine-type peridotites and peridotite nodules and that is generally interpreted as metasomatism by enriched fluids affecting depleted peridotite more extensively than less depleted peridotite. This may indicate that the temporal variations in the extent of melting detected by Cr/Al ratio in spinel and opx (Bonatti et al., Variations with age of mantle ultramafic composition near the Vema Fracture Zone, Central Atlantic. EOS, Vol.79, No.45, F919) are related to rapid changes in the degree of depletion of the upwelling mantle sources and that the degree of depletion of these mantle sources is an inherited feature from earlier processes rather than the result of melting at the MOR.

  13. SNC Oxygen Fugacity Recorded in Pyroxenes and its Implications for the Oxidation State of the Martian Interior: An Experimental and Analytical Study

    NASA Technical Reports Server (NTRS)

    McCanta, M. C.; Rutherford, M. J.

    2003-01-01

    Knowledge of the oxidation state of a magma is critical as it is one of the parameters which controls the nature and composition of the resulting crystals. In terrestrial magmatic systems, oxygen fugacity (fo2) is known to vary by over nine orders of magnitude. With variations of this magnitude, understanding the compositional differences, phase changes, and crystallization sequence variations, caused by the magma fo2, is essential in deciphering the origin of all igneous rocks. Magmatic oxidation state is of great importance in that it reflects the degree of oxidation of the source region and can provide insight into magmatic processes, such as metasomatism, degassing, and assimilation, which may have changed them. Carmichael [1991] argues that most magmas are unlikely to have their redox states altered from those of their source region. This assumption allows for estimation of the oxidation state of planetary interiors. Conversely, it is known that the fo2 of the magma can be affected by other processes, which occur outside of the source region and therefore, the oxidation state may record those too. Processes which could overprint source region fugacities include melt dehydrogenation or other volatile loss, water or melt infiltration, or assimilation of oxidized or reduced wallrock. Understanding which of these processes is responsible for the redox state of a magma can provide crucial information regarding igneous processes and other forces active in the region. The composition of the SNC basalts and their widely varying proposed oxidation states raise some interesting questions. Do the SNC meteorites have an oxidized or reduced signature? What was the oxygen fugacity of the SNC source region at the time of melt generation? Is the fugacity calculated for the various SNC samples the fugacity of the magma source region or was it overprinted by later events? Are there different oxidation states in the Martian interior or a single one? This proposal seeks to address all of these questions.

  14. Origin and Evolution of the Moon: Apollo 2000 Model

    NASA Astrophysics Data System (ADS)

    Schmitt, H. H.

    1999-01-01

    A descriptive formulation of the stages of lunar evolution as an augmentation of the traditional time-stratigraphic approach [21 enables broadened multidisciplinary discussions of issues related to the Moon and planets. An update of this descriptive formulation [3], integrating Apollo and subsequently acquired data, provides additional perspectives on many of the outstanding issues in lunar science. (Stage 1): Beginning (Pre-Nectarian) - 4.57 Ga; (Stage 2): Magma Ocean (Pre-Nectarian) - 4.57-4.2(?) Ga; (Stage 3:) Cratered Highlands (Pre-Nectarian) - 4.4(?) 4.2(?) Ga (Stage 4:) Large Basins - (Pre-Nectarian - Upper Imbrium) 4.3(?)-3.8 Ga; (Stage 4A:) Old Large Basins and Crustal Strengthening (Pre Nectarian) - 4.3(?)-3.92 Ga; (Stage 4B): Young Large Basins (Nectarian - Lower Imbrium) 3.92-3.80 Ga; (Stage 5): Basaltic Maria (Upper Imbrium) - 4.3(?)- 1.0(?) Ga; (Stage 6): Mature Surface (Copernican and Eratosthenian) - 3.80 Ga to Present. Increasingly strong indications of a largely undifferentiated lower lunar mantle and increasingly constrained initial conditions for models of an Earth-impact origin for the Moon suggest that lunar origin by capture of an independently evolved planet should be investigated more vigorously. Capture appears to better explain the geochemical and geophysical details related to the lower mantle of the Moon and to the distribution of elements and their isotopes. For example, the source of the volatile components of the Apollo 17 orange glass apparently would have lain below the degassed and differentiated magma ocean (3) in a relatively undifferentiated primordial lower mantle. Also, a density reversal from 3.7 gm/cubic cm to approximately 3.3 gm/cubic cm is required at the base of the upper mantle to be consistent with the overall density of the Moon. Finally, Hf/W systematics allow only a very narrow window, if any at all for a giant impact to form the Moon. Continued accretionary impact activity during the crystallization of the magma ocean would result in the "splash intrusion" of residual liquids into the lower crust of the Moon as soon as the crust was coherent enough to resist re-incorporation into the magma ocean. For Mg-suite rocks with crystallization ages greater than about 4.4 Ga, impact-dominated dynamics of crustal formation resulted in the injection of liquids from the magma ocean into the crust. Such a process probably helps to account for the apparent increasingly mafic character of the crust with depth. Creation of a mega-regolith during the cratered highland stage constituted a necessary prerequisite for the later remelting of magma ocean cumulates to produce mare basalt magmas. The increasingly insulating character of the pulverized upper crust would slow the cooling of the residual magma ocean. It also would have allowed the gradual accumulation of radiogenic heat necessary to eventually partially remelt the source regions in the upper mantle that produced the mare basalts and related pyroclastic volcanic eruptions. The reverse wave of heating would proceed downward into the upper mantle from the still molten and significantly radio-isotopic urKREEP residual liquid zone at the base of the crust. The potential effects of a giant, Procellarum basin-forming event ca. 4.3 Ga and of a geographically coincident Imbrium event ca. 3.87 Ga can explain the surface concentration of KREEP-related materials in the Procellarum region of the Moon. Lunar Prospector gamma ray spectrometer data indicate that the Procellarum event excavated only relatively small amounts of material related to KREEP. This strongly suggests that urKREEP magmas had yet to move into the Moon's lower crust. The extensive movement of such liquids across and possibly along the crust-mantle boundary region to beneath Procellarum, however, may well have occurred in response to the regional reduction in lithostactic pressure. The coincidental formation of another large basin, the 1160-km diameter Imbrium basin, near the center of Procellarum resulted in the redistribution of KREEP-related materials roughly radial to the younger basin. This scenario may make unnecessary recent proposals of a chemically asymmetric Moon to account for the surface concentration of KREEP-related material around Imbrium. The timing of the giant, South Pole Aitken Basin-forming event at the end of the cratered highland stage (about 4.2 Ga.) can account for the lack of both extensive KREEP-related material and basaltic maria associated with South Pole Aitken. The absence of an Imbrium-size event in South Pole Aitken would have kept hidden any KREEP-rich crustal province. As would be expected with the removal of most of the insulating upper crust, relatively little mare basalt has erupted in South Pole Aitken, except possibly in its northern portions. After the cratered highlands stage and before the basaltic maria stage, objects from a discrete source region formed about 50 large basins on the Moon over -400 m.y. Four possibilities for sources of the impactors of the large basin stage appear plausible at this time. Of these possibilities, the initial breakup of the original Main Belt planetesimal would appear to be the best present choice as a discrete impactor source. The striking differences between young, mascon basins (about 3.92-3.80 Ga) and old, nonmascon basins (about 4.2-3.92 Ga) indicate that the older, isostaticly compensated basins triggered the regional intrusion, extrusion, and solidification of mobile urKREEP-related magmas prior to the formation of the younger, uncompensated basins. This suggests that the fracturing of the lunar crust by the older basin-forming events permitted urKREEP liquids to migrate into the crust, removing the potential for rapid, post-basin isostatic adjustment by urKREEP magma movement at the crust-mantle boundary. Additional information contained in original.

  15. MARIUS HILLS REGION, MOON: Stratigraphy of low shields and mare basalts

    NASA Astrophysics Data System (ADS)

    Gebhart, Jennifer; Hiesinger, Harry; van der Bogert, Carolyn; Hendrik Pasckert, Jan; Weinauer, Julia; Lawrence, Samuel; Stopar, Julie; Robinson, Mark

    2016-04-01

    The Marius Hills region consists of more than 250 individual basaltic low shields (usually referred to as "domes") and cones, located on a broad topographic rise. The bases of numerous low shields have slope angles of ~2-3° whereas the upper portions have slopes of ~6-7° [1], interpreted to reflect changes in composition over time [1]. However, the absence of spectral differences between the two dome morphologies and the surrounding mare basalts suggests that the observed morphologies are more plausibly explained by changes in effusion rates, temperature (viscosity), and/or crystallization over time [e.g., 2]. Previous studies indicate that volcanism in this region occurred in the Upper Imbrian (3.2-3.8 Ga) [3], although several other authors reported ages ranging from the Imbrian (~3.3 Ga) to the Eratosthenian (~2.5 Ga) [e.g., 1,2,4]. [2,5] reported that all low shields are embayed by younger mare units, indicating that they formed during an older stage of volcanic activity. Mare basalts surrounding the Marius Hills exhibit absolute model ages of 1.2-3.7 Ga [6]. We used 36 LRO NAC images to perform crater size-frequency distribution (CSFD) measurements. The images were calibrated and map-projected with ISIS 3 and imported into ArcGIS. Within ArcGIS, we used CraterTools [7] to perform our CSFD measurements. The crater size-frequency distributions were then plotted with CraterStats [8], using the production and chronology functions of [9]. We conducted CSFD measurements for 50 Marius Hills low shields. Our count area sizes ranged from 1.06 x 101 to 8.75 x 101 km2; those for adjacent basalts varied between 6.17 x 100 and 8.01 x 101 km2. We determined absolute model ages (AMAs) of 1.03 to 3.65 Ga for the low shields and did not find a spatial correlation of ages versus their locations. CSFD measurements for 27 adjacent basalts show AMAs of 1.20-3.69 Ga. Of those basalts, 24 exhibit AMAs of 3-3.5 Ga; there is no correlation of AMAs and the geographic position of the dated basalts. We find that in several cases the low shields are younger than their adjacent mare basalts. However, the stratigraphic relationships might be more complicated because [2,5] observed that basalts embay the low shields. Thus, further studies are required to unambiguously constrain the stratigraphic relationships and to characterize possible effects of small count areas and topography on the determination of AMAs with CSFD measurements. Provided the AMAs were not affected by the relatively small size of the count areas and topographic slopes, these results imply that the volcanic activity in the Marius Hills region lasted > 1 Ga longer than previously thought [e.g., 4]. [1] McCauley (1967b) Mantles of the Earth an terrestrial planets, 431-460; [2] Lawrence et al. (2013) JGR 118; [3] Wilhelms (1987) USGS Spec. Pub. 1348; [4] Heather et al. (2003) JGR 108; [5] Weitz and Head (1999) JGR 104; [6] Hiesinger et al. (2003) JGR 108; [7] Kneissl et al. (2012) PSS 59; [8] Michael and Neukum, (2010) EPSL 294; [9] Neukum et al. (2001) SSR 96.

  16. Uranium-lead systematics of low-Ti basaltic meteorite Dhofar 287A: Affinity to Apollo 15 green glasses

    NASA Astrophysics Data System (ADS)

    Terada, Kentaro; Sasaki, Yu; Anand, Mahesh; Sano, Yuji; Taylor, Lawrence A.; Horie, Kenji

    2008-06-01

    Dhofar 287 is a lunar meteorite found in Oman in 2001, which consists of a major portion (95%) of low-Ti mare basalt (Dho 287A) and a minor attached part (˜ 5%) of regolith breccia (Dho 287B). Here, we report the U-Pb systematics of Dho 287A using data collected with a Sensitive High Resolution Ion Microprobe (SHRIMP). In-situ analyses of five merrillite and three apatite grains, which are resistant to secondary petrologic events, resulted in a total Pb/U isochron age of 3.34 ± 0.20 Ga, in 238U/206Pb-207Pb/206Pb-204Pb/206Pb 3-D space (95% confidence level). The observed Pb-Pb isochron of these eight phosphates coupled with four plagioclase grains also yielded a 207Pb/206Pb age of 3.35 ± 0.13 Ga. This formation age, when considered as the crystallization age of Dho 287A, is similar to crystallization ages of Apollo 15 low-Ti olivine-normative basalts (ONB; 3.3 ± 0.1 Ga). However, the estimated μ-value (238U/204Pb ratio) of Dho 287A is ˜ 18, which is very different from the reported μ-values of ˜ 300 for mare basalts from the Apollo collections, including the Apollo 15 ONBs. These μ-values are still significantly lower than those of Apollo KREEP basalt (500 to 1000), although a possible assimilation with KREEP has been previously proposed for Dho 287A using geochemical criteria. Our U-Pb study of Dho 287A, instead, indicates a closer affinity to Apollo 15 green glasses (207Pb/206Pb age of 3.41 Ga with μ-value of 19 to 55), which are considered to be the most primitive products of lunar volcanism. Combining our U-Pb data with the previously reported Sm-Nd systematics (negative ɛNd) of Dho 287A clearly distinguishes this meteorite from those of the Yamato 793169 and Asuka 88175 group which have extremely low μ-value of 10-22, old crystallization ages of 3.9 Ga, and high positive ɛNd, suggesting that Dho 287A may be a representative of an entirely new group of mare basalt derived from previously unsampled source region on the Moon.

  17. The Axum-Adwa basalt-trachyte complex: a late magmatic activity at the periphery of the Afar plume

    NASA Astrophysics Data System (ADS)

    Natali, C.; Beccaluva, L.; Bianchini, G.; Siena, F.

    2013-08-01

    The Axum-Adwa igneous complex consists of a basalt-trachyte (syenite) suite emplaced at the northern periphery of the Ethiopian plateau, after the paroxysmal eruption of the Oligocene (ca 30 Ma) continental flood basalts (CFB), which is related to the Afar plume activity. 40Ar/39Ar and K-Ar ages, carried out for the first time on felsic and basaltic rocks, constrain the magmatic age of the greater part of the complex around Axum to 19-15 Ma, whereas trachytic lavas from volcanic centres NE of Adwa are dated ca 27 Ma. The felsic compositions straddle the critical SiO2-saturation boundary, ranging from normative quartz trachyte lavas east of Adwa to normative (and modal) nepheline syenite subvolcanic domes (the obelisks stones of ancient axumites) around Axum. Petrogenetic modelling based on rock chemical data and phase equilibria calculations by PELE (Boudreau 1999) shows that low-pressure fractional crystallization processes, starting from mildly alkaline- and alkaline basalts comparable to those present in the complex, could generate SiO2-saturated trachytes and SiO2-undersaturated syenites, respectively, which correspond to residual liquid fractions of 17 and 10 %. The observed differentiation processes are consistent with the development of rifting events and formation of shallow magma chambers plausibly located between displaced (tilted) crustal blocks that favoured trapping of basaltic parental magmas and their fractionation to felsic differentiates. In syenitic domes, late- to post-magmatic processes are sometimes evidenced by secondary mineral associations (e.g. Bete Giorgis dome) which overprint the magmatic parageneses, and mainly induce additional nepheline and sodic pyroxene neo-crystallization. These metasomatic reactions were promoted by the circulation of Na-Cl-rich deuteric fluids (600-400 °C), as indicated by mineral and bulk rock chemical budgets as well as by δ18O analyses on mineral separates. The occurrence of this magmatism post-dating the CFB event, characterized by comparatively lower volume of more alkaline products, conforms to the progressive vanishing of the Afar plume thermal effects and the parallel decrease of the partial melting degrees of the related mantle sources. This evolution is also concomitant with the variation of the tectono-magmatic regime from regional lithospheric extension (CFB eruption) to localized rifting processes that favoured magmatic differentiation.

  18. Implications of 187Os isotopic heterogeneities in a mantle plume: evidence from Gorgona Island and Curaçao

    NASA Astrophysics Data System (ADS)

    Walker, Richard J.; Storey, Michael; Kerr, Andrew C.; Tarney, John; Arndt, Nicholas T.

    1999-03-01

    Recent work has suggested that the mafic-ultramafic volcanism in evidence throughout portions of the Caribbean, Central America, and northern South America, including the islands of Gorgona and Curaçao, was generated as part of a middle-Cretaceous, large igneous province. New Re-Os isochron results for tholeiitic basalts from Gorgona and Curaçao indicate crystallization ages of 89.2 ± 5.2 and 85.6 ± 8.1 Ma, respectively, consistent with reported Ar ages. The Gorgona ultramafic suite shows a large range in initial Os isotopic composition, with γ Os values ranging from -0.5 to +12.4. This large range reflects isotopic heterogeneities in the mantle source similar to those observed for modern ocean island basalts. In contrast to ocean island basalts, however, Os isotopic compositions do not correlate with variations in Nd, Sr, or Pb isotopic compositions, which are within the range of depleted mid-ocean ridge basalts. The processes that produced these rocks evidently resulted in the decoupling of Os isotopes from the Nd, Sr, and Pb isotopic systems. Picrites from Curaçao have very uniform, chondritic initial Os isotopic compositions, with initial γ Os values ranging only from -0.4 to ±1.4. Basalts from Curaçao, however, define an isochron with a 187Os-enriched initial isotopic composition (γ Os = +9.5). In contrast to the 187Os-enriched ultramafic rocks from Gorgona, the enrichment in these basalts could have resulted from lithospheric contamination. If the Gorgona and Curaçao rocks were derived from the same plume, Os results, combined with Sr, Nd, and Pb data indicate a heterogeneous plume, with multiple compositionally and isotopically distinct domains. The Os isotopic results require derivation of Os from a minimum of two distinct reservoirs, one with a composition very similar to the chondritic average and one with long-term enriched Re/Os. Oceanic crustal recycling has been invoked to explain most of the 187Os enrichments that have been observed in ocean island basalt sources and could potentially apply to the Gorgona suite. Crustal recycling, however, requires large proportions of very ancient recycled basaltic crust in the sources of the 187Os-enriched ultramafic rocks to explain the magnitude of 187Os enrichments observed. For example, addition of 20% oceanic crust to fertile mantle, and nearly 3 billion years are necessary to generate a reservoir with the Os isotopic composition of the most radiogenic komatiites. If the recycled oceanic crust was added to basalt-depleted mantle, as may be indicated by ɛ Nd values for the komatiites averaging about +10, even larger proportions of older crust are required. Large proportions of oceanic mafic crust in the sources of the 187Os-enriched komatiites, although petrologically conceivable under certain melting conditions, is unlikely here given the limited trace element and lithophile isotope system variations. These results raise questions about the efficacy of using Os isotopes to constrain the proportion of recycled oceanic crust in other plumes. Other possible mechanisms for generating 187Os-enriched mantle include invoking the existence of a 187Os-enriched lower mantle, and minor outer core-lower mantle interactions.

  19. Lunar Magma Ocean Crystallization: Constraints from Fractional Crystallization Experiments

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Draper, D. S.

    2015-01-01

    The currently accepted paradigm of lunar formation is that of accretion from the ejecta of a giant impact, followed by crystallization of a global scale magma ocean. This model accounts for the formation of the anorthosite highlands crust, which is globally distributed and old, and the formation of the younger mare basalts which are derived from a source region that has experienced plagioclase extraction. Several attempts at modelling the crystallization of such a lunar magma ocean (LMO) have been made, but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. Geodynamic models of lunar accretion suggest that shortly following accretion the bulk of the lunar mass was hot, likely at least above the solidus]. Models of LMO crystallization that assume a deep magma ocean are therefore geodynamically favorable, but they have been difficult to reconcile with a thick plagioclase-rich crust. A refractory element enriched bulk composition, a shallow magma ocean, or a combination of the two have been suggested as a way to produce enough plagioclase to account for the assumed thickness of the crust. Recently however, geophysical data from the GRAIL mission have indicated that the lunar anorthositic crust is not as thick as was initially estimated, which allows for both a deeper magma ocean and a bulk composition more similar to the terrestrial upper mantle. We report on experimental simulations of the fractional crystallization of a deep (approximately 100km) LMO with a terrestrial upper mantle-like (LPUM) bulk composition. Our experimental results will help to define the composition of the lunar crust and mantle cumulates, and allow us to consider important questions such as source regions of the mare basalts and Mg-suite, the role of mantle overturn after magma ocean crystallization and the nature of KREEP

  20. An Archaean submarine volcanic debris avalanche deposit, Yilgarn Craton, western Australia, with komatiite, basalt and dacite megablocks. The product of dome collapse

    NASA Astrophysics Data System (ADS)

    Trofimovs, J.; Cas, R. A. F.; Davis, B. K.

    2004-11-01

    The Boorara Domain of the Kalgoorlie Terrane, Eastern Goldfields Superterrane, western Australia contains excellent exposure of Archaean felsic and ultramafic breccias characterised by facies associations interpreted to reflect a volcanic debris avalanche mode of deposition. Such Archaean volcanic deposits are typically difficult to identify due to poor preservation and exposure. However, primary volcanological and sedimentological features are preserved within the relatively low strain and low metamorphic grade (up to lower greenschist facies) Boorara Domain that allow accurate facies reconstruction. The breccia deposit is characterised by two clast populations. A 'block facies' comprised of metre- to decimetre-scale megablocks of dacite, basalt and komatiite is preserved within a 'mixed' matrix breccia facies of angular, coarse sand- to boulder-sized clasts. The megablocks preserve original stratigraphy and show fracturing and jigsaw-fit textures within the poorly sorted, unstratified, genetically related matrix. Overlying the volcanic debris avalanche deposit, are a series of stratified horizons. These deposits show evidence of hydraulic sorting within bedforms exhibiting normal grain-size grading and tractional scour and fill structures along their basal contacts. The stratified facies is interpreted to have been deposited by high concentration, high competency turbidity currents, triggered by slope stabilization slides in the source region. Primary contacts and volcanic textures preserved in decimetre-scale volcanic blocks allow reconstruction of the pre-collapse palaeovolcanological history of the source region. The volcanic debris avalanche deposit, together with the associated stratified sedimentary horizons, were produced by sector collapse of a submarine, dacitic volcanic dome. Contemporaneous komatiite intrusion into the dacite dome may have caused dome flank instability. However, the volcanic debris avalanche trigger is interpreted to be a post-lithification tectonic influence.

  1. An analysis of Apollo lunar soil samples 12070,889, 12030,187, and 12070,891: Basaltic diversity at the Apollo 12 landing site and implications for classification of small-sized lunar samples

    NASA Astrophysics Data System (ADS)

    Alexander, Louise; Snape, Joshua F.; Joy, Katherine H.; Downes, Hilary; Crawford, Ian A.

    2016-09-01

    Lunar mare basalts provide insights into the compositional diversity of the Moon's interior. Basalt fragments from the lunar regolith can potentially sample lava flows from regions of the Moon not previously visited, thus, increasing our understanding of lunar geological evolution. As part of a study of basaltic diversity at the Apollo 12 landing site, detailed petrological and geochemical data are provided here for 13 basaltic chips. In addition to bulk chemistry, we have analyzed the major, minor, and trace element chemistry of mineral phases which highlight differences between basalt groups. Where samples contain olivine, the equilibrium parent melt magnesium number (Mg#; atomic Mg/[Mg + Fe]) can be calculated to estimate parent melt composition. Ilmenite and plagioclase chemistry can also determine differences between basalt groups. We conclude that samples of approximately 1-2 mm in size can be categorized provided that appropriate mineral phases (olivine, plagioclase, and ilmenite) are present. Where samples are fine-grained (grain size <0.3 mm), a "paired samples t-test" can provide a statistical comparison between a particular sample and known lunar basalts. Of the fragments analyzed here, three are found to belong to each of the previously identified olivine and ilmenite basalt suites, four to the pigeonite basalt suite, one is an olivine cumulate, and two could not be categorized because of their coarse grain sizes and lack of appropriate mineral phases. Our approach introduces methods that can be used to investigate small sample sizes (i.e., fines) from future sample return missions to investigate lava flow diversity and petrological significance.

  2. Mineralogy, Petrology and Oxygen Fugacity of the LaPaz Icefield Lunar Basaltic Meteorites and the Origin of Evolved Lunar Basalts

    NASA Technical Reports Server (NTRS)

    Collins, S. J.; Righter, K.; Brandon, A. D.

    2005-01-01

    LAP 02205 is a 1.2 kg lunar mare basalt meteorite found in the Lap Paz ice field of Antarctica in 2002 [1]. Four similar meteorites were also found within the same region [1] and all five have a combined mass of 1.9 kg (LAP 02224, LAP 02226, LAP 02436 and LAP 03632, hereafter called the LAP meteorites). The LAP meteorites all contain a similar texture, mineral assemblage, and composition. A lunar origin for these samples comes from O isotopic data for LAP 02205 [1], Fe/Mn ratios of pyroxenes [1-5], and the presence of distinct lunar mineralogy such as Fe metal and baddeleyite. The LAP meteorites may represent an area of the Moon, which has never been sampled by Apollo missions, or by other lunar meteorites. The data from this study will be used to compare the LAP meteorites to Apollo mare basalts and lunar basaltic meteorites, and will ultimately help to constrain their origin.

  3. New absolute paleointensity determinations for the Permian-Triassic boundary from the Kuznetsk Trap Basalts.

    NASA Astrophysics Data System (ADS)

    Kulakov, E.; Metelkin, D. V.; Kazansky, A.

    2015-12-01

    We report the results of a pilot absolute paleointensity study of the ~250 Ma basalts of Kuznetsk traps (Kuznetsk Basin, Altai-Sayan folded area). Studied samples are characterized by a reversed polarity of natural remanent magnetization that corresponds to the lower part of Siberian Trap basalts sequence. Geochemical similarity of Kuznets basalts with those from Norilsk region supports this interpretation. Primary origin of thermal remanence in our sample is confirmed by a positive backed contact test. Rock magnetic analyses indicate that the ChRM is carried by single-domain titanomagnetite. The Coe-version of the Thellier-Therllier double-heating method was utilized for the paleointensity determinations. In contrast to the previous studies of the Permian-Triassic Siberian trap basalts, our data indicate that by the P-T boundary the paleofield intensity was relatively high and comparable with geomagnetic field strength for the last 10 millions of years. New results question the duration of the "Mesozoic dipole-low".

  4. Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas

    NASA Astrophysics Data System (ADS)

    Black, Benjamin A.; Hauri, Erik H.; Elkins-Tanton, Linda T.; Brown, Stephanie M.

    2014-05-01

    The Siberian Traps flood basalts transferred a large mass of volatiles from the Earth's mantle and crust to the atmosphere. The eruption of the large igneous province temporally overlapped with the end-Permian mass extinction. Constraints on the sources of Siberian Traps volatiles are critical for determining the overall volatile budget, the role of crustal assimilation, the genesis of Noril'sk ore deposits, and the environmental effects of magmatism. We measure sulfur isotopic ratios ranging from -10.8‰ to +25.3‰ Vienna Cañon Diablo Troilite (V-CDT) in melt inclusions from Siberian Traps basaltic rocks. Our measurements, which offer a snapshot of sulfur cycling far from mid-ocean ridge and arc settings, suggest the δ34S of the Siberian Traps mantle melt source was close to that of mid-ocean ridge basalts. In conjunction with previously published whole rock measurements from Noril'sk, our sulfur isotopic data indicate that crustal contamination was widespread and heterogeneous—though not universal—during the emplacement of the Siberian Traps. Incorporation of crustal materials likely increased the total volatile budget of the large igneous province, thereby contributing to Permian-Triassic environmental deterioration.

  5. Basalt Pb isotope analysis and the prehistoric settlement of Polynesia.

    PubMed Central

    Weisler, M I; Woodhead, J D

    1995-01-01

    The prehistoric settlement of the Pacific Ocean has intrigued scholars and stimulated anthropological debate for the past two centuries. Colonized over a few millennia during the mid to late Holocene, the islands of the Pacific--displaying a wide diversity of geological and biotic variability--provided the stage for endless "natural experiments" in human adaptation. Crucial to understanding the evolution and transformation of island societies is documenting the relative degree of interisland contacts after island colonization. In the western Pacific, ideal materials for archaeologically documenting interisland contact--obsidian, pottery, and shell ornaments--are absent or of limited geographic distribution in Polynesia. Consequently, archaeologists have relied increasingly on fine-grained basalt artifacts as a means for documenting colonization routes and subsequent interisland contacts. Routinely used x-ray fluorescence characterization of oceanic island basalt has some problems for discriminating source rocks and artifacts in provenance studies. The variation in trace and major element abundances is largely controlled by near-surface magma-chamber processes and is broadly similar between most oceanic islands. We demonstrate that Pb isotope analysis accurately discriminates rock source and is an excellent technique for charting the scale, frequency, and temporal span of imported fine-grained basalt artifacts found throughout Polynesia. The technique adds another tool for addressing evolutionary models of interaction, isolation, and cultural divergence in the eastern Pacific. PMID:7892194

  6. Postglacial eruptive history and geochemistry of Semisopochnoi volcano, western Aleutian Islands, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; Larsen, Jessica F.; Neal, Christina A.

    2018-02-14

    Semisopochnoi Island, located in the Rat Islands group of the western Aleutian Islands and Aleutian volcanic arc, is a roughly circular island composed of scattered volcanic vents, the prominent caldera of Semisopochnoi volcano, and older, ancestral volcanic rocks. The oldest rocks on the island are gently radially dipping lavas that are the remnants of a shield volcano and of Ragged Top, which is an eroded stratocone southeast of the current caldera. None of these oldest rocks have been dated, but they all are likely Pleistocene in age. Anvil Peak, to the caldera’s north, has the morphology of a young stratocone and is latest Pleistocene to early Holocene in age. The oldest recognized Holocene deposits are those of the caldera-forming eruption, which produced the 7- by 6-km caldera in the center of the island, left nonwelded ignimbrite in valleys below the edifice, and left welded ignimbrite high on its flanks. The caldera-forming eruption produced rocks showing a range of intermediate whole-rock compositions throughout the eruption sequence, although a majority of clasts analyzed form a fairly tight cluster on SiO2-variation diagrams at 62.9 to 63.4 weight percent SiO2. This clustering of compositions at about 63 weight percent SiO2 includes black, dense, obsidian-like clasts, as well as tan, variably oxidized, highly inflated pumice clasts. The best estimate for the timing of the eruption is from a soil dated at 6,920±60 14C years before present underlying a thin facies of the ignimbrite deposit on the island’s north coast. Shortly after the caldera-forming eruption, two scoria cones on the northwest flank of the volcano outside the caldera, Ringworm crater and Threequarter Cone, simultaneously erupted small volumes of andesite.The oldest intracaldera lavas, on the floor of the caldera, are andesitic to dacitic, but are mostly covered by younger lavas and tephras. These intracaldera lavas include the basaltic andesites of small Windy cone, as well as the more voluminous basaltic andesites of three-peaked Mount Cerberus, which takes up most of the west half of the caldera and has erupted lavas that flowed to the sea on the southwestern coast of the island. Apparently active at the same time as Mount Cerberus, extracaldera Sugarloaf Peak at the southern point of the island has exclusively erupted basalts. Its young satellite peak, Sugarloaf Head, has erupted morphologically young lavas and cinder cones and may be the source of the last historical eruption in 1987. Several tephra sections on the east half of the island record as many as 50 tephras, mostly from Mount Cerberus, Sugarloaf Peak, and Sugarloaf Head, over the past several thousand years.Eruptive products of Semisopochnoi Island show an overall compositional range of basalt to dacite, though basaltic andesite and andesite constitute the largest proportions of rock types. They are tholeiitic, low to medium K, and have geochemical characteristics typical of magmatic arcs. The earliest Pleistocene lavas are mostly basalts that show the greatest geochemical diversity, as illustrated by, for example, LaN/YbN ratios of 1.9 to 3.5, suggesting fluctuations in the magma source region over the hundreds of thousands of years recorded by these older lavas. The Holocene rocks, in contrast, follow arrays in compositional space that suggest crystallization differentiation from discrete, subtly different batches of magma under varying pressure and temperature conditions. Increasingly negative Eu anomalies and an only modestly increasing alumina saturation index value with differentiation suggest that plagioclase and mafic silicates (amphibole and pyroxene) were involved to varying degrees in fractional crystallization to produce Semisopochnoi’s magmatic diversity. The crystal-poor, andesitic magmas that erupted during caldera formation likely separated from a plagioclase-, amphibole-, and clinopyroxene-dominated crystal residue in the upper crust at less than 900 °C, possibly following a period of decreased magmatic flux. During the Holocene, basaltic Sugarloaf Peak appears to bypass any upper crustal magmatic storage region and erupt crystal-rich basalts. Recent seismic swarms and long-lived warm springs attest to ongoing magmatic activity.The Holocene eruptive record at Semisopochnoi volcano is one of diverse eruptive styles as well as frequent eruptions from multiple vents located within and outside the caldera. The number and diversity of postcaldera vents means that the sites of future eruptions cannot be predicted with certainty. Future eruptions of ash similar in magnitude to the VEI 3 or less eruptions recorded in the documented tephra deposits would pose a hazard to aircraft in the region.

  7. The effect of complex fault rupture on the distribution of landslides triggered by the 12 January 2010, Haiti earthquake

    USGS Publications Warehouse

    Harp, Edwin L.; Jibson, Randall W.; Dart, Richard L.; Margottini, Claudio; Canuti, Paolo; Sassa, Kyoji

    2013-01-01

    The MW 7.0, 12 January 2010, Haiti earthquake triggered more than 7,000 landslides in the mountainous terrain south of Port-au-Prince over an area that extends approximately 50 km to the east and west from the epicenter and to the southern coast. Most of the triggered landslides were rock and soil slides from 25°–65° slopes within heavily fractured limestone and deeply weathered basalt and basaltic breccia. Landslide volumes ranged from tens of cubic meters to several thousand cubic meters. Rock slides in limestone typically were 2–5 m thick; slides within soils and weathered basalt typically were less than 1 m thick. Twenty to thirty larger landslides having volumes greater than 10,000 m3 were triggered by the earthquake; these included block slides and rotational slumps in limestone bedrock. Only a few landslides larger than 5,000 m3 occurred in the weathered basalt. The distribution of landslides is asymmetric with respect to the fault source and epicenter. Relatively few landslides were triggered north of the fault source on the hanging wall. The densest landslide concentrations lie south of the fault source and the Enriquillo-Plantain-Garden fault zone on the footwall. Numerous landslides also occurred along the south coast west of Jacmél. This asymmetric distribution of landsliding with respect to the fault source is unusual given the modeled displacement of the fault source as mainly thrust motion to the south on a plane dipping to the north at approximately 55°; landslide concentrations in other documented thrust earthquakes generally have been greatest on the hanging wall. This apparent inconsistency of the landslide distribution with respect to the fault model remains poorly understood given the lack of any strong-motion instruments within Haiti during the earthquake.

  8. Magnesium Isotopic Compositions of Continental Basalts From Various Tectonic Settings

    NASA Astrophysics Data System (ADS)

    Yang, W.; Li, S.; Tian, H.; Ke, S.

    2016-12-01

    Recycled sedimentary carbonate through subduction is the main light Mg isotopic reservoir in Earth's deep interior, thus Mg isotopic variation of mantle-derived melts provides a fresh perspective on investigating deep carbon cycling. Here we investigate Mg isotopic compositions of continental basalts from various tectonic settings: (1) The Cenozoic basalts from eastern China, coinciding with the stagnant Pacific slab in the mantle transition zone revealed by seismic tomography; (2) The Cenozoic basalts from Tengchong area, southwestern China, which comprises a crucial part of the collision zone between the Indian and Eurasian plates; (3) The Permian basalts from Emeishan large igneous province, related to a mantle plume. The Cenozoic basalts from both eastern China and Tengchong area exhibit light Mg isotopic compositions (δ26Mg = -0.60 to -0.30‰ and -0.51 to -0.33‰), suggesting recycled sedimentary carbonates in their mantle sources. This is supported by their low Fe/Mn, high CaO/Al2O3, low Hf/Hf* and low Ti/Ti* ratios, which are typical features of carbonated peridotite-derived melt. The Tengchong basalts also show high 87Sr/86Sr, high radiogenic Pb and upper crustal-like trace element pattern, indicating contribution of recycled continental crustal materials. By contrast, all Emeishan basalts display a mantle-like Mg isotopic composition, with δ26Mg ranging from -0.35 to -0.19‰. Since the Emeishan basalts derived from a mantle plume, their mantle-like Mg isotopic composition may indicate limited sedimentary carbonated recycled into the lower mantle. This is consistent with a recent experimental study which concluded that direct recycling of carbon into the lower mantle may have been highly restricted throughout most of the Earth's history.

  9. North Polar Gypsum Dunes in Olympia Undae

    NASA Image and Video Library

    2016-07-15

    These sand dunes are a type of aeolian bedform and partly encircle the Martian North Pole in a region called Olympia Undae. Unlike most of the sand dunes on Mars that are made of the volcanic rock basalt, these are made of a type of sulfate mineral called gypsum. Whence the sand? Well, gypsum is a mineral that can often form from the evaporation of water that has sulfur and calcium dissolved in it. This sand was probably sourced from a northern region on Mars that used to be quite wet. The boxy gridding of the dunes indicates that the wind blows in multiple directions. Note: "Aeolian" means wind-blown and "bedform" means piles of sediment shaped by a flowing fluid (liquid or gas). http://photojournal.jpl.nasa.gov/catalog/PIA20743

  10. Cenozoic East African Magmatism and the African LLSVP

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.

    2017-12-01

    The Ethiopian-Arabian Large Igneous Province preserves a 45 Ma record of mantle-lithosphere interaction, manifesting as flood basalts, shield volcanoes, silicic eruptions, and monogenetic magmatic events. During the Cenozoic, magmatism in in this region has resulted from the interplay between lithospheric extension and material upwelling from the African large low-velocity shear velocity province (LLSVP). Consequently, the study of magmatism in East Africa provides a complement to investigations of the Pacific LLSVP. The volumetrically significant flood basalt events of the Eocene to Early Miocene suggest a role for material upwelling from the African LLSVP, however the modern focusing of East African magmatism into oceanic spreading centers and continental rifts also highlights the control of lithospheric thinning in magma generation processes. The study of the mantle reservoirs derived from the African LLSVP is complicated by the slow relative motion of the African plate during the Cenozoic, resulting in significant spatial overlap in lavas derived from different magmatic events. This complexity is being resolved with enhanced geochronological precision and a focus on the geochemical characteristics of the volcanic products. It is now apparent that there are three distinct pulses of basaltic volcanism, followed by either by bimodal or silicic volcanism, totaling ca. 720,000 km3 of magmatism: (A) Eocene Initial Phase from 45-34 Ma, which is dominated by basaltic volcanism and focused on Southern Ethiopia and Northern Kenya (Turkana). (B) Oligocene Traps phase from 33.9-27 Ma, which coincides with a significant increase in the aerial extent of volcanism. Broadly age equivalent 1 to 2 km thick sequences of dominantly basalt are centered on the NW Ethiopian Plateau and Yemen, but also Turkana during this period. (C) Early Miocene resurgence phase from 26.9-22 Ma, where basaltic volcanism is seen throughout the region but is less volumetrically significant than the prior two basaltic pulses. With our developing understanding of the persistence of LLSVP anomalies within the mantle, I propose that the three basaltic pulses are ostensibly manifestations of the same plume-lithosphere interaction, requiring revision to the duration, magmatic extent, and magma volume of this Large Igneous Province.

  11. Injection and Monitoring at the Wallula Basalt Pilot Project

    DOE PAGES

    McGrail, B. Peter; Spane, Frank A.; Amonette, James E.; ...

    2014-01-01

    Continental flood basalts represent one of the largest geologic structures on earth but have received comparatively little attention for geologic storage of CO2. Flood basalt lava flows have flow tops that are porous, permeable, and have large potential capacity for storage of CO2. In appropriate geologic settings, interbedded sediment layers and dense low-permeability basalt rock flow interior sections may act as effective seals allowing time for mineralization reactions to occur. Previous laboratory experiments showed the relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. However, recent laboratory tests with water-saturated supercritical CO2 show thatmore » mineralization reactions occur in this phase as well, providing a second and potentially more important mineralization pathway than was previously understood. Field testing of these concepts is proceeding with drilling of the world’s first supercritical CO2 injection well in flood basalt being completed in May 2009 near the township of Wallula in Washington State and corresponding CO2 injection permit granted by the State of Washington in March 2011. Injection of a nominal 1000 MT of CO2 was completed in August 2013 and site monitoring is in progress. Well logging conducted immediately after injection termination confirmed the presence of CO2 predominantly within the upper flow top region, and showed no evidence of vertical CO2 migration outside the well casing. Shallow soil gas samples collected around the injection well show no evidence of leakage and fluid and gas samples collected from the injection zone show strongly elevated concentrations of Ca, Mg, Mn, and Fe and 13C/18O isotopic shifts that are consistent with basalt-water chemical reactions. If proven viable by this field test and others that are in progress or being planned, major flood basalts in the U.S., India, and perhaps Australia would provide significant additional CO2 storage capacity and additional geologic sequestration options in regions of these countries where conventional storage options are limited.« less

  12. Characteristics of a young lava-hyaloclastite sheet, Snaebylisheidi, Iceland

    NASA Astrophysics Data System (ADS)

    White, J. D.; Gorny, C. F.; Gudmundsson, M. T.

    2009-12-01

    Extensive sheets of hyaloclastite volcaniclastic debris, coupled with and intruded by largely underlying layers of coherent basalt, are common in the Sida area of southeastern Iceland. They were initially interpreted as submarine deposits, but have recently been re-interpreted as nonmarine deposits formed in the presence of glaciers. Detailed interpretation of the units has been challenging, because their source areas are not preserved. A younger deposit of the same type forms an elongate flat-topped ridge in the Snaebylisheidi area. Its volume of ca. 35 cubic km is similar to that of the larger Sida units, its source area is preserved, and parts of the deposit remain unlithified. Our initial investigation reveals that the source area is dominated by clastic deposits. There is no evidence for a source edifice of pillow or sheet lavas, but there are extensive low-level intrusions near the base, and a plexus of smaller high-level intrusions showing evidence of high viscosities during emplacement. Isolated pillows and other fluidal juvenile clasts near the source lie within matrices of highly vesicular ash and lapilli, or of mixed vesicular and dense glassy fragments. Downstream in the unit, deposits are dominated by dense clasts, and these can in places be demonstrated to have been derived locally from the underlying to intruding basalt sheet. Larger dense clasts are commonly highly irregular, vuggy, and composite; in places many are rolled into subspherical forms enclosing matrix material comprising dense angular glass fragments. The clastic part of the unit has an upper subunit dominated by well-developed bedding in complex geometries with multiple internal truncation surfaces. Lower subunits include thick structureless to alignment-bedded layers, along with intrusion-dominated zones. Soft-sediment deformation is ubiquitous along the edges of the deposit, with many layers broken and tilted to subvertical inclinations. Taken together, these features indicate that little or no lava accumulated at the source area during eruption, but that much basalt was intruded into unconsolidated volcaniclastic deposits. Coherent basalt sheets extended downslope from the source, perhaps largely as intrusions into earlier-deposited tephra, and produced much of the downstream clastic material by local fragmentation of the advancing sheet. Thick beds reflecting high accumulation rates are intercalated with groups of thinner beds formed by multiple depositional pulses. Deformation along deposit tops and edges records pervasive slumping of the unconsolidated deposits. The characteristics overall are suggestive of an initially explosive subglacial origin, with much of the unit emplaced subglacially. More work is underway to better understand the source eruption, and the way in which the basalt sheet was emplaced and associated volcaniclastic deposits produced and deposited.

  13. Seismic wave propagation through an extrusive basalt sequence

    NASA Astrophysics Data System (ADS)

    Sanford, Oliver; Hobbs, Richard; Brown, Richard; Schofield, Nick

    2016-04-01

    Layers of basalt flows within sedimentary successions (e.g. in the Faeroe-Shetland Basin) cause complex scattering and attenuation of seismic waves during seismic exploration surveys. Extrusive basaltic sequences are highly heterogeneous and contain strong impedance contrasts between higher velocity crystalline flow cores (˜6 km s-1) and the lower velocity fragmented and weathered flow crusts (3-4 km s-1). Typically, the refracted wave from the basaltic layer is used to build a velocity model by tomography. This velocity model is then used to aid processing of the reflection data where direct determination of velocity is ambiguous, or as a starting point for full waveform inversion, for example. The model may also be used as part of assessing drilling risk of potential wells, as it is believed to constrain the total thickness of the sequence. In heterogeneous media, where the scatter size is of the order of the seismic wavelength or larger, scattering preferentially traps the seismic energy in the low velocity regions. This causes a build-up of energy that is guided along the low velocity layers. This has implications for the interpretation of the observed first arrival of the seismic wave, which may be a biased towards the low velocity regions. This will then lead to an underestimate of the velocity structure and hence the thickness of the basalt, with implications for the drilling of wells hoping to penetrate through the base of the basalts in search of hydrocarbons. Using 2-D acoustic finite difference modelling of the guided wave through a simple layered basalt sequence, we consider the relative importance of different parameters of the basalt on the seismic energy propagating through the layers. These include the proportion of high to low velocity material, the number of layers, their thickness and the roughness of the interfaces between the layers. We observe a non-linear relationship between the ratio of high to low velocity layers and the apparent velocity of the first arrival suggesting that such a sequence may cause a reduction of the apparent velocity by as much as 1 km s-1. We also find that the rate of amplitude decay in the higher velocity layer is related to the interface roughness between the basalt layers.

  14. Barium isotopic compositions of oceanic basalts from São Miguel, Azores Archipelago

    NASA Astrophysics Data System (ADS)

    Yu, H.; Nan, X.; Huang, F.

    2016-12-01

    Oceanic island basalts (OIB) provide important information to decipher the processes of mantle convection and crustal material recycling1. OIBs from São Miguel, Azores Archipelago have extreme radiogenic isotope compositions2-3, representing an enriched component in their mantle source. However, the origins of the enriched mantle are still in debate. Previous studies proposed that the enriched component could be subducted terrigenous sediments2,4, delaminated subcontinental lithosphere5-6, recycled oceanic crust with evolved compositions (such as a subducted seamount)7, or enriched (E-MORB type) under-plated basalts which infiltrated the oceanic mantle lithosphere8. In this study, we use Ba isotopes to constrain the origin of enriched component beneath São Miguel because Ba isotopes can be significantly fractionated at the Earth's surface with low temperature environment than in the mantle with high temperature9-10. We analyzed Ba isotopes of 15 basalts from São Miguel. Although these samples have large variations of 87Sr/86Sr (0.703440-0.705996), 206Pb/204Pb (19.319-20.095) and 187Os/188Os (0.127-0.161), they have limited variation of 137Ba/134Ba (-0.003 to +0.048‰). The average 137Ba/134Ba of São Miguel basalts is 0.019±0.033‰ (n=15, 2SD), which is in the range of mantle (0.026±0.090‰, n=32, 2SD)9, indicating there is no surface material in the mantle source of São Miguel. The enriched source of São Miguel could be evolved material from the mantle. 1. Hofmann, 1997, Nature; 2. Hawkesworth et al., 1979, Nature; 3. White et al., 1979, CMP; 4. Turner et al., 1997, CG; 5. Widom et al., 1997, CG; 6. Moreira et al., 1999, EPSL; 7. Beier et al., 2007, EPSL; 8. Elliott et al., 2007, GCA; 9. Huang et al., 2015, Goldschmidt abs 1331; 10. Nan et al., 2016, Goldschmidt abs 2246.

  15. Formation and evolution of a metasomatized lithospheric root at the motionless Antarctic plate: the case of East Island, Crozet Archipelago (Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Meyzen, Christine; Marzoli, Andrea; Bellieni, Giuliano; Levresse, Gilles

    2016-04-01

    Sitting atop the nearly stagnant Antarctic plate (ca. 6.46 mm/yr), the Crozet archipelago midway between Madagascar and Antarctica constitutes a region of unusually shallow (1543-1756 m below sea level) and thickened oceanic crust (10-16.5 km), high geoid height, and deep low-velocity zone, which may reflect the surface expression of a mantle plume. Here, we present new major and trace element data for Quaternary sub-aerial alkali basalts from East Island, the easterly and oldest island (ca. 9 Ma) of the Crozet archipelago. Crystallization at uppermost mantle depth and phenocryst accumulation have strongly affected their parental magma compositions. Their trace element patterns show a large negative K anomaly relative to Ta-La, moderate depletions in Rb and Ba with respect to Th-U, and heavy rare earth element (HREE) depletions relative to light REE. These characteristics allow limits to be placed upon the composition and mineralogy of their mantle source. The average trace element spectrum of East Island basalts can be matched by melting of about 2 % of a garnet-phlogopite-bearing peridotite source. The stability field of phlogopite restricts melting depth to lithospheric levels. The modelled source composition requires a multistage evolution, where the mantle has been depleted by melt extraction before having been metasomatized by alkali-rich plume melts. The depleted mantle component may be sourced by residual mantle plume remnants stagnated at the melting locus due to a weak lateral flow velocity inside the melting regime, whose accumulation progressively edifies a depleted lithospheric root above the plume core. Low-degree alkali-rich melts are likely derived from the plume source. Such a mantle source evolution may be general to both terrestrial and extraterrestrial environments where the lateral component velocity of the mantle flow field is extremely slow.

  16. Experimental Phase Relations of Hydrous, Primitive Melts: Implications for variably depleted mantle melting in arcs and the generation of primitive high-SiO2 melts

    NASA Astrophysics Data System (ADS)

    Weaver, S.; Wallace, P. J.; Johnston, A.

    2010-12-01

    There has been considerable experimental and theoretical work on how the introduction of H2O-rich fluids into the mantle wedge affects partial melting in arcs and chemical evolution of mantle melts as they migrate through the mantle. Studies aimed at describing these processes have become largely quantitative, with an emphasis on creating models that suitably predict the production and evolution of melts and describe the thermal state of arcs worldwide. A complete experimental data set that explores the P-T conditions of melt generation and subsequent melt extraction is crucial to the development, calibration, and testing of these models. This work adds to that data set by constraining the P-T-H2O conditions of primary melt extraction from two end-member subduction zones, a continental arc (Mexico) and an intraoceanic arc (Aleutians). We present our data in context with primitive melts found worldwide and with other experimental studies of melts produced from fertile and variably depleted mantle sources. Additionally, we compare our experimental results to melt compositions predicted by empirical and thermodynamic models. We used a piston-cylinder apparatus and employed an inverse approach in our experiments, constraining the permissible mantle residues with which our melts could be in equilibrium. We confirmed our inverse approach with forced saturation experiments at the P-T-H2O conditions of melt-mantle equilibration. Our experimental results show that a primitive, basaltic andesite melt (JR-28) from monogenetic cinder cone Volcan Jorullo (Central Mexico) last equilibrated with a harzburgite mantle residue at 1.2-1.4 GPa and 1150-1175°C with H2O contents in the range of 5.5-7 wt% H2O prior to ascent and eruption. Phase relations of a tholeiitic high-MgO basaltic melt (ID-16) from the Central Aleutians (Okmok) show the conditions of last equilibration with a fertile lherzolite mantle residue at shallower (1.2 GPa) but hotter (1275°C) conditions with approximately 2 wt% H2O. Given the estimated crustal thicknesses of these two regions, our data suggest that both samples equilibrate with mantle minerals just below the Moho. Recent viscosity dependent thermal models that account for slab geometry suggest that JR-28 melts last equilibrate with harzburgite in a cooler region of the mantle wedge. In contrast, ID-16 equilibrated with a fertile source near the hotter core of the mantle wedge. Our results support the hypothesis that lherzolite melting (wet or dry) produces essentially basaltic melts, whereas more Si-rich primitive melts require shallow hydrous melting of harzburgite or reequilibration of basaltic melts with harzburgite in the uppermost part of the wedge.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Erick R.; Williams, Colin F.; Ingebritsen, Steven E.

    Heat-flow mapping of the western USA has identified an apparent low-heat-flow anomaly coincident with the Columbia Plateau Regional Aquifer System, a thick sequence of basalt aquifers within the Columbia River Basalt Group (CRBG). A heat and mass transport model (SUTRA) was used to evaluate the potential impact of groundwater flow on heat flow along two different regional groundwater flow paths. Limited in situ permeability (k) data from the CRBG are compatible with a steep permeability decrease (approximately 3.5 orders of magnitude) at 600–900 m depth and approximately 40°C. Numerical simulations incorporating this permeability decrease demonstrate that regional groundwater flow canmore » explain lower-than-expected heat flow in these highly anisotropic (kx/kz ~ 104) continental flood basalts. Simulation results indicate that the abrupt reduction in permeability at approximately 600 m depth results in an equivalently abrupt transition from a shallow region where heat flow is affected by groundwater flow to a deeper region of conduction-dominated heat flow. Most existing heat-flow measurements within the CRBG are from shallower than 600 m depth or near regional groundwater discharge zones, so that heat-flow maps generated using these data are likely influenced by groundwater flow. Substantial k decreases at similar temperatures have also been observed in the volcanic rocks of the adjacent Cascade Range volcanic arc and at Kilauea Volcano, Hawaii, where they result from low-temperature hydrothermal alteration.« less

  18. Betwixt and Between: Structure and Evolution of Central Mongolia

    NASA Astrophysics Data System (ADS)

    Meltzer, A.; Ancuta, L. D.; Carlson, R. W.; Caves, J. K.; Chamberlain, C. P.; Gosse, J. C.; Idleman, B. D.; Ionov, D. A.; McDannell, K. T.; Tamra, M.; Mix, H.; Munkhuu, U.; Russo, R.; Sabaj-Perez, M.; Sahagian, D. L.; Sjostrom, D. J.; Smith, S. G.; Stachnik, J. C.; Tsagaan, B.; Wegmann, K. W.; Winnick, M. J.; Zeitler, P. K.; Prousevitch, A.

    2015-12-01

    Central Mongolia sits deep in the Asian continental interior between the Siberian craton to the north, the edge of the India-Asia collision to the south, and far-field subduction of the Pacific plate to the east. It has a complex geologic history comprising Archean to Early Proterozoic crystalline rocks modified by accretionary events in the Paleozoic, and Cenozoic deformation and basalt volcanism that continues today. Within central Mongolia, the broad domal Hangay upland is embedded in the greater Mongolian Plateau. Elevations within the dome average ~1.5 km above the regional trend and locally reach ~4000 m. This elevated landscape hosts a low-relief surface cut into crystalline basement, and a 30 Ma record of intermittent basalt magmatism. Here we integrate observations from geomorphology, geochronology, paleoaltimetry, biogeography, petrology, geochemistry, and seismology to document the timing, rate, and pattern of surface uplift in the Hangay and more broadly to understand the geodynamics of the Mongolian plateau. Results from mantle and crustal xenoliths, seismology, thermochronology, and basalt geochemistry are consistent with: a high geothermal gradient with temperatures reaching ~900°C at 60 km depth, intercepting the mantle adiabat at ~90 km depth; an uppermost mantle composed mostly of fertile peridotites; low-volume Cenozoic basaltic magmatism sourced below the lithosphere, with isotopic characteristics similar to much east-Asian Cenozoic mafic volcanism; a 42-57 km-thick crust of island-arc affinity formed during accretion of the Central Asia Orogenic Belt; elevations supported primarily by crustal isostasy; slow exhumation (30-100 m/My) over hundreds of millions of years; and long-term thermal stability of the upper crust and relief lowering since the Mesozoic. Results from geomorphology, paleoaltimetry, fish genetics, and basalt geochronology imply that drainage divides are stable since the mid-Miocene with modest surface uplift (up to 1 km) and topographic relief up to 800 m remaining largely unchanged since ~10 Ma. Surprisingly, this area of remarkable stability over significant time and space sits above a shallow convecting mantle and hosts some of the largest recorded intracontinental earthquakes.

  19. Scaling of Viscous Shear Zones with Depth Dependent Viscosity and Power Law Stress-strain Rate Dependence

    NASA Astrophysics Data System (ADS)

    Meltzer, A.; Ancuta, L. D.; Carlson, R. W.; Caves, J. K.; Chamberlain, C. P.; Gosse, J. C.; Idleman, B. D.; Ionov, D. A.; McDannell, K. T.; Tamra, M.; Mix, H.; Munkhuu, U.; Russo, R.; Sabaj-Perez, M.; Sahagian, D. L.; Sjostrom, D. J.; Smith, S. G.; Stachnik, J. C.; Tsagaan, B.; Wegmann, K. W.; Winnick, M. J.; Zeitler, P. K.; Prousevitch, A.

    2014-12-01

    Central Mongolia sits deep in the Asian continental interior between the Siberian craton to the north, the edge of the India-Asia collision to the south, and far-field subduction of the Pacific plate to the east. It has a complex geologic history comprising Archean to Early Proterozoic crystalline rocks modified by accretionary events in the Paleozoic, and Cenozoic deformation and basalt volcanism that continues today. Within central Mongolia, the broad domal Hangay upland is embedded in the greater Mongolian Plateau. Elevations within the dome average ~1.5 km above the regional trend and locally reach ~4000 m. This elevated landscape hosts a low-relief surface cut into crystalline basement, and a 30 Ma record of intermittent basalt magmatism. Here we integrate observations from geomorphology, geochronology, paleoaltimetry, biogeography, petrology, geochemistry, and seismology to document the timing, rate, and pattern of surface uplift in the Hangay and more broadly to understand the geodynamics of the Mongolian plateau. Results from mantle and crustal xenoliths, seismology, thermochronology, and basalt geochemistry are consistent with: a high geothermal gradient with temperatures reaching ~900°C at 60 km depth, intercepting the mantle adiabat at ~90 km depth; an uppermost mantle composed mostly of fertile peridotites; low-volume Cenozoic basaltic magmatism sourced below the lithosphere, with isotopic characteristics similar to much east-Asian Cenozoic mafic volcanism; a 42-57 km-thick crust of island-arc affinity formed during accretion of the Central Asia Orogenic Belt; elevations supported primarily by crustal isostasy; slow exhumation (30-100 m/My) over hundreds of millions of years; and long-term thermal stability of the upper crust and relief lowering since the Mesozoic. Results from geomorphology, paleoaltimetry, fish genetics, and basalt geochronology imply that drainage divides are stable since the mid-Miocene with modest surface uplift (up to 1 km) and topographic relief up to 800 m remaining largely unchanged since ~10 Ma. Surprisingly, this area of remarkable stability over significant time and space sits above a shallow convecting mantle and hosts some of the largest recorded intracontinental earthquakes.

  20. Petrogenesis of Pliocene Alkaline Volcanic Rocks from Southeastern Styrian Basin, Austria

    NASA Astrophysics Data System (ADS)

    Ali, Sh.; Ntaflos, Th.

    2009-04-01

    Petrogenesis of Pliocene Alkaline Volcanic Rocks from Southeastern Styrian Basin, Austria Sh. Ali and Th. Ntaflos Dept. of Lithospheric Research, University of Vienna, Austria Neogene volcanism in the Alpine Pannonian Transition Zone occurred in a complex geodynamic setting. It can be subdivided into a syn-extentional phase that comprises Middle Miocene dominantly potassic, intermediate to acidic volcanism and a post-extensional phase, which is characterized by eruption of alkaline basaltic magmas during the Pliocene to Quartenary in the Styrian Basin. These alkaline basaltic magmas occur as small eruptive centers dominating the geomorphology of the southeastern part of the Styrian Basin. The eruptive centers along the SE Styrian Basin from North to South are: Oberpullendorf, Pauliberg, Steinberg, Strandenerkogel, Waltrafelsen and Klöch. The suite collected volcanic rocks comprise alkali basalts, basanites and nephelinites. Pauliberg: consists of alkali basalts that exhibit a narrow range of SiO2 (44.66-47.70 wt %) and wide range of MgO (8.52-13.19-wt %), are enriched in TiO2 (3.74-4.18 wt %). They are enriched in incompatible trace elements such as Zr (317-483 ppm), Nb (72.4-138 ppm) and Y (30.7-42 ppm). They have Nb/La ratio of 1.89 (average) and Cen/Ybn=15.22-23.11. Oberpullendorf: it also consists of alkali basalts with higher SiO2 (50.39 wt %) and lower TiO2 (2.80 wt %) if compared with the Pauliberg suite. Incompatible trace elements are lower than in Pauliberg; Zr =217 ppm, Nb=49.8 ppm, Y=23.6 ppm and Nb/La=1.93. The Oberpullendorf alkalibasalts are relative to Pauliberg lavas more depleted in LREE (Cen/Ybn=12.78). Steinberg: it consists of basanites with SiO2=44.49-46.85 wt %, MgO=6.30-9.13-wt %, and TiO2 =2.09-2.26 wt %. They are enriched in incompatible trace elements such as Zr (250-333 ppm), Nb (94-130 ppm), Y (24.7-31.9 ppm) and Nb/La=1.59 (average). The Cen/Ybn ratio varies between 18.17 and 22.83 indicating relative steep REE chondrite normalized patterns. Strandenerkogel: it consists of nephelinites with narrow compositional ranges; SiO2 =40.99-42.44 wt %, MgO=6.63-6.92 wt % and TiO2=2.03-2.07 wt %. They are enriched in incompatible trace elements such as Zr (362-382 ppm), Nb (139-153 ppm) and Y (39.5-40.7 ppm). They have Nb/La ratio of 1.20 and are strongly enriched in LREE (Cen/Ybn=25.04-28.11). Waltrafelsen: there are like in Strandenerkogel and have SiO2=42.42 wt %, MgO=6.55 wt %, and TiO2=2.01 wt %. The incompatible trace elements such as Zr (362 ppm), Nb (145 ppm) and Y (38.3 ppm) are similar to that of Stranerkogel. They have Nb/La ratio of 1.27 and are strongly enriched in LREE (Cen/Ybn=24.92). Klöch: it consists of basanites with similar to Steinberg composition (SiO2=45.34-46.60 wt %, MgO=8.98-10.11 wt %, and TiO2= 2.28-2.37 wt %. Incompatible trace elements such as Zr (252-273 ppm), Nb (94.2-101 ppm) and Y (24.4-27.2 ppm) are high. They have Nb/La ratio of 1.71 (average). Their REE abundances compared to Steinberg are slightly lower (Cen/Ybn=18.19-20.17). The Nb/La ratio of all the studied rock varieties is greater than one indicates an OIB-like asthenospheric mantle source for the basaltic magma. All the studied rock varieties except alkali basalts of Pauliberg have Tbn/Ybn ratios which are comparable to those of the alkali basalts of Hawaii ((Tbn/Ybn range from 1.89 to 2.45); the Hawaiian basalts are considered to have been derived from a garnet-lherzolite mantle source (Frey et al. 1991; McKenzie & O'Nions, 1991). The chondrite normalized HREE abundances indicate the presence of garnet as a residual phase in the melt source region as can be inferred from the Dy/Yb ratio (average 2.93) which is greater than that of chondritic Dy/Yb ratio (1.57) All the studied rock varieties display alkaline affinity and negative K-anomaly. The negative K-anomaly suggests either a source character, (e.g. frozen HIMU-like veins or pockets in the depleted lherzolite)? or it is consistent with the presence of a K-bearing hydrous phase in the residual mantle. References FREY, F. A., GARCIA, M. O., WISE, W. S., KENNEDY, A., GURRIET, P. & ALBAREDE, F. 1991. The evolution of Mauna Kea volcano, Hawaii: Petrogenesis of tholeiitic and alkali basalts. Journal of Geophysical Research 96, 14347-75. MCKENZIE, D. P. & O'NIONS, R. K. 1991. Partial melting distributions from inversion of rare earth element concentrations. Journal of Petrology 32, 1021-91.

  1. A Rb-Sr and Sm-Nd Isotope Geochronology and Trace Element Study of Lunar Meteorite LaPaz Icefield 02205

    NASA Technical Reports Server (NTRS)

    Rankenburg, K.; Brandon, A. D.; Norman, M. D.

    2007-01-01

    Rubidium-strontium and samarium-neodymium isotopes of lunar meteorite LaPaz Icefield (LAP) 02205 are consistent with derivation of the parent magma from a source region similar to that which produced the Apollo 12 low-Ti olivine basalts followed by mixing of the magma with small amounts (1 to 2 wt%) of trace element-enriched material similar to lunar KREEP-rich sample SaU 169. The crystallization age of LAP 02205 is most precisely dated by an internal Rb-Sr isochron of 2991+/-14 Ma, with an initial Sr-87/Sr-88 at the time of crystallization of 0.699836+/-0.000010. Leachable REE-rich phosphate phases of LAP 02205 do not plot on a Sm-Nd mineral isochron, indicating contamination or open system behavior of the phosphates. Excluding anomalous phases from the calculation of a Sm-Nd isochron yields a crystallization age of 2992+/-85 (initial Epsilon Nd-143 = +2.9+/-0.8) that is within error of the Rb-Sr age, and in agreement with other independent age determinations for LAP 02205 from Ar-Ar and U-Pb methods. The calculated Sm-147/Nd-144 source ratios for LAP 02205, various Apollo 12 and 15 basalts, and samples with strong affinities to KREEP (SaU 169, NWA 773, 15386) are uncorrelated with their crystallization ages. This finding does not support the involvement of a common KREEP component as a heat source for lunar melting events that occurred after crystallization of the lunar magma ocean.

  2. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon

    USGS Publications Warehouse

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.

    2017-08-09

    The Miocene Columbia River Basalt Group (CRBG) is the youngest and best preserved continental flood basalt province on Earth, linked in space and time with a compositionally diverse succession of volcanic rocks that partially record the apparent emergence and passage of the Yellowstone plume head through eastern Oregon during the late Cenozoic. This compositionally diverse suite of volcanic rocks are considered part of the La Grande-Owyhee eruptive axis (LOEA), an approximately 300-kilometer-long (185 mile), north-northwest-trending, middle Miocene to Pliocene volcanic belt located along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the (1) flood basalt-dominated Columbia Plateau on the north, (2) bimodal basalt-rhyolite vent complexes of the Owyhee Plateau on the south, (3) bimodal basalt-rhyolite and time-transgressive rhyolitic volcanic fields of the Snake River Plain-Yellowstone Plateau, and (4) the High Lava Plains of central Oregon.This field-trip guide describes a 4-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the Columbia River Basalt Group and coeval and compositionally diverse volcanic rocks associated with the early “Yellowstone track” and High Lava Plains in eastern Oregon. Beginning in Portland, the Day 1 log traverses the Columbia River gorge eastward to Baker City, focusing on prominent outcrops that reveal a distal succession of laterally extensive, large-volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Basalt formations of the CRBG. These “great flows” are typical of the well-studied flood basalt-dominated Columbia Plateau, where interbedded silicic and calc-alkaline lavas are conspicuously absent. The latter part of Day 1 will highlight exposures of middle to late Miocene silicic ash-flow tuffs, rhyolite domes, and calc-alkaline lava flows overlying the CRBG across the northern and central parts of the LOEA. The Day 2 field route migrates to southern parts of the LOEA, where rocks of the CRBG are associated in space and time with lesser known and more complex silicic volcanic stratigraphy associated with middle Miocene, large-volume, bimodal basalt-rhyolite vent complexes. Key stops will provide a broad overview of the structure and stratigraphy of the middle Miocene Mahogany Mountain caldera and middle to late Miocene calc-alkaline lavas of the Owyhee basalt. Stops on Day 3 will progress westward from the eastern margin of the LOEA, examining a transition linking the Columbia River Basalt-Yellowstone province with a northwestward-younging magmatic trend of silicic volcanism that underlies the High Lava Plains of eastern Oregon. Initial field stops on Day 3 will examine key outcrops demonstrating the intercalated nature of middle Miocene tholeiitic CRBG flood basalts, prominent ash-flow tuffs, and “Snake River-type” large-volume rhyolite lava flows exposed along the Malheur River. Subsequent stops on Day 3 will focus upon the volcanic stratigraphy northeast of the town of Burns, which includes regional middle to late Miocene ash-flow tuffs, and lava flows assigned to the Strawberry Volcanics. The return route to Portland on Day 4 traverses across the western axis of the Blue Mountains, highlighting exposures of the widespread, middle Miocene Dinner Creek Tuff and aspects of Picture Gorge Basalt flows and northwest-trending feeder dikes situated in the central part of the CRBG province.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Perry

    Studies of volcanic risk to the proposed high-level radioactive waste repository at Yucca Mountain have been ongoing for 25 years. These studies are required because three episodes of small-volume, alkalic basaltic volcanism have occurred within 50 km of Yucca Mountain during the Quaternary. Probabilistic hazard estimates for the proposed repository depend on the recurrence rate and spatial distribution of past episodes of volcanism in the region. Several independent research groups have published estimates of the annual probability of a future volcanic disruption of the proposed repository, most of which fall in the range of 10{sup -7} to 10{sup -9} permore » year; similar conclusions were reached. through an extensive expert elicitation sponsored by the Department of Energy in 1995-1996. The estimated probability values are dominated by a regional recurrence rate of 10{sup -5} to 10{sup -6} volcanic events per year (equating to recurrence intervals of several hundred thousand years). The recurrence rate, as well as the spatial density of volcanoes, is low compared to most other basaltic volcanic fields in the western United States, factors that may be related to both the tectonic history of the region and a lithospheric mantle source that is relatively cold and not prone to melting. The link between volcanism and tectonism in the Yucca Mountain region is not well understood beyond a general association between volcanism and regional extension, although areas of locally high extension within the region may control the location of some volcanoes. Recently, new geologic data or hypotheses have emerged that could potentially increase past estimates of the recurrence rate, and thus the probability of repository disruption. These are (1) hypothesized episodes of anomalously high strain rate, (2) hypothesized presence of a regional mantle hotspot, and (3) new aeromagnetic data suggesting as many as twelve previously unrecognized volcanoes buried in alluvial-filled basins near Yucca Mountain.« less

  4. Contemporaneous eruption of calc-alkaline and alkaline lavas in a continental arc (Eastern Mexican Volcanic Belt): chemically heterogeneous but isotopically homogeneous source

    NASA Astrophysics Data System (ADS)

    Carrasco-Núñez, Gerardo; Righter, Kevin; Chesley, John; Siebert, Lee; Aranda-Gómez, José Jorge

    2005-11-01

    Nearly contemporaneous eruption of alkaline and calc-alkaline lavas occurred about 900 years BP from El Volcancillo paired vent, located behind the volcanic front in the Mexican Volcanic Belt (MVB). Emission of hawaiite (Toxtlacuaya) was immediately followed by calc-alkaline basalt (Río Naolinco). Hawaiites contain olivine microphenocrysts (Fo67-72), plagioclase (An56-60) phenocrysts, have 4-5 wt% MgO and 49.6-50.9 wt% SiO2. In contrast, calc-alkaline lavas contain plagioclase (An64-72) and olivine phenocrysts (Fo81-84) with spinel inclusions, and have 8-9 wt% MgO and 48.4-49.4 wt% SiO2. The most primitive lavas in the region (Río Naolinco and Cerro Colorado) are not as primitive as parental melts in other arcs, and could represent either (a) variable degrees of melting of a subduction modified, garnet-bearing depleted mantle source, followed by AFC process, or (b) melting of two distinct mantle sources followed by AFC processes. These two hypotheses are evaluated using REE, HFSE, and Sr, Os and Pb isotopic data. The Toxtlacuaya flow and the Y & I lavas can be generated by combined fractional crystallization and assimilation of gabbroic granulite, starting with a parental liquid similar to the Cerro Colorado basalt. Although calc-alkaline and alkaline magmas commonly occur together in other areas of the MVB, evidence for subduction component in El Volcancillo magmas is minimal and limited to <1%, which is a unique feature in this region further from the trench. El Volcancillo lavas were produced from two different magma batches: we surmise that the injection of calc-alkaline magma into an alkaline magma chamber triggered the eruption of hawaiites. Our results suggest that the subalkaline and hawaiitic lavas were formed by different degrees of partial melting of a similar, largely depleted mantle source, followed by later AFC processes. This model is unusual for arcs, where such diversity is usually explained by melting of heterogeneous (enriched and depleted) and subduction-modified mantle.

  5. Western US volcanism due to intruding oceanic mantle driven by ancient Farallon slabs

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Liu, Lijun; Hu, Jiashun

    2018-01-01

    The origin of late Cenozoic intraplate volcanism over the western United States is debated. One important reason is the lack of a clear understanding of the mantle dynamics during this volcanic history. Here we reconstruct the mantle thermal states beneath North America since 20 million years ago using a hybrid inverse geodynamic model with data assimilation. The model simultaneously satisfies the past subduction kinematics, present mantle tomographic image and the volcanic history. We find that volcanism in both the Yellowstone volcanic province and the Basin and Range province corresponds to a similar eastward-intruding mantle derived from beneath the Pacific Ocean and driven mostly by the sinking Farallon slab below the central-eastern United States. The hot mantle that forms the Columbia River flood basalt and subsequent Yellowstone-Newberry hotspot tracks first enters the western United States through tears within the Juan de Fuca slab. Subsequent coexistence of the westward asthenospheric flow above the retreating Juan de Fuca slab and eastward-propagating mantle beyond the back-arc region reproduces the bifurcating hotspot chains. A similar but weaker heat source intrudes below the Basin and Range around the southern edge of the slab, and can explain the diffuse basaltic volcanism in this region. According to our models, the putative Yellowstone plume contributes little to the formation of the Yellowstone volcanic province.

  6. Volcanism on the fossil Galapagos Rise spreading centre, SE Pacific

    NASA Astrophysics Data System (ADS)

    Haase, K. M.; Stroncik, N. A.

    2002-12-01

    A part of the fossil spreading centre of the Galapagos Rise at 10° S, 95° W in the SE Pacific Ocean was mapped and sampled. This spreading centre was active for about 12 Ma and was abandoned about 6.5 Ma ago when the spreading rate of the East Pacific Rise (EPR) increased. The aim of this study is to understand the tectonic and petrological implications of the ridge jump for the spreading centre and to gain insights into the processes in its melting column. Bathymetric swath mapping of a part of the Galapagos Rise revealed an elongated structure with a NNE-SSW strike direction which is bounded by a large fracture zone in the north. The mapped area can be divided into three segments, each of about 50 km length. The northernmost segment consists of an ~4400 m deep rift which shows similarities to a slow-spreading centre, e.g. the Mid-Atlantic Ridge. The southern two segments are volcanic ridges with numerous volcanic flank cones which reach water depths up to 490 m. This volcanic ridge is interpreted as the continuation of the fossil spreading axis. While the northernmost segment is magmatically starved, the volcanic ridges of the southern two segments apparently formed after cessation of spreading. The rock samples from the rift flanks in the north are incompatible element-depleted (K/Ti 0.08-0.28) and plagioclase-phyric basalts resembling typical mid-ocean ridge basalts (MORB). In contrast, the lavas from the two volcanic ridge segments in the south are highly vesicular incompatible element-enriched alkali basalts with K/Ti of 0.65-1.4. The depleted rift basalts have Sr isotope ratios below 0.7027 while the alkali basalts from the ridge range between 0.7029 and 0.7031. The rift basalts have significantly lower sodium contents than the alkali basalts and thus the southern lavas are probably derived by smaller degrees of partial melting. The relatively low Si contents of the alkali basalts also indicates formation deeper in the melting column than the northern MORB-like samples. The mantle source of the alkali basalts is similar to the enriched source of off-axis seamounts along the EPR. Our preliminary data suggest that the northernmost segment formed by tectonic processes during a final slow-spreading phase of the Galapagos Rise while the southern two segments erupted alkaline lavas probably after spreading stopped.

  7. Evidence for Cyclical Fractional Crystallization, Recharge, and Assimilation in Basalts of the Kimama Core, Central Snake River Plain, Idaho: A 5.5-million-year Highlight Reel of Petrogenetic processes in a Mid-Crustal Sill Complex

    NASA Astrophysics Data System (ADS)

    Potter, Katherine E.; Shervais, John W.; Christiansen, Eric H.; Vetter, Scott K.

    2018-02-01

    Basalts erupted in the Snake River Plain of central Idaho and sampled in the Kimama drill core link eruptive processes to the construction of mafic intrusions over 5.5 Ma. Cyclic variations in basalt composition reveal temporal chemical heterogeneity related to fractional crystallization and the assimilation of previously-intruded mafic sills. A range of compositional types are identified within 1912 m of continuous drill core: Snake River olivine tholeiite (SROT), low K SROT, high Fe-Ti, and evolved and high K-Fe lavas similar to those erupted at Craters of the Moon National Monument. Detailed lithologic and geophysical logs document 432 flow units comprising 183 distinct lava flows and 78 flow groups. Each lava flow represents a single eruptive episode, while flow groups document chemically and temporally related flows that formed over extended periods of time. Temporal chemical variation demonstrates the importance of source heterogeneity and magma processing in basalt petrogenesis. Low-K SROT and high Fe-Ti basalts are genetically related to SROT as, respectively, hydrothermally-altered and fractionated daughters. Cyclic variations in the chemical composition of Kimama flow groups are apparent as 21 upward fractionation cycles, six recharge cycles, eight recharge-fractionation cycles, and five fractionation-recharge cycles. We propose that most Kimama basalt flows represent typical fractionation and recharge patterns, consistent with the repeated influx of primitive SROT parental magmas and extensive fractional crystallization coupled with varying degrees of assimilation of gabbroic to ferrodioritic sills at shallow to intermediate depths over short durations. Trace element models show that parental SROT basalts were generated by 5-10% partial melting of enriched mantle at shallow depths above the garnet-spinel lherzolite transition. The distinctive evolved and high K-Fe lavas are rare. Found at four depths, 319 m, 1045 m, 1078 m, and 1189 m, evolved and high K-Fe flows are compositionally unrelated to SROT magmas and represent highly fractionated basalt, probably accompanied by crustal assimilation. These evolved lavas may be sourced from the Craters of the Moon/Great Rift system to the northeast. The Kimama drill core is the longest record of geochemical variation in the central Snake River Plain and reinforces the concept of magma processing in a layered complex.

  8. The Mantle and Basalt-Crust Interaction Below the Mount Taylor Volcanic Field, New Mexico

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Crumpler, Larry S.; Schmidt, Marick E.

    2010-01-01

    The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans approximately 3.8-1.5 Ma (K-Ar). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor. Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of conebuilding. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative, on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated) represented and, if so, what changes in the mantle or in the tectonic regime allowed their coexistence or caused the transition?

  9. Characterization of lunar ilmenite resources

    NASA Astrophysics Data System (ADS)

    Heiken, G. H.; Vaniman, D. T.

    Ilmenite will be an important lunar resource, to be used mainly for oxygen production but also as a source of iron. Ilmenite abundances in high-Ti basaltic lavas are higher (9-19 vol pct) than in high-Ti mare soils (mostly less than 10 vol pct). This factor alone may make crushed high-Ti basaltic lavas most attractive as a target for ilmenite extraction. Concentration of ilmenite from either a crushed basalt or regolith requires size sorting to avoid polycrystalline fragments. In coarse-grained high-Ti basaltic lavas, about 60-80 percent of the ilmenite will consist of relatively 'clean' single crystals if the rocks are crushed to a size of 0.2 mm. Fine-grained high-Ti basalts, with thin skeletal or hopper-shaped ilmentes, would produce essentially no free or 'clean' ilmenite grains even if crushed to 0.15 mm and only about 7 percent free ilmenite if crushed to 0.05 mm. Data from the 2.8-m-thick regolith sampled by coring at the Apollo 17 site show that in even the most basalt-clast-rich and least mature stratigraphic intervals, free ilmenite grains make up less than 2 percent of the 0.02- to 0.2-mm size fraction and a mere 0.3 percent of the 0.2- to 2-mm size fraction.

  10. SrNdPb isotopic and trace element evidence for crustal contamination of plume-derived flood basalts: Oligocene flood volcanism in western Yemen

    NASA Astrophysics Data System (ADS)

    Baker, J. A.; Thirlwall, M. F.; Menzies, M. A.

    1996-07-01

    Oligocene flood basalts from western Yemen have a relatively limited range in initial isotopic composition compared with other continental flood basalts: 87Sr/86Sr = 0.70365-0.70555 ; 143Nd/144Nd = 0.5129-0.51248 ( ɛNd = +6.0 to -2.4) ; 206pb/204Pb = 17.9-19.3 . Most compositions lie outside the isotopic ranges of temporally and spatially appropriate mantle source compositions observed in this area, i.e., Red Sea/Gulf of Aden MORB mantle, the Afar plume, and Pan-African lithospheric mantle Correlations between indices of fractionation, silica, and isotope ratios suggest that crustal contamination has substantially modified the primary isotopic and incompatible trace element characteristics of the flood basalts. However, significant scatter in these correlations was produced by: (a) the heterogeneous isotopic composition of Pan-African crust; (b) the difference in susceptibility of magmas to contamination as a result of variable incompatible trace element contents in primary melts produced by differing degrees of partial melting; (c) the presence or absence of plagioclase as a fractionating phase generating complex contamination trajectories for Sr; (d) sampling over a wide area not representing a single coherent magmatic system; and (e) variation in contamination mechanisms from assimilation associated with fractionation (AFC) to assimilation by hot mafic magmas with little concomitant fractionation. The presence of plagioclase as a fractionating phase in some suites that were undergoing AFC requires assimilation to have taken place within the crust and, coupled with the limited LREE-enrichment accompanying isotopic variations, excludes the possibility that an AFC-type process took place during magma transfer through the lithospheric mantle. Isotopic compositions of some of the inferred crustal assimilants are similar to those postulated by other workers for an enriched lithospheric mantle source of many flood basalts in southwestern Yemen, Ethiopia, and Djibouti. The western Yemen flood basalts contain 0-30% crust which largely swamps their primary lead isotopic signature, but the primary SrNd isotopic signature is close to that of the least contaminated and isotopically most depleted flood basalts. LREE/HFSE and LILE/HFSE ratios also correlate with isotopic data as a result of crustal contamination. However, Nb/La and K/Nb ratios of >1.1 and <150, respectively, in least contaminated samples require an OIB-like source. The pre-contamination isotopic signature is estimated to be: 87Sr/86Sr ˜ 0.7036; 143Nd/144Nd ˜ 0.51292 ; 206Pb/204Pb ˜ 18.4-19.0 . This, coupled with low LILE/HFSE ratios, suggest the source has characteristics akin to the Afar plume. A mantle source isotopically more depleted than Bulk Earth, but not as depleted as MORB, coupled with LILE depletion, also characterises other examples of plume-derived flood volcanism. This mantle reservoir is responsible for the second largest outbursts of volcanism on Earth and has radiogenic isotopic characteristics akin to PREMA mantle, but the incompatible trace element signature of HIMU mantle.

  11. Geochemical, isotopic (Sr-Nd-Pb) and geochronological (Ar-Ar and U-Pb) constraints on Quaternary bimodal volcanism of the Nigde Volcanic Complex (Central Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Aydin, F.; Siebel, W.; Uysal, I.; Ersoy, E. Y.; Schmitt, A. K.; Sönmez, M.; Duncan, R.

    2012-04-01

    The Nigde Volcanic Complex (NVC) is a major Late Neogene-Quaternary volcanic centre within the Cappadocian Volcanic Province of Central Anatolia. The Late Neogene evolution of the NVC generally initiated with the eruption of extensive andesitic-dacitic lavas and pyroclastic flow deposits, and minor basaltic lavas. This stage was followed by a Quaternary bimodal magma suite which forms Na-alkaline/transitional basaltic and high-K calc-alkaline to alkaline silicic volcanic rocks. In this study, we present new geochemical, isotopic (Sr-Nd-Pb) and geochronological (Ar-Ar and U-Pb) data for the bimodal volcanic suite within the NVC. Recent data suggest that the eruption of this suite took place ranges between ~650 and ~220 ka (Middle-Late Pleistocene). Silicic rocks consisting of rhyolite and associated pumice-rich pyroclastic fall out and surge deposits define a narrow range of 143Nd/144Nd isotope ratios (0.5126-0.5127), and show virtually no difference in Pb isotope composition (206Pb/204Pb = 18.84-18.87, 207Pb/204Pb = 15.64-15.67 and 208Pb/204Pb = 38.93-38.99). 87Sr/86Sr isotopic compositions of the silicic (0.704-0.705) and basaltic rocks (0.703-0.705) are rather similar reflecting a common source. The most mafic sample from basaltic rocks related to monogenetic cones is characterized by 87Sr/86Sr = 0.704, 143Nd/144Nd = 0.5127, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68. These values suggest a moderately depleted signature of the mantle source. The geochronological and geochemical data suggest that NVC silicic and basaltic rocks are genetically closely related to each other. Mantle derived differentiated basaltic melts which experienced low degree of crustal assimilation are suggested to be the parent melt of the rhyolites. Further investigations will focus on the spatial and temporal evolution of Quaternary bimodal magma suite in the NVC and the genetic relation between silicic and basaltic rocks through detailed oxygen isotope analysis and (U-Th)/He zircon geochronology.

  12. Temperatures and Melt Water Contents at the Onset of Phenocryst Growth in Quaternary Nepheline-Normative Basalts Erupted along the Tepic-Zacoalco Rift in Western Mexico

    NASA Astrophysics Data System (ADS)

    Mesa, J.; Lange, R. A.; Pu, X.

    2017-12-01

    Nepheline-normative, high-Mg basalts erupted from the western Mexican arc, along the Tepic-Zacoalco rift (TZR), have a trace-element signature consistent with an asthenosphere source, whereas calc-alkaline basalts erupted from the central Mexican arc in the Michoacan-Guanajuato volcanic field (MGVF) have a trace-element signature consistent with a mantle source strongly affected by subduction fluids. In this study, olivine-melt thermometry and plagioclase-liquid hygrometry are used to constrain the temperature and melt water content of the alkaline TZR basalts. The presence of diffusion-limited growth textures in olivine and plagioclase phenocrysts provide preliminary evidence of rapid growth during ascent. For each basalt sample, a histogram of all analyzed olivines in each sample allows the most Fo-rich composition to be identified, which matches the calculated composition at the liquidus via MELTS (Ghiorso & Sack, 1995; Asimow & Ghiorso, 1998) at fO2 values of QFM +2. Therefore a newly developed olivine-melt thermometer, based on DNiol/liq (Pu et al., 2017) was used to calculate temperature at the onset of olivine crystallization during ascent. Temperatures range from 1076-1247°C, whereas those calculated using an olivine-melt thermometer based on DMgol/liq range from 1141-1236 °C. Olivine-melt thermometers based on DMgol/liq are sensitive to melt H2O content, therefore ΔT = TMg - TNi (≤ 82 degrees) may be used as a qualitative indicator of melt H2O (≤ 2.6 wt% H2O; Pu et al., 2017). When temperatures from the Ni-thermometer are applied to the most calcic plagioclase in each sample (Waters & Lange, 2015), calculated melt H2O contents range from 1.3-1.9 (± 0.4) wt%. These values are significantly lower than those obtained from high-Mg calc-alkaline basalts from the MGVF using similar methods (1.9-5.0 wt%; Pu et al., 2017), consistent with a reduced involvement of slab-derived fluids in the origin of the alkaline TZR basalts from western Mexico.

  13. Mid-Cretaceous transtension in the Canadian Cordillera: Evidence from the Rocky Ridge volcanics of the Skeena Group

    NASA Astrophysics Data System (ADS)

    Bassett, Kari N.; Kleinspehn, Karen L.

    1996-08-01

    The age relations, geochemistry, and sedimentology of the Rocky Ridge Formation of the Skeena Group are used to test competing tectonic reconstructions for the mid-Cretaceous Canadian Cordillera as well as the timing and location of the accretion of the Insular Superterrane. Pollen and macrofossil assemblages indicate that these intrabasinal basalts were erupted along the southern margin of the Bowser basin in the Early Albian to Early Cenomanian. Single-crystal fusion and step-heating 40Ar/39Ar dating of hornblendes in one basalt flow from the uppermost part of the formation yielded Middle Cenomanian ages of 94.3 ± 0.4, 95.6 ± 1.6, and 95.0 ± 1.6 Ma. Vesicular basalt flows interbedded with crystal-rich tuff breccias contain evidence for hot emplacement as pyroclastic flows. Individual eruptive centers are identified by their proximal facies, paleoflow indicators within the lava flows, paleoflow indicators within interbedded volcaniclastic fluvial deposits, geochemical differences, and geographic isolation of volcanic deposits. Major and trace-element geochemistry from 20 sampled lava flows indicates an alkali basalt composition for the volcanics. The basalts of the northern Rocky Ridge volcanic center show enrichment of light rare earth and large ion lithophile elements with strong negative Nb-Ta anomalies whereas the basalts of the southern Tahtsa Lake volcanic center show depletion to slight enrichment of light rare earth elements, slight enrichment of large ion lithophile elements with minimal negative Nb-Ta anomalies. The geochemistry combined with paleogeographic and regional tectonic reconstruction suggests a continental arc setting with intraarc extension. The presence of deeper marine facies to the west and the lack of a western sediment source in the Skeena Group indicate that the technically active Insular Superterrane was not west of the study area during mid-Cretaceous time. Thus we reconsider the Omineca Belt as the main axis of a mid-Cretaceous continental arc, placing the Intermontane Superterrane in the intraarc to forearc position with the Rocky Ridge volcanics erupted along the forearc side of the Omineca arc. Coeval regional strike-slip faulting and reconstructed oblique plate convergence suggest a transtensional setting for Rocky Ridge intraarc extension. An electronic supplement of Tables A1-A2 may be obtained on a diskette or Anonymous FTP from KOSMOS.AGU.ORG (LOGIN to AGU's FTP account using ANONYMOUS as the username and GUEST as the password. Go to the right directory by typing CD APEND. Type LS to see what files are available. Type GET and the name of the file to get it. Finally, type EXIT to leave the system.) (Paper 95TC03496, Mid-Cretaceous transtension in the Canadian Cordillera: Evidence from the Rocky Ridge volcanics of the Skeena Group, Kari N. Bassett and Karen L. Kleinspehn). Diskette may be ordered from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, DC 20009; $15.00. Payment must accompany order.

  14. What Factors Control Platinum-Group Element (PGE) Abundances in Basalts From the Ontong Java Plateau?

    NASA Astrophysics Data System (ADS)

    Chazey, W. J.; Neal, C. R.

    2002-12-01

    Eleven samples encompassing four sites drilled by Ocean Drilling Program Leg 192 to the Ontong Java Plateau (OJP) were analyzed for major, trace and platinum-group (PGEs: Ir, Ru, Rh, Pt, and Pd) elements. Based on major and trace element chemistry, these are divided into two groups: a primitive group, which was newly discovered on Leg 192, and Kwaimbaita-type basalts, which are ubiquitous on the OJP (cf. Tejada et al., 2002, J. Pet. 43:449). The primitive group is relatively enriched in MgO, Ni, and Cr and relatively depleted in incompatible elements compared to the Kwaimbaita-type basalts. Petrography indicates that the fractionating phases during emplacement of both types of basalts were olivine and Cr-spinel +/- plagioclase +/- cpx. Normalized PGE profiles are fractionated, but exhibit a flattening between Ru and Ir and occasionally an enrichment in Ir. It has been shown that chromite can preferentially incorporate Os and Ru (Kd ?150) over Ir (Kd ?100), which may account for the Ir and Ru systematics. We do not consider sulfide to be a factor in fractionating the PGEs because it is either absent or present as a trace phase in these basalts and the OJP basalts are sulfur undersaturated (Michael and Cornell, 1996, EOS 77:714). Additionally, the primitive samples from the OJP also have Cu/Pd ratios (4500-8000) that are roughly similar to primitive mantle (7300), and have a generally flat transition from Pd to Y on a primitive mantle-normalized plot. It is unlikely that these samples reached sulfur saturation. The Kwaimbaita-type basalts have slightly elevated Cu/Pd ratios (9000-14000). While there are subtle differences between the PGE profiles of basalts from the Leg 192 drill cores compared to OJP basalts from subaerial outcrops in the Solomon Islands (e.g., the former have general lower Pt/Rh and higher Rh/Ru ratios), it is apparent that silicate and oxide phases are controlling the PGE profiles and abundances. For example, the six samples analyzed from Site 1185 demonstrate a positive correlation of Ru and Ir with Cr and Ni, suggesting a close association of these elements with the observed olivine and Cr-spinel phenocrysts. For all OJP basalts for which we have PGE data, there is a general positive correlation using MgO (or Cr or Ni) as a fractionation index and PGE abundance as well as ratios such as Pt/Y. Therefore, fractional crystallization controls the PGE contents of the OJP basalts. However, as noted by Ely and Neal (2002, Chem. Geol., in press) the abundances require a source enriched in the PGEs over upper mantle and, in some cases, primitive mantle. Such sources require a PGE enriched component that could be from the outer core, although as noted by Parkinson et al. (2001, EOS 82:F1398) this component is not always required. Further work is underway to substantiate this.

  15. Off-Axis Seamount Lavas at 8°20' N Span the Entire Range of East Pacific Rise MORB Compositions

    NASA Astrophysics Data System (ADS)

    Anderson, M.; Wanless, V. D.; Perfit, M. R.; Gregg, P. M.; Fornari, D. J.; McCully, E.; Ridley, W. I.

    2017-12-01

    Lavas erupted at off-axis seamounts can provide a window into mantle heterogeneity and melting systematics that are not easily observed on-axis at fast-spreading mid-ocean ridges (MORs), where melts are efficiently mixed and homogenized within shallow axial magma chambers. To investigate off-axis magmatism, we systematically mapped the 8°20' N seamount chain in November of 2016 on R/V Atlantis using shipboard EM122 multibeam system and AUV Sentry. This 160-km long chain of off-axis seamounts and ridges is located perpendicular to the ridge axis, west of the East Pacific Rise (EPR) and north of the Siqueiros Fracture Zone. The high-resolution surface and AUV-based multibeam and AUV sidescan maps are combined with geochemical analyses of 300 basalt samples, collected using HOV Alvin and dredging, to evaluate magmatic plumbing and sources off-axis. Preliminary major and trace element concentrations reveal remarkable geochemical heterogeneity (including both normal and enriched basalt compositions) across the entire seamount chain and within individual seamounts. For example, (La/Sm)N contents span the entire range of known values for basalts from northern Pacific MORs and seamounts (0.45—2.76). MgO contents vary from 10.25 to 4.56 wt. % across the seamount chain and by as much as 3.61 wt. % from volcanic features sampled at an individual seamount (Beryl). Additionally, K2O/TiO2 ratios range from 4.9 to 61.3 across the seamount chain, and by as much as 54.4 at a single seamount (Beryl), indicating heterogeneous mantle sources or variable extents of melting occur at both regional and local scales. We combine the geochemical results and bathymetric maps with petrologic models to evaluate extents and depths of fractional crystallization and mantle melting in the off-axis environment.

  16. A possible source of water in seismogenic subduction zones

    NASA Astrophysics Data System (ADS)

    Kameda, J.; Yamaguchi, A.; Kimura, G.; Iodp Exp. 322 Scientists

    2010-12-01

    Recent works on the subduction megathrusts have emphasized the mechanical function of fluids contributing dynamic slip-weakening. Basalt-hosting fault zones in on-land accretionary complexes present several textures of seismic slip under fluid-assisted condition such as implosion breccia with carbonate matrix and decrepitation of fluid inclusion. In order to clarify initiation and evolution processes of such fault zones as well as possible source of fluid in the seismogenic subduction zone, we examined a mineralogical/geochemical feature of basaltic basement recovered by IODP Exp. 322 at C0012, that is a reference site for subduction input in the Nankai Trough. A total of 10 samples (about 4 m depth interval from the basement top) were analyzed in this study. XRD analyses indicate that all of the samples contain considerable amount of smectite. The smectite does not appear as a form of interstratified phase with illite or chlorite. Preliminary chemical analyses by EDS in TEM suggest that the smectite is trioctahedral saponite with Ca as a dominant interlayer cation. To determine the saponite content quantitatively, cation exchange capacity (CEC) of bulk samples was measured. The samples show almost similar CEC of around 30 meq/100g, implying that bulk rock contains about 30 wt% of saponite, considering a general CEC of 100 meq/100g for monomineralic saponite. Such abundance of saponite might be a result from intense alteration of oceanic crust due to sea water circulation at low temperature. Previous experimental work suggests that saponite might be highly hydrated (two to three water layer hydration form) at the seismogenic P-T condition. Hence, altered upper oceanic crust is a possible water sink in the seismogenic zone. The water stored in the smectite interlayer region will be expelled via smectite to chlorite transition reaction, that might contribute to the dynamic weakening of the seimogenic plate boundary between the basement basalt and overlying accretionary prism.

  17. Structure and Geochemistry of the Continental-Oceanic Crust Boundary of the Red Sea and the Rifted Margin of Western Arabia

    NASA Astrophysics Data System (ADS)

    Dilek, Y.; Furnes, H.; Schoenberg, R.

    2009-12-01

    The continental-oceanic crust boundary and an incipient oceanic crust of the Red Sea opening are exposed within the Arabian plate along a narrow zone of the Tihama Asir coastal plain in SW Saudi Arabia. Dike swarms, layered gabbros, granophyres and basalts of the 22 Ma Tihama Asir (TA) continental margin ophiolite represent products of magmatic differentiation formed during the initial stages of rifting between the African and Arabian plates. Nearly 4-km-wide zone of NW-trending sheeted dikes are the first products of mafic magmatism associated with incipient oceanic crust formation following the initial continental breakup. Gabbro intrusions are composed of cpx-ol-gabbro, cpx-gabbro, and norite/troctolite, and are crosscut by fine-grained basaltic dikes. Granophyre bodies intrude the sheeted dike swarms and are locally intrusive into the gabbros. Regional Bouger gravity anomalies suggest that the Miocene mafic crust represented by the TA complex extends westward beneath the coastal plain sedimentary rocks and the main trough of the Red Sea. The TA complex marks an incipient Red Sea oceanic crust that was accreted to the NE side of the newly formed continental rift in the earliest stages of seafloor spreading. Its basaltic to trachyandesitic lavas and dikes straddle the subalkaline-mildly alkaline boundary. Incompatible trace element relationships (e.g. Zr-Ti, Zr-P) indicate two distinct populations. The REE concentrations show an overall enrichment compared to N-MORB; light REEs are enriched over the heavy ones ((La/Yb)n > 1), pointing to an E-MORB influence. Nd-isotope data show ɛNd values ranging from +4 to +8, supporting an E-MORB melt source. The relatively large variations in ɛNd values also suggest various degrees of involvement of continental crust during ascent and emplacement, or by mixing of another mantle source.

  18. Mantle xenoliths hosted in alkali basalts in subduction environment: the example of the SE Alps (Italy)

    NASA Astrophysics Data System (ADS)

    Gasperini, D.; Maffei, K.; Bosch, D.; Braga, R.; Macera, P.; Morten, L.

    2003-04-01

    We present petrographic, geochemical, and isotopic (Sr, Nd, and Pb) data of a representative suite of spl-peridotite xenoliths (mg# >88) hosted in alkali basalts from numerous outcrops in the Tertiary Veneto Volcanic Province (VVP; SE Alps, Italy), compared to various world-wide mafic inclusions (French Massif, Australia, China, Philippines, Russia, Kerguelen). The VVP spl-harzburgites and -lherzolites carry textures ranging from protogranular, porphyroclastic, granuloblastic to pyrometamorfic. These samples are characterized by a continuous depletion trend from the cpx-rich lherzolites to harzburgites, with CaO, Al_2O_3, TiO_2, and Na_2O contents decreasing with mg# increasing (Morten, 1987; Beccaluva et al., 2001). Then, the VVP xenoliths spinels show a strong Cr/(Cr+Al) ratio increase at a slight Mg/(Mg+Fe2+) ratio decrease, thus reflecting a variably depleted mantle source. The VVP xenoliths display a large range of enrichment in LREE, K, Rb, Sr and P, suggesting post depletion metasomatic episodes (Morten et al., 2002). Whereas most of the VVP xenoliths' multi-element spectra, incompatible element and isotope ratios are similar to the VVP host basalts, thus with a strong HIMU signature (Macera et al. submitted), some depleted samples show geochemical features typical of crust derived material. These characteristics cannot be related to significant interaction with the local lower continental crust, as represented by several analyzed gabbroic xenoliths. Nevertheless negative Nb and Ta anomalies in analogous peridotitic samples have been previously ascribed to metasomatism inferred by plume rising material in the upper mantle (Bedini et al., 1997). Comparing the VVP peridotites with several mafic xenoliths from various geodynamical environments, we suggest that this crust affinity could be alternatively explained by the presence of a not perfectly homogenized upper crustal component in the source region, probably induced by subduction related episode(s). In this contest, the isotopic composition of the VVP mafic xenoliths is a crucial tool to understand the geochemical history of the Alpine subcontinental mantle.

  19. Volcanism Studies: Final Report for the Yucca Mountain Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine

    1998-12-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period ofmore » a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain sit« less

  20. Deep-sea fan deposition of the lower Tertiary Orca Group, eastern Prince William Sound, Alaska

    USGS Publications Warehouse

    Winkler, Gary R.

    1976-01-01

    The Orca Group is a thick, complexly deformed, sparsely fossiliferous sequence of flysch-like sedimentary and tholeiitic volcanic rocks of middle or late Paleocene age that crops out over an area of. roughly 21,000 km2 in the Prince William Sound region and the adjacent Chugach Mountains. The Orca Group also probably underlies a large part of the Gulf of Alaska Tertiary province and the continental shelf south of the outcrop belt; coextensive rocks to the southwest on Kodiak Island are called the Ghost Rocks and Sitkalidak Formations. The Orca Group was pervasively faulted, tightly folded, and metamorphosed regionally to laumontite and prehnite-pumpellyite facies prior to, and perhaps concurrently with, intrusion of early Eocene granodiorite and quartz monzonite plutons. In eastern Prince William Sound, 95% of the Orca sedimentary rocks are interbedded feldspathic and lithofeldspathic sandstone, siltstone, and mudstone turbidites. Lithic components vary widely in abundance and composition, but labile sedimentary and volcanic grains dominate. A widespread yet minor amount of the mudstone is hemipelagic or pelagic, with scattered foraminifers. Pebbly mudstone with rounded clasts of exotic lithologies and locally conglomerate with angular blocks of deformed sandstone identical to the enclosing matrix are interbedded with the turbidites. Thick and thin tabular bodies of altered tholeiitic basalt are locally and regionally conformable with the sedimentary rocks, and constitute 15-20% of Orca outcrops in eastern Prince William Sound. The basalt consists chiefly of pillowed and nonpillowed flows, but also includes minor pillow breccia, tuff, and intrusive rocks. Nonvolcanic turbidites are interbedded with the basalt; lenticular bioclastic limestone, red and green mudstone, chert, and conglomerate locally overlie the basalt, but are supplanted upward by turbidites. From west to east, basalts within the Orca Group become increasingly fragmental and amygdaloidal. Such textural changes probably indicate shallower water to the east. A radial distribution of paleocurrents and distinctive associations of turbidite facies within the sedimentary rocks suggest that the Orca Group in eastern Prince William Sound was deposited on a westward-sloping, complex deep-sea fan. Detritus was derived primarily from 'tectonized' sedimentary, volcanic, and plutonic rocks. Coeval submarine volcanism resulted in intercalation of basalt within prisms of terrigenous sediment.

  1. Evidence of mantle metasomatism in garnet peridotites from V. Grib kimberlite pipe (Arkhangelsk region, Russia)

    NASA Astrophysics Data System (ADS)

    Shchukina, Elena; Agashev, Alexey; Golovin, Nikolai; Pokhilenko, Nikolai

    2013-04-01

    We have studied 26 samples of garnet peridotite xenoliths from V.Grib pipe and 17 of them are phlogopite bearing. Studied peridotites have features of two types of modal metasomatism: low-temperature (˜ 1100 C°) and high-temperature (˜ 1100 C°). Low-temperature modal metasomatism: 17 samples contain modal phlogopite, which is present in the form of tabular grains (to 3 mm in size) and rims around pyrope grains. Chemical composition of minerals from phlogopite-garnet peridotites and phlogopite free peridotites is distinctly different. Olivine, garnet, orthopyroxene and clinopyroxene have higher concentration of FeO relative to these minerals in phlogopite free peridotites. Occurrence of phlogopite in peridotites indicates the influence of melt enriched in K2O, H2O, FeO and other incompatible elements. Two types of phlogopite have difference in chemical composition that indicates two different sources. High-temperature modal metasomatism: Reconstructed V.Grib pipe peridotite whole-rocks composition and high Mg# of peridotite olivines indicates that these samples are residues after 30-40 % partial melting of primitive mantle. At those high degree of partial melting all clinopyroxene and probably all garnet should be exhausted from residue. Character of REE patterns in garnets and clinopyroxenes indicates that the most garnets and all clinopyroxene in studied peridotites are of metasomatic origin. We used the method of geochemical modeling of fractional crystallization to establish the source's composition for garnets and clinopyroxenes. For geochemical modeling we used the composition of tholeitic basalts, picrites and carbonatites which occurred in Arkhangelsk diamondiferous province (ADP) and have emplacement ages similar to that of kimberlites. Modeling result indicates that garnets could be crystallized from alkali picrite and tholeite basalts compositions. Peridotites containing garnets equilibrated with picritic melt have a different position in lithospheric mantle section from that of peridotites with tholeitic originated garnets. Two geochemically distinct types of clinopyroxenes could be the products of crystallization of tholeite basalts (type 1) and carbonatites (type 2). Overall, the lithospheric mantle beneath V. Grib kimberlite pipe experienced a complex history including multiply metasomatic events. Metasomatic agents parental to peridotitic garnets and clinopyroxenes are similar in composition to basalts and carbonatites located within the ADP indicating that magmatic events within the province are interconnected.

  2. Grain size distribution and characteristics of the tephra from the Vatnaöldur AD 871±2 eruption, Iceland.

    NASA Astrophysics Data System (ADS)

    Jónsdóttir, Tinna; Larsen, Guðrún; Guðmundsson, Magnús

    2014-05-01

    Basaltic explosive eruptions in Iceland are frequent and often occur from vents in regions of surface lakes, large groundwater reservoirs or within glaciers. The recent Eyjafjallajökull eruption in 2010 and Grímsvötn eruption 2011 highlighted the vulnerability of passenger jet aircraft to ash in the atmosphere. Iceland's volcanoes are the most potent producers of tephra in Europe, and the frequent occurrence of basaltic explosive eruptions is a major factor in causing this. As a step in increasing the knowledge on the tephra erupted in basaltic explosive eruptions, we study the grain size distribution of a large (~5 km3) explosive basaltic eruption that occurred in AD 871±2. The source is the 25 km long Vatnaöldur crater row in south-central Iceland. The crater row lies within the Bárðarbunga-Veiðivötn volcanic system, one of the most productive volcanic systems in Iceland in recent times. Samples for grain size analysis were collected at six different locations along the broad northwest-trending dispersal axis. Sampling sites ranged in 1.5 km to 120 km distance from the largest vent Skyggnir, near the southern end of the crater row. The Vatnaöldur eruption has been classified as phreatomagmatic, erupting through fractured bedrock composed of recent lavas, hyaloclastites and pillow lava in an area characterized by a high groundwater level and surface lakes. Explosive activity dominanted the ~ 25 km long discontinuous fissure, as tuff cones were formed and conduits reached under groundwater table. During the eruption the tephra layer was dispersed in all directions. The area within the 0.5 cm isopach is 50,000 km2 and this tephra has also been identified in Greenland ice cores. The grain size analysis indicates that one dominant characteristic of the tephra is the scarcity of pyroclasts over 1 mm in diameter. In the ash sampled more than 4 km from source larger grain sizes are absent. The dispersion in the more distal parts, at distances of 60 - 120 km is dominated by peaks between 0.250 and 0.063 mm, with the deposit showing slight tendency for progressively higher proportion of fines with distance.In the more proximal sections different phases in the eruption have been identified.

  3. Petrological and Geochemical characterization of central Chihuahua basalts: a possible local sign of rifting activity

    NASA Astrophysics Data System (ADS)

    Espejel-Garcia, V. V.; Garcia-Rascon, M.; Villalobos-Aragon, A.; Morton-Bermea, O.

    2012-12-01

    The central part of the mexican state, Chihuahua, is the oriental border of the Sierra Madre Occidental (silicic large igneous province), which consist of series of ignimbrites divided into two volcanic groups of andesites and rhyolites. In the central region of Chihuahua, the volcanic rocks are now part of the Basin and Range, allowing the presence of mafic rocks in the lower areas. The study area is located approximately 200 km to the NW of Chihuahua city near to La Guajolota town, in the Namiquipa County. There are at least 5 outcrops of basalts to the west of the road, named Puerto de Lopez, Malpaises, El Tascate, Quebrada Honda, and Carrizalio, respectively. These outcrops have only been previously described by the Mexican Geologic Survey (SGM) as thin basaltic flows, with vesicles filled with quartz, and phenocrystals of labradorite, andesine, oligoclase and olivine. Petrologically, the basalts present different textures, from small phenocrysts of plagioclase in a very fine matrix to large, zoned and sometimes broken phenocrysts of plagioclase in a coarser matrix. All samples have olivine in an advanced state of alteration, iddingsite. The geochemical analyses report that these basaltic flows contain characteristics of rift basalts. The rocks have a normative olivine values from 5.78 to 27.26 and nepheline values from 0 to 2.34. In the TAS diagram the samples straddle the join between basalt and trachy-basalt, reflecting a high K2O content. The Mg# average is 0.297, a value that suggests that the basalts do not come from a primitive magma. The basalts have high values of Ba (945-1334 ppm), Cu (54-147 ppm), and Zn (123-615 ppm). The contents of Rb (23-57 ppm), Sr (659-810 ppm), Y (26-33 ppm), Zr (148-217 ppm) and Cr (79-98 ppm) are characteristics of rift basalts. Using discrimination diagrams, the basalts plot in the field of within plate, supporting the rifting origin. Outcrops of other basalts, at about 80 to 100 km to the east of the study area, Lomas El Gusano and Rancho El Milagro, report an age of 28.7 ± 0.6 and 28.4 Ma respectively, but it is possible that the basalts of La Guajolota are younger, for being considered as small local eruptions.

  4. A strontium and neodymium isotopic study of Apollo 17 high-Ti mare basalts: Resolution of ages, evolution of magmas, and origins of source heterogeneities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paces, J.B.; Neal, C.R.; Taylor, L.A.

    1991-07-01

    A combined Sr and Nd isotopic study of 15 Apollo 17 high-Ti mare basalts was undertaken to investigate geochronological and compositional differences between previously identified magma types (A, B1, B2, and C). Whole-rock and mineral separates for one of the least-evolved Type B1 basalts, 70139, yield Sm-Nd and Rb-Sr isochron ages of 3.71 {plus minus} 0.12 Ga and 3.65 {plus minus} 0.07 Ga and a Rb-Sr isochron age of 3.67 {plus minus} 0.10 Ga. Although these two ages are non-resolvable by themselves, compilation of all available geochronological data allows resolution of Type A and B1/B2 ages at high levels ofmore » confidence (> 99%). The most reliably dated samples, classified according to their geochemical type, yield weighted average ages of 3.75 {plus minus} 0.02 Ga for Type A (N = 4) and 3.69 {plus minus} 0.02 Ga for Type B1/B2 (N = 3) basalts. Insufficient geochronological data are available to place the rare, Type C basalts within this stratigraphy. The authors propose that age differences correlate with geochemical magma type, and that early magmatism was dominated by eruption of Type A basalts while later activity was dominated by effusion of Type B1 and B2 basalts.« less

  5. What is the iron isotope composition of the Moon?

    NASA Astrophysics Data System (ADS)

    Poitrasson, F.; Zambardi, T.; Magna, T.; Neal, C. R.

    2016-12-01

    It is difficult to estimate the bulk chemical and isotopic composition of the Moon because of severe limitations in our sampling. As a result, there is currently a debate on the bulk Fe isotope composition of the Moon despite the constraints on the lunar accretion modes or differentiation processes it may provide. For this, a proper mass balance estimation of essential planetary reservoirs is required. For instance, the dichotomy in δ57Fe between low- and high-Ti mare basalt varieties as a consequence of differences in degree of fractional crystallization of their respective lunar mantle sources should be rigorously tested. To investigate this, we performed new iron isotope measurements of 33 bulk lunar mare basalts and highland rocks, including KREEP-related materials. The new data show significant Fe isotope differences between high-Ti and low-Ti mare basalts, yielding mean δ57FeIRMM-014=0.277±0.020‰ and δ57FeIRMM-014=0.127±0.020‰, respectively. Assuming that lunar basalts mirror the iron isotope composition of their respective mantle protoliths, the estimated relative proportion of the low-Ti and high-Ti mantle source suggests that the lunar upper mantle should be close to δ57Fe=0.14±0.03‰. At present, it is unclear whether the bulk lunar Fe isotope composition is indistinguishable from that of the Earth (δ57FeIRMM-014=0.10±0.03‰), when estimated solely from mare basalts data, or if it is twice as heavy relative to chondrites, as initially proposed. A large scatter at δ57Fe=0.08±0.19‰ for ferroan anorthosites, Mg-suite rocks and a KREEP basalt imparts more complexities for global isotopic view of the Moon. A better understanding of the cause of Fe isotope heterogeneity among the lunar highland rocks will likely allow to better estimate the bulk Moon composition, and possibly to improve our knowledge about the genesis of the lunar crust itself.

  6. On the History and Origin of LKFM

    NASA Astrophysics Data System (ADS)

    Korotev, Randy L.

    1998-01-01

    Fra Mauro is the name of a geologic formation surrounding the Imbrium Basin of the Moon as well as the name of the region of the Apollo 14 lunar landing site. The formation was named for a 16th century Italian geographer and cartographer. In its original invocation in 1971 by the Apollo Soil Survey (ASS), Fra Mauro basalt was not a crystalline basalt, but the designation of a "compositional group" of impact glasses found in the Apollo 14 soil that were basaltic in composition. The ASS noted the similarity between the Fra Mauro basalt glass composition and sample 14310, an unbrecciated, crystalline Apollo 14 rock that would now be designated an impact melt rock. In 1972 the term Fra Mauro basalt was first applied to a rock, sample 14310, although in related papers, Fra Mauro basaltic glass was equated with KREEP. In 1973 the ASS noted that a wide range of K concentrations occurred among glasses of Fra Mauro basaltic composition in the Apollo 15 regolith. The terms high-K, moderate-K and low-K Fra Mauro first occurred in that context, but always as an adjective. Lock Fra Mauro glasses were those with 0.12 +/- 0.07% K2O, compared with 0.47 +/- 0.17% and 1.1 +/- 0.4% for moderate and high-K Fra Mauro glasses and 0.6% for Apollo 15 KREEP basalt. An important evolutionary step in the concept of low Fra Mauro basalt occurred in 1973 when the composition was first used as a component in a mass-balance (mixing) model for Apollo 16 soils [8,9] and later average highlands crust, despite that the term had not yet been applied to an actual rock sample. The first use of the acronym LKFM occurred in a 1973 paper describing glass compositions in Apollo 16 soil.

  7. Thorium Enrichment within the Procellarum KREEP Terrane: The Record in Surface Deposits and Significance for Thermal Evolution

    NASA Technical Reports Server (NTRS)

    Jolliff, B. L.; Gillis, J. J.; Haskin, L. A.

    1999-01-01

    The nearside-farside structural and compositional asymmetry of the Moon was recognized during the early days of Apollo and the suggestion was made that the migration of mantle melts to the nearside would have been favored by early Earth-Moon orbital dynamics and nonuniform planetesimal bombardment. Recent global geochemical mapping by Lunar Prospector has provided additional data, particularly in the Th distribution, that strongly supports the notion of global, preferential melt migration, which led in part to the development of the Procellarum KREEP Terrane (PKT) [2-5]. The surface distribution of Th was then reshaped by basin-forming impacts into the PKT, especially the Imbrium impact, which was the last and largest to strike in that region. The Imbrium event probably excavated material from a partially molten zone deep in the crust and delivered Th-rich ejecta Moon-wide. A fundamentally important but poorly understood aspect of the global Th distribution is the concentration of Th in the subsurface rocks of the PKT crustal section. For example, depending on what assumptions are made, the PKT crustal section, which is about 12% of the crust and only about 1.2% of the whole Moon, may contain as much as 40% of the Moon's entire Th budget. Such a distribution of Th and related heat-producing elements would have had a profound effect on melting, mixing, and the thermal evolution of the PKT and the underlying mantle. In this abstract, we examine the compositions of terra formations within the PKT and relate them to some of the Th-bearing rock types known from the Apollo samples. It appears that the existence of the PKT may be a unifying concept for a number of petrologic and geochemical observations. From the initial Lunar Prospector gamma-ray spectrometer data(-about 5 deg. resolution) and from the preliminary low-orbit data, there appears to be a number of relatively hotter "spots" within the PKT in terms of Th concentration. Some of the hotter spots correspond to intermediate-sized craters that penetrated volcanic flows and excavated Th-rich, submare material, such as Aristarchus, Aristillus, and Kepler. Other spots, however, correspond to surficial formations that constitute mainly rough topography associated with Imbrium ejecta or circum-Imbrium ring mountains and do not necessarily imply the presence of exposed KREEP basalts. The Fra Mauro Formation south of Copernicus toward the Apollo 14 site and regions of the Alpes Formation southwest of Copernicus in the vicinity of Reinhold lie within the most prominent hotspot; here them concentration is consistent with that found in the Apollo 14 soils (about 12-13 ppm) when the proportions of Fra Mauro Formation and mare basalt are considered. The area between Copernicus and Kepler and northwest of Copernicus in terra extending to the Carpathians is similarly enriched in Th. The Apennines from Eratosthenes toward the Apollo 15 site contain elevated Th concentrations, as does the northwestern quadrant of circum-Imbrium terra, especially between (but not including) La Condamine and Plato, and in the region northwest of the Jura mountains extending southward past Mairan to the Gruithuisen-Domes region. Within the main topographic rim of Imbrium, the Apennine Bench formation south of Archimedes appears to have relatively elevated Th concentration. Comparing the map of Th distribution to a digital-elevation map derived from Clementine altimetry, it appears that most of the areas richest in Th occur where the surface is elevated relative to the majority of PKT volcanic plains. Not all rough topography within the PKT has such elevated Th, however. Based on an analysis of the 5 deg. data, and using the calibration of, the mean Th concentrations for mainly volcanic-resurfaced terrain and rugged terrain are similar (about 5.5 ppm). This occurs in part because craters that penetrated mare basalt excavated Th-rich material. Even so, there appear to be extensive areas of volcanic resurfacing that have no obvious extrinsic source of Th-rich material, suggesting that the basalts, themselves, may contain as much as 5-6 ppm Th. High-FeO concentrations (18 to >20 wt%) indicate that these are not KREEP basalts but mare basalts. If so, this is surprising because most of the Apollo-sampled mare basalts have very low-Th (typically <2 ppm). A variety of Th-rich materials occur in the sample collection, particularly in the samples from the Apollo 12,14, and 15 sites. The most abundant Th-rich rock types are the mafic impact-melt breccias, which although found at all sites, are most abundant at Apollo 14, where they dominate the rock samples and make up some 40% of the rock particles in the soil. These have Th concentrations ranging up to about 30 ppm and averaging about 18 ppm. The Apollo 14 soils contain about 13 ppm Th, reflecting the high abundance of this melt-breccia component. At the nearby Apollo 12 site, the rocks consist mainly of mare basalts, and these have low-Th concentrations, mostly <1 ppm. Among the nonmare rocks, however, a few such as complex breccia 12013 contain a variety of evolved lithologies and represent potential sources of Th-rich components ranging from 17 to 50 ppm. A single fragment of KREEP basalt from the Apollo 12 soil contains about 50 ppm Th. Despite the identification of highly Th-enriched lithologic components at the Apollo 12 site, the soils there vary linearly in composition so as to extrapolate to a moderate Th KREEP-basalt component or a composition like that of the Fra Mauro formation as reflected by Apollo 14 soil (14 ppm Th at 10 wt% FeO). The nearby Lansberg Crater (39-km diameter) is a likely candidate to have delivered submare material such as buried Fra Mauro or Alpes material to the Apollo 12 site. Additional information contained in the original.

  8. Episodic soil succession on basaltic lava fields in a cool, dry environment

    USGS Publications Warehouse

    Vaughan, K.L.; McDaniel, P.A.; Phillips, W.M.

    2011-01-01

    Holocene- to late Pleistocene-aged lava flows at Craters of the Moon National Monument and Preserve provide an ideal setting to examine the early stages of soil formation under cool, dry conditions. Transects were used to characterize the amount and nature of soil cover on across basaltic lava flows ranging in age from 2.1 to 18.4 ka. Results indicate that on flows <13 ka, very shallow organic soils (Folists in Soil Taxonomy) are the dominant soil type, providing an areal coverage of up to ∼25%. On flows ≥13.9 ka, deeper mineral soils including Entisols, Aridisols, and Mollisols become dominant and the areal extent increases to ≥95% on flows older than 18.4 ka. These data suggest there are two distinct pedogenic pathways associated with lava flows of the region. The first pathway is illustrated by the younger flows, where Folists dominate. In the absence of a major source of loess, relatively little mineral material accumulates and soils provide only minor coverage of the lava flows. Our results indicate that this pathway of soil development has not changed appreciably over the past ∼10 ka. The second pedogenic pathway is illustrated by the flows older than 13.9 ka. These flows have been subject to deposition of large quantities of loess during and after the last regional glaciation, resulting in almost complete coverage. Subsequent pedogenesis has given rise to Aridisols and Mollisols with calcic and cambic horizons and mollic epipedons. This research highlights the importance of regional climate change on the evolution of Craters of the Moon soilscapes.

  9. Helium and Carbon Isotope and Relative Abundance Relationships in Lau Basin Basalts: Resolving Mantle Source Composition from Degassing and Contamination Effects

    NASA Astrophysics Data System (ADS)

    Vukajlovich, D. J.; Hilton, D. R.; Castillo, P. R.; Hawkins, J. W.

    2005-12-01

    The Lau Basin has multiple mantle source components including contributions from the Indian and Pacific MORB sources, Tonga-Kermadec Arc and Samoan plume. In order to characterize the volatile systematics of these various sources and to map their spatial distribution, we have sampled basaltic glasses from over 50 dredge sites covering all known spreading centers in the basin as well as many off-axis seamounts. Here, we report He abundance and isotope results obtained by crushing, in addition to CO2 released through stepped heating, from sites at the Mangatolu Triple Junction (MTJ), Rochambeau Bank (RB), Peggy Ridge, and the Northern, Eastern and Central Lau Spreading Centers. High 3He/4He ratios from RB (up to 23 RA, where RA = air 3He/4He) confirm the presence of a plume component in the northwestern Lau Basin (Poreda, EPSL, 1985). Central and Eastern Lau Spreading Center basalts have 3He/4He ratios between 8.3 and 9.4 RA, consistent with a depleted, MORB-like mantle source with little influence from slab or crustal helium. In contrast, the large range in helium isotope ratios of MTJ samples (0.85 to 7.9 RA) and the correlation between low He abundances (~2 - 3 × 10-9 cm3/g) and low helium isotope ratios suggests the volatiles in this region have been severely affected by degassing and additions of radiogenic (crustal) He. CO2 abundances and carbon isotopes for samples from RB vary from 70 to 119 ppm ([CO2]total) with δ13Cvesicle falling between -12.3 to -14.8 ‰ and δ13Cdissolved lying between -9.3 to -10.7 ‰. In the MTJ, low helium concentration samples have δ13C as low as -27.4 ‰ and [CO2]total as low as 7.6ppm; interestingly, this region also has samples with the highest measured values (up to -6.3 ‰ and 132ppm total C). Combining the carbon and helium data, CO2/3He ratios in the MTJ range from arc-like values (~1010) to sediment or crustal values (~1013) showing the superimposition of degassing and/or contamination effects on a predominant slab-like signature. High 3He/4He samples from RB have CO2 /3He ratios similar to the upper mantle value (2 × 109), as at other back-arc localities exhibiting a high 3He/4He (plume) component (e.g. the Manus Basin; Shaw et al., GCA, 2004). Continuing analytical work will complete our He-C survey of the Lau Basin, identifying samples suitable for further effort involving Ne, Ar, H2O plus other tracers of interest. Presently, we are modeling degassing/contamination effects to identify the nature and distribution of mantle source components throughout the Lau Basin. The volatile characteristics of the high 3He/4He samples are of particular interest as they provide insight into the different recycling and storage histories of volatiles between distinct mantle reservoirs.

  10. Hydrogeologic framework and selected components of the groundwater budget for the upper Umatilla River Basin, Oregon

    USGS Publications Warehouse

    Herrera, Nora B.; Ely, Kate; Mehta, Smita; Stonewall, Adam J.; Risley, John C.; Hinkle, Stephen R.; Conlon, Terrence D.

    2017-05-31

    Executive SummaryThis report presents a summary of the hydrogeology of the upper Umatilla River Basin, Oregon, based on characterization of the hydrogeologic framework, horizontal and vertical directions of groundwater flow, trends in groundwater levels, and components of the groundwater budget. The conceptual model of the groundwater flow system integrates available data and information on the groundwater resources of the upper Umatilla River Basin and provides insights regarding key hydrologic processes, such as the interaction between the groundwater and surface water systems and the hydrologic budget.The conceptual groundwater model developed for the study area divides the groundwater flow system into five hydrogeologic units: a sedimentary unit, three Columbia River basalt units, and a basement rock unit. The sedimentary unit, which is not widely used as a source of groundwater in the upper basin, is present primarily in the lowlands and consists of conglomerate, loess, silt and sand deposits, and recent alluvium. The Columbia River Basalt Group is a series of Miocene flood basalts that are present throughout the study area. The basalt is uplifted in the southeastern half of the study area, and either underlies the sedimentary unit, or is exposed at the surface. The interflow zones of the flood basalts are the primary aquifers in the study area. Beneath the flood basalts are basement rocks composed of Paleogene to Pre-Tertiary sedimentary, volcanic, igneous, and metamorphic rocks that are not used as a source of groundwater in the upper Umatilla River Basin.The major components of the groundwater budget in the upper Umatilla River Basin are (1) groundwater recharge, (2) groundwater discharge to surface water and wells, (3) subsurface flow into and out of the basin, and (4) changes in groundwater storage.Recharge from precipitation occurs primarily in the upland areas of the Blue Mountains. Mean annual recharge from infiltration of precipitation for the upper Umatilla River Basin during 1951–2010 is about 9.6 inches per year (in/yr). Annual recharge from precipitation for water year 2010 ranged from 3 in. in the lowland area to about 30 in. in the Blue Mountains. Using Kahle and others (2011) data and methods from the Columbia Plateau regional model, average annual recharge from irrigation is estimated to be about 2.2 in/yr for the 13 square miles of irrigated land in the upper Umatilla River Basin.Groundwater discharges to streams throughout the year and is a large component of annual streamflow in the upper Umatilla River Basin. Upward vertical hydraulic gradients near the Umatilla River indicate the potential for groundwater discharge. Groundwater discharge to the Umatilla River generally occurs in the upper part of the basin, upstream from the main stem.Groundwater development in the upper Umatilla River Basin began sometime after 1950 (Davies-Smith and others, 1988; Gonthier and Bolke, 1991). By water year 2010, groundwater use in the upper Umatilla River Basin was approximately 11,214 acre-feet (acre-ft). Total groundwater withdrawals for the study area were estimated at 7,575 acre-ft for irrigation, 3,173 acre-ft for municipal use, and 466 acre-ft for domestic use.Total groundwater flow into or from the study area depends locally on geology and hydraulic head distribution. Estimates of subsurface flow were calculated using the U.S. Geological Survey Columbia Plateau regional groundwater flow model. Net flux values range from 25,000 to 27,700 acre-ft per year and indicate that groundwater is moving out of the upper Umatilla River Basin into the lower Umatilla River Basin.Water level changes depend on storage changes within an aquifer, and storage changes depend on the storage properties of the aquifer, as well as recharge to or discharge from the aquifer. Groundwater level data in the upper Umatilla River Basin are mostly available from wells in Columbia River basalt units, which indicate areas of long-term water level declines in the Grande Ronde basalt unit near Pendleton and Athena, Oregon. Groundwater levels in the Wanapum basalt unit do not show long-term declines in the upper Umatilla River Basin. Because of pumping, some areas in the upper Umatilla River Basin have shown a decrease, or reversal, in the upward vertical head gradient.Key data needs are improvement of the spatial and temporal distribution of water-level data collection and continued monitoring of streamflow gaging sites. Additionally, refinement of recharge estimates would enhance understanding of the processes that provide the groundwater resources in the upper Umatilla River Basin.

  11. Platinum-Group Elements in Basalts Derived From the Icelandic Mantle Plume -Past and Present.

    NASA Astrophysics Data System (ADS)

    Momme, P.; Oskarsson, N.; Gronvold, K.; Tegner, C.; Brooks, K.; Keays, R.

    2001-12-01

    Paleogene basalts ( ~55Ma) derived from the ancestral Iceland mantle plume and extruded during continental rifting are exposed along the Blosseville Kyst in central East Greenland. These basalts comprise three intercalated series, viz: a low-Ti, high-Ti and a very high-Ti series. The two Ti-rich series are interpreted to represent continental flood basalts formed by low degrees of partial melting (degree of melting F=3-9%) while the low-Ti series are believed to have formed by higher degrees of partial melting (F:15-25%). All three of the East Greenland basalt series are enriched in the PGE, relative to normal MORB. During differentiation of the low-Ti series, Pd increase from 11 to 24 ppb whereas Pt and Ir decrease from 12 and 0.6 ppb to 3 and <0.05 ppb respectively. The primitive basalts (molar Mg#60) of the dominant high-Ti series contain ~6-10 ppb Pd, ~7-10 ppb Pt and ~0.2 ppb Ir whereas the most evolved basalts (Mg#43) contain 25 ppb Pd, 5 ppb Pt and <0.05 ppb Ir. The PGE-rich nature of these basalts is surprising because low degree partial melts are generally S-saturated and hence strongly depleted in the PGE (cf, Keays, 1995). However, our data indicates that all of the East Greenland magmas were S-undersaturated and as they underwent differentiation, Pd behaved incompatibly while Ir and Pt behaved compatibly. Primitive Holocene Icelandic olivine tholeiites contain 120 ppm Cu, 6 ppb Pd, 4 ppb Pt and 0.2 ppb Ir while their picritic counterparts contain 74 ppm Cu, 17 ppb Pd, 7 ppb Pt and 0.3 ppb Ir. Both the olivine tholeiites and the picrites are believed to have formed by high degrees of partial melting (15-25%) which would have exhausted all of the sulphides in the mantle source region and produced S-undersaturated magmas. In Icelandic samples with 10-14wt% MgO, Cu and the PGEs vary systematically between the primitive picrite and olivine tholeiite compositions given above i.e there is an inverse correlation between Cu and the PGEs. This is best explained by mixing between parental olivine tholeiite and picrite magmas. The low Cu/Pd ratio in the most primitive picrite probably reflect derivation from a depleted mantle where Cu was less efficiently retained in sulphides compared to Pd during previous melt extraction episodes. Whithin the analysed suite of olivine tholeiites, Ir decreases from 0.15 to 0.06 ppb, Pd increases from ~6 to ~15 ppb and Pt/Pd ratio decreases from 0.8-0.2 during differentiation (7-4wt% MgO); these variations provide further evidence that the olivine tholeiite magmas remained S-undersaturated throughout their differentiation. To summarize, (1) Continental flood basalts and low-Ti tholeiites in the Paleogene East Greenland flood basalt sequence, as well as Holocene Icelandic olivine tholeiites are PGE-rich relative to normal MORB. (2) Their PGE-contents vary as a function of S-undersaturated differentiation. (3) Cu-PGE variations in Icelandic samples with 10-14 wt% MgO suggest that they represent mixtures between distinct tholeiitic (Cu/Pd: 20000) and depleted picritic (Cu/Pd: 4400) parental liquids. Reference: Keays RR (1995) The role of komatiitic magmatism and S-saturation in the formation of ore deposits. Lithos 34:1-18.

  12. A preliminary evaluation of regional ground-water flow in south-central Washington

    USGS Publications Warehouse

    La Sala, A. M.; Doty, G.C.; Pearson, F.J.

    1973-01-01

    The characteristics of regional ground-water flow were investigated in a 4,500-square-mile region of south-central Washington, centered on the U.S. Atomic Energy Commission Hanford Reservation. The investigation is part of the Commission's feasibility study on storing high-level radioactive waste in chambers mined in basaltic rocks at a. depth of about 3,000 feet or more below the surface. Ground-water flow., on a regional scale, occurs principally in the basalt and-in interbedded sediments of the Columbia River Group, and is controlled by topography, the structure of the basalt, and the large streams--the Columbia, Snake, and Yakima Rivers. The ground water beneath the main part of the Hanford Reservation, south and west of the Columbia River, inures southeastward from recharge areas in the uplands, including Cold Creek and Dry Creek valleys, and ultimately discharges to the Columbia River south of the reservation: East and southeast of the Columbia River, ground water flows generally southwestward and discharges to the River. The Yakima River valley contains a distinct flow system in which movement is toward the Yakima River from the topographic divides. A large southward-flowing ground-water system beneath the southern flank of the Horse Heaven Hills discharges to the Columbia River in the westward-trending reach downstream from Wallula Gap.

  13. Volcanostratigraphy, petrography and petrochemistry of Late Cretaceous volcanic rocks from the Görele area (Giresun, NE Turkey)

    NASA Astrophysics Data System (ADS)

    Oguz, Simge; Aydin, Faruk; Baser, Rasim

    2015-04-01

    In this study, we have reported for lithological, petrographical and geochemical features of late Cretaceous volcanic rocks from the Çanakçı and the Karabörk areas in the south-eastern part of Görele (Giresun, NE Turkey) in order to investigate their origin and magmatic evolution. Based on the previous ages and recent volcano-stratigraphic studies, the late Cretaceous time in the study area is characterized by an intensive volcanic activity that occurred in two different periods. The first period of the late Cretaceous volcanism (Cenomanian-Santonian; 100-85 My), conformably overlain by Upper Jurassic-Lower Cretaceous massive carbonates (Berdiga Formation), is represented by bimodal units consisting of mainly mafic rock series (basaltic-andesitic lavas and hyaloclastites, dikes and sills) in the lower part (Çatak Formation), and felsic rock series (dacitic lavas and hyaloclastites, crystal- and pyrite-bearing tuffs) in the upper part (Kızılkaya Formation). The second period of the late Cretaceous volcanism (Santonian-Late Campanian; 85-75 Ma) is also represented by bimodal character and again begins with mafic rock suites (basaltic-basaltic andesitic lavas and hyaloclastites) in the lower part (Çağlayan Formation), and grades upward into felsic rock suites (biotite-bearing rhyolitic lavas, ignimbrites and hyaloclastites) through the upper part (Tirebolu Formation). These bimodal units are intercalated with volcanic conglomerates-sandstones, claystones, marl and red pelagic limestones throughout the volcanic sequence, and the felsic rock series have a special important due to hosting of volcanogenic massive sulfide deposits in the region. All volcano-sedimentary units are covered by Tonya Formation (Late Campanian-Paleocene) containing calciturbidites, biomicrites and clayey limestones. The mafic rocks in the two volcanic periods generally include basalt, basaltic andesite and minor andesite, whereas felsic volcanics of the first period mainly consists of dacite but those of the second period have biotite-bearing rhyolite. The basalts and basaltic andesites exhibit subaphyric to porphyritic texture with phenocrysts of calcic plagioclase and augite in a fine-grained to microcrystalline groundmass, consisting of plag+cpx+mag. Andesite samples display a porphyritic texture with phenocrysts of calcic to sodic plagioclase and augite in a hyalopilitic matrix of plag+cpx±amph+mag. Zircon and magnetite are common accessory minerals, whereas chlorite, epidote and calcite are typical alteration products. On the other hand, the dacitic and rhyolitic rocks commonly show a porphyritic texture with predominant feldspar, quartz and some biotite phenocrysts. The microgranular to felsophyric groundmass is mainly composed of aphanitic plagioclase, K-feldspar and quartz. Accessory minerals include zircon, apatite and magnetite. Typical alteration minerals include late-formed sericite, albite and clay minerals. Late Cretaceous mafic and felsic volcanic rocks have a largely sub-alkaline character with typical arc geochemical signatures. N-MORB-normalised multi-element patterns show that all rock samples are enriched in LILEs (e.g. Rb, Ba, Th) but depleted in Nb and Ti. The chondrite-normalized REE patterns are concave shapes with low to medium enrichment, suggesting a common mantle source for the studied bimodal rock series. All geochemical data reflecting typical characteristics of subduction-related magmas are commonly attributed to a depleted mantle source, which has been previously enriched by fluids or sediments. Acknowledgments This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK, grant 112Y365)

  14. Chemical composition of crystalline rock fragments from Luna 16 and Luna 20 fines

    NASA Technical Reports Server (NTRS)

    Cimbalnikova, A.; Palivcova, M.; Frana, J.; Mastalka, A.

    1977-01-01

    The chemical composition (bulk, rare earth, and trace elements) of the Luna 16 mare regolith and luna 20 highland regolith is discussed. The rock samples considered are 14 basaltic rock fragments (Luna 16) and 13 rock fragments of the ANT suite (Luna 20). On the basis of bulk composition, two types of basaltic rocks have been differentiated and defined in the Luna 16 regolith: mare basalts (fundamental crystalline rocks of Mare Fecunditatis) and high-alumina basalts. The bulk analyses of rock fragments of the ANT suite also enabled distinction of two rock types: anorthositic norites and troctolites and/or spinal-troctolites (the most abundant crystalline rocks of the highland region, the landing site of luna 20), and anorthosites. The chemical compositions of Luna 16 and Luna 20 regolith samples are compared. Differences in the chemistry of the Luna 16 mare regolith and that of mare basalts are discussed. The chemical affinity between the Luna 20 highland regolith and (a) anorthositic norites and (b) troctolites and/or spinel-troctolites has been ascertained.

  15. Origin of temporal compositional trends in monogenetic vent eruptions: Insights from the crystal cargo in the Papoose Canyon sequence, Big Pine Volcanic Field, CA

    NASA Astrophysics Data System (ADS)

    Gao, Ruohan; Lassiter, John C.; Ramirez, Gabrielle

    2017-01-01

    Many monogenetic vents display systematic temporal-compositional variations over the course of eruption. Previous studies have proposed that these trends may reflect variable degrees of crustal assimilation, or melting and mixing of heterogeneous mantle source(s). Discrimination between these two endmember hypotheses is critical for understanding the plumbing systems of monogenetic volcanoes, which pose a significant volcanic hazard in many areas. In this study, we examine the Papoose Canyon (PC) monogenetic vent in the Big Pine Volcanic Field (BPVF), which had been well characterized for temporal-compositional variations in erupted basalts. We present new major and trace element and Sr-Nd-Pb-O isotopic data from the PC "crystal cargo" (phenocrysts and xenoliths). Comparison of "crystal cargo" and host basalt provides new constraints on the history of magma storage, fractionation, and crustal contamination that are obscured in the bulk basalts due to pre- and syn-eruptive magma mixing processes. The abundances of phenocrysts and ultramafic xenoliths in the PC sequence decrease up-section. Olivine and clinopyroxene phenocrysts span a wide range of Mg# (77-89). The majority of phenocrysts are more evolved than olivine or clinopyroxene in equilibrium with their host basalts (Mg# = 68- 71, equilibrium Fo ≈ 85- 89). In addition, the ultramafic xenoliths display cumulate textures. Olivine and clinopyroxene from ultramafic xenoliths have Mg# (73-87) similar to the phenocrysts, and lower than typical mantle peridotites. Sr-Nd-Pb isotope compositions of the xenoliths are similar to early PC basalts. Finally, many clinopyroxene phenocrysts and clinopyroxene in xenoliths have trace element abundances in equilibrium with melts that are more enriched than the erupted basalts. These features suggest that the phenocrysts and xenoliths derive from melt that is more fractionated and enriched than erupted PC basalts. Pressure constraints suggest phenocrysts and ultramafic xenoliths crystallized at ∼5-7 kbar, corresponding to mid-crust depths. Correlations between HFSE depletion and Sr-Nd-Pb isotopic compositions, high δ18 O values in olivines, and radiogenic Os isotopic compositions in whole rocks also suggest incorporation of a crustally contaminated component. We propose that the phenocrysts and ultramafic xenoliths derive from melts that ponded and fractionated and assimilated continental crust, possibly in mid-crustal sills. These melts were drained and mixed with more primitive melts as the eruption began, and the temporal-compositional trends and decreasing crystal phase abundances reflect gradual deflation and exhaustion of these sills as the eruption progressed. The isotopic variations in the PC sequence span much of the compositional range observed in the BPVF. Evidence for variable crustal contamination of PC basalts suggests that much of the isotopic variation observed in the BPVF may also reflect crustal contamination rather than mantle source heterogeneity as previously proposed. In addition, evidence of pre-eruptive magma ponding and fractionation, if applicable to other monogenetic vents, may have significant implications for monitoring and hazard assessment of monogenetic volcano fields.

  16. Systematic variations in the spectral properties of bright regions on Mars

    NASA Technical Reports Server (NTRS)

    Murchie, Scott; Mustard, John; Bishop, Janice; Head, James; Pieters, Carle; Erard, Stephane

    1992-01-01

    The color and albedo of the martian surface define two basic surface units, dark gray material interpreted as relatively unaltered 'rock' and bright reddish material interpreted as weathered 'soil'. Understanding the processes contributing to soil formation first requires assessment of the soil's composition and compositional diversity. We report first results of an investigation of the character and variability of Fe- and water-bearing phases in bright reddish materials using ISM data. We also explore implications of these results for chemical evolution of martian soil. Information on the composition and distribution of bright reddish material comes from three major sources: Viking images, measurements by the XRF and GCMS instruments on the Viking Landers, and spectroscopic data. The XRF experiment found nearly identical, Fe-rich major-element compositions comparable to weathered basalt. Soil water, amounting to approximately 1-3 wt. percent as measured by the GCMS, was liberated mostly by heating to greater than or equal to 350 C, suggesting that it is present in a chemically bound form. Spectroscopic studies have detected ferric oxide, probably hematite, as well as molecular water. However, the identities of major silicate phases have been controversial, with conflicting evidence regarding phyllosilicates. Two main interpretations of this evidence have been proposed: Weathering of basaltic glasses by H2O and CO2 formed a mixture of oxides, salts, and metastable phyllosilicates such as montmorillonite and 'palagonite' formed when basaltic melt contacted ground ice or water. Palagonite is a hydrated basaltic glass containing dispersed ferric oxide, recrystallized in varying degrees to phyllosilicates. Typically it is aphanitic, although some examples contain phenocrysts. In either case, eolian redistribution is thought to have resulted in the material's global homogenization. Imaging spectroscopic data returned by the ISM instrument on Phobos 2 provide a powerful new basis for evaluating the composition and origin of martian soil because they are indicative of the presence and distribution of water- and Fe-bearing phases whose mineralogy is sensitive to the history of chemical weathering.

  17. Geostatistical analysis of regional hydraulic conductivity variations in the Snake River Plain aquifer, eastern Idaho

    USGS Publications Warehouse

    Welhan, J.A.; Reed, M.F.

    1997-01-01

    The regional spatial correlation structure of bulk horizontal hydraulic conductivity (Kb) estimated from published transmissivity data from 79 open boreholes in the fractured basalt aquifer of the eastern Snake River Plain was analyzed with geostatistical methods. The two-dimensional spatial correlation structure of In Kb shows a pronounced 4:1 range anisotropy, with a maximum correlation range in the north-northwest- south-southeast direction of about 6 km. The maximum variogram range of In Kb is similar to the mean length of flow groups exposed at the surface. The In Kb range anisotropy is similar to the mean width/length ratio of late Quaternary and Holocene basalt lava flows and the orientations of the major volcanic structural features on the eastern Snake River Plain. The similarity between In Kb correlation scales and basalt flow dimensions and between basalt flow orientations and correlation range anisotropy suggests that the spatial distribution of zones of high hydraulic conductivity may be controlled by the lateral dimensions, spatial distribution, and interconnection between highly permeable zones which are known to occur between lava flows within flow groups. If hydraulic conductivity and lithology are eventually shown to be cross correlative in this geologic setting, it may be possible to stochastically simulate hydraulic conductivity distributions, which are conditional on a knowledge of volcanic stratigraphy.

  18. Pb-, Sr- and Nd-Isotopic systematics and chemical characteristics of cenozoic basalts, Eastern China

    USGS Publications Warehouse

    Peng, Z.C.; Zartman, R.E.; Futa, K.; Chen, D.G.

    1986-01-01

    Forty-eight Paleogene, Neogene and Quaternary basaltic rocks from northeastern and east-central China have been analyzed for major-element composition, selected trace-element contents, and Pb, Sr and Nd isotopic systematics. The study area lies entirely within the marginal Pacific tectonic domain. Proceeding east to west from the continental margin to the interior, the basalts reveal an isotopic transition in mantle source material and/or degree of crustal interaction. In the east, many of the rocks are found to merge both chemically and isotopically with those previously reported from the Japanese and Taiwan island-arc terrains. In the west, clear evidence exists for component(s) of Late Archean continental lithosphere to be present in some samples. A major crustal structure, the Tan-Lu fault, marks the approximate boundary between continental margin and interior isotopic behaviors. Although the isotopic signature of the western basalts has characteristics of lower-crustal contamination, a subcrustal lithosphere, i.e. an attached mantle keel, is probably more likely to be the major contributor of their continental "flavor". The transition from continental margin to interior is very pronounced for Pb isotopes, although Sr and Nd isotopes also combine to yield correlated patterns that deviate strikingly from the mid-ocean ridge basalt (MORB) and oceanic-island trends. The most distinctive chemical attribute of this continental lithosphere component is its diminished U Pb as reflected in the Pb isotopic composition when compared to sources of MORB, oceanic-island and island-arc volcanic rocks. Somewhat diminished Sm Nd and elevated Rb Sr, especially in comparison to the depleted asthenospheric mantle, are also apparent from the Nd- and Sr-isotopic ratios. ?? 1986.

  19. Extent and Depth to Top of Basalt and Interbed Hydrogeologic Units, Yakima River Basin Aquifer System, Washington

    USGS Publications Warehouse

    Jones, M.A.; Vaccaro, J.J.

    2008-01-01

    The hydrogeologic framework was delineated for the ground-water flow system of the three basalt formations and two interbeds in the Yakima River Basin, Washington. The basalt units are nearly equivalent to the Saddle Mountains, Wanapum, and Grande Ronde. The two major interbed units between the basalt formations generally are referred to as the Mabton and Vantage. The basalt formations are a productive source of ground-water for the Yakima River Basin. The Grande Ronde unit comprises the largest area in the Yakima River Basin aquifer system. This unit encompasses an area of about 5,390 mi2 and ranges in altitude from 6,900 ft, where it is exposed at land surface, to a depth of 2,800 ft below land surface. The Wanapum unit encompasses an area of 3,450 mi2 and ranges in altitude from 5,680 ft, where exposed at land surface, to a depth of 2,050 ft below land surface. The Saddle Mountains unit, the least extensive, encompasses an area of 2,290 mi2 and ranges from 4,290 ft, where exposed at the surface, to a depth of 1,840 ft below land surface.

  20. Is Ishtar Terra a thickened basaltic crust?

    NASA Technical Reports Server (NTRS)

    Arkani-Hamed, Jafar

    1992-01-01

    The mountain belts of Ishtar Terra and the surrounding tesserae are interpreted as compressional regions. The gravity and surface topography of western Ishtar Terra suggest a thick crust of 60-110 km that results from crustal thickening through tectonic processes. Underthrusting was proposed for the regions along Danu Montes and Itzpapalotl Tessera. Crustal thickening was suggested for the entire Ishtar Terra. In this study, three lithospheric models with total thicknesses of 40.75 and 120 km and initial crustal thicknesses of 3.9 and 18 km are examined. These models could be produced by partial melting and chemical differentiation in the upper mantle of a colder, an Earth-like, and a hotter Venus having temperatures of respectively 1300 C, 1400 C, and 1500 C at the base of their thermal boundary layers associated with mantle convection. The effects of basalt-granulite-eclogite transformation (BGET) on the surface topography of a thickening basaltic crust is investigated adopting the experimental phase diagram and density variations through the phase transformation.

  1. Petrogenesis of high-Ti and low-Ti basalts: high-pressure and high-temperature experimental study

    NASA Astrophysics Data System (ADS)

    Yang, J.; WANG, C.; Jin, Z.

    2017-12-01

    Geochemical and petrological studies have revealed the existence of high-Ti and low-Ti basalts in large igneous provinces. However, the petrogenesis of them are still under debate. Several different mechanisms have been proposed: (1) the high-Ti basalts are formed by the melting of mantle plume containing recycled oceanic crust or delaminated lower crust (Spandler et al., 2008) while low-Ti basalts are formed by the melting of subcontinental lithospheric mantle (Xiao et al., 2004); (2) both of them are from mantle plume or asthenospheric source, but the production of high-Ti basalts are associated with the thick lithosphere and relevant low degrees of melting while the low-Ti basalts are controlled by the thin lithosphere with high degrees of melting (Arndt et al., 1993; Xu et al., 2001). Almost all authors emphasize the role of partial melting but less discuss the crystallization differentiation process. The low Mg# (< 0.7) of these basalts provides that they are far away from direct melting of mantle peridotite. In addition, seismic data indicate unusually high seismic velocities bodies beneath LIPs which explained by the fractionated cumulates from picritic magmas (Farnetani et al., 1996). Therefore, we believed that the crystallization differentiation process might play a more significant role in the genesis of high-Ti and low-Ti basalts. In order to investigate the generation of these basalts, a series of high pressure and high temperature partial crystallization experiments were performed by using piston-cylinder and multi-anvil press at pressures of 1.5, 3.0 and 5.0 GPa and a temperature range of 1200-1700°. Two synthetic picrite glass with different chemical compositions were used as starting materials. Our experimental results show that Ti is preferred to be concentrated in the residual melt during crystallization differentiation. For the same melt fraction, the residual melt of higher pressure experiments has relatively higher TiO2 concentration and higher Mg#. Thus, we propose that most of the high-Ti and low-Ti basalts are inherited from picritic parental magmas which could be formed by high degree partial melting of garnet peridotite. The high-Ti basalts are generated through relatively high pressure crystallization process while the low-Ti basalts are generated at relatively low pressure.

  2. Geochemical and Isotopic Evidences of the Magmatic Sources in the Eastern Sector of the Trans-Mexican Volcanic Belt: Xihuingo-Chichicuautla Volcanic Field

    NASA Astrophysics Data System (ADS)

    Valadez, S.; Martinez-serrano, R.; Juarez-Lopez, K.; Solis-Pichardo, G.; Perez-Arvizu, O.

    2011-12-01

    The study of magmatism in the Trans-Mexican Volcanic Belt (TMVB) has great importance due to several features such as its obliquity with respect to the Middle American Trench and its petrological and geochemical variability, which are not common in most typical volcanic arcs. Although several papers have contributed significantly to the understanding of most important magmatic processes in this province, there are still several questions such as the characterization of magmatic sources. In the present work, we provide new stratigraphic, petrographic, geochemical and Sr, Nd and Pb isotopic data as well as some K-Ar age determinations from the Xihuingo-Chichicuautla volcanic field (XCVF), located at the eastern part of the TMVB, with the aim to identify the magmatic sources that produced the main volcanic rocks. The volcanic structures in the XCVF are divided in two main groups according to the petrographic and geochemical compositions: 1) dacitic domes, andesitic lava flows and some dacitic-rhyolitic ignimbrites and 2) scoria cones, shield volcanoes and associated lava flows of basalt to basaltic-andesite composition. Distribution of most volcanic structures is probably controlled by NE-SW fault and fractures system. This fault system was studied by other authors who established that volcanic activity started ca. 13.5 Ma ago, followed by a volcanic hiatus of ca. 10 Ma, and the late volcanic activity began ca. 3 to 1 Ma. In this work we dated 2 rock samples by K-Ar method, which yielded ages of 402 and 871 Ka, which correspond to the most recent volcanic activity in this study area. The volcanic rocks of the XCVF display compositions from basalts to rhyolites but in general all rocks show trace element patterns typical of magmatic arcs. However, we can identify two main magmatic sources: a depleted magmatic source represented by dacitic-andesitic rocks which present a LILE enrichment with respect to HFSE indicating that a magmatic source was modified by fluids derived from the subduction processes. These magmas probably suffered fractional crystallization and minor assimilation in the continental crust. Sr, Nd isotopic compositions for this first group display the most radiogenic values (87Sr/86Sr from 0.7046 to 0.7047 and ɛNd from 2.2 to 2.8). The second source for the basaltic-andesite and basalt could be associated with an enriched mantle. These rocks present a minor LILE enrichment with respect to HSFE, and Sr and Nd isotopic values less radiogenic than the felsic rocks of the first group (87Sr/86Sr from 0.7040 to 0.7045 and ɛNd from 3.1 to 4.8). According to these evidences we can establish that the magmas emplaced in the study area were produced from a heterogeneous mantle source with complex magmatic processes combined with different interaction degrees between the magmas and continental crust.

  3. Understanding the geodynamic setting of São Miguel, Azores: A peculiar bit of mantle in the Central Atlantic

    NASA Astrophysics Data System (ADS)

    Wilson, M.; Houlie, N.; Khan, A.; Lithgow-Bertelloni, C. R.

    2012-12-01

    The Azores Plateau and Archipelago in the Central Atlantic Ocean has traditionally been considered as the surface expression of a deep mantle plume or hotspot that has interacted with a mid-ocean ridge. It is geodynamically associated with the triple junction between the North American, African and Eurasian plates. (Yang et al., 2006) used finite frequency seismic tomography to demonstrate the presence of a zone of low P-wave velocities (peak magnitude -1.5%) in the uppermost 200km of the mantle beneath the plateau. The tomographic model is consistent with SW deflection of a mantle plume by regional upper mantle shear flow driven by absolute plate motions. The volcanic island of Sao Miguel is located within the Terceira Rift, believed to represent the boundary between the African and Eurasian plates; magmatic activity has been characterised by abundant basaltic eruptions in the past 30,000 years. The basalts are distinctive within the spectrum of global ocean island basalts for their wide range in isotopic composition, particularly in 87Sr/86Sr. Their Sr-Nd-Pb isotopic compositions show systematic variations from west to east across the island which can be interpreted in terms of melting of a two-component mantle source. The low melting point (enriched) component in the source has been attributed to recycled ancient (~3 Ga) oceanic crust(Elliott et al., 2007). Using the thermo-barometry approach of (Lee et al., 2009) we demonstrate that the pressure and temperature of magma generation below Sao Miguel increase from west (2 GPa, 1425 °C) to east (3.8 GPa, 1575 °C), consistent with partial melting along a mantle geotherm with a potential temperature of ~ 1500 °C. This is consistent with the magnitude of the thermal anomaly beneath the Azores Plateau (ΔT ~ 150-200 °C) inferred on the basis of the seismic tomography study. The site of primary magma generation extends from the base of the local lithosphere (~ 50 km) to ~ 125 km depth. To understand the geodynamic setting of the Sao Miguel magmatism we combine GPS data and mantle convection models with our interpretation of the geochemistry of the basalts. We demonstrate strong south-westerly and downward flow in the asthenospheric mantle above the Transition Zone (410 km seismic discontinuity), consistent with a zone of upper mantle shearing below the base of the lithosphere. The maximum flow velocity is broadly consistent with the depth of magma generation. The advection of the mantle with respect to the oceanic plate "moves" an isotopically distinct mantle source component beneath the active volcanoes of Sao Miguel and carries its previous melting residues to the south-west. We discuss the nature of this mantle source and its contribution to the mantle velocity anomalies determined by seismic tomography. This study opens-up new perspectives for seismic tomography and potentially new connections between the fields of geophysics and geochemistry in oceanic domains.

  4. Insights into the petrogenesis of low- and high-Ti basalts: Stratigraphy and geochemistry of four lava sequences from the central Paraná basin

    NASA Astrophysics Data System (ADS)

    De Min, Angelo; Callegaro, Sara; Marzoli, Andrea; Nardy, Antonio J.; Chiaradia, Massimo; Marques, Leila S.; Gabbarrini, Ilaria

    2018-04-01

    Lava flow sequences were sampled in the central part of the Paraná basin aiming to verify the time-related evolution of the Paraná basaltic magmatism. It is shown that low- and high-Ti basalts were erupted synchronously. In particular, Esmeralda and Pitanga flows are interlayered, with the former prevailing in the upper part of the sequence. Evidence for synchronously active magma plumbing systems is also supported by mineralogical data, showing signs of mixing between the two groups. Geochemical data, including Sr-Nd-Pb isotopic compositions are furthermore used to define the mantle source of various low- (Esmeralda and Gramado) and high-Ti (Pitanga and Urubici) magma types. Involvement of a carbonatitic component is proposed for the genesis of the basalts (particularly for the Urubici ones) as suggested by trace element enrichments unrelated to significant isotopic variations. This carbonatitic signature of the mantle source may be conveyed by CO2-rich metasomatic fluids or melts percolating upwards within the sub-continental lithospheric mantle (SCLM) leading to rapid and selective enrichment of incompatible trace elements. Metasomatism was probably localized at the outskirts of the basin, were Urubici tholeiites and contemporaneous carbonatites were erupted. Geochemical data also suggest the occurrence of significant amounts of crustal contamination in the LTi magmas (mainly in the Gramado and in the late Esmeralda lavas) while crustal assimilation seems negligible in the HTi samples. Globally, a very complex picture arises for the genesis of the Paraná tholeiites, with near-synchronous and geographically coincident flows undergoing significantly different extents of interaction with the crust and tapping different mantle sources.

  5. Apports des phyllosilicates dans la différenciation entre altération hypogène et altération supergène dans le basalte triasique du Moyen Atlas (Maroc)Contribution of phyllosilicates to distinguish between hypogene alteration and weathering in Triassic basalt from Middle Atlas (Morocco)

    NASA Astrophysics Data System (ADS)

    Dekayir, Abdelilah; Danot, Michel; Allali, Nabil

    2002-09-01

    Triassic basalt of the Middle Atlas has been subject to metamorphic transformation then weathering. Occurrence in both metabasalt and saprolite of ubiquitous clay minerals, such as smectite and mixed layers chlorite-smectite, makes it difficult to distinguish between the two alteration facies and explains the interest of complementary sources of information. In the Bhallil weathering profile, petrographical and mineralogical analyses of primary igneous minerals and their alteration products coupled with Fe oxidation state determination in clay fractions allow to identify three alteration facies: ( i) metamorphic basalt, where iron occurs mainly as the ferrous form; ( ii) the lower part of saprolite, where iron is partially oxidized to its ferric form; ( iii) the upper part of saprolite, where iron is completely oxidized. To cite this article: A. Dekayir et al., C. R. Geoscience 334 (2002) 877-884.

  6. Occurrence and mineral chemistry of high pressure phases, Portrillo basalt, southcentral New Mexico. M.S. Thesis. Final Technical Report, 1 Jun. 1978 - 31 May 1980

    NASA Technical Reports Server (NTRS)

    Hoffer, J. M.; Ortiz, T. S.

    1980-01-01

    Inclusions of clinopyroxenite, kaersutiteclinopyroxenite, kaersutite-rich inclusions, wehrlite and olivine-clinopyroxenite together with megacrysts of feldspar, kaersutite and spinel are found loose on the flanks of cinder cones, as inclusions within lava flows and within the cores of volcanic bombs in the Quaternary alkali-olivine basalt of the West Potrillo Mountains, southcentral New Mexico. Based on petrological and geochemical evidence the megacysts are interpreted to be phenocrysts which formed at great depth rather that xenocrysts of larger crystal aggregates. These large crystals are believed to have formed as stable phases at high temperature and pressure and have partially reacted with the basalt to produce subhedral to anhedral crystal boundaries. It can be demonstrated that the mafic and ultramafic crystal aggregates were derived from an alkali-basalt source rock generated in the mantle. The inclusions are believed to represent a cumulus body or bodies injected within the lower crust or upper mantle.

  7. Iron isotopic systematics of oceanic basalts

    NASA Astrophysics Data System (ADS)

    Teng, Fang-Zhen; Dauphas, Nicolas; Huang, Shichun; Marty, Bernard

    2013-04-01

    The iron isotopic compositions of 93 well-characterized basalts from geochemically and geologically diverse mid-ocean ridge segments, oceanic islands and back arc basins were measured. Forty-three MORBs have homogeneous Fe isotopic composition, with δ56Fe ranging from +0.07‰ to +0.14‰ and an average of +0.105 ± 0.006‰ (2SD/√n, n = 43, MSWD = 1.9). Three back arc basin basalts have similar δ56Fe to MORBs. By contrast, OIBs are slightly heterogeneous with δ56Fe ranging from +0.05‰ to +0.14‰ in samples from Koolau and Loihi, Hawaii, and from +0.09‰ to +0.18‰ in samples from the Society Islands and Cook-Austral chain, French Polynesia. Overall, oceanic basalts are isotopically heavier than mantle peridotite and pyroxenite xenoliths, reflecting Fe isotope fractionation during partial melting of the mantle. Iron isotopic variations in OIBs mainly reflect Fe isotope fractionation during fractional crystallization of olivine and pyroxene, enhanced by source heterogeneity in Koolau samples.

  8. Th-230 - U-238 series disequilibrium of the Olkaria basalts Gregory Rift Valley, Kenya: Petrogenesis

    NASA Technical Reports Server (NTRS)

    Black, S.; Macdonald, R.; Kelly, M.

    1993-01-01

    Strong mixing trends on a (Th-230/Th-232) versus Th diagram show that the basalts are mixed magmas which have undergone interaction with the crust. Instantaneous Th/U ratios are less than time integrated ones but these exceed the Th/U ratios in the MORB and OIB sources. This indicates that the mantle may have undergone some metasomatic fluxing, crustal contamination of the basalts will also enhance these ratios. Early activity on the Akira plain is represented by early basalts and hawaiites. The early basalt samples are known to predate the earliest comendites. The most recent phase of activity is represented by another cinder cone 40-50 m high being feldspar and clinopyroxene phyric. Inclusions which occur in the comendites vary in size and distribution. The largest and most porphyritic are the trachytes (up to 40 cm) with alkali feldspar phases up to 6 mm and small pyroxenes in the ground mass. The second set of inclusions are smaller (up to 10 cm) and are largely aphyric. The distribution of the inclusions are not uniform, the Broad Acres (C5) lavas contain 2-5 percent. The size of the inclusions decrease from south to north, as does the abundance of the trachytic inclusions. The major element variations in the Naivasha basalts, hawaiites and magmatic inclusions are discussed.

  9. Petrogenesis of ultramafic xenoliths from Hawaii inferred from Sr, Nd, and Pb isotopes

    NASA Astrophysics Data System (ADS)

    Okano, Osamu; Tatsumoto, Mitsunobu

    Isotopic compositions of Nd, Sr, and Pb in xenoliths in the Honolulu volcanic series from the Salt Lake Crater (H-type) are similar to those of the host post-erosional basalts, but are distinct from the magma sources of Koolau shield tholeiites and MORB. In contrast, one spinel Iherzolite (K-type) has isotopic compositions of Nd and Sr that are close to those of Koolau tholeiite rather than to the other Hawaiian basalts. Previous studies have shown that Sr isotopic composition of the xenoliths and the host basalt and that trace element concentrations in minerals of garnet Iherzolites from Honolulu basalt were nearly in equilibrium with the host magma, indicating that Honolulu volcanics were derived from garnet Iherzolite or similar material. However, differences exist among the isotopic compositions (especially Nd) of the xenoliths indicating that they are accidental inclusions from upper layers. The similarity in isotopic compositions between xenoliths and Honolulu basalt suggests that the source areas in the mantle are chemically similar. Correlation of 238U/204Pb vs. 206Pb/204Pb of chrome diopside separated from the H-type spinel Iherzolites indicates that the xenoliths are 80±36 Ma, which corresponds to the lithosphere age of the Hawaiian site. This age is consistent with petrological studies [e.g., Sen and Leeman, 1991] which have found that the spinel Iherzolite inclusions are derived from the lithosphere wall rocks. The ɛNd = ˜+8 of the H-xenoliths is slightly lower than that for the East Pacific Rise MORB indicating that the xenoliths are derived from a trace element depleted source similar to the MORB residue. If the garnet Iherzolite xenoliths are derived from mixture of spinel Iherzolite with intrusive pyroxenite, then the source of the pyroxenite contained little plume component. The one exceptional spinel Iherzolite xenolith may be a residue of Koolau-like tholeiitic magma or may have been metasomatized by Koolau volcanism in the deep lithosphere. Isotopic compositions of gabbro in Kaupulehu are similar to MORB, indicating its derivation from the oceanic crust. The Sr and Nd isotopic compositions of dunite are similar to those of Hualalai alkaline magma, consistent with the theory that the dunite is a cumulate from the Hualalai magma.

  10. Ubiquitous radiogenic Os in Miocene to recent basalts from diverse mantle domains beneath the Colorado Plateau, USA

    NASA Astrophysics Data System (ADS)

    Schlieder, T.; Reid, M. R.; Widom, E.; Blichert-Toft, J.

    2015-12-01

    The source of magmatism and mechanisms responsible for the observed geochemical signatures in Miocene to Recent Colorado Plateau (CP) basalts has been a renewed focus of investigation in light of Earthscope results. We report new Os and Nd isotopic data for magnesian basalts (Mg#=62-72) and interpret them in light of previously reported Hf isotope data to help constrain contributions from olivine-poor source lithologies and subduction-derived metasomatism in the genesis of recent CP volcanism. The basalts studied span a large range in Hf isotope compositions and represent melts last equilibrated at a variety of depths beneath the Colorado Plateau and its transition zones. We distinguished at least three mantle domains on the basis of paired Hf-Nd isotope, other isotopic, and geochemical characteristics of CP lavas. Domain 1 likely represents a depleted, variably metasomatized, lithospheric source, with relatively radiogenic ɛHf (+5.2 to +11.8) and highly variable ɛNd (-6.2 to +6.2). Domain 2 could represent either ancient or Farallon subduction-modified mantle and is displaced above the Hf-Nd mantle array (ɛHf=+1.0 to +7.3; ɛNd=-6.1 to -3.5). Domain 3 may be melts of pyroxenite/mica-rich veins or layers within lithospheric mantle and is characterized by unradiogenic Hf and Nd (ɛHf=-12.9 to +0.6; ɛNd=-10.0 to -2.9). The isotopic variability in CP-related lavas can largely be attributed to contributions from these mantle domains. Preliminary Os isotope data show no correlation with proxies for differentiation or crustal contamination. Osmium and Hf isotope compositions are negatively correlated between domains 1 and 2 (187Os/188Os=0.31 to 0.59), whereas the Os isotope ratios in two domain 3 basalts have both lower and higher values (187Os/188Os=0.25 and 0.68). Significantly, Os isotope signatures are highly radiogenic (vs. values of <0.12 for SW US peridotite xenoliths [1]), overlapping and extending the range for inferred melts of pyroxene- and mica-rich veins and/or layers [2]. Thus mafic magmatism associated with the CP appears to ubiquitously tap sources at least locally modified by processes such as recycling of ancient oceanic crust, introduction of terrigenous sediments, or subduction-related metasomatism. [1] Lee et al., Nature, 2001. [2] Carlson and Nowell, G-Cubed, 2001.

  11. The Roles of the Yellowstone Hotspot and Crustal Assimilation in Generating Pleistocene-Holocene Basalts on the Eastern Snake River Plain

    NASA Astrophysics Data System (ADS)

    Mintz, H.; Chadwick, J.

    2017-12-01

    The southwest motion of the North American plate across the Yellowstone hotspot created a chain of age-progressive rhyolitic calderas over the past 16 myr. in southern Idaho, U.S. The focus of Yellowstone activity now resides in northwest Wyoming, but basaltic volcanism has continued in its wake in southern Idaho on the eastern Snake River Plain (ESRP). These younger basaltic lavas are not age progressive and have buried the Yellowstone rhyolites on the ESRP. The ultimate source of the basalts is commonly ascribed to the passage or presence of the hotspot. However, the mechanisms involved, and the relative roles of the hotspot, other mantle sources, and the North American crust in generating the ESRP basalts remain unclear and have been the subject of recent geochemical and isotopic studies. In this study, the role of crustal assimilation is addressed by analyzing the chemical and isotopic characteristics of some of the youngest Pleistocene-Holocene tholeiitic volcanic fields on the ESRP, which were erupted through varying thicknesses of continental crust. Samples were analyzed from the Hell's Half Acre flow (5,200 years old; all dates Kuntz et al., 1986, 1994), Cerro Grande flow (13,380 years), and Black Butte Crater (a.k.a. Shoshone) flow (10,130 years), which were erupted at distances from between about 200 to 300 km from the current location of the hotspot. The crust of the ESRP thins from northeast to southwest, from about 47 km at the Hells Half Acre flow to 40 km at the Black Butte Crater flow, a thickness difference of about 15%. The apparently similar tectonic and magmatic environments of the three sampled flows suggest the crustal thickness variation may be a primary influence on the magnitude of assimilation and therefore the isotopic characteristics of the lavas. The goal of this work is to constrain the relative role of assimilation and to understand the source(s) of the magmas and the Yellowstone hotspot contribution. Major elements, trace elements, and Pb-Sr-Nd isotopic data for the flows and crustal xenoliths, in conjunction with mixing modeling with MELTS software, constrain potential differences in fractional crystallization, residence times in the crust, and crustal assimilation for the flows.

  12. Radiolytic Hydrogen Production in the Subseafloor Basaltic Aquifer.

    PubMed

    Dzaugis, Mary E; Spivack, Arthur J; Dunlea, Ann G; Murray, Richard W; D'Hondt, Steven

    2016-01-01

    Hydrogen (H2) is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium ((238)U, (235)U), thorium ((232)Th) and potassium ((40)K). To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th, and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt) concentrations (which can vary between eruptive events) and post-emplacement alteration. However, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma) basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may support as many as 1500 cells.

  13. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.

    1997-09-23

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certaintymore » but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be greater than 10{sup -7} events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a priority issue for performance assessment studies.« less

  14. Basalt fiber reinforced polymer composites: Processing and properties

    NASA Astrophysics Data System (ADS)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  15. Late Pleistocene Hansel Valley basaltic ash, northern Lake Bonneville, Utah, USA

    USGS Publications Warehouse

    Miller, D.M.; Oviatt, Charles G.; Nash, B.P.

    2008-01-01

    The Hansel Valley ash bed lies within 5 cm of the base of deposits of Lake Bonneville (???28 ka) in the vicinity of Great Salt Lake and provides a useful stratigraphic marker for this area of the lake basin. However, it has not been matched to an eruptive edifice, presumably because such an edifice was eroded by waves of Lake Bonneville. We present data for the chemical composition of the tephra and for possible matching lavas and tephras of the region, as well as grain size data for the tephra in an attempt to identify the location of the eruption. Matches with other tephras are negative, but lavas near the coarsest ash deposits match well with the distinctive high values of TiO2 and P2O5 of the ash. Neither chemistry nor grain size data points uniquely to a source area, but an area near the northwest shore of Great Salt Lake and within Curlew Valley is most likely. The Hansel Valley ash is an example of an ash that has no direct numerical date from proximal deposits, despite considerable study, yet nonetheless is useful for stratigraphic studies by virtue of its known stratigraphic position and approximate age. Basaltic tephras commonly are not as widespread as their rhyolitic counterparts, and in some cases apparently are produced by eruptive sources that are short lived and whose edifices are not persistent. ?? 2007 Elsevier Ltd and INQUA.

  16. Emergence and petrology of the Mendocino Ridge

    NASA Astrophysics Data System (ADS)

    Fisk, Martin R.; Duncan, Robert A.; Fox, Christopher G.; Witter, Jeffrey B.

    1993-11-01

    The Mendocino Fracture Zone, a 3,000-km-long transform fault, extends from the San Andreas Fault at Cape Mendocino, California due west into the central Pacific basin. The shallow crest of this fracture zone, known as the Mendocino Ridge, rises to within 1,100 m of the sea surface at 270 km west of the California Coast. Rounded basalt pebbles and cobbles, indicative of a beach environment, are the dominant lithology at two locations on the crest of Mendocino Ridge and a40Ar/39 Ar incremental heating age of 11.0 ± 1.0 million years was determined for one of the these cobbles. This basalt must have been erupted on the Gorda Ridge because the crust immediately to the south of the fracture zone is older than 27 Ma. This age also implies that the crest of Mendocino Ridge was at sea level and would have blocked Pacific Ocean eastern boundary currents and affected the climate of the North American continent at some time since the late Miocene. Basalts from the Mendocino Fracture Zone (MFZ) are FeTi basalts similar to those commonly found at intersections of mid-ocean ridges and fracture zones. These basalts are chemically distinct from the nearby Gorda Ridge but they could have been derived from the same mantle source as the Gorda Ridge basalts. The location of the 11 Ma basalt suggests that Mendocino Ridge was transferred from the Gorda Plate to the Pacific Plate and the southern end of Gorda Ridge was truncated by a northward jump in the transform fault of MFZ.

  17. Quantification of Noise Sources in EMI Surveys Technology Demonstration Report Army Research Laboratory Blossom Point Facility, Maryland July - September, 2006

    DTIC Science & Technology

    2010-01-14

    removed and a connector added for the use of external battery packs to extend measurement times. A rigid carbon- fiber pole was provided by the vendor...responses found in areas containing strongly ferromagnetic soils or bedrock have been well documented [5]. Fresh basaltic bedrock, like that found in...8650 (November 27, 2002). 5. “Demonstration of Basalt -UXO Discrimination by Advanced Analysis of Multi-Channel EM63 Data at Kaho’olawe, Hawaii,” G

  18. Thorium and uranium variations in Apollo 17 basalts, and K-U systematics

    NASA Technical Reports Server (NTRS)

    Laul, J. C.; Fruchter, J. S.

    1976-01-01

    It is found that Apollo 11 low-K and in particular Apollo 17 mare basalts show a wide range of Th/U ratios unlike other rocks; such variations cannot be explained by near surface crystal fractionation. A two-stage fractional crystallization-partial melting model involving a clinopyroxene cumulate as the major phase can explain the variations in Th/U ratios. Due to the Sm-Nd systematics constraint, several source cumulates are invoked to explain the observed Th/U continuum.

  19. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.

    1984-01-01

    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  20. Oligocene and Miocene arc volcanism in northeastern California: evidence for post-Eocene segmentation of the subducting Farallon plate

    USGS Publications Warehouse

    Colgan, J.P.; Egger, A.E.; John, D.A.; Cousens, B.; Fleck, R.J.; Henry, C.D.

    2011-01-01

    The Warner Range in northeastern California exposes a section of Tertiary rocks over 3 km thick, offering a unique opportunity to study the long-term history of Cascade arc volcanism in an area otherwise covered by younger volcanic rocks. The oldest locally sourced volcanic rocks in the Warner Range are Oligocene (28–24 Ma) and include a sequence of basalt and basaltic andesite lava flows overlain by hornblende and pyroxene andesite pyroclastic flows and minor lava flows. Both sequences vary in thickness (0–2 km) along strike and are inferred to be the erosional remnants of one or more large, partly overlapping composite volcanoes. No volcanic rocks were erupted in the Warner Range between ca. 24 and 16 Ma, although minor distally sourced silicic tuffs were deposited during this time. Arc volcanism resumed ca. 16 Ma with eruption of basalt and basaltic andesite lavas sourced from eruptive centers 5–10 km south of the relict Oligocene centers. Post–16 Ma arc volcanism continued until ca. 8 Ma, forming numerous eroded but well-preserved shield volcanoes to the south of the Warner Range. Oligocene to Late Miocene volcanic rocks in and around the Warner Range are calc-alkaline basalts to andesites (48%–61% SiO2) that display negative Ti, Nb, and Ta anomalies in trace element spider diagrams, consistent with an arc setting. Middle Miocene lavas in the Warner Range are distinctly different in age, composition, and eruptive style from the nearby Steens Basalt, with which they were previously correlated. Middle to Late Miocene shield volcanoes south of the Warner Range consist of homogeneous basaltic andesites (53%–57% SiO2) that are compositionally similar to Oligocene rocks in the Warner Range. They are distinctly different from younger (Late Miocene to Pliocene) high-Al, low-K olivine tholeiites, which are more mafic (46%–49% SiO2), did not build large edifices, and are thought to be related to backarc extension. The Warner Range is ∼100 km east of the axis of the modern arc in northeastern California, suggesting that the Cascade arc south of modern Mount Shasta migrated west during the Late Miocene and Pliocene, while the arc north of Mount Shasta remained in essentially the same position. We interpret these patterns as evidence for an Eocene to Miocene tear in the subducting slab, with a more steeply dipping plate segment to the north, and an initially more gently dipping segment to the south that gradually steepened from the Middle Miocene to the present.

  1. Abundance and isotope systematics of carbon in subglacial basalts, geothermal gases and fluids from Iceland's rift zones

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Fueri, E.; Halldorsson, S. A.; Fischer, T. P.; Gronvold, K.

    2010-12-01

    P. H. BARRY1*, D. R. HILTON1, E. FÜRI1, S.A. HALLDÓRSON1, T.P. FISCHER2, K. GRONVOLD3 1 Scripps Institution of Oceanography, UCSD, La Jolla, California 92093, USA (*Correspondence: pbarry@ucsd.edu). 2University of New Mexico, Albuquerque, NM 87131, USA. 3University of Iceland, Askja, Sturlugata 7, IS-101, Reykjavik, Iceland Carbon dioxide (CO2) is the dominant non-aqueous volatile species found in oceanic basalts and geothermal fluids and serves as the carrier gas for trace volatiles such as He and other noble gases. The aim of this study is to identify the superimposed effects of degassing and crustal contamination on the CO2 systematics of the Icelandic hotspot in order to reveal and characterize the carbon abundance and isotopic features of the underlying mantle source. Our approach involves coupling CO2 with He, utilizing the sensitivity of 3He/4He ratios to reveal mantle and crustal inputs. We report new C-isotope (δ13C) and abundance characteristics for a suite of 47 subglacial basalts and 50 geothermal gases and fluids from Iceland. CO2 contents in hyaloclastite glasses are extremely low (10-100 ppm) and likely residual following extensive degassing whereas geothermal fluids are dominated by CO2 (>90 %). C-isotopes range from -27.2 to -3.6 ‰ (vs. PDB) for basalts and from -18.8 to 2.86 ‰ (vs. PDB) for geothermal samples (mean = -4.2 ± 3.6 ‰). CO2/3He ratios range from 108 to 1012 for basalts and from 105 to 1012 for geothermal samples: In both cases, our results extend He-CO2 relationships over a much broader range than reported previously [1]. Taken together, these data suggest that several processes including mixing, degassing, and/or syn- or post-eruptive crustal contamination may act to modify CO2 source characteristics. Equilibrium degassing models are compatible with ~75 % of the basalt data, and preliminary results indicate that initial Icelandic source characteristics are ~500 ppm CO2 and δ13C ~ -5 ‰ (vs. PDB). These values are high compared to N-MORB mantle source estimates (72-134 ppm) based upon CO2/Nb ratios [2, 3]; however, they are in good agreement with those from submarine glasses on adjacent segments from the Reykjanes and Kolbeinsey ridges [4,5]. Significantly, the model-derived δ13C estimate is close to the mean Icelandic geothermal value, implying that fluids closely resemble source values, i.e. they likely represent the exsolved component. Integrating the estimated source CO2 content with magma production values of 0.079 km3/yr [6] yields a CO2 flux of ~1.2 x 1011 mol CO2 yr-1for Iceland, representing ~ 5.4 % of the total carbon ridge flux of 2.2 x 1012 mol CO2 yr-1 [7]. Thus, the average CO2 flux estimate for Iceland is ~2.2 x 108 mol CO2 yr-1km-1 strike of ridge axis, which compares to an overall ridge flux (including Iceland) of ~2.9 x 107 mol CO2 yr-1km-1. This difference highlights both heterogeneity in source volatile contents and magma production rates as important controls for determining mantle CO2 fluxes. [1] Poreda et al., 1992 [2] Saal et al., 2002. [3] Shaw et al., 2010. [4] de Leeuw, 2007 [5] Macpherson et al., 2005. [6] Thordarson et al., 2007 [7] Marty et al., 1998.

  2. Redox Interactions between Iron and Carbon in Planetary Mantles: Implications for Degassing and Melting Processes

    NASA Technical Reports Server (NTRS)

    Martin, A.; Righter, K.

    2009-01-01

    Carbon stability in planetary mantles has been studied by numerous authors because it is thought to be the source of C-bearing atmospheres and of C-rich lavas observed at the planetary surface. In the Earth, carbonaceous peridotites and eclogites compositions have been experimentally studied at mantle conditions [1] [2] [3]. [4] showed that the fO2 variations observed in martian meteorites can be explained by polybaric graphite-CO-CO2 equilibria in the Martian mantle. Based on thermodynamic calculations [4] and [5] inferred that the stable form of carbon in the source regions of the Martian basalts should be graphite (and/or diamond), and equilibrium with melts would be a source of CO2 for the martian atmosphere. Considering the high content of iron in the Martian mantle (approx.18.0 wt% FeO; [6]), compared to Earth s mantle (8.0 wt% FeO; [7]) Fe/C redox interactions should be studied in more detail.

  3. Tungsten isotope evidence that mantle plumes contain no contribution from the Earth's core

    NASA Astrophysics Data System (ADS)

    Scherstén, Anders; Elliott, Tim; Hawkesworth, Chris; Norman, Marc

    2004-01-01

    Osmium isotope ratios provide important constraints on the sources of ocean-island basalts, but two very different models have been put forward to explain such data. One model interprets 187Os-enrichments in terms of a component of recycled oceanic crust within the source material. The other model infers that interaction of the mantle with the Earth's outer core produces the isotope anomalies and, as a result of coupled 186Os-187Os anomalies, put time constraints on inner-core formation. Like osmium, tungsten is a siderophile (`iron-loving') element that preferentially partitioned into the Earth's core during core formation but is also `incompatible' during mantle melting (it preferentially enters the melt phase), which makes it further depleted in the mantle. Tungsten should therefore be a sensitive tracer of core contributions in the source of mantle melts. Here we present high-precision tungsten isotope data from the same set of Hawaiian rocks used to establish the previously interpreted 186Os-187Os anomalies and on selected South African rocks, which have also been proposed to contain a core contribution. None of the samples that we have analysed have a negative tungsten isotope value, as predicted from the core-contribution model. This rules out a simple core-mantle mixing scenario and suggests that the radiogenic osmium in ocean-island basalts can better be explained by the source of such basalts containing a component of recycled crust.

  4. Eocene slab breakoff of Neotethys as suggested by dioritic dykes in the Gangdese magmatic belt, southern Tibet

    NASA Astrophysics Data System (ADS)

    Ma, Xuxuan; Xu, Zhiqin; Meert, Joseph G.

    2016-04-01

    The Gangdese magmatic belt in southern Tibet demarcates an important boundary between the Indian and Eurasian plates. Due to its location and magmatic evolutionary history, it is key to understanding both the history of Neotethys closure and the Indo-Asian collisional process. This study presents new geochronological and geochemical data for dioritic dykes in the southern Gangdese magmatic belt in southern Tibet. U-Pb geochronological results reveal that the dykes were emplaced at ca. 41 Ma and thus broadly coeval with the 40-38 Ma Dazi volcanics and the 42-40 Ma Gaoligong-Tengliang basaltic dykes. Geochemically, these dykes are characterized by alkaline signature, high Mg# (57-63) and low TiO2 contents ( 0.9-1.0), showing notable enrichment of light rare earth elements relative to the heavy rare earth elements, enrichment of incompatible elements (i.e. Cs, Rb, Ba, Th and U), and depletion of high field strength elements (i.e. Nb, Ta and Ti). In addition, a large variation of zircon εHf(t) values (- 10 to + 13) was shown, implying heterogeneity of magma sources. A heterogeneous source is also suggested by the occurrence of xenocrysts in the dykes. These observations suggest that the magma source of the dykes was dominated by partial melting of lithospheric mantle and then subsequently contaminated by crustal material during ascent. In combination with other geological data in the region, we suspect that the slab slicing of the Neotethys played a key role in the formation of the lithospheric mantle-derived dioritic dykes and adakitic granite, asthenosphere-derived volcanics, basaltic dykes, as well as the recently reported strongly fractionated granites.

  5. Oxidized sulfur-rich mafic magma at Mount Pinatubo, Philippines

    USGS Publications Warehouse

    de Hoog, J.C.M.; Hattori, K.H.; Hoblitt, R.P.

    2004-01-01

    Basaltic fragments enclosed in andesitic dome lavas and pyroclastic flows erupted during the early stages of the 1991 eruption of Mount Pinatubo, Philippines, contain amphiboles that crystallized during the injection of mafic magma into a dacitic magma body. The amphiboles contain abundant melt inclusions, which recorded the mixing of andesitic melt in the mafic magma and rhyolitic melt in the dacitic magma. The least evolved melt inclusions have high sulfur contents (up to 1,700 ppm) mostly as SO42, which suggests an oxidized state of the magma (NNO + 1.4). The intrinsically oxidized nature of the mafic magma is confirmed by spinel-olivine oxygen barometry. The value is comparable to that of the dacitic magma (NNO + 1.6). Hence, models invoking mixing as a means of releasing sulfur from the melt are not applicable to Pinatubo. Instead, the oxidized state of the dacitic magma likely reflects that of parental mafic magma and the source region in the sub-arc mantle. Our results fit a model in which long-lived SO2 discharge from underplated mafic magma accumulated in the overlying dacitic magma and immiscible aqueous fluids. The fluids were the most likely source of sulfur that was released into the atmosphere during the cataclysmic eruption. The concurrence of highly oxidized basaltic magma and disproportionate sulfur output during the 1991 Mt. Pinatubo eruption suggests that oxidized mafic melt is an efficient medium for transferring sulfur from the mantle to shallow crustal levels and the atmosphere. As it can carry large amounts of sulfur, effectively scavenge sulfides from the source mantle and discharge SO2 during ascent, oxidized mafic magma forms arc volcanoes with high sulfur fluxes, and potentially contributes to the formation of metallic sulfide deposits. ?? Springer-Verlag 2003.

  6. Quaternary bimodal volcanism in the Niğde Volcanic Complex (Cappadocia, central Anatolia, Turkey): age, petrogenesis and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Aydin, Faruk; Schmitt, Axel K.; Siebel, Wolfgang; Sönmez, Mustafa; Ersoy, Yalçın; Lermi, Abdurrahman; Dirik, Kadir; Duncan, Robert

    2014-11-01

    The late Neogene to Quaternary Cappadocian Volcanic Province (CVP) in central Anatolia is one of the most impressive volcanic fields of Turkey because of its extent and spectacular erosionally sculptured landscape. The late Neogene evolution of the CVP started with the eruption of extensive andesitic-dacitic lavas and ignimbrites with minor basaltic lavas. This stage was followed by Quaternary bimodal volcanism. Here, we present geochemical, isotopic (Sr-Nd-Pb and δ18O isotopes) and geochronological (U-Pb zircon and Ar-Ar amphibole and whole-rock ages) data for bimodal volcanic rocks of the Niğde Volcanic Complex (NVC) in the western part of the CVP to determine mantle melting dynamics and magmatic processes within the overlying continental crust during the Quaternary. Geochronological data suggest that the bimodal volcanic activity in the study area occurred between ca. 1.1 and ca. 0.2 Ma (Pleistocene) and comprises (1) mafic lavas consisting of basalts, trachybasalts, basaltic andesites and scoria lapilli fallout deposits with mainly basaltic composition, (2) felsic lavas consisting of mostly rhyolites and pumice lapilli fall-out and surge deposits with dacitic to rhyolitic composition. The most mafic sample is basalt from a monogenetic cone, which is characterized by 87Sr/86Sr = 0.7038, 143Nd/144Nd = 0.5128, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68, suggesting a moderately depleted signature of the mantle source. Felsic volcanic rocks define a narrow range of 143Nd/144Nd isotope ratios (0.5126-0.5128) and are homogeneous in Pb isotope composition (206Pb/204Pb = 18.84-18.87, 207Pb/204Pb = 15.64-15.67 and 208Pb/204Pb = 38.93-38.99). 87Sr/86Sr isotopic compositions of mafic (0.7038-0.7053) and felsic (0.7040-0.7052) samples are similar, reflecting a common mantle source. The felsic rocks have relatively low zircon δ18O values (5.6 ± 0.6 ‰) overlapping mantle values (5.3 ± 0.3 %), consistent with an origin by fractional crystallization from a mafic melt with very minor continental crustal contamination. The geochronological and geochemical data suggest that mafic and felsic volcanic rocks of the NVC are genetically closely related to each other. Mafic rocks show a positive trend between 87Sr/86Sr and Th, suggesting simultaneous assimilation and fractional crystallization, whereas the felsic rocks are characterized by a flat or slightly negative variation. High 87Sr/86Sr gneisses are a potential crustal contaminant of the mafic magmas, but the comparatively low and invariant 87Sr/86Sr in the felsic volcanics suggests that these evolved dominantly by fractional crystallization. Mantle-derived basaltic melts, which experienced low degree of crustal assimilation, are proposed to be the parent melt of the felsic volcanics. Geochronological and geochemical results combined with regional geological and geophysical data suggest that bimodal volcanism of the NVC and the CVP, in general, developed in a post-collisional extensional tectonic regime that is caused by ascending asthenosphere, which played a key role during magma genesis.

  7. Boninite-like intraplate magmas from Manihiki Plateau require ultra-depleted and enriched source components

    PubMed Central

    Golowin, Roman; Portnyagin, Maxim; Hoernle, Kaj; Hauff, Folkmar; Gurenko, Andrey; Garbe-Schönberg, Dieter; Werner, Reinhard; Turner, Simon

    2017-01-01

    The Ontong Java and Manihiki oceanic plateaus are believed to have formed through high-degree melting of a mantle plume head. Boninite-like, low-Ti basement rocks at Manihiki, however, imply a more complex magma genesis compared with Ontong Java basement lavas that can be generated by ∼30% melting of a primitive mantle source. Here we show that the trace element and isotope compositions of low-Ti Manihiki rocks can best be explained by re-melting of an ultra-depleted source (possibly a common mantle component in the Ontong Java and Manihiki plume sources) re-enriched by ≤1% of an ocean-island-basalt-like melt component. Unlike boninites formed via hydrous flux melting of refractory mantle at subduction zones, these boninite-like intraplate rocks formed through adiabatic decompression melting of refractory plume material that has been metasomatized by ocean-island-basalt-like melts. Our results suggest that caution is required before assuming all Archaean boninites were formed in association with subduction processes. PMID:28181497

  8. The formation of Hadley Rille and implications for the geology of the Apollo 15 region

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.; Swann, Gordon A.; Greeley, Ronald

    1988-01-01

    The results of studies of terrestrial lava tube systems and the regional and detailed site geology of the Apollo 15 area have been combined to develop a model for the formation of Hadley Rille. The regional geology of the Apennine bench formation and its relation to Mozart and Hadley Rilles is discussed. It is shown that the total thickness of mare basalt at the Apollo landing site is on the order of a few tens of meters, mostly less than 50 m. It is suggested that the role of thermal erosion in the development of sinuous rilles on the moon may be less important than previously assumed and that the assimilation of refractory highland rock types into mare basaltic magma is a minor lunar process.

  9. Geochemistry of the Bonin Fore-arc Volcanic Sequence: Results from IODP Expedition 352

    NASA Astrophysics Data System (ADS)

    Godard, M.; Ryan, J. G.; Shervais, J. W.; Whattam, S. A.; Sakuyama, T.; Kirchenbaur, M.; Li, H.; Nelson, W. R.; Prytulak, J.; Pearce, J. A.; Reagan, M. K.

    2015-12-01

    The Izu-Bonin-Mariana intraoceanic arc system, in the western Pacific, results from ~52 My of subduction of the Pacific plate beneath the eastern margin of the Philippine Sea plate. Four sites were drilled south of the Bonin Islands during IODP Expedition 352 and 1.22 km of igneous basement was cored upslope to the west of the trough. These stratigraphically controlled igneous suites allow study of the earliest stages of arc development from seafloor spreading to convergence. We present the preliminary results of a detailed major and trace element (ICPMS) study on 128 igneous rocks drilled during Expedition 352. Mainly basalts and basaltic andesites were recovered at the two deeper water sites (U1440 and U1441) and boninites at the two westernmost sites (U1439 and U1442). Sites U1440 and U1441 basaltic suites are trace element depleted (e.g. Yb 4-6 x PM); they have fractionated REE patterns (LREE/HREE = 0.2-0.4 x C1-chondrites) compared to mid-ocean ridge basalts. They have compositions overlapping that of previously sampled Fore-Arc Basalts (FAB) series. They are characterized also by an increase in LILE contents relative to neighboring elements up-section (e.g. Rb/La ranging from <1 to 3-7 x PM at Site U1440) suggesting a progressive contamination of their source by fluids. This process in turn may have favored melting and efficient melt extraction from the source and thus its extreme depletion. Boninites are depleted in moderately incompatible elements with a decrease in their contents up-section (e.g. Yb = ~6.2 to 2.8 x C1-chondrite at Site U1439). These changes in trace element contents are associated with the development of a positive Zr-Hf anomaly relative to neighboring elements and a strong increase in LILE (e.g., Zr/Sm=~1 to 2.6 x PM and Rb/La=1-2 to 10-18). The progressive upward depletion of boninitic lavas could reveal the incorporation of harzburgitic residues from FAB generation into their mantle source.

  10. Origin of Miocene andesite and dacite in the Goldfield-Superstition volcanic province, central Arizona: Hybrids of mafic and silicic magma mixing

    NASA Astrophysics Data System (ADS)

    Fodor, R. V.; Johnson, Kelly G.

    2016-07-01

    The Miocene Goldfield-Superstition volcanic province (G-SVP), ∼8000 km2 in central Arizona, is composed largely of silicic pyroclastic rocks and lavas, and smaller volumes of alkalic basalt and intermediate-composition lavas. Volcanism began ∼20.5 Ma as sparse rhyolitic and mainly basaltic lavas followed by intermediate lavas, lasting until ∼19 Ma. At that time, ∼1 m.y. of silicic eruptions began, creating most of the G-SVP. Petrologic studies are available for basalts and some for silicic rocks, but petrologic/geochemical information is sparse for intermediate-composition lavas. These latter, andesites and dacites, are the focus of this study, in which we present the processes and sources responsible for their origins. Goldfield-Superstition andesites and dacites have SiO2 ∼56-70 wt.% and Na2O + K2O that qualifies some as trachy-andesite and -dacite. A prominent petrographic feature is plagioclase-phyric texture (∼11-30 vol% plagioclase), where oligoclase-andesine phenocrysts have cores surrounded by corroded, or reacted, zones, mantled by higher An% plagioclase. Where corroded zones are absent, margins are etched, curved, or embayed. Groundmass plagioclase is labradorite, also more calcic than the phenocrysts. Other minerals are quartz (subrounded; embayed), clinopyroxene, amphibole, biotite, and rare titanite and zircon. A salient compositional characteristic that provides insight to andesite-dacite origins with respect to other G-SVP rocks is revealed when using SiO2 as an index. Namely, abundances of many incompatible elements, mainly HFSE and REE, decrease over the low to high SiO2 range (i.e., abundances are lower in dacites than in co-eruptive andesites and underlying alkalic basalts). As examples: G-SVP basalts have ∼50-70 ppm La, and andesites-dacites have ∼59-22 ppm La; for Zr, basalts have ∼225-170 ppm, but most andesites-dacites have ∼180-50; for Y, basalts >20 ppm, andesites-dacites ∼18-9 ppm. To understand these trends of lower HFSE and REE with increasing SiO2, we modeled fractional crystallization of G-SVP alkalic basalt (∼50 wt.% SiO2; ∼9 wt.% MgO), dehydration melting (10-25%) of granodiorite and high-K amphibolite, and basalt-rhyolite magma mixing. Fractionation and melting each require specific modal percentages of titanite, zircon, and allanite (e.g., ⩽1%), the high ends of ranges for accessory-mineral/liquid partitioning coefficients, continual crystallization of accessory minerals from basalt to dacite (for fractionation), and specific source-melting percentages and low titanite, zircon, and allanite melting proportions (∼0.02; dehydration melting). These requirements are too stringent to be realistic. Moreover, accessory minerals are rare in these lavas, and neither fractionation nor melting accounts for the plagioclase textures observed. On the other hand, low-HFSE, -REE rhyolites (e.g., La 9-31 ppm; Zr 31-93; Nb 9-17; Y 4-10) containing Na-plagioclase are in the G-SVP and were temporally and spatially available to have mixed with G-SVP basalts. Mixing proportions of 20:80 to 90:10 for different rhyolite:basalt combinations yield hybrid compositions that overlap the G-SVP andesite-dacite compositional fields. Also, basalt invading rhyolite reservoirs containing mush zones can account for Na-plagioclase concentrations of ∼11-30 vol% formed after mush disruption and dispersal, plagioclase corroded-cores and higher-An% mantles and groundmass, and subrounded-embayed quartz. The straightforward explanation for G-SVP intermediate lavas, then, is repeated hybridization of basaltic and low-HFSE, -REE rhyolitic magmas during the early stages of G-SVP magmatism.

  11. Experimental determination of U and Th partitioning between clinopyroxene and natural and synthetic basaltic liquid

    NASA Technical Reports Server (NTRS)

    Latourrette, T. Z.; Burnett, D. S.

    1992-01-01

    Experimental measurements of U and the partition coefficients between clinopyroxene and synthetic and natural basaltic liquid are presented. The results demonstrate that crystal-liquid U-Th fractionation is fO2-dependent and that U in terrestrial magmas is not entirely tetravalent. During partial melting, the liquid will have a Th/U ratio less than the clinopyroxene in the source. The observed U-238 - Th-230 disequilibrium in MORB requires that the partial melt should have a U/Th ratio greater than the bulk source and therefore cannot result from clinopyroxene-liquid partitioning. Further, the magnitudes of the measured partition coefficients are too small to generate significant U-Th fractionation in either direction. Assuming that clinopyroxene contains the bulk of the U and Th in the MORB source, the results indicate that U-238 - Th-230 disequilibrium in MORB may not be caused by partial melting at all.

  12. The Cenozoic magmatism of East-Africa: Part I - Flood basalts and pulsed magmatism

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.

    2017-08-01

    Cenozoic magmatism in East Africa results from the interplay between lithospheric extension and material upwelling from the African Large Low Shear Velocity Province (LLSVP). The modern focusing of East African magmatism into oceanic spreading centers and continental rifts highlights the modern control of lithospheric thinning in magma generation processes, however the widespread, and volumetrically significant flood basalt events of the Eocene to Early Miocene suggest a significant role for material upwelling from the African LLSVP. The slow relative motion of the African plate during the Cenozoic has resulted in significant spatial overlap in lavas derived from different magmatic events. This complexity is being resolved with enhanced geochronological precision and a focus on the geochemical characteristics of the volcanic products. It is now apparent that there are three distinct pulses of basaltic volcanism, followed by either bimodal lavas or silicic volcanic products during this period: (A) Eocene Initial Phase from 45 to 34 Ma. This is a period of dominantly basaltic volcanism focused in Southern Ethiopia and Northern Kenya (Turkana). (B) Oligocene Traps phase from 33.9 to 27 Ma. This period coincides with a significant increase in the aerial extent of volcanism with broadly age equivalent 1 to 2 km thick sequences of dominantly basalt centered on the NW Ethiopian Plateau and Yemen, (C) Early Miocene resurgence phase from 26.9 to 22 Ma. This resurgence in basaltic volcanism is seen throughout the region at ca. 24-23 Ma, but is less volumetrically significant than the prior two basaltic pulses. With our developing understanding of the persistence of LLSVP anomalies within the mantle, I propose that the three basaltic pulses are ostensibly manifestations of the same plume-lithosphere interaction, requiring revision to the duration, magmatic extent, and magma volume of the African-Arabian Large Igneous Province.

  13. Impact Characteristics of Different Rocks in a Pulsed Laser Irradiation Experiment: Simulation of Micrometeorite Bombardment on the Moon

    NASA Astrophysics Data System (ADS)

    Wu, Yanxue; Li, Xiongyao; Yao, Wenqing; Wang, Shijie

    2017-10-01

    Without the protection of the atmosphere, the soils on lunar surfaces undergo a series of optical, physical, and chemical changes during micrometeorite bombardment. To simulate the micrometeorite bombardment process and analyze the impact characteristics, four types of rocks, including terrestrial basalt and anorthosite supposed to represent lunar rock, an H-type chondrite (the Huaxi ordinary chondrite), and an iron meteorite (the Gebel Kamil iron meteorite) supposed to represent micrometeorite impactors, are irradiated by a nanosecond pulse laser in a high vacuum chamber. Based on laser irradiation experiments, the laser pits are found to be of different shapes and sizes which vary with the rock type. Many melt and vapor deposits are found on the mineral surfaces of all the samples, and nanophase iron (npFe) or Fe-Ni alloy particles are typically distributed on the surfaces of ilmenite, kamacite, or other minerals near kamacite. By analyzing the focused ion beam ultrathin slices of laser pits with a transmission electron microscope, the results show that the subsurface structures can be divided into three classes and that npFe can be easily found in Fe-bearing minerals. These differences in impact characteristics will help determine the source material of npFe and infer the type of micrometeorite impactors. During micrometeorite bombardment, in the mare regions, the npFe are probably produced simultaneously from lunar basalt and micrometeorites with iron-rich minerals, while the npFe in the highlands regions mainly come from micrometeorites.

  14. Volcanism on Mars controlled by early oxidation of the upper mantle

    NASA Astrophysics Data System (ADS)

    Tuff, J.; Wade, J.; Wood, B. J.

    2013-06-01

    Detailed information about the chemical composition and evolution of Mars has been derived principally from the SNC (shergottite-nakhlite-chassignite) meteorites, which are genetically related igneous rocks of Martian origin. They are chemically and texturally similar to terrestrial basalts and cumulates, except that they have higher concentrations of iron and volatile elements such as phosphorus and chlorine and lower concentrations of nickel and other chalcophile (sulphur-loving) elements. Most Martian meteorites have relatively young crystallization ages (1.4 billion years to 180 million years ago) and are considered to be derived from young, lightly cratered volcanic regions, such as the Tharsis plateau. Surface rocks from the Gusev crater analysed by the Spirit rover are much older (about 3.7 billion years old) and exhibit marked compositional differences from the meteorites. Although also basaltic in composition, the surface rocks are richer in nickel and sulphur and have lower manganese/iron ratios than the meteorites. This has led to doubts that Mars can be described adequately using the `SNC model'. Here we show, however, that the differences between the compositions of meteorites and surface rocks can be explained by differences in the oxygen fugacity during melting of the same sulphur-rich mantle. This ties the sources of Martian meteorites to those of the surface rocks through an early (>3.7 billion years ago) oxidation of the uppermost mantle that had less influence on the deeper regions, which produce the more recent volcanic rocks.

  15. New Numerical Approaches for Modeling Thermochemical Convection in a Compositionally Stratified Fluid

    NASA Astrophysics Data System (ADS)

    Puckett, E. G.; Turcotte, D. L.; He, Y.; Lokavarapu, H. V.; Robey, J.; Kellogg, L. H.

    2017-12-01

    Geochemical observations of mantle-derived rocks favor a nearly homogeneous upper mantle, the source of mid-ocean ridge basalts (MORB), and heterogeneous lower mantle regions.Plumes that generate ocean island basalts are thought to sample the lower mantle regions and exhibit more heterogeneity than MORB.These regions have been associated with lower mantle structures known as large low shear velocity provinces below Africa and the South Pacific.The isolation of these regions is attributed to compositional differences and density stratification that, consequently, have been the subject of computational and laboratory modeling designed to determine the parameter regime in which layering is stable and understanding how layering evolves.Mathematical models of persistent compositional interfaces in the Earth's mantle may be inherently unstable, at least in some regions of the parameter space relevant to the mantle.Computing approximations to solutions of such problems presents severe challenges, even to state-of-the-art numerical methods.Some numerical algorithms for modeling the interface between distinct compositions smear the interface at the boundary between compositions, such as methods that add numerical diffusion or `artificial viscosity' in order to stabilize the algorithm. We present two new algorithms for maintaining high-resolution and sharp computational boundaries in computations of these types of problems: a discontinuous Galerkin method with a bound preserving limiter and a Volume-of-Fluid interface tracking algorithm.We compare these new methods with two approaches widely used for modeling the advection of two distinct thermally driven compositional fields in mantle convection computations: a high-order accurate finite element advection algorithm with entropy viscosity and a particle method.We compare the performance of these four algorithms on three problems, including computing an approximation to the solution of an initially compositionally stratified fluid at Ra = 105 with buoyancy numbers {B} that vary from no stratification at B = 0 to stratified flow at large B.

  16. Fossil plume head beneath the Arabian lithosphere?

    NASA Astrophysics Data System (ADS)

    Stein, Mordechai; Hofmann, Albrecht W.

    1992-12-01

    Phanerozoic alkali basalts from Israel, which have erupted over the past 200 Ma, have isotopic compositions similar to PREMA ("prevalent mantle") with narrow ranges of initial ɛ Nd(T) = +3.9-+5.9; 87Sr/ 86Sr(T)= 0.70292-0.70334; 206Pb/ 204Pb(T)= 18.88-19.99; 207Pb/ 204Pb(T)= 15.58-15.70; and 208Pb/ 204Pb(T)= 38.42-39.57. Their Nb/U(43 ± 9) and Ce/Pb(26 ± 6) ratios are identical to those of normal oceanic basalts, demonstrating that the basalts are essentially free of crustal contamination. Overall, the basalts are chemically and isotopically indistinguishable from many ordinary plume basalts, but no plume track can be identified. We propose that these and other, similar, magmas from the Arabian plate originated from a "fossilized" head of a mantle plume, which was unable to penetrate the continental lithosphere and was therefore trapped and stored beneath it. The plume head was emplaced some time between the late Proterozoic crust formation and the initiation of the Phanerozoic magmatic cycles. Basalts from rift environments in other continental localities show similar geochemistry to that of the Arabian basalts and their sources may also represent fossil plume heads trapped below the continents. We suggest that plume heads are, in general, characterized by the PREMA isotopic mantle signature, because the original plume sources (which may have HIMU or EM-type composition) have been diluted by overlying mantle material, which has been entrained by the plume heads during ascent. On the Arabian plate, rifting and thinning of the lithosphere caused partial melting of the stored plume, which led to periodic volcanism. In the late Cenozoic, the lithosphere broke up and the Red Sea opened. N-MORB tholeiites are now erupting in the central trough of the Red Sea, where the lithosphere has moved apart and the fossil plume has been exhausted, whereas E-MORBs are erupting in the northern and southern troughs, still tapping the plume reservoir. Fossil plumes, which are temporarily trapped at the base of the lithosphere, may explain why the uppermost mantle normally appears enriched when it is sampled by continental rift zones but depleted when it is sampled by MORB.

  17. Composition of the earth's upper mantle. II - Volatile trace elements in ultramafic xenoliths

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Wandless, G. A.; Petrie, R. K.; Irving, A. J.

    1980-01-01

    Radiochemical neutron activation analysis was used to determine the nine volatile elements Ag, Bi, Cd, In, Sb, Se, Te, Tl, and Zn in 19 ultramafic rocks, consisting mainly of spinel and garnet lherzolites. A sheared garnet lherzolite, PHN 1611, may approximate undepleted mantle material and tends to have a higher volatile element content than the depleted mantle material represented by spinel lherzolites. Comparisons of continental basalts with PHN 1611 and of oceanic ridge basalts with spinel lherzolites show similar basalt: source material partition factors for eight of the nine volatile elements, Sb being the exception. The strong depletion of Te and Se in the mantle, relative to lithophile elements of similar volatility, suggests that 97% of the earth's S, Se and Te may be in the outer core.

  18. Some thoughts on the origin of lunar ANT-KREEP and mare basalts

    NASA Technical Reports Server (NTRS)

    Wakita, H.; Laul, J. C.; Schmitt, R. A.

    1975-01-01

    It is suggested that a series of ANT (anorthosite-norite-troctolite)-KREEP type rocks and the source material for mare basalts sampled by Apollo 11, 12, 15, and 17 may have been derived from a common magmatic differentiation. This differentiation is studied on the basis of a model which proposes that, in the early history of the moon, extensive melting occurred in the outer lunar shell and a magma layer of 100-200 km was formed. The presence of a residual liquid which has not yet been sampled is suspected between high-K KREEP and the Apollo 11 basalt materials. This residual liquid would have a FeO/MgO ratio greater than one and would be significantly enriched in apatite, zircon, K-feldspar, and ilmenite minerals.

  19. Pb isotopes of Gorgona Island (Colombia): isotopic variations correlated with magma type

    NASA Astrophysics Data System (ADS)

    Dupré, B.; Echeverría, L. M.

    1984-02-01

    Lead isotopic results obtained on komatiites and basalts from Gorgona Island provide evidence of large isotopic variations within a restricted area (8 × 2.5 km). The variations are correlated with differences in volcanic rock type. The highest isotopic ratios ( 206Pb/ 204Pb˜ 19.75 ) correspond to tholeiites which make up most of the island. The lowest ratios (18.3) correspond to the komatiites of the west coast of the island. Other rock types (komatiites of the east coast, K-tholeiites, picrites and tuffs) have isotopic characteristics intermediate between these two extreme values. These results are explained by the existence of two distinct mantle source regions, and by mixing or contamination between them.

  20. Petrology and petrogenesis of the Eocene Volcanic rocks in Yildizeli area (Sivas), Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Doğa Topbay, C.; Karacık, Zekiye; Genç, S. Can; Göçmengil, Gönenç

    2015-04-01

    Yıldızeli region to the south of İzmir Ankara Erzincan suture zone is situated on the large Sivas Tertiary sedimentary basin. After the northern branch of the Neotethyan Ocean was northerly consumed beneath the Sakarya Continent, a continent - continent collision occurred between the Anatolide- Tauride platform and Pontides and followed a severe intermediate magmatism during the Late Cretaceous- Tertiary period. This created an east-west trending volcanic belt along the whole Pontide range. In the previous studies different models are suggested for the Eocene volcanic succession such as post-collisional, delamination and slab-breakoff models as well as the arc model for its westernmost parts. We will present our field and geochemical data obtained from the Yıldızeli and its surroundings for its petrogenesis, and will discuss the tectonic model(s) on the basis of their geochemical/petrological aspects. Cenozoic volcanic sequences of Yıldızeli region which is the main subject of this study, overlie Pre-Mesozoic crustal meta-sedimentary group of Kırşehir Massif, Ophiolitic mélange and Cretaceous- Paleocene? flysch-like sequences. In the northern part of Yıldızeli region, north vergent thrust fault trending E-W seperates the ophiolitic mélange complex from the Upper Cretaceous-Paleocene and Tertiary formations. Volcano-sedimentary units, Eocene in age, of the Yıldızeli (Sivas-Turkey) which are intercalated with sedimentary deposits related to the collision of Anatolide-Tauride and a simultaneous volcanic activity (i.e. the Yıldızeli volcanics), exposed throughout a wide zone along E-W orientation. Yıldızeli volcanics consist of basalts, basaltic-andesites and andesitic lavas intercalated flow breccias and epiclastic, pyroclastic deposits. Basaltic andesite lavas contain Ca-rich plagioclase + clinopyroxene ± olivine with minor amounts of opaque minerals in a matrix comprised of microlites and glass; andesitic lavas are generally contain Ca-Na plagioclase + hornblend ± pyroxene ± biotite + opaques in a matrix comprised of mostly glass, microlites or crypto to micro crystalline feldspars. All the lavas show mainly pilotaxitic, intersertal, cumulophyric and poikilitic textures. Geochemically, Yıldızeli lavas ranging in composition from basalt to trachyandesite displaying the calc-alkaline affinity with medium-K and shoshonitic character. All intermediate and basic volcanic rocks show enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) relative to the high field strength elements (HFSE) such as Nb, Ta, Zr and Ti. Volcanic rocks of the Yıldızeli region display the following range in Sr and Nd initial isotope ratios: 87Sr/86Sr = 0.704389 to 0.706291 and 143Nd/144Nd = 0.512671. The major- trace element geochemistry and isotopic values suggest that Yıldızeli volcanics derived possibly from a mantle source which was modified by subduction related fluids or was contaminated by the continental crustal components.

Top