Science.gov

Sample records for base catalyzed decomposition

  1. MEMS-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition

    NASA Astrophysics Data System (ADS)

    Hitt, Darren L.; Zakrzwski, Charles M.; Thomas, Michael A.

    2001-12-01

    Microelectromechanical systems (MEMS) techniques offer great potential in satisfying the mission requirements for the next generation of miniaturized spacecraft being designed by NASA and Department of Defense agencies. More commonly referred to as `nanosats', these spacecraft feature masses in the range of 10-100 kg and therefore have unique propulsion requirements. The propulsion systems must be capable of providing extremely low levels of thrust and impulse while also satisfying stringent demands on size, mass, power consumption and cost. We begin with an overview of micropropulsion requirements and some current MEMS-based strategies being developed to meet these needs. The remainder of the paper focuses on the progress being made at NASA Goddard Space Flight Center toward the development of a prototype monopropellant MEMS thruster which uses the catalyzed chemical decomposition of high-concentration hydrogen peroxide as a propulsion mechanism. The products of decomposition are delivered to a microscale converging/diverging supersonic nozzle, which produces the thrust vector; the targeted thrust level is approximately 500 µN with a specific impulse of 140-180 s. Macroscale hydrogen peroxide thrusters have been used for satellite propulsion for decades; however, the implementation of traditional thruster designs on the MEMS scale has uncovered new challenges in fabrication, materials compatibility, and combustion and hydrodynamic modeling. A summary of the achievements of the project to date is given, as is a discussion of remaining challenges and future prospects.

  2. MEMS-Based Satellite Micropropulsion Via Catalyzed Hydrogen Peroxide Decomposition

    NASA Technical Reports Server (NTRS)

    Hitt, Darren L.; Zakrzwski, Charles M.; Thomas, Michael A.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    Micro-electromechanical systems (MEMS) techniques offer great potential in satisfying the mission requirements for the next generation of "micro-scale" satellites being designed by NASA and Department of Defense agencies. More commonly referred to as "nanosats", these miniature satellites feature masses in the range of 10-100 kg and therefore have unique propulsion requirements. The propulsion systems must be capable of providing extremely low levels of thrust and impulse while also satisfying stringent demands on size, mass, power consumption and cost. We begin with an overview of micropropulsion requirements and some current MEMS-based strategies being developed to meet these needs. The remainder of the article focuses the progress being made at NASA Goddard Space Flight Center towards the development of a prototype monopropellant MEMS thruster which uses the catalyzed chemical decomposition of high concentration hydrogen peroxide as a propulsion mechanism. The products of decomposition are delivered to a micro-scale converging/diverging supersonic nozzle which produces the thrust vector; the targeted thrust level approximately 500 N with a specific impulse of 140-180 seconds. Macro-scale hydrogen peroxide thrusters have been used for satellite propulsion for decades; however, the implementation of traditional thruster designs on a MEMS scale has uncovered new challenges in fabrication, materials compatibility, and combustion and hydrodynamic modeling. A summary of the achievements of the project to date is given, as is a discussion of remaining challenges and future prospects.

  3. Chemical dehalogenation treatment: Base-catalyzed decomposition process (BCDP). Tech data sheet

    SciTech Connect

    Not Available

    1992-07-01

    The Base-Catalyzed Decomposition Process (BCDP) is an efficient, relatively inexpensive treatment process for polychlorinated biphenyls (PCBs). It is also effective on other halogenated contaminants such as insecticides, herbicides, pentachlorophenol (PCP), lindane, and chlorinated dibenzodioxins and furans. The heart of BCDP is the rotary reactor in which most of the decomposition takes place. The contaminated soil is first screened, processed with a crusher and pug mill, and stockpiled. Next, in the main treatment step, this stockpile is mixed with sodium bicarbonate (in the amount of 10% of the weight of the stockpile) and heated for about one hour at 630 F in the rotary reactor. Most (about 60% to 90%) of the PCBs in the soil are decomposed in this step. The remainder are volatilized, captured, and decomposed.

  4. Demonstration of base catalyzed decomposition process, Navy Public Works Center, Guam, Mariana Islands

    SciTech Connect

    Schmidt, A.J.; Freeman, H.D.; Brown, M.D.; Zacher, A.H.; Neuenschwander, G.N.; Wilcox, W.A.; Gano, S.R.; Kim, B.C.; Gavaskar, A.R.

    1996-02-01

    Base Catalyzed Decomposition (BCD) is a chemical dehalogenation process designed for treating soils and other substrate contaminated with polychlorinated biphenyls (PCB), pesticides, dioxins, furans, and other hazardous organic substances. PCBs are heavy organic liquids once widely used in industry as lubricants, heat transfer oils, and transformer dielectric fluids. In 1976, production was banned when PCBs were recognized as carcinogenic substances. It was estimated that significant quantities (one billion tons) of U.S. soils, including areas on U.S. military bases outside the country, were contaminated by PCB leaks and spills, and cleanup activities began. The BCD technology was developed in response to these activities. This report details the evolution of the process, from inception to deployment in Guam, and describes the process and system components provided to the Navy to meet the remediation requirements. The report is divided into several sections to cover the range of development and demonstration activities. Section 2.0 gives an overview of the project history. Section 3.0 describes the process chemistry and remediation steps involved. Section 4.0 provides a detailed description of each component and specific development activities. Section 5.0 details the testing and deployment operations and provides the results of the individual demonstration campaigns. Section 6.0 gives an economic assessment of the process. Section 7.0 presents the conclusions and recommendations form this project. The appendices contain equipment and instrument lists, equipment drawings, and detailed run and analytical data.

  5. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: incineration and base catalyzed decomposition.

    PubMed

    Hu, Xintao; Zhu, Jianxin; Ding, Qiong

    2011-07-15

    Remediation action is critical for the management of polychlorinated biphenyl (PCB) contaminated sites. Dozens of remediation technologies developed internationally could be divided in two general categories incineration and non-incineration. In this paper, life cycle assessment (LCA) was carried out to study the environmental impacts of these two kinds of remediation technologies in selected PCB contaminated sites, where Infrared High Temperature Incineration (IHTI) and Base Catalyzed Decomposition (BCD) were selected as representatives of incineration and non-incineration. A combined midpoint/damage approach was adopted by using SimaPro 7.2 and IMPACTA2002+ to assess the human toxicity, ecotoxicity, climate change impact, and resource consumption from the five subsystems of IHTI and BCD technologies, respectively. It was found that the major environmental impacts through the whole lifecycle arose from energy consumption in both IHTI and BCD processes. For IHTI, primary and secondary combustion subsystem contributes more than 50% of midpoint impacts concerning with carcinogens, respiratory inorganics, respiratory organics, terrestrial ecotoxity, terrestrial acidification/eutrophication and global warming. In BCD process, the rotary kiln reactor subsystem presents the highest contribution to almost all the midpoint impacts including global warming, non-renewable energy, non-carcinogens, terrestrial ecotoxity and respiratory inorganics. In the view of midpoint impacts, the characterization values for global warming from IHTI and BCD were about 432.35 and 38.5 kg CO(2)-eq per ton PCB-containing soils, respectively. LCA results showed that the single score of BCD environmental impact was 1468.97 Pt while IHTI's score is 2785.15 Pt, which indicates BCD potentially has a lower environmental impact than IHTI technology in the PCB contaminated soil remediation process.

  6. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: incineration and base catalyzed decomposition.

    PubMed

    Hu, Xintao; Zhu, Jianxin; Ding, Qiong

    2011-07-15

    Remediation action is critical for the management of polychlorinated biphenyl (PCB) contaminated sites. Dozens of remediation technologies developed internationally could be divided in two general categories incineration and non-incineration. In this paper, life cycle assessment (LCA) was carried out to study the environmental impacts of these two kinds of remediation technologies in selected PCB contaminated sites, where Infrared High Temperature Incineration (IHTI) and Base Catalyzed Decomposition (BCD) were selected as representatives of incineration and non-incineration. A combined midpoint/damage approach was adopted by using SimaPro 7.2 and IMPACTA2002+ to assess the human toxicity, ecotoxicity, climate change impact, and resource consumption from the five subsystems of IHTI and BCD technologies, respectively. It was found that the major environmental impacts through the whole lifecycle arose from energy consumption in both IHTI and BCD processes. For IHTI, primary and secondary combustion subsystem contributes more than 50% of midpoint impacts concerning with carcinogens, respiratory inorganics, respiratory organics, terrestrial ecotoxity, terrestrial acidification/eutrophication and global warming. In BCD process, the rotary kiln reactor subsystem presents the highest contribution to almost all the midpoint impacts including global warming, non-renewable energy, non-carcinogens, terrestrial ecotoxity and respiratory inorganics. In the view of midpoint impacts, the characterization values for global warming from IHTI and BCD were about 432.35 and 38.5 kg CO(2)-eq per ton PCB-containing soils, respectively. LCA results showed that the single score of BCD environmental impact was 1468.97 Pt while IHTI's score is 2785.15 Pt, which indicates BCD potentially has a lower environmental impact than IHTI technology in the PCB contaminated soil remediation process. PMID:21571422

  7. EVALUATION OF THE FULL-SCALE BASE CATALYZED DECOMPOSITION PROCESS (BCDP) UNIT LOCATED IN GUAM

    EPA Science Inventory

    This report summarizes performance data collected in February 1997 on the removal of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) from soil fed to a first-stage rotary kiln reactor of the Base Catalyzed Dec...

  8. Kinetic modeling of Pt-catalyzed glycolaldehyde decomposition to syngas.

    PubMed

    Salciccioli, Michael; Vlachos, Dionisios G

    2012-05-10

    Fundamental knowledge of the elementary reaction mechanisms involved in oxygenate decomposition on transition metal catalysts can facilitate the optimization of future catalyst and reactor systems for biomass upgrade to fuels and chemicals. Pt-catalyzed decomposition of glycolaldehyde, as the smallest oxygenate with alcohol and aldehyde functionality, was studied via a DFT-based microkinetic model. It was found that two decomposition pathways exist. Under conditions of low hydrogen surface coverage, the initial C-H bond breaking reaction to HOCH(2)CO* is prevalent, while under conditions of high hydrogen coverage, the rather unexpected O-H bond forming reaction to HOCH(2)CHOH* is more active (subsequent decomposition is energetically favorable from HOCH(2)CHOH*). Our results indicate the possibility that (de)hydrogenation chemistry is rate-controlling in many small polyoxygenate biomass derivatives, and suitable catalysts are needed. Finally, DFT was used to understand the increased decomposition activity observed on the surface segregated Ni-Pt-Pt bimetallic catalyst. It was found that the initial O-H bond breaking of glycolaldehyde to OCH(2)CHO* has an activation barrier of just 0.21 eV. This barrier is lower than that of any glycolaldehyde consuming reaction on Pt. These computational predictions are in qualitative agreement with experimental results. PMID:22483365

  9. Theoretical study of water cluster catalyzed decomposition of formic acid.

    PubMed

    Inaba, Satoshi

    2014-04-24

    We have performed a number of quantum chemical simulations to examine water cluster catalyzed decomposition of formic acid. The decomposition of formic acid consists of two competing pathways, dehydration, and decarboxylation. We use the Gaussian 4 method of the Gaussian09 software to locate and optimize a transition state of the decomposition reaction and obtain the activation energy. The decomposition starts by transferring a proton of a formic acid to a water molecule. The de Broglie wavelength of a proton is similar to the width of the potential barrier of the decomposition reaction at low temperature. The tunneling, in which a proton penetrates the potential barrier, enhances the decomposition rate. Water molecules serve as the catalyst in the decomposition and reduce the activation energy. The relay of a proton from a water molecule to a neighboring water molecule is accomplished with little change of the geometry of a molecule, resulting in the reduction of the activation energy. Two water molecules are actively involved in the decomposition reaction to reduce the activation energy. We have also examined the effect of water clusters with three, four, and five water molecules on the decomposition reaction. The noncovalent distance between a hydrogen atom of a water molecule and an oxygen atom of a neighboring water molecule decreases in a water cluster due to the cooperative many-body interactions. A water molecule in a water cluster becomes a better proton donor as well as a better proton acceptor. The activation energy of the decomposition is further decreased by the catalytic effect of a water cluster. We calculate the reaction rate using the transition state theory corrected by the tunneling effect of a proton. The calculated reaction rate of the decarboxylation is smaller than that of the dehydration when less than three water molecules are included in the simulation. However, the major product of the decomposition of a formic acid becomes carbon dioxide

  10. Decomposition of peracetic acid catalyzed by vanadium complexes

    SciTech Connect

    Makarov, A.P.; Gekhman, A.E.; Moiseev, I.I.; Polotryuk, O.Y.

    1986-02-01

    This paper studies the decomposition of peracetic acid (AcOOH) in acetic acid (AcOH) catalyzed by vanadium complexes. It is shown that peractic acid in acetic acid solutions of ammonium anadate decomposes with the predominant formation of 0/sub 2/ and small amounts of CO/sub 2/, the yield of which increases with increasing temperature and peracetic acid concentration. Both reactions proceed without the formation of free radicals in amounts detectable by ESR spectroscopy. The rate of oxygen release under conditions in which the formation of CO/sub 2/ is insignificant obeys a kinetic equation indicating the intermediate formation of a complex between V/sup 5 +/ ions and peracetic acid and the slow conversion of this complex into the observed products.

  11. Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Vetter, Tiffany A.; Colombo, D. Philip, Jr.

    2003-07-01

    CIBA Vision Corporation markets a contact lens cleaning system that consists of an AOSEPT disinfectant solution and an AOSEPT lens cup. The disinfectant is a buffered 3.0% m/v hydrogen peroxide solution and the cup includes a platinum-coated AOSEPT disc. The hydrogen peroxide disinfects by killing bacteria, fungi, and viruses found on the contact lenses. Because the concentration of hydrogen peroxide needed to disinfect is irritating to eyes, the hydrogen peroxide needs to be neutralized, or decomposed, before the contact lenses can be used again. A general chemistry experiment is described where the kinetics of the catalyzed decomposition of the hydrogen peroxide are studied by measuring the amount of oxygen generated as a function of time. The order of the reaction with respect to the hydrogen peroxide, the rate constant, and the energy of activation are determined. The integrated rate law is used to determine the time required to decompose the hydrogen peroxide to a concentration that is safe for eyes.

  12. Chemiluminescence efficiency of catalyzed 1,2-dioxetanone decomposition determined by steric effects.

    PubMed

    Bartoloni, Fernando Heering; de Oliveira, Marcelo Almeida; Ciscato, Luiz Francisco Monteiro Leite; Augusto, Felipe Alberto; Bastos, Erick Leite; Baader, Wilhelm Josef

    2015-04-17

    The chemiluminescent decomposition of 1,2-dioxetanones (α-peroxylactones), catalyzed by an appropriate fluorescent activator, is an important simple model for efficient bioluminescent transformations. In this work, we report experimental data on the catalyzed decomposition of two spiro-substituted 1,2-dioxetanone derivatives, which support the occurrence of an intermolecular electron transfer from the activator to the peroxide. The low efficiency of the studied systems is associated with steric hindrance during the chemiexcitation sequence, rationalized using the concept of supermolecule formation between the peroxide and the catalyst. This approach explains the difference in the chemiexcitation efficiencies in the decomposition of four-membered cyclic peroxide derivatives: 1,2-dioxetanes, 1,2-dioxetanones, and 1,2-dioxetanedione (the intermediate in the peroxyoxalate reaction), which are the most important model compounds for excited-state formation in chemiluminescence and bioluminescence processes. PMID:25831218

  13. Oxidative decomposition of formaldehyde catalyzed by a bituminous coal

    SciTech Connect

    Haim Cohen; Uri Green

    2009-05-15

    It has been observed that molecular hydrogen is formed during long-term storage of bituminous coals via oxidative decomposition of formaldehyde by coal surface peroxides. This study has investigated the effects of coal quantity, temperature, and water content on the molecular hydrogen formation with a typical American coal (Pittsburgh No. 6). The results indicate that the coal's surface serves as a catalyst in the formation processes of molecular hydrogen. Furthermore, the results also indicate that low temperature emission of molecular hydrogen may possibly be the cause of unexplained explosions in confined spaces containing bituminous coals, for example, underground mines or ship holds. 20 refs., 4 figs., 6 tabs.

  14. Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition.

    PubMed

    Borisov, Vitaliy B; Forte, Elena; Siletsky, Sergey A; Sarti, Paolo; Giuffrè, Alessandro

    2015-02-01

    Cytochrome bd is a prokaryotic respiratory quinol oxidase phylogenetically unrelated to heme-copper oxidases, that was found to promote virulence in some bacterial pathogens. Cytochrome bd from Escherichia coli was previously reported to contribute not only to proton motive force generation, but also to bacterial resistance to nitric oxide (NO) and hydrogen peroxide (H2O2). Here, we investigated the interaction of the purified enzyme with peroxynitrite (ONOO(-)), another harmful reactive species produced by the host to kill invading microorganisms. We found that addition of ONOO(-) to cytochrome bd in turnover with ascorbate and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) causes the irreversible inhibition of a small (≤15%) protein fraction, due to the NO generated from ONOO(-) and not to ONOO(-) itself. Consistently, addition of ONOO(-) to cells of the E. coli strain GO105/pTK1, expressing cytochrome bd as the only terminal oxidase, caused only a minor (≤5%) irreversible inhibition of O2 consumption, without measurable release of NO. Furthermore, by directly monitoring the kinetics of ONOO(-) decomposition by stopped-flow absorption spectroscopy, it was found that the purified E. coli cytochrome bd in turnover with O2 is able to metabolize ONOO(-) with an apparent turnover rate as high as ~10 mol ONOO(-) (mol enzyme)(-1) s(-1) at 25°C. To the best of our knowledge, this is the first time that the kinetics of ONOO(-) decomposition by a terminal oxidase has been investigated. These results strongly suggest a protective role of cytochrome bd against ONOO(-) damage.

  15. Application of the base catalyzed decomposition process to treatment of PCB-contaminated insulation and other materials associated with US Navy vessels. Final report

    SciTech Connect

    Schmidt, A.J.; Zacher, A.H.; Gano, S.R.

    1996-09-01

    The BCD process was applied to dechlorination of two types of PCB-contaminated materials generated from Navy vessel decommissioning activities at Puget Sound Naval Shipyard: insulation of wool felt impregnated with PCB, and PCB-containing paint chips/debris from removal of paint from metal surfaces. The BCD process is a two-stage, low-temperature chemical dehalogenation process. In Stage 1, the materials are mixed with sodium bicarbonate and heated to 350 C. The volatilized halogenated contaminants (eg, PCBs, dioxins, furans), which are collected in a small volume of particulates and granular activated carbon, are decomposed by the liquid-phase reaction (Stage 2) in a stirred-tank reactor, using a high-boiling-point hydrocarbon oil as the reaction medium, with addition of a hydrogen donor, a base (NaOH), and a catalyst. The tests showed that treating wool felt insulation and paint chip wastes with Stage 2 on a large scale is feasible, but compared with current disposal costs for PCB-contaminated materials, using Stage 2 would not be economical at this time. For paint chips generated from shot/sand blasting, the solid-phase BCD process (Stage 1) should be considered, if paint removal activities are accelerated in the future.

  16. The mechanisms of S-nitrosothiol decomposition catalyzed by iron.

    PubMed

    Vanin, Anatoly F; Papina, Alina A; Serezhenkov, Vladimir A; Koppenol, Willem H

    2004-03-01

    The mechanisms of S-nitrosothiol transformation into paramagnetic dinitrosyl iron complexes (DNICs) with thiol- or non-thiol ligands or mononitrosyl iron complex (MNICs) with N-methyl-D-glucamine dithiocarbamate catalyzed by iron(II) ions under anaerobic conditions were studied by monitoring EPR or optical features of the complexes and S-nitrosothiols. The kinetic investigations demonstrated the appearance of short-living paramagnetic mononitrosyl-iron complex with L-cysteine prior to the formation of stable dinitrosyl-iron complex with cysteine in the solution of iron(II)-citrate complex (50-100 microM), S-nitrosocysteine (400 microM), and L-cysteine (20 mM) in 100 mM Hepes buffer (pH 7.4). The addition of deoxyhemoglobin (100 microM) did not influence the process, which points to a direct interaction between S-nitrosocysteine and iron(II) ions to yield DNIC. The reaction of DNIC-cysteine formation is first- and second-order in iron and S-nitrosocysteine, respectively. The third-order rate constant is (1.0 +/- 0.2) x 10(5) M(-2) s(-1) (estimated from EPR results) or (2.0 +/- 0.1) x 10(4) M(-2) s(-1) (estimated by optical method). A similar process of DNIC-cysteine formation was observed in a solution of iron(II)-citrate complex, L-cysteine, and NO-proline (200 microM) as a NO* donor. The appearance of a less stable dinitrosyl-iron complex with phosphate was detected when solutions of iron(II)-citrate containing 100 mM phosphate buffer (pH 7.4) were mixed with S-nitrosocysteine or NO-proline. The rapid formation of DNIC with phosphate was followed by its decay. When the concentration of L-cysteine in solutions was reduced from 20 to 1 mM, the life-time of the DNIC-cysteine diminished notably; this was caused by consumption of L-cysteine in the process of DNIC-cysteine formation from S-nitrosocysteine and iron. Thus, L-cysteine is consumed. Formation of DNIC with glutathione was also observed in a solution of glutathione (20 mM), S-nitrosoglutathione (400 micro

  17. Kinetics and mechanism of the acid-catalyzed decomposition of omega-diazoacetophenones and their o-carbomethyoxy derivatives

    SciTech Connect

    Denisova, T.G.

    1988-01-01

    The kinetics of the acid-catalyzed decomposition of omega-diazoacetophenones and their o-carbomethoxy derivatives have been studied and their rate constants and activation energies measured in dioxane-H/sub 2/O (D/sub 2/O) and aqueous (D/sub 2/O)-dioxane mixtures (40:60 by volume) in the presence of H/sub 2/SO/sub 4/ (D/sub 2/SO/sub 4/), as well as in acetic and deuteroacetic acids, in the temperature range 290-328 K. Based on the results of k/sub H//k/sub D/ and ..delta..S not identical to measurements, assumptions have been made concerning the mechanism of the catalytic decomposition of the indicated diazoketones.

  18. Efficient Method for the Determination of the Activation Energy of the Iodide-Catalyzed Decomposition of Hydrogen Peroxide

    ERIC Educational Resources Information Center

    Sweeney, William; Lee, James; Abid, Nauman; DeMeo, Stephen

    2014-01-01

    An experiment is described that determines the activation energy (E[subscript a]) of the iodide-catalyzed decomposition reaction of hydrogen peroxide in a much more efficient manner than previously reported in the literature. Hydrogen peroxide, spontaneously or with a catalyst, decomposes to oxygen and water. Because the decomposition reaction is…

  19. BASE-CATALYZED DESTRUCTION OF PCBS-NEW DONORS, NEW TRANSFER AGENTS/CATALYSTS

    EPA Science Inventory

    The use of hydrogen transfer agents and catalysts to improve the base-catalyzed decomposition of polychlorinated biphenyls (PCBs) was investigated. The reaction proceeded only in the presence of base, but the rate of PCB disappearance increased with increasing amount of hydrogen ...

  20. MECHANISTIC STUDIES OF SURFACE CATALYZED H2O2 DECOMPOSITION AND CONTAMINANT DEGRADATION IN THE PRESENCE OF SAND. (R823402)

    EPA Science Inventory

    This study examined the mechanism and kinetics of surface catalyzed hydrogen peroxide decomposition and degradation of contaminants in the presence of sand collected from an aquifer and a riverbed. Batch experiments were conducted using variable sand concentrations (0.2 to 1.0&nb...

  1. Palladium-atom catalyzed formic acid decomposition and the switch of reaction mechanism with temperature.

    PubMed

    He, Nan; Li, Zhen Hua

    2016-04-21

    Formic acid decomposition (FAD) reaction has been an innovative way for hydrogen energy. Noble metal catalysts, especially palladium-containing nanoparticles, supported or unsupported, perform well in this reaction. Herein, we considered the simplest model, wherein one Pd atom is used as the FAD catalyst. With high-level theoretical calculations of CCSD(T)/CBS quality, we investigated all possible FAD pathways. The results show that FAD catalyzed by one Pd atom follows a different mechanism compared with that catalyzed by surfaces or larger clusters. At the initial stage of the reaction, FAD follows a dehydration route and is quickly poisoned by CO due to the formation of very stable PdCO. PdCO then becomes the actual catalyst for FAD at temperatures approximately below 1050 K. Beyond 1050 K, there is a switch of catalyst from PdCO to Pd atom. The results also show that dehydration is always favoured over dehydrogenation on either the Pd-atom or PdCO catalyst. On the Pd-atom catalyst, neither dehydrogenation nor dehydration follows the formate mechanism. In contrast, on the PdCO catalyst, dehydrogenation follows the formate mechanism, whereas dehydration does not. We also systematically investigated the performance of 24 density functional theory methods. We found that the performance of the double hybrid mPW2PLYP functional is the best, followed by the B3LYP, B3PW91, N12SX, M11, and B2PLYP functionals.

  2. Palladium-atom catalyzed formic acid decomposition and the switch of reaction mechanism with temperature.

    PubMed

    He, Nan; Li, Zhen Hua

    2016-04-21

    Formic acid decomposition (FAD) reaction has been an innovative way for hydrogen energy. Noble metal catalysts, especially palladium-containing nanoparticles, supported or unsupported, perform well in this reaction. Herein, we considered the simplest model, wherein one Pd atom is used as the FAD catalyst. With high-level theoretical calculations of CCSD(T)/CBS quality, we investigated all possible FAD pathways. The results show that FAD catalyzed by one Pd atom follows a different mechanism compared with that catalyzed by surfaces or larger clusters. At the initial stage of the reaction, FAD follows a dehydration route and is quickly poisoned by CO due to the formation of very stable PdCO. PdCO then becomes the actual catalyst for FAD at temperatures approximately below 1050 K. Beyond 1050 K, there is a switch of catalyst from PdCO to Pd atom. The results also show that dehydration is always favoured over dehydrogenation on either the Pd-atom or PdCO catalyst. On the Pd-atom catalyst, neither dehydrogenation nor dehydration follows the formate mechanism. In contrast, on the PdCO catalyst, dehydrogenation follows the formate mechanism, whereas dehydration does not. We also systematically investigated the performance of 24 density functional theory methods. We found that the performance of the double hybrid mPW2PLYP functional is the best, followed by the B3LYP, B3PW91, N12SX, M11, and B2PLYP functionals. PMID:27005983

  3. Theoretical investigations on decomposition of HCOOH catalyzed by Pd7 cluster.

    PubMed

    Li, Song Ju; Zhou, Xin; Tian, Wei Quan

    2012-11-29

    Density functional theory based calculations have been performed to investigate decomposition of HCOOH on a Pd(7) cluster in vacuum and solution. The adsorption of HCOOH on Pd(7) cluster occurs on a layer-by-layer quasi-planar conformation of Pd(7) with 4 atoms on top and 3 atoms below. Possible reaction pathways for the decomposition of HCOOH adsorbed on Pd(7) cluster in vacuum and solution are located and compared in terms of the reaction enengies and barriers. Formic acid prefers to decompose through dehydrogenation rather than dehydrate under the significant effect of solvent. The toxic species, CO generated on Pt surface, could not possibly appear in the catalytic decomposition of formic acid on Pd(7) cluster due to high reaction barrier, thus no poisoning of catalyst would occur on Pd surface. The Pd(7) cluster model rationalizes experimental observation, and the predictions are in good agreement with the ones based on the surface model. PMID:23102058

  4. Anatase-brookite mixed phase nano TiO2 catalyzed homolytic decomposition of ammonium nitrate.

    PubMed

    Vargeese, Anuj A; Muralidharan, Krishnamurthi

    2011-09-15

    Compared to the conventional ammonium perchlorate based solid rocket propellants, burning of ammonium nitrate (AN) based propellants produce environmentally innocuous combustion gases. Application of AN as propellant oxidizer is restricted due to low reactivity and low energetics besides its near room temperature polymorphic phase transition. In the present study, anatase-brookite mixed phase TiO(2) nanoparticles (~ 10 nm) are synthesized and used as catalyst to enhance the reactivity of the environmental friendly propellant oxidizer ammonium nitrate. The activation energy required for the decomposition reactions, computed by differential and non-linear integral isoconversional methods are used to establish the catalytic activity. Presumably, the removal of NH(3) and H(2)O, known inhibitors of ammonium nitrate decomposition reaction, due to the surface reactions on active surface of TiO(2) changes the decomposition pathway and thereby the reactivity.

  5. Gas Pressure Monitored Iodide-Catalyzed Decomposition Kinetics of H[subscript 2]O[subscript 2]: Initial-Rate and Integrated-Rate Methods in the General Chemistry Lab

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; Barlag, Rebecca

    2010-01-01

    The reaction kinetics of the iodide-catalyzed decomposition of [subscript 2]O[subscript 2] using the integrated-rate method is described. The method is based on the measurement of the total gas pressure using a datalogger and pressure sensor. This is a modification of a previously reported experiment based on the initial-rate approach. (Contains 2…

  6. Adaptive Fourier decomposition based ECG denoising.

    PubMed

    Wang, Ze; Wan, Feng; Wong, Chi Man; Zhang, Liming

    2016-10-01

    A novel ECG denoising method is proposed based on the adaptive Fourier decomposition (AFD). The AFD decomposes a signal according to its energy distribution, thereby making this algorithm suitable for separating pure ECG signal and noise with overlapping frequency ranges but different energy distributions. A stop criterion for the iterative decomposition process in the AFD is calculated on the basis of the estimated signal-to-noise ratio (SNR) of the noisy signal. The proposed AFD-based method is validated by the synthetic ECG signal using an ECG model and also real ECG signals from the MIT-BIH Arrhythmia Database both with additive Gaussian white noise. Simulation results of the proposed method show better performance on the denoising and the QRS detection in comparing with major ECG denoising schemes based on the wavelet transform, the Stockwell transform, the empirical mode decomposition, and the ensemble empirical mode decomposition.

  7. Steganography based on pixel intensity value decomposition

    NASA Astrophysics Data System (ADS)

    Abdulla, Alan Anwar; Sellahewa, Harin; Jassim, Sabah A.

    2014-05-01

    This paper focuses on steganography based on pixel intensity value decomposition. A number of existing schemes such as binary, Fibonacci, Prime, Natural, Lucas, and Catalan-Fibonacci (CF) are evaluated in terms of payload capacity and stego quality. A new technique based on a specific representation is proposed to decompose pixel intensity values into 16 (virtual) bit-planes suitable for embedding purposes. The proposed decomposition has a desirable property whereby the sum of all bit-planes does not exceed the maximum pixel intensity value, i.e. 255. Experimental results demonstrate that the proposed technique offers an effective compromise between payload capacity and stego quality of existing embedding techniques based on pixel intensity value decomposition. Its capacity is equal to that of binary and Lucas, while it offers a higher capacity than Fibonacci, Prime, Natural, and CF when the secret bits are embedded in 1st Least Significant Bit (LSB). When the secret bits are embedded in higher bit-planes, i.e., 2nd LSB to 8th Most Significant Bit (MSB), the proposed scheme has more capacity than Natural numbers based embedding. However, from the 6th bit-plane onwards, the proposed scheme offers better stego quality. In general, the proposed decomposition scheme has less effect in terms of quality on pixel value when compared to most existing pixel intensity value decomposition techniques when embedding messages in higher bit-planes.

  8. Distributed Prognostics based on Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Roychoudhury, I.

    2014-01-01

    Within systems health management, prognostics focuses on predicting the remaining useful life of a system. In the model-based prognostics paradigm, physics-based models are constructed that describe the operation of a system and how it fails. Such approaches consist of an estimation phase, in which the health state of the system is first identified, and a prediction phase, in which the health state is projected forward in time to determine the end of life. Centralized solutions to these problems are often computationally expensive, do not scale well as the size of the system grows, and introduce a single point of failure. In this paper, we propose a novel distributed model-based prognostics scheme that formally describes how to decompose both the estimation and prediction problems into independent local subproblems whose solutions may be easily composed into a global solution. The decomposition of the prognostics problem is achieved through structural decomposition of the underlying models. The decomposition algorithm creates from the global system model a set of local submodels suitable for prognostics. Independent local estimation and prediction problems are formed based on these local submodels, resulting in a scalable distributed prognostics approach that allows the local subproblems to be solved in parallel, thus offering increases in computational efficiency. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the distributed approach, compare the performance with a centralized approach, and establish its scalability. Index Terms-model-based prognostics, distributed prognostics, structural model decomposition ABBREVIATIONS

  9. In-situ and self-distributed: A new understanding on catalyzed thermal decomposition process of ammonium perchlorate over Nd{sub 2}O{sub 3}

    SciTech Connect

    Zou, Min Wang, Xin Jiang, Xiaohong Lu, Lude

    2014-05-01

    Catalyzed thermal decomposition process of ammonium perchlorate (AP) over neodymium oxide (Nd{sub 2}O{sub 3}) was investigated. Catalytic performances of nanometer-sized Nd{sub 2}O{sub 3} and micrometer-sized Nd{sub 2}O{sub 3} were evaluated by differential scanning calorimetry (DSC). In contrast to universal concepts, catalysts in different sizes have nearly similar catalytic activities. Based on structural and morphological variation of the catalysts during the reaction, combined with mass spectrum analyses and studies of unmixed style, a new understanding of this catalytic process was proposed. We believed that the newly formed chloride neodymium oxide (NdOCl) was the real catalytic species in the overall thermal decomposition of AP over Nd{sub 2}O{sub 3}. Meanwhile, it was the “self-distributed” procedure which occurred within the reaction that also worked for the improvement of overall catalytic activities. This work is of great value in understanding the roles of micrometer-sized catalysts used in heterogeneous reactions, especially the solid–solid reactions which could generate a large quantity of gaseous species. - Graphical abstract: In-situ and self-distributed reaction process in thermal decomposition of AP catalyzed by Nd{sub 2}O{sub 3}. - Highlights: • Micro- and nano-Nd{sub 2}O{sub 3} for catalytic thermal decomposition of AP. • No essential differences on their catalytic performances. • Structural and morphological variation of catalysts digs out catalytic mechanism. • This catalytic process is “in-situ and self-distributed” one.

  10. [Pathway of aqueous ferric hydroxide catalyzed ozone decomposition and ozonation of trace nitrobenzene].

    PubMed

    Ma, Jun; Zhang, Tao; Chen, Zhong-lin; Sui, Ming-hao; Li, Xue-yan

    2005-03-01

    In this paper, the decomposition rate of ozone in water was measured over GAC and ferric hydroxide/GAC (FeOOH/GAC) catalyst and the mechanism of ozone catalytic decomposition was discussed. The catalytic ozonation activity of trace nitrobenzene in water was determined on several metal oxides and correlated with their surface density of hydroxyl groups and pHzpc,(pH of zero point of charge). The results show that: 1) The pseudo-first order rate of ozone decomposition increased by 68 and 108 percent for GAC and FeOOH/GAC catalysts respectively; 2) When t-butanol was added, the rate constant decreased by 9 % for GAC and 20% for FeOOH/GAC; 3) There was no direct correlation between surface density of hydroxyl groups and the activity of catalytic ozonation of nitrobenzene; 4) The oxide surface at nearly zero charged point was favorable for the catalytic ozonation of nitrobenzene.

  11. The Role of Oxygen in the Copper-Catalyzed Decomposition of Phenylborates in Aqueous Alkaline Solutions

    SciTech Connect

    Hyder, M.L.

    1997-03-17

    The effect of oxygen on the copper-catalyzed hydrolysis of phenyl borates containing from one to four phenyl groups was studied in 1 M aqueous sodium hydroxide solution at 59 degrees C. The results are tentatively explained if the effective catalyst for each of the reactions is either cupric or cuprous ion, with the latter being present in significant concentration only in the absence of air.

  12. A PERFORMANCE HISTORY OF THE BASE CATALYZED DECOMPOSITION (BCD) PROCESS

    EPA Science Inventory

    Remediation of halogenated organic compounds--such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs)--poses a challenge because these compounds are resistant to microbial attack and to degradation by many com...

  13. Path Integral Simulation of the H/D Kinetic Isotope Effect in Monoamine Oxidase B Catalyzed Decomposition of Dopamine.

    PubMed

    Mavri, Janez; Matute, Ricardo A; Chu, Zhen T; Vianello, Robert

    2016-04-14

    Brain monoamines regulate many centrally mediated body functions, and can cause adverse symptoms when they are out of balance. A starting point to address challenges raised by the increasing burden of brain diseases is to understand, at atomistic level, the catalytic mechanism of an essential amine metabolic enzyme-monoamine oxidase B (MAO B). Recently, we demonstrated that the rate-limiting step of MAO B catalyzed conversion of amines into imines represents the hydride anion transfer from the substrate α-CH2 group to the N5 atom of the flavin cofactor moiety. In this article we simulated for MAO B catalyzed dopamine decomposition the effects of nuclear tunneling by the calculation of the H/D kinetic isotope effect. We applied path integral quantization of the nuclear motion for the methylene group and the N5 atom of the flavin moiety in conjunction with the QM/MM treatment on the empirical valence bond (EVB) level for the rest of the enzyme. The calculated H/D kinetic isotope effect of 12.8 ± 0.3 is in a reasonable agreement with the available experimental data for closely related biogenic amines, which gives strong support for the proposed hydride mechanism. The results are discussed in the context of tunneling in enzyme centers and advent of deuterated drugs into clinical practice. PMID:27010708

  14. Overlapping Community Detection based on Network Decomposition.

    PubMed

    Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin

    2016-01-01

    Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms. PMID:27066904

  15. Overlapping Community Detection based on Network Decomposition

    NASA Astrophysics Data System (ADS)

    Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin

    2016-04-01

    Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms.

  16. Overlapping Community Detection based on Network Decomposition

    PubMed Central

    Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin

    2016-01-01

    Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms. PMID:27066904

  17. Neurocomputing strategies in decomposition based structural design

    NASA Technical Reports Server (NTRS)

    Szewczyk, Z.; Hajela, P.

    1993-01-01

    The present paper explores the applicability of neurocomputing strategies in decomposition based structural optimization problems. It is shown that the modeling capability of a backpropagation neural network can be used to detect weak couplings in a system, and to effectively decompose it into smaller, more tractable, subsystems. When such partitioning of a design space is possible, parallel optimization can be performed in each subsystem, with a penalty term added to its objective function to account for constraint violations in all other subsystems. Dependencies among subsystems are represented in terms of global design variables, and a neural network is used to map the relations between these variables and all subsystem constraints. A vector quantization technique, referred to as a z-Network, can effectively be used for this purpose. The approach is illustrated with applications to minimum weight sizing of truss structures with multiple design constraints.

  18. Synthesis of heterostructured helical carbon nanotubes by iron-catalyzed ethanol decomposition.

    PubMed

    Yong, Zhang; Fang, Liu; Zhi-hua, Zhang

    2011-08-01

    Shaping of carbon nanotubes (CNTs) into desired morphologies have attracted much attention recently. High quality heterostructured helical carbon nanotubes (HCNTs) were synthesized from transitional metal oxide and ethanol by chemical vapor deposition (CVD) in this paper. High resolution transmission electron microscopy (HRTEM) results showed that, heterostructured "U" shape, "G" shape and "S" shape HCNTs were achieved. Iron oxide was reduced to α-Fe by ethanol, and catalyzed the growth of heterostructured HCNTs. Helical coiling of HCNTs was induced by the anisotropic facet catalytic activity of α-Fe catalyst for carbon deposition. Then, symmetrical growth of two HCNTs from one catalyst nanoparticle resulted in symmetrical "U" shape HCNTs, while successive connecting of several "arc" and "tail" HCNTs led to asymmetrical "G" and "S" morphologies HCNTs.

  19. Decomposition

    USGS Publications Warehouse

    Middleton, Beth A.

    2014-01-01

    A cornerstone of ecosystem ecology, decomposition was recognized as a fundamental process driving the exchange of energy in ecosystems by early ecologists such as Lindeman 1942 and Odum 1960). In the history of ecology, studies of decomposition were incorporated into the International Biological Program in the 1960s to compare the nature of organic matter breakdown in various ecosystem types. Such studies still have an important role in ecological studies of today. More recent refinements have brought debates on the relative role microbes, invertebrates and environment in the breakdown and release of carbon into the atmosphere, as well as how nutrient cycling, production and other ecosystem processes regulated by decomposition may shift with climate change. Therefore, this bibliography examines the primary literature related to organic matter breakdown, but it also explores topics in which decomposition plays a key supporting role including vegetation composition, latitudinal gradients, altered ecosystems, anthropogenic impacts, carbon storage, and climate change models. Knowledge of these topics is relevant to both the study of ecosystem ecology as well projections of future conditions for human societies.

  20. Optimized curvelet-based empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Wu, Renjie; Zhang, Qieshi; Kamata, Sei-ichiro

    2015-02-01

    The recent years has seen immense improvement in the development of signal processing based on Curvelet transform. The Curvelet transform provide a new multi-resolution representation. The frame elements of Curvelets exhibit higher direction sensitivity and anisotropic than the Wavelets, multi-Wavelets, steerable pyramids, and so on. These features are based on the anisotropic notion of scaling. In practical instances, time series signals processing problem is often encountered. To solve this problem, the time-frequency analysis based methods are studied. However, the time-frequency analysis cannot always be trusted. Many of the new methods were proposed. The Empirical Mode Decomposition (EMD) is one of them, and widely used. The EMD aims to decompose into their building blocks functions that are the superposition of a reasonably small number of components, well separated in the time-frequency plane. And each component can be viewed as locally approximately harmonic. However, it cannot solve the problem of directionality of high-dimensional. A reallocated method of Curvelet transform (optimized Curvelet-based EMD) is proposed in this paper. We introduce a definition for a class of functions that can be viewed as a superposition of a reasonably small number of approximately harmonic components by optimized Curvelet family. We analyze this algorithm and demonstrate its results on data. The experimental results prove the effectiveness of our method.

  1. Evolution-Based Functional Decomposition of Proteins.

    PubMed

    Rivoire, Olivier; Reynolds, Kimberly A; Ranganathan, Rama

    2016-06-01

    The essential biological properties of proteins-folding, biochemical activities, and the capacity to adapt-arise from the global pattern of interactions between amino acid residues. The statistical coupling analysis (SCA) is an approach to defining this pattern that involves the study of amino acid coevolution in an ensemble of sequences comprising a protein family. This approach indicates a functional architecture within proteins in which the basic units are coupled networks of amino acids termed sectors. This evolution-based decomposition has potential for new understandings of the structural basis for protein function. To facilitate its usage, we present here the principles and practice of the SCA and introduce new methods for sector analysis in a python-based software package (pySCA). We show that the pattern of amino acid interactions within sectors is linked to the divergence of functional lineages in a multiple sequence alignment-a model for how sector properties might be differentially tuned in members of a protein family. This work provides new tools for studying proteins and for generally testing the concept of sectors as the principal units of function and adaptive variation. PMID:27254668

  2. Evolution-Based Functional Decomposition of Proteins

    PubMed Central

    Rivoire, Olivier; Reynolds, Kimberly A.; Ranganathan, Rama

    2016-01-01

    The essential biological properties of proteins—folding, biochemical activities, and the capacity to adapt—arise from the global pattern of interactions between amino acid residues. The statistical coupling analysis (SCA) is an approach to defining this pattern that involves the study of amino acid coevolution in an ensemble of sequences comprising a protein family. This approach indicates a functional architecture within proteins in which the basic units are coupled networks of amino acids termed sectors. This evolution-based decomposition has potential for new understandings of the structural basis for protein function. To facilitate its usage, we present here the principles and practice of the SCA and introduce new methods for sector analysis in a python-based software package (pySCA). We show that the pattern of amino acid interactions within sectors is linked to the divergence of functional lineages in a multiple sequence alignment—a model for how sector properties might be differentially tuned in members of a protein family. This work provides new tools for studying proteins and for generally testing the concept of sectors as the principal units of function and adaptive variation. PMID:27254668

  3. Development of a Lewis Base Catalyzed Selenocyclization Reaction

    ERIC Educational Resources Information Center

    Collins, William

    2009-01-01

    The concept of Lewis base activation of selenium Lewis acids has been effectively reduced to practice in the Lewis base catalyzed selenofunctionalization of unactivated olefins. In this reaction, the weakly acidic species, "N"-phenylselenyl succinimide, is cooperatively activated by the addition of a "soft" Lewis base donor (phosphine sulfides,…

  4. Wash Bottle Laboratory Exercises: Iodide-Catalyzed H[subscript 2]O[subscript 2] Decomposition Reaction Kinetics Using the Initial Rate Approach

    ERIC Educational Resources Information Center

    Barlag, Rebecca; Nyasulu, Frazier

    2010-01-01

    A wash bottle water displacement scheme is used to determine the kinetics of the iodide-catalyzed H[subscript 2]O[subscript 2] decomposition reaction. The reagents (total volume 5.00 mL) are added to a test tube that is placed in a wash bottle containing water. The mass of the water displaced in [approximately]60 s is measured. The reaction is…

  5. Kinetic energy decomposition scheme based on information theory.

    PubMed

    Imamura, Yutaka; Suzuki, Jun; Nakai, Hiromi

    2013-12-15

    We proposed a novel kinetic energy decomposition analysis based on information theory. Since the Hirshfeld partitioning for electron densities can be formulated in terms of Kullback-Leibler information deficiency in information theory, a similar partitioning for kinetic energy densities was newly proposed. The numerical assessments confirm that the current kinetic energy decomposition scheme provides reasonable chemical pictures for ionic and covalent molecules, and can also estimate atomic energies using a correction with viral ratios.

  6. Mechanism of base-catalyzed Schiff base deprotonation in halorhodopsin

    SciTech Connect

    Lanyi, J.K.

    1986-10-21

    It has been shown earlier that the deprotonation of the Schiff base of illuminated halorhodopsin proceeds with a much lower pK/sub a/ than that of the unilluminated pigment and the reversible protonation change is catalyzed by azide and cyanate. The authors have studied the kinetics of the proton-transfer events with flash spectroscopy and compared a variety of anionic bases with different pK/sub a/ with regard to the apparent binding constants and the catalytic activities. The results suggest a general base catalysis mechanism in which the anionic bases bind with apparently low affinity to halorhodopsin, although with some degree of size- and/or shape-dependent specificity. The locus of the catalysis is accessible from the cytoplasmic side of the membrane and is not at site I, where various anions bind and shift the pK/sub a/ of the deprotonation. Neither is it at site II, where a few specific anions (like chloride) bind to the all-trans pigment. It may be concluded that while the all-trans pigment loses its Schiff base proton very rapidly at its pK/sub a/, there is a kinetic barrier to this deprotonation in the 13-cis photointermediate that can be partially overcome by the reversible protonation of an extrinsic anionic base, which shuttles protons between the interior of the protein and the aqueous medium. The need for an extrinsic proton acceptor for efficient deprotonation of the Schiff base of halorhodopsin is one of the main differences between this pigment and the analogous retinal protein, bacteriorhodopsin.

  7. A Decomposition Method Based on a Model of Continuous Change

    PubMed Central

    HORIUCHI, SHIRO; WILMOTH, JOHN R.; PLETCHER, SCOTT D.

    2008-01-01

    A demographic measure is often expressed as a deterministic or stochastic function of multiple variables (covariates), and a general problem (the decomposition problem) is to assess contributions of individual covariates to a difference in the demographic measure (dependent variable) between two populations. We propose a method of decomposition analysis based on an assumption that covariates change continuously along an actual or hypothetical dimension. This assumption leads to a general model that logically justifies the additivity of covariate effects and the elimination of interaction terms, even if the dependent variable itself is a nonadditive function. A comparison with earlier methods illustrates other practical advantages of the method: in addition to an absence of residuals or interaction terms, the method can easily handle a large number of covariates and does not require a logically meaningful ordering of covariates. Two empirical examples show that the method can be applied flexibly to a wide variety of decomposition problems. This study also suggests that when data are available at multiple time points over a long interval, it is more accurate to compute an aggregated decomposition based on multiple subintervals than to compute a single decomposition for the entire study period. PMID:19110897

  8. Embedding color watermarks in color images based on Schur decomposition

    NASA Astrophysics Data System (ADS)

    Su, Qingtang; Niu, Yugang; Liu, Xianxi; Zhu, Yu

    2012-04-01

    In this paper, a blind dual color image watermarking scheme based on Schur decomposition is introduced. This is the first time to use Schur decomposition to embed color image watermark in color host image, which is different from using the binary image as watermark. By analyzing the 4 × 4 unitary matrix U via Schur decomposition, we can find that there is a strong correlation between the second row first column element and the third row first column element. This property can be explored for embedding watermark and extracting watermark in the blind manner. Since Schur decomposition is an intermediate step in SVD decomposition, the proposed method requires less number of computations. Experimental results show that the proposed scheme is robust against most common attacks including JPEG lossy compression, JPEG 2000 compression, low-pass filtering, cropping, noise addition, blurring, rotation, scaling and sharpening et al. Moreover, the proposed algorithm outperforms the closely related SVD-based algorithm and the spatial-domain algorithm.

  9. Base-Catalyzed Depolymerization of Lignin: Separation of Monomers

    SciTech Connect

    Vigneault, A.; Johnson, D. K.; Chornet, E.

    2007-12-01

    In our quest for fractionating lignocellulosic biomass and valorizing specific constitutive fractions, we have developed a strategy for the separation of 12 added value monomers generated during the hydrolytic based-catalyzed depolymerization of a Steam Exploded Aspen Lignin. The separation strategy combines liquid-liquid-extraction (LLE), followed by vacuum distillation, liquid chromatography (LC) and crystallization. LLE, vacuum distillation and flash LC were tested experimentally. Batch vacuum distillation produced up to 4 fractions. Process simulation confirmed that a series of 4 vacuum distillation columns could produce 5 distinct monomer streams, 3 of which require further chromatography and crystallization for purification.

  10. Gesture Based Control and EMG Decomposition

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Chang, Mindy H.; Knuth, Kevin H.

    2005-01-01

    This paper presents two probabilistic developments for use with Electromyograms (EMG). First described is a new-electric interface for virtual device control based on gesture recognition. The second development is a Bayesian method for decomposing EMG into individual motor unit action potentials. This more complex technique will then allow for higher resolution in separating muscle groups for gesture recognition. All examples presented rely upon sampling EMG data from a subject's forearm. The gesture based recognition uses pattern recognition software that has been trained to identify gestures from among a given set of gestures. The pattern recognition software consists of hidden Markov models which are used to recognize the gestures as they are being performed in real-time from moving averages of EMG. Two experiments were conducted to examine the feasibility of this interface technology. The first replicated a virtual joystick interface, and the second replicated a keyboard. Moving averages of EMG do not provide easy distinction between fine muscle groups. To better distinguish between different fine motor skill muscle groups we present a Bayesian algorithm to separate surface EMG into representative motor unit action potentials. The algorithm is based upon differential Variable Component Analysis (dVCA) [l], [2] which was originally developed for Electroencephalograms. The algorithm uses a simple forward model representing a mixture of motor unit action potentials as seen across multiple channels. The parameters of this model are iteratively optimized for each component. Results are presented on both synthetic and experimental EMG data. The synthetic case has additive white noise and is compared with known components. The experimental EMG data was obtained using a custom linear electrode array designed for this study.

  11. The general base in the thymidylate synthase catalyzed proton abstraction.

    PubMed

    Ghosh, Ananda K; Islam, Zahidul; Krueger, Jonathan; Abeysinghe, Thelma; Kohen, Amnon

    2015-12-14

    The enzyme thymidylate synthase (TSase), an important chemotherapeutic drug target, catalyzes the formation of 2'-deoxythymidine-5'-monophosphate (dTMP), a precursor of one of the DNA building blocks. TSase catalyzes a multi-step mechanism that includes the abstraction of a proton from the C5 of the substrate 2'-deoxyuridine-5'-monophosphate (dUMP). Previous studies on ecTSase proposed that an active-site residue, Y94 serves the role of the general base abstracting this proton. However, since Y94 is neither very basic, nor connected to basic residues, nor located close enough to the pyrimidine proton to be abstracted, the actual identity of this base remains enigmatic. Based on crystal structures, an alternative hypothesis is that the nearest potential proton-acceptor of C5 of dUMP is a water molecule that is part of a hydrogen bond (H-bond) network comprised of several water molecules and several protein residues including H147, E58, N177, and Y94. Here, we examine the role of the residue Y94 in the proton abstraction step by removing its hydroxyl group (Y94F mutant). We investigated the effect of the mutation on the temperature dependence of intrinsic kinetic isotope effects (KIEs) and found that these KIEs are more temperature dependent than those of the wild-type enzyme (WT). These results suggest that the phenolic -OH of Y94 is a component of the transition state for the proton abstraction step. The findings further support the hypothesis that no single functional group is the general base, but a network of bases and hydroxyls (from water molecules and tyrosine) sharing H-bonds across the active site can serve the role of the general base to remove the pyrimidine proton.

  12. Synthesis of Spiro Ketals, Orthoesters, and Orthocarbonates by CpRu-Catalyzed Decomposition of α-Diazo-β-ketoesters.

    PubMed

    Tortoreto, Cecilia; Achard, Thierry; Egger, Léo; Guénée, Laure; Lacour, Jérôme

    2016-01-15

    Reactions of α-diazo-β-ketoesters with cyclic ketones, lactones, and carbonates are reported. Thanks to the combined use of salt [CpRu(CH3CN)3][BArF] and 1,10-phenanthroline as catalyst for the diazo decomposition, effective and practical syntheses of spiro bicyclic ketals, orthoesters, and orthocarbonates are afforded. PMID:26709440

  13. Synthesis of Spiro Ketals, Orthoesters, and Orthocarbonates by CpRu-Catalyzed Decomposition of α-Diazo-β-ketoesters.

    PubMed

    Tortoreto, Cecilia; Achard, Thierry; Egger, Léo; Guénée, Laure; Lacour, Jérôme

    2016-01-15

    Reactions of α-diazo-β-ketoesters with cyclic ketones, lactones, and carbonates are reported. Thanks to the combined use of salt [CpRu(CH3CN)3][BArF] and 1,10-phenanthroline as catalyst for the diazo decomposition, effective and practical syntheses of spiro bicyclic ketals, orthoesters, and orthocarbonates are afforded.

  14. Iterative filtering decomposition based on local spectral evolution kernel.

    PubMed

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2012-03-01

    The synthesizing information, achieving understanding, and deriving insight from increasingly massive, time-varying, noisy and possibly conflicting data sets are some of most challenging tasks in the present information age. Traditional technologies, such as Fourier transform and wavelet multi-resolution analysis, are inadequate to handle all of the above-mentioned tasks. The empirical model decomposition (EMD) has emerged as a new powerful tool for resolving many challenging problems in data processing and analysis. Recently, an iterative filtering decomposition (IFD) has been introduced to address the stability and efficiency problems of the EMD. Another data analysis technique is the local spectral evolution kernel (LSEK), which provides a near prefect low pass filter with desirable time-frequency localizations. The present work utilizes the LSEK to further stabilize the IFD, and offers an efficient, flexible and robust scheme for information extraction, complexity reduction, and signal and image understanding. The performance of the present LSEK based IFD is intensively validated over a wide range of data processing tasks, including mode decomposition, analysis of time-varying data, information extraction from nonlinear dynamic systems, etc. The utility, robustness and usefulness of the proposed LESK based IFD are demonstrated via a large number of applications, such as the analysis of stock market data, the decomposition of ocean wave magnitudes, the understanding of physiologic signals and information recovery from noisy images. The performance of the proposed method is compared with that of existing methods in the literature. Our results indicate that the LSEK based IFD improves both the efficiency and the stability of conventional EMD algorithms. PMID:22350559

  15. Iterative filtering decomposition based on local spectral evolution kernel

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    The synthesizing information, achieving understanding, and deriving insight from increasingly massive, time-varying, noisy and possibly conflicting data sets are some of most challenging tasks in the present information age. Traditional technologies, such as Fourier transform and wavelet multi-resolution analysis, are inadequate to handle all of the above-mentioned tasks. The empirical model decomposition (EMD) has emerged as a new powerful tool for resolving many challenging problems in data processing and analysis. Recently, an iterative filtering decomposition (IFD) has been introduced to address the stability and efficiency problems of the EMD. Another data analysis technique is the local spectral evolution kernel (LSEK), which provides a near prefect low pass filter with desirable time-frequency localizations. The present work utilizes the LSEK to further stabilize the IFD, and offers an efficient, flexible and robust scheme for information extraction, complexity reduction, and signal and image understanding. The performance of the present LSEK based IFD is intensively validated over a wide range of data processing tasks, including mode decomposition, analysis of time-varying data, information extraction from nonlinear dynamic systems, etc. The utility, robustness and usefulness of the proposed LESK based IFD are demonstrated via a large number of applications, such as the analysis of stock market data, the decomposition of ocean wave magnitudes, the understanding of physiologic signals and information recovery from noisy images. The performance of the proposed method is compared with that of existing methods in the literature. Our results indicate that the LSEK based IFD improves both the efficiency and the stability of conventional EMD algorithms. PMID:22350559

  16. Influence of surface composition on hydrogen peroxide decomposition catalyzed by Co(II) aminopyridine-supported compounds on amorphous silica gel.

    PubMed

    de Farias, Robson F; Gonçalves, Afonso S; Airoldi, Claudio

    2002-03-01

    Cobalt compounds supported on 2-, 3-, and 4-aminopyridine-modified silica surfaces, named Sil2Co, Sil3Co, and Sil4Co, respectively, were used to catalyze the decomposition of hydrogen peroxide on ethanolic solutions at 293, 298, and 303 K. The calculated k values (x10(-4) s(-1)) for Sil2Co, Sil3Co, and Sil4Co are 0.65, 1.24, and 4.78 (293 K); 1.23, 1.87, and 6.33 (298 K); and 1.80, 2.80, and 10.30 (303 K), respectively. All obtained results evidence that such decomposition is a first-order reaction. Zinc-, nickel-, and copper-supported compounds were also tested, but exhibited a very low catalytic activity. By using the k values at 298 and 303 K, and employing the equation ln (k1/k2) = E(a)/R(1/T2-1/T1), the activation energy values for the considered reaction were Sil2Co = 57.20, Sil3Co = 60.60, and Sil4Co = 73.10 kJ mol(-1), respectively. The low values calculated for E(a) are in agreement with a free-radical mechanism.

  17. Motion Mode Decomposition Based on Discrete Fourier Series Expansion

    NASA Astrophysics Data System (ADS)

    Hatta, Yoshiyuki; Shimono, Tomoyuki

    In recent years, several methods for decomposing the whole motion of a parallel multi-degrees-of-freedom (MDOF) system into motion modes have been proposed. A motion mode is a motion element that corresponds to a specific physical action, such as grasping, manipulating, and rotating. Modal decomposition is effective for the expression and analysis of a complicated motion. However, conventional methods can extract motion modes only if the arrangement of actuators in the system has spatial linearity and symmetry. Therefore, the actuators cannot be arranged arbitrarily when the conventional methods are applied. In order to solve this problem, a novel method for modal decomposition is proposed; this method is based on the discrete Fourier series expansion. The proposed method is applied to a parallel MDOF bilateral system in which the arrangement of actuators is spatially asymmetric. Finally, the validity of the proposed method is confirmed on the basis of the experimental results.

  18. Electronic promoter or reacting species? The role of LiNH2 on Ru in catalyzing NH3 decomposition.

    PubMed

    Guo, Jianping; Chen, Zheng; Wu, Anan; Chang, Fei; Wang, Peikun; Hu, Daqiang; Wu, Guotao; Xiong, Zhitao; Yu, Pei; Chen, Ping

    2015-10-21

    LiNH2 decomposes to NH3 rather than N2 and H2 because of a severe kinetic barrier in NHx (x = 1, 2) coupling. In the presence of Ru, however, a drastic enhancement in N2 and H2 formation is obtained, which enables the LiNH2-Ru composite to act as a highly active catalyst for NH3 decomposition. Experimental and theoretical investigations indicate that Li creates a NHx-rich environment and Ru mediates the electron transfer facilitating NHx coupling. A strategy in catalytic material design is thus proposed.

  19. Kinetics of acid base catalyzed transesterification of Jatropha curcas oil.

    PubMed

    Jain, Siddharth; Sharma, M P

    2010-10-01

    Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstock for biodiesel production in India. Limited work is reported on the kinetics of transesterification of high free fatty acids containing oil. The present study reports the results of kinetic study of two-step acid base catalyzed transesterification process carried out at an optimum temperature of 65 °C and 50 °C for esterification and transesterification respectively under the optimum methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H₂SO₄ and NaOH. The yield of methyl ester (ME) has been used to study the effect of different parameters. The results indicate that both esterification and transesterification reaction are of first order with reaction rate constant of 0.0031 min⁻¹ and 0.008 min⁻¹ respectively. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained.

  20. Wavelet decomposition-based efficient face liveness detection

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2016-04-01

    Existing face recognition systems are susceptible to spoofing attacks. So, Face liveness detection is a pivotal part for reliable face recognition, which has recently acknowledged vast attention. In this paper we propose a wavelet decomposition based face liveness recognition system using an energy calculation technique. Live faces contain high energy components compared to fake or printed image. In this paper, we calculate energy components of live face as well as fake face using discrete wavelet decomposition method. We analyze percentage of energy at different levels as well as for different wavelet basis function. We also analyze percentage of energy at different RGB bands and efficient face liveness detection method has been proposed. Discrete wavelet representation has been used to calculate decomposed energy components. Moreover, it provides differentiation of several spatial orientations as well as average and detailed information which are missing in the fake faces. This technique provides excellent discrimination capability when compared to the previously reported works based on the discrete Fourier transform and n-dimensional Fourier transform operations. To verify the proposed approach, we tested the performance using various face antispoofing datasets such as university of south Alabama (UFAD), and MSU face antispoofing dataset which incorporates different types of attacks. The test results obtained using the proposed technique shows better performance compared to existing techniques.

  1. Edge-Preserving Decomposition-Based Single Image Haze Removal.

    PubMed

    Li, Zhengguo; Zheng, Jinghong

    2015-12-01

    Single image haze removal is under-constrained, because the number of freedoms is larger than the number of observations. In this paper, a novel edge-preserving decomposition-based method is introduced to estimate transmission map for a haze image so as to design a single image haze removal algorithm from the Koschmiedars law without using any prior. In particular, weighted guided image filter is adopted to decompose simplified dark channel of the haze image into a base layer and a detail layer. The transmission map is estimated from the base layer, and it is applied to restore the haze-free image. The experimental results on different types of images, including haze images, underwater images, and normal images without haze, show the performance of the proposed algorithm.

  2. Distributed Damage Estimation for Prognostics based on Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil

    2011-01-01

    Model-based prognostics approaches capture system knowledge in the form of physics-based models of components, and how they fail. These methods consist of a damage estimation phase, in which the health state of a component is estimated, and a prediction phase, in which the health state is projected forward in time to determine end of life. However, the damage estimation problem is often multi-dimensional and computationally intensive. We propose a model decomposition approach adapted from the diagnosis community, called possible conflicts, in order to both improve the computational efficiency of damage estimation, and formulate a damage estimation approach that is inherently distributed. Local state estimates are combined into a global state estimate from which prediction is performed. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the approach.

  3. Problem decomposition by mutual information and force-based clustering

    NASA Astrophysics Data System (ADS)

    Otero, Richard Edward

    The scale of engineering problems has sharply increased over the last twenty years. Larger coupled systems, increasing complexity, and limited resources create a need for methods that automatically decompose problems into manageable sub-problems by discovering and leveraging problem structure. The ability to learn the coupling (inter-dependence) structure and reorganize the original problem could lead to large reductions in the time to analyze complex problems. Such decomposition methods could also provide engineering insight on the fundamental physics driving problem solution. This work forwards the current state of the art in engineering decomposition through the application of techniques originally developed within computer science and information theory. The work describes the current state of automatic problem decomposition in engineering and utilizes several promising ideas to advance the state of the practice. Mutual information is a novel metric for data dependence and works on both continuous and discrete data. Mutual information can measure both the linear and non-linear dependence between variables without the limitations of linear dependence measured through covariance. Mutual information is also able to handle data that does not have derivative information, unlike other metrics that require it. The value of mutual information to engineering design work is demonstrated on a planetary entry problem. This study utilizes a novel tool developed in this work for planetary entry system synthesis. A graphical method, force-based clustering, is used to discover related sub-graph structure as a function of problem structure and links ranked by their mutual information. This method does not require the stochastic use of neural networks and could be used with any link ranking method currently utilized in the field. Application of this method is demonstrated on a large, coupled low-thrust trajectory problem. Mutual information also serves as the basis for an

  4. Synthesis of graphene by cobalt-catalyzed decomposition of methane in plasma-enhanced CVD: Optimization of experimental parameters with Taguchi method

    NASA Astrophysics Data System (ADS)

    Mehedi, H.-A.; Baudrillart, B.; Alloyeau, D.; Mouhoub, O.; Ricolleau, C.; Pham, V. D.; Chacon, C.; Gicquel, A.; Lagoute, J.; Farhat, S.

    2016-08-01

    This article describes the significant roles of process parameters in the deposition of graphene films via cobalt-catalyzed decomposition of methane diluted in hydrogen using plasma-enhanced chemical vapor deposition (PECVD). The influence of growth temperature (700-850 °C), molar concentration of methane (2%-20%), growth time (30-90 s), and microwave power (300-400 W) on graphene thickness and defect density is investigated using Taguchi method which enables reaching the optimal parameter settings by performing reduced number of experiments. Growth temperature is found to be the most influential parameter in minimizing the number of graphene layers, whereas microwave power has the second largest effect on crystalline quality and minor role on thickness of graphene films. The structural properties of PECVD graphene obtained with optimized synthesis conditions are investigated with Raman spectroscopy and corroborated with atomic-scale characterization performed by high-resolution transmission electron microscopy and scanning tunneling microscopy, which reveals formation of continuous film consisting of 2-7 high quality graphene layers.

  5. FCDECOMP: decomposition of metabolic networks based on flux coupling relations.

    PubMed

    Rezvan, Abolfazl; Marashi, Sayed-Amir; Eslahchi, Changiz

    2014-10-01

    A metabolic network model provides a computational framework to study the metabolism of a cell at the system level. Due to their large sizes and complexity, rational decomposition of these networks into subsystems is a strategy to obtain better insight into the metabolic functions. Additionally, decomposing metabolic networks paves the way to use computational methods that will be otherwise very slow when run on the original genome-scale network. In the present study, we propose FCDECOMP decomposition method based on flux coupling relations (FCRs) between pairs of reaction fluxes. This approach utilizes a genetic algorithm (GA) to obtain subsystems that can be analyzed in isolation, i.e. without considering the reactions of the original network in the analysis. Therefore, we propose that our method is useful for discovering biologically meaningful modules in metabolic networks. As a case study, we show that when this method is applied to the metabolic networks of barley seeds and yeast, the modules are in good agreement with the biological compartments of these networks.

  6. Automated Decomposition of Model-based Learning Problems

    NASA Technical Reports Server (NTRS)

    Williams, Brian C.; Millar, Bill

    1996-01-01

    A new generation of sensor rich, massively distributed autonomous systems is being developed that has the potential for unprecedented performance, such as smart buildings, reconfigurable factories, adaptive traffic systems and remote earth ecosystem monitoring. To achieve high performance these massive systems will need to accurately model themselves and their environment from sensor information. Accomplishing this on a grand scale requires automating the art of large-scale modeling. This paper presents a formalization of [\\em decompositional model-based learning (DML)], a method developed by observing a modeler's expertise at decomposing large scale model estimation tasks. The method exploits a striking analogy between learning and consistency-based diagnosis. Moriarty, an implementation of DML, has been applied to thermal modeling of a smart building, demonstrating a significant improvement in learning rate.

  7. Quantum Image Encryption Algorithm Based on Image Correlation Decomposition

    NASA Astrophysics Data System (ADS)

    Hua, Tianxiang; Chen, Jiamin; Pei, Dongju; Zhang, Wenquan; Zhou, Nanrun

    2015-02-01

    A novel quantum gray-level image encryption and decryption algorithm based on image correlation decomposition is proposed. The correlation among image pixels is established by utilizing the superposition and measurement principle of quantum states. And a whole quantum image is divided into a series of sub-images. These sub-images are stored into a complete binary tree array constructed previously and then randomly performed by one of the operations of quantum random-phase gate, quantum revolving gate and Hadamard transform. The encrypted image can be obtained by superimposing the resulting sub-images with the superposition principle of quantum states. For the encryption algorithm, the keys are the parameters of random phase gate, rotation angle, binary sequence and orthonormal basis states. The security and the computational complexity of the proposed algorithm are analyzed. The proposed encryption algorithm can resist brute force attack due to its very large key space and has lower computational complexity than its classical counterparts.

  8. Catalyzed sodium chlorate candles

    NASA Technical Reports Server (NTRS)

    Malich, C. W.; Wydeven, T.

    1972-01-01

    The catalytic effect of cobalt powder on chlorate decomposition has been confirmed. Catalysis is enhanced by oxidation of the metal during burning. Catalysts other than cobalt compounds should also be effective; the complete elimination of fuel has shown that the oxidation of cobalt during decomposition is not a vital factor in the improved performance of catalyzed candles.

  9. Unsupervised polarimetric SAR urban area classification based on model-based decomposition with cross scattering

    NASA Astrophysics Data System (ADS)

    Xiang, Deliang; Tang, Tao; Ban, Yifang; Su, Yi; Kuang, Gangyao

    2016-06-01

    Since it has been validated that cross-polarized scattering (HV) is caused not only by vegetation but also by rotated dihedrals, in this study, we use rotated dihedral corner reflectors to form a cross scattering matrix and propose an extended four-component model-based decomposition method for PolSAR data over urban areas. Unlike other urban area decomposition techniques which need to discriminate the urban and natural areas before decomposition, this proposed method is applied on PolSAR image directly. The building orientation angle is considered in this scattering matrix, making it flexible and adaptive in the decomposition. Therefore, we can separate cross scattering of urban areas from the overall HV component. Further, the cross and helix scattering components are also compared. Then, using these decomposed scattering powers, the buildings and natural areas can be easily discriminated from each other using a simple unsupervised K-means classifier. Moreover, buildings aligned and not aligned along the radar flight direction can be also distinguished clearly. Spaceborne RADARSAT-2 and airborne AIRSAR full polarimetric SAR data are used to validate the performance of our proposed method. The cross scattering power of oriented buildings is generated, leading to a better decomposition result for urban areas with respect to other state-of-the-art urban decomposition techniques. The decomposed scattering powers significantly improve the classification accuracy for urban areas.

  10. Neural image analysis for estimating aerobic and anaerobic decomposition of organic matter based on the example of straw decomposition

    NASA Astrophysics Data System (ADS)

    Boniecki, P.; Nowakowski, K.; Slosarz, P.; Dach, J.; Pilarski, K.

    2012-04-01

    The purpose of the project was to identify the degree of organic matter decomposition by means of a neural model based on graphical information derived from image analysis. Empirical data (photographs of compost content at various stages of maturation) were used to generate an optimal neural classifier (Boniecki et al. 2009, Nowakowski et al. 2009). The best classification properties were found in an RBF (Radial Basis Function) artificial neural network, which demonstrates that the process is non-linear.

  11. Decomposition-based transfer distance metric learning for image classification.

    PubMed

    Luo, Yong; Liu, Tongliang; Tao, Dacheng; Xu, Chao

    2014-09-01

    Distance metric learning (DML) is a critical factor for image analysis and pattern recognition. To learn a robust distance metric for a target task, we need abundant side information (i.e., the similarity/dissimilarity pairwise constraints over the labeled data), which is usually unavailable in practice due to the high labeling cost. This paper considers the transfer learning setting by exploiting the large quantity of side information from certain related, but different source tasks to help with target metric learning (with only a little side information). The state-of-the-art metric learning algorithms usually fail in this setting because the data distributions of the source task and target task are often quite different. We address this problem by assuming that the target distance metric lies in the space spanned by the eigenvectors of the source metrics (or other randomly generated bases). The target metric is represented as a combination of the base metrics, which are computed using the decomposed components of the source metrics (or simply a set of random bases); we call the proposed method, decomposition-based transfer DML (DTDML). In particular, DTDML learns a sparse combination of the base metrics to construct the target metric by forcing the target metric to be close to an integration of the source metrics. The main advantage of the proposed method compared with existing transfer metric learning approaches is that we directly learn the base metric coefficients instead of the target metric. To this end, far fewer variables need to be learned. We therefore obtain more reliable solutions given the limited side information and the optimization tends to be faster. Experiments on the popular handwritten image (digit, letter) classification and challenge natural image annotation tasks demonstrate the effectiveness of the proposed method.

  12. Research on face recognition based on singular value decomposition

    NASA Astrophysics Data System (ADS)

    Liang, Yixiong; Gong, Weiguo; Pan, Yingjun; Liu, Jiamin; Li, Weihong; Zhang, Hongmei

    2004-08-01

    Singular values (SVs) feature vectors of face image have been used for face recognition as the feature recently. Although SVs have some important properties of algebraic and geometric invariance and insensitiveness to noise, they are the representation of face image in its own eigen-space spanned by the two orthogonal matrices of singular value decomposition (SVD) and clearly contain little useful information for face recognition. This study concentrates on extracting more informational feature from a frontal and upright view image based on SVD and proposing an improving method for face recognition. After standardized by intensity normalization, all training and testing face images are projected onto a uniform eigen-space that is obtained from SVD of standard face image. To achieve more computational efficiency, the dimension of the uniform eigen-space is reduced by discarding the eigenvectors that the corresponding eigenvalue is close to zero. Euclidean distance classifier is adopted in recognition. Two standard databases from Yale University and Olivetti research laboratory are selected to evaluate the recognition accuracy of the proposed method. These databases include face images with different expressions, small occlusion, different illumination condition and different poses. Experimental results on the two face databases show the effectiveness of the method and its insensitivity to the face expression, illumination and posture.

  13. Statistical Analysis of the Ionosphere based on Singular Value Decomposition

    NASA Astrophysics Data System (ADS)

    Demir, Uygar; Arikan, Feza; Necat Deviren, M.; Toker, Cenk

    2016-07-01

    Ionosphere is made up of a spatio-temporally varying trend structure and secondary variations due to solar, geomagnetic, gravitational and seismic activities. Hence, it is important to monitor the ionosphere and acquire up-to-date information about its state in order both to better understand the physical phenomena that cause the variability and also to predict the effect of the ionosphere on HF and satellite communications, and satellite-based positioning systems. To charaterise the behaviour of the ionosphere, we propose to apply Singular Value Decomposition (SVD) to Total Electron Content (TEC) maps obtained from the TNPGN-Active (Turkish National Permanent GPS Network) CORS network. TNPGN-Active network consists of 146 GNSS receivers spread over Turkey. IONOLAB-TEC values estimated from each station are spatio-temporally interpolated using a Universal Kriging based algorithm with linear trend, namely IONOLAB-MAP, with very high spatial resolution. It is observed that the dominant singular value of TEC maps is an indicator of the trend structure of the ionosphere. The diurnal, seasonal and annual variability of the most dominant value is the representation of solar effect on ionosphere in midlatitude range. Secondary and smaller singular values are indicators of secondary variation which can have significance especially during geomagnetic storms or seismic disturbances. The dominant singular values are related to the physical basis vectors where ionosphere can be fully reconstructed using these vectors. Therefore, the proposed method can be used both for the monitoring of the current state of a region and also for the prediction and tracking of future states of ionosphere using singular values and singular basis vectors. This study is supported by by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  14. Thermal Decomposition Behavior of Ammonium Perchlorate and of an Ammonium-Perchlorate-Based Composite Propellant

    NASA Technical Reports Server (NTRS)

    Behrens, R.; Minier, L.

    1998-01-01

    The thermal decomposition of ammonium perchlorate (AP) and ammonium-perchlorate-based composite propellants is studied using the simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) technique. The main objective of the present work is to evaluate whether the STMBMS can provide new data on these materials that will have sufficient detail on the reaction mechanisms and associated reaction kinetics to permit creation of a detailed model of the thermal decomposition process. Such a model is a necessary ingredient to engineering models of ignition and slow-cookoff for these AP-based composite propellants. Results show that the decomposition of pure AP is controlled by two processes. One occurs at lower temperatures (240 to 270 C), produces mainly H2O, O2, Cl2, N2O and HCl, and is shown to occur in the solid phase within the AP particles. 200(micro) diameter AP particles undergo 25% decomposition in the solid phase, whereas 20(micro) diameter AP particles undergo only 13% decomposition. The second process is dissociative sublimation of AP to NH3 + HClO4 followed by the decomposition of, and reaction between, these two products in the gas phase. The dissociative sublimation process occurs over the entire temperature range of AP decomposition, but only becomes dominant at temperatures above those for the solid-phase decomposition. AP-based composite propellants are used extensively in both small tactical rocket motors and large strategic rocket systems.

  15. The thermal decomposition behavior of ammonium perchlorate and of an ammonium-perchlorate-based composite propellant

    SciTech Connect

    Behrens, R.; Minier, L.

    1998-03-24

    The thermal decomposition of ammonium perchlorate (AP) and ammonium-perchlorate-based composite propellants is studied using the simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) technique. The main objective of the present work is to evaluate whether the STMBMS can provide new data on these materials that will have sufficient detail on the reaction mechanisms and associated reaction kinetics to permit creation of a detailed model of the thermal decomposition process. Such a model is a necessary ingredient to engineering models of ignition and slow-cookoff for these AP-based composite propellants. Results show that the decomposition of pure AP is controlled by two processes. One occurs at lower temperatures (240 to 270 C), produces mainly H{sub 2}O, O{sub 2}, Cl{sub 2}, N{sub 2}O and HCl, and is shown to occur in the solid phase within the AP particles. 200{micro} diameter AP particles undergo 25% decomposition in the solid phase, whereas 20{micro} diameter AP particles undergo only 13% decomposition. The second process is dissociative sublimation of AP to NH{sub 3} + HClO{sub 4} followed by the decomposition of, and reaction between, these two products in the gas phase. The dissociative sublimation process occurs over the entire temperature range of AP decomposition, but only becomes dominant at temperatures above those for the solid-phase decomposition. AP-based composite propellants are used extensively in both small tactical rocket motors and large strategic rocket systems.

  16. Decomposition-Based Decision Making for Aerospace Vehicle Design

    NASA Technical Reports Server (NTRS)

    Borer, Nicholas K.; Mavris, DImitri N.

    2005-01-01

    reader to observe how this technique can be applied to aerospace systems design and compare the results of this so-called Decomposition-Based Decision Making to more traditional design approaches.

  17. Low-rank decomposition-based anomaly detection

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Yu; Yang, Shiming; Kalpakis, Konstantinos; Chang, Chein-I.

    2013-05-01

    With high spectral resolution hyperspectral imaging is capable of uncovering many subtle signal sources which cannot be known a priori or visually inspected. Such signal sources generally appear as anomalies in the data. Due to high correlation among spectral bands and sparsity of anomalies, a hyperspectral image can be e decomposed into two subspaces: a background subspace specified by a matrix with low rank dimensionality and an anomaly subspace specified by a sparse matrix with high rank dimensionality. This paper develops an approach to finding such low-high rank decomposition to identify anomaly subspace. Its idea is to formulate a convex constrained optimization problem that minimizes the nuclear norm of the background subspace and little ι1 norm of the anomaly subspace subject to a decomposition of data space into background and anomaly subspaces. By virtue of such a background-anomaly decomposition the commonly used RX detector can be implemented in the sense that anomalies can be separated in the anomaly subspace specified by a sparse matrix. Experimental results demonstrate that the background-anomaly subspace decomposition can actually improve and enhance RXD performance.

  18. Empirical and physics based mathematical models of uranium hydride decomposition kinetics with quantified uncertainties.

    SciTech Connect

    Salloum, Maher N.; Gharagozloo, Patricia E.

    2013-10-01

    Metal particle beds have recently become a major technique for hydrogen storage. In order to extract hydrogen from such beds, it is crucial to understand the decomposition kinetics of the metal hydride. We are interested in obtaining a a better understanding of the uranium hydride (UH3) decomposition kinetics. We first developed an empirical model by fitting data compiled from different experimental studies in the literature and quantified the uncertainty resulting from the scattered data. We found that the decomposition time range predicted by the obtained kinetics was in a good agreement with published experimental results. Secondly, we developed a physics based mathematical model to simulate the rate of hydrogen diffusion in a hydride particle during the decomposition. We used this model to simulate the decomposition of the particles for temperatures ranging from 300K to 1000K while propagating parametric uncertainty and evaluated the kinetics from the results. We compared the kinetics parameters derived from the empirical and physics based models and found that the uncertainty in the kinetics predicted by the physics based model covers the scattered experimental data. Finally, we used the physics-based kinetics parameters to simulate the effects of boundary resistances and powder morphological changes during decomposition in a continuum level model. We found that the species change within the bed occurring during the decomposition accelerates the hydrogen flow by increasing the bed permeability, while the pressure buildup and the thermal barrier forming at the wall significantly impede the hydrogen extraction.

  19. EMT - Empirical-mode-decomposition-based Magneto-Telluric Processing

    NASA Astrophysics Data System (ADS)

    Neukirch, M.; Garcia, X.

    2012-04-01

    We present a new Magneto-Telluric (MT) data processing scheme based on an emerging non linear, non stationary time series analysis tool, called the Empirical Mode Decomposition (EMD) or Hilbert-Huang Transform (HHT), to transform data into a non-stationary frequency domain and a robust principal component regression to estimate the most likely MT transfer functions from the data with the 2-σ confidence intervals computed by a bootstrap algorithm. Optionally, data quality can be controlled by a physical coherence and a signal power filter. MT sources are assumed to be quasi stationary and therefore a (windowed) Fourier Transform is often applied to transform the time series into the frequency domain in which Transfer Functions (TF) are defined between the electromagnetic field components. This assumption can break down in the presence of noise or when the sources are non stationary, and then TF estimates can become unreliable when obtained through a stationary transform like the Fourier transform. Our TF estimation scheme naturally deals with non stationarity without introducing artifacts and, therefore, potentially can distinguish quasi-stationary sources and non-stationary noise. In contrast to previous works on using HHT for MT processing, we argue the necessity of a multivariate EMD to model the MT problem physically correctly and highlight the resulting possibility to use instantaneous parameters as independent and identically distributed variables. Furthermore, we define a homogenization between data channels of frequency discrepancies due to non stationarity and noise. The TF estimation in the frequency domain bases on a robust principal component analysis in order to find two source polarizations. These two principal components are used as predictor to regress robustly the data channels within a bootstrap algorithm to estimate the Earth's Transfer function with 2-σ confidence interval supplied by the measured data.The scheme can be used with and without

  20. Effects of a trait-based parameterisation of litter decomposition

    NASA Astrophysics Data System (ADS)

    Kleinen, Thomas; Brovkin, Victor; van Bodegom, Peter; Kattge, Jens; Wirth, Christian

    2013-04-01

    Stocks of plant litter play an important role in the terrestrial carbon cycle. On a regional scale, litter stocks influence fire regimes, soil fertility, and soil organic matter formation. On the global scale, these factors influence global CO2 and climate. In many dynamic global vegetation models, the decomposition of plant litter is treated rather simplistically by aggregating leaf and woody litter into a single litter pool and using a common decomposition rate for all litter pools without taking different plant species or litter types into account. Measurements, on the other hand, clearly show that a) leaf litter decomposes much faster than woody litter, b) litter from different plant species decomposes at different rates, and c) the temperature sensitivity of woody litter decomposition also is species-dependent. The common modelling approach therefore clearly is incompatible with measurements. As a consequence, we modified the dynamic global vegetation model LPJ by a) introducing different litter pools for leaf and woody litter and by b) linking plant functional types to decomposition rates, as well as temperature sensitivities, of wood and leaf litter determined from two databases of plant traits. These changes give a more realistic distribution of litter stocks in most biomes, with the exception of boreal forests. In a projection for future climate, using the SRES A2 scenario, the modified parameterisation leads to an increase in litter stocks by 35 PgC, as well as a decrease in atmospheric CO2 by 3 ppm by 2100. Despite the increase in litter stocks, the fire emissions increase less than when using the original parameterization, since the litter is redistributed to more humid regions.

  1. Biphenol-based phosphoramidite ligands for the enantioselective copper-catalyzed conjugate addition of diethylzinc.

    PubMed

    Alexakis, Alexandre; Polet, Damien; Rosset, Stéphane; March, Sébastien

    2004-08-20

    Phosphoramidite ligands, based on ortho-substituted biphenols and a chiral amine, induce high enantioselectivities (ee's up to 99%) in the copper-catalyzed conjugate addition of dialkylzinc reagents to a variety of Michael acceptors. Particularly, the best reported ee's were obtained for acyclic nitroolefins. PMID:15307737

  2. A knowledge-based tool for multilevel decomposition of a complex design problem

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    1989-01-01

    Although much work has been done in applying artificial intelligence (AI) tools and techniques to problems in different engineering disciplines, only recently has the application of these tools begun to spread to the decomposition of complex design problems. A new tool based on AI techniques has been developed to implement a decomposition scheme suitable for multilevel optimization and display of data in an N x N matrix format.

  3. Base-Catalyzed Linkage Isomerization: An Undergraduate Inorganic Kinetics Experiment.

    ERIC Educational Resources Information Center

    Jackson, W. G.; And Others

    1981-01-01

    Describes kinetics experiments completed in a single two-hour laboratory period at 25 degrees Centigrade of nitrito to nitro rearrangement, based on the recently discovered base-catalysis path. Includes information on synthesis and characterization of linkage isomers, spectrophotometric techniques, and experimental procedures. (SK)

  4. Base catalyzed synthesis of bicyclo[3.2.1]octane scaffolds.

    PubMed

    Boehringer, Régis; Geoffroy, Philippe; Miesch, Michel

    2015-07-01

    The base-catalyzed reaction of achiral 1,3-cyclopentanediones tethered to activated olefins afforded in high yields bicyclo[3.2.1]octane-6,8-dione or bicyclo[3.2.1]octane-6-carboxylate derivatives bearing respectively three or five stereogenic centers. The course of the reaction is closely related to the reaction time and to the base involved in the reaction.

  5. A weighted polynomial based material decomposition method for spectral x-ray CT imaging.

    PubMed

    Wu, Dufan; Zhang, Li; Zhu, Xiaohua; Xu, Xiaofei; Wang, Sen

    2016-05-21

    Currently in photon counting based spectral x-ray computed tomography (CT) imaging, pre-reconstruction basis materials decomposition is an effective way to reconstruct densities of various materials. The iterative maximum-likelihood method requires precise spectrum information and is time-costly. In this paper, a novel non-iterative decomposition method based on polynomials is proposed for spectral CT, whose aim was to optimize the noise performance when there is more energy bins than the number of basis materials. Several subsets were taken from all the energy bins and conventional polynomials were established for each of them. The decomposition results from each polynomial were summed with pre-calculated weighting factors, which were designed to minimize the overall noises. Numerical studies showed that the decomposition noise of the proposed method was close to the Cramer-Rao lower bound under Poisson noises. Furthermore, experiments were carried out with an XCounter Filte X1 photon counting detector for two-material decomposition and three-material decomposition for validation. PMID:27082291

  6. A weighted polynomial based material decomposition method for spectral x-ray CT imaging.

    PubMed

    Wu, Dufan; Zhang, Li; Zhu, Xiaohua; Xu, Xiaofei; Wang, Sen

    2016-05-21

    Currently in photon counting based spectral x-ray computed tomography (CT) imaging, pre-reconstruction basis materials decomposition is an effective way to reconstruct densities of various materials. The iterative maximum-likelihood method requires precise spectrum information and is time-costly. In this paper, a novel non-iterative decomposition method based on polynomials is proposed for spectral CT, whose aim was to optimize the noise performance when there is more energy bins than the number of basis materials. Several subsets were taken from all the energy bins and conventional polynomials were established for each of them. The decomposition results from each polynomial were summed with pre-calculated weighting factors, which were designed to minimize the overall noises. Numerical studies showed that the decomposition noise of the proposed method was close to the Cramer-Rao lower bound under Poisson noises. Furthermore, experiments were carried out with an XCounter Filte X1 photon counting detector for two-material decomposition and three-material decomposition for validation.

  7. A new optical image cryptosystem based on two-beam coherent superposition and unequal modulus decomposition

    NASA Astrophysics Data System (ADS)

    Chen, Linfei; Gao, Xiong; Chen, Xudong; He, Bingyu; Liu, Jingyu; Li, Dan

    2016-04-01

    In this paper, a new optical image cryptosystem is proposed based on two-beam coherent superposition and unequal modulus decomposition. Different from the equal modulus decomposition or unit vector decomposition, the proposed method applies common vector decomposition to accomplish encryption process. In the proposed method, the original image is firstly Fourier transformed and the complex function in spectrum domain will be obtained. The complex distribution is decomposed into two vector components with unequal amplitude and phase by the common vector decomposition method. Subsequently, the two components are modulated by two random phases and transformed from spectrum domain to spatial domain, and amplitude parts are extracted as encryption results and phase parts are extracted as private keys. The advantages of the proposed cryptosystem are: four different phase and amplitude information created by the method of common vector decomposition strengthens the security of the cryptosystem, and it fully solves the silhouette problem. Simulation results are presented to show the feasibility and the security of the proposed cryptosystem.

  8. Nanoinformatics and DNA-based computing: catalyzing nanomedicine.

    PubMed

    Maojo, Victor; Martin-Sanchez, Fernando; Kulikowski, Casimir; Rodriguez-Paton, Alfonso; Fritts, Martin

    2010-05-01

    Five decades of research and practical application of computers in biomedicine has given rise to the discipline of medical informatics, which has made many advances in genomic and translational medicine possible. Developments in nanotechnology are opening up the prospects for nanomedicine and regenerative medicine where informatics and DNA computing can become the catalysts enabling health care applications at sub-molecular or atomic scales. Although nanomedicine promises a new exciting frontier for clinical practice and biomedical research, issues involving cost-effectiveness studies, clinical trials and toxicity assays, drug delivery methods, and the implementation of new personalized therapies still remain challenging. Nanoinformatics can accelerate the introduction of nano-related research and applications into clinical practice, leading to an area that could be called "translational nanoinformatics." At the same time, DNA and RNA computing presents an entirely novel paradigm for computation. Nanoinformatics and DNA-based computing are together likely to completely change the way we model and process information in biomedicine and impact the emerging field of nanomedicine most strongly. In this article, we review work in nanoinformatics and DNA (and RNA)-based computing, including applications in nanopediatrics. We analyze their scientific foundations, current research and projects, envisioned applications and potential problems that might arise from them.

  9. Nanoinformatics and DNA-based computing: catalyzing nanomedicine.

    PubMed

    Maojo, Victor; Martin-Sanchez, Fernando; Kulikowski, Casimir; Rodriguez-Paton, Alfonso; Fritts, Martin

    2010-05-01

    Five decades of research and practical application of computers in biomedicine has given rise to the discipline of medical informatics, which has made many advances in genomic and translational medicine possible. Developments in nanotechnology are opening up the prospects for nanomedicine and regenerative medicine where informatics and DNA computing can become the catalysts enabling health care applications at sub-molecular or atomic scales. Although nanomedicine promises a new exciting frontier for clinical practice and biomedical research, issues involving cost-effectiveness studies, clinical trials and toxicity assays, drug delivery methods, and the implementation of new personalized therapies still remain challenging. Nanoinformatics can accelerate the introduction of nano-related research and applications into clinical practice, leading to an area that could be called "translational nanoinformatics." At the same time, DNA and RNA computing presents an entirely novel paradigm for computation. Nanoinformatics and DNA-based computing are together likely to completely change the way we model and process information in biomedicine and impact the emerging field of nanomedicine most strongly. In this article, we review work in nanoinformatics and DNA (and RNA)-based computing, including applications in nanopediatrics. We analyze their scientific foundations, current research and projects, envisioned applications and potential problems that might arise from them. PMID:20118825

  10. Sparse time-frequency decomposition based on dictionary adaptation.

    PubMed

    Hou, Thomas Y; Shi, Zuoqiang

    2016-04-13

    In this paper, we propose a time-frequency analysis method to obtain instantaneous frequencies and the corresponding decomposition by solving an optimization problem. In this optimization problem, the basis that is used to decompose the signal is not known a priori. Instead, it is adapted to the signal and is determined as part of the optimization problem. In this sense, this optimization problem can be seen as a dictionary adaptation problem, in which the dictionary is adaptive to one signal rather than a training set in dictionary learning. This dictionary adaptation problem is solved by using the augmented Lagrangian multiplier (ALM) method iteratively. We further accelerate the ALM method in each iteration by using the fast wavelet transform. We apply our method to decompose several signals, including signals with poor scale separation, signals with outliers and polluted by noise and a real signal. The results show that this method can give accurate recovery of both the instantaneous frequencies and the intrinsic mode functions.

  11. Displacement decomposition ACO based preconditioning of FEM elasticity systems

    NASA Astrophysics Data System (ADS)

    Sviercoski, R. F.; Margenov, S.

    2013-10-01

    Computational simulations of multiscale deformable porous media are routinely encountered as a part of research and development activities in a number of engineering, environmental and biomedical fields. The efficiency of multilevel iterative solution of such problems is a challenging topic on numerical methods for large-scale scientific computing, this is because predicting the mechanical behavior of such systems with hierarchical structures with multiple scales is very computationally demanding. Our main interest application concerns medium that has complex hierarchical morphology in the sense that features ranges from nanometer to millimeter scales. The goal of this work is to propose a computationally efficient numerical tool that can be used to perform everyday predictive simulations as an integral part of osteoporosis treatment, for example. To achieve that, highly heterogeneous media are considered that resembles trabecular bone tissues. The related fine-scale linear elasticity problem is of high contrast and high frequency. The finite element method (FEM) is applied for discretization of the related linear elasticity problem, using separable displacement decomposition. The new feature in this work is that at coarser levels, a block diagonal preconditioner is applied that incorporates an analytical effective tensor into the simulation, avoiding costly numerical solutions of local problems that are inherent in methods for multiscale problems. The robustness of the new proposed algorithm is measured by comparing the number of V-cycles necessary to resolve the considered multiscale problems with other well known techniques.

  12. Stereoselective Synthesis of Trisubstituted Alkenes through Sequential Iron-Catalyzed Reductive anti-Carbozincation of Terminal Alkynes and Base-Metal-Catalyzed Negishi Cross-Coupling.

    PubMed

    Cheung, Chi Wai; Hu, Xile

    2015-12-01

    The stereoselective synthesis of trisubstituted alkenes is challenging. Here, we show that an iron-catalyzed anti-selective carbozincation of terminal alkynes can be combined with a base-metal-catalyzed cross-coupling to prepare trisubstituted alkenes in a one-pot reaction and with high regio- and stereocontrol. Cu-, Ni-, and Co-based catalytic systems are developed for the coupling of sp-, sp(2) -, and sp(3) -hybridized carbon electrophiles, respectively. The method encompasses a large substrate scope, as various alkynyl, aryl, alkenyl, acyl, and alkyl halides are suitable coupling partners. Compared with conventional carbometalation reactions of alkynes, the current method avoids pre-made organometallic reagents and has a distinct stereoselectivity.

  13. Polymer electrolyte membrane fuel cell fault diagnosis based on empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Damour, Cédric; Benne, Michel; Grondin-Perez, Brigitte; Bessafi, Miloud; Hissel, Daniel; Chabriat, Jean-Pierre

    2015-12-01

    Diagnosis tool for water management is relevant to improve the reliability and lifetime of polymer electrolyte membrane fuel cells (PEMFCs). This paper presents a novel signal-based diagnosis approach, based on Empirical Mode Decomposition (EMD), dedicated to PEMFCs. EMD is an empirical, intuitive, direct and adaptive signal processing method, without pre-determined basis functions. The proposed diagnosis approach relies on the decomposition of FC output voltage to detect and isolate flooding and drying faults. The low computational cost of EMD, the reduced number of required measurements, and the high diagnosis accuracy of flooding and drying faults diagnosis make this approach a promising online diagnosis tool for PEMFC degraded modes management.

  14. Implementation of QR-decomposition based on CORDIC for unitary MUSIC algorithm

    NASA Astrophysics Data System (ADS)

    Lounici, Merwan; Luan, Xiaoming; Saadi, Wahab

    2013-07-01

    The DOA (Direction Of Arrival) estimation with subspace methods such as MUSIC (MUltiple SIgnal Classification) and ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) is based on an accurate estimation of the eigenvalues and eigenvectors of covariance matrix. QR decomposition is implemented with the Coordinate Rotation DIgital Computer (CORDIC) algorithm. QRD requires only additions and shifts [6], so it is faster and more regular than other methods. In this article the hardware architecture of an EVD (Eigen Value Decomposition) processor based on TSA (triangular systolic array) for QR decomposition is proposed. Using Xilinx System Generator (XSG), the design is implemented and the estimated logic device resource values are presented for different matrix sizes.

  15. Copper-catalyzed oxidation of a structured lipid-based emulsion containing alpha-tocopherol and citric acid: influence of pH and NaCl.

    PubMed

    Osborn-Barnes, Hannah T; Akoh, Casimir C

    2003-11-01

    The effects of salt and pH on copper-catalyzed lipid oxidation in structured lipid-based emulsions were evaluated. Ten percent oil-in-water emulsions were formulated with a canola oil/caprylic acid structured lipid and stabilized with 0.5% whey protein isolate. alpha-Tocopherol and citric acid were added to the emulsions to determine how changes in pH or the addition of NaCl affected their antioxidant activity. The peroxide values and anisidine values of emulsions stored at 50 degrees C were measured over an 8-day period. Increased lipid oxidation occurred in the pH 7.0 emulsions and when 0.5 M NaCl was added to the pH 3.0 samples. Adding alpha-tocopherol, citric acid, or a combination of the two compounds slowed the formation of hydroperoxides and their subsequent decomposition products in pH 3.0 emulsions.

  16. Ozone decomposition

    PubMed Central

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho

    2014-01-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates. PMID:26109880

  17. Ozone decomposition.

    PubMed

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho; Zaikov, Gennadi E

    2014-06-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates. PMID:26109880

  18. Ozone decomposition.

    PubMed

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho; Zaikov, Gennadi E

    2014-06-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates.

  19. Thermal Decomposition Behaviors and Burning Characteristics of AN/Nitramine-Based Composite Propellant

    NASA Astrophysics Data System (ADS)

    Naya, Tomoki; Kohga, Makoto

    2015-04-01

    Ammonium nitrate (AN) has attracted much attention due to its clean burning nature as an oxidizer. However, an AN-based composite propellant has the disadvantages of low burning rate and poor ignitability. In this study, we added nitramine of cyclotrimethylene trinitramine (RDX) or cyclotetramethylene tetranitramine (HMX) as a high-energy material to AN propellants to overcome these disadvantages. The thermal decomposition and burning rate characteristics of the prepared propellants were examined as the ratio of AN and nitramine was varied. In the thermal decomposition process, AN/RDX propellants showed unique mass loss peaks in the lower temperature range that were not observed for AN or RDX propellants alone. AN and RDX decomposed continuously as an almost single oxidizer in the AN/RDX propellant. In contrast, AN/HMX propellants exhibited thermal decomposition characteristics similar to those of AN and HMX, which decomposed almost separately in the thermal decomposition of the AN/HMX propellant. The ignitability was improved and the burning rate increased by the addition of nitramine for both AN/RDX and AN/HMX propellants. The increased burning rates of AN/RDX propellants were greater than those of AN/HMX. The difference in the thermal decomposition and burning characteristics was caused by the interaction between AN and RDX.

  20. Logic synthesis strategy based on BDD decomposition and PAL-oriented optimization

    NASA Astrophysics Data System (ADS)

    Opara, Adam; Kania, Dariusz

    2015-12-01

    A new strategy of logic synthesis for PAL-based CPLDs is presented in the paper. This approach consists of an original method of two-stage BDD-based decomposition and a two-level PAL-oriented optimization. The aim of the proposed approach is oriented towards balanced (speed/area) optimization. The first element of the strategy is original PAL-oriented decomposition. This decomposition consists in the sequential search for an input partition providing the feasibility for implementation of the free block in one PAL-based logic block containing a predefined number of product terms. The presented non-standard decomposition provides a means to minimize the area of the implemented circuit and to reduce of the necessary logic blocks in the programmable structure. The second element of the proposed logic synthesis strategy is oriented towards speed optimization. This optimization is based on utilizing tri-state buffers. Results of experiments prove that the presented synthesis strategy is especially effective for CPLD structures, which consist of PAL-based logic blocks containing a low number of product terms.

  1. Edge-guided filtering scheme for decomposition-based tone mapping

    NASA Astrophysics Data System (ADS)

    Wu, Xuebiao; Su, Zhuo; Luo, Xiaonan

    2014-01-01

    This paper presents a novel edge-guided filtering scheme for decomposition-based tone mapping, whose superiority is to prevent two major defects in filter-driven multi-scale decomposition: halo artifact and over-smoothing distortion. First, we calculate an edge-preserving smoothing by gradient domain reconstruction with given edges. Then we apply this output in high dynamic range tone mapping to address aforementioned problems. At last, some experimental results are presented to demonstrate the effectiveness of our method in producing high-quality low dynamic range outputs.

  2. Native conflict awared layout decomposition in triple patterning lithography using bin-based library matching method

    NASA Astrophysics Data System (ADS)

    Ke, Xianhua; Jiang, Hao; Lv, Wen; Liu, Shiyuan

    2016-03-01

    Triple patterning (TP) lithography becomes a feasible technology for manufacturing as the feature size further scale down to sub 14/10 nm. In TP, a layout is decomposed into three masks followed with exposures and etches/freezing processes respectively. Previous works mostly focus on layout decomposition with minimal conflicts and stitches simultaneously. However, since any existence of native conflict will result in layout re-design/modification and reperforming the time-consuming decomposition, the effective method that can be aware of native conflicts (NCs) in layout is desirable. In this paper, a bin-based library matching method is proposed for NCs detection and layout decomposition. First, a layout is divided into bins and the corresponding conflict graph in each bin is constructed. Then, we match the conflict graph in a prebuilt colored library, and as a result the NCs can be located and highlighted quickly.

  3. Central-force decomposition of spline-based modified embedded atom method potential

    NASA Astrophysics Data System (ADS)

    Winczewski, S.; Dziedzic, J.; Rybicki, J.

    2016-10-01

    Central-force decompositions are fundamental to the calculation of stress fields in atomic systems by means of Hardy stress. We derive expressions for a central-force decomposition of the spline-based modified embedded atom method (s-MEAM) potential. The expressions are subsequently simplified to a form that can be readily used in molecular-dynamics simulations, enabling the calculation of the spatial distribution of stress in systems treated with this novel class of empirical potentials. We briefly discuss the properties of the obtained decomposition and highlight further computational techniques that can be expected to benefit from the results of this work. To demonstrate the practicability of the derived expressions, we apply them to calculate stress fields due to an edge dislocation in bcc Mo, comparing their predictions to those of linear elasticity theory.

  4. Base-Controlled Cu-Catalyzed Tandem Cyclization/Alkynylation for the Synthesis of Indolizines.

    PubMed

    Oh, Kyung Hwan; Kim, Seong Min; Park, Sun Young; Park, Jin Kyoon

    2016-05-01

    A base-controlled Cu-catalyzed tandem cyclization/alkynylation of propargylic amines provides rapid access to functionalized indolizine derivatives under mild reaction conditions. The reaction first proceeded via a 5-endo-dig aminocupration, followed by a coupling between the copper-bound intermediate and alkynyl bromide, to afford the products in good to excellent yields. The successful tandem reaction is attributed to the unique property of the bases, DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) and MTBD (7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene used). PMID:27097044

  5. A 3D shape retrieval method for orthogonal fringe projection based on a combination of variational image decomposition and variational mode decomposition

    NASA Astrophysics Data System (ADS)

    Li, Biyuan; Tang, Chen; Zhu, Xinjun; Chen, Xia; Su, Yonggang; Cai, Yuanxue

    2016-11-01

    The orthogonal fringe projection technique has as wide as long practical application nowadays. In this paper, we propose a 3D shape retrieval method for orthogonal composite fringe projection based on a combination of variational image decomposition (VID) and variational mode decomposition (VMD). We propose a new image decomposition model to extract the orthogonal fringe. Then we introduce the VMD method to separate the horizontal and vertical fringe from the orthogonal fringe. Lastly, the 3D shape information is obtained by the differential 3D shape retrieval method (D3D). We test the proposed method on a simulated pattern and two actual objects with edges or abrupt changes in height, and compare with the recent, related and advanced differential 3D shape retrieval method (D3D) in terms of both quantitative evaluation and visual quality. The experimental results have demonstrated the validity of the proposed method.

  6. Asymmetric total synthesis of (+)-aphanamol I based on the transition metal catalyzed [5 + 2] cycloaddition of allenes and vinylcyclopropanes.

    PubMed

    Wender, P A; Zhang, L

    2000-07-27

    A concise asymmetric total synthesis of (+)-aphanamol I is described, based on the transition metal catalyzed [5 + 2] allenyl-vinylcyclopropane cycloaddition. The key cycloaddition precursor is convergently assembled from (R)-(+)-limonene and cyclopropane diester through a novel decarboxylative dehydration reaction. The metal-catalyzed [5 + 2] cycloaddition of this precursor proceeds with complete chemo, endo/exo, and diastereoselectivity in 93% yield, representing an effective general route to bicyclo[5.3.0]decane derivatives.

  7. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review.

    PubMed

    He, Jie; Yang, Xiaofang; Men, Bin; Wang, Dongsheng

    2016-01-01

    The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals (OH) from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH. Hence, it can effectively oxidize refractory organics in water or soils and has become a promising environmentally friendly treatment technology. Due to the complex reaction system, the mechanism behind heterogeneous Fenton reactions remains unresolved but fascinating, and is crucial for understanding Fenton chemistry and the development and application of efficient heterogeneous Fenton technologies. Iron-based materials usually possess high catalytic activity, low cost, negligible toxicity and easy recovery, and are a superior type of heterogeneous Fenton catalysts. Therefore, this article reviews the fundamental but important interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials. OH, hydroperoxyl radicals/superoxide anions (HO2/O2(-)) and high-valent iron are the three main types of reactive oxygen species (ROS), with different oxidation reactivity and selectivity. Based on the mechanisms of ROS generation, the interfacial mechanisms of heterogeneous Fenton systems can be classified as the homogeneous Fenton mechanism induced by surface-leached iron, the heterogeneous catalysis mechanism, and the heterogeneous reaction-induced homogeneous mechanism. Different heterogeneous Fenton systems catalyzed by characteristic iron-based materials are comprehensively reviewed. Finally, related future research directions are also suggested. PMID:26899649

  8. Car Parrinello molecular dynamics simulation of base-catalyzed amide hydrolysis in aqueous solution

    NASA Astrophysics Data System (ADS)

    Zahn, Dirk

    2004-01-01

    The base catalyzed hydrolysis of N-methylacetamide is elucidated by means of Car-Parrinello simulation. The process is investigated in aqueous solution, including a quantum treatment of all electronic degrees of freedom. The rate-determining step is the attack of a hydroxide ion on the amide carbon atom. This is followed by protonation of the nitrogen atom. The final dissociation may occur via two different pathways: (i) dissociation into an amine and a carboxylic acid and (ii) oxygen deprotonation and dissociation into an amine and a carboxyl anion. The later pathway was found to be strongly favored.

  9. Base-catalyzed efficient tandem [3 + 3] and [3 + 2 + 1] annulation-aerobic oxidative benzannulations.

    PubMed

    Diallo, Aboubacar; Zhao, Yu-Long; Wang, He; Li, Sha-Sha; Ren, Chuan-Qing; Liu, Qun

    2012-11-16

    An efficient synthesis of substituted benzenes via a base-catalyzed [3 + 3] aerobic oxidative aromatization of α,β-unsaturated carbonyl compounds with dimethyl glutaconate was reported. All the reactions were carried out under mild, metal-free conditions to afford the products in high to excellent yields with molecular oxygen as the sole oxidant and water as the sole byproduct. Furthermore, a more convenient tandem [3 + 2 + 1] aerobic oxidative aromatization reaction was developed through the in situ generation of the α,β-unsaturated carbonyl compounds from aldehydes and ketones.

  10. Multiphase flow modeling of spinodal decomposition based on the cascaded lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Leclaire, Sébastien; Pellerin, Nicolas; Reggio, Marcelo; Trépanier, Jean-Yves

    2014-07-01

    A new multiphase lattice Boltzmann model based on the cascaded collision operator is developed to study the spinodal decomposition of critical quenches in the inertial hydrodynamic regime. The proposed lattice Boltzmann model is able to investigate simulations of multiphase spinodal decomposition with a very high Reynolds number. The law governing the growth of the average domain size, i.e. L∝tα, is studied numerically in the late-time regime, when multiple immiscible fluids are considered in the spinodal decomposition. It is found numerically that the growth exponent, α, is inversely proportional to the number, N, of immiscible fluids in the system. In fact, α=6/(N+7) is a simple law that matches the numerical results very well, even up to N=20. As the number of immiscible fluids increases, the corresponding drop in the connectivity of the various fluid domains is believed to be the main factor that drives and slows down the growth rate. Various videos that accurately demonstrate spinodal decomposition with different transport mechanisms are provided (see Appendix A). The remarks and statement made in this research are based on the analysis of 5120 numerical simulations and the postprocessing of about 3.5 TB of data.

  11. Grid-based electronic structure calculations: The tensor decomposition approach

    NASA Astrophysics Data System (ADS)

    Rakhuba, M. V.; Oseledets, I. V.

    2016-05-01

    We present a fully grid-based approach for solving Hartree-Fock and all-electron Kohn-Sham equations based on low-rank approximation of three-dimensional electron orbitals. Due to the low-rank structure the total complexity of the algorithm depends linearly with respect to the one-dimensional grid size. Linear complexity allows for the usage of fine grids, e.g. 81923 and, thus, cheap extrapolation procedure. We test the proposed approach on closed-shell atoms up to the argon, several molecules and clusters of hydrogen atoms. All tests show systematical convergence with the required accuracy.

  12. Catalyzed Ceramic Burner Material

    SciTech Connect

    Barnes, Amy S., Dr.

    2012-06-29

    period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  13. MRI Volume Fusion Based on 3D Shearlet Decompositions

    PubMed Central

    Duan, Chang; Wang, Shuai; Wang, Xue Gang; Huang, Qi Hong

    2014-01-01

    Nowadays many MRI scans can give 3D volume data with different contrasts, but the observers may want to view various contrasts in the same 3D volume. The conventional 2D medical fusion methods can only fuse the 3D volume data layer by layer, which may lead to the loss of interframe correlative information. In this paper, a novel 3D medical volume fusion method based on 3D band limited shearlet transform (3D BLST) is proposed. And this method is evaluated upon MRI T2* and quantitative susceptibility mapping data of 4 human brains. Both the perspective impression and the quality indices indicate that the proposed method has a better performance than conventional 2D wavelet, DT CWT, and 3D wavelet, DT CWT based fusion methods. PMID:24817880

  14. Decomposition-based recovery of absorbers in turbid media

    SciTech Connect

    Campbell, S. D.; Goodin, I. L.; Grobe, S. D.; Su, Q.; Grobe, R.

    2007-12-15

    We suggest that the concept of the point-spread function traditionally used to predict the blurred image pattern of various light sources embedded inside turbid media can be generalized under certain conditions to predict also the presence and location of spatially localized absorbing inhomogeneities based on shadow point-spread functions associated with each localized absorber in the medium. The combined image obtained from several absorbers can then be decomposed approximately into the arithmetic sums of these individual shadow point-spread functions with suitable weights that can be obtained from multiple-regression analysis. This technique permits the reconstruction of the location of absorbers.

  15. Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition

    PubMed Central

    Lei, Yaguo; Li, Naipeng; Lin, Jing; Wang, Sizhe

    2013-01-01

    The vibration based signal processing technique is one of the principal tools for diagnosing faults of rotating machinery. Empirical mode decomposition (EMD), as a time-frequency analysis technique, has been widely used to process vibration signals of rotating machinery. But it has the shortcoming of mode mixing in decomposing signals. To overcome this shortcoming, ensemble empirical mode decomposition (EEMD) was proposed accordingly. EEMD is able to reduce the mode mixing to some extent. The performance of EEMD, however, depends on the parameters adopted in the EEMD algorithms. In most of the studies on EEMD, the parameters were selected artificially and subjectively. To solve the problem, a new adaptive ensemble empirical mode decomposition method is proposed in this paper. In the method, the sifting number is adaptively selected, and the amplitude of the added noise changes with the signal frequency components during the decomposition process. The simulation, the experimental and the application results demonstrate that the adaptive EEMD provides the improved results compared with the original EEMD in diagnosing rotating machinery. PMID:24351666

  16. Identification of Mechanism-Based Inactivation in P450-Catalyzed Cyclopropanation Facilitates Engineering of Improved Enzymes.

    PubMed

    Renata, Hans; Lewis, Russell D; Sweredoski, Michael J; Moradian, Annie; Hess, Sonja; Wang, Z Jane; Arnold, Frances H

    2016-09-28

    Following the recent discovery that heme proteins can catalyze the cyclopropanation of styrenyl olefins with high efficiency and selectivity, interest in developing new enzymes for a variety of non-natural carbene transfer reactions has burgeoned. The fact that diazo compounds and other carbene precursors are known mechanism-based inhibitors of P450s, however, led us to investigate if they also interfere with this new enzyme function. We present evidence for two inactivation pathways that are operative during cytochrome P450-catalyzed cyclopropanation. Using a combination of UV-vis, mass spectrometry, and proteomic analyses, we show that the heme cofactor and several nucleophilic side chains undergo covalent modification by ethyl diazoacetate (EDA). Substitution of two of the affected residues with less-nucleophilic amino acids led to a more than twofold improvement in cyclopropanation performance (total TTN). Elucidating the inactivation pathways of heme protein-based carbene transfer catalysts should aid in the optimization of this new biocatalytic function. PMID:27573353

  17. Automatic single-image-based rain streaks removal via image decomposition.

    PubMed

    Kang, Li-Wei; Lin, Chia-Wen; Fu, Yu-Hsiang

    2012-04-01

    Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single image was rarely studied in the literature, where no temporal information among successive images can be exploited, making the problem very challenging. In this paper, we propose a single-image-based rain removal framework via properly formulating rain removal as an image decomposition problem based on morphological component analysis. Instead of directly applying a conventional image decomposition technique, the proposed method first decomposes an image into the low- and high-frequency (HF) parts using a bilateral filter. The HF part is then decomposed into a "rain component" and a "nonrain component" by performing dictionary learning and sparse coding. As a result, the rain component can be successfully removed from the image while preserving most original image details. Experimental results demonstrate the efficacy of the proposed algorithm.

  18. MEG masked priming evidence for form-based decomposition of irregular verbs.

    PubMed

    Fruchter, Joseph; Stockall, Linnaea; Marantz, Alec

    2013-01-01

    To what extent does morphological structure play a role in early processing of visually presented English past tense verbs? Previous masked priming studies have demonstrated effects of obligatory form-based decomposition for genuinely affixed words (teacher-TEACH) and pseudo-affixed words (corner-CORN), but not for orthographic controls (brothel-BROTH). Additionally, MEG single word reading studies have demonstrated that the transition probability from stem to affix (in genuinely affixed words) modulates an early evoked response known as the M170; parallel findings have been shown for the transition probability from stem to pseudo-affix (in pseudo-affixed words). Here, utilizing the M170 as a neural index of visual form-based morphological decomposition, we ask whether the M170 demonstrates masked morphological priming effects for irregular past tense verbs (following a previous study which obtained behavioral masked priming effects for irregulars). Dual mechanism theories of the English past tense predict a rule-based decomposition for regulars but not for irregulars, while certain single mechanism theories predict rule-based decomposition even for irregulars. MEG data was recorded for 16 subjects performing a visual masked priming lexical decision task. Using a functional region of interest (fROI) defined on the basis of repetition priming and regular morphological priming effects within the left fusiform and inferior temporal regions, we found that activity in this fROI was modulated by the masked priming manipulation for irregular verbs, during the time window of the M170. We also found effects of the scores generated by the learning model of Albright and Hayes (2003) on the degree of priming for irregular verbs. The results favor a single mechanism account of the English past tense, in which even irregulars are decomposed into stems and affixes prior to lexical access, as opposed to a dual mechanism model, in which irregulars are recognized as whole forms

  19. MEG masked priming evidence for form-based decomposition of irregular verbs

    PubMed Central

    Fruchter, Joseph; Stockall, Linnaea; Marantz, Alec

    2013-01-01

    To what extent does morphological structure play a role in early processing of visually presented English past tense verbs? Previous masked priming studies have demonstrated effects of obligatory form-based decomposition for genuinely affixed words (teacher-TEACH) and pseudo-affixed words (corner-CORN), but not for orthographic controls (brothel-BROTH). Additionally, MEG single word reading studies have demonstrated that the transition probability from stem to affix (in genuinely affixed words) modulates an early evoked response known as the M170; parallel findings have been shown for the transition probability from stem to pseudo-affix (in pseudo-affixed words). Here, utilizing the M170 as a neural index of visual form-based morphological decomposition, we ask whether the M170 demonstrates masked morphological priming effects for irregular past tense verbs (following a previous study which obtained behavioral masked priming effects for irregulars). Dual mechanism theories of the English past tense predict a rule-based decomposition for regulars but not for irregulars, while certain single mechanism theories predict rule-based decomposition even for irregulars. MEG data was recorded for 16 subjects performing a visual masked priming lexical decision task. Using a functional region of interest (fROI) defined on the basis of repetition priming and regular morphological priming effects within the left fusiform and inferior temporal regions, we found that activity in this fROI was modulated by the masked priming manipulation for irregular verbs, during the time window of the M170. We also found effects of the scores generated by the learning model of Albright and Hayes (2003) on the degree of priming for irregular verbs. The results favor a single mechanism account of the English past tense, in which even irregulars are decomposed into stems and affixes prior to lexical access, as opposed to a dual mechanism model, in which irregulars are recognized as whole forms

  20. Materials design of dilute magnetic semiconductors based on the control of spinodal decomposition

    NASA Astrophysics Data System (ADS)

    Sato, Kazunori

    2010-03-01

    Recently, spinodal decomposition phenomena attract much attention in the fabrication of dilute magnetic semiconductors (DMS). Many experimental results indicate that the magnetic properties of DMS are strongly affected by the occurrence of spinodal decomposition [1], thus people are now interested in controlling the magnetic properties of DMS by tuning the spinodal decomposition. In this talk, I will discuss spinodal decomposition in DMS based on the first-principles calculation. The electronic structure of DMS is calculated by using the Korringa-Kohn-Rostoker coherent potential approximation method. Based on the calculated mixing energy I will discuss phase diagrams of DMS systems and their chemical trends. By using the calculated chemical pair interactions between magnetic impurities in DMS, the self-organization of nano-structures in DMS of the nano-structures are simulated by using the Monte Carlo method. The simulation results indicate that we can control super-paramagnetic blocking temperature by optimizing the size of the nano-structures by changing the crystal growth condition [2]. Next, I will propose co-doping method to control solubility limit of magnetic impurities in DMS. From the total energy calculations, it is shown that the solubility of magnetic impurities is strongly enhanced under the existence of interstitial donors [2]. However, due to the compensation of holes by the co-dopants, the ferromagnetism is suppressed. Based on the kinetic Monte Carlo simulations, we propose low temperature annealing method to remove interstitial co-dopants for recovering the ferromagnetism. By combining the co-doping and the low temperature annealing, we can fabricate DMS with high concentration of magnetic impurities which should show high-Tc. This work is based on the collaboration with H. Fujii, L. Bergqvist, P. H. Dederichs and H. Katayama-Yoshida.[4pt] [1] A. Bonanni, Semicond. Sci. Technol. 22 (2007) R41.[0pt] [2] K. Sato et al., Rev. Mod. Phys. Phys

  1. A copyright protection scheme for digital images based on shuffled singular value decomposition and visual cryptography.

    PubMed

    Devi, B Pushpa; Singh, Kh Manglem; Roy, Sudipta

    2016-01-01

    This paper proposes a new watermarking algorithm based on the shuffled singular value decomposition and the visual cryptography for copyright protection of digital images. It generates the ownership and identification shares of the image based on visual cryptography. It decomposes the image into low and high frequency sub-bands. The low frequency sub-band is further divided into blocks of same size after shuffling it and then the singular value decomposition is applied to each randomly selected block. Shares are generated by comparing one of the elements in the first column of the left orthogonal matrix with its corresponding element in the right orthogonal matrix of the singular value decomposition of the block of the low frequency sub-band. The experimental results show that the proposed scheme clearly verifies the copyright of the digital images, and is robust to withstand several image processing attacks. Comparison with the other related visual cryptography-based algorithms reveals that the proposed method gives better performance. The proposed method is especially resilient against the rotation attack.

  2. A copyright protection scheme for digital images based on shuffled singular value decomposition and visual cryptography.

    PubMed

    Devi, B Pushpa; Singh, Kh Manglem; Roy, Sudipta

    2016-01-01

    This paper proposes a new watermarking algorithm based on the shuffled singular value decomposition and the visual cryptography for copyright protection of digital images. It generates the ownership and identification shares of the image based on visual cryptography. It decomposes the image into low and high frequency sub-bands. The low frequency sub-band is further divided into blocks of same size after shuffling it and then the singular value decomposition is applied to each randomly selected block. Shares are generated by comparing one of the elements in the first column of the left orthogonal matrix with its corresponding element in the right orthogonal matrix of the singular value decomposition of the block of the low frequency sub-band. The experimental results show that the proposed scheme clearly verifies the copyright of the digital images, and is robust to withstand several image processing attacks. Comparison with the other related visual cryptography-based algorithms reveals that the proposed method gives better performance. The proposed method is especially resilient against the rotation attack. PMID:27468392

  3. CPUF - a chemical-structure-based polyurethane foam decomposition and foam response model.

    SciTech Connect

    Fletcher, Thomas H. (Brigham Young University, Provo, UT); Thompson, Kyle Richard; Erickson, Kenneth L.; Dowding, Kevin J.; Clayton, Daniel (Brigham Young University, Provo, UT); Chu, Tze Yao; Hobbs, Michael L.; Borek, Theodore Thaddeus III

    2003-07-01

    A Chemical-structure-based PolyUrethane Foam (CPUF) decomposition model has been developed to predict the fire-induced response of rigid, closed-cell polyurethane foam-filled systems. The model, developed for the B-61 and W-80 fireset foam, is based on a cascade of bondbreaking reactions that produce CO2. Percolation theory is used to dynamically quantify polymer fragment populations of the thermally degrading foam. The partition between condensed-phase polymer fragments and gas-phase polymer fragments (i.e. vapor-liquid split) was determined using a vapor-liquid equilibrium model. The CPUF decomposition model was implemented into the finite element (FE) heat conduction codes COYOTE and CALORE, which support chemical kinetics and enclosure radiation. Elements were removed from the computational domain when the calculated solid mass fractions within the individual finite element decrease below a set criterion. Element removal, referred to as ?element death,? creates a radiation enclosure (assumed to be non-participating) as well as a decomposition front, which separates the condensed-phase encapsulant from the gas-filled enclosure. All of the chemistry parameters as well as thermophysical properties for the CPUF model were obtained from small-scale laboratory experiments. The CPUF model was evaluated by comparing predictions to measurements. The validation experiments included several thermogravimetric experiments at pressures ranging from ambient pressure to 30 bars. Larger, component-scale experiments were also used to validate the foam response model. The effects of heat flux, bulk density, orientation, embedded components, confinement and pressure were measured and compared to model predictions. Uncertainties in the model results were evaluated using a mean value approach. The measured mass loss in the TGA experiments and the measured location of the decomposition front were within the 95% prediction limit determined using the CPUF model for all of the

  4. Orientation-Independent Empirical Mode Decomposition for Images Based on Unconstrained Optimization.

    PubMed

    Colominas, Marcelo A; Humeau-Heurtier, Anne; Schlotthauer, Gastón

    2016-05-01

    This paper introduces a 2D extension of the empirical mode decomposition (EMD), through a novel approach based on unconstrained optimization. EMD is a fully data-driven method that locally separates, in a completely data-driven and unsupervised manner, signals into fast and slow oscillations. The present proposal implements the method in a very simple and fast way, and it is compared with the state-of-the-art methods evidencing the advantages of being computationally efficient, orientation-independent, and leads to better performances for the decomposition of amplitude modulated-frequency modulated (AM-FM) images. The resulting genuine 2D method is successfully tested on artificial AM-FM images and its capabilities are illustrated on a biomedical example. The proposed framework leaves room for an nD extension (n > 2 ). PMID:26992022

  5. Automated decomposition algorithm for Raman spectra based on a Voigt line profile model.

    PubMed

    Chen, Yunliang; Dai, Liankui

    2016-05-20

    Raman spectra measured by spectrometers usually suffer from band overlap and random noise. In this paper, an automated decomposition algorithm based on a Voigt line profile model for Raman spectra is proposed to solve this problem. To decompose a measured Raman spectrum, a Voigt line profile model is introduced to parameterize the measured spectrum, and a Gaussian function is used as the instrumental broadening function. Hence, the issue of spectral decomposition is transformed into a multiparameter optimization problem of the Voigt line profile model parameters. The algorithm can eliminate instrumental broadening, obtain a recovered Raman spectrum, resolve overlapping bands, and suppress random noise simultaneously. Moreover, the recovered spectrum can be decomposed to a group of Lorentzian functions. Experimental results on simulated Raman spectra show that the performance of this algorithm is much better than a commonly used blind deconvolution method. The algorithm has also been tested on the industrial Raman spectra of ortho-xylene and proved to be effective.

  6. Allowable forward model misspecification for accurate basis decomposition in a silicon detector based spectral CT.

    PubMed

    Bornefalk, Hans; Persson, Mats; Danielsson, Mats

    2015-03-01

    Material basis decomposition in the sinogram domain requires accurate knowledge of the forward model in spectral computed tomography (CT). Misspecifications over a certain limit will result in biased estimates and make quantum limited (where statistical noise dominates) quantitative CT difficult. We present a method whereby users can determine the degree of allowed misspecification error in a spectral CT forward model and still have quantification errors that are limited by the inherent statistical uncertainty. For a particular silicon detector based spectral CT system, we conclude that threshold determination is the most critical factor and that the bin edges need to be known to within 0.15 keV in order to be able to perform quantum limited material basis decomposition. The method as such is general to all multibin systems.

  7. Automated decomposition algorithm for Raman spectra based on a Voigt line profile model.

    PubMed

    Chen, Yunliang; Dai, Liankui

    2016-05-20

    Raman spectra measured by spectrometers usually suffer from band overlap and random noise. In this paper, an automated decomposition algorithm based on a Voigt line profile model for Raman spectra is proposed to solve this problem. To decompose a measured Raman spectrum, a Voigt line profile model is introduced to parameterize the measured spectrum, and a Gaussian function is used as the instrumental broadening function. Hence, the issue of spectral decomposition is transformed into a multiparameter optimization problem of the Voigt line profile model parameters. The algorithm can eliminate instrumental broadening, obtain a recovered Raman spectrum, resolve overlapping bands, and suppress random noise simultaneously. Moreover, the recovered spectrum can be decomposed to a group of Lorentzian functions. Experimental results on simulated Raman spectra show that the performance of this algorithm is much better than a commonly used blind deconvolution method. The algorithm has also been tested on the industrial Raman spectra of ortho-xylene and proved to be effective. PMID:27411136

  8. A Perturbation Based Decomposition of Compound-Evoked Potentials for Characterization of Nerve Fiber Size Distributions.

    PubMed

    Szlavik, Robert B

    2016-02-01

    The characterization of peripheral nerve fiber distributions, in terms of diameter or velocity, is of clinical significance because information associated with these distributions can be utilized in the differential diagnosis of peripheral neuropathies. Electro-diagnostic techniques can be applied to the investigation of peripheral neuropathies and can yield valuable diagnostic information while being minimally invasive. Nerve conduction velocity studies are single parameter tests that yield no detailed information regarding the characteristics of the population of nerve fibers that contribute to the compound-evoked potential. Decomposition of the compound-evoked potential, such that the velocity or diameter distribution of the contributing nerve fibers may be determined, is necessary if information regarding the population of contributing nerve fibers is to be ascertained from the electro-diagnostic study. In this work, a perturbation-based decomposition of compound-evoked potentials is proposed that facilitates determination of the fiber diameter distribution associated with the compound-evoked potential. The decomposition is based on representing the single fiber-evoked potential, associated with each diameter class, as being perturbed by contributions, of varying degree, from all the other diameter class single fiber-evoked potentials. The resultant estimator of the contributing nerve fiber diameter distribution is valid for relatively large separations in diameter classes. It is also useful in situations where the separation between diameter classes is small and the concomitant single fiber-evoked potentials are not orthogonal.

  9. Advances on Empirical Mode Decomposition-based Time-Frequency Analysis Methods in Hydrocarbon Detection

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Xue, Y. J.; Cao, J.

    2015-12-01

    Empirical mode decomposition (EMD), which is a data-driven adaptive decomposition method and is not limited by time-frequency uncertainty spreading, is proved to be more suitable for seismic signals which are nonlinear and non-stationary. Compared with other Fourier-based and wavelet-based time-frequency methods, EMD-based time-frequency methods have higher temporal and spatial resolution and yield hydrocarbon interpretations with more statistical significance. Empirical mode decomposition algorithm has now evolved from EMD to Ensemble EMD (EEMD) to Complete Ensemble EMD (CEEMD). Even though EMD-based time-frequency methods offer many promising features for analyzing and processing geophysical data, there are some limitations or defects in EMD-based time-frequency methods. This presentation will present a comparative study on hydrocarbon detection using seven EMD-based time-frequency analysis methods, which include: (1) first, EMD combined with Hilbert transform (HT) as a time-frequency analysis method is used for hydrocarbon detection; and (2) second, Normalized Hilbert transform (NHT) and HU Methods respectively combined with HT as improved time-frequency analysis methods are applied for hydrocarbon detection; and (3) three, EMD combined with Teager-Kaiser energy (EMD/TK) is investigated for hydrocarbon detection; and (4) four, EMD combined with wavelet transform (EMDWave) as a seismic attenuation estimation method is comparatively studied; and (5) EEMD- and CEEMD- based time-frequency analysis methods used as highlight volumes technology are studied. The differences between these methods in hydrocarbon detection will be discussed. The question of getting a meaningful instantaneous frequency by HT and mode-mixing issues in EMD will be analysed. The work was supported by NSFC under grant Nos. 41430323, 41404102 and 41274128.

  10. A Superacid-Catalyzed Synthesis of Porous Membranes Based on Triazine Frameworks for CO2 Separation

    SciTech Connect

    Zhu, X; Tian, CC; Mahurin, SM; Chai, SH; Wang, CM; Brown, S; Veith, GM; Luo, HM; Liu, HL; Dai, S

    2012-06-27

    A general strategy for the synthesis of porous, fluorescent, triazine-framework-based membranes with intrinsic porosity through an aromatic nitrile trimerization reaction is presented. The essence of this strategy lies in the use of a superacid to catalyze the cross-linking reaction efficiently at a low temperature, allowing porous polymer membrane architectures to be facilely derived. With fiinctionalized triazine units, the membrane exhibits an increased selectivity for membrane separation of CO2 over N-2. The good ideal CO2/N-2 selectivity of 29 +/- 2 was achieved with a CO2 permeability of 518 +/- 25 barrer. Through this general synthesis protocol, a new class of porous polymer membranes with tunable functionalities and porosities can be derived, significantly expanding the currently limited library of polymers with intrinsic microporosity for synthesizing functional membranes in separation, catalysis, and energy storage/conversion.

  11. Efficient Electrochemical Water Splitting Catalyzed by Electrodeposited Nickel Diselenide Nanoparticles Based Film.

    PubMed

    Pu, Zonghua; Luo, Yonglan; Asiri, Abdullah M; Sun, Xuping

    2016-02-01

    In this contribution, we demonstrate that electrodeposited nickel diselenide nanoparticles based film on conductive Ti plate (NiSe2/Ti) is an efficient and robust electrode to catalyze both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in basic media. Electrochemical experiments show this electrode affords 10 mA cm(-2) at HER overpotential of 96 mV and 20 mA cm(-2) at OER overpotential of 295 mV with strong durability in 1.0 M KOH. The corresponding two-electrode alkaline water electrolyzer requires a cell voltage of only 1.66 V to achieve 10 mA cm(-2) water-splitting current. This development provides us an attractive non-noble-metal catalyst toward overall water splitting applications. PMID:26824878

  12. Efficient Electrochemical Water Splitting Catalyzed by Electrodeposited Nickel Diselenide Nanoparticles Based Film.

    PubMed

    Pu, Zonghua; Luo, Yonglan; Asiri, Abdullah M; Sun, Xuping

    2016-02-01

    In this contribution, we demonstrate that electrodeposited nickel diselenide nanoparticles based film on conductive Ti plate (NiSe2/Ti) is an efficient and robust electrode to catalyze both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in basic media. Electrochemical experiments show this electrode affords 10 mA cm(-2) at HER overpotential of 96 mV and 20 mA cm(-2) at OER overpotential of 295 mV with strong durability in 1.0 M KOH. The corresponding two-electrode alkaline water electrolyzer requires a cell voltage of only 1.66 V to achieve 10 mA cm(-2) water-splitting current. This development provides us an attractive non-noble-metal catalyst toward overall water splitting applications.

  13. Color information verification system based on singular value decomposition in gyrator transform domains

    NASA Astrophysics Data System (ADS)

    Abuturab, Muhammad Rafiq

    2014-06-01

    A new color image security system based on singular value decomposition (SVD) in gyrator transform (GT) domains is proposed. In the encryption process, a color image is decomposed into red, green and blue channels. Each channel is independently modulated by random phase masks and then separately gyrator transformed at different parameters. The three gyrator spectra are joined by multiplication to get one gray ciphertext. The ciphertext is separated into U, S, and V parts by SVD. All the three parts are individually gyrator transformed at different transformation angles. The three encoded information can be assigned to different authorized users for highly secure verification. Only when all the authorized users place the U, S, and V parts in correct multiplication order in the verification system, the correct information can be obtained with all the right keys. In the proposed method, SVD offers one-way asymmetrical decomposition algorithm and it is an optimal matrix decomposition in a least-square sense. The transformation angles of GT provide very sensitive additional keys. The pre-generated keys for red, green and blue channels are served as decryption (private) keys. As all the three encrypted parts are the gray scale ciphertexts with stationary white noise distributions, which have camouflage property to some extent. These advantages enhance the security and robustness. Numerical simulations are presented to support the viability of the proposed verification system.

  14. Dichlorodifluoromethane decomposition to CO2 with simultaneous halogen fixation by calcium oxide based materials.

    PubMed

    Tamai, Tsukasa; Inazu, Koji; Aika, Ken-ichi

    2006-02-01

    The decomposition of CCl2F2 to CO2 and accompanying halogen fixation by a CaO based material was studied. To improve the low reactivity of CaO, a consequence of its low surface acidity, transition metal oxides were added. Impregnation of metal acetylacetonate followed by removal of the ligand under vacuum was found to be an effective method. This method resulted in the formation of carbonaceous species and the reduction of metal oxide to metal, both of which were thought to initiate the decomposition reaction. The reactivity of these materials (MOx(a)/CaO-vac) was found to be in the following order: M = Ni > Cu > V = Fe > Mn > Co > Ca. In particular, nickel supported on CaO was most effective for the decomposition of CCl2F2. During the preparation, nickel oxide was reduced to the metal phase. CCl2F2 was decomposed to CO2 with a small amount of CO, and halogens were fixed as CaFCl, without significant deactivation at 723 K.

  15. Domain Decomposition Methods for Solving Stokes-Darcy Systems Based on Boundary Integrals

    NASA Astrophysics Data System (ADS)

    Tlupova, Svetlana

    2008-11-01

    We consider a coupled problem of Stokes and Darcy equations. This involves solving PDEs of different orders simultaneously. To overcome this difficulty, we apply a non-overlapping domain decomposition method based on a Robin boundary condition obtained by combining the velocity and pressure interface conditions. The coupled system is then reduced to solving each problem separately by an iterative procedure using a Krylov subspace method. The numerical solution in each subdomain is based on the boundary integral formulation, where the kernels are regularized and the leading term in the regularization error is eliminated for higher order accuracy.

  16. Generation of plaintext-independent private key based on conditional decomposition strategy

    NASA Astrophysics Data System (ADS)

    Lin, Chao; Shen, Xueju; Lei, Ming

    2016-11-01

    We propose to generate the plaintext-independent private keys in optical asymmetric cryptosystem (OACS) based on the strategy of conditional decomposition (CD). Following this strategy, an OACS is designed with the principle of superposition of two vectorial beams. The proposed cryptosystem can remove the silhouette which is discovered in the two beams interference-based cryptosystem. To relieve the difficulty of key distribution, a structured spiral phase key (SSPK) is utilized instead of the random phase key (RPK). And a comparison on the performance of two kinds of keys in both the encryption and decryption process is made to show the advantage of SSPK over RPK.

  17. Improved Model-Based Polarimetric Decomposition Using the POlINSAR Similarity Parameter

    NASA Astrophysics Data System (ADS)

    Latrache, H.; Ouarzeddine, M.; Souissi, B.

    2016-06-01

    In this paper, we present a new approach to solve the problem of volume scattering ambiguity in urban area, for that we propose a volume model based on the polarimetric interferometric similarity parameter (PISP) . The new model is more adaptive and fits better with both forest and oriented built-up areas. Thereby, a new model-based polarimetric decomposition scheme is developed. To test the performance of the proposed method ESAR PolInSAR L bande data of Oberpfaffenhofen, Germany is used. Comparison experiments show that the proposed method gives good results, since all the oriented built-up areas are well discriminated as double or odd bounce structures.

  18. Base-Free Conditions for Rhodium-Catalyzed Asymmetric Arylation To Produce Stereochemically Labile α-Aryl Ketones.

    PubMed

    Dou, Xiaowei; Lu, Yixin; Hayashi, Tamio

    2016-06-01

    The asymmetric arylation of 2,2-dialkyl cyclopent-4-ene-1,3-diones with aryl boronic acids was found to be efficiently catalyzed by a chiral diene-rhodium μ-chloro dimer, [{RhCl((R)-diene*)}2 ], in the absence of bases in toluene/H2 O to give 2,2-dialkyl 4-aryl cyclopentane-1,3-diones in high yields with high enantioselectivity. Such compounds can not be obtained with high enantiomeric purity under the standard basic conditions used for rhodium-catalyzed asymmetric arylation because the α-aryl ketone products undergo racemization under the basic conditions. PMID:27100902

  19. Ligand- and base-free Pd(II)-catalyzed controlled switching between oxidative Heck and conjugate addition reactions.

    PubMed

    Walker, Sarah E; Boehnke, Julian; Glen, Pauline E; Levey, Steven; Patrick, Lisa; Jordan-Hore, James A; Lee, Ai-Lan

    2013-04-19

    A simple change of solvent allows controlled and efficient switching between oxidative Heck and conjugate addition reactions on cyclic Michael acceptor substrates, catalyzed by a cationic Pd(II) catalyst system. Both reactions are ligand- and base-free and tolerant of air and moisture, and the controlled switching sheds light on some of the factors which favor one reaction over the other.

  20. Cure reaction of epoxy resins catalyzed by graphite-based nanofiller

    NASA Astrophysics Data System (ADS)

    Corcione, C. Esposito; Acocella, Maria Rosaria; Giuri, Antonella; Maffezzoli, Alfonso; Guerra, Gaetano

    2015-12-01

    A significant effort was directed to the synthesis of graphene stacks/epoxy nanocomposites and to the analysis of the effect of a graphene precursor on cure reaction of a model epoxy matrix. A comparative thermal analysis of epoxy resins filled with an exfoliated graphite oxide eGO were conducted. The main aim was to understand the molecular origin of the influence of eGO on the Tg of epoxy resins. The higher Tg values previously observed for low curing temperatures, for epoxy resins with graphite-based nanofillers, were easily rationalized by a catalytic activity of graphitic layers on the reaction between the epoxy and amine groups of the resin, which leads to higher crosslinking density in milder conditions. A kinetic analysis of the cure mechanism of the epoxy resin associated to the catalytical activity of the graphite based filler was performed by isothermal DSC measurements. The DSC results showed that the addition of graphite based filler greatly increased the enthalpy of epoxy reaction and the reaction rate, confirming the presence of a catalytic activity of graphitic layers on the crosslinking reaction between the epoxy resin components (epoxide oligomer and di-amine). A kinetic modelling analysis, arising from an auto-catalyzed reaction mechanism, was finally applied to isothermal DSC data, in order to predict the cure mechanism of the epoxy resin in presence of the graphite based nanofiller.

  1. A decomposition-based CT reconstruction formulation for reducing blooming artifacts.

    PubMed

    Do, Synho; Karl, W Clem; Liang, Zhuangli; Kalra, Mannudeep; Brady, Thomas J; Pien, Homer H

    2011-11-21

    Cardiac computed tomography represents an important advancement in the ability to assess coronary vessels. The accuracy of these non-invasive imaging studies is limited, however, by the presence of calcium, since calcium blooming artifacts lead to an over-estimation of the degree of luminal narrowing. To address this problem, we have developed a unified decomposition-based iterative reconstruction formulation, where different penalty functions are imposed on dense objects (i.e. calcium) and soft tissue. The result is a quantifiable reduction in blooming artifacts without the introduction of new distortions away from the blooming observed in other methods. Results are shown for simulations, phantoms, ex vivo, and in vivo studies.

  2. An ISAR imaging algorithm for the space satellite based on empirical mode decomposition theory

    NASA Astrophysics Data System (ADS)

    Zhao, Tao; Dong, Chun-zhu

    2014-11-01

    Currently, high resolution imaging of the space satellite is a popular topic in the field of radar technology. In contrast with regular targets, the satellite target often moves along with its trajectory and simultaneously its solar panel substrate changes the direction toward the sun to obtain energy. Aiming at the imaging problem, a signal separating and imaging approach based on the empirical mode decomposition (EMD) theory is proposed, and the approach can realize separating the signal of two parts in the satellite target, the main body and the solar panel substrate and imaging for the target. The simulation experimentation can demonstrate the validity of the proposed method.

  3. Palladium-Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation Reactions.

    PubMed

    Long, Ran; Huang, Hao; Li, Yaping; Song, Li; Xiong, Yujie

    2015-11-25

    Oxidation reactions by molecular oxygen (O2 ) over palladium (Pd)-based nanomaterials are a series of processes crucial to the synthesis of fine chemicals. In the past decades, investigations of related catalytic materials have mainly been focused on the synthesis of Pd-based nanomaterials from the angle of tailoring their surface structures, compositions and supporting materials, in efforts to improve their activities in organic reactions. From the perspective of rational materials design, it is imperative to address the fundamental issues associated with catalyst performance, one of which should be oxygen activation by Pd-based nanomaterials. Here, the fundamentals that account for the transformation from O2 to reactive oxygen species over Pd, with a focus on singlet O2 and its analogue, are introduced. Methods for detecting and differentiating species are also presented to facilitate future fundamental research. Key factors for tuning the oxygen activation efficiencies of catalytic materials are then outlined, and recent developments in Pd-catalyzed oxygen-related organic reactions are summarized in alignment with each key factor. To close, we discuss the challenges and opportunities for photocatalysis research at this unique intersection as well as the potential impact on other research fields.

  4. Mechanistic studies of the base-catalyzed hydrolysis of pyridine nucleotides

    SciTech Connect

    Johnson, R.W.; Marschner, T.M.; Malver, O.; Sleath, P.R.; Oppenheimer, N.J.

    1986-05-01

    The pH dependence of base-catalyzed hydrolysis of ..beta..-NAD has been determined over the range from pH 8.5 to 13.5. Below pH 10.5 the reaction rate constant is linearly dependent on hydroxide concentration whereas above pH 12.5 the reaction becomes pH independent. A nonlinear least squares fit of the data yields a pK/sub a/ of 12.2, corresponding to the ionization of the 2'-OH of the nicotinamide ribose as determined by /sup 1/H and /sup 13/C NMR. Based on these data, as well as solvent isotope effects and data from previous investigators, the authors propose that ionization of the ribose diol stabilizes an oxonium ion intermediate, thus, facilitating S/sub N/1 hydrolysis of the nicotinamide-glycosyl bond with release of nicotinamide. Further evidence for this mechanism is provided by investigation of the 2',3'-O-isopropylidine nicotinamide riboside. This compound is found to be highly resistant to hydrolysis in base and product analysis by NMR reveals that only 2-hydroxy-3-pyridinecarboxaldehyde is released. The influence on the reaction rate and mechanism resulting from other modifications of the sugar moiety of nicotinamide nucleosides are discussed.

  5. Dual Lewis Acid/Lewis Base Catalyzed Acylcyanation of Aldehydes: A Mechanistic Study.

    PubMed

    Laurell Nash, Anna; Hertzberg, Robin; Wen, Ye-Qian; Dahlgren, Björn; Brinck, Tore; Moberg, Christina

    2016-03-01

    A mechanistic investigation, which included a Hammett correlation analysis, evaluation of the effect of variation of catalyst composition, and low-temperature NMR spectroscopy studies, of the Lewis acid-Lewis base catalyzed addition of acetyl cyanide to prochiral aldehydes provides support for a reaction route that involves Lewis base activation of the acyl cyanide with formation of a potent acylating agent and cyanide ion. The cyanide ion adds to the carbonyl group of the Lewis acid activated aldehyde. O-Acylation by the acylated Lewis base to form the final cyanohydrin ester occurs prior to decomplexation from titanium. For less reactive aldehydes, the addition of cyanide is the rate-determining step, whereas, for more reactive, electron-deficient aldehydes, cyanide addition is rapid and reversible and is followed by rate-limiting acylation. The resting state of the catalyst lies outside the catalytic cycle and is believed to be a monomeric titanium complex with two alcoholate ligands, which only slowly converts into the product.

  6. Palladium-Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation Reactions.

    PubMed

    Long, Ran; Huang, Hao; Li, Yaping; Song, Li; Xiong, Yujie

    2015-11-25

    Oxidation reactions by molecular oxygen (O2 ) over palladium (Pd)-based nanomaterials are a series of processes crucial to the synthesis of fine chemicals. In the past decades, investigations of related catalytic materials have mainly been focused on the synthesis of Pd-based nanomaterials from the angle of tailoring their surface structures, compositions and supporting materials, in efforts to improve their activities in organic reactions. From the perspective of rational materials design, it is imperative to address the fundamental issues associated with catalyst performance, one of which should be oxygen activation by Pd-based nanomaterials. Here, the fundamentals that account for the transformation from O2 to reactive oxygen species over Pd, with a focus on singlet O2 and its analogue, are introduced. Methods for detecting and differentiating species are also presented to facilitate future fundamental research. Key factors for tuning the oxygen activation efficiencies of catalytic materials are then outlined, and recent developments in Pd-catalyzed oxygen-related organic reactions are summarized in alignment with each key factor. To close, we discuss the challenges and opportunities for photocatalysis research at this unique intersection as well as the potential impact on other research fields. PMID:26422795

  7. A quantitative acoustic emission study on fracture processes in ceramics based on wavelet packet decomposition

    SciTech Connect

    Ning, J. G.; Chu, L.; Ren, H. L.

    2014-08-28

    We base a quantitative acoustic emission (AE) study on fracture processes in alumina ceramics on wavelet packet decomposition and AE source location. According to the frequency characteristics, as well as energy and ringdown counts of AE, the fracture process is divided into four stages: crack closure, nucleation, development, and critical failure. Each of the AE signals is decomposed by a 2-level wavelet package decomposition into four different (from-low-to-high) frequency bands (AA{sub 2}, AD{sub 2}, DA{sub 2}, and DD{sub 2}). The energy eigenvalues P{sub 0}, P{sub 1}, P{sub 2}, and P{sub 3} corresponding to these four frequency bands are calculated. By analyzing changes in P{sub 0} and P{sub 3} in the four stages, we determine the inverse relationship between AE frequency and the crack source size during ceramic fracture. AE signals with regard to crack nucleation can be expressed when P{sub 0} is less than 5 and P{sub 3} more than 60; whereas AE signals with regard to dangerous crack propagation can be expressed when more than 92% of P{sub 0} is greater than 4, and more than 95% of P{sub 3} is less than 45. Geiger location algorithm is used to locate AE sources and cracks in the sample. The results of this location algorithm are consistent with the positions of fractures in the sample when observed under a scanning electronic microscope; thus the locations of fractures located with Geiger's method can reflect the fracture process. The stage division by location results is in a good agreement with the division based on AE frequency characteristics. We find that both wavelet package decomposition and Geiger's AE source locations are suitable for the identification of the evolutionary process of cracks in alumina ceramics.

  8. Density-based Energy Decomposition Analysis for Intermolecular Interactions with Variationally Determined Intermediate State Energies

    SciTech Connect

    Wu, Q.; Ayers, P.W.; Zhang, Y.

    2009-10-28

    The first purely density-based energy decomposition analysis (EDA) for intermolecular binding is developed within the density functional theory. The most important feature of this scheme is to variationally determine the frozen density energy, based on a constrained search formalism and implemented with the Wu-Yang algorithm [Q. Wu and W. Yang, J. Chem. Phys. 118, 2498 (2003) ]. This variational process dispenses with the Heitler-London antisymmetrization of wave functions used in most previous methods and calculates the electrostatic and Pauli repulsion energies together without any distortion of the frozen density, an important fact that enables a clean separation of these two terms from the relaxation (i.e., polarization and charge transfer) terms. The new EDA also employs the constrained density functional theory approach [Q. Wu and T. Van Voorhis, Phys. Rev. A 72, 24502 (2005)] to separate out charge transfer effects. Because the charge transfer energy is based on the density flow in real space, it has a small basis set dependence. Applications of this decomposition to hydrogen bonding in the water dimer and the formamide dimer show that the frozen density energy dominates the binding in these systems, consistent with the noncovalent nature of the interactions. A more detailed examination reveals how the interplay of electrostatics and the Pauli repulsion determines the distance and angular dependence of these hydrogen bonds.

  9. Reduced-order spectral data modeling based on local proper orthogonal decomposition.

    PubMed

    Cho, Woon; Sahyoun, Samir; Djouadi, Seddik M; Koschan, Andreas; Abidi, Mongi A

    2015-05-01

    Spectral imaging typically generates a large amount of high-dimensional data that are acquired in different sub-bands for each spatial location of interest. The high dimensionality of spectral data imposes limitations on numerical analysis. As such, there is an emerging demand for robust data compression techniques with loss of less relevant information to manage real spectral data. In this paper, we describe a reduced-order data modeling technique based on local proper orthogonal decomposition (POD) in order to compute low-dimensional models by projecting high-dimensional clusters onto subspaces spanned by local reduced-order bases. We refer to the proposed method as the local-based approach because POD finds locally optimal solutions on each group split by k-means clustering. Experimental results are reported on three public domain databases and an in-house database. Comparisons with three leading spectral recovery techniques, three decomposition techniques used for hyperspectral imaging, and two baseline techniques show that the proposed method leads to promising improvement on spectral and colorimetric accuracy corresponding to the reconstructed spectral reflectance. PMID:26366895

  10. Reduced-order spectral data modeling based on local proper orthogonal decomposition.

    PubMed

    Cho, Woon; Sahyoun, Samir; Djouadi, Seddik M; Koschan, Andreas; Abidi, Mongi A

    2015-05-01

    Spectral imaging typically generates a large amount of high-dimensional data that are acquired in different sub-bands for each spatial location of interest. The high dimensionality of spectral data imposes limitations on numerical analysis. As such, there is an emerging demand for robust data compression techniques with loss of less relevant information to manage real spectral data. In this paper, we describe a reduced-order data modeling technique based on local proper orthogonal decomposition (POD) in order to compute low-dimensional models by projecting high-dimensional clusters onto subspaces spanned by local reduced-order bases. We refer to the proposed method as the local-based approach because POD finds locally optimal solutions on each group split by k-means clustering. Experimental results are reported on three public domain databases and an in-house database. Comparisons with three leading spectral recovery techniques, three decomposition techniques used for hyperspectral imaging, and two baseline techniques show that the proposed method leads to promising improvement on spectral and colorimetric accuracy corresponding to the reconstructed spectral reflectance.

  11. Hetropolyacid-Catalyzed Oxidation of Glycerol into Lactic Acid under Mild Base-Free Conditions.

    PubMed

    Tao, Meilin; Yi, Xiaohu; Delidovich, Irina; Palkovits, Regina; Shi, Junyou; Wang, Xiaohong

    2015-12-21

    Lactic acid (LA) is a versatile platform molecule owing to the opportunity to transform this compound into useful chemicals and materials. Therefore, efficient production of LA based on inexpensive renewable feedstocks is of utmost importance for insuring its market availability. Herein, we report the efficient conversion of glycerol into LA catalyzed by heteropolyacids (HPAs) under mild base-free conditions. The catalytic performance of molecular HPAs appears to correlate with their redox potential and Brønsted acidity. Namely, H3 PMo(12)O(40) (HPMo) exhibits the best selectivity towards LA (90 %) with 88 % conversion of glycerol. Loading of HPMo onto a carbon support (HPMo/C) further improves LA productivity resulting in 94 % selectivity at 98 % conversion under optimized reaction conditions. The reaction takes place through the formation of dihydroxyacetone/glyceraldehyde and pyruvaldehyde as intermediates. No leaching of HPMo was observed under the applied reaction conditions and HPMo/C could be recycled 5 times without significant loss of activity.

  12. High temperature electrical conductivity and thermal decomposition of phenolic- and silicon-based dielectrics for fireset housings

    SciTech Connect

    Johnson, R.T. Jr.; Biefeld, R.M.

    1981-08-01

    The temperature dependence of the electrical conductivity and thermal decomposition characteristics of several phenolic- and silicone-based materials of interest for fireset case housings have been measured to 600 to 700/sup 0/C. The materials are phenolic or silicone resins reinforced with glass chopped fabric or cloth. The conductivity temperature dependence was measured during decomposition in a nitrogen atmosphere at a heating rate of approx. 10/sup 0/C/minute. Applied electric fields were from 4 x 10/sup 2/ to 4 x 10/sup 3/ volts/cm. Thermal decomposition characteristics were investigated by mass spectroscopy in vacuum and thermal gravimetric analysis in nitrogen and air. Nearly ohmic voltage-current characteristics were obtained, except where decomposition and/or outgassing was pronounced.

  13. Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang

    2016-07-01

    The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only needs to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.

  14. Determination of knock characteristics in spark ignition engines: an approach based on ensemble empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Yang, Jianguo; Zhou, Rui; Liang, Caiping

    2016-04-01

    Knock is one of the major constraints to improve the performance and thermal efficiency of spark ignition (SI) engines. It can also result in severe permanent engine damage under certain operating conditions. Based on the ensemble empirical mode decomposition (EEMD), this paper proposes a new approach to determine the knock characteristics in SI engines. By adding a uniformly distributed and finite white Gaussian noise, the EEMD can preserve signal continuity in different scales and therefore alleviates the mode-mixing problem occurring in the classic empirical mode decomposition (EMD). The feasibilities of applying the EEMD to detect the knock signatures of a test SI engine via the pressure signal measured from combustion chamber and the vibration signal measured from cylinder head are investigated. Experimental results show that the EEMD-based method is able to detect the knock signatures from both the pressure signal and vibration signal, even in initial stage of knock. Finally, by comparing the application results with those obtained by short-time Fourier transform (STFT), Wigner-Ville distribution (WVD) and discrete wavelet transform (DWT), the superiority of the EEMD method in determining knock characteristics is demonstrated.

  15. Decomposition-based multiobjective evolutionary algorithm for community detection in dynamic social networks.

    PubMed

    Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng

    2014-01-01

    Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms.

  16. Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yu, Xuezhe; Li, Lixia; Wang, Hailong; Xiao, Jiaxing; Shen, Chao; Pan, Dong; Zhao, Jianhua

    2016-05-01

    For the epitaxial growth of Ga-based III-V semiconductor nanowires (NWs) on Si, Ga droplets could provide a clean and compatible solution in contrast to the common Au catalyst. However, the use of Ga droplets is rather limited except for that in Ga-catalyzed GaAs NW studies in a relatively narrow growth temperature (Ts) window around 620 °C on Si. In this paper, we have investigated the two-step growth of Ga-catalyzed III-V NWs on Si (111) substrates by molecular-beam epitaxy. First, by optimizing the surface oxide, vertically aligned GaAs NWs with a high yield are obtained at Ts = 620 °C. Then a two-temperature procedure is adopted to preserve Ga droplets at lower Ts, which leads to an extension of Ts down to 500 °C for GaAs NWs. Based on this procedure, systematic morphological and structural studies for Ga-catalyzed GaAs NWs in the largest Ts range could be presented. Then within the same growth scheme, for the first time, we demonstrate Ga-catalyzed GaAs/GaSb heterostructure NWs. These GaSb NWs are axially grown on the GaAs NW sections and are pure zinc-blende single crystals. Compositional measurements confirm that the catalyst particles indeed mainly consist of Ga and GaSb sections are of high purity but with a minor composition of As. In the end, we present GaAsSb NW growth with a tunable Sb composition. Our results provide useful information for the controllable synthesis of multi-compositional Ga-catalyzed III-V semiconductor NWs on Si for heterogeneous integration.For the epitaxial growth of Ga-based III-V semiconductor nanowires (NWs) on Si, Ga droplets could provide a clean and compatible solution in contrast to the common Au catalyst. However, the use of Ga droplets is rather limited except for that in Ga-catalyzed GaAs NW studies in a relatively narrow growth temperature (Ts) window around 620 °C on Si. In this paper, we have investigated the two-step growth of Ga-catalyzed III-V NWs on Si (111) substrates by molecular-beam epitaxy. First, by

  17. Decomposition of Polarimetric SAR Images Based on Second- and Third-order Statics Analysis

    NASA Astrophysics Data System (ADS)

    Kojima, S.; Hensley, S.

    2012-12-01

    There are many papers concerning the research of the decomposition of polerimetric SAR imagery. Most of them are based on second-order statics analysis that Freeman and Durden [1] suggested for the reflection symmetry condition that implies that the co-polarization and cross-polarization correlations are close to zero. Since then a number of improvements and enhancements have been proposed to better understand the underlying backscattering mechanisms present in polarimetric SAR images. For example, Yamaguchi et al. [2] added the helix component into Freeman's model and developed a 4 component scattering model for the non-reflection symmetry condition. In addition, Arii et al. [3] developed an adaptive model-based decomposition method that could estimate both the mean orientation angle and a degree of randomness for the canopy scattering for each pixel in a SAR image without the reflection symmetry condition. This purpose of this research is to develop a new decomposition method based on second- and third-order statics analysis to estimate the surface, dihedral, volume and helix scattering components from polarimetric SAR images without the specific assumptions concerning the model for the volume scattering. In addition, we evaluate this method by using both simulation and real UAVSAR data and compare this method with other methods. We express the volume scattering component using the wire formula and formulate the relationship equation between backscattering echo and each component such as the surface, dihedral, volume and helix via linearization based on second- and third-order statics. In third-order statics, we calculate the correlation of the correlation coefficients for each polerimetric data and get one new relationship equation to estimate each polarization component such as HH, VV and VH for the volume. As a result, the equation for the helix component in this method is the same formula as one in Yamaguchi's method. However, the equation for the volume

  18. FETI Prime Domain Decomposition base Parallel Iterative Solver Library Ver.1.0

    2003-09-15

    FETI Prime is a library for the iterative solution of linear equations in solid and structural mechanics. The algorithm employs preconditioned conjugate gradients, with a domain decomposition-based preconditioner. The software is written in C++ and is designed for use with massively parallel computers, using MPI. The algorithm is based on the FETI-DP method, with additional capabilities for handling constraint equations, as well as interfacing with the Salinas structural dynamics code and the Finite Element Interfacemore » (FEI) library. Practical Application: FETI Prime is designed for use with finite element-based simulation codes for solid and structural mechanics. The solver uses element matrices, connectivity information, nodal information, and force vectors computed by the host code and provides back the solution to the linear system of equations, to the user specified level of accuracy, The library is compiled with the host code and becomes an integral part of the host code executable.« less

  19. A Practical and General Base-Catalyzed Carbonylation of Amines for the Synthesis of N-Formamides.

    PubMed

    Li, Wanfang; Wu, Xiao-Feng

    2015-10-12

    A highly practical and general base-catalyzed carbonylation of amines to the corresponding N-formamides has been realized. Cheap inorganic bases, including Group IA and IIA metal hydroxides, alkoxides, carbonates, and phosphates, were effective catalysts for the transformation. In the presence of 10-40 mol % of KOH or K2 CO3 , various amines were converted into the corresponding N-formamides in good-to-excellent yields using CO as the formylation reagents.

  20. Total synthesis of resveratrol-based natural products using a palladium-catalyzed decarboxylative arylation and an oxidative Heck reaction.

    PubMed

    Klotter, Felix; Studer, Armido

    2014-02-24

    Controlled access to resveratrol-based natural products is offered by a novel, modular concept. A common building block readily available on a large scale serves as the starting material for the introduction of structurally important aryl groups by a Pd-catalyzed decarboxylative arylation and an oxidative Heck reaction with good yields and high stereoselectivity. The modular approach is convincingly documented by the successful synthesis of three racemic resveratrol-based natural products (quadrangularin A, ampelopsin D, and pallidol).

  1. Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy.

    PubMed

    Yu, Xuezhe; Li, Lixia; Wang, Hailong; Xiao, Jiaxing; Shen, Chao; Pan, Dong; Zhao, Jianhua

    2016-05-19

    For the epitaxial growth of Ga-based III-V semiconductor nanowires (NWs) on Si, Ga droplets could provide a clean and compatible solution in contrast to the common Au catalyst. However, the use of Ga droplets is rather limited except for that in Ga-catalyzed GaAs NW studies in a relatively narrow growth temperature (Ts) window around 620 °C on Si. In this paper, we have investigated the two-step growth of Ga-catalyzed III-V NWs on Si (111) substrates by molecular-beam epitaxy. First, by optimizing the surface oxide, vertically aligned GaAs NWs with a high yield are obtained at Ts = 620 °C. Then a two-temperature procedure is adopted to preserve Ga droplets at lower Ts, which leads to an extension of Ts down to 500 °C for GaAs NWs. Based on this procedure, systematic morphological and structural studies for Ga-catalyzed GaAs NWs in the largest Ts range could be presented. Then within the same growth scheme, for the first time, we demonstrate Ga-catalyzed GaAs/GaSb heterostructure NWs. These GaSb NWs are axially grown on the GaAs NW sections and are pure zinc-blende single crystals. Compositional measurements confirm that the catalyst particles indeed mainly consist of Ga and GaSb sections are of high purity but with a minor composition of As. In the end, we present GaAsSb NW growth with a tunable Sb composition. Our results provide useful information for the controllable synthesis of multi-compositional Ga-catalyzed III-V semiconductor NWs on Si for heterogeneous integration.

  2. Enzyme-catalyzed synthesis of unsaturated aliphatic polyesters based on green monomers from renewable resources.

    PubMed

    Jiang, Yi; Woortman, Albert J J; van Ekenstein, Gert O R Alberda; Loos, Katja

    2013-08-12

    Bio-based commercially available succinate, itaconate and 1,4-butanediol are enzymatically co-polymerized in solution via a two-stage method, using Candida antarctica Lipase B (CALB, in immobilized form as Novozyme® 435) as the biocatalyst. The chemical structures of the obtained products, poly(butylene succinate) (PBS) and poly(butylene succinate-co-itaconate) (PBSI), are confirmed by 1H- and 13C-NMR. The effects of the reaction conditions on the CALB-catalyzed synthesis of PBSI are fully investigated, and the optimal polymerization conditions are obtained. With the established method, PBSI with tunable compositions and satisfying reaction yields is produced. The 1H-NMR results confirm that carbon-carbon double bonds are well preserved in PBSI. The differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) results indicate that the amount of itaconate in the co-polyesters has no obvious effects on the glass-transition temperature and the thermal stability of PBS and PBSI, but has significant effects on the melting temperature.

  3. Enzyme-Catalyzed Synthesis of Unsaturated Aliphatic Polyesters Based on Green Monomers from Renewable Resources

    PubMed Central

    Jiang, Yi; Woortman, Albert J.J.; Alberda van Ekenstein, Gert O.R.; Loos, Katja

    2013-01-01

    Bio-based commercially available succinate, itaconate and 1,4-butanediol are enzymatically co-polymerized in solution via a two-stage method, using Candida antarctica Lipase B (CALB, in immobilized form as Novozyme® 435) as the biocatalyst. The chemical structures of the obtained products, poly(butylene succinate) (PBS) and poly(butylene succinate-co-itaconate) (PBSI), are confirmed by 1H- and 13C-NMR. The effects of the reaction conditions on the CALB-catalyzed synthesis of PBSI are fully investigated, and the optimal polymerization conditions are obtained. With the established method, PBSI with tunable compositions and satisfying reaction yields is produced. The 1H-NMR results confirm that carbon-carbon double bonds are well preserved in PBSI. The differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) results indicate that the amount of itaconate in the co-polyesters has no obvious effects on the glass-transition temperature and the thermal stability of PBS and PBSI, but has significant effects on the melting temperature. PMID:24970176

  4. A novel signal-on electrochemical DNA sensor based on target catalyzed hairpin assembly strategy.

    PubMed

    Qian, Yong; Tang, Daoquan; Du, Lili; Zhang, Yanzhuo; Zhang, Lixian; Gao, Fenglei

    2015-02-15

    We describe a novel signal-on electrochemical DNA (E-DNA) sensing platform based on target-catalyzed hairpin assembly. The thiolated modified molecular beacon 1 (MB1) was first immobilized onto the Au electrode (GE) surface and then target DNA hybridized to the MB1, the opened MB1 assembled with the ferrocene (Fc)-labeled molecular beacon 2 to displace the target DNA, which became available for the next cycle of MB1-target hybridization. Moreover, Fc was confined close to the GE surface for efficient electron transfer, resulting in a current signal. Eventually, each target strand went through many cycles, resulting in numerous Fcs confining close to the GE, which leaded to the current of Fc dramatically increase. The observed signal gain was sufficient to achieve a demonstrated detection limit of 0.74 fM, with a wide linear dynamic range from 10(-15) to 10(-10)M and discriminated mismatched DNA from perfect matched target DNA with a high selectivity. Thus, the proposed E-DNA sensor would have a wide range of sensor applications because it is enzyme-free and simple to perform.

  5. Decomposition-Based Failure Mode Identification Method for Risk-Free Design of Large Systems

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; Stone, Robert B.; Roberts, Rory A.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    When designing products, it is crucial to assure failure and risk-free operation in the intended operating environment. Failures are typically studied and eliminated as much as possible during the early stages of design. The few failures that go undetected result in unacceptable damage and losses in high-risk applications where public safety is of concern. Published NASA and NTSB accident reports point to a variety of components identified as sources of failures in the reported cases. In previous work, data from these reports were processed and placed in matrix form for all the system components and failure modes encountered, and then manipulated using matrix methods to determine similarities between the different components and failure modes. In this paper, these matrices are represented in the form of a linear combination of failures modes, mathematically formed using Principal Components Analysis (PCA) decomposition. The PCA decomposition results in a low-dimensionality representation of all failure modes and components of interest, represented in a transformed coordinate system. Such a representation opens the way for efficient pattern analysis and prediction of failure modes with highest potential risks on the final product, rather than making decisions based on the large space of component and failure mode data. The mathematics of the proposed method are explained first using a simple example problem. The method is then applied to component failure data gathered from helicopter, accident reports to demonstrate its potential.

  6. Energy decomposition analysis based on a block-localized wavefunction and multistate density functional theory

    PubMed Central

    Bao, Peng

    2013-01-01

    An interaction energy decomposition analysis method based on the block-localized wavefunction (BLW-ED) approach is described. The first main feature of the BLW-ED method is that it combines concepts of valence bond and molecular orbital theories such that the intermediate and physically intuitive electron-localized states are variationally optimized by self-consistent field calculations. Furthermore, the block-localization scheme can be used both in wave function theory and in density functional theory, providing a useful tool to gain insights on intermolecular interactions that would otherwise be difficult to obtain using the delocalized Kohn–Sham DFT. These features allow broad applications of the BLW method to energy decomposition (BLW-ED) analysis for intermolecular interactions. In this perspective, we outline theoretical aspects of the BLW-ED method, and illustrate its applications in hydrogen-bonding and π–cation intermolecular interactions as well as metal–carbonyl complexes. Future prospects on the development of a multistate density functional theory (MSDFT) are presented, making use of block-localized electronic states as the basis configurations. PMID:21369567

  7. Wavelet decomposition based principal component analysis for face recognition using MATLAB

    NASA Astrophysics Data System (ADS)

    Sharma, Mahesh Kumar; Sharma, Shashikant; Leeprechanon, Nopbhorn; Ranjan, Aashish

    2016-03-01

    For the realization of face recognition systems in the static as well as in the real time frame, algorithms such as principal component analysis, independent component analysis, linear discriminate analysis, neural networks and genetic algorithms are used for decades. This paper discusses an approach which is a wavelet decomposition based principal component analysis for face recognition. Principal component analysis is chosen over other algorithms due to its relative simplicity, efficiency, and robustness features. The term face recognition stands for identifying a person from his facial gestures and having resemblance with factor analysis in some sense, i.e. extraction of the principal component of an image. Principal component analysis is subjected to some drawbacks, mainly the poor discriminatory power and the large computational load in finding eigenvectors, in particular. These drawbacks can be greatly reduced by combining both wavelet transform decomposition for feature extraction and principal component analysis for pattern representation and classification together, by analyzing the facial gestures into space and time domain, where, frequency and time are used interchangeably. From the experimental results, it is envisaged that this face recognition method has made a significant percentage improvement in recognition rate as well as having a better computational efficiency.

  8. Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition

    PubMed Central

    Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P.; McDonald-Maier, Klaus D.

    2015-01-01

    A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences. PMID:26007714

  9. Multiview 3D profilometry using resonance-based decomposition and three-phase shift profilometry

    NASA Astrophysics Data System (ADS)

    Woolford, Stuart; Burnett, Ian S.

    2015-03-01

    In this paper a one-shot method to determine the shape of an object from overlapping cosine fringes projected from multiple projectors is presented. This overcomes the limitation with single projector systems that do not allow imaging the entire object with a single shot. This research projects orthogonal grey scale sinusoidal fringes simultaneously onto an object and separates them using resonance decomposition. Resonance decomposition is a method that separates signals based on the idea of resonance, whether or not a signal exhibits a high degree of sustained oscillation, and can separate high and low resonance components of a signal even if they overlap in the frequency domain. In addition to pattern separation a novel method of phase error compensation is proposed using the mean value for each period ranging from [-π,π] as the basis for a look up table (LUT). It is shown that this method of error compensation is able to reduce the error caused by non-sinusoidal waveforms to a level comparable to the single view 3-phase shift profilometry method.

  10. Anomaly detection in hyperspectral imagery based on low-rank and sparse decomposition

    NASA Astrophysics Data System (ADS)

    Cui, Xiaoguang; Tian, Yuan; Weng, Lubin; Yang, Yiping

    2014-01-01

    This paper presents a novel low-rank and sparse decomposition (LSD) based model for anomaly detection in hyperspectral images. In our model, a local image region is represented as a low-rank matrix plus spares noises in the spectral space, where the background can be explained by the low-rank matrix, and the anomalies are indicated by the sparse noises. The detection of anomalies in local image regions is formulated as a constrained LSD problem, which can be solved efficiently and robustly with a modified "Go Decomposition" (GoDec) method. To enhance the validity of this model, we adapts a "simple linear iterative clustering" (SLIC) superpixel algorithm to efficiently generate homogeneous local image regions i.e. superpixels in hyperspectral imagery, thus ensures that the background in local image regions satisfies the condition of low-rank. Experimental results on real hyperspectral data demonstrate that, compared with several known local detectors including RX detector, kernel RX detector, and SVDD detector, the proposed model can comfortably achieves better performance in satisfactory computation time.

  11. Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil

    2016-01-01

    Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.

  12. Truncated feature representation for automatic target detection using transformed data-based decomposition

    NASA Astrophysics Data System (ADS)

    Riasati, Vahid R.

    2016-05-01

    In this work, the data covariance matrix is diagonalized to provide an orthogonal bases set using the eigen vectors of the data. The eigen-vector decomposition of the data is transformed and filtered in the transform domain to truncate the data for robust features related to a specified set of targets. These truncated eigen features are then combined and reconstructed to utilize in a composite filter and consequently utilized for the automatic target detection of the same class of targets. The results associated with the testing of the current technique are evaluated using the peak-correlation and peak-correlation energy metrics and are presented in this work. The inverse transformed eigen-bases of the current technique may be thought of as an injected sparsity to minimize data in representing the skeletal data structure information associated with the set of targets under consideration.

  13. Integrating Value and Utility Concepts into a Value Decomposition Model for Value-Based Software Engineering

    NASA Astrophysics Data System (ADS)

    Rönkkö, Mikko; Frühwirth, Christian; Biffl, Stefan

    Value-based software engineering (VBSE) is an emerging stream of research that addresses the value considerations of software and extends the traditional scope of software engineering from technical issues to business-relevant decision problems. While the concept of value in VBSE relies on the well-established economic value concept, the exact definition for this key concept within VBSE domain is still not well defined or agreed upon. We argue the discourse on value can significantly benefit from drawing from research in management, particularly software business. In this paper, we present three aspects of software: as a technology, as a design, and as an artifact. Furthermore, we divide the value concept into three components that are relevant for software product development companies and their customers: intrinsic value, externalities and option value. Finally, we propose a value decomposition matrix based on technology views and value components.

  14. BASE CATALYZED DECOMPOSITION (BCD) OF PCB AND DIOXIN CONTAMINATED CONDENSATE OIL FROM THE REMEDIATION OF THE WARREN COUNTY LANDFILL, NC

    EPA Science Inventory

    In the late 1970s thousands of gallons of transformer fluid contaminated with PCBs were illegally sprayed along approximately 210 miles of North Carolina state roadways. Listed as a Superfund site, the contaminated roadway berms were excavated and disposed in an approved PCB land...

  15. Modeling the 'Birch Effect' Using a Microbial Enzyme Based Soil Organic Carbon Decomposition and Gas Transport Model

    NASA Astrophysics Data System (ADS)

    Niu, G.; Zhang, X.; Barron-Gafford, G.; Pavao-zuckerman, M.

    2013-12-01

    Soil respiration pulses in response to pulsed wetting ('Birch effect'; Birch 1958) have long been observed from laboratory and field experiments. The Birch effect produces more CO2 efflux and sustains greater microbial biomass than constantly moist soils. Various mechanisms causing the effect have been proposed. However, the exact mechanism underlying the Birch effect is not clear, and thus most models are not able to simulate this effect. We have recently developed a microbial enzyme based decomposition and gas transport model. The model integrates the most recent advances in the understanding of critical processes, including enzyme-catalyzed degradation of soil organic carbon (SOC) to dissolved organic carbon (DOC), acclimation of carbon use efficiency (CUE) for the uptake of DOC by microbes, and diffusive and convective transport of O2 and CO2 in the soil. The model has four kinds of carbon pools including SOC, DOC, microbial biomass (MIC), and extracellular enzyme (ENZ). However, the model coupled with a land surface model, which accurately simulates soil moisture and temperature, failed to simulate the Birch effect observed at a natural savannah ecosystem site in the southwest US monsoon region. We further divided the DOC and ENZ pools into two sub-pools, one for a wet zone and the other for a dry zone, respectively. We assume that in the dry zone, DOC can be produced through enzyme catalysis, although at a lower rate due to enzyme immobilization, and only in the wet zone can microbes take up DOC. Thus, the modeled DOC accumulates during dry periods and is quickly transitioned into DOC in the wet zone (proportional to saturation) in response to pulsed wetting during a storm, and becomes available for microbial use. In such a way, the model successfully simulates the Birch effect with the Nash-Sutcliffe model efficiency being ~ 0.75 (correlation coefficient ~ 0.88) at a half-hourly time step. We will also present the effect of gas transport on the Birch effect

  16. Synthesis of chiral biphenol-based diphosphonite ligands and their application in palladium-catalyzed intermolecular asymmetric allylic amination reactions.

    PubMed

    Shi, Ce; Chien, Chih-Wei; Ojima, Iwao

    2011-02-01

    A library of new 2,2'-bis(diphenylphosphinoyloxy)-1,1'-binaphthyl (binapo)-type chiral diphosphonite ligands was designed and synthesized based on chiral 3,3',5,5',6,6'-hexasubstituted biphenols. These bop ligands have exhibited excellent efficiency in a palladium-catalyzed intermolecular allylic amination reaction, which provides a key intermediate for the total synthesis of Strychnos indole alkaloids with enantiopurities of up to 96% ee. PMID:21254441

  17. Analysis of Human's Motions Based on Local Mean Decomposition in Through-wall Radar Detection

    NASA Astrophysics Data System (ADS)

    Lu, Qi; Liu, Cai; Zeng, Zhaofa; Li, Jing; Zhang, Xuebing

    2016-04-01

    Observation of human motions through a wall is an important issue in security applications and search-and rescue. Radar has advantages in looking through walls where other sensors give low performance or cannot be used at all. Ultrawideband (UWB) radar has high spatial resolution as a result of employment of ultranarrow pulses. It has abilities to distinguish the closely positioned targets and provide time-lapse information of targets. Moreover, the UWB radar shows good performance in wall penetration when the inherently short pulses spread their energy over a broad frequency range. Human's motions show periodic features including respiration, swing arms and legs, fluctuations of the torso. Detection of human targets is based on the fact that there is always periodic motion due to breathing or other body movements like walking. The radar can gain the reflections from each human body parts and add the reflections at each time sample. The periodic movements will cause micro-Doppler modulation in the reflected radar signals. Time-frequency analysis methods are consider as the effective tools to analysis and extract micro-Doppler effects caused by the periodic movements in the reflected radar signal, such as short-time Fourier transform (STFT), wavelet transform (WT), and Hilbert-Huang transform (HHT).The local mean decomposition (LMD), initially developed by Smith (2005), is to decomposed amplitude and frequency modulated signals into a small set of product functions (PFs), each of which is the product of an envelope signal and a frequency modulated signal from which a time-vary instantaneous phase and instantaneous frequency can be derived. As bypassing the Hilbert transform, the LMD has no demodulation error coming from window effect and involves no negative frequency without physical sense. Also, the instantaneous attributes obtained by LMD are more stable and precise than those obtained by the empirical mode decomposition (EMD) because LMD uses smoothed local

  18. A Human ECG Identification System Based on Ensemble Empirical Mode Decomposition

    PubMed Central

    Zhao, Zhidong; Yang, Lei; Chen, Diandian; Luo, Yi

    2013-01-01

    In this paper, a human electrocardiogram (ECG) identification system based on ensemble empirical mode decomposition (EEMD) is designed. A robust preprocessing method comprising noise elimination, heartbeat normalization and quality measurement is proposed to eliminate the effects of noise and heart rate variability. The system is independent of the heart rate. The ECG signal is decomposed into a number of intrinsic mode functions (IMFs) and Welch spectral analysis is used to extract the significant heartbeat signal features. Principal component analysis is used reduce the dimensionality of the feature space, and the K-nearest neighbors (K-NN) method is applied as the classifier tool. The proposed human ECG identification system was tested on standard MIT-BIH ECG databases: the ST change database, the long-term ST database, and the PTB database. The system achieved an identification accuracy of 95% for 90 subjects, demonstrating the effectiveness of the proposed method in terms of accuracy and robustness. PMID:23698274

  19. Trading strategy based on dynamic mode decomposition: Tested in Chinese stock market

    NASA Astrophysics Data System (ADS)

    Cui, Ling-xiao; Long, Wen

    2016-11-01

    Dynamic mode decomposition (DMD) is an effective method to capture the intrinsic dynamical modes of complex system. In this work, we adopt DMD method to discover the evolutionary patterns in stock market and apply it to Chinese A-share stock market. We design two strategies based on DMD algorithm. The strategy which considers only timing problem can make reliable profits in a choppy market with no prominent trend while fails to beat the benchmark moving-average strategy in bull market. After considering the spatial information from spatial-temporal coherent structure of DMD modes, we improved the trading strategy remarkably. Then the DMD strategies profitability is quantitatively evaluated by performing SPA test to correct the data-snooping effect. The results further prove that DMD algorithm can model the market patterns well in sideways market.

  20. Computational transport methodology based on decomposition of a problem domain into transport and diffusive subdomains

    SciTech Connect

    Anistratov, Dmitriy Y.; Stehle, Nicholas D.

    2012-10-15

    A large class of radiative transfer and particle transport problems contain highly diffusive regions. It is possible to reduce computational costs by solving a diffusion problem in diffusive subdomains instead of the transport equation. This enables one to decrease the dimensionality of the transport problem. In this paper we present a methodology for decomposition of a spatial domain of a transport problem into transport and diffusion subregions. We develop methods for solving one-group problems in 1D slab geometry. To identify and locate diffusive regions, we develop metrics for measuring transport effects that are based on the quasidiffusion (Eddington) factor. We present the results of test problems that demonstrate the accuracy of the proposed methodology.

  1. A Bloch decomposition-based stochastic Galerkin method for quantum dynamics with a random external potential

    NASA Astrophysics Data System (ADS)

    Wu, Zhizhang; Huang, Zhongyi

    2016-07-01

    In this paper, we consider the numerical solution of the one-dimensional Schrödinger equation with a periodic lattice potential and a random external potential. This is an important model in solid state physics where the randomness results from complicated phenomena that are not exactly known. Here we generalize the Bloch decomposition-based time-splitting pseudospectral method to the stochastic setting using the generalized polynomial chaos with a Galerkin procedure so that the main effects of dispersion and periodic potential are still computed together. We prove that our method is unconditionally stable and numerical examples show that it has other nice properties and is more efficient than the traditional method. Finally, we give some numerical evidence for the well-known phenomenon of Anderson localization.

  2. Optical image encryption based on multi-beam interference and common vector decomposition

    NASA Astrophysics Data System (ADS)

    Chen, Linfei; He, Bingyu; Chen, Xudong; Gao, Xiong; Liu, Jingyu

    2016-02-01

    Based on multi-beam interference and common vector decomposition, we propose a new method for optical image encryption. In encryption process, the information of an original image is encoded into n amplitude masks and n phase masks which are regarded as a ciphertext and many keys. In decryption process, parallel light irradiates the amplitude masks and phase masks, then passes through lens that takes place Fourier transform, and finally we obtain the original image at the output plane after interference. The security of the encryption system is also discussed in the paper, and we find that only when all the keys are correct, can the information of the original image be recovered. Computer simulation results are presented to verify the validity and the security of the proposed method.

  3. Optimization-based additive decomposition of weakly coercive problems with applications

    DOE PAGESBeta

    Bochev, Pavel B.; Ridzal, Denis

    2016-01-27

    In this study, we present an abstract mathematical framework for an optimization-based additive decomposition of a large class of variational problems into a collection of concurrent subproblems. The framework replaces a given monolithic problem by an equivalent constrained optimization formulation in which the subproblems define the optimization constraints and the objective is to minimize the mismatch between their solutions. The significance of this reformulation stems from the fact that one can solve the resulting optimality system by an iterative process involving only solutions of the subproblems. Consequently, assuming that stable numerical methods and efficient solvers are available for every subproblem,more » our reformulation leads to robust and efficient numerical algorithms for a given monolithic problem by breaking it into subproblems that can be handled more easily. An application of the framework to the Oseen equations illustrates its potential.« less

  4. Electrophilic assistance to the cleavage of an RNA model phopshodiester via specific and general base-catalyzed mechanisms.

    PubMed

    Corona-Martínez, David Octavio; Gomez-Tagle, Paola; Yatsimirsky, Anatoly K

    2012-10-19

    Kinetics of transesterification of the RNA model substrate 2-hydroxypropyl 4-nitrophenyl phosphate promoted by Mg(2+) and Ca(2+), the most common biological metals acting as cofactors for nuclease enzymes and ribozymes, as well as by Co(NH(3))(6)(3+), Co(en)(3)(3+), Li(+), and Na(+) cations, often employed as mechanistic probes, was studied in 80% v/v (50 mol %) aqueous DMSO, a medium that allows one to discriminate easily specific base (OH(-)-catalyzed) and general base (buffer-catalyzed) reaction paths. All cations assist the specific base reaction, but only Mg(2+) and Na(+) assist the general base reaction. For Mg(2+)-assisted reactions, the solvent deuterium isotope effects are 1.23 and 0.25 for general base and specific base mechanisms, respectively. Rate constants for Mg(2+)-assisted general base reactions measured with different bases fit the Brønsted correlation with a slope of 0.38, significantly lower than the slope for the unassisted general base reaction (0.77). Transition state binding constants for catalysts in the specific base reaction (K(‡)(OH)) both in aqueous DMSO and pure water correlate with their binding constants to 4-nitrophenyl phosphate dianion (K(NPP)) used as a minimalist transition state model. It was found that K(‡)(OH) ≈ K(NPP) for "protic" catalysts (Co(NH(3))(6)(3+), Co(en)(3)(3+), guanidinium), but K(‡)(OH) ≫ K(NPP) for Mg(2+) and Ca(2+) acting as Lewis acids. It appears from results of this study that Mg(2+) is unique in its ability to assist efficiently the general base-catalyzed transesterification often occurring in active sites of nuclease enzymes and ribozymes.

  5. Blurred palmprint recognition based on stable-feature extraction using a Vese-Osher decomposition model.

    PubMed

    Hong, Danfeng; Su, Jian; Hong, Qinggen; Pan, Zhenkuan; Wang, Guodong

    2014-01-01

    As palmprints are captured using non-contact devices, image blur is inevitably generated because of the defocused status. This degrades the recognition performance of the system. To solve this problem, we propose a stable-feature extraction method based on a Vese-Osher (VO) decomposition model to recognize blurred palmprints effectively. A Gaussian defocus degradation model is first established to simulate image blur. With different degrees of blurring, stable features are found to exist in the image which can be investigated by analyzing the blur theoretically. Then, a VO decomposition model is used to obtain structure and texture layers of the blurred palmprint images. The structure layer is stable for different degrees of blurring (this is a theoretical conclusion that needs to be further proved via experiment). Next, an algorithm based on weighted robustness histogram of oriented gradients (WRHOG) is designed to extract the stable features from the structure layer of the blurred palmprint image. Finally, a normalized correlation coefficient is introduced to measure the similarity in the palmprint features. We also designed and performed a series of experiments to show the benefits of the proposed method. The experimental results are used to demonstrate the theoretical conclusion that the structure layer is stable for different blurring scales. The WRHOG method also proves to be an advanced and robust method of distinguishing blurred palmprints. The recognition results obtained using the proposed method and data from two palmprint databases (PolyU and Blurred-PolyU) are stable and superior in comparison to previous high-performance methods (the equal error rate is only 0.132%). In addition, the authentication time is less than 1.3 s, which is fast enough to meet real-time demands. Therefore, the proposed method is a feasible way of implementing blurred palmprint recognition. PMID:24992328

  6. Low symmetry pyrazole-based tripodal tetraamine ligands: metal complexes and ligand decomposition reactions.

    PubMed

    Cubanski, John R; Cameron, Scott A; Crowley, James D; Blackman, Allan G

    2013-02-14

    The new low symmetry pyrazole-based tripodal tetraamine ligands 2-(1H-pyrazol-1-yl)-N,N-bis(1H-pyrazol-1-ylmethyl)ethanamine (bmpz) and 2-(1H-pyrazol-1-yl)-N-[2-(1H-pyrazol-1-yl)ethyl]-N-(1H-pyrazol-1-ylmethyl)ethanamine (bepz) have been prepared and characterised, as have metal complexes containing these ligands. X-ray crystal structures of [Co(bmpz)Cl](2)[CoCl(4)]·H(2)O, [Co(bmpz)MeCN](ClO(4))(2)·0.13H(2)O, [Zn(bmpz)MeCN](ClO(4))(2)·0.15H(2)O, [Zn(bepz)OH(2)](ClO(4))(2)·0.5H(2)O and [(Co(bepz)Cl)(2)]Cl(2)·6H(2)O confirm coordination of the intact tripodal ligands to the metal ions through all four N atoms. However, attempts to make Cu(2+) complexes containing bmpz and bepz gave, respectively, [Cu(7)Cl(2)]·0.2H(2)O and [Cu(8)Cl(2)] (7 = 1-(1H-pyrazol-1-yl)-N-(1H-pyrazol-1-ylmethyl)ethanamine, 8 = 2-(1H-pyrazol-1-yl)-N-[2-(1H-pyrazol-1-yl)ethyl]ethanamine), complexes containing the tridentate ligands 7 and 8 which are formed by loss of a pyrazolylmethyl arm from the appropriate tripodal ligand. This decomposition reaction occurs in protic solvents both in the presence and absence of metal ions, and is ascribed to the presence of an aminal functionality in the tripodal ligands. A possible mechanism for the decomposition, based on NMR and ESMS data, is suggested.

  7. Blurred Palmprint Recognition Based on Stable-Feature Extraction Using a Vese–Osher Decomposition Model

    PubMed Central

    Hong, Danfeng; Su, Jian; Hong, Qinggen; Pan, Zhenkuan; Wang, Guodong

    2014-01-01

    As palmprints are captured using non-contact devices, image blur is inevitably generated because of the defocused status. This degrades the recognition performance of the system. To solve this problem, we propose a stable-feature extraction method based on a Vese–Osher (VO) decomposition model to recognize blurred palmprints effectively. A Gaussian defocus degradation model is first established to simulate image blur. With different degrees of blurring, stable features are found to exist in the image which can be investigated by analyzing the blur theoretically. Then, a VO decomposition model is used to obtain structure and texture layers of the blurred palmprint images. The structure layer is stable for different degrees of blurring (this is a theoretical conclusion that needs to be further proved via experiment). Next, an algorithm based on weighted robustness histogram of oriented gradients (WRHOG) is designed to extract the stable features from the structure layer of the blurred palmprint image. Finally, a normalized correlation coefficient is introduced to measure the similarity in the palmprint features. We also designed and performed a series of experiments to show the benefits of the proposed method. The experimental results are used to demonstrate the theoretical conclusion that the structure layer is stable for different blurring scales. The WRHOG method also proves to be an advanced and robust method of distinguishing blurred palmprints. The recognition results obtained using the proposed method and data from two palmprint databases (PolyU and Blurred–PolyU) are stable and superior in comparison to previous high-performance methods (the equal error rate is only 0.132%). In addition, the authentication time is less than 1.3 s, which is fast enough to meet real-time demands. Therefore, the proposed method is a feasible way of implementing blurred palmprint recognition. PMID:24992328

  8. Enzyme-free electrochemical immunosensor based on host-guest nanonets catalyzing amplification for procalcitonin detection.

    PubMed

    Shen, Wen-Jun; Zhuo, Ying; Chai, Ya-Qin; Yang, Zhe-Han; Han, Jing; Yuan, Ruo

    2015-02-25

    An enzyme-free electrochemical immunosensor based on the host-guest nanonets of N,N-bis(ferrocenoyl)-diaminoethane/β-cyclodextrins/poly(amidoamine) dendrimer-encapsulated Au nanoparticles (Fc-Fc/β-CD/PAMAM-Au) for procalcitonin (PCT) detection has been developed in this study. The signal probe was constructed as follows: amine-terminated β-CD was adsorbed to PAMAM-Au first, and then the prepared Fc-Fc was recognized by the β-CD to form stable host-guest nanonets. Next, secondary antibodies (Ab2) were attached into the formed netlike nanostructure of Fc-Fc/β-CD/PAMAM-Au by chemical absorption between PAMAM-Au and -NH2 of β-CD. Herein, the PAMAM-Au act not only as nanocarriers for anchoring large amounts of the β-CD and Ab2 but also as nanocatalysts to catalyze the oxidation of ascorbic acid (AA) for signal amplification. Moreover, the Fc-Fc could be stably immobilized by the hydrophobic inner cavity of β-CD as well as improving solubility by the hydrophilic exterior of β-CD. With the unique structure of two ferrocene units, Fc-Fc not only affords more electroactive groups to make the electrochemical response more sensitive but also plays a role of combining dispersive β-CD-functionalized PAMAM-Au to form the netlike nanostructure. Furthermore, Fc-Fc exhibits good catalytic activity for AA oxidation. When the detection solution contained AA, the synergetic catalysis of PAMAM-Au and Fc-Fc to AA oxidation could be obtained, realizing enzyme-free signal amplification. The proposed immunosensor provided a linear range from 1.80 pg/mL to 500 ng/mL for PCT detection and a detection limit of 0.36 pg/mL under optimal experimental conditions. Moreover, the immunosensor has shown potential application in clinical detection of PCT.

  9. Enzyme-Catalyzed Henry Reaction in Choline Chloride-Based Deep Eutectic Solvents.

    PubMed

    Tian, Xuemei; Zhang, Suoqin; Zheng, Liangyu

    2016-01-01

    The enzyme-catalyzed Henry reaction was realized using deep eutectic solvents (DESs) as a reaction medium. The lipase from Aspergillus niger (lipase AS) showed excellent catalytic activity toward the substrates aromatic aldehydes and nitromethane in choline chloride:glycerol at a molar ratio of 1:2. Addition of 30 vol% water to DES further improved the lipase activity and inhibited DES-catalyzed transformation. A final yield of 92.2% for the lipase AS-catalyzed Henry reaction was achieved under optimized reaction conditions in only 4 h. In addition, the lipase AS activity was improved by approximately 3-fold in a DES-water mixture compared with that in pure water, which produced a final yield of only 33.4%. Structural studies with fluorescence spectroscopy showed that the established strong hydrogen bonds between DES and water may be the main driving force that affects the spatial conformation of the enzyme, leading to a change in lipase activity. The methodology was also extended to the aza-Henry reaction, which easily occurred in contrast to that in pure water. The enantioselectivity of both Henry and aza-Henry reactions was not found. However, the results are still remarkable, as we report the first use of DES as a reaction medium in a lipase-catalyzed Henry reaction.

  10. Hyperspectral chemical plume detection algorithms based on multidimensional iterative filtering decomposition.

    PubMed

    Cicone, A; Liu, J; Zhou, H

    2016-04-13

    Chemicals released in the air can be extremely dangerous for human beings and the environment. Hyperspectral images can be used to identify chemical plumes, however the task can be extremely challenging. Assuming we know a priori that some chemical plume, with a known frequency spectrum, has been photographed using a hyperspectral sensor, we can use standard techniques such as the so-called matched filter or adaptive cosine estimator, plus a properly chosen threshold value, to identify the position of the chemical plume. However, due to noise and inadequate sensing, the accurate identification of chemical pixels is not easy even in this apparently simple situation. In this paper, we present a post-processing tool that, in a completely adaptive and data-driven fashion, allows us to improve the performance of any classification methods in identifying the boundaries of a plume. This is done using the multidimensional iterative filtering (MIF) algorithm (Cicone et al. 2014 (http://arxiv.org/abs/1411.6051); Cicone & Zhou 2015 (http://arxiv.org/abs/1507.07173)), which is a non-stationary signal decomposition method like the pioneering empirical mode decomposition method (Huang et al. 1998 Proc. R. Soc. Lond. A 454, 903. (doi:10.1098/rspa.1998.0193)). Moreover, based on the MIF technique, we propose also a pre-processing method that allows us to decorrelate and mean-centre a hyperspectral dataset. The cosine similarity measure, which often fails in practice, appears to become a successful and outperforming classifier when equipped with such a pre-processing method. We show some examples of the proposed methods when applied to real-life problems. PMID:26953177

  11. Inhibition of lactoperoxidase-catalyzed oxidation by imidazole-based thiones and selones: a mechanistic study.

    PubMed

    Roy, Gouriprasanna; Jayaram, P N; Mugesh, Govindasamy

    2013-08-01

    Herein, we describe the synthesis and biomimetic activity of a series of N,N-disubstituted thiones and selones that contain an imidazole pharmacophore. The N,N-disubstituted thiones do not show any inhibitory activity towards LPO-catalyzed oxidation reactions, but their corresponding N,N-disubstituted selones exhibit inhibitory activity towards LPO-catalyzed oxidation reactions. Substituents on the N atom of the imidazole ring appear to have a significant effect on the inhibition of LPO-catalyzed oxidation and iodination reactions. Selones 16, 17, and 19, which contain methyl, ethyl, and benzyl substituents, exhibit similar inhibition activities towards LPO-catalyzed oxidation reactions with IC50 values of 24.4, 22.5, and 22.5 μM, respectively. However, their activities are almost three-fold lower than that of the commonly used anti-thyroid drug methimazole (MMI). In contrast, selone 21, which contains a N-CH2CH2OH substituent, exhibits high inhibitory activity, with an IC50 value of 7.2 μM, which is similar to that of MMI. The inhibitory activity of these selones towards LPO-catalyzed oxidation/iodination reactions is due to their ability to decrease the concentrations of the co-substrates (H2O2 and I2), either by catalytically reducing H2O2 (anti-oxidant activity) or by forming stable charge-transfer complexes with oxidized iodide species. The inhibition of LPO-catalyzed oxidation/iodination reactions by N,N-disubstituted selones can be reversed by increasing the concentration of H2O2. Interestingly, all of the N,N-disubstituted selones exhibit high anti-oxidant activities and their glutathione peroxidase (GPx)-like activity is 4-12-fold higher than that of the well-known GPx-mimic ebselen. These experimental and theoretical studies suggest that the selones exist as zwitterions, in which the imidazole ring contains a positive charge and the selenium atom carries a large negative charge. Therefore, the selenium moieties of these selones possess highly

  12. Lewis base activation of Lewis acids: development of a Lewis base catalyzed selenolactonization.

    PubMed

    Denmark, Scott E; Collins, William R

    2007-09-13

    The concept of Lewis base activation of Lewis acids has been applied to the selenolactonization reaction. Through the use of substoichiometric amounts of Lewis bases with "soft" donor atoms (S, Se, P) significant rate enhancements over the background reaction are seen. Preliminary mechanistic investigations have revealed the resting state of the catalyst as well as the significance of a weak Brønsted acid promoter.

  13. Reexamination of CO formation during formic acid decomposition on the Pt(1 1 1) surface in the gas phase

    NASA Astrophysics Data System (ADS)

    Wang, Yingying; Zhang, Dongju; Liu, Peng; Liu, Chengbu

    2016-08-01

    Existing theoretical results for formic acid (HCOOH) decomposition on Pt(1 1 1) cannot rationalize the easy CO poisoning of the catalysts in the gas phase. The present work reexamined HCOOH decomposition on Pt(1 1 1) by considering the effect of the initial adsorption structure of the reactant on the reactivity. Our calculations present a new adsorption configuration of HCOOH on Pt(1 1 1), from which the formation of CO is found to be competing with the formation of CO2. The newly proposed mechanism improves our understanding for the mechanism of HCOOH decomposition catalyzed by Pt-based catalysts.

  14. Investigating properties of the cardiovascular system using innovative analysis algorithms based on ensemble empirical mode decomposition.

    PubMed

    Yeh, Jia-Rong; Lin, Tzu-Yu; Chen, Yun; Sun, Wei-Zen; Abbod, Maysam F; Shieh, Jiann-Shing

    2012-01-01

    Cardiovascular system is known to be nonlinear and nonstationary. Traditional linear assessments algorithms of arterial stiffness and systemic resistance of cardiac system accompany the problem of nonstationary or inconvenience in practical applications. In this pilot study, two new assessment methods were developed: the first is ensemble empirical mode decomposition based reflection index (EEMD-RI) while the second is based on the phase shift between ECG and BP on cardiac oscillation. Both methods utilise the EEMD algorithm which is suitable for nonlinear and nonstationary systems. These methods were used to investigate the properties of arterial stiffness and systemic resistance for a pig's cardiovascular system via ECG and blood pressure (BP). This experiment simulated a sequence of continuous changes of blood pressure arising from steady condition to high blood pressure by clamping the artery and an inverse by relaxing the artery. As a hypothesis, the arterial stiffness and systemic resistance should vary with the blood pressure due to clamping and relaxing the artery. The results show statistically significant correlations between BP, EEMD-based RI, and the phase shift between ECG and BP on cardiac oscillation. The two assessments results demonstrate the merits of the EEMD for signal analysis.

  15. Understanding wealth-based inequalities in child health in India: a decomposition approach.

    PubMed

    Chalasani, Satvika

    2012-12-01

    India experienced tremendous economic growth since the mid-1980s but this growth was paralleled by sharp rises in economic inequality. Urban areas experienced greater economic growth as well as greater increases in economic inequality than rural areas. During the same period, child health improved on average but socioeconomic differentials in child health persisted. This paper attempts to explain wealth-based inequalities in child mortality and malnutrition using a regression-based decomposition approach. Data for the analysis come from the 1992/93, 1998/99, and 2005/06 Indian National Family Health Surveys. Inequalities in child health are measured using the concentration index. The concentration index for each outcome is then decomposed into the contributions of wealth-based inequality in the observed determinants of child health. Results indicate that mortality inequality declined in urban areas but remained unchanged or increased in rural areas. Malnutrition inequality increased dramatically both in urban and rural areas. The two largest individual/household-level sources of disparities in child health are (i) inequality in the distribution of wealth itself, and (ii) inequality in maternal education. The contributions of observed determinants (i) to neonatal mortality inequality remained unchanged, (ii) to child mortality inequality increased, and (ii) to malnutrition inequality increased. It is possible that the increases in child health inequality reflect urban biases in economic growth, and the mixed performance of public programs that could have otherwise offset the impacts of unequal growth.

  16. Proper orthogonal decomposition-based spectral higher-order stochastic estimation

    SciTech Connect

    Baars, Woutijn J.; Tinney, Charles E.

    2014-05-15

    A unique routine, capable of identifying both linear and higher-order coherence in multiple-input/output systems, is presented. The technique combines two well-established methods: Proper Orthogonal Decomposition (POD) and Higher-Order Spectra Analysis. The latter of these is based on known methods for characterizing nonlinear systems by way of Volterra series. In that, both linear and higher-order kernels are formed to quantify the spectral (nonlinear) transfer of energy between the system's input and output. This reduces essentially to spectral Linear Stochastic Estimation when only first-order terms are considered, and is therefore presented in the context of stochastic estimation as spectral Higher-Order Stochastic Estimation (HOSE). The trade-off to seeking higher-order transfer kernels is that the increased complexity restricts the analysis to single-input/output systems. Low-dimensional (POD-based) analysis techniques are inserted to alleviate this void as POD coefficients represent the dynamics of the spatial structures (modes) of a multi-degree-of-freedom system. The mathematical framework behind this POD-based HOSE method is first described. The method is then tested in the context of jet aeroacoustics by modeling acoustically efficient large-scale instabilities as combinations of wave packets. The growth, saturation, and decay of these spatially convecting wave packets are shown to couple both linearly and nonlinearly in the near-field to produce waveforms that propagate acoustically to the far-field for different frequency combinations.

  17. A Dynamic Decomposition/Recomposition Framework for Documents based on Narrative Structure Model

    NASA Astrophysics Data System (ADS)

    Akaishi, Mina

    This paper proposes a framework to access information based on a narrative structure of documents. This framework consists of two processes. The one is to decompose existing documents into smaller units. The other process is combining unit components into a new story taking on a new meaning based on a context. In this paper, a narrative structure for documents is modeled as follows. A story corresponding to a document is regarded as a sequence of scenes. A scene is a chunk of sentences. A sentence is mapped into a set of terms in the sentence. Decomposition process gives two mechanisms to decompose a story into scenes. Composition process shows four patterns to connect scenes. Both techniques to decompose/compose a story are based on the notions of term dependency and term attractiveness. This paper also showes visualization tools to express the narrative structure for documents. Word Colony overviews content of a story as a directed graph representing the relation among term dependency. Topic Sequence is also directed graph to show the sequence of scenes along a story plot. The basis of these visualization techniques is the notions of term dependency and term attractiveness. They show the variety of understandings of the same documents.

  18. Using the base-of-the-pyramid perspective to catalyze interdependence-based collaborations.

    PubMed

    London, Ted; Anupindi, Ravi

    2012-07-31

    Improving food security and nutrition in the developing world remains among society's most intractable challenges and continues despite a wide variety of investments. Both donor- and enterprise-led initiatives, for example, have explored including smallholder farmers in their value chains. However, these efforts have had only modest success, partly because the private and development sectors prefer to maintain their independence. Research from the base-of-the-pyramid domain offers new insights into how collaborative interdependence between sectors can enhance the connection between profits and the alleviation of poverty. In this article, we identify the strengths and weaknesses of donor-led and enterprise-led value chain initiatives. We then explore how insights from the base-of-the-pyramid domain yield a set of interdependence-based collaboration strategies that can achieve more sustainable and scalable outcomes. PMID:21482752

  19. Using the base-of-the-pyramid perspective to catalyze interdependence-based collaborations

    PubMed Central

    London, Ted; Anupindi, Ravi

    2012-01-01

    Improving food security and nutrition in the developing world remains among society's most intractable challenges and continues despite a wide variety of investments. Both donor- and enterprise-led initiatives, for example, have explored including smallholder farmers in their value chains. However, these efforts have had only modest success, partly because the private and development sectors prefer to maintain their independence. Research from the base-of-the-pyramid domain offers new insights into how collaborative interdependence between sectors can enhance the connection between profits and the alleviation of poverty. In this article, we identify the strengths and weaknesses of donor-led and enterprise-led value chain initiatives. We then explore how insights from the base-of-the-pyramid domain yield a set of interdependence-based collaboration strategies that can achieve more sustainable and scalable outcomes. PMID:21482752

  20. Integrating heterogeneous classifier ensembles for EMG signal decomposition based on classifier agreement.

    PubMed

    Rasheed, Sarbast; Stashuk, Daniel W; Kamel, Mohamed S

    2010-05-01

    In this paper, we present a design methodology for integrating heterogeneous classifier ensembles by employing a diversity-based hybrid classifier fusion approach, whose aggregator module consists of two classifier combiners, to achieve an improved classification performance for motor unit potential classification during electromyographic (EMG) signal decomposition. Following the so-called overproduce and choose strategy to classifier ensemble combination, the developed system allows the construction of a large set of base classifiers, and then automatically chooses subsets of classifiers to form candidate classifier ensembles for each combiner. The system exploits kappa statistic diversity measure to design classifier teams through estimating the level of agreement between base classifier outputs. The pool of base classifiers consists of different kinds of classifiers: the adaptive certainty-based, the adaptive fuzzy k -NN, and the adaptive matched template filter classifiers; and utilizes different types of features. Performance of the developed system was evaluated using real and simulated EMG signals, and was compared with the performance of the constituent base classifiers. Across the EMG signal datasets used, the developed system had better average classification performance overall, especially in terms of reducing classification errors. For simulated signals of varying intensity, the developed system had an average correct classification rate CCr of 93.8% and an error rate Er of 2.2% compared to 93.6% and 3.2%, respectively, for the best base classifier in the ensemble. For simulated signals with varying amounts of shape and/or firing pattern variability, the developed system had a CCr of 89.1% with an Er of 4.7% compared to 86.3% and 5.6%, respectively, for the best classifier. For real signals, the developed system had a CCr of 89.4% with an Er of 3.9% compared to 84.6% and 7.1%, respectively, for the best classifier.

  1. Bispectrum feature extraction of gearbox faults based on nonnegative Tucker3 decomposition with 3D calculations

    NASA Astrophysics Data System (ADS)

    Wang, Haijun; Xu, Feiyun; Zhao, Jun'ai; Jia, Minping; Hu, Jianzhong; Huang, Peng

    2013-11-01

    Nonnegative Tucker3 decomposition(NTD) has attracted lots of attentions for its good performance in 3D data array analysis. However, further research is still necessary to solve the problems of overfitting and slow convergence under the anharmonic vibration circumstance occurred in the field of mechanical fault diagnosis. To decompose a large-scale tensor and extract available bispectrum feature, a method of conjugating Choi-Williams kernel function with Gauss-Newton Cartesian product based on nonnegative Tucker3 decomposition(NTD_EDF) is investigated. The complexity of the proposed method is reduced from o( n N lg n) in 3D spaces to o( R 1 R 2 nlg n) in 1D vectors due to its low rank form of the Tucker-product convolution. Meanwhile, a simultaneously updating algorithm is given to overcome the overfitting, slow convergence and low efficiency existing in the conventional one-by-one updating algorithm. Furthermore, the technique of spectral phase analysis for quadratic coupling estimation is used to explain the feature spectrum extracted from the gearbox fault data by the proposed method in detail. The simulated and experimental results show that the sparser and more inerratic feature distribution of basis images can be obtained with core tensor by the NTD_EDF method compared with the one by the other methods in bispectrum feature extraction, and a legible fault expression can also be performed by power spectral density(PSD) function. Besides, the deviations of successive relative error(DSRE) of NTD_EDF achieves 81.66 dB against 15.17 dB by beta-divergences based on NTD(NTD_Beta) and the time-cost of NTD_EDF is only 129.3 s, which is far less than 1 747.9 s by hierarchical alternative least square based on NTD (NTD_HALS). The NTD_EDF method proposed not only avoids the data overfitting and improves the computation efficiency but also can be used to extract more inerratic and sparser bispectrum features of the gearbox fault.

  2. Hydrogen peroxide catalytic decomposition

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2010-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated through the use of concentrated hydrogen peroxide fed as a monopropellant into a catalyzed thruster assembly. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50%-70% by volume, and may be increased in concentration in a continuous process preceding decomposition in the thruster assembly. The exhaust of the thruster assembly, rich in hydroxyl and/or hydroperoxy radicals, may be fed into a stream containing oxidizable components, such as nitric oxide, to facilitate their oxidation.

  3. Color Restoration of RGBN Multispectral Filter Array Sensor Images Based on Spectral Decomposition

    PubMed Central

    Park, Chulhee; Kang, Moon Gi

    2016-01-01

    A multispectral filter array (MSFA) image sensor with red, green, blue and near-infrared (NIR) filters is useful for various imaging applications with the advantages that it obtains color information and NIR information simultaneously. Because the MSFA image sensor needs to acquire invisible band information, it is necessary to remove the IR cut-offfilter (IRCF). However, without the IRCF, the color of the image is desaturated by the interference of the additional NIR component of each RGB color channel. To overcome color degradation, a signal processing approach is required to restore natural color by removing the unwanted NIR contribution to the RGB color channels while the additional NIR information remains in the N channel. Thus, in this paper, we propose a color restoration method for an imaging system based on the MSFA image sensor with RGBN filters. To remove the unnecessary NIR component in each RGB color channel, spectral estimation and spectral decomposition are performed based on the spectral characteristics of the MSFA sensor. The proposed color restoration method estimates the spectral intensity in NIR band and recovers hue and color saturation by decomposing the visible band component and the NIR band component in each RGB color channel. The experimental results show that the proposed method effectively restores natural color and minimizes angular errors. PMID:27213381

  4. Color Restoration of RGBN Multispectral Filter Array Sensor Images Based on Spectral Decomposition.

    PubMed

    Park, Chulhee; Kang, Moon Gi

    2016-01-01

    A multispectral filter array (MSFA) image sensor with red, green, blue and near-infrared (NIR) filters is useful for various imaging applications with the advantages that it obtains color information and NIR information simultaneously. Because the MSFA image sensor needs to acquire invisible band information, it is necessary to remove the IR cut-offfilter (IRCF). However, without the IRCF, the color of the image is desaturated by the interference of the additional NIR component of each RGB color channel. To overcome color degradation, a signal processing approach is required to restore natural color by removing the unwanted NIR contribution to the RGB color channels while the additional NIR information remains in the N channel. Thus, in this paper, we propose a color restoration method for an imaging system based on the MSFA image sensor with RGBN filters. To remove the unnecessary NIR component in each RGB color channel, spectral estimation and spectral decomposition are performed based on the spectral characteristics of the MSFA sensor. The proposed color restoration method estimates the spectral intensity in NIR band and recovers hue and color saturation by decomposing the visible band component and the NIR band component in each RGB color channel. The experimental results show that the proposed method effectively restores natural color and minimizes angular errors. PMID:27213381

  5. Inheritance of dermatoglyphic asymmetry and diversity traits in twins based on factor: variance decomposition analysis.

    PubMed

    Karmakar, Bibha; Malkin, Ida; Kobyliansky, Eugene

    2013-06-01

    Dermatoglyphic asymmetry and diversity traits from a large number of twins (MZ and DZ) were analyzed based on principal factors to evaluate genetic effects and common familial environmental influences on twin data by the use of maximum likelihood-based Variance decomposition analysis. Sample consists of monozygotic (MZ) twins of two sexes (102 male pairs and 138 female pairs) and 120 pairs of dizygotic (DZ) female twins. All asymmetry (DA and FA) and diversity of dermatoglyphic traits were clearly separated into factors. These are perfectly corroborated with the earlier studies in different ethnic populations, which indicate a common biological validity perhaps exists of the underlying component structures of dermatoglyphic characters. Our heritability result in twins clearly showed that DA_F2 is inherited mostly in dominant type (28.0%) and FA_F1 is additive (60.7%), but no significant difference in sexes was observed for these factors. Inheritance is also very prominent in diversity Factor 1, which is exactly corroborated with our previous findings. The present results are similar with the earlier results of finger ridge count diversity in twin data, which suggested that finger ridge count diversity is under genetic control.

  6. Short-time matrix series based singular value decomposition for rolling bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Cong, Feiyun; Chen, Jin; Dong, Guangming; Zhao, Fagang

    2013-01-01

    Rolling element bearing faults are among the main causes of rotating machines breakdown. It is important to distinguish the incipient fault before the bearings step into serious failure. Based on the traditional singular value decomposition (SVD) theory, short-time matrix series (STMS) and singular value ratio (SVR) are introduced to the vibration signal processing. The proposed signal processing method is called S-SVDR (STMS based SVD method using SVR) and it has been proved to have a good local identification capability in the rolling bearing fault diagnosis. The detailed description of applying S-SVDR methods to rolling bearing fault diagnosis is given through the artificial fault signal processing in experiment 1. In experiment 2, rolling element bearing accelerated life test is performed in Hangzhou Bearing Test & Research Center (HBRC). The experimental result shows that the incipient fault can be well detected through S-SVDR processing method. However, the envelope analysis of original signal cannot detect the fault due to the existence of signal interference. A conclusion can be made that the proposed S-SVDR method has a good effect on de-noising and eliminating the signal interference of rolling bearing for the fault diagnosis.

  7. Research of singular value decomposition based on slip matrix for rolling bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Cong, Feiyun; Zhong, Wei; Tong, Shuiguang; Tang, Ning; Chen, Jin

    2015-05-01

    Rolling element bearings are at the heart of most rotating machines and they bear the function of connectivity between the rotor and stator. It is important to distinguish the incipient fault before the bearing step into serious failure. The Slip Matrix (SM) construction method based on Singular Value Decomposition (SVD) is proposed in this paper. The SM based fault feature extraction and impulses intelligent detection methods are introduced as the key steps for rolling bearing fault diagnosis. The numerical simulation of rolling bearing fault signal is adopted which shows that the proposed method is good at fault impulses detection in strong background noise environment. The rolling element bearing accelerated life test is performed for the acquisition of experimental data of rolling bearing fault. With the rolling bearing running from normal state to failure, the initial fault signal part can be picked out from the whole life vibration data of the rolling bearing. The vibration signal is close to the nature fault signal which is acquired from a rolling bearing applied in industrial field. The analysis result shows that the proposed method has an excellent performance in rolling bearing fault detection.

  8. Time Domain Strain/Stress Reconstruction Based on Empirical Mode Decomposition: Numerical Study and Experimental Validation

    PubMed Central

    He, Jingjing; Zhou, Yibin; Guan, Xuefei; Zhang, Wei; Zhang, Weifang; Liu, Yongming

    2016-01-01

    Structural health monitoring has been studied by a number of researchers as well as various industries to keep up with the increasing demand for preventive maintenance routines. This work presents a novel method for reconstruct prompt, informed strain/stress responses at the hot spots of the structures based on strain measurements at remote locations. The structural responses measured from usage monitoring system at available locations are decomposed into modal responses using empirical mode decomposition. Transformation equations based on finite element modeling are derived to extrapolate the modal responses from the measured locations to critical locations where direct sensor measurements are not available. Then, two numerical examples (a two-span beam and a 19956-degree of freedom simplified airfoil) are used to demonstrate the overall reconstruction method. Finally, the present work investigates the effectiveness and accuracy of the method through a set of experiments conducted on an aluminium alloy cantilever beam commonly used in air vehicle and spacecraft. The experiments collect the vibration strain signals of the beam via optical fiber sensors. Reconstruction results are compared with theoretical solutions and a detailed error analysis is also provided. PMID:27537889

  9. Color Restoration of RGBN Multispectral Filter Array Sensor Images Based on Spectral Decomposition.

    PubMed

    Park, Chulhee; Kang, Moon Gi

    2016-05-18

    A multispectral filter array (MSFA) image sensor with red, green, blue and near-infrared (NIR) filters is useful for various imaging applications with the advantages that it obtains color information and NIR information simultaneously. Because the MSFA image sensor needs to acquire invisible band information, it is necessary to remove the IR cut-offfilter (IRCF). However, without the IRCF, the color of the image is desaturated by the interference of the additional NIR component of each RGB color channel. To overcome color degradation, a signal processing approach is required to restore natural color by removing the unwanted NIR contribution to the RGB color channels while the additional NIR information remains in the N channel. Thus, in this paper, we propose a color restoration method for an imaging system based on the MSFA image sensor with RGBN filters. To remove the unnecessary NIR component in each RGB color channel, spectral estimation and spectral decomposition are performed based on the spectral characteristics of the MSFA sensor. The proposed color restoration method estimates the spectral intensity in NIR band and recovers hue and color saturation by decomposing the visible band component and the NIR band component in each RGB color channel. The experimental results show that the proposed method effectively restores natural color and minimizes angular errors.

  10. A hybrid filtering method based on a novel empirical mode decomposition for friction signals

    NASA Astrophysics Data System (ADS)

    Li, Chengwei; Zhan, Liwei

    2015-12-01

    During a measurement, the measured signal usually contains noise. To remove the noise and preserve the important feature of the signal, we introduce a hybrid filtering method that uses a new intrinsic mode function (NIMF) and a modified Hausdorff distance. The NIMF is defined as the difference between the noisy signal and each intrinsic mode function (IMF), which is obtained by empirical mode decomposition (EMD), ensemble EMD, complementary ensemble EMD, or complete ensemble EMD with adaptive noise (CEEMDAN). The relevant mode selecting is based on the similarity between the first NIMF and the rest of the NIMFs. With this filtering method, the EMD and improved versions are used to filter the simulation and friction signals. The friction signal between an airplane tire and the runaway is recorded during a simulated airplane touchdown and features spikes of various amplitudes and noise. The filtering effectiveness of the four hybrid filtering methods are compared and discussed. The results show that the filtering method based on CEEMDAN outperforms other signal filtering methods.

  11. Iris identification system based on Fourier coefficients and singular value decomposition

    NASA Astrophysics Data System (ADS)

    Somnugpong, Sawet; Phimoltares, Suphakant; Maneeroj, Saranya

    2011-12-01

    Nowadays, both personal identification and classification are very important. In order to identify the person for some security applications, physical or behavior-based characteristics of individuals with high uniqueness might be analyzed. Biometric becomes the mostly used in personal identification purpose. There are many types of biometric information currently used. In this work, iris, one kind of personal characteristics is considered because of its uniqueness and collectable. Recently, the problem of various iris recognition systems is the limitation of space to store the data in a variety of environments. This work proposes the iris recognition system with small-size of feature vector causing a reduction in space complexity term. For this experiment, each iris is presented in terms of frequency domain, and based on neural network classification model. First, Fast Fourier Transform (FFT) is used to compute the Discrete Fourier Coefficients of iris data in frequency domain. Once the iris data was transformed into frequency-domain matrix, Singular Value Decomposition (SVD) is used to reduce a size of the complex matrix to single vector. All of these vectors would be input for neural networks for the classification step. With this approach, the merit of our technique is that size of feature vector is smaller than that of other techniques with the acceptable level of accuracy when compared with other existing techniques.

  12. Time Domain Strain/Stress Reconstruction Based on Empirical Mode Decomposition: Numerical Study and Experimental Validation.

    PubMed

    He, Jingjing; Zhou, Yibin; Guan, Xuefei; Zhang, Wei; Zhang, Weifang; Liu, Yongming

    2016-08-16

    Structural health monitoring has been studied by a number of researchers as well as various industries to keep up with the increasing demand for preventive maintenance routines. This work presents a novel method for reconstruct prompt, informed strain/stress responses at the hot spots of the structures based on strain measurements at remote locations. The structural responses measured from usage monitoring system at available locations are decomposed into modal responses using empirical mode decomposition. Transformation equations based on finite element modeling are derived to extrapolate the modal responses from the measured locations to critical locations where direct sensor measurements are not available. Then, two numerical examples (a two-span beam and a 19956-degree of freedom simplified airfoil) are used to demonstrate the overall reconstruction method. Finally, the present work investigates the effectiveness and accuracy of the method through a set of experiments conducted on an aluminium alloy cantilever beam commonly used in air vehicle and spacecraft. The experiments collect the vibration strain signals of the beam via optical fiber sensors. Reconstruction results are compared with theoretical solutions and a detailed error analysis is also provided.

  13. An Improved Multiobjective Optimization Evolutionary Algorithm Based on Decomposition for Complex Pareto Fronts.

    PubMed

    Jiang, Shouyong; Yang, Shengxiang

    2016-02-01

    The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sharp peak and disconnected regions, which significantly degrades the performance of MOEA/D. This paper proposes an improved MOEA/D for handling such kind of complex problems. In the proposed algorithm, a two-phase strategy (TP) is employed to divide the whole optimization procedure into two phases. Based on the crowdedness of solutions found in the first phase, the algorithm decides whether or not to delicate computational resources to handle unsolved subproblems in the second phase. Besides, a new niche scheme is introduced into the improved MOEA/D to guide the selection of mating parents to avoid producing duplicate solutions, which is very helpful for maintaining the population diversity when the POF of the MOP being optimized is discontinuous. The performance of the proposed algorithm is investigated on some existing benchmark and newly designed MOPs with complex POF shapes in comparison with several MOEA/D variants and other approaches. The experimental results show that the proposed algorithm produces promising performance on these complex problems.

  14. Time Domain Strain/Stress Reconstruction Based on Empirical Mode Decomposition: Numerical Study and Experimental Validation.

    PubMed

    He, Jingjing; Zhou, Yibin; Guan, Xuefei; Zhang, Wei; Zhang, Weifang; Liu, Yongming

    2016-01-01

    Structural health monitoring has been studied by a number of researchers as well as various industries to keep up with the increasing demand for preventive maintenance routines. This work presents a novel method for reconstruct prompt, informed strain/stress responses at the hot spots of the structures based on strain measurements at remote locations. The structural responses measured from usage monitoring system at available locations are decomposed into modal responses using empirical mode decomposition. Transformation equations based on finite element modeling are derived to extrapolate the modal responses from the measured locations to critical locations where direct sensor measurements are not available. Then, two numerical examples (a two-span beam and a 19956-degree of freedom simplified airfoil) are used to demonstrate the overall reconstruction method. Finally, the present work investigates the effectiveness and accuracy of the method through a set of experiments conducted on an aluminium alloy cantilever beam commonly used in air vehicle and spacecraft. The experiments collect the vibration strain signals of the beam via optical fiber sensors. Reconstruction results are compared with theoretical solutions and a detailed error analysis is also provided. PMID:27537889

  15. Assessment and Improvement of GOCE based Global Geopotential Models Using Wavelet Decomposition

    NASA Astrophysics Data System (ADS)

    Erol, Serdar; Erol, Bihter; Serkan Isik, Mustafa

    2016-07-01

    The contribution of recent Earth gravity field satellite missions, specifically GOCE mission, leads significant improvement in quality of gravity field models in both accuracy and resolution manners. However the performance and quality of each released model vary not only depending on the spatial location of the Earth but also the different bands of the spectral expansion. Therefore the assessment of the global model performances with validations using in situ-data in varying territories on the Earth is essential for clarifying their exact performances in local. Beside of this, their spectral evaluation and quality assessment of the signal in each part of the spherical harmonic expansion spectrum is essential to have a clear decision for the commission error content of the model and determining its optimal degree, revealed the best results, as well. The later analyses provide also a perspective and comparison on the global behavior of the models and opportunity to report the sequential improvement of the models depending on the mission developments and hence the contribution of the new data of missions. In this study a review on spectral assessment results of the recently released GOCE based global geopotential models DIR-R5, TIM-R5 with the enhancement using EGM2008, as reference model, in Turkey, versus the terrestrial data is provided. Beside of reporting the GOCE mission contribution to the models in Turkish territory, the possible improvement in the spectral quality of these models, via decomposition that are highly contaminated by noise, is purposed. In the analyses the motivation is on achieving an optimal amount of improvement that rely on conserving the useful component of the GOCE signal as much as possible, while fusing the filtered GOCE based models with EGM2008 in the appropriate spectral bands. The investigation also contain the assessment of the coherence and the correlation between the Earth gravity field parameters (free-air gravity anomalies and

  16. Image encryption algorithm based on wavelet packet decomposition and discrete linear canonical transform

    NASA Astrophysics Data System (ADS)

    Sharma, K. K.; Jain, Heena

    2013-01-01

    The security of digital data including images has attracted more attention recently, and many different image encryption methods have been proposed in the literature for this purpose. In this paper, a new image encryption method using wavelet packet decomposition and discrete linear canonical transform is proposed. The use of wavelet packet decomposition and DLCT increases the key size significantly making the encryption more robust. Simulation results of the proposed technique are also presented.

  17. Extraction of anisotropic parameters of turbid media using hybrid model comprising differential- and decomposition-based Mueller matrices.

    PubMed

    Liao, Chia-Chi; Lo, Yu-Lung

    2013-07-15

    A hybrid model comprising the differential Mueller matrix formalism and the Mueller matrix decomposition method is proposed for extracting the linear birefringence (LB), linear dichroism (LD), circular birefringence (CB), circular dichroism (CD), and depolarization properties (Dep) of turbid optical samples. In contrast to the differential-based Mueller matrix method, the proposed hybrid model provides full-range measurements of all the anisotropic properties of the optical sample. Furthermore, compared to the decomposition-based Mueller matrix method, the proposed model is insensitive to the multiplication order of the constituent basis matrices. The validity of the proposed method is confirmed by extracting the anisotropic properties of a compound chitosan-glucose-microsphere sample with LB/CB/Dep properties and two ferrofluidic samples with CB/CD/Dep and LB/LD/Dep properties, respectively. It is shown that the proposed hybrid model not only yields full-range measurements of all the anisotropic parameters, but is also more accurate and more stable than the decomposition method. Moreover, compared to the decomposition method, the proposed model more accurately reflects the dependency of the phase retardation angle and linear dichroism angle on the direction of the external magnetic field for ferrofluidic samples. Overall, the results presented in this study confirm that the proposed model has significant potential for extracting the optical parameters of real-world samples characterized by either single or multiple anisotropic properties.

  18. Pansharpening with a Guided Filter Based on Three-Layer Decomposition

    PubMed Central

    Meng, Xiangchao; Li, Jie; Shen, Huanfeng; Zhang, Liangpei; Zhang, Hongyan

    2016-01-01

    State-of-the-art pansharpening methods generally inject the spatial structures of a high spatial resolution (HR) panchromatic (PAN) image into the corresponding low spatial resolution (LR) multispectral (MS) image by an injection model. In this paper, a novel pansharpening method with an edge-preserving guided filter based on three-layer decomposition is proposed. In the proposed method, the PAN image is decomposed into three layers: A strong edge layer, a detail layer, and a low-frequency layer. The edge layer and detail layer are then injected into the MS image by a proportional injection model. In addition, two new quantitative evaluation indices, including the modified correlation coefficient (MCC) and the modified universal image quality index (MUIQI) are developed. The proposed method was tested and verified by IKONOS, QuickBird, and Gaofen (GF)-1 satellite images, and it was compared with several of state-of-the-art pansharpening methods from both qualitative and quantitative aspects. The experimental results confirm the superiority of the proposed method. PMID:27420064

  19. Improved parameterization of interatomic potentials for rare gas dimers with density-based energy decomposition analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Nengjie; Lu, Zhenyu; Wu, Qin; Zhang, Yingkai

    2014-06-01

    We examine interatomic interactions for rare gas dimers using the density-based energy decomposition analysis (DEDA) in conjunction with computational results from CCSD(T) at the complete basis set (CBS) limit. The unique DEDA capability of separating frozen density interactions from density relaxation contributions is employed to yield clean interaction components, and the results are found to be consistent with the typical physical picture that density relaxations play a very minimal role in rare gas interactions. Equipped with each interaction component as reference, we develop a new three-term molecular mechanical force field to describe rare gas dimers: a smeared charge multipole model for electrostatics with charge penetration effects, a B3LYP-D3 dispersion term for asymptotically correct long-range attractions that is screened at short-range, and a Born-Mayer exponential function for the repulsion. The resulted force field not only reproduces rare gas interaction energies calculated at the CCSD(T)/CBS level, but also yields each interaction component (electrostatic or van der Waals) which agrees very well with its corresponding reference value.

  20. Pansharpening with a Guided Filter Based on Three-Layer Decomposition.

    PubMed

    Meng, Xiangchao; Li, Jie; Shen, Huanfeng; Zhang, Liangpei; Zhang, Hongyan

    2016-01-01

    State-of-the-art pansharpening methods generally inject the spatial structures of a high spatial resolution (HR) panchromatic (PAN) image into the corresponding low spatial resolution (LR) multispectral (MS) image by an injection model. In this paper, a novel pansharpening method with an edge-preserving guided filter based on three-layer decomposition is proposed. In the proposed method, the PAN image is decomposed into three layers: A strong edge layer, a detail layer, and a low-frequency layer. The edge layer and detail layer are then injected into the MS image by a proportional injection model. In addition, two new quantitative evaluation indices, including the modified correlation coefficient (MCC) and the modified universal image quality index (MUIQI) are developed. The proposed method was tested and verified by IKONOS, QuickBird, and Gaofen (GF)-1 satellite images, and it was compared with several of state-of-the-art pansharpening methods from both qualitative and quantitative aspects. The experimental results confirm the superiority of the proposed method. PMID:27420064

  1. Bearing fault diagnosis based on variational mode decomposition and total variation denoising

    NASA Astrophysics Data System (ADS)

    Zhang, Suofeng; Wang, Yanxue; He, Shuilong; Jiang, Zhansi

    2016-07-01

    Feature extraction plays an essential role in bearing fault detection. However, the measured vibration signals are complex and non-stationary in nature, and meanwhile impulsive signatures of rolling bearing are usually immersed in stochastic noise. Hence, a novel hybrid fault diagnosis approach is developed for the denoising and non-stationary feature extraction in this work, which combines well with the variational mode decomposition (VMD) and majoriation-minization based total variation denoising (TV-MM). The TV-MM approach is utilized to remove stochastic noise in the raw signal and to enhance the corresponding characteristics. Since the parameter λ is very important in TV-MM, the weighted kurtosis index is also proposed in this work to determine an appropriate λ used in TV-MM. The performance of the proposed hybrid approach is conducted through the analysis of the simulated and practical bearing vibration signals. Results demonstrate that the proposed approach has superior capability to detect roller bearing faults from vibration signals.

  2. Robust multitask learning with three-dimensional empirical mode decomposition-based features for hyperspectral classification

    NASA Astrophysics Data System (ADS)

    He, Zhi; Liu, Lin

    2016-11-01

    Empirical mode decomposition (EMD) and its variants have recently been applied for hyperspectral image (HSI) classification due to their ability to extract useful features from the original HSI. However, it remains a challenging task to effectively exploit the spectral-spatial information by the traditional vector or image-based methods. In this paper, a three-dimensional (3D) extension of EMD (3D-EMD) is proposed to naturally treat the HSI as a cube and decompose the HSI into varying oscillations (i.e. 3D intrinsic mode functions (3D-IMFs)). To achieve fast 3D-EMD implementation, 3D Delaunay triangulation (3D-DT) is utilized to determine the distances of extrema, while separable filters are adopted to generate the envelopes. Taking the extracted 3D-IMFs as features of different tasks, robust multitask learning (RMTL) is further proposed for HSI classification. In RMTL, pairs of low-rank and sparse structures are formulated by trace-norm and l1,2 -norm to capture task relatedness and specificity, respectively. Moreover, the optimization problems of RMTL can be efficiently solved by the inexact augmented Lagrangian method (IALM). Compared with several state-of-the-art feature extraction and classification methods, the experimental results conducted on three benchmark data sets demonstrate the superiority of the proposed methods.

  3. An Efficient Model-based Diagnosis Engine for Hybrid Systems Using Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Narasimhan, Sriram; Roychoudhury, Indranil; Daigle, Matthew; Pulido, Belarmino

    2013-01-01

    Complex hybrid systems are present in a large range of engineering applications, like mechanical systems, electrical circuits, or embedded computation systems. The behavior of these systems is made up of continuous and discrete event dynamics that increase the difficulties for accurate and timely online fault diagnosis. The Hybrid Diagnosis Engine (HyDE) offers flexibility to the diagnosis application designer to choose the modeling paradigm and the reasoning algorithms. The HyDE architecture supports the use of multiple modeling paradigms at the component and system level. However, HyDE faces some problems regarding performance in terms of complexity and time. Our focus in this paper is on developing efficient model-based methodologies for online fault diagnosis in complex hybrid systems. To do this, we propose a diagnosis framework where structural model decomposition is integrated within the HyDE diagnosis framework to reduce the computational complexity associated with the fault diagnosis of hybrid systems. As a case study, we apply our approach to a diagnostic testbed, the Advanced Diagnostics and Prognostics Testbed (ADAPT), using real data.

  4. Ship classification using nonlinear features of radiated sound: an approach based on empirical mode decomposition.

    PubMed

    Bao, Fei; Li, Chen; Wang, Xinlong; Wang, Qingfu; Du, Shuanping

    2010-07-01

    Classification for ship-radiated underwater sound is one of the most important and challenging subjects in underwater acoustical signal processing. An approach to ship classification is proposed in this work based on analysis of ship-radiated acoustical noise in subspaces of intrinsic mode functions attained via the ensemble empirical mode decomposition. It is shown that detection and acquisition of stable and reliable nonlinear features become practically feasible by nonlinear analysis of the time series of individual decomposed components, each of which is simple enough and well represents an oscillatory mode of ship dynamics. Surrogate and nonlinear predictability analysis are conducted to probe and measure the nonlinearity and regularity. The results of both methods, which verify each other, substantiate that ship-radiated noises contain components with deterministic nonlinear features well serving for efficient classification of ships. The approach perhaps opens an alternative avenue in the direction toward object classification and identification. It may also import a new view of signals as complex as ship-radiated sound.

  5. Seismic facies analysis based on self-organizing map and empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Du, Hao-kun; Cao, Jun-xing; Xue, Ya-juan; Wang, Xing-jian

    2015-01-01

    Seismic facies analysis plays an important role in seismic interpretation and reservoir model building by offering an effective way to identify the changes in geofacies inter wells. The selections of input seismic attributes and their time window have an obvious effect on the validity of classification and require iterative experimentation and prior knowledge. In general, it is sensitive to noise when waveform serves as the input data to cluster analysis, especially with a narrow window. To conquer this limitation, the Empirical Mode Decomposition (EMD) method is introduced into waveform classification based on SOM. We first de-noise the seismic data using EMD and then cluster the data using 1D grid SOM. The main advantages of this method are resolution enhancement and noise reduction. 3D seismic data from the western Sichuan basin, China, are collected for validation. The application results show that seismic facies analysis can be improved and better help the interpretation. The powerful tolerance for noise makes the proposed method to be a better seismic facies analysis tool than classical 1D grid SOM method, especially for waveform cluster with a narrow window.

  6. Compressed sensing MRI with singular value decomposition-based sparsity basis

    NASA Astrophysics Data System (ADS)

    Hong, Mingjian; Yu, Yeyang; Wang, Hua; Liu, Feng; Crozier, Stuart

    2011-10-01

    Compressed sensing MRI (CS-MRI) aims to significantly reduce the measurements required for image reconstruction in order to accelerate the overall imaging speed. The sparsity of the MR images in transformation bases is one of the fundamental criteria for CS-MRI performance. Sparser representations can require fewer samples necessary for a successful reconstruction or achieve better reconstruction quality with a given number of samples. Generally, there are two kinds of 'sparsifying' transforms: predefined transforms and data-adaptive transforms. The predefined transforms, such as the discrete cosine transform, discrete wavelet transform and identity transform have usually been used to provide sufficiently sparse representations for limited types of MR images, in view of their isolation to the object images. In this paper, we present singular value decomposition (SVD) as the data-adaptive 'sparsity' basis, which can sparsify a broader range of MR images and perform effective image reconstruction. The performance of this method was evaluated for MR images with varying content (for example, brain images, angiograms, etc), in terms of image quality, reconstruction time, sparsity and data fidelity. Comparison with other commonly used sparsifying transforms shows that the proposed method can significantly accelerate the reconstruction process and still achieve better image quality, providing a simple and effective alternative solution in the CS-MRI framework.

  7. Bearing fault diagnosis based on variational mode decomposition and total variation denoising

    NASA Astrophysics Data System (ADS)

    Zhang, Suofeng; Wang, Yanxue; He, Shuilong; Jiang, Zhansi

    2016-07-01

    Feature extraction plays an essential role in bearing fault detection. However, the measured vibration signals are complex and non-stationary in nature, and meanwhile impulsive signatures of rolling bearing are usually immersed in stochastic noise. Hence, a novel hybrid fault diagnosis approach is developed for the denoising and non-stationary feature extraction in this work, which combines well with the variational mode decomposition (VMD) and majoriation–minization based total variation denoising (TV-MM). The TV-MM approach is utilized to remove stochastic noise in the raw signal and to enhance the corresponding characteristics. Since the parameter λ is very important in TV-MM, the weighted kurtosis index is also proposed in this work to determine an appropriate λ used in TV-MM. The performance of the proposed hybrid approach is conducted through the analysis of the simulated and practical bearing vibration signals. Results demonstrate that the proposed approach has superior capability to detect roller bearing faults from vibration signals.

  8. Low-rank and sparse matrix decomposition-based anomaly detection for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Liu, Chun; Li, Jialin; Lai, Yenming Mark; Li, Weiyue

    2014-01-01

    A low-rank and sparse matrix decomposition (LRaSMD) detector has been proposed to detect anomalies in hyperspectral imagery (HSI). The detector assumes background images are low-rank while anomalies are gross errors that are sparsely distributed throughout the image scene. By solving a constrained convex optimization problem, the LRaSMD detector separates the anomalies from the background. This protects the background model from corruption. An anomaly value for each pixel is calculated using the Euclidean distance, and anomalies are determined by thresholding the anomaly value. Four groups of experiments on three widely used HSI datasets are designed to completely analyze the performances of the new detector. Experimental results show that the LRaSMD detector outperforms the global Reed-Xiaoli (GRX), the orthogonal subspace projection-GRX, and the cluster-based detectors. Moreover, the results show that LRaSMD achieves equal or better detection performance than the local support vector data description detector within a shorter computational time.

  9. Acid-, base-, and lewis-acid-catalyzed heterolysis of methoxide from an alpha-hydroxy-beta-methoxy radical: models for reactions catalyzed by coenzyme B12-dependent diol dehydratase.

    PubMed

    Xu, Libin; Newcomb, Martin

    2005-11-11

    [Reaction: see text].A model for glycol radicals was employed in laser flash photolysis kinetic studies of catalysis of the fragmentation of a methoxy group adjacent to an alpha-hydroxy radical center. Photolysis of a phenylselenylmethylcyclopropane precursor gave a cyclopropylcarbinyl radical that rapidly ring opened to the target alpha-hydroxy-beta-methoxy radical (3). Heterolysis of the methoxy group in 3 gave an enolyl radical (4a) or an enol ether radical cation (4b), depending upon pH. Radicals 4 contain a 2,2-diphenylcyclopropane reporter group, and they rapidly opened to give UV-observable diphenylalkyl radicals as the final products. No heterolysis was observed for radical 3 under neutral conditions. In basic aqueous acetonitrile solutions, specific base catalysis of the heterolysis was observed; the pK(a) of radical 3 was determined to be 12.5 from kinetic titration plots, and the ketyl radical formed by deprotonation of 3 eliminated methoxide with a rate constant of 5 x 10(7) s(-1). In the presence of carboxylic acids in acetonitrile solutions, radical 3 eliminated methanol in a general acid-catalyzed reaction, and rate constants for protonation of the methoxy group in 3 by several acids were measured. Radical 3 also reacted by fragmentation of methoxide in Lewis-acid-catalyzed heterolysis reactions; ZnBr2, Sc(OTf)3, and BF3 were found to be efficient catalysts. Catalytic rate constants for the heterolysis reactions were in the range of 3 x 10(4) to 2 x 10(6) s(-1). The Lewis-acid-catalyzed heterolysis reactions are fast enough for kinetic competence in coenzyme B12 dependent enzyme-catalyzed reactions of glycols, and Lewis-acid-catalyzed cleavages of beta-ethers in radicals might be applied in synthetic reactions.

  10. A Graph-Based Recovery and Decomposition of Swanson’s Hypothesis using Semantic Predications

    PubMed Central

    Cameron, Delroy; Bodenreider, Olivier; Yalamanchili, Hima; Danh, Tu; Vallabhaneni, Sreeram; Thirunarayan, Krishnaprasad; Sheth, Amit P.; Rindflesch, Thomas C.

    2014-01-01

    Objectives This paper presents a methodology for recovering and decomposing Swanson’s Raynaud Syndrome–Fish Oil Hypothesis semi-automatically. The methodology leverages the semantics of assertions extracted from biomedical literature (called semantic predications) along with structured background knowledge and graph-based algorithms to semi-automatically capture the informative associations originally discovered manually by Swanson. Demonstrating that Swanson’s manually intensive techniques can be undertaken semi-automatically, paves the way for fully automatic semantics-based hypothesis generation from scientific literature. Methods Semantic predications obtained from biomedical literature allow the construction of labeled directed graphs which contain various associations among concepts from the literature. By aggregating such associations into informative subgraphs, some of the relevant details originally articulated by Swanson has been uncovered. However, by leveraging background knowledge to bridge important knowledge gaps in the literature, a methodology for semi-automatically capturing the detailed associations originally explicated in natural language by Swanson has been developed. Results Our methodology not only recovered the 3 associations commonly recognized as Swanson’s Hypothesis, but also decomposed them into an additional 16 detailed associations, formulated as chains of semantic predications. Altogether, 14 out of the 19 associations that can be attributed to Swanson were retrieved using our approach. To the best of our knowledge, such an in-depth recovery and decomposition of Swanson’s Hypothesis has never been attempted. Conclusion In this work therefore, we presented a methodology for semi- automatically recovering and decomposing Swanson’s RS-DFO Hypothesis using semantic representations and graph algorithms. Our methodology provides new insights into potential prerequisites for semantics-driven Literature-Based Discovery (LBD

  11. Tensor based geology preserving reservoir parameterization with Higher Order Singular Value Decomposition (HOSVD)

    NASA Astrophysics Data System (ADS)

    Afra, Sardar; Gildin, Eduardo

    2016-09-01

    Parameter estimation through robust parameterization techniques has been addressed in many works associated with history matching and inverse problems. Reservoir models are in general complex, nonlinear, and large-scale with respect to the large number of states and unknown parameters. Thus, having a practical approach to replace the original set of highly correlated unknown parameters with non-correlated set of lower dimensionality, that captures the most significant features comparing to the original set, is of high importance. Furthermore, de-correlating system's parameters while keeping the geological description intact is critical to control the ill-posedness nature of such problems. We introduce the advantages of a new low dimensional parameterization approach for reservoir characterization applications utilizing multilinear algebra based techniques like higher order singular value decomposition (HOSVD). In tensor based approaches like HOSVD, 2D permeability images are treated as they are, i.e., the data structure is kept as it is, whereas in conventional dimensionality reduction algorithms like SVD data has to be vectorized. Hence, compared to classical methods, higher redundancy reduction with less information loss can be achieved through decreasing present redundancies in all dimensions. In other words, HOSVD approximation results in a better compact data representation with respect to least square sense and geological consistency in comparison with classical algorithms. We examined the performance of the proposed parameterization technique against SVD approach on the SPE10 benchmark reservoir model as well as synthetic channelized permeability maps to demonstrate the capability of the proposed method. Moreover, to acquire statistical consistency, we repeat all experiments for a set of 1000 unknown geological samples and provide comparison using RMSE analysis. Results prove that, for a fixed compression ratio, the performance of the proposed approach

  12. Robust x-ray based material identification using multi-energy sinogram decomposition

    NASA Astrophysics Data System (ADS)

    Yuan, Yaoshen; Tracey, Brian; Miller, Eric

    2016-05-01

    There is growing interest in developing X-ray computed tomography (CT) imaging systems with improved ability to discriminate material types, going beyond the attenuation imaging provided by most current systems. Dual- energy CT (DECT) systems can partially address this problem by estimating Compton and photoelectric (PE) coefficients of the materials being imaged, but DECT is greatly degraded by the presence of metal or other materials with high attenuation. Here we explore the advantages of multi-energy CT (MECT) systems based on photon-counting detectors. The utility of MECT has been demonstrated in medical applications where photon- counting detectors allow for the resolution of absorption K-edges. Our primary concern is aviation security applications where K-edges are rare. We simulate phantoms with differing amounts of metal (high, medium and low attenuation), both for switched-source DECT and for MECT systems, and include a realistic model of detector energy 0 resolution. We extend the DECT sinogram decomposition method of Ying et al. to MECT, allowing estimation of separate Compton and photoelectric sinograms. We furthermore introduce a weighting based on a quadratic approximation to the Poisson likelihood function that deemphasizes energy bins with low signal. Simulation results show that the proposed approach succeeds in estimating material properties even in high-attenuation scenarios where the DECT method fails, improving the signal to noise ratio of reconstructions by over 20 dB for the high-attenuation phantom. Our work demonstrates the potential of using photon counting detectors for stably recovering material properties even when high attenuation is present, thus enabling the development of improved scanning systems.

  13. [Research on the surface electromyography signal decomposition based on multi-channel signal fusion analysis].

    PubMed

    Li, Qiang; Yang, Jihai

    2012-10-01

    The decomposition method of surface electromyography (sEMG) signals was explored by using the multi-channel information extraction and fusion analysis to acquire the motor unit action potential (MUAP) patterns. The action potential waveforms were detected with the combined method of continuous wavelet transform and hypothesis testing, and the effective detection analysis was judged with the multi-channel firing processes of motor units. The cluster number of MUAPs was confirmed by the hierarchical clustering technique, and then the decomposition was implemented by the fuzzy k-means clustering algorithms. The unclassified waveforms were processed by the template matching and peel-off methods. The experimental results showed that several kinds of MUAPs were precisely extracted from the multi-channel sEMG signals. The space potential distribution information of motor units could be satisfyingly represented by the proposed decomposition method. PMID:23198440

  14. Three-Component Decomposition Based on Stokes Vector for Compact Polarimetric SAR

    PubMed Central

    Wang, Hanning; Zhou, Zhimin; Turnbull, John; Song, Qian; Qi, Feng

    2015-01-01

    In this paper, a three-component decomposition algorithm is proposed for processing compact polarimetric SAR images. By using the correspondence between the covariance matrix and the Stokes vector, three-component scattering models for CTLR and DCP modes are established. The explicit expression of decomposition results is then derived by setting the contribution of volume scattering as a free parameter. The degree of depolarization is taken as the upper bound of the free parameter, for the constraint that the weighting factor of each scattering component should be nonnegative. Several methods are investigated to estimate the free parameter suitable for decomposition. The feasibility of this algorithm is validated by AIRSAR data over San Francisco and RADARSAT-2 data over Flevoland. PMID:26393610

  15. Automatic and efficient decomposition of two-dimensional structures of small molecules for fragment-based high-throughput docking.

    PubMed

    Kolb, Peter; Caflisch, Amedeo

    2006-12-14

    The computer program DAIM (Decomposition and Identification of Molecules) has been developed to automatically break up compounds in small-molecule libraries for fragment-based docking as well as database analysis. Here, DAIM is evaluated on 130 ligands derived from known crystal structures of ligand-protein complexes. The decomposition and a new fingerprint-based identification technique are used to select anchor fragments for docking. The docking results show that the DAIM selection is superior to size-based or random selection of fragments. To evaluate the usefulness for analyzing the fragment composition of a large library, DAIM is applied to a collection of about 1.85 million commercially available compounds. Interestingly, it is found that the set of most frequent cyclic and acyclic fragments originating from the decomposition of the 1.85 million molecules shows a large overlap with the most frequent fragments in a library of 5120 known drugs. DAIM has been successfully used in the in silico screening for inhibitors of beta-secretase and EphB4 kinase by fragment-based high-throughput docking. Possible future applications for de novo ligand design are briefly discussed.

  16. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing

    NASA Astrophysics Data System (ADS)

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2016-08-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture—for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments—as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series—daily Poaceae pollen concentrations over the period 2006-2014—was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  17. Synthesis, spectroscopic and chromatographic studies of sunflower oil biodiesel using optimized base catalyzed methanolysis.

    PubMed

    Naureen, Rizwana; Tariq, Muhammad; Yusoff, Ismail; Chowdhury, Ahmed Jalal Khan; Ashraf, Muhammad Aqeel

    2015-05-01

    Methyl esters from vegetable oils have attracted a great deal of interest as substitute for petrodiesel to reduce dependence on imported petroleum and provide an alternate and sustainable source for fuel with more benign environmental properties. In the present study biodiesel was prepared from sunflower seed oil by transesterification by alkali-catalyzed methanolysis. The fuel properties of sunflower oil biodiesel were determined and discussed in the light of ASTM D6751 standards for biodiesel. The sunflower oil biodiesel was chemically characterized with analytical techniques like FT-IR, and NMR ((1)H and (13)C). The chemical composition of sunflower oil biodiesel was determined by GC-MS. Various fatty acid methyl esters (FAMEs) were identified by retention time data and verified by mass fragmentation patterns. The percentage conversion of triglycerides to the corresponding methyl esters determined by (1)H NMR was 87.33% which was quite in good agreement with the practically observed yield of 85.1%.

  18. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts.

    PubMed

    Poater, Albert; Cavallo, Luigi

    2015-01-01

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  19. Synthesis, spectroscopic and chromatographic studies of sunflower oil biodiesel using optimized base catalyzed methanolysis

    PubMed Central

    Naureen, Rizwana; Tariq, Muhammad; Yusoff, Ismail; Chowdhury, Ahmed Jalal Khan; Ashraf, Muhammad Aqeel

    2014-01-01

    Methyl esters from vegetable oils have attracted a great deal of interest as substitute for petrodiesel to reduce dependence on imported petroleum and provide an alternate and sustainable source for fuel with more benign environmental properties. In the present study biodiesel was prepared from sunflower seed oil by transesterification by alkali-catalyzed methanolysis. The fuel properties of sunflower oil biodiesel were determined and discussed in the light of ASTM D6751 standards for biodiesel. The sunflower oil biodiesel was chemically characterized with analytical techniques like FT-IR, and NMR (1H and 13C). The chemical composition of sunflower oil biodiesel was determined by GC–MS. Various fatty acid methyl esters (FAMEs) were identified by retention time data and verified by mass fragmentation patterns. The percentage conversion of triglycerides to the corresponding methyl esters determined by 1H NMR was 87.33% which was quite in good agreement with the practically observed yield of 85.1%. PMID:25972756

  20. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts

    PubMed Central

    2015-01-01

    Summary During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate. PMID:26664596

  1. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts.

    PubMed

    Poater, Albert; Cavallo, Luigi

    2015-01-01

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate. PMID:26664596

  2. Flow-injection determination of hydrogen peroxide based on fluorescence quenching of chromotropic acid catalyzed with Fe(II).

    PubMed

    Li, Zhen Hai; Li, Dong Hao; Oshita, Koji; Motomizu, Shoji

    2010-09-15

    Flow-injection analysis system (FIA system), which was based on Fe(II)-catalyzed oxidation of chromotropic acid with hydrogen peroxide, was developed for the determination of hydrogen peroxide. The chromotropic acid has a fluorescence measured at lambda(em)=440 nm (emission wavelength) with lambda(ex)=235 nm (excitation wavelength), and the fluorescence intensity at lambda(em)=440 nm quietly decreased in the presence of hydrogen peroxide and Fe(II), which was caused by Fe(II)-catalyzed oxidation of chromotropic acid with hydrogen peroxide. By measuring the difference of fluorescence intensity, hydrogen peroxide (1.0 x 10(-8)-1.0 x 10(-3) mol L(-1)) could be determined by the proposed FIA system, whose analytical throughput was 40 samples h(-1). The relative standard deviation (RSD) was 1.03% (n=10) for 4.0 x 10(-8) mol L(-1) hydrogen peroxide. The proposed FIA technique could be applied to the determination of hydrogen peroxide in rain water samples.

  3. Hierarchical decomposition of burn body diagram based on cutaneous functional units and its utility.

    PubMed

    Richard, Reg; Jones, John A; Parshley, Philip

    2015-01-01

    A burn body diagram (BBD) is a common feature used in the delivery of burn care for estimating the TBSA burn as well as calculating fluid resuscitation and nutritional requirements, wound healing, and rehabilitation intervention. However, little change has occurred for over seven decades in the configuration of the BBD. The purpose of this project was to develop a computerized model using hierarchical decomposition (HD) to more precisely determine the percentage burn within a BBD based on cutaneous functional units (CFUs). HD is a process by which a system is degraded into smaller parts that are more precise in their use. CFUs were previously identified fields of the skin involved in the range of motion. A standard Lund/Browder (LB) BBD template was used as the starting point to apply the CFU segments. LB body divisions were parceled down into smaller body area divisions through a HD process based on the CFU concept. A numerical pattern schema was used to label the various segments in a cephalo/caudal, anterior/posterior, medial/lateral manner. Hand/fingers were divided based on anatomical landmarks and known cutaneokinematic function. The face was considered using aesthetic units. Computer code was written to apply the numeric hierarchical schema to CFUs and applied within the context of the surface area graphic evaluation BBD program. Each segmented CFU was coded to express 100% of itself. The CFU/HD method refined the standard LB diagram from 13 body segments and 33 subdivisions into 182 isolated CFUs. Associated CFUs were reconstituted into 219 various surface area combinations totaling 401 possible surface segments. The CFU/HD schema of the body surface mapping is applicable to measuring and calculating percent wound healing in a more precise manner. It eliminates subjective assessment of the percentage wound healing and the need for additional devices such as planimetry. The development of CFU/HD body mapping schema has rendered a technologically advanced

  4. Microorganisms detected by enzyme-catalyzed reaction

    NASA Technical Reports Server (NTRS)

    Vango, S. P.; Weetall, H. H.; Weliky, N.

    1966-01-01

    Enzymes detect the presence of microorganisms in soils. The enzyme lysozymi is used to release the enzyme catalase from the microorganisms in a soil sample. The catalase catalyzes the decomposition of added hydrogen peroxide to produce oxygen which is detected manometrically. The partial pressure of the oxygen serves as an index of the samples bacteria content.

  5. Hyaluronic acid-based hydrogels crosslinked by copper-catalyzed azide-alkyne cycloaddition with tailorable mechanical properties.

    PubMed

    Piluso, Susanna; Hiebl, Bernhard; Gorb, Stanislav N; Kovalev, Alexander; Lendlein, Andreas; Neffe, Axel T

    2011-02-01

    Biopolymers of the extracellular matrix are attractive starting materials for providing degradable and biocompatible biomaterials. In this study, hyaluronic acid-based hydrogels with tunable mechanical properties were prepared by the use of copper- catalyzed azide-alkyne cycloaddition (known as "click chemistry"). Alkyne-functionalized hyaluronic acid was crosslinked with linkers having two terminal azide functionalities, varying crosslinker density as well as the lengths and rigidity of the linker molecules. By variation of the crosslinker density and crosslinker type, hydrogels with elastic moduli in the range of 0.5-4 kPa were prepared. The washed materials contained a maximum of 6.8 mg copper per kg dry weight and the eluate of the gel crosslinked with diazidostilbene did not show toxic effects on L929 cells. The hyaluronic acid-based hydrogels have potential as biomaterials for cell culture or soft tissue regeneration applications. PMID:21374560

  6. SEBAL-based Daily Actual Evapotranspiration Forecasting using Wavelets Decomposition Analysis and Multivariate Relevance Vector Machines

    NASA Astrophysics Data System (ADS)

    Torres, A. F.

    2011-12-01

    Agricultural lands are sources of food and energy for population around the globe. These lands are vulnerable to the impacts of climate change including variations in rainfall regimes, weather patterns, and decreased availability of water for irrigation. In addition, it is not unusual that irrigated agriculture is forced to divert less water in order to make it available for other uses, e.g. human consumption and others. As part of implementation of better policies for water control and management, irrigation companies and water user associations have been implemented water conveyance and distribution monitoring systems along with soil moisture sensors networks in the last decades. These systems allow them to manage and distribute water among the users based on their requirements and water availability while collecting information about actual soil moisture conditions in representative crop fields. In spite of this, requested water deliveries by farmers/water users is based typically on total water share, traditions and past experience on irrigation, which in most cases do not correspond to the actual crop evapotranspiration, already affected by climate change. Therefore it is necessary to provide actual information about the crop water requirements to water users/managers, so they can better quantify the required vs. available water for the irrigation events along the irrigation season. To estimate the actual evapotranspiration in a spatial extent the Sensitivity Analysis of the Surface Energy Balance Algorithm for Land (SEBAL) algorithm has demonstrated its effectiveness using satellite or airborne data. Nonetheless the estimation is restricted to the day when the geospatial information was obtained. Without information of precise future daily water crop demand there is a continuous challenge for the implementation of better water distribution and management policies in the irrigation system. The purpose of this study is to investigate the plausibility of using

  7. Relevant modes selection method based on Spearman correlation coefficient for laser signal denoising using empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Duan, Yabo; Song, Chengtian

    2016-10-01

    Empirical mode decomposition (EMD) is a recently proposed nonlinear and nonstationary laser signal denoising method. A noisy signal is broken down using EMD into oscillatory components that are called intrinsic mode functions (IMFs). Thresholding-based denoising and correlation-based partial reconstruction of IMFs are the two main research directions for EMD-based denoising. Similar to other decomposition-based denoising approaches, EMD-based denoising methods require a reliable threshold to determine which IMFs are noise components and which IMFs are noise-free components. In this work, we propose a new approach in which each IMF is first denoised using EMD interval thresholding (EMD-IT), and then a robust thresholding process based on Spearman correlation coefficient is used for relevant modes selection. The proposed method tackles the problem using a thresholding-based denoising approach coupled with partial reconstruction of the relevant IMFs. Other traditional denoising methods, including correlation-based EMD partial reconstruction (EMD-Correlation), discrete Fourier transform and wavelet-based methods, are investigated to provide a comparison with the proposed technique. Simulation and test results demonstrate the superior performance of the proposed method when compared with the other methods.

  8. Pt/TiO2 (Rutile) Catalysts for Sulfuric Acid Decomposition in Sulfur-Based Thermochemical Water-Splitting Cycles

    SciTech Connect

    L. M. Petkovic; D. M. Ginosar; H. W. Rollins; K. C. Burch; P. J. Pinhero; H. H. Farrell

    2008-04-01

    Thermochemical cycles consist of a series of chemical reactions to produce hydrogen from water at lower temperatures than by direct thermal decomposition. All the sulfur-based cycles for water splitting employ the sulfuric acid decomposition reaction. This work reports the studies performed on platinum supported on titania (rutile) catalysts to investigate the causes of catalyst deactivation under sulfuric acid decomposition reaction conditions. Samples of 1 wt% Pt/TiO2 (rutile) catalysts were submitted to flowing concentrated sulfuric acid at 1123 K and atmospheric pressure for different times on stream (TOS) between 0 and 548 h. Post-operation analyses of the spent catalyst samples showed that Pt oxidation and sintering occurred under reaction conditions and some Pt was lost by volatilization. Pt loss rate was higher at initial times but total loss appeared to be independent of the gaseous environment. Catalyst activity showed an initial decrease that lasted for about 66 h, followed by a slight recovery of activity between 66 and 102 h TOS, and a period of slower deactivation after 102 h TOS. Catalyst sulfation did not seem to be detrimental to catalyst activity and the activity profile suggested that a complex dynamical situation involving platinum sintering, volatilization, and oxidation, along with TiO2 morphological changes affected catalyst activity in a non-monotonic way.

  9. Factors affecting regional per-capita carbon emissions in China based on an LMDI factor decomposition model.

    PubMed

    Dong, Feng; Long, Ruyin; Chen, Hong; Li, Xiaohui; Yang, Qingliang

    2013-01-01

    China is considered to be the main carbon producer in the world. The per-capita carbon emissions indicator is an important measure of the regional carbon emissions situation. This study used the LMDI factor decomposition model-panel co-integration test two-step method to analyze the factors that affect per-capita carbon emissions. The main results are as follows. (1) During 1997, Eastern China, Central China, and Western China ranked first, second, and third in the per-capita carbon emissions, while in 2009 the pecking order changed to Eastern China, Western China, and Central China. (2) According to the LMDI decomposition results, the key driver boosting the per-capita carbon emissions in the three economic regions of China between 1997 and 2009 was economic development, and the energy efficiency was much greater than the energy structure after considering their effect on restraining increased per-capita carbon emissions. (3) Based on the decomposition, the factors that affected per-capita carbon emissions in the panel co-integration test showed that Central China had the best energy structure elasticity in its regional per-capita carbon emissions. Thus, Central China was ranked first for energy efficiency elasticity, while Western China was ranked first for economic development elasticity.

  10. Prediction of the maximum temperature for life based on the stability of metabolites to decomposition in water.

    PubMed

    Bains, William; Xiao, Yao; Yu, Changyong

    2015-01-01

    The components of life must survive in a cell long enough to perform their function in that cell. Because the rate of attack by water increases with temperature, we can, in principle, predict a maximum temperature above which an active terrestrial metabolism cannot function by analysis of the decomposition rates of the components of life, and comparison of those rates with the metabolites' minimum metabolic half-lives. The present study is a first step in this direction, providing an analytical framework and method, and analyzing the stability of 63 small molecule metabolites based on literature data. Assuming that attack by water follows a first order rate equation, we extracted decomposition rate constants from literature data and estimated their statistical reliability. The resulting rate equations were then used to give a measure of confidence in the half-life of the metabolite concerned at different temperatures. There is little reliable data on metabolite decomposition or hydrolysis rates in the literature, the data is mostly confined to a small number of classes of chemicals, and the data available are sometimes mutually contradictory because of varying reaction conditions. However, a preliminary analysis suggests that terrestrial biochemistry is limited to environments below ~150-180 °C. We comment briefly on why pressure is likely to have a small effect on this.

  11. Joint detection and tracking of size-varying infrared targets based on block-wise sparse decomposition

    NASA Astrophysics Data System (ADS)

    Li, Miao; Lin, Zaiping; Long, Yunli; An, Wei; Zhou, Yiyu

    2016-05-01

    The high variability of target size makes small target detection in Infrared Search and Track (IRST) a challenging task. A joint detection and tracking method based on block-wise sparse decomposition is proposed to address this problem. For detection, the infrared image is divided into overlapped blocks, and each block is weighted on the local image complexity and target existence probabilities. Target-background decomposition is solved by block-wise inexact augmented Lagrange multipliers. For tracking, label multi-Bernoulli (LMB) tracker tracks multiple targets taking the result of single-frame detection as input, and provides corresponding target existence probabilities for detection. Unlike fixed-size methods, the proposed method can accommodate size-varying targets, due to no special assumption for the size and shape of small targets. Because of exact decomposition, classical target measurements are extended and additional direction information is provided to improve tracking performance. The experimental results show that the proposed method can effectively suppress background clutters, detect and track size-varying targets in infrared images.

  12. Decomposition of 2-chloroethylethylsulfide on copper oxides to detoxify polymer-based spherical activated carbons from chemical warfare agents.

    PubMed

    Fichtner, S; Hofmann, J; Möller, A; Schrage, C; Giebelhausen, J M; Böhringer, B; Gläser, R

    2013-11-15

    For the decomposition of chemical warfare agents, a hybrid material concept was applied. This consists of a copper oxide-containing phase as a component with reactive functionality supported on polymer-based spherical activated carbon (PBSAC) as a component with adsorptive functionality. A corresponding hybrid material was prepared by impregnation of PBSAC with copper(II)nitrate and subsequent calcination at 673K. The copper phase exists predominantly as copper(I)oxide which is homogeneously distributed over the PBSAC particles. The hybrid material containing 16 wt.% copper on PBSAC is capable of self-detoxifying the mustard gas surrogate 2-chloroethylethylsulfide (CEES) at room temperature. The decomposition is related to the breakthrough behavior of the reactant CEES, which displaces the reaction product ethylvinylsulfide (EVS). This leads to a combined breakthrough of CEES and EVS. The decomposition of CEES is shown to occur catalytically over the copper-containing PBSAC material. Thus, the hybrid material can even be considered to be self-cleaning.

  13. Decomposition of 2-chloroethylethylsulfide on copper oxides to detoxify polymer-based spherical activated carbons from chemical warfare agents.

    PubMed

    Fichtner, S; Hofmann, J; Möller, A; Schrage, C; Giebelhausen, J M; Böhringer, B; Gläser, R

    2013-11-15

    For the decomposition of chemical warfare agents, a hybrid material concept was applied. This consists of a copper oxide-containing phase as a component with reactive functionality supported on polymer-based spherical activated carbon (PBSAC) as a component with adsorptive functionality. A corresponding hybrid material was prepared by impregnation of PBSAC with copper(II)nitrate and subsequent calcination at 673K. The copper phase exists predominantly as copper(I)oxide which is homogeneously distributed over the PBSAC particles. The hybrid material containing 16 wt.% copper on PBSAC is capable of self-detoxifying the mustard gas surrogate 2-chloroethylethylsulfide (CEES) at room temperature. The decomposition is related to the breakthrough behavior of the reactant CEES, which displaces the reaction product ethylvinylsulfide (EVS). This leads to a combined breakthrough of CEES and EVS. The decomposition of CEES is shown to occur catalytically over the copper-containing PBSAC material. Thus, the hybrid material can even be considered to be self-cleaning. PMID:24140529

  14. Factors Affecting Regional Per-Capita Carbon Emissions in China Based on an LMDI Factor Decomposition Model

    PubMed Central

    Dong, Feng; Long, Ruyin; Chen, Hong; Li, Xiaohui; Yang, Qingliang

    2013-01-01

    China is considered to be the main carbon producer in the world. The per-capita carbon emissions indicator is an important measure of the regional carbon emissions situation. This study used the LMDI factor decomposition model–panel co-integration test two-step method to analyze the factors that affect per-capita carbon emissions. The main results are as follows. (1) During 1997, Eastern China, Central China, and Western China ranked first, second, and third in the per-capita carbon emissions, while in 2009 the pecking order changed to Eastern China, Western China, and Central China. (2) According to the LMDI decomposition results, the key driver boosting the per-capita carbon emissions in the three economic regions of China between 1997 and 2009 was economic development, and the energy efficiency was much greater than the energy structure after considering their effect on restraining increased per-capita carbon emissions. (3) Based on the decomposition, the factors that affected per-capita carbon emissions in the panel co-integration test showed that Central China had the best energy structure elasticity in its regional per-capita carbon emissions. Thus, Central China was ranked first for energy efficiency elasticity, while Western China was ranked first for economic development elasticity. PMID:24353753

  15. Prediction of the maximum temperature for life based on the stability of metabolites to decomposition in water.

    PubMed

    Bains, William; Xiao, Yao; Yu, Changyong

    2015-01-01

    The components of life must survive in a cell long enough to perform their function in that cell. Because the rate of attack by water increases with temperature, we can, in principle, predict a maximum temperature above which an active terrestrial metabolism cannot function by analysis of the decomposition rates of the components of life, and comparison of those rates with the metabolites' minimum metabolic half-lives. The present study is a first step in this direction, providing an analytical framework and method, and analyzing the stability of 63 small molecule metabolites based on literature data. Assuming that attack by water follows a first order rate equation, we extracted decomposition rate constants from literature data and estimated their statistical reliability. The resulting rate equations were then used to give a measure of confidence in the half-life of the metabolite concerned at different temperatures. There is little reliable data on metabolite decomposition or hydrolysis rates in the literature, the data is mostly confined to a small number of classes of chemicals, and the data available are sometimes mutually contradictory because of varying reaction conditions. However, a preliminary analysis suggests that terrestrial biochemistry is limited to environments below ~150-180 °C. We comment briefly on why pressure is likely to have a small effect on this. PMID:25821932

  16. Prediction of the Maximum Temperature for Life Based on the Stability of Metabolites to Decomposition in Water

    PubMed Central

    Bains, William; Xiao, Yao; Yu, Changyong

    2015-01-01

    The components of life must survive in a cell long enough to perform their function in that cell. Because the rate of attack by water increases with temperature, we can, in principle, predict a maximum temperature above which an active terrestrial metabolism cannot function by analysis of the decomposition rates of the components of life, and comparison of those rates with the metabolites’ minimum metabolic half-lives. The present study is a first step in this direction, providing an analytical framework and method, and analyzing the stability of 63 small molecule metabolites based on literature data. Assuming that attack by water follows a first order rate equation, we extracted decomposition rate constants from literature data and estimated their statistical reliability. The resulting rate equations were then used to give a measure of confidence in the half-life of the metabolite concerned at different temperatures. There is little reliable data on metabolite decomposition or hydrolysis rates in the literature, the data is mostly confined to a small number of classes of chemicals, and the data available are sometimes mutually contradictory because of varying reaction conditions. However, a preliminary analysis suggests that terrestrial biochemistry is limited to environments below ~150–180 °C. We comment briefly on why pressure is likely to have a small effect on this. PMID:25821932

  17. Decomposition techniques

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  18. Controllable pneumatic generator based on the catalytic decomposition of hydrogen peroxide

    SciTech Connect

    Kim, Kyung-Rok; Kim, Kyung-Soo Kim, Soohyun

    2014-07-15

    This paper presents a novel compact and controllable pneumatic generator that uses hydrogen peroxide decomposition. A fuel micro-injector using a piston-pump mechanism is devised and tested to control the chemical decomposition rate. By controlling the injection rate, the feedback controller maintains the pressure of the gas reservoir at a desired pressure level. Thermodynamic analysis and experiments are performed to demonstrate the feasibility of the proposed pneumatic generator. Using a prototype of the pneumatic generator, it takes 6 s to reach 3.5 bars with a reservoir volume of 200 ml at the room temperature, which is sufficiently rapid and effective to maintain the repetitive lifting of a 1 kg mass.

  19. Polarimetric SAR Data Gmm Classification Based on Improved Freeman Incoherent Decomposition

    NASA Astrophysics Data System (ADS)

    Rouabah, S.; Ouarzeddine, M.; Azmedroub, B.

    2016-06-01

    Due to the increasing volume of available SAR Data, powerful classification processings are needed to interpret the images. GMM (Gaussian Mixture Model) is widely used to model distributions. In most applications, GMM algorithm is directly applied on raw SAR data, its disadvantage is that forest and urban areas are classified with the same label and gives problems in interpretation. In this paper, a combination between the improved Freeman decomposition and GMM classification is proposed. The improved Freeman decomposition powers are used as feature vectors for GMM classification. The E-SAR polarimetric image acquired over Oberpfaffenhofen in Germany is used as data set. The result shows that the proposed combination can solve the standard GMM classification problem.

  20. Controllable pneumatic generator based on the catalytic decomposition of hydrogen peroxide.

    PubMed

    Kim, Kyung-Rok; Kim, Kyung-Soo; Kim, Soohyun

    2014-07-01

    This paper presents a novel compact and controllable pneumatic generator that uses hydrogen peroxide decomposition. A fuel micro-injector using a piston-pump mechanism is devised and tested to control the chemical decomposition rate. By controlling the injection rate, the feedback controller maintains the pressure of the gas reservoir at a desired pressure level. Thermodynamic analysis and experiments are performed to demonstrate the feasibility of the proposed pneumatic generator. Using a prototype of the pneumatic generator, it takes 6 s to reach 3.5 bars with a reservoir volume of 200 ml at the room temperature, which is sufficiently rapid and effective to maintain the repetitive lifting of a 1 kg mass.

  1. Hazardous materials: Microbiological decomposition. (lLtest citations from the Biobusiness data base). Published Search

    SciTech Connect

    Not Available

    1992-05-01

    The bibliography contains citations concerning the decomposition of toxic materials by biological means. Bacteria, enzymes, and bioluminescence are among the methods discussed. Bacteria and enzymes that digest toluene, polychlorinated biphenyls (PCBs), selenium wastes, oil shale waste, uranium, oil sludge, pesticides, rubber wastes, and pentachlorophenol are discussed. Flavobacterium and white rot fungus are among the biological agents highlighted. (Contains 250 citations and includes a subject term index and title list.)

  2. Dynamic load balancing algorithm for molecular dynamics based on Voronoi cells domain decompositions

    SciTech Connect

    Fattebert, J.-L.; Richards, D.F.; Glosli, J.N.

    2012-12-01

    We present a new algorithm for automatic parallel load balancing in classical molecular dynamics. It assumes a spatial domain decomposition of particles into Voronoi cells. It is a gradient method which attempts to minimize a cost function by displacing Voronoi sites associated with each processor/sub-domain along steepest descent directions. Excellent load balance has been obtained for quasi-2D and 3D practical applications, with up to 440·106 particles on 65,536 MPI tasks.

  3. A Reconfigurable Sound Wave Decomposition Filterbank for Hearing Aids Based on Nonlinear Transformation.

    PubMed

    Huang, Shaoguang; Tian, Lan; Ma, Xiaojie; Wei, Ying

    2016-04-01

    Hearing impaired people have their own hearing loss characteristics and listening preferences. Therefore hearing aid system should become more natural, humanized and personalized, which requires the filterbank in hearing aids provides flexible sound wave decomposition schemes, so that patients are likely to use the most suitable scheme for their own hearing compensation strategy. In this paper, a reconfigurable sound wave decomposition filterbank is proposed. The prototype filter is first cosine modulated to generate uniform subbands. Then by non-linear transformation the uniform subbands are mapped to nonuniform subbands. By changing the control parameters, the nonlinear transformation changes which leads to different subbands allocations. It provides four different sound wave decomposition schemes without changing the structure of the filterbank. The performance of the proposed reconfigurable filterbank was compared with that of fixed filerbanks, fully customizable filterbanks and other existing reconfigurable filterbanks. It is shown that the proposed filterbank provides satisfactory matching performance as well as low complexity and delay, which make it suitable for real hearing aid applications.

  4. Synthesis, characterization and non-isothermal decomposition kinetic of a new galactochloralose based polymer.

    PubMed

    Kök, Gökhan; Ay, Kadir; Ay, Emriye; Doğan, Fatih; Kaya, Ismet

    2014-01-30

    A glycopolymer, poly(3-O-methacroyl-5,6-O-isopropylidene-1,2-O-(S)-trichloroethylidene-α-d-galactofuranose) (PMIPTEG) was synthesized from the sugar-carrying methacrylate monomer, 3-O-methacroyl-5,6-O-isopropylidene-1,2-O-(S)-trichloroethylidene-α-d-galactofuranose (MIPTEG) via conventional free radical polymerization with AIBN in 1,4-dioxane. The structures of glycomonomer and their polymers were confirmed by UV-vis, FT-IR, (1)H NMR, (13)C NMR, GPC, TG/DTG-DTA, DSC, and SEM techniques. SEM images showed that PMIPTEG had a straight-chain length structure. On the other hand, the thermal decomposition kinetics of polymer were investigated by means of thermogravimetric analysis in dynamic nitrogen atmosphere at different heating rates. The apparent activation energies for thermal decomposition of the PMIPTEG were calculated using the Kissinger, Kim-Park, Tang, Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Friedman methods and were found to be 100.15, 104.40, 102.0, 102.2, 103.2 and 99.6 kJ/mol, respectively. The most likely process mechanism related to the thermal decomposition stage of PMIPTEG was determined to be a Dn deceleration type in terms of master plots results. PMID:24299780

  5. Structure and process in semantic memory: new evidence based on speed-accuracy decomposition.

    PubMed

    Kounios, J; Osman, A M; Meyer, D E

    1987-03-01

    Reaction-time and accuracy data obtained from studies of sentence verification have not been rich enough to answer certain important theoretical questions about structures and processes in human semantic memory. However, a new technique called speed-accuracy decomposition (Meyer, Irwin, Osman, & Kounios, 1986) may help solve this problem. The technique allows intermediate products of sentence verification to be analyzed more precisely. Three experiments with speed-accuracy decomposition indicate that verification processes produce useful partial information before they are completed. Such information appears to accumulate continuously at a rate whose magnitude depends on the degree of relatedness between semantic categories. This outcome is consistent with continuous computational (e.g., semantic-feature comparison) models of semantic memory. An analysis of reaction-time minima suggests that a discrete all-or-none search process may also contribute at least occasionally to sentence verification. Further details regarding the nature of these processes and the memory structures on which they operate can be inferred from additional results obtained through speed-accuracy decomposition.

  6. Distance-Based Functional Diversity Measures and Their Decomposition: A Framework Based on Hill Numbers

    PubMed Central

    Chiu, Chun-Huo; Chao, Anne

    2014-01-01

    Hill numbers (or the “effective number of species”) are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify “the effective number of equally abundant and (functionally) equally distinct species” in an assemblage. We also propose a class of mean functional diversity (per species), which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total) functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity) quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma) can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation) measures, including N-assemblage functional generalizations of

  7. Radiocarbon-based assessments of the role of fungal species in decomposition

    NASA Astrophysics Data System (ADS)

    Treseder, K. K.; Lansing, J. L.; Choi, N.

    2004-12-01

    We used natural radiocarbon signatures to determine if species of decomposer fungi specialize on different pools of organic matter in the soil. Specifically, we examined natural radiocarbon signatures of mushrooms to estimate the average integrated age of C compounds metabolized by individual species. This method takes advantage of rapid changes in atmospheric radiocarbon signatures of carbon dioxide since the early 1960s, when several years of above-ground weapons testing produced a spike in atmospheric Δ 14C. This signature has been rapidly declining since then. Therefore, we can measure radiocarbon signatures of tissues and determine the time at which their component C was originally photosynthesized. We conducted our study in a fire chronosequence in boreal forests near Delta Junction, Alaska. The chronosequence includes sites burned in severe fires during the summers of 1999, 1987, and 1956. A "control" site was established in a neighboring 80 yr old black spruce forest. In 2002, we collected mushrooms each week from six 50 m long transects in each site. Mushrooms were weighed and assigned to species based on morphological and molecular analyses (i.e. typing by restriction fragment length polymorphism). Saprotrophic species could be distinguished from ectomycorrhizal species based on 15N and 13C signatures. Specifically, saprotrophic mushrooms had δ 15N values less than 4.66\\permil and δ 13C values greater than -23.1\\permil. We then measured the Δ 14C values of mushrooms from 20 of the most abundant saprotrophic species. Radiocarbon signatures varied widely among species, implying that species take up C from compounds that range in turnover time. For example, fungi of the Polyporaceae often grow on woody debris in our sites, and their Δ 14C signatures (-65.1 to 15.0\\permil) indicate the use of several decades-old, recalcitrant C. These fungi are known to possess the necessary enzymes for lignin degradation, so lignocellulose is a likely C source. In

  8. Contaminated Groundwater Remediation by Catalyzed Hydrogen Peroxide and Persulfate Oxidants System

    NASA Astrophysics Data System (ADS)

    Yan, N.; Wang, Y.; Brusseau, M. L.

    2014-12-01

    A binary oxidant system, catalyzed hydrogen peroxide (H2O2) coupled with persulfate (S2O82-), was investigated for use in in-situ chemical oxidation (ISCO) applications. Trichloroethene (TCE) and 1,4-dioxane were used as target contaminants. Batch experiments were conducted to investigate the catalytic efficiency between ferrous ion (Fe2+) and base (NaOH), oxidant decomposition rates, and contaminant degradation efficiency. For the base-catalyzed H2O2-S2O82- system, oxidant release was moderate and sustained over the entire test period of 96 hours. Conversely, the oxidants were depleted within 24 hours for the Fe2+-catalyzed system. Solution pH decreased slightly for the Fe2+-catalyzed system, whereas the pH increased for the base-catalyzed system. The rates of degradation for TCE and 1,4-dioxane are compared as a function of system conditions. The results of this study indicate that the binary H2O2-S2O82- oxidant system is effective for oxidation of the tested contaminants.

  9. Pd/C-catalyzed synthesis of oxamates by oxidative cross double carbonylation of amines and alcohols under co-catalyst, base, dehydrating agent, and ligand-free conditions.

    PubMed

    Gadge, Sandip T; Bhanage, Bhalchandra M

    2013-07-01

    This work reports a mild, efficient, and ligand-free Pd/C-catalyzed protocol for the oxidative cross double carbonylation of amines and alcohols. Notably, the reaction does not requires any base, co-catalyst, dehydrating agent, or ligand. Pd/C solves the problem of catalyst recovery, and the catalyst was recycled up to six times. PMID:23734639

  10. A Comprehensive Noise Robust Speech Parameterization Algorithm Using Wavelet Packet Decomposition-Based Denoising and Speech Feature Representation Techniques

    NASA Astrophysics Data System (ADS)

    Kotnik, Bojan; Kačič, Zdravko

    2007-12-01

    This paper concerns the problem of automatic speech recognition in noise-intense and adverse environments. The main goal of the proposed work is the definition, implementation, and evaluation of a novel noise robust speech signal parameterization algorithm. The proposed procedure is based on time-frequency speech signal representation using wavelet packet decomposition. A new modified soft thresholding algorithm based on time-frequency adaptive threshold determination was developed to efficiently reduce the level of additive noise in the input noisy speech signal. A two-stage Gaussian mixture model (GMM)-based classifier was developed to perform speech/nonspeech as well as voiced/unvoiced classification. The adaptive topology of the wavelet packet decomposition tree based on voiced/unvoiced detection was introduced to separately analyze voiced and unvoiced segments of the speech signal. The main feature vector consists of a combination of log-root compressed wavelet packet parameters, and autoregressive parameters. The final output feature vector is produced using a two-staged feature vector postprocessing procedure. In the experimental framework, the noisy speech databases Aurora 2 and Aurora 3 were applied together with corresponding standardized acoustical model training/testing procedures. The automatic speech recognition performance achieved using the proposed noise robust speech parameterization procedure was compared to the standardized mel-frequency cepstral coefficient (MFCC) feature extraction procedures ETSI ES 201 108 and ETSI ES 202 050.

  11. Study of SF6 gas decomposition products based on spectroscopy technology

    NASA Astrophysics Data System (ADS)

    Cai, Ji-xing; Na, Yan-xiang; Ni, Wei-yuan; Li, Guo-wei; Feng, Ke-cheng; Song, Gui-cai

    2011-08-01

    With the rapid development of power industry, the number of SF6 electrical equipment are increasing, it has gradually replaced the traditional insulating oil material as insulation and arc media in the high-voltage electrical equipment. Pure SF6 gas has excellent insulating properties and arc characteristics; however, under the effect of the strong arc, SF6 gas will decompose and generate toxic substances, then corroding electrical equipment, thereby affecting the insulation and arc ability of electrical equipment. If excessive levels of impurities in the gas that will seriously affect the mechanical properties, breaking performance and electrical performance of electrical equipment, it will cause many serious consequences, even threaten the safe operation of the grid. This paper main analyzes the basic properties of SF6 gas and the basic situation of decomposition in the discharge conditions, in order to simulate the actual high-voltage electrical equipment, designed and produced a simulation device that can simulate the decomposition of SF6 gas under a high voltage discharge, and using fourier transform infrared spectroscopy to analyze the sample that produced by the simulation device. The result show that the main discharge decomposition product is SO2F2 (sulfuryl fluoride), the substance can react with water and generate corrosive H2SO4(sulfuric acid) and HF (hydrogen fluoride), also found that the increase in the number with the discharge, SO2F2concentration levels are on the rise. Therefore, the material can be used as one of the main characteristic gases to determine the SF6 electrical equipment failure, and to monitor their concentration levels.

  12. A Study on Brain Mapping Technique Based on Hierarchical Decomposition Analysis

    NASA Astrophysics Data System (ADS)

    Oura, Kunihiko

    In this paper, brain functional mapping method by hierarchical decomposition analysis (HDA) is proposed. HDA is one of the multi-dimensional AR modeling methods and well-known for its validity to detect temporal lobe seizures. The author transforms the estimated AR model in the form of transfer function from the inner blood flow signal to the cerebral cortex. The signal for HDA is oxidized hemoglobin density HbO, which is measured by near infrared spectroscopy (NIRS). Comparing the 2 tasks which use arithmetic sense, the difference of brain activity becomes clear by proposed technique.

  13. Tissue decomposition from dual energy CT data for MC based dose calculation in particle therapy

    SciTech Connect

    Hünemohr, Nora Greilich, Steffen; Paganetti, Harald; Seco, Joao; Jäkel, Oliver

    2014-06-15

    Purpose: The authors describe a novel method of predicting mass density and elemental mass fractions of tissues from dual energy CT (DECT) data for Monte Carlo (MC) based dose planning. Methods: The relative electron density ϱ{sub e} and effective atomic number Z{sub eff} are calculated for 71 tabulated tissue compositions. For MC simulations, the mass density is derived via one linear fit in the ϱ{sub e} that covers the entire range of tissue compositions (except lung tissue). Elemental mass fractions are predicted from the ϱ{sub e} and the Z{sub eff} in combination. Since particle therapy dose planning and verification is especially sensitive to accurate material assignment, differences to the ground truth are further analyzed for mass density, I-value predictions, and stopping power ratios (SPR) for ions. Dose studies with monoenergetic proton and carbon ions in 12 tissues which showed the largest differences of single energy CT (SECT) to DECT are presented with respect to range uncertainties. The standard approach (SECT) and the new DECT approach are compared to reference Bragg peak positions. Results: Mean deviations to ground truth in mass density predictions could be reduced for soft tissue from (0.5±0.6)% (SECT) to (0.2±0.2)% with the DECT method. Maximum SPR deviations could be reduced significantly for soft tissue from 3.1% (SECT) to 0.7% (DECT) and for bone tissue from 0.8% to 0.1%. MeanI-value deviations could be reduced for soft tissue from (1.1±1.4%, SECT) to (0.4±0.3%) with the presented method. Predictions of elemental composition were improved for every element. Mean and maximum deviations from ground truth of all elemental mass fractions could be reduced by at least a half with DECT compared to SECT (except soft tissue hydrogen and nitrogen where the reduction was slightly smaller). The carbon and oxygen mass fraction predictions profit especially from the DECT information. Dose studies showed that most of the 12 selected tissues would

  14. Woodland Decomposition.

    ERIC Educational Resources Information Center

    Napier, J.

    1988-01-01

    Outlines the role of the main organisms involved in woodland decomposition and discusses some of the variables affecting the rate of nutrient cycling. Suggests practical work that may be of value to high school students either as standard practice or long-term projects. (CW)

  15. Assessments on GOCE-based Gravity Field Model Comparisons with Terrestrial Data Using Wavelet Decomposition and Spectral Enhancement Approaches

    NASA Astrophysics Data System (ADS)

    Erol, Serdar; Serkan Isık, Mustafa; Erol, Bihter

    2016-04-01

    The recent Earth gravity field satellite missions data lead significant improvement in Global Geopotential Models in terms of both accuracy and resolution. However the improvement in accuracy is not the same everywhere in the Earth and therefore quantifying the level of improvement locally is necessary using the independent data. The validations of the level-3 products from the gravity field satellite missions, independently from the estimation procedures of these products, are possible using various arbitrary data sets, as such the terrestrial gravity observations, astrogeodetic vertical deflections, GPS/leveling data, the stationary sea surface topography. Quantifying the quality of the gravity field functionals via recent products has significant importance for determination of the regional geoid modeling, base on the satellite and terrestrial data fusion with an optimal algorithm, beside the statistical reporting the improvement rates depending on spatial location. In the validations, the errors and the systematic differences between the data and varying spectral content of the compared signals should be considered in order to have comparable results. In this manner this study compares the performance of Wavelet decomposition and spectral enhancement techniques in validation of the GOCE/GRACE based Earth gravity field models using GPS/leveling and terrestrial gravity data in Turkey. The terrestrial validation data are filtered using Wavelet decomposition technique and the numerical results from varying levels of decomposition are compared with the results which are derived using the spectral enhancement approach with contribution of an ultra-high resolution Earth gravity field model. The tests include the GO-DIR-R5, GO-TIM-R5, GOCO05S, EIGEN-6C4 and EGM2008 global models. The conclusion discuss the superiority and drawbacks of both concepts as well as reporting the performance of tested gravity field models with an estimate of their contribution to modeling the

  16. Structural investigation of oxovanadium(IV) Schiff base complexes: X-ray crystallography, electrochemistry and kinetic of thermal decomposition.

    PubMed

    Asadi, Mozaffar; Asadi, Zahra; Savaripoor, Nooshin; Dusek, Michal; Eigner, Vaclav; Shorkaei, Mohammad Ranjkesh; Sedaghat, Moslem

    2015-02-01

    A series of new VO(IV) complexes of tetradentate N2O2 Schiff base ligands (L(1)-L(4)), were synthesized and characterized by FT-IR, UV-vis and elemental analysis. The structure of the complex VOL(1)⋅DMF was also investigated by X-ray crystallography which revealed a vanadyl center with distorted octahedral coordination where the 2-aza and 2-oxo coordinating sites of the ligand were perpendicular to the "-yl" oxygen. The electrochemical properties of the vanadyl complexes were investigated by cyclic voltammetry. A good correlation was observed between the oxidation potentials and the electron withdrawing character of the substituents on the Schiff base ligands, showing the following trend: MeOdecomposition. The formation constants with various substituents on the aldehyde ring follow the trend 5-OMe>5-H>5-Br>5-Cl. Furthermore, the kinetic parameters of thermal decomposition were calculated by using the Coats-Redfern equation. According to the Coats-Redfern plots the kinetics of thermal decomposition of studied complexes is of the first-order in all stages, the free energy of activation for each following stage is larger than the previous one and the complexes have good thermal stability. The preparation of VOL(1)⋅DMF yielded also another compound, one kind of vanadium oxide [VO]X, with different habitus of crystals, (platelet instead of prisma) and without L(1) ligand, consisting of a V10O28 cage, diaminium moiety and dimethylamonium as a counter ions. Because its crystal structure was also new, we reported it along with the targeted complex.

  17. Structural investigation of oxovanadium(IV) Schiff base complexes: X-ray crystallography, electrochemistry and kinetic of thermal decomposition

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Savaripoor, Nooshin; Dusek, Michal; Eigner, Vaclav; Shorkaei, Mohammad Ranjkesh; Sedaghat, Moslem

    2015-02-01

    A series of new VO(IV) complexes of tetradentate N2O2 Schiff base ligands (L1-L4), were synthesized and characterized by FT-IR, UV-vis and elemental analysis. The structure of the complex VOL1ṡDMF was also investigated by X-ray crystallography which revealed a vanadyl center with distorted octahedral coordination where the 2-aza and 2-oxo coordinating sites of the ligand were perpendicular to the "-yl" oxygen. The electrochemical properties of the vanadyl complexes were investigated by cyclic voltammetry. A good correlation was observed between the oxidation potentials and the electron withdrawing character of the substituents on the Schiff base ligands, showing the following trend: MeO < H < Br < Cl. We also studied the thermodynamics of formation of the complexes and kinetic aspects of their thermal decomposition. The formation constants with various substituents on the aldehyde ring follow the trend 5-OMe > 5-H > 5-Br > 5-Cl. Furthermore, the kinetic parameters of thermal decomposition were calculated by using the Coats-Redfern equation. According to the Coats-Redfern plots the kinetics of thermal decomposition of studied complexes is of the first-order in all stages, the free energy of activation for each following stage is larger than the previous one and the complexes have good thermal stability. The preparation of VOL1ṡDMF yielded also another compound, one kind of vanadium oxide [VO]X, with different habitus of crystals, (platelet instead of prisma) and without L1 ligand, consisting of a V10O28 cage, diaminium moiety and dimethylamonium as a counter ions. Because its crystal structure was also new, we reported it along with the targeted complex.

  18. A method for extracting human gait series from accelerometer signals based on the ensemble empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Fu, Mao-Jing; Zhuang, Jian-Jun; Hou, Feng-Zhen; Zhan, Qing-Bo; Shao, Yi; Ning, Xin-Bao

    2010-05-01

    In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyse accelerometer signals collected during normal human walking. First, the self-adaptive feature of EEMD is utilised to decompose the accelerometer signals, thus sifting out several intrinsic mode functions (IMFs) at disparate scales. Then, gait series can be extracted through peak detection from the eigen IMF that best represents gait rhythmicity. Compared with the method based on the empirical mode decomposition (EMD), the EEMD-based method has the following advantages: it remarkably improves the detection rate of peak values hidden in the original accelerometer signal, even when the signal is severely contaminated by the intermittent noises; this method effectively prevents the phenomenon of mode mixing found in the process of EMD. And a reasonable selection of parameters for the stop-filtering criteria can improve the calculation speed of the EEMD-based method. Meanwhile, the endpoint effect can be suppressed by using the auto regressive and moving average model to extend a short-time series in dual directions. The results suggest that EEMD is a powerful tool for extraction of gait rhythmicity and it also provides valuable clues for extracting eigen rhythm of other physiological signals.

  19. Improved contrast of materials based on multi-voltage images decomposition in X-ray CT

    NASA Astrophysics Data System (ADS)

    Wei, Jiaotong; Han, Yan; Chen, Ping

    2016-02-01

    A polychromatic X-ray beam results in hardening artefacts and contrast reduction in the reconstructed image, increasing the difficulty of distinguishing materials with approximately linear attenuation coefficients. For this reason, a model is proposed to decompose multi-voltage X-ray images into many ‘narrow-energy-width’ X-ray images by minimizing the weighted sum of the squared error in decomposition. This approach requires no change of hardware in the typical computed tomography imaging system. The ‘narrow-energy-width’ projection is obtained directly from the decomposition and is used to reconstruct the image. The distinction among materials with approximately linear attenuation coefficients is enlarged in the ‘narrow-energy-width’ reconstructed image. A cylinder composed of aluminium and silicon is used in the verification experiment. The contrast of silicon and aluminium is improved, and there is a significant difference between silicon and aluminium in the ‘narrow-energy-width’ reconstructed image, demonstrating the effectiveness of the proposed method.

  20. Functionalization of Tactile Sensation for Robot Based on Haptograph and Modal Decomposition

    NASA Astrophysics Data System (ADS)

    Yokokura, Yuki; Katsura, Seiichiro; Ohishi, Kiyoshi

    In the real world, robots should be able to recognize the environment in order to be of help to humans. A video camera and a laser range finder are devices that can help robots recognize the environment. However, these devices cannot obtain tactile information from environments. Future human-assisting-robots should have the ability to recognize haptic signals, and a disturbance observer can possibly be used to provide the robot with this ability. In this study, a disturbance observer is employed in a mobile robot to functionalize the tactile sensation. This paper proposes a method that involves the use of haptograph and modal decomposition for the haptic recognition of road environments. The haptograph presents a graphic view of the tactile information. It is possible to classify road conditions intuitively. The robot controller is designed by considering the decoupled modal coordinate system, which consists of translational and rotational modes. Modal decomposition is performed by using a quarry matrix. Once the robot is provided with the ability to recognize tactile sensations, its usefulness to humans will increase.

  1. Automated polyp measurement based on colon structure decomposition for CT colonography

    NASA Astrophysics Data System (ADS)

    Wang, Huafeng; Li, Lihong C.; Han, Hao; Peng, Hao; Song, Bowen; Wei, Xinzhou; Liang, Zhengrong

    2014-03-01

    Accurate assessment of colorectal polyp size is of great significance for early diagnosis and management of colorectal cancers. Due to the complexity of colon structure, polyps with diverse geometric characteristics grow from different landform surfaces. In this paper, we present a new colon decomposition approach for polyp measurement. We first apply an efficient maximum a posteriori expectation-maximization (MAP-EM) partial volume segmentation algorithm to achieve an effective electronic cleansing on colon. The global colon structure is then decomposed into different kinds of morphological shapes, e.g. haustral folds or haustral wall. Meanwhile, the polyp location is identified by an automatic computer aided detection algorithm. By integrating the colon structure decomposition with the computer aided detection system, a patch volume of colon polyps is extracted. Thus, polyp size assessment can be achieved by finding abnormal protrusion on a relative uniform morphological surface from the decomposed colon landform. We evaluated our method via physical phantom and clinical datasets. Experiment results demonstrate the feasibility of our method in consistently quantifying the size of polyp volume and, therefore, facilitating characterizing for clinical management.

  2. Thermal decomposition of magnesium and calcium sulfates

    SciTech Connect

    Roche, S L

    1982-04-01

    The effect of catalyst on the thermal decomposition of MgSO/sub 4/ and CaSO/sub 4/ in vacuum was studied as a function of time in Knudsen cells and for MgSO/sub 4/, in open crucibles in vacuum in a Thermal Gravimetric Apparatus. Platinum and Fe/sub 2/O/sub 3/ were used as catalysts. The CaSO/sub 4/ decomposition rate was approximately doubled when Fe/sub 2/O/sub 3/ was present in a Knudsen cell. Platinum did not catalyze the CaSO/sub 4/ decomposition reaction. The initial decomposition rate for MgSO/sub 4/ was approximately 5 times greater than when additives were present in Knudsen cells but only about 1.5 times greater when decomposition was done in an open crucible.

  3. A highly sensitive quartz crystal microbalance immunosensor based on magnetic bead-supported bienzymes catalyzed mass enhancement strategy.

    PubMed

    Akter, Rashida; Rhee, Choong Kyun; Rahman, Md Aminur

    2015-04-15

    A highly sensitive quartz crystal microbalance (QCM) immunosensor based on magnetic bead-supported bienzyme catalyzed mass enhanced strategy was developed for the detection of human immunoglobulin G (hIgG) protein. The high sensitive detection was achieved by increasing the deposited mass on the QCM crystal through the enhanced precipitation of 4-chloro-1-naphthol (CN) using higher amounts of horseradish peroxidase (HRP) and glucose oxidase (GOx) bienzymes attached on the magnetic beads (MB). The protein A (PA) and capture antibody (monoclonal anti-human IgG antibody produced in mouse, Ab1)-based QCM probe and the detection antibody (anti-human IgG antibody produced in goat, Ab2)-based MB/HRP/GOx bienzymatic bioconjugates were characterized using scanning electron microscope, transmission electron microscope, cyclic voltammetry, and electrochemical impedance spectroscopy techniques. Under the optimized experimental condition, the linear range and the detection limit of hIgG immunosensor were determined to be 5.0pg/mL-20.0ng/mL and 5.0±0.18pg/mL, respectively. The applicability of the present hIgG immunosensor was examined in hIgG spiked human serum samples and excellent recoveries of hIgG were obtained. PMID:25506902

  4. Adsorption and decomposition of nitrous oxide on zirconia nanoparticles

    SciTech Connect

    Miller, T.M.; Grassian, V.H.

    1995-12-31

    Nitrous oxide, a by-product of several industrial processes, has some environmentally damaging effects. Since it has an atmospheric lifetime of over one hundred years, there is a great deal of interest in finding ways to limit the amount of nitrous oxide emitted into the atmosphere. Recently, zirconia and zirconia-based catalysts have been shown to be effective in catalyzing nitrous oxide decomposition. We have employed FT-IR spectroscopy to study the adsorption and decomposition of nitrous oxide on zirconia nanoparticles. The room temperature IR spectrum of adsorbed nitrous oxide is characterized by two intense absorption bands, the symmetric stretch and asymmetric stretch, that are shifted from the gas phase values. Experiments as a function of sample pretreatment temperature and site-blocker adsorption indicated that nitrous oxide adsorbs on Zr{sup 4+} sites and the mode of attachment is through the oxygen atom. Dissociation of nitrous oxide begins at temperatures above 350{degrees}C. The data suggest that Zr{sup 4+} may be the active site for nitrous oxide decomposition and the room temperature adsorbed species is perhaps a precursor to nitrous oxide decomposition.

  5. A Compound fault diagnosis for rolling bearings method based on blind source separation and ensemble empirical mode decomposition.

    PubMed

    Wang, Huaqing; Li, Ruitong; Tang, Gang; Yuan, Hongfang; Zhao, Qingliang; Cao, Xi

    2014-01-01

    A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to improve the compound faults diagnose of rolling bearings via signals' separation, the present paper proposes a new method to identify compound faults from measured mixed-signals, which is based on ensemble empirical mode decomposition (EEMD) method and independent component analysis (ICA) technique. With the approach, a vibration signal is firstly decomposed into intrinsic mode functions (IMF) by EEMD method to obtain multichannel signals. Then, according to a cross correlation criterion, the corresponding IMF is selected as the input matrix of ICA. Finally, the compound faults can be separated effectively by executing ICA method, which makes the fault features more easily extracted and more clearly identified. Experimental results validate the effectiveness of the proposed method in compound fault separating, which works not only for the outer race defect, but also for the rollers defect and the unbalance fault of the experimental system. PMID:25289644

  6. Effects of Dispersion in Density Functional Based Quantum Mechanical/Molecular Mechanical Calculations on Cytochrome P450 Catalyzed Reactions.

    PubMed

    Lonsdale, Richard; Harvey, Jeremy N; Mulholland, Adrian J

    2012-11-13

    Density functional theory (DFT) based quantum mechanical/molecular mechanical (QM/MM) calculations have provided valuable insight into the reactivity of the cytochrome P450 family of enzymes (P450s). A failure of commonly used DFT methods, such as B3LYP, is the neglect of dispersion interactions. An empirical dispersion correction has been shown to improve the accuracy of gas phase DFT calculations of P450s. The current work examines the effect of the dispersion correction in QM/MM calculations on P450s. The hydrogen abstraction from camphor, and hydrogen abstraction and C-O addition of cyclohexene and propene by P450cam have been modeled, along with the addition of benzene to Compound I in CYP2C9, at the B3LYP-D2/CHARMM27 level of theory. Single point energy calculations were also performed at the B3LYP-D3//B3LYP-D2/CHARMM27 level. The dispersion corrections lower activation energy barriers significantly (by ∼5 kcal/mol), as seen for gas phase calculations, but has a small effect on optimized geometries.These effects are likely to be important in modeling reactions catalyzed by other enzymes also. Given the low computational cost of including such dispersion corrections, we recommend doing so in all B3LYP based QM/MM calculations.

  7. Ultrafast degradation of azo dyes catalyzed by cobalt-based metallic glass

    NASA Astrophysics Data System (ADS)

    Qin, X. D.; Zhu, Z. W.; Liu, G.; Fu, H. M.; Zhang, H. W.; Wang, A. M.; Li, H.; Zhang, H. F.

    2015-12-01

    Reactivity and mass loss are considered mutually exclusive in conventional zero-valent metal (ZVM) technology to treat environmental contaminants. Here, we report the outstanding performance of Co-based metallic glass (MG) in degrading an aqueous solution of azo dye, thus eliminating this trade-off. Ball-milled Co-based MG powders completely degrade Acid Orange II at an ultrafast rate. The surface-area-normalized rate constant of Co-based MG powders was one order of magnitude higher than that of Co-based crystalline counterparts and three orders of magnitude higher than that of the widely studied Fe0 powders. The coordinatively unsaturated local structure in Co-based MG responds to the catalysis for degradation, resulting in very low mass loss. Wide applicability and good reusability were also present. Co-based MG is the most efficient material for azo dye degradation reported thus far, and will promote the practical application of MGs as functional materials.

  8. Parallel two-level domain decomposition based Jacobi-Davidson algorithms for pyramidal quantum dot simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Tao; Hwang, Feng-Nan; Cai, Xiao-Chuan

    2016-07-01

    We consider a quintic polynomial eigenvalue problem arising from the finite volume discretization of a quantum dot simulation problem. The problem is solved by the Jacobi-Davidson (JD) algorithm. Our focus is on how to achieve the quadratic convergence of JD in a way that is not only efficient but also scalable when the number of processor cores is large. For this purpose, we develop a projected two-level Schwarz preconditioned JD algorithm that exploits multilevel domain decomposition techniques. The pyramidal quantum dot calculation is carefully studied to illustrate the efficiency of the proposed method. Numerical experiments confirm that the proposed method has a good scalability for problems with hundreds of millions of unknowns on a parallel computer with more than 10,000 processor cores.

  9. Empirical mode decomposition-based facial pose estimation inside video sequences

    NASA Astrophysics Data System (ADS)

    Qing, Chunmei; Jiang, Jianmin; Yang, Zhijing

    2010-03-01

    We describe a new pose-estimation algorithm via integration of the strength in both empirical mode decomposition (EMD) and mutual information. While mutual information is exploited to measure the similarity between facial images to estimate poses, EMD is exploited to decompose input facial images into a number of intrinsic mode function (IMF) components, which redistribute the effect of noise, expression changes, and illumination variations as such that, when the input facial image is described by the selected IMF components, all the negative effects can be minimized. Extensive experiments were carried out in comparisons to existing representative techniques, and the results show that the proposed algorithm achieves better pose-estimation performances with robustness to noise corruption, illumination variation, and facial expressions.

  10. Fault diagnosis of spur gearbox based on random forest and wavelet packet decomposition

    NASA Astrophysics Data System (ADS)

    Cabrera, Diego; Sancho, Fernando; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Li, Chuan; Vásquez, Rafael E.

    2015-09-01

    This paper addresses the development of a random forest classifier for the multi-class fault diagnosis in spur gearboxes. The vibration signal's condition parameters are first extracted by applying the wavelet packet decomposition with multiple mother wavelets, and the coefficients' energy content for terminal nodes is used as the input feature for the classification problem. Then, a study through the parameters' space to find the best values for the number of trees and the number of random features is performed. In this way, the best set of mother wavelets for the application is identified and the best features are selected through the internal ranking of the random forest classifier. The results show that the proposed method reached 98.68% in classification accuracy, and high efficiency and robustness in the models.

  11. Non invasive transcostal focusing based on the decomposition of the time reversal operator: in vitro validation

    NASA Astrophysics Data System (ADS)

    Cochard, Étienne; Prada, Claire; Aubry, Jean-François; Fink, Mathias

    2010-03-01

    Thermal ablation induced by high intensity focused ultrasound has produced promising clinical results to treat hepatocarcinoma and other liver tumors. However skin burns have been reported due to the high absorption of ultrasonic energy by the ribs. This study proposes a method to produce an acoustic field focusing on a chosen target while sparing the ribs, using the decomposition of the time-reversal operator (DORT method). The idea is to apply an excitation weight vector to the transducers array which is orthogonal to the subspace of emissions focusing on the ribs. The ratio of the energies absorbed at the focal point and on the ribs has been enhanced up to 100-fold as demonstrated by the measured specific absorption rates.

  12. A stabilized explicit Lagrange multiplier based domain decomposition method for parabolic problems

    NASA Astrophysics Data System (ADS)

    Zheng, Zheming; Simeon, Bernd; Petzold, Linda

    2008-05-01

    A fully explicit, stabilized domain decomposition method for solving moderately stiff parabolic partial differential equations (PDEs) is presented. Writing the semi-discretized equations as a differential-algebraic equation (DAE) system where the interface continuity constraints between subdomains are enforced by Lagrange multipliers, the method uses the Runge-Kutta-Chebyshev projection scheme to integrate the DAE explicitly and to enforce the constraints by a projection. With mass lumping techniques and node-to-node matching grids, the method is fully explicit without solving any linear system. A stability analysis is presented to show the extended stability property of the method. The method is straightforward to implement and to parallelize. Numerical results demonstrate that it has excellent performance.

  13. Surface EMG decomposition based on K-means clustering and convolution kernel compensation.

    PubMed

    Ning, Yong; Zhu, Xiangjun; Zhu, Shanan; Zhang, Yingchun

    2015-03-01

    A new approach has been developed by combining the K-mean clustering (KMC) method and a modified convolution kernel compensation (CKC) method for multichannel surface electromyogram (EMG) decomposition. The KMC method was first utilized to cluster vectors of observations at different time instants and then estimate the initial innervation pulse train (IPT). The CKC method, modified with a novel multistep iterative process, was conducted to update the estimated IPT. The performance of the proposed K-means clustering-Modified CKC (KmCKC) approach was evaluated by reconstructing IPTs from both simulated and experimental surface EMG signals. The KmCKC approach successfully reconstructed all 10 IPTs from the simulated surface EMG signals with true positive rates (TPR) of over 90% with a low signal-to-noise ratio (SNR) of -10 dB. More than 10 motor units were also successfully extracted from the 64-channel experimental surface EMG signals of the first dorsal interosseous (FDI) muscles when a contraction force was held at 8 N by using the KmCKC approach. A "two-source" test was further conducted with 64-channel surface EMG signals. The high percentage of common MUs and common pulses (over 92% at all force levels) between the IPTs reconstructed from the two independent groups of surface EMG signals demonstrates the reliability and capability of the proposed KmCKC approach in multichannel surface EMG decomposition. Results from both simulated and experimental data are consistent and confirm that the proposed KmCKC approach can successfully reconstruct IPTs with high accuracy at different levels of contraction.

  14. Ensemble Empirical Mode Decomposition based methodology for ultrasonic testing of coarse grain austenitic stainless steels.

    PubMed

    Sharma, Govind K; Kumar, Anish; Jayakumar, T; Purnachandra Rao, B; Mariyappa, N

    2015-03-01

    A signal processing methodology is proposed in this paper for effective reconstruction of ultrasonic signals in coarse grained high scattering austenitic stainless steel. The proposed methodology is comprised of the Ensemble Empirical Mode Decomposition (EEMD) processing of ultrasonic signals and application of signal minimisation algorithm on selected Intrinsic Mode Functions (IMFs) obtained by EEMD. The methodology is applied to ultrasonic signals obtained from austenitic stainless steel specimens of different grain size, with and without defects. The influence of probe frequency and data length of a signal on EEMD decomposition is also investigated. For a particular sampling rate and probe frequency, the same range of IMFs can be used to reconstruct the ultrasonic signal, irrespective of the grain size in the range of 30-210 μm investigated in this study. This methodology is successfully employed for detection of defects in a 50mm thick coarse grain austenitic stainless steel specimens. Signal to noise ratio improvement of better than 15 dB is observed for the ultrasonic signal obtained from a 25 mm deep flat bottom hole in 200 μm grain size specimen. For ultrasonic signals obtained from defects at different depths, a minimum of 7 dB extra enhancement in SNR is achieved as compared to the sum of selected IMF approach. The application of minimisation algorithm with EEMD processed signal in the proposed methodology proves to be effective for adaptive signal reconstruction with improved signal to noise ratio. This methodology was further employed for successful imaging of defects in a B-scan.

  15. Gold price analysis based on ensemble empirical model decomposition and independent component analysis

    NASA Astrophysics Data System (ADS)

    Xian, Lu; He, Kaijian; Lai, Kin Keung

    2016-07-01

    In recent years, the increasing level of volatility of the gold price has received the increasing level of attention from the academia and industry alike. Due to the complexity and significant fluctuations observed in the gold market, however, most of current approaches have failed to produce robust and consistent modeling and forecasting results. Ensemble Empirical Model Decomposition (EEMD) and Independent Component Analysis (ICA) are novel data analysis methods that can deal with nonlinear and non-stationary time series. This study introduces a new methodology which combines the two methods and applies it to gold price analysis. This includes three steps: firstly, the original gold price series is decomposed into several Intrinsic Mode Functions (IMFs) by EEMD. Secondly, IMFs are further processed with unimportant ones re-grouped. Then a new set of data called Virtual Intrinsic Mode Functions (VIMFs) is reconstructed. Finally, ICA is used to decompose VIMFs into statistically Independent Components (ICs). The decomposition results reveal that the gold price series can be represented by the linear combination of ICs. Furthermore, the economic meanings of ICs are analyzed and discussed in detail, according to the change trend and ICs' transformation coefficients. The analyses not only explain the inner driving factors and their impacts but also conduct in-depth analysis on how these factors affect gold price. At the same time, regression analysis has been conducted to verify our analysis. Results from the empirical studies in the gold markets show that the EEMD-ICA serve as an effective technique for gold price analysis from a new perspective.

  16. Batch Microreactor Studies of Base Catalyzed Ligin Depolymerization in Alcohol Solvents

    SciTech Connect

    Evans, L.; Littlewolf, A.; Lopez, M.; Miller, J.E.

    1999-02-03

    The depolymerization of organosolv-derived lignins by bases in methanol or ethanol solvent was studied in rapidly heated batch microreactors. The conversion of lignin to ether solubles by KOH in methanol or ethanol was rapid at 290 "C, reaching the maximum value within 10-15 minutes. An excess of base relative to Lignin monomer units was required for maximum conversion. Strong bases (KOH, NaOH, CSOH) convert more of the lignin to ether soluble material than do weaker bases LiOH, Ca(OH)2, and NacCO2). Ethanol and methanol are converted to acetic and formic acid respectively under the reaction conditions with an activation energy of approximately 50 kcal/mol. This results in a loss of solvent, but more importantly neutralizes the base catalyst, halting forward progress of the reaction.

  17. Bifunctional Brønsted Base Catalyzes Direct Asymmetric Aldol Reaction of α-Keto Amides.

    PubMed

    Echave, Haizea; López, Rosa; Palomo, Claudio

    2016-03-01

    The first enantioselective direct cross-aldol reaction of α-keto amides with aldehydes, mediated by a bifunctional ureidopeptide-based Brønsted base catalyst, is described. The appropriate combination of a tertiary amine base and an aminal, and urea hydrogen-bond donor groups in the catalyst structure promoted the exclusive generation of the α-keto amide enolate which reacted with either non-enolizable or enolizable aldehydes to produce highly enantioenriched polyoxygenated aldol adducts without side-products resulting from dehydration, α-keto amide self-condensation, aldehyde enolization, and isotetronic acid formation.

  18. Bifunctional Brønsted Base Catalyzes Direct Asymmetric Aldol Reaction of α-Keto Amides.

    PubMed

    Echave, Haizea; López, Rosa; Palomo, Claudio

    2016-03-01

    The first enantioselective direct cross-aldol reaction of α-keto amides with aldehydes, mediated by a bifunctional ureidopeptide-based Brønsted base catalyst, is described. The appropriate combination of a tertiary amine base and an aminal, and urea hydrogen-bond donor groups in the catalyst structure promoted the exclusive generation of the α-keto amide enolate which reacted with either non-enolizable or enolizable aldehydes to produce highly enantioenriched polyoxygenated aldol adducts without side-products resulting from dehydration, α-keto amide self-condensation, aldehyde enolization, and isotetronic acid formation. PMID:26835655

  19. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography

    SciTech Connect

    Cai, C.; Rodet, T.; Mohammad-Djafari, A.; Legoupil, S.

    2013-11-15

    Purpose: Dual-energy computed tomography (DECT) makes it possible to get two fractions of basis materials without segmentation. One is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical DECT measurements are usually obtained with polychromatic x-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam polychromaticity fail to estimate the correct decomposition fractions and result in beam-hardening artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log preprocessing and the ill-conditioned water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on nonlinear forward models counting the beam polychromaticity show great potential for giving accurate fraction images.Methods: This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint maximum a posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a nonquadratic cost function. To solve it, the use of a monotone conjugate gradient algorithm with suboptimal descent steps is proposed.Results: The performance of the proposed approach is analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also

  20. Envisioning an enzymatic Diels-Alder reaction by in situ acid-base catalyzed diene generation.

    PubMed

    Linder, Mats; Johansson, Adam Johannes; Manta, Bianca; Olsson, Philip; Brinck, Tore

    2012-06-01

    We present and evaluate a new and potentially efficient route for enzyme-mediated Diels-Alder reactions, utilizing general acid-base catalysis. The viability of employing the active site of ketosteroid isomerase is demonstrated.

  1. A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting

    NASA Astrophysics Data System (ADS)

    Niu, Mingfei; Wang, Yufang; Sun, Shaolong; Li, Yongwu

    2016-06-01

    To enhance prediction reliability and accuracy, a hybrid model based on the promising principle of "decomposition and ensemble" and a recently proposed meta-heuristic called grey wolf optimizer (GWO) is introduced for daily PM2.5 concentration forecasting. Compared with existing PM2.5 forecasting methods, this proposed model has improved the prediction accuracy and hit rates of directional prediction. The proposed model involves three main steps, i.e., decomposing the original PM2.5 series into several intrinsic mode functions (IMFs) via complementary ensemble empirical mode decomposition (CEEMD) for simplifying the complex data; individually predicting each IMF with support vector regression (SVR) optimized by GWO; integrating all predicted IMFs for the ensemble result as the final prediction by another SVR optimized by GWO. Seven benchmark models, including single artificial intelligence (AI) models, other decomposition-ensemble models with different decomposition methods and models with the same decomposition-ensemble method but optimized by different algorithms, are considered to verify the superiority of the proposed hybrid model. The empirical study indicates that the proposed hybrid decomposition-ensemble model is remarkably superior to all considered benchmark models for its higher prediction accuracy and hit rates of directional prediction.

  2. PrinCCes: Continuity-based geometric decomposition and systematic visualization of the void repertoire of proteins.

    PubMed

    Czirják, Gábor

    2015-11-01

    Grooves and pockets on the surface, channels through the protein, the chambers or cavities, and the tunnels connecting the internal points to each other or to the external fluid environment are fundamental determinants of a wide range of biological functions. PrinCCes (Protein internal Channel & Cavity estimation) is a computer program supporting the visualization of voids. It includes a novel algorithm for the decomposition of the entire void volume of the protein or protein complex to individual entities. The decomposition is based on continuity. An individual void is defined by uninterrupted extension in space: a spherical probe can freely move between any two internal locations of a continuous void. Continuous voids are detected irrespective of their topological complexity, they may contain any number of holes and bifurcations. The voids of a protein can be visualized one by one or in combinations as triangulated surfaces. The output is automatically exported to free VMD (Visual Molecular Dynamics) or Chimera software, allowing the 3D rotation of the surfaces and the production of publication quality images. PrinCCes with graphic user interface and command line versions are available for MS Windows and Linux. The source code and executable can be downloaded at any of the following links: http://scholar.semmelweis.hu/czirjakgabor/s/princces/#t1 https://github.com/CzirjakGabor/PrinCCes http://1drv.ms/1bP9iJ3.

  3. Solid-base loaded WO{sub 3} photocatalyst for decomposition of harmful organics under visible light irradiation

    SciTech Connect

    Kako, Tetsuya; Meng, Xianguang; Ye, Jinhua

    2015-10-01

    Composite of NaBiO{sub 3}-loaded WO{sub 3} with a mixing ratio of 10:100 was prepared for photocatalytic harmful-organic-contaminant decomposition. The composite properties were measured using X-ray diffraction, ultraviolet-visible spectrophotometer (UV-Vis), and valence band-X-ray photoelectron spectroscope (VB-XPS). The results exhibited that the potentials for top of the valence band and bottom of conduction band for NaBiO{sub 3} can be estimated, respectively, as +2.5 V and -0.1 to 0 V. Furthermore, WO{sub 3}, NaBiO{sub 3}, and the composite showed IPA oxidation properties under visible-light irradiation. Results show that the composite exhibited much higher photocatalytic activity about 2-propanol (IPA) decomposition into CO{sub 2} than individual WO{sub 3} or NaBiO{sub 3} because of charge separation promotion and the base effect of NaBiO{sub 3}.

  4. PrinCCes: Continuity-based geometric decomposition and systematic visualization of the void repertoire of proteins.

    PubMed

    Czirják, Gábor

    2015-11-01

    Grooves and pockets on the surface, channels through the protein, the chambers or cavities, and the tunnels connecting the internal points to each other or to the external fluid environment are fundamental determinants of a wide range of biological functions. PrinCCes (Protein internal Channel & Cavity estimation) is a computer program supporting the visualization of voids. It includes a novel algorithm for the decomposition of the entire void volume of the protein or protein complex to individual entities. The decomposition is based on continuity. An individual void is defined by uninterrupted extension in space: a spherical probe can freely move between any two internal locations of a continuous void. Continuous voids are detected irrespective of their topological complexity, they may contain any number of holes and bifurcations. The voids of a protein can be visualized one by one or in combinations as triangulated surfaces. The output is automatically exported to free VMD (Visual Molecular Dynamics) or Chimera software, allowing the 3D rotation of the surfaces and the production of publication quality images. PrinCCes with graphic user interface and command line versions are available for MS Windows and Linux. The source code and executable can be downloaded at any of the following links: http://scholar.semmelweis.hu/czirjakgabor/s/princces/#t1 https://github.com/CzirjakGabor/PrinCCes http://1drv.ms/1bP9iJ3. PMID:26409191

  5. Ultrafast degradation of azo dyes catalyzed by cobalt-based metallic glass

    PubMed Central

    Qin, X. D.; Zhu, Z. W.; Liu, G.; Fu, H. M.; Zhang, H. W.; Wang, A. M.; Li, H.; Zhang, H. F.

    2015-01-01

    Reactivity and mass loss are considered mutually exclusive in conventional zero-valent metal (ZVM) technology to treat environmental contaminants. Here, we report the outstanding performance of Co-based metallic glass (MG) in degrading an aqueous solution of azo dye, thus eliminating this trade-off. Ball-milled Co-based MG powders completely degrade Acid Orange II at an ultrafast rate. The surface-area-normalized rate constant of Co-based MG powders was one order of magnitude higher than that of Co-based crystalline counterparts and three orders of magnitude higher than that of the widely studied Fe0 powders. The coordinatively unsaturated local structure in Co-based MG responds to the catalysis for degradation, resulting in very low mass loss. Wide applicability and good reusability were also present. Co-based MG is the most efficient material for azo dye degradation reported thus far, and will promote the practical application of MGs as functional materials. PMID:26656918

  6. [Removal Algorithm of Power Line Interference in Electrocardiogram Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition].

    PubMed

    Zhao, Wei; Xiao, Shixiao; Zhang, Baocan; Huang, Xiaojing; You, Rongyi

    2015-12-01

    Electrocardiogram (ECG) signals are susceptible to be disturbed by 50 Hz power line interference (PLI) in the process of acquisition and conversion. This paper, therefore, proposes a novel PLI removal algorithm based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD). Firstly, according to the morphological differences in ECG waveform characteristics, the noisy ECG signal was decomposed into the mutated component, the smooth component and the residual component by MCA. Secondly, intrinsic mode functions (IMF) of PLI was filtered. The noise suppression rate (NSR) and the signal distortion ratio (SDR) were used to evaluate the effect of de-noising algorithm. Finally, the ECG signals were re-constructed. Based on the experimental comparison, it was concluded that the proposed algorithm had better filtering functions than the improved Levkov algorithm, because it could not only effectively filter the PLI, but also have smaller SDR value. PMID:27079083

  7. A 14-MeV Intense Neutron Source Based on Muon-Catalyzed Fusion - I: An Advanced Design

    SciTech Connect

    Anisimov, Viatcheslav V.; Arkhangel'sky, Vladimir A.; Ganchuk, Nikolay S.; Yukhimchuk, Arkady A.; Cavalleri, Emanuela; Karmanov, Fedor I.; Konobeyev, Alexander Yu.; Slobodtchouk, Victor I.; Latysheva, Lioudmila N.; Pshenichnov, Igor A.; Ponomarev, Leonid I.; Vecchi, Marcello

    2001-03-15

    The results of the design study of an advanced scheme for the 14-MeV intense neutron source based on muon-catalyzed fusion ({mu}CF) are presented. A pion production target (liquid lithium) and a synthesizer [liquid deuterium-tritium (D-T) mixture] are considered. Negative pions are produced inside a 17/7 T magnetic field by an intense (2-GeV,12-mA) deuteron beam interacting with the 150-cm-long, 0.75-cm-radius lithium target. Muons from the pion decay are collected in the backward direction and stopped in the D-T mixture of the synthesizer. The synthesizer has the shape of a 10-cm-radius sphere surrounded by two 0.03-cm-thick titanium shells. At 100 {mu}CF events/muon, it can produce up to 10{sup 17}n/s of 14-MeV neutrons. A quasi-isotropic neutron flux up to 10{sup 14} n/cm{sup 2}.s{sup -1} can be achieved in the test volume of {approx}2.5 l with an irradiated surface of {approx}350 cm{sup 2}. The thermophysical and thermomechanical analyses show that the technological limits are not exceeded.

  8. Base-free non-noble-metal-catalyzed hydrogen generation from formic acid: scope and mechanistic insights.

    PubMed

    Mellmann, Dörthe; Barsch, Enrico; Bauer, Matthias; Grabow, Kathleen; Boddien, Albert; Kammer, Anja; Sponholz, Peter; Bentrup, Ursula; Jackstell, Ralf; Junge, Henrik; Laurenczy, Gábor; Ludwig, Ralf; Beller, Matthias

    2014-10-13

    The iron-catalyzed dehydrogenation of formic acid has been studied both experimentally and mechanistically. The most active catalysts were generated in situ from cationic Fe(II) /Fe(III) precursors and tris[2-(diphenylphosphino)ethyl]phosphine (1, PP3 ). In contrast to most known noble-metal catalysts used for this transformation, no additional base was necessary. The activity of the iron catalyst depended highly on the solvent used, the presence of halide ions, the water content, and the ligand-to-metal ratio. The optimal catalytic performance was achieved by using [FeH(PP3 )]BF4 /PP3 in propylene carbonate in the presence of traces of water. With the exception of fluoride, the presence of halide ions in solution inhibited the catalytic activity. IR, Raman, UV/Vis, and EXAFS/XANES analyses gave detailed insights into the mechanism of hydrogen generation from formic acid at low temperature, supported by DFT calculations. In situ transmission FTIR measurements revealed the formation of an active iron formate species by the band observed at 1543 cm(-1) , which could be correlated with the evolution of gas. This active species was deactivated in the presence of chloride ions due to the formation of a chloro species (UV/Vis, Raman, IR, and XAS). In addition, XAS measurements demonstrated the importance of the solvent for the coordination of the PP3 ligand. PMID:25196789

  9. Base-free non-noble-metal-catalyzed hydrogen generation from formic acid: scope and mechanistic insights.

    PubMed

    Mellmann, Dörthe; Barsch, Enrico; Bauer, Matthias; Grabow, Kathleen; Boddien, Albert; Kammer, Anja; Sponholz, Peter; Bentrup, Ursula; Jackstell, Ralf; Junge, Henrik; Laurenczy, Gábor; Ludwig, Ralf; Beller, Matthias

    2014-10-13

    The iron-catalyzed dehydrogenation of formic acid has been studied both experimentally and mechanistically. The most active catalysts were generated in situ from cationic Fe(II) /Fe(III) precursors and tris[2-(diphenylphosphino)ethyl]phosphine (1, PP3 ). In contrast to most known noble-metal catalysts used for this transformation, no additional base was necessary. The activity of the iron catalyst depended highly on the solvent used, the presence of halide ions, the water content, and the ligand-to-metal ratio. The optimal catalytic performance was achieved by using [FeH(PP3 )]BF4 /PP3 in propylene carbonate in the presence of traces of water. With the exception of fluoride, the presence of halide ions in solution inhibited the catalytic activity. IR, Raman, UV/Vis, and EXAFS/XANES analyses gave detailed insights into the mechanism of hydrogen generation from formic acid at low temperature, supported by DFT calculations. In situ transmission FTIR measurements revealed the formation of an active iron formate species by the band observed at 1543 cm(-1) , which could be correlated with the evolution of gas. This active species was deactivated in the presence of chloride ions due to the formation of a chloro species (UV/Vis, Raman, IR, and XAS). In addition, XAS measurements demonstrated the importance of the solvent for the coordination of the PP3 ligand.

  10. Mechanistic insights on N-heterocyclic carbene-catalyzed annulations: the role of base-assisted proton transfers.

    PubMed

    Verma, Pragya; Patni, Priya A; Sunoj, Raghavan B

    2011-07-15

    The density functional theory investigation on the mechanism of NHC-catalyzed cycloannulation reaction of the homoenolate derived from butenal with pentenone is studied. The M06-2X/6-31+G** and B3LYP/6-31+G** levels of theory, including the effect of continuum solvation in dichloromethane and tetrahydrofuran, are employed. Several mechanistic scenarios are examined for each elementary step by identifying the key intermediates and the corresponding transition states interconnecting them on the respective potential energy surfaces. Both assisted and unassisted pathways for important proton transfer steps are considered, respectively, with and without the explicit inclusion of base (DBU) in the corresponding transition states. The barrier for the crucial proton transfer steps involved in the formation of the Breslow intermediate as well as in the subsequent steps is found to be significantly lowered by explicit inclusion of DBU. The energetic comparison between two key pathways, depicted as path A and path B, respectively, leading to cyclopentene and cyclopentanone derivatives, is performed. The major mechanistic bifurcation has been identified as emanating from the site of enolization of the initial zwitterionic intermediate resulting from the addition of a homoenolate equivalent to enone. If the enolization occurs nearer to the NHC moiety, the reaction is likely to proceed through path A, leading to cyclopentene. The enolization away from NHC leads to cyclopentanone product through path B. The computed results are generally in good agreement with the reported experimental results.

  11. Efficient copper-catalyzed direct intramolecular aminotrifluoromethylation of unactivated alkenes with diverse nitrogen-based nucleophiles.

    PubMed

    Lin, Jin-Shun; Xiong, Ya-Ping; Ma, Can-Liang; Zhao, Li-Jiao; Tan, Bin; Liu, Xin-Yuan

    2014-01-27

    A mild, convenient, and step-economical intramolecular aminotrifluoromethylation of unactivated alkenes with a variety of electronically distinct, nitrogen-based nucleophiles in the presence of a simple copper salt catalyst, in the absence of extra ligands, is described. Many different nitrogen-based nucleophiles (e.g., basic primary aliphatic and aromatic amines, sulfonamides, carbamates, and ureas) can be employed in this new aminotrifluoromethylation reaction. The aminotrifluoromethylation process allows straightforward access to diversely substituted CF3-containing pyrrolidines or indolines, in good to excellent yields, through a direct difunctionalization strategy from the respective acyclic starting materials. Mechanistic studies were conducted and a plausible mechanism was proposed. PMID:24458913

  12. Mueller matrix differential decomposition.

    PubMed

    Ortega-Quijano, Noé; Arce-Diego, José Luis

    2011-05-15

    We present a Mueller matrix decomposition based on the differential formulation of the Mueller calculus. The differential Mueller matrix is obtained from the macroscopic matrix through an eigenanalysis. It is subsequently resolved into the complete set of 16 differential matrices that correspond to the basic types of optical behavior for depolarizing anisotropic media. The method is successfully applied to the polarimetric analysis of several samples. The differential parameters enable one to perform an exhaustive characterization of anisotropy and depolarization. This decomposition is particularly appropriate for studying media in which several polarization effects take place simultaneously. PMID:21593943

  13. Hypnosis, rumination, and depression: catalyzing attention and mindfulness-based treatments.

    PubMed

    Lynn, Steven Jay; Barnes, Sean; Deming, Amanda; Accardi, Michelle

    2010-04-01

    Over the past 30 years, mental health practitioners, encouraged by rigorous empirical studies and literature and meta-analytic reviews, have increasingly appreciated the ability of hypnosis to modulate attention, imagination, and motivation in the service of therapeutic goals. This article describes how hypnosis can be used as an adjunctive procedure in the treatment of depression and rumination symptoms, in particular. The focus is on attention-based treatments that include rumination-focused cognitive behavioral therapy, cognitive control training, and mindfulness-based cognitive therapy. The authors provide numerous examples of techniques and approaches that can potentially enhance treatment gains, including a hypnotic induction to facilitate mindfulness and to motivate mindfulness practice. Although hypnosis appears to be a promising catalyst of attention and mindfulness, research is required to document the incremental value of adding hypnosis to the treatments reviewed.

  14. Chemical reactions catalyzed by metalloporphyrin-based metal-organic frameworks.

    PubMed

    Nakagaki, Shirley; Ferreira, Gabriel Kaetan Baio; Ucoski, Geani Maria; Dias de Freitas Castro, Kelly Aparecida

    2013-06-21

    The synthetic versatility and the potential application of metalloporphyrins (MP) in different fields have aroused researchers' interest in studying these complexes, in an attempt to mimic biological systems such as cytochrome P-450. Over the last 40 years, synthetic MPs have been mainly used as catalysts for homogeneous or heterogeneous chemical reactions. To employ them in heterogeneous catalysis, chemists have prepared new MP-based solids by immobilizing MP onto rigid inorganic supports, a strategy that affords hybrid inorganic-organic materials. More recently, materials obtained by supramolecular assembly processes and containing MPs as building blocks have been applied in a variety of areas, like gas storage, photonic devices, separation, molecular sensing, magnets, and heterogeneous catalysis, among others. These coordination polymers, known as metal-organic frameworks (MOFs), contain organic ligands or complexes connected by metal ions or clusters, which give rise to a 1-, 2- or 3-D network. These kinds of materials presents large surface areas, Brønsted or redox sites, and high porosity, all of which are desirable features in catalysts with potential use in heterogeneous phases. Building MOFs based on MP is a good way to obtain solid catalysts that offer the advantages of bioinspired systems and zeolitic materials. In this mini review, we will adopt a historical approach to present the most relevant MP-based MOFs applicable to catalytic reactions such as oxidation, reduction, insertion of functional groups, and exchange of organic functions.

  15. Discrete wavelet transform and singular value decomposition based ECG steganography for secured patient information transmission.

    PubMed

    Edward Jero, S; Ramu, Palaniappan; Ramakrishnan, S

    2014-10-01

    ECG Steganography provides secured transmission of secret information such as patient personal information through ECG signals. This paper proposes an approach that uses discrete wavelet transform to decompose signals and singular value decomposition (SVD) to embed the secret information into the decomposed ECG signal. The novelty of the proposed method is to embed the watermark using SVD into the two dimensional (2D) ECG image. The embedding of secret information in a selected sub band of the decomposed ECG is achieved by replacing the singular values of the decomposed cover image by the singular values of the secret data. The performance assessment of the proposed approach allows understanding the suitable sub-band to hide secret data and the signal degradation that will affect diagnosability. Performance is measured using metrics like Kullback-Leibler divergence (KL), percentage residual difference (PRD), peak signal to noise ratio (PSNR) and bit error rate (BER). A dynamic location selection approach for embedding the singular values is also discussed. The proposed approach is demonstrated on a MIT-BIH database and the observations validate that HH is the ideal sub-band to hide data. It is also observed that the signal degradation (less than 0.6%) is very less in the proposed approach even with the secret data being as large as the sub band size. So, it does not affect the diagnosability and is reliable to transmit patient information. PMID:25187409

  16. Cardiopulmonary Resuscitation Pattern Evaluation Based on Ensemble Empirical Mode Decomposition Filter via Nonlinear Approaches

    PubMed Central

    Ma, Matthew Huei-Ming

    2016-01-01

    Good quality cardiopulmonary resuscitation (CPR) is the mainstay of treatment for managing patients with out-of-hospital cardiac arrest (OHCA). Assessment of the quality of the CPR delivered is now possible through the electrocardiography (ECG) signal that can be collected by an automated external defibrillator (AED). This study evaluates a nonlinear approximation of the CPR given to the asystole patients. The raw ECG signal is filtered using ensemble empirical mode decomposition (EEMD), and the CPR-related intrinsic mode functions (IMF) are chosen to be evaluated. In addition, sample entropy (SE), complexity index (CI), and detrended fluctuation algorithm (DFA) are collated and statistical analysis is performed using ANOVA. The primary outcome measure assessed is the patient survival rate after two hours. CPR pattern of 951 asystole patients was analyzed for quality of CPR delivered. There was no significant difference observed in the CPR-related IMFs peak-to-peak interval analysis for patients who are younger or older than 60 years of age, similarly to the amplitude difference evaluation for SE and DFA. However, there is a difference noted for the CI (p < 0.05). The results show that patients group younger than 60 years have higher survival rate with high complexity of the CPR-IMFs amplitude differences. PMID:27529068

  17. Singular Value Decomposition Based Features for Automatic Tumor Detection in Wireless Capsule Endoscopy Images.

    PubMed

    Faghih Dinevari, Vahid; Karimian Khosroshahi, Ghader; Zolfy Lighvan, Mina

    2016-01-01

    Wireless capsule endoscopy (WCE) is a new noninvasive instrument which allows direct observation of the gastrointestinal tract to diagnose its relative diseases. Because of the large number of images obtained from the capsule endoscopy per patient, doctors need too much time to investigate all of them. So, it would be worthwhile to design a system for detecting diseases automatically. In this paper, a new method is presented for automatic detection of tumors in the WCE images. This method will utilize the advantages of the discrete wavelet transform (DWT) and singular value decomposition (SVD) algorithms to extract features from different color channels of the WCE images. Therefore, the extracted features are invariant to rotation and can describe multiresolution characteristics of the WCE images. In order to classify the WCE images, the support vector machine (SVM) method is applied to a data set which includes 400 normal and 400 tumor WCE images. The experimental results show proper performance of the proposed algorithm for detection and isolation of the tumor images which, in the best way, shows 94%, 93%, and 93.5% of sensitivity, specificity, and accuracy in the RGB color space, respectively. PMID:27478364

  18. An Inhibitor-Based Method To Measure Initial Decomposition of Naturally Occurring Polysaccharides in Sediments

    PubMed Central

    Boschker, H.; Bertilsson, S. A.; Dekkers, E.; Cappenberg, T. E.

    1995-01-01

    A method that can be used to measure the initial decomposition rates of polysaccharides in sediment samples was developed. It uses toluene to specifically inhibit microbial uptake of carbohydrates without affecting extracellular hydrolysis of polysaccharides. Accumulating carbohydrates were determined by high-performance liquid chromatography. Field-sampled litter from the common reed (Phragmites australis), which contains cellulose and arabinoxylan as its main polysaccharides, was used as a model system. Toluene concentrations of between 1 and 10% resulted in the accumulation of similar amounts of monomeric carbohydrates, which was linear over time for most neutral sugars. Toluene (3%) did not have an effect on extracellular enzyme activities, and microbial sugar uptake was completely inhibited, as demonstrated with (sup14)C-labelled xylose and glucose. Experiments with enhancement cultures and fixed reed litter suggested that enzymatic hydrolysis of polysaccharides in reed litter was the main source of glucose, xylose, arabinose, and galactose accumulation. In contrast, the accumulation of high amounts of the alditols mannitol and glucitol was probably caused by lysis of the microbial population in toluene-treated reed litter. Glucose accumulated at rates of 1.3 and 0.10 (mu)mol (middot) g of dry matter content(sup-1) (middot) h(sup-1) under aerobic and anaerobic conditions, respectively, whereas xylose accumulation rates were only 10% of the glucose accumulation rates. PMID:16535044

  19. Spectral analysis of Hall-effect thruster plasma oscillations based on the empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Kurzyna, J.; Mazouffre, S.; Lazurenko, A.; Albarède, L.; Bonhomme, G.; Makowski, K.; Dudeck, M.; Peradzyński, Z.

    2005-12-01

    Hall-effect thruster plasma oscillations recorded by means of probes located at the channel exit are analyzed using the empirical mode decomposition (EMD) method. This self-adaptive technique permits to decompose a nonstationary signal into a set of intrinsic modes, and acts as a very efficient filter allowing to separate contributions of different underlying physical mechanisms. Applying the Hilbert transform to the whole set of modes allows to identify peculiar events and to assign them a range of instantaneous frequency and power. In addition to 25kHz breathing-type oscillations which are unambiguously identified, the EMD approach confirms the existence of oscillations with instantaneous frequencies in the range of 100-500kHz typical for ion transit-time oscillations. Modeling of high-frequency modes (ν˜10MHz) resulting from EMD of measured wave forms supports the idea that high-frequency plasma oscillations originate from electron-density perturbations propagating azimuthally with the electron drift velocity.

  20. Discrete wavelet transform and singular value decomposition based ECG steganography for secured patient information transmission.

    PubMed

    Edward Jero, S; Ramu, Palaniappan; Ramakrishnan, S

    2014-10-01

    ECG Steganography provides secured transmission of secret information such as patient personal information through ECG signals. This paper proposes an approach that uses discrete wavelet transform to decompose signals and singular value decomposition (SVD) to embed the secret information into the decomposed ECG signal. The novelty of the proposed method is to embed the watermark using SVD into the two dimensional (2D) ECG image. The embedding of secret information in a selected sub band of the decomposed ECG is achieved by replacing the singular values of the decomposed cover image by the singular values of the secret data. The performance assessment of the proposed approach allows understanding the suitable sub-band to hide secret data and the signal degradation that will affect diagnosability. Performance is measured using metrics like Kullback-Leibler divergence (KL), percentage residual difference (PRD), peak signal to noise ratio (PSNR) and bit error rate (BER). A dynamic location selection approach for embedding the singular values is also discussed. The proposed approach is demonstrated on a MIT-BIH database and the observations validate that HH is the ideal sub-band to hide data. It is also observed that the signal degradation (less than 0.6%) is very less in the proposed approach even with the secret data being as large as the sub band size. So, it does not affect the diagnosability and is reliable to transmit patient information.

  1. A tree canopy height delineation method based on Morphological Reconstruction—Open Crown Decomposition

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Jing, L.; Li, Y.; Tang, Y.; Li, H.; Lin, Q.

    2016-04-01

    For the purpose of forest management, high resolution LIDAR and optical remote sensing imageries are used for treetop detection, tree crown delineation, and classification. The purpose of this study is to develop a self-adjusted dominant scales calculation method and a new crown horizontal cutting method of tree canopy height model (CHM) to detect and delineate tree crowns from LIDAR, under the hypothesis that a treetop is radiometric or altitudinal maximum and tree crowns consist of multi-scale branches. The major concept of the method is to develop an automatic selecting strategy of feature scale on CHM, and a multi-scale morphological reconstruction-open crown decomposition (MRCD) to get morphological multi-scale features of CHM by: cutting CHM from treetop to the ground; analysing and refining the dominant multiple scales with differential horizontal profiles to get treetops; segmenting LiDAR CHM using watershed a segmentation approach marked with MRCD treetops. This method has solved the problems of false detection of CHM side-surface extracted by the traditional morphological opening canopy segment (MOCS) method. The novel MRCD delineates more accurate and quantitative multi-scale features of CHM, and enables more accurate detection and segmentation of treetops and crown. Besides, the MRCD method can also be extended to high optical remote sensing tree crown extraction. In an experiment on aerial LiDAR CHM of a forest of multi-scale tree crowns, the proposed method yielded high-quality tree crown maps.

  2. Cardiopulmonary Resuscitation Pattern Evaluation Based on Ensemble Empirical Mode Decomposition Filter via Nonlinear Approaches.

    PubMed

    Sadrawi, Muammar; Sun, Wei-Zen; Ma, Matthew Huei-Ming; Dai, Chun-Yi; Abbod, Maysam F; Shieh, Jiann-Shing

    2016-01-01

    Good quality cardiopulmonary resuscitation (CPR) is the mainstay of treatment for managing patients with out-of-hospital cardiac arrest (OHCA). Assessment of the quality of the CPR delivered is now possible through the electrocardiography (ECG) signal that can be collected by an automated external defibrillator (AED). This study evaluates a nonlinear approximation of the CPR given to the asystole patients. The raw ECG signal is filtered using ensemble empirical mode decomposition (EEMD), and the CPR-related intrinsic mode functions (IMF) are chosen to be evaluated. In addition, sample entropy (SE), complexity index (CI), and detrended fluctuation algorithm (DFA) are collated and statistical analysis is performed using ANOVA. The primary outcome measure assessed is the patient survival rate after two hours. CPR pattern of 951 asystole patients was analyzed for quality of CPR delivered. There was no significant difference observed in the CPR-related IMFs peak-to-peak interval analysis for patients who are younger or older than 60 years of age, similarly to the amplitude difference evaluation for SE and DFA. However, there is a difference noted for the CI (p < 0.05). The results show that patients group younger than 60 years have higher survival rate with high complexity of the CPR-IMFs amplitude differences. PMID:27529068

  3. Singular Value Decomposition Based Features for Automatic Tumor Detection in Wireless Capsule Endoscopy Images

    PubMed Central

    Karimian Khosroshahi, Ghader; Zolfy Lighvan, Mina

    2016-01-01

    Wireless capsule endoscopy (WCE) is a new noninvasive instrument which allows direct observation of the gastrointestinal tract to diagnose its relative diseases. Because of the large number of images obtained from the capsule endoscopy per patient, doctors need too much time to investigate all of them. So, it would be worthwhile to design a system for detecting diseases automatically. In this paper, a new method is presented for automatic detection of tumors in the WCE images. This method will utilize the advantages of the discrete wavelet transform (DWT) and singular value decomposition (SVD) algorithms to extract features from different color channels of the WCE images. Therefore, the extracted features are invariant to rotation and can describe multiresolution characteristics of the WCE images. In order to classify the WCE images, the support vector machine (SVM) method is applied to a data set which includes 400 normal and 400 tumor WCE images. The experimental results show proper performance of the proposed algorithm for detection and isolation of the tumor images which, in the best way, shows 94%, 93%, and 93.5% of sensitivity, specificity, and accuracy in the RGB color space, respectively. PMID:27478364

  4. Nanostructured Polyphase Catalysts Based on the Solid Component of Welding Aerosol for Ozone Decomposition

    NASA Astrophysics Data System (ADS)

    Rakitskaya, Tatyana; Truba, Alla; Ennan, Alim; Volkova, Vitaliya

    2015-12-01

    Samples of the solid component of welding aerosols (SCWAs) were obtained as a result of steel welding by ANO-4, TsL-11, and UONI13/55 electrodes of Ukrainian manufacture. The phase compositions of the samples, both freshly prepared (FP) and modified (M) by water treatment at 60 °C, were studied by X-ray phase analysis and IR spectroscopy. All samples contain magnetite demonstrating its reflex at 2 θ ~ 35° characteristic of cubic spinel as well as manganochromite and iron oxides. FP SCWA-TsL and FP SCWA-UONI contain such phases as CaF2, water-soluble fluorides, chromates, and carbonates of alkali metals. After modification of the SCWA samples, water-soluble phases in their composition are undetectable. The size of magnetite nanoparticles varies from 15 to 68 nm depending on the chemical composition of electrodes under study. IR spectral investigations confirm the polyphase composition of the SCWAs. As to IR spectra, the biggest differences are apparent in the regions of deformation vibrations of M-O-H bonds and stretching vibrations of M-O bonds (M-Fe, Cr). The catalytic activity of the SCWAs in the reaction of ozone decomposition decreases in the order SCWA-ANO > SCWA-UONI > SCWA-TsL corresponding to the decrease in the content of catalytically active phases in their compositions.

  5. Nanostructured Polyphase Catalysts Based on the Solid Component of Welding Aerosol for Ozone Decomposition.

    PubMed

    Rakitskaya, Tatyana; Truba, Alla; Ennan, Alim; Volkova, Vitaliya

    2015-12-01

    Samples of the solid component of welding aerosols (SCWAs) were obtained as a result of steel welding by ANO-4, TsL‑11, and UONI13/55 electrodes of Ukrainian manufacture. The phase compositions of the samples, both freshly prepared (FP) and modified (M) by water treatment at 60 °C, were studied by X-ray phase analysis and IR spectroscopy. All samples contain magnetite demonstrating its reflex at 2θ ~ 35° characteristic of cubic spinel as well as manganochromite and iron oxides. FP SCWA-TsL and FP SCWA-UONI contain such phases as СaF2, water-soluble fluorides, chromates, and carbonates of alkali metals. After modification of the SCWA samples, water-soluble phases in their composition are undetectable. The size of magnetite nanoparticles varies from 15 to 68 nm depending on the chemical composition of electrodes under study. IR spectral investigations confirm the polyphase composition of the SCWAs. As to IR spectra, the biggest differences are apparent in the regions of deformation vibrations of M-O-H bonds and stretching vibrations of M-O bonds (M-Fe, Cr). The catalytic activity of the SCWAs in the reaction of ozone decomposition decreases in the order SCWA-ANO > SCWA-UONI > SCWA-TsL corresponding to the decrease in the content of catalytically active phases in their compositions.

  6. Experimental methodology for turbocompressor in-duct noise evaluation based on beamforming wave decomposition

    NASA Astrophysics Data System (ADS)

    Torregrosa, A. J.; Broatch, A.; Margot, X.; García-Tíscar, J.

    2016-08-01

    An experimental methodology is proposed to assess the noise emission of centrifugal turbocompressors like those of automotive turbochargers. A step-by-step procedure is detailed, starting from the theoretical considerations of sound measurement in flow ducts and examining specific experimental setup guidelines and signal processing routines. Special care is taken regarding some limiting factors that adversely affect the measuring of sound intensity in ducts, namely calibration, sensor placement and frequency ranges and restrictions. In order to provide illustrative examples of the proposed techniques and results, the methodology has been applied to the acoustic evaluation of a small automotive turbocharger in a flow bench. Samples of raw pressure spectra, decomposed pressure waves, calibration results, accurate surge characterization and final compressor noise maps and estimated spectrograms are provided. The analysis of selected frequency bands successfully shows how different, known noise phenomena of particular interest such as mid-frequency "whoosh noise" and low-frequency surge onset are correlated with operating conditions of the turbocharger. Comparison against external inlet orifice intensity measurements shows good correlation and improvement with respect to alternative wave decomposition techniques.

  7. Spectral analysis of Hall-effect thruster plasma oscillations based on the empirical mode decomposition

    SciTech Connect

    Kurzyna, J.; Mazouffre, S.; Lazurenko, A.; Albarede, L.; Bonhomme, G.; Makowski, K.; Dudeck, M.; Peradzynski, Z.

    2005-12-15

    Hall-effect thruster plasma oscillations recorded by means of probes located at the channel exit are analyzed using the empirical mode decomposition (EMD) method. This self-adaptive technique permits to decompose a nonstationary signal into a set of intrinsic modes, and acts as a very efficient filter allowing to separate contributions of different underlying physical mechanisms. Applying the Hilbert transform to the whole set of modes allows to identify peculiar events and to assign them a range of instantaneous frequency and power. In addition to 25 kHz breathing-type oscillations which are unambiguously identified, the EMD approach confirms the existence of oscillations with instantaneous frequencies in the range of 100-500 kHz typical for ion transit-time oscillations. Modeling of high-frequency modes ({nu}{approx}10 MHz) resulting from EMD of measured wave forms supports the idea that high-frequency plasma oscillations originate from electron-density perturbations propagating azimuthally with the electron drift velocity.

  8. Streaming visualisation of quantitative mass spectrometry data based on a novel raw signal decomposition method

    PubMed Central

    Zhang, Yan; Bhamber, Ranjeet; Riba-Garcia, Isabel; Liao, Hanqing; Unwin, Richard D; Dowsey, Andrew W

    2015-01-01

    As data rates rise, there is a danger that informatics for high-throughput LC-MS becomes more opaque and inaccessible to practitioners. It is therefore critical that efficient visualisation tools are available to facilitate quality control, verification, validation, interpretation, and sharing of raw MS data and the results of MS analyses. Currently, MS data is stored as contiguous spectra. Recall of individual spectra is quick but panoramas, zooming and panning across whole datasets necessitates processing/memory overheads impractical for interactive use. Moreover, visualisation is challenging if significant quantification data is missing due to data-dependent acquisition of MS/MS spectra. In order to tackle these issues, we leverage our seaMass technique for novel signal decomposition. LC-MS data is modelled as a 2D surface through selection of a sparse set of weighted B-spline basis functions from an over-complete dictionary. By ordering and spatially partitioning the weights with an R-tree data model, efficient streaming visualisations are achieved. In this paper, we describe the core MS1 visualisation engine and overlay of MS/MS annotations. This enables the mass spectrometrist to quickly inspect whole runs for ionisation/chromatographic issues, MS/MS precursors for coverage problems, or putative biomarkers for interferences, for example. The open-source software is available from http://seamass.net/viz/. PMID:25663356

  9. An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    2007-01-01

    A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs, such as thrust. The engine's performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends on knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined that accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.

  10. An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    2007-01-01

    A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs, such as thrust. The engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends on knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined that accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least-squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.

  11. An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    2005-01-01

    A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs such as thrust. The engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends upon knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined which accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.

  12. Phantom-less bone mineral density (BMD) measurement using dual energy computed tomography-based 3-material decomposition

    NASA Astrophysics Data System (ADS)

    Hofmann, Philipp; Sedlmair, Martin; Krauss, Bernhard; Wichmann, Julian L.; Bauer, Ralf W.; Flohr, Thomas G.; Mahnken, Andreas H.

    2016-03-01

    Osteoporosis is a degenerative bone disease usually diagnosed at the manifestation of fragility fractures, which severely endanger the health of especially the elderly. To ensure timely therapeutic countermeasures, noninvasive and widely applicable diagnostic methods are required. Currently the primary quantifiable indicator for bone stability, bone mineral density (BMD), is obtained either by DEXA (Dual-energy X-ray absorptiometry) or qCT (quantitative CT). Both have respective advantages and disadvantages, with DEXA being considered as gold standard. For timely diagnosis of osteoporosis, another CT-based method is presented. A Dual Energy CT reconstruction workflow is being developed to evaluate BMD by evaluating lumbar spine (L1-L4) DE-CT images. The workflow is ROI-based and automated for practical use. A dual energy 3-material decomposition algorithm is used to differentiate bone from soft tissue and fat attenuation. The algorithm uses material attenuation coefficients on different beam energy levels. The bone fraction of the three different tissues is used to calculate the amount of hydroxylapatite in the trabecular bone of the corpus vertebrae inside a predefined ROI. Calibrations have been performed to obtain volumetric bone mineral density (vBMD) without having to add a calibration phantom or to use special scan protocols or hardware. Accuracy and precision are dependent on image noise and comparable to qCT images. Clinical indications are in accordance with the DEXA gold standard. The decomposition-based workflow shows bone degradation effects normally not visible on standard CT images which would induce errors in normal qCT results.

  13. Base metal-catalyzed benzylic oxidation of (aryl)(heteroaryl)methanes with molecular oxygen

    PubMed Central

    Sterckx, Hans; De Houwer, Johan; Mensch, Carl; Herrebout, Wouter; Tehrani, Kourosch Abbaspour

    2016-01-01

    Summary The methylene group of various substituted 2- and 4-benzylpyridines, benzyldiazines and benzyl(iso)quinolines was successfully oxidized to the corresponding benzylic ketones using a copper or iron catalyst and molecular oxygen as the stoichiometric oxidant. Application of the protocol in API synthesis is exemplified by the alternative synthesis of a precursor to the antimalarial drug Mefloquine. The oxidation method can also be used to prepare metabolites of APIs which is illustrated for the natural product papaverine. ICP–MS analysis of the purified reaction products revealed that the base metal impurity was well below the regulatory limit. PMID:26877817

  14. Triazole-based monophosphine ligands for palladium-catalyzed cross-coupling reactions of aryl chlorides.

    PubMed

    Dai, Qian; Gao, Wenzhong; Liu, Duan; Kapes, Lea M; Zhang, Xumu

    2006-05-12

    A variety of triazole-based monophosphines (ClickPhos) have been prepared via efficient 1,3-dipolar cycloaddition of readily available azides and acetylenes. Their palladium complexes provided excellent yields in the amination reactions and Suzuki-Miyaura coupling reactions of unactivated aryl chlorides. Ligand 7i, which has a 2,6-dimethoxybenzene moiety, provided good results in Suzuki-Miyaura reaction to form hindered biaryls. A CAChe model for the Pd/7i complex shows that the likelihood of a Pd-arene interaction might be a rationale for its high catalytic reactivity.

  15. Reactions catalyzed by haloporphyrins

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1996-02-06

    The invention provides novel methods for the oxidation of hydrocarbons with oxygen-containing gas to form hydroxy-group containing compounds and for the decomposition of hydroperoxides to form hydroxy-group containing compounds. The catalysts used in the methods of the invention comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The catalyst compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of alkanes is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of alkanes and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of alkanes and decomposition of alkyl hydroperoxides.

  16. Reactions catalyzed by haloporphyrins

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1996-01-01

    The invention provides novel methods for the oxidation of hydrocarbons with oxygen-containing gas to form hydroxy-group containing compounds and for the decomposition of hydroperoxides to form hydroxygroup containing compounds. The catalysts used in the methods of the invention comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The catalyst compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of alkanes is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of alkanes and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of alkanes and decomposition of alkyl hydroperoxides.

  17. Efficient water oxidation catalyzed by mononuclear ruthenium(II) complexes incorporating Schiff base ligands.

    PubMed

    Li, Ting-Ting; Chen, Yong; Li, Fu-Min; Zhao, Wei-Liang; Wang, Chuan-Jun; Lv, Xiao-Jun; Xu, Quan-Qing; Fu, Wen-Fu

    2014-06-23

    Four new charge-neutral ruthenium(II) complexes containing dianionic Schiff base and isoquinoline or 4-picoline ligands were synthesized and characterized by NMR and ESI-MS spectroscopies, elemental analysis, and X-ray diffraction. The complexes exhibited excellent chemical water oxidation activity and high stability under acidic conditions (pH 1.0) using (NH4)2Ce(NO3)6 as a sacrificial electron acceptor. The high catalytic activities of these complexes for water oxidation were sustained for more than 10 h at low concentrations. High turnover numbers of up to 3200 were achieved. A water nucleophilic attack mechanism was proposed. A Ru(V)=O intermediate was detected during the catalytic cycle by high-resolution mass spectrometry.

  18. Bio-based nitriles from the heterogeneously catalyzed oxidative decarboxylation of amino acids.

    PubMed

    Claes, Laurens; Matthessen, Roman; Rombouts, Ine; Stassen, Ivo; De Baerdemaeker, Trees; Depla, Diederik; Delcour, Jan A; Lagrain, Bert; De Vos, Dirk E

    2015-01-01

    The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4 Br, and H2 O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90 %. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a protein-rich byproduct from the starch industry into useful bio-based N-containing chemicals.

  19. Gyroscope-driven mouse pointer with an EMOTIV® EEG headset and data analysis based on Empirical Mode Decomposition.

    PubMed

    Rosas-Cholula, Gerardo; Ramirez-Cortes, Juan Manuel; Alarcon-Aquino, Vicente; Gomez-Gil, Pilar; Rangel-Magdaleno, Jose de Jesus; Reyes-Garcia, Carlos

    2013-08-14

    This paper presents a project on the development of a cursor control emulating the typical operations of a computer-mouse, using gyroscope and eye-blinking electromyographic signals which are obtained through a commercial 16-electrode wireless headset, recently released by Emotiv. The cursor position is controlled using information from a gyroscope included in the headset. The clicks are generated through the user's blinking with an adequate detection procedure based on the spectral-like technique called Empirical Mode Decomposition (EMD). EMD is proposed as a simple and quick computational tool, yet effective, aimed to artifact reduction from head movements as well as a method to detect blinking signals for mouse control. Kalman filter is used as state estimator for mouse position control and jitter removal. The detection rate obtained in average was 94.9%. Experimental setup and some obtained results are presented.

  20. Analysis of Vibration and Noise of Construction Machinery Based on Ensemble Empirical Mode Decomposition and Spectral Correlation Analysis Method

    NASA Astrophysics Data System (ADS)

    Chen, Yuebiao; Zhou, Yiqi; Yu, Gang; Lu, Dan

    In order to analyze the effect of engine vibration on cab noise of construction machinery in multi-frequency bands, a new method based on ensemble empirical mode decomposition (EEMD) and spectral correlation analysis is proposed. Firstly, the intrinsic mode functions (IMFs) of vibration and noise signals were obtained by EEMD method, and then the IMFs which have the same frequency bands were selected. Secondly, we calculated the spectral correlation coefficients between the selected IMFs, getting the main frequency bands in which engine vibration has significant impact on cab noise. Thirdly, the dominated frequencies were picked out and analyzed by spectral analysis method. The study result shows that the main frequency bands and dominated frequencies in which engine vibration have serious impact on cab noise can be identified effectively by the proposed method, which provides effective guidance to noise reduction of construction machinery.

  1. Gyroscope-driven mouse pointer with an EMOTIV® EEG headset and data analysis based on Empirical Mode Decomposition.

    PubMed

    Rosas-Cholula, Gerardo; Ramirez-Cortes, Juan Manuel; Alarcon-Aquino, Vicente; Gomez-Gil, Pilar; Rangel-Magdaleno, Jose de Jesus; Reyes-Garcia, Carlos

    2013-01-01

    This paper presents a project on the development of a cursor control emulating the typical operations of a computer-mouse, using gyroscope and eye-blinking electromyographic signals which are obtained through a commercial 16-electrode wireless headset, recently released by Emotiv. The cursor position is controlled using information from a gyroscope included in the headset. The clicks are generated through the user's blinking with an adequate detection procedure based on the spectral-like technique called Empirical Mode Decomposition (EMD). EMD is proposed as a simple and quick computational tool, yet effective, aimed to artifact reduction from head movements as well as a method to detect blinking signals for mouse control. Kalman filter is used as state estimator for mouse position control and jitter removal. The detection rate obtained in average was 94.9%. Experimental setup and some obtained results are presented. PMID:23948873

  2. Synthesis of a pillar[5]arene-based [2]rotaxane with two equivalent stations via copper(I)-catalyzed alkyne-azide cycloaddition.

    PubMed

    Ogoshi, Tomoki; Iizuka, Ryo; Kotera, Daisuke; Yamagishi, Tada-aki

    2015-01-16

    A one-pot synthesis of pillar[5]arene-based [2]rotaxanes containing one and two stations by copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction is reported. In situ formation of the two stations by two stepwise CuAAC reactions allows for the synthesis of a [2]rotaxane containing two stations with equal energy levels that exhibit shuttling of the pillar[5]arene wheel.

  3. Cobalt-Schiff base complex catalyzed oxidation of para-substituted phenolics. Preparation of benzoquinones

    SciTech Connect

    Bozell, J.J.; Hames, B.R.; Dimmel, D.R.

    1995-04-21

    Para-substituted phenolics, serving as models for lignin (a renewable source of carbon), are oxidized to the corresponding benzoquinone with oxygen in the presence of catalytic amounts of Co-Schiff base complexes. The reaction products observed depend on the structure of the catalyst. The 5-coordinate catalysts (pyridine)[bis(salicylidene)ethylenediamine]cobalt[(pyr)Co(salen)]and[bis(salicylideneamino)ethylamine]cobalt [Co(n-Me salpr)] convert syringyl alcohol (3,5-dimethoxy-4-hydroxybenzyl alcohol) to 2,6-dimethoxybenzoquinone in high yield. In contrast, syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde) is unreactive toward these catalysts. However, the 4-coordinate Co(salen) converts syringaldehyde to 2,6-dimethoxybenzoiquinone in 72% isolated yield. Phenols bearing a single methoxy group on the ring are unreactive toward any catalyst in MeOH. However, vanillyl alcohol (3-methoxy-4-hydroxybenzyl alcohol) is converted to 2-methoxybenzo-quinone with Co(N-Me salpr) and oxygen in 43% yield in CH{sub 2}Cl{sub 2} and 58% yield in CH{sub 2}Cl{sub 2} in the presence of 1% CuCl{sub 2}. The success of the oxidations appears to be related to the ease of removal of the phenolic hydrogen by the Co/O{sub 2} complex. Competitive deactivation of the catalyst occurs with substrates of lower reactivity. 84 tabs.

  4. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    SciTech Connect

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositional ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.

  5. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    DOE PAGESBeta

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositionalmore » ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.« less

  6. Supercritical Fluid Atomic Layer Deposition: Base-Catalyzed Deposition of SiO2.

    PubMed

    Kalan, Roghi E; McCool, Benjamin A; Tripp, Carl P

    2016-07-19

    An in situ FTIR thin film technique was used to study the sequential atomic layer deposition (ALD) reactions of SiCl4, tetraethyl orthosilicate (TEOS) precursors, and water on nonporous silica powder using supercritical CO2 (sc-CO2) as the solvent. The IR work on nonporous powders was used to identify the reaction sequence for using a sc-CO2-based ALD to tune the pore size of a mesoporous silica. The IR studies showed that only trace adsorption of SiCl4 occurred on the silica, and this was due to the desiccating power of sc-CO2 to remove the adsorbed water from the surface. This was overcome by employing a three-step reaction scheme involving a first step of adsorption of triethylamine (TEA), followed by SiCl4 and then H2O. For TEOS, a three-step reaction sequence using TEA, TEOS, and then water offered no advantage, as the TEOS simply displaced the TEA from the silica surface. A two-step reaction involving the addition of TEOS followed by H2O in a second step did lead to silica film growth. However, higher growth rates were obtained when using a mixture of TEOS/TEA in the first step. The hydrolysis of the adsorbed TEOS was also much slower than that of the adsorbed SiCl4, and this was overcome by using a mixture of water/TEA during the second step. While the three-step process with SiCl4 showed a higher linear growth rate than obtained with two-step process using TEOS/TEA, its use was not practical, as the HCl generated led to corrosion of our sc-CO2 delivery system. However, when applying the two-step ALD reaction using TEOS on an MCM-41 powder, a 0.21 nm decrease in pore diameter was obtained after the first ALD cycle whereas further ALD cycles did not lead to further pore size reduction. This was attributed to the difficulty in removal of the H2O in the pores after the first cycle. PMID:27338186

  7. A base-catalyzed mechanism for dark state recovery in the Avena sativa phototropin-1 LOV2 domain.

    PubMed

    Alexandre, Maxime T A; Arents, Jos C; van Grondelle, Rienk; Hellingwerf, Klaas J; Kennis, John T M

    2007-03-20

    Phototropins are autophosphorylating serine/threonine kinases responsible for blue-light perception in plants; their action gives rise to phototropism, chloroplast relocation, and opening of stomatal guard cells. The kinase domain constitutes the C-terminal part of Avena sativa phototropin 1. The N-terminal part contains two light, oxygen, or voltage (LOV) sensing domains, LOV1 and LOV2; each binds a flavin mononucleotide (FMN) chromophore (lambdamax = 447 nm, termed D447) and forms the light-sensitive domains, of which LOV2 is the principal component. Blue-light absorption produces a covalent adduct between a very conserved nearby cysteine residue and the C(4a) atom of the FMN moiety via the triplet state of the flavin. The covalent adduct thermally decays to regenerate the D447 dark state, with a rate that may vary by several orders of magnitude between different species. We report that the imidazole base can act as a very efficient enhancer of the dark recovery of A. sativa phot1 LOV2 (AsLOV2) and some other well-characterized LOV domains. Imidazole accelerates the thermal decay of AsLOV2 by 3 orders of magnitude in the submolar concentration range, via a base-catalyzed mechanism involving base abstraction of the FMN N(5)-H adduct state and subsequent reprotonation of the reactive cysteine. The LOV2 crystal structure suggests that the imidazole molecules may act from a cavity located in the vicinity of the FMN, explaining its high efficiency, populated through a channel connecting the cavity to the protein surface. Use of pH titration and chemical inactivation by diethyl pyrocarbonate (DEPC) suggests that histidines located at the surface of the LOV domain act as base catalysts via an as yet unidentified H-bond network, operating at a rate of (55 s)-1 at pH 8. In addition, molecular processes other than histidine-mediated base catalysis contibute significantly to the total thermal decay rate of the adduct and operate at a rate constant of (65 s)-1, leading to a

  8. Monitoring enzyme-catalyzed reactions in micromachined nanoliter wells using a conventional microscope-based microarray reader

    NASA Astrophysics Data System (ADS)

    van den Doel, L. Richard; Moerman, R.; van Dedem, G. W. K.; Young, Ian T.; van Vliet, Lucas J.

    2002-06-01

    Yeast-Saccharomyces cerevisiae - it widely used as a model system for other higher eukaryotes, including man. One of the basic fermentation processes in yeast is the glycolytic pathway, which is the conversion of glucose to ethanol and carbon dioxide. This pathway consists of 12 enzyme-catalyzed reactions. With the approach of microarray technology we want to explore the metabolic regulation of this pathway in yeast. This paper will focus on the design of a conventional microscope based microarray reader, which is used to monitor these enzymatic reactions in microarrays. These microarrays are fabricated in silicon and have sizes of 300 by 300 micrometers 2. The depth varies from 20 to 50 micrometers . Enzyme activity levels can be derived by monitoring the production or consumption rate of NAD(P)H, which is excited at 360nm and emits around 450nm. This fluorophore is involved in all 12 reactions of the pathway. The microarray reader is equipped with a back-illuminated CCD camera in order to obtain a high quantum efficiency for the lower wavelengths. The dynamic range of our microarray reader varies form 5(mu) Molar to 1mMolar NAD(P)H. With this microarray reader enzyme activity levels down to 0.01 unit per milliliter can be monitored. The acquisition time per well is 0.1s. The total scan cycle time for a 5 X 5 microarray is less than half a minute. The number of cycles for a proper estimation of the enzyme activity is inversely proportional to the enzyme activity: long measurement times are needed to determine low enzyme activity levels.

  9. Multiscale Detrended Cross-Correlation Analysis of Traffic Time Series Based on Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Yin, Yi; Shang, Pengjian

    2015-04-01

    In this paper, we propose multiscale detrended cross-correlation analysis (MSDCCA) to detect the long-range power-law cross-correlation of considered signals in the presence of nonstationarity. For improving the performance and getting better robustness, we further introduce the empirical mode decomposition (EMD) to eliminate the noise effects and propose MSDCCA method combined with EMD, which is called MS-EDXA method, then systematically investigate the multiscale cross-correlation structure of the real traffic signals. We apply the MSDCCA and MS-EDXA methods to study the cross-correlations in three situations: velocity and volume on one lane, velocities on the present and the next moment and velocities on the adjacent lanes, and further compare their spectrums respectively. When the difference between the spectrums of MSDCCA and MS-EDXA becomes unobvious, there is a crossover which denotes the turning point of difference. The crossover results from the competition between the noise effects in the original signals and the intrinsic fluctuation of traffic signals and divides the plot of spectrums into two regions. In all the three case, MS-EDXA method makes the average of local scaling exponents increased and the standard deviation decreased and provides a relative stable persistent scaling cross-correlated behavior which gets the analysis more precise and more robust and improves the performance after noises being removed. Applying MS-EDXA method avoids the inaccurate characteristics of multiscale cross-correlation structure at the short scale including the spectrum minimum, the range for the spectrum fluctuation and general trend, which are caused by the noise in the original signals. We get the conclusions that the traffic velocity and volume are long-range cross-correlated, which is accordant to their actual evolution, while velocities on the present and the next moment and velocities on adjacent lanes reflect the strong cross-correlations both in temporal and

  10. Study on the decomposition of trace benzene over V2O5-WO3/TiO2-based catalysts in simulated flue gas

    EPA Science Inventory

    Commercial and laboratory-prepared V2O5–WO3/TiO2-based catalysts with different compositions were tested for catalytic decomposition of chlorobenzene (ClBz) in simulated flue gas. Resonance enhanced multiphoton ionization-time of flight mass spectrometry (REMP...

  11. Study on the decomposition of trace benzene over V2O5-WO3/TiO2-based catalysts in simulated flue gas

    EPA Science Inventory

    Commercial and laboratory-prepared V2O5–WO3/TiO2-based catalysts with different compositions were tested for catalytic decomposition of chlorobenzene (ClBz) in simulated flue gas. Resonance enhanced multiphoton ionization-time of flight mass spectrometry (REMPI-TOFMS) was employe...

  12. A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy

    NASA Astrophysics Data System (ADS)

    Li, Yongbo; Xu, Minqiang; Wang, Rixin; Huang, Wenhu

    2016-01-01

    This paper presents a new rolling bearing fault diagnosis method based on local mean decomposition (LMD), improved multiscale fuzzy entropy (IMFE), Laplacian score (LS) and improved support vector machine based binary tree (ISVM-BT). When the fault occurs in rolling bearings, the measured vibration signal is a multi-component amplitude-modulated and frequency-modulated (AM-FM) signal. LMD, a new self-adaptive time-frequency analysis method can decompose any complicated signal into a series of product functions (PFs), each of which is exactly a mono-component AM-FM signal. Hence, LMD is introduced to preprocess the vibration signal. Furthermore, IMFE that is designed to avoid the inaccurate estimation of fuzzy entropy can be utilized to quantify the complexity and self-similarity of time series for a range of scales based on fuzzy entropy. Besides, the LS approach is introduced to refine the fault features by sorting the scale factors. Subsequently, the obtained features are fed into the multi-fault classifier ISVM-BT to automatically fulfill the fault pattern identifications. The experimental results validate the effectiveness of the methodology and demonstrate that proposed algorithm can be applied to recognize the different categories and severities of rolling bearings.

  13. Kinetics of non-catalyzed hydrolysis of tannin in high temperature liquid water*

    PubMed Central

    Lu, Li-li; Lu, Xiu-yang; Ma, Nan

    2008-01-01

    High temperature liquid water (HTLW) has drawn increasing attention as an environmentally benign medium for organic chemical reactions, especially acid-/base-catalyzed reactions. Non-catalyzed hydrolyses of gallotannin and tara tannin in HTLW for the simultaneous preparation of gallic acid (GA) and pyrogallol (PY) are under investigation in our laboratory. In this study, the hydrolysis kinetics of gallotannin and tara tannin were determined. The reaction is indicated to be a typical consecutive first-order one in which GA has formed as a main intermediate and PY as the final product. Selective decomposition of tannin in HTLW was proved to be possible by adjusting reaction temperature and time. The present results provide an important basic data and reference for the green preparation of GA and PY. PMID:18500780

  14. Database decomposition of a knowledge-based CAD system in mammography: an ensemble approach to improve detection

    NASA Astrophysics Data System (ADS)

    Mazurowski, Maciej A.; Zurada, Jacek M.; Tourassi, Georgia D.

    2008-03-01

    Although ensemble techniques have been investigated in supervised machine learning, their potential with knowledge-based systems is unexplored. The purpose of this study is to investigate the ensemble approach with a knowledge-based (KB) CAD system for the detection of masses in screening mammograms. The system is designed to determine the presence of a mass in a query mammographic region of interest (ROI) based on its similarity with previously acquired examples of mass and normal cases. Similarity between images is assessed using normalized mutual information. Two different approaches of knowledge database decomposition were investigated to create the ensemble. The first approach was random division of the knowledge database into a pre-specified number of equal size, separate groups. The second approach was based on k-means clustering of the knowledge cases according to common texture features extracted from the ROIs. The ensemble components were fused using a linear classifier. Based on a database of 1820 ROIs (901 masses and 919 and the leave-one-out crossvalidation scheme, the ensemble techniques improved the performance of the original KB-CAD system (A z = 0.86+/-0.01). Specifically, random division resulted in ROC area index of A z = 0.90 +/- 0.01 while k-means clustering provided further improvement (A z = 0.91 +/- 0.01). Although marginally better, the improvement was statistically significant. The superiority of the k-means clustering scheme was robust regardless of the number of clusters. This study supports the idea of incorporation of ensemble techniques with knowledge-based systems in mammography.

  15. β-Amino acid catalyzed asymmetric Michael additions: design of organocatalysts with catalytic acid/base dyad inspired by serine proteases.

    PubMed

    Yang, Hui; Wong, Ming Wah

    2011-09-16

    A new type of chiral β-amino acid catalyst has been computationally designed, mimicking the enzyme catalysis of serine proteases. Our catalyst approach is based on the bioinspired catalytic acid/base dyad, namely, a carboxyl and imidazole pair. DFT calculations predict that this designed organocatalyst catalyzes Michael additions of aldehydes to nitroalkenes with excellent enantioselectivities and remarkably high anti diastereoselectivities. The unusual stacked geometry of the enamine intermediate, hydrogen bonding network, and the adoption of an exo transition state are the keys to understand the stereoselectivity.

  16. [Research on ECG de-noising method based on ensemble empirical mode decomposition and wavelet transform using improved threshold function].

    PubMed

    Ye, Linlin; Yang, Dan; Wang, Xu

    2014-06-01

    A de-noising method for electrocardiogram (ECG) based on ensemble empirical mode decomposition (EEMD) and wavelet threshold de-noising theory is proposed in our school. We decomposed noised ECG signals with the proposed method using the EEMD and calculated a series of intrinsic mode functions (IMFs). Then we selected IMFs and reconstructed them to realize the de-noising for ECG. The processed ECG signals were filtered again with wavelet transform using improved threshold function. In the experiments, MIT-BIH ECG database was used for evaluating the performance of the proposed method, contrasting with de-noising method based on EEMD and wavelet transform with improved threshold function alone in parameters of signal to noise ratio (SNR) and mean square error (MSE). The results showed that the ECG waveforms de-noised with the proposed method were smooth and the amplitudes of ECG features did not attenuate. In conclusion, the method discussed in this paper can realize the ECG denoising and meanwhile keep the characteristics of original ECG signal. PMID:25219236

  17. [Research on ECG de-noising method based on ensemble empirical mode decomposition and wavelet transform using improved threshold function].

    PubMed

    Ye, Linlin; Yang, Dan; Wang, Xu

    2014-06-01

    A de-noising method for electrocardiogram (ECG) based on ensemble empirical mode decomposition (EEMD) and wavelet threshold de-noising theory is proposed in our school. We decomposed noised ECG signals with the proposed method using the EEMD and calculated a series of intrinsic mode functions (IMFs). Then we selected IMFs and reconstructed them to realize the de-noising for ECG. The processed ECG signals were filtered again with wavelet transform using improved threshold function. In the experiments, MIT-BIH ECG database was used for evaluating the performance of the proposed method, contrasting with de-noising method based on EEMD and wavelet transform with improved threshold function alone in parameters of signal to noise ratio (SNR) and mean square error (MSE). The results showed that the ECG waveforms de-noised with the proposed method were smooth and the amplitudes of ECG features did not attenuate. In conclusion, the method discussed in this paper can realize the ECG denoising and meanwhile keep the characteristics of original ECG signal.

  18. Segmentation of knee joints in x-ray images using decomposition-based sweeping and graph search

    NASA Astrophysics Data System (ADS)

    Mu, Jian; Liu, Xiaomin; Luan, Shuang; Heintz, Philip H.; Mlady, Gary W.; Chen, Danny Z.

    2011-03-01

    Plain radiography (i.e., X-ray imaging) provides an effective and economical imaging modality for diagnosing knee illnesses and injuries. Automatically segmenting and analyzing knee radiographs is a challenging problem. In this paper, we present a new approach for accurately segmenting the knee joint in X-ray images. We first use the Gaussian high-pass filter to remove homogeneous regions which are unlikely to appear on bone contours. We then presegment the bones and develop a novel decomposition-based sweeping algorithm for extracting bone contour topology from the filtered skeletonized images. Our sweeping algorithm decomposes the bone structures into several relatively simple components and deals with each component separately based on its geometric characteristics using a sweeping strategy. Utilizing the presegmentation, we construct a graph to model the bone topology and apply an optimal graph search algorithm to optimize the segmentation results (with respect to our cost function defined on the bone boundaries). Our segmented results match well with the manual tracing results by radiologists. Our segmentation approach can be a valuable tool for assisting radiologists and X-ray technologists in clinical practice and training.

  19. A Cutting Pattern Recognition Method for Shearers Based on Improved Ensemble Empirical Mode Decomposition and a Probabilistic Neural Network

    PubMed Central

    Xu, Jing; Wang, Zhongbin; Tan, Chao; Si, Lei; Liu, Xinhua

    2015-01-01

    In order to guarantee the stable operation of shearers and promote construction of an automatic coal mining working face, an online cutting pattern recognition method with high accuracy and speed based on Improved Ensemble Empirical Mode Decomposition (IEEMD) and Probabilistic Neural Network (PNN) is proposed. An industrial microphone is installed on the shearer and the cutting sound is collected as the recognition criterion to overcome the disadvantages of giant size, contact measurement and low identification rate of traditional detectors. To avoid end-point effects and get rid of undesirable intrinsic mode function (IMF) components in the initial signal, IEEMD is conducted on the sound. The end-point continuation based on the practical storage data is performed first to overcome the end-point effect. Next the average correlation coefficient, which is calculated by the correlation of the first IMF with others, is introduced to select essential IMFs. Then the energy and standard deviation of the reminder IMFs are extracted as features and PNN is applied to classify the cutting patterns. Finally, a simulation example, with an accuracy of 92.67%, and an industrial application prove the efficiency and correctness of the proposed method. PMID:26528985

  20. The response of the HMX-based material PBXN-9 to thermal insults: thermal decomposition kinetics and morphological changes

    SciTech Connect

    Glascoe, E A; Hsu, P C; Springer, H K; DeHaven, M R; Tan, N; Turner, H C

    2010-12-10

    PBXN-9, an HMX-formulation, is thermally damaged and thermally decomposed in order to determine the morphological changes and decomposition kinetics that occur in the material after mild to moderate heating. The material and its constituents were decomposed using standard thermal analysis techniques (DSC and TGA) and the decomposition kinetics are reported using different kinetic models. Pressed parts and prill were thermally damaged, i.e. heated to temperatures that resulted in material changes but did not result in significant decomposition or explosion, and analyzed. In general, the thermally damaged samples showed a significant increase in porosity and decrease in density and a small amount of weight loss. These PBXN-9 samples appear to sustain more thermal damage than similar HMX-Viton A formulations and the most likely reasons are the decomposition/evaporation of a volatile plasticizer and a polymorphic transition of the HMX from {beta} to {delta} phase.

  1. Prostate tissue decomposition via DECT using the model based iterative image reconstruction algorithm DIRA

    NASA Astrophysics Data System (ADS)

    Malusek, Alexandr; Magnusson, Maria; Sandborg, Michael; Westin, Robin; Alm Carlsson, Gudrun

    2014-03-01

    Better knowledge of elemental composition of patient tissues may improve the accuracy of absorbed dose delivery in brachytherapy. Deficiencies of water-based protocols have been recognized and work is ongoing to implement patient-specific radiation treatment protocols. A model based iterative image reconstruction algorithm DIRA has been developed by the authors to automatically decompose patient tissues to two or three base components via dual-energy computed tomography. Performance of an updated version of DIRA was evaluated for the determination of prostate calcification. A computer simulation using an anthropomorphic phantom showed that the mass fraction of calcium in the prostate tissue was determined with accuracy better than 9%. The calculated mass fraction was little affected by the choice of the material triplet for the surrounding soft tissue. Relative differences between true and approximated values of linear attenuation coefficient and mass energy absorption coefficient for the prostate tissue were less than 6% for photon energies from 1 keV to 2 MeV. The results indicate that DIRA has the potential to improve the accuracy of dose delivery in brachytherapy despite the fact that base material triplets only approximate surrounding soft tissues.

  2. A hybrid fault diagnosis method based on second generation wavelet de-noising and local mean decomposition for rotating machinery.

    PubMed

    Liu, Zhiwen; He, Zhengjia; Guo, Wei; Tang, Zhangchun

    2016-03-01

    In order to extract fault features of large-scale power equipment from strong background noise, a hybrid fault diagnosis method based on the second generation wavelet de-noising (SGWD) and the local mean decomposition (LMD) is proposed in this paper. In this method, a de-noising algorithm of second generation wavelet transform (SGWT) using neighboring coefficients was employed as the pretreatment to remove noise in rotating machinery vibration signals by virtue of its good effect in enhancing the signal-noise ratio (SNR). Then, the LMD method is used to decompose the de-noised signals into several product functions (PFs). The PF corresponding to the faulty feature signal is selected according to the correlation coefficients criterion. Finally, the frequency spectrum is analyzed by applying the FFT to the selected PF. The proposed method is applied to analyze the vibration signals collected from an experimental gearbox and a real locomotive rolling bearing. The results demonstrate that the proposed method has better performances such as high SNR and fast convergence speed than the normal LMD method.

  3. Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyuan; Zhou, Jianzhong

    2013-12-01

    This study presents a novel procedure based on ensemble empirical mode decomposition (EEMD) and optimized support vector machine (SVM) for multi-fault diagnosis of rolling element bearings. The vibration signal is adaptively decomposed into a number of intrinsic mode functions (IMFs) by EEMD. Two types of features, the EEMD energy entropy and singular values of the matrix whose rows are IMFs, are extracted. EEMD energy entropy is used to specify whether the bearing has faults or not. If the bearing has faults, singular values are input to multi-class SVM optimized by inter-cluster distance in the feature space (ICDSVM) to specify the fault type. The proposed method was tested on a system with an electric motor which has two rolling bearings with 8 normal working conditions and 48 fault working conditions. Five groups of experiments were done to evaluate the effectiveness of the proposed method. The results show that the proposed method outperforms other methods both mentioned in this paper and published in other literatures.

  4. Study of recognizing human motion observed from an arbitrary viewpoint based on decomposition of a tensor containing multiple view motions

    NASA Astrophysics Data System (ADS)

    Hori, Takayuki; Ohya, Jun; Kurumisawa, Jun

    2011-03-01

    We propose a Tensor Decomposition based algorithm that recognizes the observed action performed by an unknown person and unknown viewpoint not included in the database. Our previous research aimed motion recognition from one single viewpoint. In this paper, we extend our approach for human motion recognition from an arbitrary viewpoint. To achieve this issue, we set tensor database which are multi-dimensional vectors with dimensions corresponding to human models, viewpoint angles, and action classes. The value of a tensor for a given combination of human silhouette model, viewpoint angle, and action class is the series of mesh feature vectors calculated each frame sequence. To recognize human motion, the actions of one of the persons in the tensor are replaced by the synthesized actions. Then, the core tensor for the replaced tensor is computed. This process is repeated for each combination of action, person, and viewpoint. For each iteration, the difference between the replaced and original core tensors is computed. The assumption that gives the minimal difference is the action recognition result. The recognition results show the validity of our proposed method, the method is experimentally compared with Nearest Neighbor rule. Our proposed method is very stable as each action was recognized with over 75% accuracy.

  5. Room acoustics analysis using circular arrays: an experimental study based on sound field plane-wave decomposition.

    PubMed

    Torres, Ana M; Lopez, Jose J; Pueo, Basilio; Cobos, Maximo

    2013-04-01

    Plane-wave decomposition (PWD) methods using microphone arrays have been shown to be a very useful tool within the applied acoustics community for their multiple applications in room acoustics analysis and synthesis. While many theoretical aspects of PWD have been previously addressed in the literature, the practical advantages of the PWD method to assess the acoustic behavior of real rooms have been barely explored so far. In this paper, the PWD method is employed to analyze the sound field inside a selected set of real rooms having a well-defined purpose. To this end, a circular microphone array is used to capture and process a number of impulse responses at different spatial positions, providing angle-dependent data for both direct and reflected wavefronts. The detection of reflected plane waves is performed by means of image processing techniques applied over the raw array response data and over the PWD data, showing the usefulness of image-processing-based methods for room acoustics analysis.

  6. Variational nature of the frozen density energy in density-based energy decomposition analysis and its application to torsional potentials

    NASA Astrophysics Data System (ADS)

    Wu, Qin

    2014-06-01

    The density-based energy decomposition analysis (DEDA) is the first of its kind to calculate the frozen density energy variationally. Defined with the constrained search formulation of density functional theory, the frozen density energy is optimized in practice using the Wu-Yang (WY) method for constrained minimizations. This variational nature of the frozen density energy, a possible reason behind some novel findings of DEDA, will be fully investigated in this work. In particular, we systematically study the dual basis set dependence in WY: the potential basis set used to expand the Lagrangian multiplier function and the regular orbital basis set. We explain how the convergence progresses differently on these basis sets and how an apparent basis-set independence is achieved. We then explore a new development of DEDA in frozen energy calculations of the ethane molecule, focusing on the internal rotation around the carbon-carbon bond and the energy differences between staggered and eclipsed conformations. We argue that the frozen density energy change at fixed bond lengths and bond angles is purely steric effects. Our results show that the frozen density energy profile follows closely that of the total energy when the dihedral angle is the only varying geometry parameter. We can further analyze the contributions from electrostatics and Pauli repulsions. These results lead to a meaningful DEDA of the torsional potential in ethane.

  7. A hybrid fault diagnosis method based on second generation wavelet de-noising and local mean decomposition for rotating machinery.

    PubMed

    Liu, Zhiwen; He, Zhengjia; Guo, Wei; Tang, Zhangchun

    2016-03-01

    In order to extract fault features of large-scale power equipment from strong background noise, a hybrid fault diagnosis method based on the second generation wavelet de-noising (SGWD) and the local mean decomposition (LMD) is proposed in this paper. In this method, a de-noising algorithm of second generation wavelet transform (SGWT) using neighboring coefficients was employed as the pretreatment to remove noise in rotating machinery vibration signals by virtue of its good effect in enhancing the signal-noise ratio (SNR). Then, the LMD method is used to decompose the de-noised signals into several product functions (PFs). The PF corresponding to the faulty feature signal is selected according to the correlation coefficients criterion. Finally, the frequency spectrum is analyzed by applying the FFT to the selected PF. The proposed method is applied to analyze the vibration signals collected from an experimental gearbox and a real locomotive rolling bearing. The results demonstrate that the proposed method has better performances such as high SNR and fast convergence speed than the normal LMD method. PMID:26753616

  8. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition.

    PubMed

    Wang, Wen-chuan; Chau, Kwok-wing; Qiu, Lin; Chen, Yang-bo

    2015-05-01

    Hydrological time series forecasting is one of the most important applications in modern hydrology, especially for the effective reservoir management. In this research, an artificial neural network (ANN) model coupled with the ensemble empirical mode decomposition (EEMD) is presented for forecasting medium and long-term runoff time series. First, the original runoff time series is decomposed into a finite and often small number of intrinsic mode functions (IMFs) and a residual series using EEMD technique for attaining deeper insight into the data characteristics. Then all IMF components and residue are predicted, respectively, through appropriate ANN models. Finally, the forecasted results of the modeled IMFs and residual series are summed to formulate an ensemble forecast for the original annual runoff series. Two annual reservoir runoff time series from Biuliuhe and Mopanshan in China, are investigated using the developed model based on four performance evaluation measures (RMSE, MAPE, R and NSEC). The results obtained in this work indicate that EEMD can effectively enhance forecasting accuracy and the proposed EEMD-ANN model can attain significant improvement over ANN approach in medium and long-term runoff time series forecasting.

  9. Gabor-wavelet decomposition and integrated PCA-FLD method for texture based defect classification

    NASA Astrophysics Data System (ADS)

    Cheng, Xuemei; Chen, Yud-Ren; Yang, Tao; Chen, Xin

    2005-11-01

    In many hyperspectral applications, it is desirable to extract the texture features for pattern classification. Texture refers to replications, symmetry of certain patterns. In a set of hyperspectral images, the differences of image textures often imply changes in the physical and chemical properties on or underneath the surface. In this paper, we utilize Gabor wavelet based texture analysis method for textural pattern extraction, and combined with integrated PCA-FLD method for hyperspectral band selection in the application of classifying chilling damaged cucumbers from normal ones. The classification performances are compared and analyzed.

  10. Complex Network Clustering by a Multi-objective Evolutionary Algorithm Based on Decomposition and Membrane Structure

    PubMed Central

    Ju, Ying; Zhang, Songming; Ding, Ningxiang; Zeng, Xiangxiang; Zhang, Xingyi

    2016-01-01

    The field of complex network clustering is gaining considerable attention in recent years. In this study, a multi-objective evolutionary algorithm based on membranes is proposed to solve the network clustering problem. Population are divided into different membrane structures on average. The evolutionary algorithm is carried out in the membrane structures. The population are eliminated by the vector of membranes. In the proposed method, two evaluation objectives termed as Kernel J-means and Ratio Cut are to be minimized. Extensive experimental studies comparison with state-of-the-art algorithms proves that the proposed algorithm is effective and promising. PMID:27670156

  11. Spatially and temporally continuous LAI datasets based on the mixed pixel decomposition method.

    PubMed

    Zhao, Jianjun; Wang, Yanying; Zhang, Hongyan; Zhang, Zhengxiang; Guo, Xiaoyi; Yu, Shan; Du, Wala

    2016-01-01

    The leaf area index (LAI) is a key biophysical parameter that determines the state of plant growth. A global LAI has been routinely produced by the Moderate Resolution Imaging Spectro-radiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR). However, the MODIS and AVHRR LAI products cannot be synchronized with the same spatial and temporal resolution. The LAI features are not discernible when a global LAI product is implemented at the regional scale because it has low resolution and different land cover types. To obtain high spatial and temporal resolution of LAI products, an empirical model based on the pixel scale was developed. The approach to generate a long (multi-decade) time series of a 1-km spatial resolution LAI normally integrates both AVHRR and MODIS datasets for different land cover types. In this paper, a regression-based model for generating a vegetation LAI was developed using the AVHRR Global Inventory Modelling and Mapping Studies Normalized Difference Vegetation Index (NDVI), MODIS LAI and land cover as input data; the model was evaluated by using relevant data from the same period data from 2000 to 2006. The results of this method show a good consistency in LAI values retrieved from the AVHRR NDVI and MODIS LAI. This simple method has no specific-limited data requirements and can provide improved spatial and temporal resolution in a region without ground data. PMID:27186480

  12. Adaptation of motor imagery EEG classification model based on tensor decomposition

    NASA Astrophysics Data System (ADS)

    Li, Xinyang; Guan, Cuntai; Zhang, Haihong; Keng Ang, Kai; Ong, Sim Heng

    2014-10-01

    Objective. Session-to-session nonstationarity is inherent in brain-computer interfaces based on electroencephalography. The objective of this paper is to quantify the mismatch between the training model and test data caused by nonstationarity and to adapt the model towards minimizing the mismatch. Approach. We employ a tensor model to estimate the mismatch in a semi-supervised manner, and the estimate is regularized in the discriminative objective function. Main results. The performance of the proposed adaptation method was evaluated on a dataset recorded from 16 subjects performing motor imagery tasks on different days. The classification results validated the advantage of the proposed method in comparison with other regularization-based or spatial filter adaptation approaches. Experimental results also showed that there is a significant correlation between the quantified mismatch and the classification accuracy. Significance. The proposed method approached the nonstationarity issue from the perspective of data-model mismatch, which is more direct than data variation measurement. The results also demonstrated that the proposed method is effective in enhancing the performance of the feature extraction model.

  13. Dynamic Regulatory Network Reconstruction for Alzheimer's Disease Based on Matrix Decomposition Techniques

    PubMed Central

    Mou, Xiaoyang; Zhi, Xing; Zhang, Xin; Yang, Yang

    2014-01-01

    Alzheimer's disease (AD) is the most common form of dementia and leads to irreversible neurodegenerative damage of the brain. Finding the dynamic responses of genes, signaling proteins, transcription factor (TF) activities, and regulatory networks of the progressively deteriorative progress of AD would represent a significant advance in discovering the pathogenesis of AD. However, the high throughput technologies of measuring TF activities are not yet available on a genome-wide scale. In this study, based on DNA microarray gene expression data and a priori information of TFs, network component analysis (NCA) algorithm is applied to determining the TF activities and regulatory influences on TGs of incipient, moderate, and severe AD. Based on that, the dynamical gene regulatory networks of the deteriorative courses of AD were reconstructed. To select significant genes which are differentially expressed in different courses of AD, independent component analysis (ICA), which is better than the traditional clustering methods and can successfully group one gene in different meaningful biological processes, was used. The molecular biological analysis showed that the changes of TF activities and interactions of signaling proteins in mitosis, cell cycle, immune response, and inflammation play an important role in the deterioration of AD. PMID:25024739

  14. An energy decomposition analysis for second-order Møller–Plesset perturbation theory based on absolutely localized molecular orbitals

    SciTech Connect

    Thirman, Jonathan Head-Gordon, Martin

    2015-08-28

    An energy decomposition analysis (EDA) of intermolecular interactions is proposed for second-order Møller–Plesset perturbation theory (MP2) based on absolutely localized molecular orbitals (ALMOs), as an extension to a previous ALMO-based EDA for self-consistent field methods. It decomposes the canonical MP2 binding energy by dividing the double excitations that contribute to the MP2 wave function into classes based on how the excitations involve different molecules. The MP2 contribution to the binding energy is decomposed into four components: frozen interaction, polarization, charge transfer, and dispersion. Charge transfer is defined by excitations that change the number of electrons on a molecule, dispersion by intermolecular excitations that do not transfer charge, and polarization and frozen interactions by intra-molecular excitations. The final two are separated by evaluations of the frozen, isolated wave functions in the presence of the other molecules, with adjustments for orbital response. Unlike previous EDAs for electron correlation methods, this one includes components for the electrostatics, which is vital as adjustment to the electrostatic behavior of the system is in some cases the dominant effect of the treatment of electron correlation. The proposed EDA is then applied to a variety of different systems to demonstrate that all proposed components behave correctly. This includes systems with one molecule and an external electric perturbation to test the separation between polarization and frozen interactions and various bimolecular systems in the equilibrium range and beyond to test the rest of the EDA. We find that it performs well on these tests. We then apply the EDA to a halogen bonded system to investigate the nature of the halogen bond.

  15. An energy decomposition analysis for second-order Møller-Plesset perturbation theory based on absolutely localized molecular orbitals.

    PubMed

    Thirman, Jonathan; Head-Gordon, Martin

    2015-08-28

    An energy decomposition analysis (EDA) of intermolecular interactions is proposed for second-order Møller-Plesset perturbation theory (MP2) based on absolutely localized molecular orbitals (ALMOs), as an extension to a previous ALMO-based EDA for self-consistent field methods. It decomposes the canonical MP2 binding energy by dividing the double excitations that contribute to the MP2 wave function into classes based on how the excitations involve different molecules. The MP2 contribution to the binding energy is decomposed into four components: frozen interaction, polarization, charge transfer, and dispersion. Charge transfer is defined by excitations that change the number of electrons on a molecule, dispersion by intermolecular excitations that do not transfer charge, and polarization and frozen interactions by intra-molecular excitations. The final two are separated by evaluations of the frozen, isolated wave functions in the presence of the other molecules, with adjustments for orbital response. Unlike previous EDAs for electron correlation methods, this one includes components for the electrostatics, which is vital as adjustment to the electrostatic behavior of the system is in some cases the dominant effect of the treatment of electron correlation. The proposed EDA is then applied to a variety of different systems to demonstrate that all proposed components behave correctly. This includes systems with one molecule and an external electric perturbation to test the separation between polarization and frozen interactions and various bimolecular systems in the equilibrium range and beyond to test the rest of the EDA. We find that it performs well on these tests. We then apply the EDA to a halogen bonded system to investigate the nature of the halogen bond. PMID:26328835

  16. [Component analysis of the circulating fluid in an adsorption tower in a P-xylene unit based on raman spectral decomposition].

    PubMed

    Wang, Bin; Dai, Lian-kui

    2015-02-01

    In order to achieve fast and accurate online analysis of the circulating fluid in an adsorption tower in a p-xylene unit, the Raman spectral analysis method is adopted. However, the Raman spectra of the pure components included in the circulating fluid overlap together, and the concentration of each component varies obviously, the present Raman analysis technology needs a large amount of training samples. Therefore, this paper applies Raman spectral decomposition method in component analysis of the circulating fluid. First of all, the Raman spectra of the pure components and the spectra of a few training samples must be measured, and baseline subtraction and mean normalization are applied to obtain pretreated Raman spectra. Then the characteristic wave number range, 680-880 cm(-1), is chosen, and the Raman spectral decomposition method is adopted, to get decomposition coefficients of each component for each training sample. Next, the mathematical model between coefficients and concentrations of each component are built based on all training samples. For a testing sample, the above spectral pretreatment and the spectral decomposition for the same wave number range is adopted, then the decomposition coefficients of each component can be obtained. Based on the built mathematical model, the concentrations of all components can be predicted. Experimental results show that the standard prediction errors for the concentration of toluene, ethylbenzene, p-xylene, m-xylene, o-xylene and p-diethylbenzene are 0.301%, 0.088%, 0.563%, 0.384%, 0.366% and 0.536% respectively. The above method provides a methodological basis for the online analysis of the circulating fluid in adsorption towers.

  17. A parallel domain decomposition-based implicit method for the Cahn–Hilliard–Cook phase-field equation in 3D

    SciTech Connect

    Zheng, Xiang; Yang, Chao; Cai, Xiao-Chuan; Keyes, David

    2015-03-15

    We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn–Hilliard–Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton–Krylov–Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.

  18. A parallel domain decomposition-based implicit method for the Cahn-Hilliard-Cook phase-field equation in 3D

    NASA Astrophysics Data System (ADS)

    Zheng, Xiang; Yang, Chao; Cai, Xiao-Chuan; Keyes, David

    2015-03-01

    We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn-Hilliard-Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton-Krylov-Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.

  19. Propagation of human iPS cells in alginate-based microcapsules prepared using reactions catalyzed by horseradish peroxidase and catalase.

    PubMed

    Ashida, Tomoaki; Sakai, Shinji; Taya, Masahito

    2016-09-01

    Cell encapsulation has been investigated as a bioproduction system in the biomedical and pharmaceutical fields. We encaps-ulated human induced pluripotent stem (hiPS) cells in duplex microcapsules prepared from an alginate derivative possessing phenolic hydroxyl moieties, in a single-step procedure based on two competing enzymatic reactions catalyzed by horseradish peroxidase (HRP) and catalase. The encapsulated cells maintained 91.4% viability and proliferated to fill the microcapsules following 19 days of culture. Encapsulated hiPS cells showed pluripotency comparable to that of unencapsulated cells during the cultures, as demonstrated by the expression of the SSEA-4 marker. PMID:26148179

  20. Synthesis of (E)-2-Styrylchromones and Flavones by Base-Catalyzed Cyclodehydration of the Appropriate β-Diketones Using Water as Solvent.

    PubMed

    Pinto, Joana; Silva, Vera L M; Silva, Ana M G; Silva, Artur M S

    2015-06-22

    A low cost, safe, clean and environmentally benign base-catalyzed cyclodehydration of appropriate β-diketones affording (E)-2-styrylchromones and flavones in good yields is disclosed. Water was used as solvent and the reactions were heated using classical and microwave heating methods, under open and closed vessel conditions. β-Diketones having electron-donating and withdrawing substituents were used to evaluate the reaction scope. The reaction products were isolated in high purity by simple filtration and recrystallization from ethanol, when using 800 mg of the starting diketone under classical reflux heating conditions.

  1. Iridium-catalyzed ortho-selective C-H silylation of aromatic compounds directed toward the synthesis of π-conjugated molecules with Lewis acid-base interaction.

    PubMed

    Wakaki, Takayuki; Kanai, Motomu; Kuninobu, Yoichiro

    2015-04-01

    We successfully developed an iridium-catalyzed ortho-selective C-H silylation of aromatic compounds. The reaction exhibited a wide substrate scope, and a variety of π-conjugated molecules were synthesized in good to excellent yields, even in gram scale. Several silyl groups could also be introduced into the products. The experimental results indicated that the regioselectivity could be controlled by a Lewis acid-base interaction between the Lewis acidic silicon atoms of fluorinated hydrosilanes and the Lewis basic nitrogen atoms of aromatic compounds.

  2. Stable Gait Generation of a Quasi-Passive Biped Walking Robot Based on Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Matsumoto, Itaru

    A passive walker is a robot which can walk down a shallow slope without active control or energy input, being powered only by gravity. This paper proposes a control law that can stabilize the gait of a quasi-passive walker by manipulating torque at the hip joint. The motion of the quasi-passive walker is divided into two modes: one is a sinusoidal mode and the other a hyperbolic sinusoidal mode. The controller is designed with a servo system which forces the motion of the sinusoidal mode to track the reference input signal obtained from the phase-plane trajectory of the hyperbolic sinusoidal mode. The generated gait is quite natural, because the input of the servo system is made based on the system dynamics. The results of simulations have demonstrated the effectiveness of the proposed control law.

  3. Decomposition of complex microbial behaviors into resource-based stress responses

    PubMed Central

    Carlson, Ross P.

    2009-01-01

    Motivation: Highly redundant metabolic networks and experimental data from cultures likely adapting simultaneously to multiple stresses can complicate the analysis of cellular behaviors. It is proposed that the explicit consideration of these factors is critical to understanding the competitive basis of microbial strategies. Results: Wide ranging, seemingly unrelated Escherichia coli physiological fluxes can be simply and accurately described as linear combinations of a few ecologically relevant stress adaptations. These strategies were identified by decomposing the central metabolism of E.coli into elementary modes (mathematically defined biochemical pathways) and assessing the resource investment cost–benefit properties for each pathway. The approach capitalizes on the inherent tradeoffs related to investing finite resources like nitrogen into different pathway enzymes when the pathways have varying metabolic efficiencies. The subset of ecologically competitive pathways represented 0.02% of the total permissible pathways. The biological relevance of the assembled strategies was tested against 10 000 randomly constructed pathway subsets. None of the randomly assembled collections were able to describe all of the considered experimental data as accurately as the cost-based subset. The results suggest these metabolic strategies are biologically significant. The current descriptions were compared with linear programming (LP)-based flux descriptions using the Euclidean distance metric. The current study's pathway subset described the experimental fluxes with better accuracy than the LP results without having to test multiple objective functions or constraints and while providing additional ecological insight into microbial behavior. The assembled pathways seem to represent a generalized set of strategies that can describe a wide range of microbial responses and hint at evolutionary processes where a handful of successful metabolic strategies are utilized

  4. Disentangling the spatio-environmental drivers of human settlement: an eigenvector based variation decomposition.

    PubMed

    Vandam, Ralf; Kaptijn, Eva; Vanschoenwinkel, Bram

    2013-01-01

    The relative importance of deterministic and stochastic processes driving patterns of human settlement remains controversial. A main reason for this is that disentangling the drivers of distributions and geographic clustering at different spatial scales is not straightforward and powerful analytical toolboxes able to deal with this type of data are largely deficient. Here we use a multivariate statistical framework originally developed in community ecology, to infer the relative importance of spatial and environmental drivers of human settlement. Using Moran's eigenvector maps and a dataset of spatial variation in a set of relevant environmental variables we applied a variation partitioning procedure based on redundancy analysis models to assess the relative importance of spatial and environmental processes explaining settlement patterns. We applied this method on an archaeological dataset covering a 15 km(2) area in SW Turkey spanning a time period of 8000 years from the Late Neolithic/Early Chalcolithic up to the Byzantine period. Variation partitioning revealed both significant unique and commonly explained effects of environmental and spatial variables. Land cover and water availability were the dominant environmental determinants of human settlement throughout the study period, supporting the theory of the presence of farming communities. Spatial clustering was mainly restricted to small spatial scales. Significant spatial clustering independent of environmental gradients was also detected which can be indicative of expansion into unsuitable areas or an unexpected absence in suitable areas which could be caused by dispersal limitation. Integrating historic settlement patterns as additional predictor variables resulted in more explained variation reflecting temporal autocorrelation in settlement locations.

  5. Mechanistic imperatives for aldose-ketose isomerization in water: specific, general base- and metal ion-catalyzed isomerization of glyceraldehyde with proton and hydride transfer.

    PubMed

    Nagorski, R W; Richard, J P

    2001-02-01

    The deuterium enrichment of dihydroxyacetone obtained from the aldose-ketose isomerization of D,L-glyceraldehyde in D(2)O at 25 degrees C was determined by (1)H NMR spectroscopy from the integrated areas of the signals for the alpha-CH(2) and alpha-CHD groups of the product. One mole equivalent of deuterium is incorporated into the product when the isomerization is carried out in 150 mM pyrophosphate buffer at pD 8.4, but only 0.6 mol equiv of deuterium is incorporated into the product of isomerization in the presence of 0.01 M deuterioxide ion, so that 40% of the latter isomerization reaction proceeds by the intramolecular transfer of hydride ion. Several pathways were identified for catalysis of the isomerization of glyceraldehyde to give dihydroxyacetone. The isomerization with hydride transfer is strongly catalyzed by added Zn(2+). Deprotonation of glyceraldehyde is rate-determining for isomerization with proton transfer, and this proton-transfer reaction is catalyzed by Brønsted bases. Proton transfer also occurs by a termolecular pathway with catalysis by the combined action of Brønsted bases and Zn(2+). These results show that there is no large advantage to the spontaneous isomerization of glyceraldehyde in alkaline solution with either proton or hydride transfer, and that effective catalytic pathways exist to stabilize the transition states for both of these reactions in water. The existence of separate enzymes that catalyze the isomerization of sugars with hydride transfer and the isomerization of sugar phosphates with proton transfer is proposed to be a consequence of the lack of any large advantage to reaction by either of these pathways for the corresponding nonenzymatic isomerization in water.

  6. Towards a physical understanding of stratospheric cooling under global warming through a process-based decomposition method

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Ren, R.-C.; Cai, Ming

    2016-02-01

    The stratosphere has been cooling under global warming, the causes of which are not yet well understood. This study applied a process-based decomposition method (CFRAM; Coupled Surface-Atmosphere Climate Feedback Response Analysis Method) to the simulation results of a Coupled Model Intercomparison Project, phase 5 (CMIP5) model (CCSM4; Community Climate System Model, version 4), to demonstrate the responsible radiative and non-radiative processes involved in the stratospheric cooling. By focusing on the long-term stratospheric temperature changes between the "historical run" and the 8.5 W m-2 Representative Concentration Pathway (RCP8.5) scenario, this study demonstrates that the changes of radiative radiation due to CO2, ozone and water vapor are the main divers of stratospheric cooling in both winter and summer. They contribute to the cooling changes by reducing the net radiative energy (mainly downward radiation) received by the stratospheric layer. In terms of the global average, their contributions are around -5, -1.5, and -1 K, respectively. However, the observed stratospheric cooling is much weaker than the cooling by radiative processes. It is because changes in atmospheric dynamic processes act to strongly mitigate the radiative cooling by yielding a roughly 4 K warming on the global average base. In particular, the much stronger/weaker dynamic warming in the northern/southern winter extratropics is associated with an increase of the planetary-wave activity in the northern winter, but a slight decrease in the southern winter hemisphere, under global warming. More importantly, although radiative processes dominate the stratospheric cooling, the spatial patterns are largely determined by the non-radiative effects of dynamic processes.

  7. Singular value decomposition based regularization prior to spectral mixing improves crosstalk in dynamic imaging using spectral diffuse optical tomography.

    PubMed

    Zhan, Yuxuan; Eggebrecht, Adam T; Culver, Joseph P; Dehghani, Hamid

    2012-09-01

    The spectrally constrained diffuse optical tomography (DOT) method relies on incorporating spectral prior information directly into the image reconstruction algorithm, thereby correlating the underlying optical properties across multiple wavelengths. Although this method has been shown to provide a solution that is stable, the use of conventional Tikhonov-type regularization techniques can lead to additional crosstalk between parameters, particularly in linear, single-step dynamic imaging applications. This is due mainly to the suboptimal regularization of the spectral Jacobian matrix, which smoothes not only the image-data space, but also the spectral mapping space. In this work a novel regularization technique based on the singular value decomposition (SVD) is presented that preserves the spectral prior information while regularizing the Jacobian matrix, leading to dramatically reduced crosstalk between the recovered parameters. Using simulated data, images of changes in oxygenated and deoxygenated hemoglobin concentrations are reconstructed via the SVD-based approach and compared with images reconstructed by using non-spectral and conventional spectral methods. In a 2D, two wavelength example, it is shown that the proposed approach provides a 98% reduction in crosstalk between recovered parameters as compared with conventional spectral reconstruction algorithms, and 60% as compared with non-spectrally constrained algorithms. Using a subject specific multilayered model of the human head, a noiseless dynamic simulation of cortical activation is performed to further demonstrate such improvement in crosstalk. However, with the addition of realistic noise in the data, both non-spectral and proposed algorithms perform similarly, indicating that the use of spectrally constrained reconstruction algorithms in dynamic DOT may be limited by the contrast of the signal as well as the noise characteristics of the system.

  8. Monte Carlo study for physiological interference reduction in near-infrared spectroscopy based on empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Sun, JinWei; Rolfe, Peter

    2010-12-01

    Near-infrared spectroscopy (NIRS) can be used as the basis of non-invasive neuroimaging that may allow the measurement of haemodynamic changes in the human brain evoked by applied stimuli. Since this technique is very sensitive, physiological interference arising from the cardiac cycle and breathing can significantly affect the signal quality. Such interference is difficult to remove by conventional techniques because it occurs not only in the extracerebral layer but also in the brain tissue itself. Previous work on this problem employing temporal filtering, spatial filtering, and adaptive filtering have exhibited good performance for recovering brain activity data in evoked response studies. However, in this study, we present a time-frequency adaptive method for physiological interference reduction based on the combination of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). Monte Carlo simulations based on a five-layered slab model of a human adult head were implemented to evaluate our methodology. We applied an EMD algorithm to decompose the NIRS time series derived from Monte Carlo simulations into a series of intrinsic mode functions (IMFs). In order to identify the IMFs associated with symmetric interference, the extracted components were then Hilbert transformed from which the instantaneous frequencies could be acquired. By reconstructing the NIRS signal by properly selecting IMFs, we determined that the evoked brain response is effectively filtered out with even higher signal-to-noise ratio (SNR). The results obtained demonstrated that EMD, combined with HSA, can effectively separate, identify and remove the contamination from the evoked brain response obtained with NIRS using a simple single source-detector pair.

  9. Forecast-based financing: an approach for catalyzing humanitarian action based on extreme weather and climate forecasts

    NASA Astrophysics Data System (ADS)

    Coughlan de Perez, E.; van den Hurk, B.; van Aalst, M.; Jongman, B.; Klose, T.; Suarez, P.

    2014-05-01

    Disaster risk reduction efforts traditionally focus on long-term preventative measures or post-disaster response. Outside of these, there are many short-term actions, such as evacuation, that can be implemented in the period of time between a warning and a potential disaster to reduce the risk of impacts. However, this precious window of opportunity is regularly overlooked in the case of climate and weather forecasts, which can indicate heightened risk of disaster but are rarely used to initiate preventative action. Barriers range from the protracted debate over the best strategy for intervention to the inherent uncomfortableness on the part of donors to invest in a situation that will "likely" arrive but is not certain. In general, it is unclear what levels of forecast probability and magnitude are "worth" reacting to. Here, we propose a novel forecast-based financing system to automatically trigger action based on climate forecasts or observations. The system matches threshold forecast probabilities with appropriate actions, disburses required funding when threshold forecasts are issued, and develops Standard Operating Procedures that contain the mandate to act when these threshold forecasts are issued. We detail the methods that can be used to establish such a system, and provide illustrations from several pilot cases. Ultimately, such as system can be scaled up in disaster-prone areas worldwide to improve effectiveness at reducing the risk of disaster.

  10. Forecast-based financing: an approach for catalyzing humanitarian action based on extreme weather and climate forecasts

    NASA Astrophysics Data System (ADS)

    Coughlan de Perez, E.; van den Hurk, B.; van Aalst, M. K.; Jongman, B.; Klose, T.; Suarez, P.

    2015-04-01

    Disaster risk reduction efforts traditionally focus on long-term preventative measures or post-disaster response. Outside of these, there are many short-term actions, such as evacuation, that can be implemented in the period of time between a warning and a potential disaster to reduce the risk of impacts. However, this precious window of opportunity is regularly overlooked in the case of climate and weather forecasts, which can indicate heightened risk of disaster but are rarely used to initiate preventative action. Barriers range from the protracted debate over the best strategy for intervention to the inherent uncomfortableness on the part of donors to invest in a situation that will likely arise but is not certain. In general, it is unclear what levels of forecast probability and magnitude are "worth" reacting to. Here, we propose a novel forecast-based financing system to automatically trigger action based on climate forecasts or observations. The system matches threshold forecast probabilities with appropriate actions, disburses required funding when threshold forecasts are issued, and develops standard operating procedures that contain the mandate to act when these threshold forecasts are issued. We detail the methods that can be used to establish such a system, and provide illustrations from several pilot cases. Ultimately, such a system can be scaled up in disaster-prone areas worldwide to improve effectiveness at reducing the risk of disaster.

  11. Palladium-catalyzed Allylic Substitution with (η6-arene–CH2Z)Cr(CO)3-based Nucleophiles

    PubMed Central

    Zhang, Jiadi; Stanciu, Corneliu; Wang, Beibei; Hussain, Mahmud M.; Da, Chao-Shan; Carroll, Patrick J.; Dreher, Spencer D.; Walsh, Patrick J.

    2011-01-01

    Although the palladium-catalyzed Tsuji-Trost allylic substitution reaction has been intensively studied, there is a lack of general methods to employ simple benzylic nucleophiles. Such a method would facilitate access to “α-2-propenyl benzyl” motifs, which are common structural motifs in bioactive compounds and natural products. We report herein the palladium-catalyzed allylation reaction of toluene-derived pronucleophiles activated by tricarbonylchromium. A variety of cyclic and acyclic allylic electrophiles can be employed with in situ generated (η6-C6H5–CHLiR)Cr(CO)3 nucleophiles. Catalyst identification was performed by high throughput experimentation (HTE) and led to the Xantphos/palladium hit, which proved to be a general catalyst for this class of reactions. In addition to η6-toluene complexes, benzyl amine and ether derivatives (η6-C6H5–CH2Z)Cr(CO)3 (Z=NR2, OR) are also viable pronucleophiles, allowing C–C bond-formation alpha to heteroatoms with excellent yields. Finally, a tandem allylic substitution/demetallation procedure is described that affords the corresponding metal-free allylic substitution products. This method will be a valuable complement to the existing arsenal of nucleophiles with applications in allylic substitution reactions. PMID:22047504

  12. Mode decomposition evolution equations

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be

  13. TU-F-18A-04: Use of An Image-Based Material-Decomposition Algorithm for Multi-Energy CT to Determine Basis Material Densities

    SciTech Connect

    Li, Z; Leng, S; Yu, L; McCollough, C

    2014-06-15

    Purpose: Published methods for image-based material decomposition with multi-energy CT images have required the assumption of volume conservation or accurate knowledge of the x-ray spectra and detector response. The purpose of this work was to develop an image-based material-decomposition algorithm that can overcome these limitations. Methods: An image-based material decomposition algorithm was developed that requires only mass conservation (rather than volume conservation). With this method, using multi-energy CT measurements made with n=4 energy bins, the mass density of each basis material and of the mixture can be determined without knowledge of the tube spectra and detector response. A digital phantom containing 12 samples of mixtures from water, calcium, iron, and iodine was used in the simulation (Siemens DRASIM). The calibration was performed by using pure materials at each energy bin. The accuracy of the technique was evaluated in noise-free and noisy data under the assumption of an ideal photon-counting detector. Results: Basis material densities can be estimated accurately by either theoretic calculation or calibration with known pure materials. The calibration approach requires no prior information about the spectra and detector response. Regression analysis of theoretical values versus estimated values results in excellent agreement for both noise-free and noisy data. For the calibration approach, the R-square values are 0.9960+/−0.0025 and 0.9476+/−0.0363 for noise-free and noisy data, respectively. Conclusion: From multi-energy CT images with n=4 energy bins, the developed image-based material decomposition method accurately estimated 4 basis material density (3 without k-edge and 1 with in the range of the simulated energy bins) even without any prior information about spectra and detector response. This method is applicable to mixtures of solutions and dissolvable materials, where volume conservation assumptions do not apply. CHM receives

  14. Presence or absence of a novel charge-transfer complex in the base-catalyzed hydrolysis of N-ethylbenzamide or ethyl benzoate

    PubMed Central

    Guan, Wei; Sakaki, Shigeyoshi

    2013-01-01

    Summary Reaction paths of base-catalyzed hydrolyses of isoelectronic substrates, Ph–C(=O)–X–Et [X = O (ethyl benzoate) and X = NH (N-ethylbenzamide)], were traced by DFT calculations. To simulate bond interchanges accompanied by proton transfers, a cluster model of Ph–C(=O)–X–Et + OH−(H2O)16 was employed. For X = O, three elementary processes and for X = NH four ones were obtained. The rate-determining step of X = O is the first TS (TS1, the OH− addition step), while that of X = NH is TS2. TS2 of X = NH leads to a novel Mulliken charge-transfer complex, Ph–(OH)(O=)C∙∙∙N(H2)–Et. The superiority or inferiority between the direct nucleophilic process or the general base-catalyzed process for TS1 was examined with the model Ph–C(=O)–X–Et + OH−(H2O)n, n = 3, 5, 8, 12, 16, 24 and 32. The latter process was calculated to be more favorable regardless of the number (n, except n = 3) of water molecules. The counter ion Na+ works unfavorably on the ester hydrolysis, particularly on TS1. A minimal model of TS1 was proposed and was found to be insensitive to n. PMID:23400273

  15. A hybrid model for PM₂.₅ forecasting based on ensemble empirical mode decomposition and a general regression neural network.

    PubMed

    Zhou, Qingping; Jiang, Haiyan; Wang, Jianzhou; Zhou, Jianling

    2014-10-15

    Exposure to high concentrations of fine particulate matter (PM₂.₅) can cause serious health problems because PM₂.₅ contains microscopic solid or liquid droplets that are sufficiently small to be ingested deep into human lungs. Thus, daily prediction of PM₂.₅ levels is notably important for regulatory plans that inform the public and restrict social activities in advance when harmful episodes are foreseen. A hybrid EEMD-GRNN (ensemble empirical mode decomposition-general regression neural network) model based on data preprocessing and analysis is firstly proposed in this paper for one-day-ahead prediction of PM₂.₅ concentrations. The EEMD part is utilized to decompose original PM₂.₅ data into several intrinsic mode functions (IMFs), while the GRNN part is used for the prediction of each IMF. The hybrid EEMD-GRNN model is trained using input variables obtained from principal component regression (PCR) model to remove redundancy. These input variables accurately and succinctly reflect the relationships between PM₂.₅ and both air quality and meteorological data. The model is trained with data from January 1 to November 1, 2013 and is validated with data from November 2 to November 21, 2013 in Xi'an Province, China. The experimental results show that the developed hybrid EEMD-GRNN model outperforms a single GRNN model without EEMD, a multiple linear regression (MLR) model, a PCR model, and a traditional autoregressive integrated moving average (ARIMA) model. The hybrid model with fast and accurate results can be used to develop rapid air quality warning systems. PMID:25089688

  16. A robust method for analyzing the instantaneous attributes of seismic data: The instantaneous frequency estimation based on ensemble empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Li, Xiangfang; Chen, Wenchao; Zhou, Yanhui

    2014-12-01

    The Hilbert-Huang transform (HHT) includes two procedures. First, empirical mode decomposition (EMD) is used to decompose signals into several intrinsic mode functions (IMFs) before the Hilbert transform (HT) of these IMFs are calculated. Compared to the conventional Hilbert transform (HT), HHT is more sensitive to thickness variations of seismic beds. However, random noise in seismic signal may cause the mixture of the modes from HHT. The recent ensemble empirical mode decomposition (EEMD) presents the advantages in decreasing mode mixture and has the promising potential in seismic signal analysis. Currently, EEMD is mainly used in seismic spectral decomposition and noise attenuation. We extend the application of EEMD based instantaneous frequency to the analysis of bed thickness. The tests on complex Marmousi2 model and a 2D field data show that EEMD is more effective in weakening mode mixtures contained in the IMFs, compared with that calculated by EMD. Furthermore, the EEMD based instantaneous frequency is more sensitive to the seismic thickness variation than that based on EMD and more consistent with the stratigraphic structure, which means that E-IFPs are more advantageous in characterizing reservoirs.

  17. Mechanism of NHC-Catalyzed Conjugate Additions of Diboron and Borosilane Reagents to α,β-Unsaturated Carbonyl Compounds.

    PubMed

    Wu, Hao; Garcia, Jeannette M; Haeffner, Fredrik; Radomkit, Suttipol; Zhugralin, Adil R; Hoveyda, Amir H

    2015-08-26

    Broadly applicable enantioselective C-B and C-Si bond-forming processes catalyzed by an N-heterocyclic carbene (NHC) were recently introduced; these boryl and silyl conjugate addition reactions (BCA and SCA, respectively), which proceed without the need for a transition-metal complex, represent reaction pathways that are distinct from those facilitated by transition-metal-containing species (e.g., Cu, Ni, Pt, Pd, or Rh based). The Lewis-base-catalyzed (NHC) transformations are valuable to chemical synthesis, as they can generate high enantioselectivities and possess unique chemoselectivity profiles. Here, the results of investigations that elucidate the principal features of the NHC-catalyzed BCA and SCA processes are detailed. Spectroscopic evidence is provided illustrating why the presence of excess base and MeOH or H2O is required for efficient and enantioselective boryl and silyl addition reactions. It is demonstrated that the proton sources influence the efficiency and/or enantioselectivity of NHC-catalyzed enantioselective transformations in several ways. The positive, and at times adverse, impact of water (biphasic conditions) on catalytic enantioselective silyl addition reactions is analyzed. It is shown that a proton source can facilitate nonenantioselective background reactions and NHC decomposition, requiring the catalyst to surpass such complications. Stereochemical models are presented that account for the identity of the observed major enantiomers, providing a rationale for the differences in selectivity profiles of BCA and SCA processes. PMID:26263513

  18. New insights into the mechanism of the Schiff base hydrolysis catalyzed by type I dehydroquinate dehydratase from S. enterica: a theoretical study.

    PubMed

    Yao, Yuan; Li, Ze-Sheng

    2012-09-21

    The reaction pathway of Schiff base hydrolysis catalyzed by type I dehydroquinate dehydratase (DHQD) from S. enterica has been studied by performing molecular dynamics (MD) simulations and density functional theory (DFT) calculations and the corresponding potential energy profile has also been identified. On the basis of the results, the catalytic hydrolysis process for the wild-type enzyme consists of three major reaction steps, including nucleophilic attack on the carbon atom involved in the carbon-nitrogen double bond of the Schiff base intermediate by a water molecule, deprotonation of the His143 residue, and dissociation between the product and the Lys170 residue of the enzyme. The remarkable difference between this and the previously proposed reaction mechanism is that the second step here, absent in the previously proposed reaction mechanism, plays an important role in facilitating the reaction through a key proton transfer by the His143 residue, resulting in a lower energy barrier. Comparison with our recently reported results on the Schiff base formation and dehydration processes clearly shows that the Schiff base hydrolysis is rate-determining in the overall reaction catalyzed by type I DHQD, consistent with the experimental prediction, and the calculated energy barrier of ∼16.0 kcal mol(-1) is in good agreement with the experimentally derived activation free energy of ∼14.3 kcal mol(-1). When the imidazole group of His143 residue is missing, the Schiff base hydrolysis is initiated by a hydroxide ion in the solution, rather than a water molecule, and both the reaction mechanism and the kinetics of Schiff base hydrolysis have been remarkably changed, clearly elucidating the catalytic role of the His143 residue in the reaction. The new mechanistic insights obtained here will be valuable for the rational design of high-activity inhibitors of type I DHQD as non-toxic antimicrobials, anti-fungals, and herbicides.

  19. Effects of oxygen and catalyst on tetraphenylborate decomposition rate

    SciTech Connect

    Walker, D.D.

    1999-12-15

    Previous studies indicate that palladium catalyzes rapid decomposition of alkaline tetraphenylborate slurries. Oxygen inhibits the reaction at low temperature (25 C), presumably by preventing activation of the catalyst. The present study investigated oxygen's inhibiting effectiveness at higher temperature (45 C) and catalyst concentrations.

  20. Demonstration of the Catalytic Decomposition of Hydrogen Peroxide.

    ERIC Educational Resources Information Center

    Conklin, Alfred R. Jr.; Kessinger, Angela

    1996-01-01

    Describes a demonstration known as Elephant's Toothpaste in which the decomposition of hydrogen peroxide is catalyzed by iodide. Oxygen is released and soap bubbles are produced. The foam produced is measured, and results show a good relationship between the amount of foam and the concentration of the hydrogen peroxide. (DDR)

  1. Energy Diagram for the Catalytic Decomposition of Hydrogen Peroxide

    ERIC Educational Resources Information Center

    Tatsuoka, Tomoyuki; Koga, Nobuyoshi

    2013-01-01

    Drawing a schematic energy diagram for the decomposition of H[subscript 2]O[subscript 2] catalyzed by MnO[subscript 2] through a simple thermometric measurement outlined in this study is intended to integrate students' understanding of thermochemistry and kinetics of chemical reactions. The reaction enthalpy, delta[subscript r]H, is…

  2. Aspartase/fumarase superfamily: a common catalytic strategy involving general base-catalyzed formation of a highly stabilized aci-carboxylate intermediate.

    PubMed

    Puthan Veetil, Vinod; Fibriansah, Guntur; Raj, Hans; Thunnissen, Andy-Mark W H; Poelarends, Gerrit J

    2012-05-29

    Members of the aspartase/fumarase superfamily share a common tertiary and quaternary fold, as well as a similar active site architecture; the superfamily includes aspartase, fumarase, argininosuccinate lyase, adenylosuccinate lyase, δ-crystallin, and 3-carboxy-cis,cis-muconate lactonizing enzyme (CMLE). These enzymes all process succinyl-containing substrates, leading to the formation of fumarate as the common product (except for the CMLE-catalyzed reaction, which results in the formation of a lactone). In the past few years, X-ray crystallographic analysis of several superfamily members in complex with substrate, product, or substrate analogues has provided detailed insights into their substrate binding modes and catalytic mechanisms. This structural work, combined with earlier mechanistic studies, revealed that members of the aspartase/fumarase superfamily use a common catalytic strategy, which involves general base-catalyzed formation of a stabilized aci-carboxylate (or enediolate) intermediate and the participation of a highly flexible loop, containing the signature sequence GSSxxPxKxN (named the SS loop), in substrate binding and catalysis.

  3. Towards a paradigm shift in the modeling of soil organic carbon decomposition for earth system models

    NASA Astrophysics Data System (ADS)

    He, Yujie

    Soils are the largest terrestrial carbon pools and contain approximately 2200 Pg of carbon. Thus, the dynamics of soil carbon plays an important role in the global carbon cycle and climate system. Earth System Models are used to project future interactions between terrestrial ecosystem carbon dynamics and climate. However, these models often predict a wide range of soil carbon responses and their formulations have lagged behind recent soil science advances, omitting key biogeochemical mechanisms. In contrast, recent mechanistically-based biogeochemical models that explicitly account for microbial biomass pools and enzyme kinetics that catalyze soil carbon decomposition produce notably different results and provide a closer match to recent observations. However, a systematic evaluation of the advantages and disadvantages of the microbial models and how they differ from empirical, first-order formulations in soil decomposition models for soil organic carbon is still needed. This dissertation consists of a series of model sensitivity and uncertainty analyses and identifies dominant decomposition processes in determining soil organic carbon dynamics. Poorly constrained processes or parameters that require more experimental data integration are also identified. This dissertation also demonstrates the critical role of microbial life-history traits (e.g. microbial dormancy) in the modeling of microbial activity in soil organic matter decomposition models. Finally, this study surveys and synthesizes a number of recently published microbial models and provides suggestions for future microbial model developments.

  4. NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI.

    PubMed

    Yin, Xuxian; Xu, Baolei; Jiang, Changhao; Fu, Yunfa; Wang, Zhidong; Li, Hongyi; Shi, Gang

    2015-03-01

    Near-infrared spectroscopy (NIRS) is a non-invasive optical technique used for brain-computer interface (BCI). This study aims to investigate the brain hemodynamic responses of clench force and speed motor imagery and extract task-relevant features to obtain better classification performance. Given the non-stationary characteristics of real hemodynamic measurements, empirical mode decomposition (EMD) was applied to reduce the physiological noise overwhelmed in the task-relevant NIRS signals. Compared with continuous wavelet decomposition, EMD does not require a pre-determined basis function. EMD decomposes the original signals into a set of intrinsic mode functions (IMFs). In this study, joint mutual information was applied to select the optimal features, and support vector machine was used as a classifier. Offline and pseudo-online analyses showed that the most feasible classification accuracy can be obtained using IMFs as input features. Accordingly, an alternative feature is provided to develop the NIRS-BCI system.

  5. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  6. Hazardous materials: microbiological decomposition. January 1985-February 1989 (Citations from the Biobusiness data base). Report for January 1985-February 1989

    SciTech Connect

    Not Available

    1989-03-01

    This bibliography contains citations concerning the decomposition of toxic materials by biological means. Bacteria, enzymes, and bioluminescence are among the methods discussed. Bacteria and enzymes that digest toluene, polychlorinated biphenyls (PCBs), selenium wastes, oil shale waste, uranium, oil sludge, and pesticides are discussed. The biodegradation of rubber wastes, and pentachlorophenol are also considered. Flavobacterium and white rot fungus are among the biological agents highlighted. (Contains 71 citations fully indexed and including a title list.)

  7. Joint amplitude and frequency demodulation analysis based on intrinsic time-scale decomposition for planetary gearbox fault diagnosis

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Lin, Xuefeng; Zuo, Ming J.

    2016-05-01

    Planetary gearbox vibration signals feature complex modulations, thus leading to intricate sideband structure and resulting in difficulty in fault characteristic frequency identification. Intrinsic time-scale decomposition has unique merits, such as high adaptability to changes in signals, low computational complexity, good capability to suppress mode mixing and to preserve temporal information of transients, and excellent suitability for mono-component decomposition of complex multi-component signals. In order to address the issue with planetary gearbox fault diagnosis due to the multiple modulation sources, a joint amplitude and frequency demodulation analysis method is proposed, by exploiting the merits of intrinsic time-scale decomposition. The signal is firstly decomposed into a series of mono-component proper rotational components. Then the one with its instantaneous frequency fluctuating around the gear meshing frequency or its harmonics is selected as the sensitive component. Next, Fourier transformation is applied to the instantaneous amplitude and instantaneous frequency of the sensitive component to obtain the amplitude and frequency demodulated spectra respectively. Finally, a planetary gearbox fault is diagnosed by matching the peaks in the amplitude and frequency demodulated spectra with the theoretical gear fault characteristic frequencies. The proposed method is illustrated by a numerical simulated signal, and further validated by lab experimental signals of a planetary gearbox. The localized faults of sun, planet and ring gears are diagnosed, showing the effectiveness of the method.

  8. Propane dehydrogenation catalyzed by ZSM-5 zeolites. A mechanistic study based on the selective energy transfer (SET) theory.

    PubMed

    Larsson, Ragnar

    2015-02-02

    Experimentally determined activation energies of propane dehydrogenation catalyzed by ZSM-5 zeolites have been used to test the SET theory. The basis of this theory is that the catalyst system transfers vibrational energy via a resonance process to a specific vibration mode of the reacting molecule. Being excited up to a certain number of vibrational quanta the molecule is brought to reaction. By analyzing the above-mentioned activation energies we found the wave number of this "specific mode" to be 1065 cm-1. This is very close to the rocking vibration of propane (1053 cm-1). We suggest that the propane molecule reacts when excited so that the CH3 group has been forced towards a flat structure with a carbon atom hybridization that is more sp2 than sp3. Consequently there is no way for three H-atoms to bind to the carbon and one of them must leave. This is the starting point of the reaction. The isokinetic temperature of the system was found as Tiso = 727 ± 4 K. From the SET formula for Tiso when both energy-donating (ω) and energy-accepting (ν) vibrations have the same frequency, viz., Tiso = Nhcν/2R, we obtain ν = ω = 1011 ± 6 cm-1. This agrees rather well with the CH3 rocking mode (1053 cm-1) and also with asymmetric "TO4" stretching vibrations of the zeolite structure (ω).

  9. Mechanism and Mitigation of the Decomposition of an Oxorhenium Complex-Based Heterogeneous Catalyst for Perchlorate Reduction in Water.

    PubMed

    Liu, Jinyong; Chen, Xi; Wang, Yin; Strathmann, Timothy J; Werth, Charles J

    2015-11-01

    A biomimetic heterogeneous catalyst combining palladium nanoparticles and an organic ligand-coordinated oxorhenium complex on activated carbon, Re(hoz)2-Pd/C, was previously developed and shown to reduce aqueous perchlorate (ClO4-) with H2 at a rate ∼100 times faster than the first generation ReOx-Pd/C catalyst prepared from perrhenate (ReO4-). However, the immobilized Re(hoz)2 complex was shown to partially decompose and leach into water as ReO4-, leading to an irreversible loss of catalytic activity. In this work, the stability of the immobilized Re(hoz)2 complex is shown to depend on kinetic competition between three processes: (1) ReV(hoz)2 oxidation by ClO4- and its reduction intermediates ClOx-, (2) ReVII(hoz)2 reduction by Pd-activated hydrogen, and (3) hydrolytic ReVII(hoz)2 decomposition. When ReV(hoz)2 oxidation is faster than ReVII(hoz)2 reduction, the ReVII(hoz)2 concentration builds up and leads to hydrolytic decomposition to ReO4- and free hoz ligand. Rapid ReV(hoz)2 oxidation is mainly promoted by highly reactive ClOx- formed from the reduction of ClO4-. To mitigate Re(hoz)2 decomposition and preserve catalytic activity, ruthenium (Ru) and rhodium (Rh) were evaluated as alternative H2 activators to Pd. Rh showed superior activity for reducing the ClO3- intermediate to Cl-, thereby preventing ClOx- buildup and lowering Re complex decomposition in the Re(hoz)2-Rh/C catalyst. In contrast, Ru showed the lowest ClO3- reduction activity and resulted in the most Re(hoz)2 decomposition among the Re(hoz)2-M/C catalysts. This work highlights the importance of using mechanistic insights from kinetic and spectroscopic tests to rationally design water treatment catalysts for enhanced performance and stability. PMID:26422179

  10. Palladium-catalyzed cross-coupling reactions of organosilanols and their salts: practical alternatives to boron- and tin-based methods.

    PubMed

    Denmark, Scott E; Regens, Christopher S

    2008-11-18

    In the panoply of modern synthetic methods for forming carbon-carbon and carbon-heteroatom bonds, the transition metal-catalyzed cross-coupling of organometallic nucleophiles with organic electrophiles enjoys a preeminent status. The preparative utility of these reactions is, in large measure, a consequence of the wide variety of organometallic donors that have been conscripted into service. The most common of these reagents are organic derivatives of tin, boron, and zinc, which each possess unique advantages and shortcomings. Because of their low cost, low toxicity, and high chemical stability, organosilanes have emerged as viable alternatives to the conventional reagents in recent years. However, unlike the tin- and zinc-based reactions, which require no activation, or the boron-based reactions, which require only heating with mild bases, silicon-based cross-coupling reactions often require heating in the presence of a fluoride source; this has significantly hampered the widespread acceptance of organosilanes. To address the "fluoride problem", we have introduced a new paradigm for palladium-catalyzed, silicon-based cross-coupling reactions that employs organosilanols, a previously underutilized class of silicon reagents. The use of organosilanols either in the presence of Brønsted bases or as their silanolate salts represents a simple and mild alternative to the classic fluoride-based activation method. Organosilanols are easily available by many well-established methods for introducing carbon-silicon bonds onto alkenes, alkynes, and arenes and heteroarenes. Moreover, we have developed four different protocols for the generation of alkali metal salts of vinyl-, alkenyl-, alkynyl-, aryl-, and heteroarylsilanolates: (1) reversible deprotonation with weak Brønsted bases, (2) irreversible deprotonation with strong Brønsted bases, (3) isolation of the salts from irreversible deprotonation, and (4) silanolate exchange with disiloxanes. We have demonstrated the

  11. Statistical Optimization of Process Parameters for Lipase-Catalyzed Synthesis of Triethanolamine-Based Esterquats Using Response Surface Methodology in 2-Liter Bioreactor

    PubMed Central

    Basri, Mahiran; Kassim, Anuar; Kuang Abdullah, Dzulkefly; Abd Gani, Siti Salwa

    2013-01-01

    Lipase-catalyzed production of triethanolamine-based esterquat by esterification of oleic acid (OA) with triethanolamine (TEA) in n-hexane was performed in 2 L stirred-tank reactor. A set of experiments was designed by central composite design to process modeling and statistically evaluate the findings. Five independent process variables, including enzyme amount, reaction time, reaction temperature, substrates molar ratio of OA to TEA, and agitation speed, were studied under the given conditions designed by Design Expert software. Experimental data were examined for normality test before data processing stage and skewness and kurtosis indices were determined. The mathematical model developed was found to be adequate and statistically accurate to predict the optimum conversion of product. Response surface methodology with central composite design gave the best performance in this study, and the methodology as a whole has been proven to be adequate for the design and optimization of the enzymatic process. PMID:24324389

  12. N-Acylsaccharins: Stable Electrophilic Amide-Based Acyl Transfer Reagents in Pd-Catalyzed Suzuki-Miyaura Coupling via N-C Cleavage.

    PubMed

    Liu, Chengwei; Meng, Guangrong; Liu, Yongmei; Liu, Ruzhang; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2016-09-01

    The development of efficient catalytic methods for N-C bond cleavage in amides remains an important synthetic challenge. The first Pd-catalyzed Suzuki-Miyaura cross-coupling of N-acylsaccharins with boronic acids by selective N-C bond activation is reported. The reaction enables preparation of a variety of functionalized diaryl and alkyl-aryl ketones with broad functional group tolerance and in good to excellent yields. Of general interest, N-acylsaccharins serve as new, highly reactive, bench-stable, economical, amide-based, electrophilic acyl transfer reagents via acyl-metal intermediates. Mechanistic studies strongly support the amide N-C(O) bond twist as the enabling feature of N-acylsaccharins in the N-C bond cleavage. PMID:27513821

  13. Evidence for the involvement of acid/base chemistry in the reaction catalyzed by the type II isopentenyl diphosphate/dimethylallyl diphosphate isomerase from Staphylococcus aureus.

    PubMed

    Thibodeaux, Christopher J; Mansoorabadi, Steven O; Kittleman, William; Chang, Wei-chen; Liu, Hung-wen

    2008-02-26

    The type II isopentenyl diphosphate/dimethylallyl diphosphate isomerase (IDI-2) is a flavin mononucleotide (FMN)-dependent enzyme that catalyzes the reversible isomerization of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP), a reaction with no net change in redox state of the coenzyme or substrate. Here, UV-vis spectral analysis of the IDI-2 reaction revealed the accumulation of a reduced neutral dihydroflavin intermediate when the reduced enzyme was incubated with IPP or DMAPP. When IDI-2 was reconstituted with 1-deazaFMN and 5-deazaFMN, similar reduced neutral forms of the deazaflavin analogues were observed in the presence of IPP. Single turnover stopped-flow absorbance experiments indicated that this flavin intermediate formed and decayed at kinetically competent rates in the pre-steady-state and, thus, most likely represents a true intermediate in the catalytic cycle. UV-vis spectra of the reaction mixtures reveal trace amounts of a neutral semiquinone, but evidence for the presence of IPP-based radicals could not be obtained by EPR spectroscopy. Rapid-mix chemical quench experiments show no burst in DMAPP formation, suggesting that the rate determining step in the forward direction (IPP to DMAPP) occurs prior to DMAPP formation. A solvent deuterium kinetic isotope effect (D2OVmax = 1.5) was measured on vo in steady-state kinetic experiments at saturating substrate concentrations. A substrate deuterium kinetic isotope effect was also measured on the initital velocity (DVmax = 1.8) and on the decay rate of the flavin intermediate (Dks = 2.3) in single-turnover stopped-flow experiments using (R)-[2-2H]-IPP. Taken together, these data suggest that the C2-H bond of IPP is cleaved in the rate determining step and that general acid/base catalysis may be involved during turnover. Possible mechanisms for the IDI-2 catalyzed reaction are presented and discussed in terms of the available X-ray crystal structures.

  14. Ab initio path-integral calculations of kinetic and equilibrium isotope effects on base-catalyzed RNA transphosphorylation models.

    PubMed

    Wong, Kin-Yiu; Xu, Yuqing; York, Darrin M

    2014-06-30

    Detailed understandings of the reaction mechanisms of RNA catalysis in various environments can have profound importance for many applications, ranging from the design of new biotechnologies to the unraveling of the evolutionary origin of life. An integral step in the nucleolytic RNA catalysis is self-cleavage of RNA strands by 2'-O-transphosphorylation. Key to elucidating a reaction mechanism is determining the molecular structure and bonding characteristics of transition state. A direct and powerful probe of transition state is measuring isotope effects on biochemical reactions, particularly if we can reproduce isotope effect values from quantum calculations. This article significantly extends the scope of our previous joint experimental and theoretical work in examining isotope effects on enzymatic and nonenzymatic 2'-O-transphosphorylation reaction models that mimic reactions catalyzed by RNA enzymes (ribozymes), and protein enzymes such as ribonuclease A (RNase A). Native reactions are studied, as well as reactions with thio substitutions representing chemical modifications often used in experiments to probe mechanism. Here, we report and compare results from eight levels of electronic-structure calculations for constructing the potential energy surfaces in kinetic and equilibrium isotope effects (KIE and EIE) computations, including a "gold-standard" coupled-cluster level of theory [CCSD(T)]. In addition to the widely used Bigeleisen equation for estimating KIE and EIE values, internuclear anharmonicity and quantum tunneling effects were also computed using our recently developed ab initio path-integral method, that is, automated integration-free path-integral method. The results of this work establish an important set of benchmarks that serve to guide calculations of KIE and EIE for RNA catalysis.

  15. Ab Initio Path-Integral Calculations of Kinetic and Equilibrium Isotope Effects on Base-Catalyzed RNA Transphosphorylation Models

    PubMed Central

    Wong, Kin-Yiu; Yuqing, Xu; York, Darrin M.

    2014-01-01

    Detailed understandings of the reaction mechanisms of RNA catalysis in various environments can have profound importance for many applications, ranging from the design of new biotechnologies to the unraveling of the evolutionary origin of life. An integral step in the nucleolytic RNA catalysis is self-cleavage of RNA strands by 2′-O-transphosphorylation. Key to elucidating a reaction mechanism is determining the molecular structure and bonding characteristics of transition state. A direct and powerful probe of transition state is measuring isotope effects on biochemical reactions, particularly if we can reproduce isotope effect values from quantum calculations. This paper significantly extends the scope of our previous joint experimental and theoretical work in examining isotope effects on enzymatic and non-enzymatic 2′-O-transphosphorylation reaction models that mimic reactions catalyzed by RNA enzymes (ribozymes), and protein enzymes such as ribonuclease A (RNase A). Native reactions are studied, as well as reactions with thio substitutions representing chemical modifications often used in experiments to probe mechanism. Here, we report and compare results from eight levels of electronic-structure calculations for constructing the potential energy surfaces in kinetic and equilibrium isotope effects (KIE and EIE) computations, including a “gold-standard” coupled-cluster level of theory [CCSD(T)]. In addition to the widely-used Bigeleisen equation for estimating KIE and EIE values, internuclear anharmonicity and quantum tunneling effects were also computed using our recently-developed ab initio path-integral method, i.e., automated integration-free path-integral (AIF-PI) method. The results of this work establish an important set of benchmarks that serve to guide calculations of KIE and EIE for RNA catalysis. PMID:24841935

  16. Secondary decomposition reactions in nitramines

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    Thermal decomposition of nitramines is known to proceed via multiple, competing reaction branches, some of which are triggered by secondary reactions between initial decomposition products and unreacted nitramine molecules. Better mechanistic understanding of these secondary reactions is needed to enable extrapolations of measured rates to higher temperatures and pressures relevant to shock ignition. I will present density functional theory (DFT) based simulations of nitramines that aim to re-evaluate known elementary mechanisms and seek alternative pathways in the gas and condensed phases. This work was supported by the Office of Naval Research, both directly and through the Naval Research Laboratory.

  17. Catalyzed oxidation for nanowire growth

    NASA Astrophysics Data System (ADS)

    Tai, Kaiping; Sun, Ke; Huang, Bo; Dillon, Shen J.

    2014-04-01

    A simple, low-cost and scalable route to substrate-supported nanowire growth is reported based on catalyzed oxidation. The process shares common features with popular catalyzed nanowire growth techniques such as vapor-liquid-solid (VLS), vapor-solid-solid (VSS), or vapor-quasi-solid (VQS) that use catalyst nanoparticles to direct the deposition of reactants from the vapor phase. Catalyzed oxidation for nanowire growth (CONG) utilizes catalyzed anion (e.g. O2) reduction from the vapor phase and metal (e.g. Fe) oxidation from the substrate to produce oxide nanowires (e.g. Fe3O4). The approach represents a new class of nanowire growth methodology that may be applied to a broad range of systems. CONG does not require expensive chemical vapor deposition or physical vapor deposition equipment and can be implemented at intermediate temperatures (400-600 °C) in a standard laboratory furnace. This work also demonstrates a passive approach to catalyst deposition that allows the process to be implemented simply with no lithography or physical vapor deposition steps. This effort validates the general approach by synthesizing MnO, Fe3O4, WO3, MgO, TiO2, ZnO, ReO3, and NiO nanowires via CONG. The process produces single crystalline nanowires that can be grown to high aspect ratio and as high-density nanowire forests. Applications of the as-grown Fe3O4 and ReO3 nanowires for lithium ion battery systems are demonstrated to display high areal energy density and power.

  18. Catalyzed oxidation for nanowire growth.

    PubMed

    Tai, Kaiping; Sun, Ke; Huang, Bo; Dillon, Shen J

    2014-04-11

    A simple, low-cost and scalable route to substrate-supported nanowire growth is reported based on catalyzed oxidation. The process shares common features with popular catalyzed nanowire growth techniques such as vapor-liquid-solid (VLS), vapor-solid-solid (VSS), or vapor-quasi-solid (VQS) that use catalyst nanoparticles to direct the deposition of reactants from the vapor phase. Catalyzed oxidation for nanowire growth (CONG) utilizes catalyzed anion (e.g. O2) reduction from the vapor phase and metal (e.g. Fe) oxidation from the substrate to produce oxide nanowires (e.g. Fe3O4). The approach represents a new class of nanowire growth methodology that may be applied to a broad range of systems. CONG does not require expensive chemical vapor deposition or physical vapor deposition equipment and can be implemented at intermediate temperatures (400-600 °C) in a standard laboratory furnace. This work also demonstrates a passive approach to catalyst deposition that allows the process to be implemented simply with no lithography or physical vapor deposition steps. This effort validates the general approach by synthesizing MnO, Fe3O4, WO3, MgO, TiO2, ZnO, ReO3, and NiO nanowires via CONG. The process produces single crystalline nanowires that can be grown to high aspect ratio and as high-density nanowire forests. Applications of the as-grown Fe3O4 and ReO3 nanowires for lithium ion battery systems are demonstrated to display high areal energy density and power.

  19. Amplified fluorescence detection of DNA based on catalyzed dynamic assembly and host-guest interaction between β-cyclodextrin polymer and pyrene.

    PubMed

    Huang, Haihua; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Guo, Qiuping; Huang, Jin; Liu, Jianbo; Guo, Xiaochen; Li, Wenshan; He, Leiliang

    2015-11-01

    The detection of nucleic acids is fundamental for studying their functions and for the development of biological studies and medical diagnostics. Herein, we report a new strategy for nucleic acid amplified detection by combining target-catalyzed dynamic assembly with host-guest interaction between β-cyclodextrin polymer (β-CDP) and pyrene. In this strategy, a metastable pyrene-labeled hairpin DNA probe (probe H1) and a metastable unlabeled hairpin DNA probe (probe H2) were elaborately designed as the assembly components, which were kinetically handicapped from cross-opening in the absence of target DNA. In this state, pyrene labled at the 5'-termini of single-stranded stem of probe H1 would be easily trapped into the hydrophobic cavity of β-CDP because of weak steric hindrance, leading to significant fluorescence enhancement. Once the dynamic assembly was catalyzed by target DNA, a hybridized DNA duplex H1-H2 would be created continuously. In this state, it is difficult for pyrene to enter the cavity of β-CDP due to steric hindrance and weak-binding interaction, leading to a weak fluorescent signal. Thus, target DNA could be detected by this simple mix-and-detect amplification method without the need of expensive and perishable protein enzymes. As low as 10 pM of the target DNA was detected by this assay, which was comparable to that of some reported enzyme-dependent amplification methods. Meanwhile, the proposed method was further successfully applied to detect DNA in cell lysate samples, showing great potential for target detection from complex fluids. In addition, as a novel transformation of dynamic DNA assembly technology into enzyme-free signal-amplification analytical application, the proposed strategy has shown great potential for applications in a wide range of fields, such as aptamer-based non-nucleic acid target sensing, biomedicine and bioimaging.

  20. Thermal decomposition of solid phase nitromethane under various heating rates and target temperatures based on ab initio molecular dynamics simulations.

    PubMed

    Xu, Kai; Wei, Dong-Qing; Chen, Xiang-Rong; Ji, Guang-Fu

    2014-10-01

    The Car-Parrinello molecular dynamics simulation was applied to study the thermal decomposition of solid phase nitromethane under gradual heating and fast annealing conditions. In gradual heating simulations, we found that, rather than C-N bond cleavage, intermolecular proton transfer is more likely to be the first reaction in the decomposition process. At high temperature, the first reaction in fast annealing simulation is intermolecular proton transfer leading to CH3NOOH and CH2NO2, whereas the initial chemical event at low temperature tends to be a unimolecular C-N bond cleavage, producing CH3 and NO2 fragments. It is the first time to date that the direct rupture of a C-N bond has been reported as the first reaction in solid phase nitromethane. In addition, the fast annealing simulations on a supercell at different temperatures are conducted to validate the effect of simulation cell size on initial reaction mechanisms. The results are in qualitative agreement with the simulations on a unit cell. By analyzing the time evolution of some molecules, we also found that the time of first water molecule formation is clearly sensitive to heating rates and target temperatures when the first reaction is an intermolecular proton transfer. PMID:25234607

  1. Thermal decomposition of solid phase nitromethane under various heating rates and target temperatures based on ab initio molecular dynamics simulations.

    PubMed

    Xu, Kai; Wei, Dong-Qing; Chen, Xiang-Rong; Ji, Guang-Fu

    2014-10-01

    The Car-Parrinello molecular dynamics simulation was applied to study the thermal decomposition of solid phase nitromethane under gradual heating and fast annealing conditions. In gradual heating simulations, we found that, rather than C-N bond cleavage, intermolecular proton transfer is more likely to be the first reaction in the decomposition process. At high temperature, the first reaction in fast annealing simulation is intermolecular proton transfer leading to CH3NOOH and CH2NO2, whereas the initial chemical event at low temperature tends to be a unimolecular C-N bond cleavage, producing CH3 and NO2 fragments. It is the first time to date that the direct rupture of a C-N bond has been reported as the first reaction in solid phase nitromethane. In addition, the fast annealing simulations on a supercell at different temperatures are conducted to validate the effect of simulation cell size on initial reaction mechanisms. The results are in qualitative agreement with the simulations on a unit cell. By analyzing the time evolution of some molecules, we also found that the time of first water molecule formation is clearly sensitive to heating rates and target temperatures when the first reaction is an intermolecular proton transfer.

  2. Wavelet-based decomposition of high resolution surface plasmon microscopy V(Z) curves at visible and near infrared wavelengths.

    PubMed

    Boyer-Provera, E; Rossi, A; Oriol, L; Dumontet, C; Plesa, A; Berguiga, L; Elezgaray, J; Arneodo, A; Argoul, F

    2013-03-25

    Surface plasmon resonance is conventionally conducted in the visible range and, during the past decades, it has proved its efficiency in probing molecular scale interactions. Here we elaborate on the first implementation of a high resolution surface plasmon microscope that operates at near infrared (IR) wavelength for the specific purpose of living matter imaging. We analyze the characteristic angular and spatial frequencies of plasmon resonance in visible and near IR lights and how these combined quantities contribute to the V(Z) response of a scanning surface plasmon microscope (SSPM). Using a space-frequency wavelet decomposition, we show that the V(Z) response of the SSPM for red (632.8 nm) and near IR (1550 nm) lights includes the frequential response of plasmon resonance together with additional parasitic frequencies induced by the objective pupil. Because the objective lens pupil profile is often unknown, this space-frequency decomposition turns out to be very useful to decipher the characteristic frequencies of the experimental V(Z) curves. Comparing the visible and near IR light responses of the SSPM, we show that our objective lens, primarily designed for visible light microscopy, is still operating very efficiently in near IR light. Actually, despite their loss in resolution, the SSPM images obtained with near IR light remain contrasted for a wider range of defocus values from negative to positive Z values. We illustrate our theoretical modeling with a preliminary experimental application to blood cell imaging.

  3. The role of residence time in diagnostic models of global carbon storage capacity: model decomposition based on a traceable scheme

    PubMed Central

    Yizhao, Chen; Jianyang, Xia; Zhengguo, Sun; Jianlong, Li; Yiqi, Luo; Chengcheng, Gang; Zhaoqi, Wang

    2015-01-01

    As a key factor that determines carbon storage capacity, residence time (τE) is not well constrained in terrestrial biosphere models. This factor is recognized as an important source of model uncertainty. In this study, to understand how τE influences terrestrial carbon storage prediction in diagnostic models, we introduced a model decomposition scheme in the Boreal Ecosystem Productivity Simulator (BEPS) and then compared it with a prognostic model. The result showed that τE ranged from 32.7 to 158.2 years. The baseline residence time (τ′E) was stable for each biome, ranging from 12 to 53.7 years for forest biomes and 4.2 to 5.3 years for non-forest biomes. The spatiotemporal variations in τE were mainly determined by the environmental scalar (ξ). By comparing models, we found that the BEPS uses a more detailed pool construction but rougher parameterization for carbon allocation and decomposition. With respect to ξ comparison, the global difference in the temperature scalar (ξt) averaged 0.045, whereas the moisture scalar (ξw) had a much larger variation, with an average of 0.312. We propose that further evaluations and improvements in τ′E and ξw predictions are essential to reduce the uncertainties in predicting carbon storage by the BEPS and similar diagnostic models. PMID:26541245

  4. Stochastic shock response spectrum decomposition method based on probabilistic definitions of temporal peak acceleration, spectral energy, and phase lag distributions of mechanical impact pyrotechnic shock test data

    NASA Astrophysics Data System (ADS)

    Hwang, James Ho-Jin; Duran, Adam

    2016-08-01

    Most of the times pyrotechnic shock design and test requirements for space systems are provided in Shock Response Spectrum (SRS) without the input time history. Since the SRS does not describe the input or the environment, a decomposition method is used to obtain the source time history. The main objective of this paper is to develop a decomposition method producing input time histories that can satisfy the SRS requirement based on the pyrotechnic shock test data measured from a mechanical impact test apparatus. At the heart of this decomposition method is the statistical representation of the pyrotechnic shock test data measured from the MIT Lincoln Laboratory (LL) designed Universal Pyrotechnic Shock Simulator (UPSS). Each pyrotechnic shock test data measured at the interface of a test unit has been analyzed to produce the temporal peak acceleration, Root Mean Square (RMS) acceleration, and the phase lag at each band center frequency. Maximum SRS of each filtered time history has been calculated to produce a relationship between the input and the response. Two new definitions are proposed as a result. The Peak Ratio (PR) is defined as the ratio between the maximum SRS and the temporal peak acceleration at each band center frequency. The ratio between the maximum SRS and the RMS acceleration is defined as the Energy Ratio (ER) at each band center frequency. Phase lag is estimated based on the time delay between the temporal peak acceleration at each band center frequency and the peak acceleration at the lowest band center frequency. This stochastic process has been applied to more than one hundred pyrotechnic shock test data to produce probabilistic definitions of the PR, ER, and the phase lag. The SRS is decomposed at each band center frequency using damped sinusoids with the PR and the decays obtained by matching the ER of the damped sinusoids to the ER of the test data. The final step in this stochastic SRS decomposition process is the Monte Carlo (MC

  5. Low Temperature Decomposition Rates for Tetraphenylborate Ion

    SciTech Connect

    Walker, D.D.

    1998-11-18

    Previous studies indicated that palladium is catalyzes rapid decomposition of alkaline tetraphenylborate slurries. Additional evidence suggest that Pd(II) reduces to Pd(0) during catalyst activation. Further use of tetraphenylborate ion in the decontamination of radioactive waste may require removal of the catalyst or cooling to temperatures at which the decomposition reaction proceeds slowly and does not adversely affect processing. Recent tests showed that tetraphenylborate did not react appreciably at 25 degrees Celsius over six months suggesting the potential to avoid the decomposition at low temperatures. The lack of reaction at low temperature could reflect very slow kinetics at the lower temperature, or may indicate a catalyst ''deactivation'' process. Previous tests in the temperature range 35 to 70 degrees Celsius provided a low precision estimate of the activation energy of the reaction with which to predict the rate of reaction at 25 percent Celsius. To understand the observations at 25 degrees Celsius, experiments must separate the catalyst activation step and the subsequent reaction with TPB. Tests described in this report represent an initial attempt to separate the two steps and determine the rate and activation energy of the reaction between active catalyst and TPB. The results of these tests indicate that the absence of reaction at 25 degrees Celsius was caused by failure to activate the catalyst or the presence of a deactivating mechanism. In the presence of activated catalyst, the decomposition reaction rate is significant.

  6. Additive effect on reductive decomposition and binding of carbonate-based solvent toward solid electrolyte interphase formation in lithium-ion battery.

    PubMed

    Ushirogata, Keisuke; Sodeyama, Keitaro; Okuno, Yukihiro; Tateyama, Yoshitaka

    2013-08-14

    The solid-electrolyte interphase (SEI) formed through the reductive decomposition of solvent molecules plays a crucial role in the stability and capability of a lithium-ion battery (LIB). Here we investigated the effects of adding vinylene carbonate (VC) to ethylene carbonate (EC) solvent, a typical electrolyte in LIBs, on the reductive decomposition. We focused on both thermodynamics and kinetics of the possible processes and used density functional theory-based molecular dynamics with explicit solvent and Blue-moon ensemble technique for the free energy change. We considered Li(+) in only EC solvent (EC system) and in EC solvent with a VC additive (EC/VC system) to elucidate the additive effects. In addition to clarifying the equilibrium properties, we evaluated the free energy changes along several EC or VC decomposition pathways under one-electron (1e) reduction condition. Two-electron (2e) reduction and attacks of anion radicals to intact molecules were also examined. The present results completely reproduce the gaseous products observed in the experiments. We also found a new mechanism involving the VC additive: the VC additive preferentially reacts with the EC anion radical to suppress the 2e reduction of EC and enhance the initial SEI formation, contrary to the conventional scenario in which VC additive is sacrificially reduced and its radical oligomerization becomes the source of SEI. Because our mechanism needs only 1e reduction, the irreversible capacity at the SEI formation will decrease, which is also consistent with the experimental observations. These results reveal the primary role of VC additive in the EC solvent.

  7. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  8. Diagnosis of the Ill-condition of the RFM Based on Condition Index and Variance Decomposition Proportion (CIVDP)

    NASA Astrophysics Data System (ADS)

    Qing, Zhou; Weili, Jiao; Tengfei, Long

    2014-03-01

    The Rational Function Model (RFM) is a new generalized sensor model. It does not need the physical parameters of sensors to achieve a high accuracy that is compatible to the rigorous sensor models. At present, the main method to solve RPCs is the Least Squares Estimation. But when coefficients has a large number or the distribution of the control points is not even, the classical least square method loses its superiority due to the ill-conditioning problem of design matrix. Condition Index and Variance Decomposition Proportion (CIVDP) is a reliable method for diagnosing the multicollinearity among the design matrix. It can not only detect the multicollinearity, but also can locate the parameters and show the corresponding columns in the design matrix. In this paper, the CIVDP method is used to diagnose the ill-condition problem of the RFM and to find the multicollinearity in the normal matrix.

  9. Role of tunable acid catalysis in decomposition of α-hydroxyalkyl hydroperoxides and mechanistic implications for tropospheric chemistry.

    PubMed

    Kumar, Manoj; Busch, Daryle H; Subramaniam, Bala; Thompson, Ward H

    2014-10-16

    Electronic structure calculations have been used to investigate possible gas-phase decomposition pathways of α-hydroxyalkyl hydroperoxides (HHPs), an important source of tropospheric hydrogen peroxide and carbonyl compounds. The uncatalyzed as well as water- and acid-catalyzed decomposition of multiple HHPs have been examined at the M06-2X/aug-cc-pVTZ level of theory. The calculations indicate that, compared to an uncatalyzed or water-catalyzed reaction, the free-energy barrier of an acid-catalyzed decomposition leading to an aldehyde or ketone and hydrogen peroxide is dramatically lowered. The calculations also find a direct correlation between the catalytic effect of an acid and the distance separating its hydrogen acceptor and donor sites. Interestingly, the catalytic effect of an acid on the HHP decomposition resulting in the formation of carboxylic acid and water is relatively much smaller. Moreover, since the free-energy barrier of the acid-catalyzed aldehyde- or ketone-forming decomposition is ∼ 25% lower than that required to break the O-OH linkage of the HHP leading to the formation of hydroxyl radical, these results suggest that HHP decomposition is likely not an important source of tropospheric hydroxyl radical. Finally, transition state theory estimates indicate that the effective rate constants for the acid-catalyzed aldehyde- or ketone-forming HHP decomposition pathways are 2-3 orders of magnitude faster than those for the water-catalyzed reaction, indicating that an acid-catalyzed HHP decomposition is kinetically favored as well.

  10. Initiator-catalyzed self-assembly of duplex-looped DNA hairpin motif based on strand displacement reaction for logic operations and amplified biosensing.

    PubMed

    Bi, Sai; Yue, Shuzhen; Wu, Qiang; Ye, Jiayan

    2016-09-15

    Here we program an initiator-catalyzed self-assembly of duplex-looped DNA hairpin motif based on strand displacement reaction. Due to the recycling of initiator and performance in a cascade manner, this system is versatilely extended to logic operations, including the construction of concatenated logic circuits with a feedback function and a biocomputing keypad-lock security system. Compared with previously reported molecular security systems, the prominent feature of our keypad lock is that it can be spontaneously reset and recycled with no need of any external stimulus and human intervention. Moreover, through integrating with an isothermal amplification technique of rolling circle amplification (RCA), this programming catalytic DNA self-assembly strategy readily achieves sensitive and selective biosensing of initiator. Importantly, a magnetic graphene oxide (MGO) is introduced to remarkably reduced background, which plays an important role in enhancing the signal-to-noise ratio and improving the detection sensitivity. Therefore, the proposed sophisticated DNA strand displacement-based methodology with engineering dynamic functions may find broad applications in the construction of programming DNA nanostructures, amplification biosensing platform, and large-scale DNA circuits. PMID:27132002

  11. Initiator-catalyzed self-assembly of duplex-looped DNA hairpin motif based on strand displacement reaction for logic operations and amplified biosensing.

    PubMed

    Bi, Sai; Yue, Shuzhen; Wu, Qiang; Ye, Jiayan

    2016-09-15

    Here we program an initiator-catalyzed self-assembly of duplex-looped DNA hairpin motif based on strand displacement reaction. Due to the recycling of initiator and performance in a cascade manner, this system is versatilely extended to logic operations, including the construction of concatenated logic circuits with a feedback function and a biocomputing keypad-lock security system. Compared with previously reported molecular security systems, the prominent feature of our keypad lock is that it can be spontaneously reset and recycled with no need of any external stimulus and human intervention. Moreover, through integrating with an isothermal amplification technique of rolling circle amplification (RCA), this programming catalytic DNA self-assembly strategy readily achieves sensitive and selective biosensing of initiator. Importantly, a magnetic graphene oxide (MGO) is introduced to remarkably reduced background, which plays an important role in enhancing the signal-to-noise ratio and improving the detection sensitivity. Therefore, the proposed sophisticated DNA strand displacement-based methodology with engineering dynamic functions may find broad applications in the construction of programming DNA nanostructures, amplification biosensing platform, and large-scale DNA circuits.

  12. Reversibility of Noble Metal-Catalyzed Aprotic Li-O₂ Batteries.

    PubMed

    Ma, Shunchao; Wu, Yang; Wang, Jiawei; Zhang, Yelong; Zhang, Yantao; Yan, Xinxiu; Wei, Yang; Liu, Peng; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan; Xu, Ye; Peng, Zhangquan

    2015-12-01

    The aprotic Li-O2 battery has attracted a great deal of interest because, theoretically, it can store far more energy than today's batteries. Toward unlocking the energy capabilities of this neotype energy storage system, noble metal-catalyzed high surface area carbon materials have been widely used as the O2 cathodes, and some of them exhibit excellent electrochemical performances in terms of round-trip efficiency and cycle life. However, whether these outstanding electrochemical performances are backed by the reversible formation/decomposition of Li2O2, i.e., the desired Li-O2 electrochemistry, remains unclear due to a lack of quantitative assays for the Li-O2 cells. Here, noble metal (Ru and Pd)-catalyzed carbon nanotube (CNT) fabrics, prepared by magnetron sputtering, have been used as the O2 cathode in aprotic Li-O2 batteries. The catalyzed Li-O2 cells exhibited considerably high round-trip efficiency and prolonged cycle life, which could match or even surpass some of the best literature results. However, a combined analysis using differential electrochemical mass spectrometry and Fourier transform infrared spectroscopy, revealed that these catalyzed Li-O2 cells (particularly those based on Pd-CNT cathodes) did not work according to the desired Li-O2 electrochemistry. Instead the presence of noble metal catalysts impaired the cells' reversibility, as evidenced by the decreased O2 recovery efficiency (the ratio of the amount of O2 evolved during recharge/that consumed in the preceding discharge) coupled with increased CO2 evolution during charging. The results reported here provide new insights into the O2 electrochemistry in the aprotic Li-O2 batteries containing noble metal catalysts and exemplified the importance of the quantitative assays for the Li-O2 reactions in the course of pursuing truly rechargeable Li-O2 batteries.

  13. Decomposition of Sodium Tetraphenylborate

    SciTech Connect

    Barnes, M.J.

    1998-11-20

    The chemical decomposition of aqueous alkaline solutions of sodium tetraphenylborate (NaTPB) has been investigated. The focus of the investigation is on the determination of additives and/or variables which influence NaTBP decomposition. This document describes work aimed at providing better understanding into the relationship of copper (II), solution temperature, and solution pH to NaTPB stability.

  14. Scan-based near-field acoustical holography and partial field decomposition in the presence of noise and source level variation.

    PubMed

    Lee, Moohyung; Bolton, J Stuart

    2006-01-01

    Practical holography measurements of composite sources are usually performed using a multireference cross-spectral approach, and the measured sound field must be decomposed into spatially coherent partial fields before holographic projection. The formulations by which the latter approach have been implemented have not taken explicit account of the effect of additive noise on the reference signals and so have strictly been limited to the case in which noise superimposed on the reference signals is negligible. Further, when the sound field is measured by scanning a subarray over a number of patches in sequence, the decomposed partial fields can suffer from corruption in the form of a spatially distributed error resulting from source level variation from scan-to-scan. In the present work, the effects of both noise included in the reference signals, and source level variation during a scan-based measurement, on partial field decomposition are described, and an integrated procedure for simultaneously suppressing the two effects is provided. Also, the relative performance of two partial field decomposition formulations is compared, and a strategy for obtaining the best results is described. The proposed procedure has been verified by using numerical simulations and has been applied to holographic measurements of a subsonic jet.

  15. Ion chromatography electrospray ionization mass spectrometry method development and investigation of lithium hexafluorophosphate-based organic electrolytes and their thermal decomposition products.

    PubMed

    Kraft, Vadim; Grützke, Martin; Weber, Waldemar; Winter, Martin; Nowak, Sascha

    2014-08-01

    A method based on the coupling of ion chromatography (IC) and electrospray ionization mass spectrometry (ESI-MS) for the separation and determination of thermal decomposition products of LiPF6-based organic electrolytes is presented. The utilized electrolytes, LP30 and LP50, are commercially available and consist of 1mol/l LiPF6 dissolved in ethylene carbonate/dimethyl carbonate and ethylene carbonate/ethyl methyl carbonate, respectively. For the separation method development three ion chromatographic columns with different capacity and stationary phase were used and compared. Besides the known hydrolysis products of lithium hexafluorophosphate, several new organophosphates were separated and identified with the developed IC-ESI-MS method during aging investigations of the electrolytes. The chemical structures were elucidated with IC-ESI-MS/MS.

  16. Ion chromatography electrospray ionization mass spectrometry method development and investigation of lithium hexafluorophosphate-based organic electrolytes and their thermal decomposition products.

    PubMed

    Kraft, Vadim; Grützke, Martin; Weber, Waldemar; Winter, Martin; Nowak, Sascha

    2014-08-01

    A method based on the coupling of ion chromatography (IC) and electrospray ionization mass spectrometry (ESI-MS) for the separation and determination of thermal decomposition products of LiPF6-based organic electrolytes is presented. The utilized electrolytes, LP30 and LP50, are commercially available and consist of 1mol/l LiPF6 dissolved in ethylene carbonate/dimethyl carbonate and ethylene carbonate/ethyl methyl carbonate, respectively. For the separation method development three ion chromatographic columns with different capacity and stationary phase were used and compared. Besides the known hydrolysis products of lithium hexafluorophosphate, several new organophosphates were separated and identified with the developed IC-ESI-MS method during aging investigations of the electrolytes. The chemical structures were elucidated with IC-ESI-MS/MS. PMID:24939088

  17. Ferrocene-based sulfonyl dihydropyrazole derivatives: Synthesis, structure, electrochemistry and effect on thermal decomposition of NH4ClO4

    NASA Astrophysics Data System (ADS)

    Zhuo, Ji-Bin; Li, Heng-Dong; Lin, Cai-Xia; Xie, Li-Li; Bai, Sha; Yuan, Yao-Feng

    2014-06-01

    Three ferrocene-based sulfonyl-substituted dihydropyrazoles 3a-c have been synthesized, from the corresponding α,β-unsaturated diketones, and fully characterized. The crystal structures of 3a-c have been confirmed by X-ray crystallography, and electrochemistry behaviors of 3a-c have been examined by cyclic voltammetry (CV). Representatively, the mechanism of the electron transfer in redox process of 3a has been verified by density functional theory (DFT) calculation. It has been found that the activity of catalytic decomposition of ammonium perchlorate (AP) is significantly lowered (by 62.9-104.7 °C) with an addition of 3a-c. We expect that the ferrocene-based sulfonyl dihydropyrazole derivatives would have a great value in burning rate catalyst as composite solid propellants.

  18. Preparation of chiral amino esters by asymmetric phase-transfer catalyzed alkylations of Schiff bases in a ball mill.

    PubMed

    Nun, Pierrick; Pérez, Violaine; Calmès, Monique; Martinez, Jean; Lamaty, Frédéric

    2012-03-19

    The asymmetric alkylation of Schiff bases under basic conditions in a ball mill was performed. The starting Schiff bases of glycine were prepared beforehand by milling protected glycine hydrochloride and benzophenone imine, in the absence of solvent. The Schiff base was then reacted with a halogenated derivative in a ball mill in the presence of KOH. By adding a chiral ammonium salt derived from cinchonidine, the reaction proceeded asymmetrically under phase-transfer catalysis conditions, giving excellent yields and enantiomeric excesses up to 75 %. Because an equimolar amount of starting material was used, purification was greatly simplified.

  19. The thermal decomposition of methane in a tubular reactor

    SciTech Connect

    Kobayashi, Atsushi; Steinberg, M.

    1992-01-01

    The reaction rate of methane decomposition using a tubular reactor having a 1 inch inside diameter with an 8 foot long heated zone was investigated in the temperature range of 700 to 900 C with pressures ranging from 28.2 to 56.1 atm. Representing the rate by a conventional model, {minus}dC{sub CH4}/dt= k1 C{sub CH4} {minus}k2 C{sub H2}{sup 2}, the rate constant k1 for methane decomposition was determined. The activation energy, 31.3 kcal/mol, calculated by an Arrhenius Plot was lower than for previously published results for methane decomposition. This result indicates that submicron particles found in the reactor adhere to the inside of the reactor and these submicron high surface area carbon particles tend to catalyze the methane decomposition. The rate constant has been found to be approximately constant at 900 C with pressure range cited above. The rate of methane decomposition increases with methane partial pressure in first-order. The rate of the methane decomposition is favored by higher temperatures and pressures while the thermochemical equilibrium of methane decomposition is favored by lower pressures. 8 refs., 7 figs., 2 tabs.

  20. Whole-cell method for phenol detection based on the color reaction of phenol with 4-aminoantipyrine catalyzed by CotA laccase on endospore surfaces.

    PubMed

    Zeng, Zhiming; Tian, Longjian; Li, Zheng; Jia, Lina; Zhang, Xinya; Xia, Miaomiao; Hu, Yonggang

    2015-07-15

    A green method for phenol spectrophotometric determination was developed based on the color reaction of phenol with 4-aminoantipyrine catalyzed by addition of Bacillus amyloliquefaciens endospores in the presence of O2. The catalytic activity of the endospores may be attributed to the presence of coat protein A on the cell surfaces. This deduction was confirmed by cotA gene knock-out from B. amyloliquefaciens using the homologous double-exchange method. Under optimal conditions, linear responses were obtained over phenol concentrations ranging from 5.0×10(-5)gL(-1) to 1.0×10(-2)gL(-1) (r=0.9984) with a detection limit of 2.1×10(-5)gL(-1) (3σ). Repeatability measurements of 1.0mgL(-1) phenol provided reproducible results with a relative standard deviation of 5.3% (n=11). Standard addition tests indicated recoveries ranging from 92.78% to 107.60%. The proposed whole-cell method was successfully used to detect total phenol in synthetic samples. Results confirmed the potential use of the developed method in practical applications.

  1. Kinetics of an acid-base catalyzed reaction (aspartame degradation) as affected by polyol-induced changes in buffer pH and pK values.

    PubMed

    Chuy, S; Bell, L N

    2009-01-01

    The kinetics of an acid-base catalyzed reaction, aspartame degradation, were examined as affected by the changes in pH and pK(a) values caused by adding polyols (sucrose, glycerol) to phosphate buffer. Sucrose-containing phosphate buffer solutions had a lower pH than that of phosphate buffer alone, which contributed, in part, to reduced aspartame reactivity. A kinetic model was introduced for aspartame degradation that encompassed pH and buffer salt concentrations, both of which change with a shift in the apparent pK(a) value. Aspartame degradation rate constants in sucrose-containing solutions were successfully predicted using this model when corrections (that is, lower pH, lower apparent pK(a) value, buffer dilution from the polyol) were applied. The change in buffer properties (pH, pK(a)) from adding sucrose to phosphate buffer does impact food chemical stability. These effects can be successfully incorporated into predictive kinetic models. Therefore, pH and pK(a) changes from adding polyols to buffer should be considered during food product development.

  2. Base-Catalyzed Depolymerization of Lignin with Heterogeneous Catalysts: Cooperative Research and Development Final Report, CRADA Number CRD-13-513

    SciTech Connect

    Beckham, Gregg T.

    2015-08-04

    We will synthesize and screen solid catalysts for the depolymerization of lignin to monomeric and oligomeric oxygenated species, which could be fractionated and integrated into refinery intermediate streams for selective upgrading, or catalytically upgraded to fuels and chemicals. This work will primarily focus on the synthesis and application of layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for depolymerization of lignin model compounds and softwood lignin. LDHs have been shown in our group to offer good supports and catalysts to promote base-catalyzed depolymerization of lignin model compounds and in preliminary experiments for the depolymerization of lignin from an Organosolv process. We will also include additional catalyst supports such as silica, alumina, and carbon as identified in ongoing and past efforts at NREL. This work will consist of two tasks. Overall, this work will be synergistic with ongoing efforts at NREL, funded by the DOE Biomass Program, on the development of catalysts for lignin depolymerization in the context of biochemical and thermochemical conversion of corn stover and other biomass feedstocks to advanced fuels and chemicals.

  3. Variance Decomposition of MRI-Based Covariance Maps Using Genetically-Informative Samples and Structural Equation Modeling

    PubMed Central

    Schmitt, J. Eric; Lenroot, Rhoshel; Ordaz, Sarah E.; Wallace, Gregory L.; Lerch, Jason P.; Evans, Alan C.; Prom, Elizabeth C.; Kendler, Kenneth S.; Neale, Michael C.; Giedd, Jay N.

    2010-01-01

    The role of genetics in driving intracortical relationships is an important question that has rarely been studied in humans. In particular, there are no extant high-resolution imaging studies on genetic covariance. In this article, we describe a novel method that combines classical quantitative genetic methodologies for variance decomposition with recently-developed semi-multivariate algorithms for high-resolution measurement of phenotypic covariance. Using these tools, we produced correlational maps of genetic and environmental (i.e. nongenetic) relationships between several regions of interest and the cortical surface in a large pediatric sample of 600 twins, siblings, and singletons. These analyses demonstrated high, fairly uniform, statistically significant genetic correlations between the entire cortex and global mean cortical thickness. In agreement with prior reports on phenotypic covariance using similar methods, we found mean cortical thickness was most strongly correlated with association cortices. However, the present study suggests that genetics plays a large role in global brain patterning of cortical thickness in this manner. Further, using specific gyri with known high heritabilities as seed regions, we found a consistent pattern of high bilateral genetic correlations between structural homologues, with environmental correlations more restricted to the same hemisphere as the seed region, suggesting that interhemispheric covariance is largely genetically mediated. These findings are consistent with the limited existing knowledge on the genetics of cortical variability as well as our prior multivariate studies on cortical gyri. PMID:18672072

  4. Reduced quantum dynamics with arbitrary bath spectral densities: Hierarchical equations of motion based on several different bath decomposition schemes

    SciTech Connect

    Liu, Hao; Zhu, Lili; Bai, Shuming; Shi, Qiang

    2014-04-07

    We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly in the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.

  5. Energy Decomposition Analysis Based on Absolutely Localized Molecular Orbitals for Large-Scale Density Functional Theory Calculations in Drug Design.

    PubMed

    Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K

    2016-07-12

    We report the development and implementation of an energy decomposition analysis (EDA) scheme in the ONETEP linear-scaling electronic structure package. Our approach is hybrid as it combines the localized molecular orbital EDA (Su, P.; Li, H. J. Chem. Phys., 2009, 131, 014102) and the absolutely localized molecular orbital EDA (Khaliullin, R. Z.; et al. J. Phys. Chem. A, 2007, 111, 8753-8765) to partition the intermolecular interaction energy into chemically distinct components (electrostatic, exchange, correlation, Pauli repulsion, polarization, and charge transfer). Limitations shared in EDA approaches such as the issue of basis set dependence in polarization and charge transfer are discussed, and a remedy to this problem is proposed that exploits the strictly localized property of the ONETEP orbitals. Our method is validated on a range of complexes with interactions relevant to drug design. We demonstrate the capabilities for large-scale calculations with our approach on complexes of thrombin with an inhibitor comprised of up to 4975 atoms. Given the capability of ONETEP for large-scale calculations, such as on entire proteins, we expect that our EDA scheme can be applied in a large range of biomolecular problems, especially in the context of drug design.

  6. Single-Channel EMG Classification With Ensemble-Empirical-Mode-Decomposition-Based ICA for Diagnosing Neuromuscular Disorders.

    PubMed

    Naik, Ganesh R; Selvan, S Easter; Nguyen, Hung T

    2016-07-01

    An accurate and computationally efficient quantitative analysis of electromyography (EMG) signals plays an inevitable role in the diagnosis of neuromuscular disorders, prosthesis, and several related applications. Since it is often the case that the measured signals are the mixtures of electric potentials that emanate from surrounding muscles (sources), many EMG signal processing approaches rely on linear source separation techniques such as the independent component analysis (ICA). Nevertheless, naive implementations of ICA algorithms do not comply with the task of extracting the underlying sources from a single-channel EMG measurement. In this respect, the present work focuses on a classification method for neuromuscular disorders that deals with the data recorded using a single-channel EMG sensor. The ensemble empirical mode decomposition algorithm decomposes the single-channel EMG signal into a set of noise-canceled intrinsic mode functions, which in turn are separated by the FastICA algorithm. A reduced set of five time domain features extracted from the separated components are classified using the linear discriminant analysis, and the classification results are fine-tuned with a majority voting scheme. The performance of the proposed method has been validated with a clinical EMG database, which reports a higher classification accuracy (98%). The outcome of this study encourages possible extension of this approach to real settings to assist the clinicians in making correct diagnosis of neuromuscular disorders. PMID:26173218

  7. Reduced quantum dynamics with arbitrary bath spectral densities: hierarchical equations of motion based on several different bath decomposition schemes.

    PubMed

    Liu, Hao; Zhu, Lili; Bai, Shuming; Shi, Qiang

    2014-04-01

    We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly in the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.

  8. Unsupervised classification of polarimetric SAR images using complex Wishart distribution based on H/α decomposition and algorithm evaluation

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Yang, Ran

    2007-11-01

    The authors introduce unsupervised wishart classification technique for fully polarimetric SAR data using H/α decomposition of POLSAR images. This paper we applied this technique to AIRSAR data of Flevoland, Netherlands. The most valuable in this paper is our evaluation. From the following tree aspects we evaluate the algorithm mentioned in this paper and the results it produced. (i) By calculating the Jeffries-Matusit Distance (J-M Distance) J mn between two classes, which represents the separation between classes, the property of this classifier is measured. J-M Distance is a measurement of average difference between Probability Distribution Function (PDF) of two classes. Usually J-M Distance is between 0 and 2, and the bigger J-M Distance represents that two classes has a good separation. This paper we have most J-M Distances 1.8-2.0, thus indicates good separation; (ii) According to the average entropy and alpha of each final class, the classification results are analyzed; (iii) by comparing the classification results with the ground truth, the classification algorithm is evaluated. The results have a good simulation of ground truth. Experiment in this paper, according to the measurement criterion, analysis and evaluation, demonstrates that the region of Flevoland is well classification and the method has the advantage of edge holding that in the case of non-smooth borders this advantage is helpful. Also this paper gives a better repeat time.

  9. Comparison of the thermal decomposition processes of several aminoalcohol-based ZnO inks with one containing ethanolamine

    NASA Astrophysics Data System (ADS)

    Gómez-Núñez, Alberto; Roura, Pere; López, Concepción; Vilà, Anna

    2016-09-01

    Four inks for the production of ZnO semiconducting films have been prepared with zinc acetate dihydrate as precursor salt and one among the following aminoalcohols: aminopropanol (APr), aminomethyl butanol (AMB), aminophenol (APh) and aminobenzyl alcohol (AB) as stabilizing agent. Their thermal decomposition process has been analyzed in situ by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and evolved gas analysis (EGA), whereas the solid product has been analysed ex-situ by X-ray diffraction (XRD) and infrared spectroscopy (IR). Although, except for the APh ink, crystalline ZnO is already obtained at 300 °C, the films contain an organic residue that evolves at higher temperature in the form of a large variety of nitrogen-containing cyclic compounds. The results indicate that APr can be a better stabilizing agent than ethanolamine (EA). It gives larger ZnO crystal sizes with similar carbon content. However, a common drawback of all the amino stabilizers (EA included) is that nitrogen atoms have not been completely removed from the ZnO film at the highest temperature of our experiments (600 °C).

  10. Atomic-Scale Mechanisms for Electrolyte Decomposition in Li-ion Battery Cathodes

    NASA Astrophysics Data System (ADS)

    Fuhst, Mallory; Siegel, Donald

    Li-ion batteries using high energy density LiCoO2 (LCO) intercalation cathodes are known to generate gaseous species inside the cell, which can lead to venting flammable solvent vapor. It has been hypothesized that reactions at the cathode/electrolyte interface catalyze the production of these gaseous species. To elucidate the underlying reaction mechanism, first principles calculations were used to model interactions between LCO surfaces and Ethylene Carbonate (EC), a commonly used solvent in Li-ion batteries. A Metropolis Monte Carlo algorithm was used to identify likely low energy adsorption configurations for EC on the (10-14) surface of LCO. Several of these geometries were further analyzed with DFT. The thermodynamics and kinetics of EC decomposition were evaluated for plausible reaction pathways and associated various solvent decomposition mechanisms, such as hydrogen abstraction. Preliminary results indicate that hydrogen abstraction may lead to the spontaneous decomposition of EC into CO and other adsorbed species at the surface. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1256260.

  11. Red Seaweed Enzyme-Catalyzed Bromination of Bromophenol Red: An Inquiry-Based Kinetics Laboratory Experiment for Undergraduates

    ERIC Educational Resources Information Center

    Jittam, Piyachat; Boonsiri, Patcharee; Promptmas, Chamras; Sriwattanarothai, Namkang; Archavarungson, Nattinee; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2009-01-01

    Haloperoxidase enzymes are of interest for basic and applied bioscientists because of their increasing importance in pharmaceutical industry and environmental cleanups. In a guided inquiry-based laboratory experiment for life-science, agricultural science, and health science undergraduates, the bromoperoxidase from a red seaweed was used to…

  12. [(Salcen)Cr(III) + Lewis base]-catalyzed synthesis of N-aryl-substituted oxazolidinones from epoxides and aryl isocyanates.

    PubMed

    Paddock, Robert L; Adhikari, Debashis; Lord, Richard L; Baik, Mu-Hyun; Nguyen, SonBinh T

    2014-12-14

    [(Salcen)Cr(III) + Lewis base] was found to be a highly active and selective catalyst system in the [2+3] cycloaddition between epoxides and isocyanates to form 5-oxazolidinones. The reaction proceeds to high yield under mild reaction conditions and is applicable to a variety of terminal epoxides and aryl isocyanates.

  13. Tritium catalyzed deuterium tokamaks

    SciTech Connect

    Greenspan, E.; Miley, G.H.; Jung, J.; Gilligan, J.

    1984-04-01

    A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the /sup 3/He from the D(D,n)/sup 3/He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general).

  14. Variance decomposition in stochastic simulators

    NASA Astrophysics Data System (ADS)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  15. Variance decomposition in stochastic simulators.

    PubMed

    Le Maître, O P; Knio, O M; Moraes, A

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  16. Variance decomposition in stochastic simulators

    SciTech Connect

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  17. Synthesis of novel Schiff base ligands from gluco- and galactochloraloses for the Cu(II) catalyzed asymmetric Henry reaction.

    PubMed

    Alkan, Sevda; Telli, Fatma Ç; Salman, Yeşim; Astley, Stephen T

    2015-04-30

    A series of chiral Schiff base ligands has been prepared using aminochloralose derivatives of glucose and galactose. These ligands were used as catalysts in the asymmetric Henry reaction in the presence of Cu(II) ions giving yields of up to 95%. An interesting solvent dependency on enantiomeric control was observed with the best enantiomeric excesses (up to 91%) being obtained in the presence of water. PMID:25742867

  18. Red-Light Initiated Decomposition of α-Hydroxy Methylperoxy Radical in the Presence of Organic and Inorganic Acids: Implications for the HOx Formation in the Lower Stratosphere.

    PubMed

    Kumar, Manoj; Francisco, Joseph S

    2016-05-01

    Theoretical calculations have been carried out to investigate the gas-phase decomposition of α-hydroxy methylperoxy (HOCH2(OO)) radical in the absence and presence of formic acid, acetic acid, nitric acid, and sulfuric acid. The HOCH2(OO) radical decomposition represents a new source of the HOx radical in troposphere. The results suggest that sulfuric acid will be more effective than other acids in catalyzing the peroxy radical decomposition. However, the significant stability of prereaction and postreaction complexes in all the bimolecular reactions implies a new photomechanism for the acid-mediated decomposition of the HOCH2(OO) radical that involves the visible or near IR overtone excitation of the OH stretching modes or electronic excitation of the O-O peroxy moiety in the acid-bound radical. This new overtone or electronic excitation-based photomechanism for the peroxy radical decomposition may provide useful insight into the missing photolytic source of the HOx at high solar zenith angles corresponding to the dawn or dusk photochemistry. PMID:27070960

  19. Red-Light Initiated Decomposition of α-Hydroxy Methylperoxy Radical in the Presence of Organic and Inorganic Acids: Implications for the HOx Formation in the Lower Stratosphere.

    PubMed

    Kumar, Manoj; Francisco, Joseph S

    2016-05-01

    Theoretical calculations have been carried out to investigate the gas-phase decomposition of α-hydroxy methylperoxy (HOCH2(OO)) radical in the absence and presence of formic acid, acetic acid, nitric acid, and sulfuric acid. The HOCH2(OO) radical decomposition represents a new source of the HOx radical in troposphere. The results suggest that sulfuric acid will be more effective than other acids in catalyzing the peroxy radical decomposition. However, the significant stability of prereaction and postreaction complexes in all the bimolecular reactions implies a new photomechanism for the acid-mediated decomposition of the HOCH2(OO) radical that involves the visible or near IR overtone excitation of the OH stretching modes or electronic excitation of the O-O peroxy moiety in the acid-bound radical. This new overtone or electronic excitation-based photomechanism for the peroxy radical decomposition may provide useful insight into the missing photolytic source of the HOx at high solar zenith angles corresponding to the dawn or dusk photochemistry.

  20. Frozen Gaussian approximation based domain decomposition methods for the linear Schrödinger equation beyond the semi-classical regime

    NASA Astrophysics Data System (ADS)

    Lorin, E.; Yang, X.; Antoine, X.

    2016-06-01

    The paper is devoted to develop efficient domain decomposition methods for the linear Schrödinger equation beyond the semiclassical regime, which does not carry a small enough rescaled Planck constant for asymptotic methods (e.g. geometric optics) to produce a good accuracy, but which is too computationally expensive if direct methods (e.g. finite difference) are applied. This belongs to the category of computing middle-frequency wave propagation, where neither asymptotic nor direct methods can be directly used with both efficiency and accuracy. Motivated by recent works of the authors on absorbing boundary conditions (Antoine et al. (2014) [13] and Yang and Zhang (2014) [43]), we introduce Semiclassical Schwarz Waveform Relaxation methods (SSWR), which are seamless integrations of semiclassical approximation to Schwarz Waveform Relaxation methods. Two versions are proposed respectively based on Herman-Kluk propagation and geometric optics, and we prove the convergence and provide numerical evidence of efficiency and accuracy of these methods.

  1. High efficiency chemical energy conversion system based on a methane catalytic decomposition reaction and two fuel cells. Part II. Exergy analysis

    NASA Astrophysics Data System (ADS)

    Liu, Qinghua; Tian, Ye; Li, Hongjiao; Jia, Lijun; Xia, Chun; Thompson, Levi T.; Li, Yongdan

    A methane catalytic decomposition reactor-direct carbon fuel cell-internal reforming solid oxide fuel cell (MCDR-DCFC-IRSOFC) energy system is highly efficient for converting the chemical energy of methane into electrical energy. A gas turbine cycle is also used to output more power from the thermal energy generated in the IRSOFC. In part I of this work, models of the fuel cells and the system are proposed and validated. In this part, exergy conservation analysis is carried out based on the developed electrochemical and thermodynamic models. The ratio of the exergy destruction of each unit is examined. The results show that the electrical exergy efficiency of 68.24% is achieved with the system. The possibility of further recovery of the waste heat is discussed and the combined power-heat exergy efficiency is over 80%.

  2. A Modified Demonstration of the Catalytic Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Trujillo, Carlos Alexander

    2005-06-01

    A safer and cheaper version of the popular catalyzed decomposition of hydrogen peroxide demonstration commonly called the “Elephants’ Toothpaste” is presented. Hydrogen peroxide is decomposed in the presence of a surfactant by the enzyme catalase producing foam. Catalase has a higher activity compared with the traditional iodide and permits the use of diluted hydrogen peroxide solutions. The demonstration can be made with household products with similar amazing effects.

  3. Base-Catalyzed Hydrophosphination of Azobenzenes with Diarylphosphine Oxides: A Precise Construction of N-N-P Unit.

    PubMed

    Hong, Gang; Zhu, Xiaoyan; Hu, Chen; Aruma, Alfred Njasotapher; Wu, Shengying; Wang, Limin

    2016-08-01

    Addition of diarylphosphine oxides to the N═N double bond of azobenzenes leads to the formation of the P-substituted hydrazines in up to 98% yield for 24 examples, and the formation of diphenylphosphinic amides was observed in three substrates. This strategy features tolerance of a wide range of functional groups, simple operation, and mild reaction conditions. Specially, this method can be also applied to the gram-scale synthesis of the product. A polar reaction mechanism is also proposed based on control experiments. PMID:27387595

  4. Effect of cooling time on the vapor liquid solid based growth of gold-catalyzed bismuth nanorods

    NASA Astrophysics Data System (ADS)

    Acharya, Susant Kumar; Rai, Alok Kumar; Kim, Gil-Sung; Hyung, Jung-Hwan; Ahn, Byung-Guk; Lee, Sang-Kwon

    2012-01-01

    Deposition of single crystalline bismuth nanorods (Bi NRs) using a thermal evaporation method through vapor-liquid-solid (VLS) mechanism is reported here and the effect of sample cooling time on the growth of Bi NRs is investigated. Deposited Bi NRs have diameters varying from 100 to 400 nm and lengths extending to ∼3 μm in the (012) growth direction. Morphological observation indicated that the length and density of Bi NRs are strongly coupled with prolonged cooling time. A growth mechanism is suggested and discussed to describe the growth of single crystalline Bi NRs based on the morphological observations as a function of cooling temperature and time.

  5. Characterization and Modeling of Electrical Response of Electrode Catalyzed Reactions in AIGaN/GaN-Based Gas Sensors

    NASA Astrophysics Data System (ADS)

    Melby, Jacob H.

    AlGaN/GaN high electron mobility transistors (HEMT) and AlGaN/GaN diodes have promise for use as hydrogen and hydrocarbon sensors for a variety of industrial, military, and commercial applications. These semiconductor-based sensors have a number of advantages over other sensor technologies, such as the ability to operate at high temperatures, in corrosive environments, or under ionizing radiation. The high sensitivity of these devices to hydrogen-containing gases is associated with polarization differences within the AlGaN/GaN heterostructure that give rise to the formation of a two-dimensional electron gas (2DEG); exposure of the device to hydrogen changes the density of the 2DEG, which can be detected in a HEMT or diode structure. Although sensitivity to a range of gases has been reported, the factors that influence the behavior of the sensors are not well studied. The overarching goals of the research that follows were to determine how gas exposure conditions affect sensor behavior, to characterize and model the relationship between the electrical response of the sensors and the external gaseous environment, and to investigate the effects of using different metal catalysts on sensor behavior. The heterostructures used in this work were grown via metalorganic vapor phase epitaxy (MOVPE). Schottky diode and transistor devices employing platinum-group (Pd, Pt, Rh, Ir, Ru, and Os) catalysts were fabricated to allow electrical sensitivity in the presence of hydrogen and hydrogen containing gases. The generation of atomic hydrogen on the catalyst surface results in the rapid formation of hydrogen dipoles at the metal-semiconductor interface, which produces a measurable electronic response. The electrical response of Pt-gated HEMT-based sensors were measured in a flowing gaseous stream consisting of hydrogen in a pure nitrogen diluent at ambient and elevated temperatures. The transistors exhibited excellent transfer characteristics for temperatures ranging from 25

  6. Remote catalyzation for direct formation of graphene layers on oxides.

    PubMed

    Teng, Po-Yuan; Lu, Chun-Chieh; Akiyama-Hasegawa, Kotone; Lin, Yung-Chang; Yeh, Chao-Hui; Suenaga, Kazu; Chiu, Po-Wen

    2012-03-14

    Direct deposition of high-quality graphene layers on insulating substrates such as SiO(2) paves the way toward the development of graphene-based high-speed electronics. Here, we describe a novel growth technique that enables the direct deposition of graphene layers on SiO(2) with crystalline quality potentially comparable to graphene grown on Cu foils using chemical vapor deposition (CVD). Rather than using Cu foils as substrates, our approach uses them to provide subliming Cu atoms in the CVD process. The prime feature of the proposed technique is remote catalyzation using floating Cu and H atoms for the decomposition of hydrocarbons. This allows for the direct graphitization of carbon radicals on oxide surfaces, forming isolated low-defect graphene layers without the need for postgrowth etching or evaporation of the metal catalyst. The defect density of the resulting graphene layers can be significantly reduced by tuning growth parameters such as the gas ratios, Cu surface areas, and substrate-to-Cu distance. Under optimized conditions, graphene layers with nondiscernible Raman D peaks can be obtained when predeposited graphite flakes are used as seeds for extended growth. PMID:22332771

  7. Orthogonal tensor decompositions

    SciTech Connect

    Tamara G. Kolda

    2000-03-01

    The authors explore the orthogonal decomposition of tensors (also known as multi-dimensional arrays or n-way arrays) using two different definitions of orthogonality. They present numerous examples to illustrate the difficulties in understanding such decompositions. They conclude with a counterexample to a tensor extension of the Eckart-Young SVD approximation theorem by Leibovici and Sabatier [Linear Algebra Appl. 269(1998):307--329].

  8. A biomimetic pathway for vanadium-catalyzed aerobic oxidation of alcohols: evidence for a base-assisted dehydrogenation mechanism.

    PubMed

    Wigington, Bethany N; Drummond, Michael L; Cundari, Thomas R; Thorn, David L; Hanson, Susan K; Scott, Susannah L

    2012-11-19

    The first step in the catalytic oxidation of alcohols by molecular O(2), mediated by homogeneous vanadium(V) complexes [LV(V)(O)(OR)], is ligand exchange. The unusual mechanism of the subsequent intramolecular oxidation of benzyl alcoholate ligands in the 8-hydroxyquinolinato (HQ) complexes [(HQ)(2)V(V)(O)(OCH(2)C(6)H(4)-p-X)] involves intermolecular deprotonation. In the presence of triethylamine, complex 3 (X = H) reacts within an hour at room temperature to generate, quantitatively, [(HQ)(2)V(IV)(O)], benzaldehyde (0.5 equivalents), and benzyl alcohol (0.5 equivalents). The base plays a key role in the reaction: in its absence, less than 12% conversion was observed after 72 hours. The reaction is first order in both 3 and NEt(3), with activation parameters ΔH(≠)=(28±4) kJ mol(-1) and ΔS(≠)=(-169±4) J K(-1)  mol(-1). A large kinetic isotope effect, 10.2±0.6, was observed when the benzylic hydrogen atoms were replaced by deuterium atoms. The effect of the para substituent of the benzyl alcoholate ligand on the reaction rate was investigated using a Hammett plot, which was constructed using σ(p). From the slope of the Hammett plot, ρ=+(1.34±0.18), a significant buildup of negative charge on the benzylic carbon atom in the transition state is inferred. These experimental findings, in combination with computational studies, support an unusual bimolecular pathway for the intramolecular redox reaction, in which the rate-limiting step is deprotonation at the benzylic position. This mechanism, that is, base-assisted dehydrogenation (BAD), represents a biomimetic pathway for transition-metal-mediated alcohol oxidations, differing from the previously identified hydride-transfer and radical pathways. It suggests a new way to enhance the activity and selectivity of vanadium catalysts in a wide range of redox reactions, through control of the outer coordination sphere. PMID:23080554

  9. Bacillus amyloliquefaciens levansucrase-catalyzed the synthesis of fructooligosaccharides, oligolevan and levan in maple syrup-based reaction systems.

    PubMed

    Li, Mengxi; Seo, Sooyoun; Karboune, Salwa

    2015-11-20

    Maple syrups with selected degree Brix (°Bx) (15, 30, 60) were investigated as reaction systems for levansucrase from Bacillus amyloliquefaciens. The enzymatic conversion of sucrose present in the maple syrup and the production of the transfructosylation products were assessed over a time course of 48h. At 30°C, the use of maple syrup 30°Bx led to the highest levansucrase activity (427.53μmol/mg protein/min), while maple syrup 66°Bx led to the highest converted sucrose concentration (1.53M). In maple syrup 30°Bx, oligolevans (1080%). In maple syrup 66°Bx, the most abundant products were oligolevans at 30°C and levans (DP≥30) at 8°C. The acceptor specificity study revealed the ability of B. amyloliquefaciens levansucrase to synthesize a variety of hetero-fructooligosaccharides (FOSs) in maple syrups 15°Bx and 30°Bx enriched with various disaccharides, with lactose being the preferred fructosyl acceptor. The current study is the first to investigate maple-syrup-based reaction systems for the synthesis of FOSs/oligolevans/levans. PMID:26344273

  10. Bacillus amyloliquefaciens levansucrase-catalyzed the synthesis of fructooligosaccharides, oligolevan and levan in maple syrup-based reaction systems.

    PubMed

    Li, Mengxi; Seo, Sooyoun; Karboune, Salwa

    2015-11-20

    Maple syrups with selected degree Brix (°Bx) (15, 30, 60) were investigated as reaction systems for levansucrase from Bacillus amyloliquefaciens. The enzymatic conversion of sucrose present in the maple syrup and the production of the transfructosylation products were assessed over a time course of 48h. At 30°C, the use of maple syrup 30°Bx led to the highest levansucrase activity (427.53μmol/mg protein/min), while maple syrup 66°Bx led to the highest converted sucrose concentration (1.53M). In maple syrup 30°Bx, oligolevans (1080%). In maple syrup 66°Bx, the most abundant products were oligolevans at 30°C and levans (DP≥30) at 8°C. The acceptor specificity study revealed the ability of B. amyloliquefaciens levansucrase to synthesize a variety of hetero-fructooligosaccharides (FOSs) in maple syrups 15°Bx and 30°Bx enriched with various disaccharides, with lactose being the preferred fructosyl acceptor. The current study is the first to investigate maple-syrup-based reaction systems for the synthesis of FOSs/oligolevans/levans.

  11. A novel label-free optical cysteine sensor based on the competitive oxidation reaction catalyzed by G-quadruplex halves.

    PubMed

    Su, Haichao; Qiao, Fengmin; Duan, Ruihuan; Chen, Lijian; Ai, Shiyun

    2013-05-15

    A sensitive and selective colorimetric detection method for Cysteine (Cys) was established in this paper. The detection mechanism is based on the oxidation of Cys by H2O2, which prevents the catalysis of the 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS)-H2O2 reaction by G-quadruplex halves. With the addition of Cys, the amount of the blue-green-colored free-radical cation (ABTS(·+)) was reduced. The absorbance of ABTS(+) at 421nm weakened as the color of the solution changed from blue-green to colorless. The concentration of Cys can be determined by monitoring this competitive reaction with the naked eye or using a UV-vis spectrometer. The calibration curve showed that the net absorption value at 421nm linearly increased over the Cys concentration range of 0.005-100μM with a detection limit of 5nM. Furthermore, amino acids other than Cys cannot mediate the color change under the identical conditions because of the absence of thiol groups, thereby suggesting the selectivity towards Cys of the proposed method. The optical sensor is high selective, which is important for the determination of Cys in serum samples. The assay shows great potential for its practical application as a disease-associated indicator which could satisfy the need for amino acid determination in fields such as food processing, biochemistry, pharmaceuticals, and clinical analysis. PMID:23333922

  12. Visual detection of trace copper ions based on copper-catalyzed reaction of ascorbic acid with oxygen

    NASA Astrophysics Data System (ADS)

    Hou, Xin Yan; Chen, Shu; Shun, Lian Ju; Zhao, Yi Ni; Zhang, Zhi Wu; Long, Yun Fei; Zhu, Li

    2015-10-01

    A visual detection method for trace Cu2+ in aqueous solutions using triangular silver nanoplates (abbreviated as TAgNPs) as the probe was developed. The method is based on that TAgNPs could be corroded in sodium thiosulfate (Na2S2O3) solutions. The absorption spectrum of TAgNPs solution changed when it is corroded by Na2S2O3. The reaction of oxygen with ascorbic acid (Vc) in the presence of a low concentration of Cu2+ generates hydrogen peroxide that reacts with Na2S2O3, which leads the concentration of Na2S2O3 in the solution to be decreased. Therefore, the reaction between TAgNPs and the reacted mixture of Na2S2O3/Vc/Cu2+ was prevented efficiently. When the Na2S2O3 concentration and reaction time are constant, the decrease in the concentration of Na2S2O3 is directly proportional to the Cu2+ concentration. Thus, morphology, color, and maximum absorption wavelength of TAgNPs changed with the change of Cu2+ concentration. The changed maximum absorption wavelength of TAgNPs (Δλ) is proportional to Cu2+ concentration in the range from 7.5 × 10-9 to 5.0 × 10-7 M with a correlation coefficient of r = 0.9956. Moreover, color change of TAgNP solution was observed clearly over a Cu2+ concentration range from 7.5 × 10-8 to 5.0 × 10-7 M. This method has been used to detect the Cu2+ content of a human hair sample, and the result is in agreement with that obtained by the atomic absorption spectroscopy (AAS) method.

  13. Domain decomposition for the SPN solver MINOS

    SciTech Connect

    Jamelot, Erell; Baudron, Anne-Marie; Lautard, Jean-Jacques

    2012-07-01

    In this article we present a domain decomposition method for the mixed SPN equations, discretized with Raviart-Thomas-Nedelec finite elements. This domain decomposition is based on the iterative Schwarz algorithm with Robin interface conditions to handle communications. After having described this method, we give details on how to optimize the convergence. Finally, we give some numerical results computed in a realistic 3D domain. The computations are done with the MINOS solver of the APOLLO3 (R) code. (authors)

  14. Using seasonal-trend decomposition based on loess (STL) to explore temporal patterns of pneumonic lesions in finishing pigs slaughtered in England, 2005-2011.

    PubMed

    Sanchez-Vazquez, Manuel J; Nielen, Mirjam; Gunn, George J; Lewis, Fraser I

    2012-04-01

    Enzootic pneumonia (EP) is responsible for considerable economic losses in pig production. This study analyses temporal variations of pneumonic lesions present in slaughtered finishing pigs utilising a novel analytical tool - STL decomposition. Using data collected over a 6-year period starting in July 2005, time-series analyses were conducted to identify trend and the presence of seasonal variations to support industry led measures to monitor and control this important respiratory disease. In England, the BPEX Pig Health Scheme monitors the occurrence of EP in slaughtered finished pigs by identifying its gross pathology, enzootic pneumonia-like (EP-like) lesions. For visual analytics, the monthly prevalence for EP-like lesions was modelled using STL, a seasonal-trend decomposition method based on locally-weighted regression. A binomial generalised linear mixed-effects model (GLMM), accounting for clustering at batch level, was used to test the significance of the trend and seasonality. A mean of 12,370 pigs was assessed per month across 12 pig abattoirs over the study period. A trend toward reduction in prevalence of EP-like lesions during the first 3 years of BPHS, followed by an increasing trend, was identified with STL. This feature was consistent with the presence of a statistically significant positive quadratic term ("U" shape) as identified using the GLMM inference model. November and December appeared in the STL explorations as higher seasonal peaks of the occurrence of EP-like lesions. These 2 months had a significantly higher risk of this disease (OR=1.38, 95% CI: 1.24-1.54 and OR=1.4, 95% CI: 1.25-1.58, respectively, with July taken as baseline). The results were reported back to the pig industry as part of the national monitoring investigations.

  15. Theoretical study of decomposition of methanediol in aqueous solution.

    PubMed

    Inaba, Satoshi

    2015-06-01

    Methanediol is a product of the hydration of formaldehyde and is more abundant than formaldehyde in aqueous solution. We carried out a number of quantum chemical simulations to study the decomposition of methanediol in aqueous solution. The decomposition of a methanediol proceeds by transferring a proton from a hydroxyl to an oxygen atom of the other hydroxyl in the methanediol. The decomposition of the methanediol completes after the cleavage of the bond between the formaldehyde and the water molecule. The probability of the proton transfer increases by the quantum mechanical tunneling at the low temperature because the width of the potential barrier for the decomposition becomes similar to the de Broglie wavelength of the proton. We consider the catalytic effect of water molecules in aqueous solution. The structure of the methanediol is not required to change significantly when undergoing decomposition due to the active role of water molecules to transfer a proton. We consider three types of arrangement for water molecules with respect to a methanediol: (1) a ring structure formed by a methanediol and water molecules; (2) a water cluster attracted to a methanediol by hydrogen bonds; and (3) a water cluster and additional water molecules, both of which are attracted to a methanediol by hydrogen bonds. The activation energy for the decomposition is reduced by a water cluster more efficiently than water molecules in a ring structure. However, the activation energy reduced by a water cluster is still larger than that obtained from laboratory experiments. We include water molecules that are attracted to a methanediol by hydrogen bonds during the water-cluster-catalyzed decomposition of a methanediol. The hydrogen bonds with the water molecules permit little change in the structure of the methanediol during the decomposition and play a significant role to reduce the activation energy for the decomposition. The rate constant obtained from the theoretical simulation

  16. Ultrasensitive electrochemical sensing platform for microRNA based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification.

    PubMed

    Shuai, Hong-Lei; Huang, Ke-Jing; Xing, Ling-Li; Chen, Ying-Xu

    2016-12-15

    An ultrasensitive electrochemical biosensor for microRNA (miRNA) is developed based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification. WO3-Gr is prepared by a simple hydrothermal method and then coupled with gold nanoparticles to act as a sensing platform. The thiol-terminated capture probe H1 is immobilized on electrode through Au-S interaction. In the presence of target miRNA, H1 opens its hairpin structure by hybridization with target miRNA. This hybridization can be displaced from the structure by another stable biotinylated hairpin DNA (H2), and target miRNA is released back to the sample solution for next cycle. Thus, a large amount of H1-H2 duplex is produced after the cyclic process. At this point, a lot of signal indicators streptavidin-conjugated alkaline phosphatase (SA-ALP) are immobilized on the electrode by the specific binding of avidin-biotin. Then, thousands of ascorbic acid, which is the enzymatic product of ALP, induces the electrochemical-chemical-chemical redox cycling to produce a strongly electrochemical response in the presence of ferrocene methanol and tris (2-carboxyethyl) phosphine. Under the optimal experimental conditions, the established biosensor can detect target miRNA down to 0.05fM (S/N=3) with a linear range from 0.1fM to 100pM, and discriminate target miRNA from mismatched miRNA with a high selectivity. PMID:27392235

  17. Ultrasensitive electrochemical sensing platform for microRNA based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification.

    PubMed

    Shuai, Hong-Lei; Huang, Ke-Jing; Xing, Ling-Li; Chen, Ying-Xu

    2016-12-15

    An ultrasensitive electrochemical biosensor for microRNA (miRNA) is developed based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification. WO3-Gr is prepared by a simple hydrothermal method and then coupled with gold nanoparticles to act as a sensing platform. The thiol-terminated capture probe H1 is immobilized on electrode through Au-S interaction. In the presence of target miRNA, H1 opens its hairpin structure by hybridization with target miRNA. This hybridization can be displaced from the structure by another stable biotinylated hairpin DNA (H2), and target miRNA is released back to the sample solution for next cycle. Thus, a large amount of H1-H2 duplex is produced after the cyclic process. At this point, a lot of signal indicators streptavidin-conjugated alkaline phosphatase (SA-ALP) are immobilized on the electrode by the specific binding of avidin-biotin. Then, thousands of ascorbic acid, which is the enzymatic product of ALP, induces the electrochemical-chemical-chemical redox cycling to produce a strongly electrochemical response in the presence of ferrocene methanol and tris (2-carboxyethyl) phosphine. Under the optimal experimental conditions, the established biosensor can detect target miRNA down to 0.05fM (S/N=3) with a linear range from 0.1fM to 100pM, and discriminate target miRNA from mismatched miRNA with a high selectivity.

  18. Gradient vector fields based on variational image decomposition for skeletonization of electronic speckle pattern interferometry fringe patterns with variable density and their applications.

    PubMed

    Chen, Xia; Tang, Chen; Li, Biyuan; Su, Yonggang

    2016-09-01

    The skeletonization methods based on gradient vector fields (GVFs) have been a powerful tool for electronic speckle pattern interferometry (ESPI) fringe patterns. However, the skeletonization of ESPI fringe patterns with variable density has been an open problem in this area. In this paper, we propose a novel method for calculating GVFs based on the variational image decomposition of ESPI fringe patterns with variable density. In the proposed method, the GVFs of low-density regions are described in Beppo-Levi space, the high-density regions in Hilbert space and the noise regions in curvelet space. The GVFs of a whole image are the sum of the decomposed GVFs of low-density regions and high-density regions. The skeletons of ESPI fringe patterns with variable density can be obtained based on the topological analysis of the GVFs of a whole image. We apply the proposed method to a computer-simulated and two experimentally obtained ESPI fringe patterns with variable density and compare them with the related skeleton methods based on GVFs. The experimental results have demonstrated that the proposed method outperforms the other methods, even when the quality of the ESPI fringe patterns is considerably low. PMID:27607264

  19. Gradient vector fields based on variational image decomposition for skeletonization of electronic speckle pattern interferometry fringe patterns with variable density and their applications.

    PubMed

    Chen, Xia; Tang, Chen; Li, Biyuan; Su, Yonggang

    2016-09-01

    The skeletonization methods based on gradient vector fields (GVFs) have been a powerful tool for electronic speckle pattern interferometry (ESPI) fringe patterns. However, the skeletonization of ESPI fringe patterns with variable density has been an open problem in this area. In this paper, we propose a novel method for calculating GVFs based on the variational image decomposition of ESPI fringe patterns with variable density. In the proposed method, the GVFs of low-density regions are described in Beppo-Levi space, the high-density regions in Hilbert space and the noise regions in curvelet space. The GVFs of a whole image are the sum of the decomposed GVFs of low-density regions and high-density regions. The skeletons of ESPI fringe patterns with variable density can be obtained based on the topological analysis of the GVFs of a whole image. We apply the proposed method to a computer-simulated and two experimentally obtained ESPI fringe patterns with variable density and compare them with the related skeleton methods based on GVFs. The experimental results have demonstrated that the proposed method outperforms the other methods, even when the quality of the ESPI fringe patterns is considerably low.

  20. Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.

    PubMed

    Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  1. Nonlinear mode decomposition: A noise-robust, adaptive decomposition method

    NASA Astrophysics Data System (ADS)

    Iatsenko, Dmytro; McClintock, Peter V. E.; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool—nonlinear mode decomposition (NMD)—which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques—which, together with the adaptive choice of their parameters, make it extremely noise robust—and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  2. Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.

    PubMed

    Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download. PMID:26465549

  3. Iodine-catalyzed thiolation of electron-rich aromatics using sulfonyl hydrazides as sulfenylation reagents.

    PubMed

    Zhao, Xia; Li, Tianjiao; Zhang, Lipeng; Lu, Kui

    2016-01-21

    Iodine-catalyzed thiolation of electron-rich aromatics, including substituted anisole, thioanisole, phenol, toluene, and naphthalene, using sulfonyl hydrazides as sulfenylation reagents was carried out. Sulfonothioates, the products of decomposition of sulfonyl hydrazides in the presence of iodine, are proposed as the major sulfenylation species in this transformation.

  4. Efficient copper-catalyzed trifluoromethylation of aromatic and heteroaromatic iodides: the beneficial anchoring effect of borates.

    PubMed

    Gonda, Zsombor; Kovács, Szabolcs; Wéber, Csaba; Gáti, Tamás; Mészáros, Attila; Kotschy, András; Novák, Zoltán

    2014-08-15

    Efficient copper-catalyzed trifluoromethylation of aromatic iodides was achieved with TMSCF3 in the presence of trimethylborate. The Lewis acid was used to anchor the in situ generated trifluoromethyl anion and suppress its rapid decomposition. Broad applicability of the new trifluoromethylating reaction was demonstrated in the functionalization of different aromatic and heteroaromatic iodides. PMID:25068681

  5. 4-Dimenthylaminopyridine or Acid-Catalyzed Synthesis of Esters: A Comparison

    ERIC Educational Resources Information Center

    van den Berg, Annemieke W. C.; Hanefeld, Ulf

    2006-01-01

    A set of highly atom-economic experiments was developed to highlight the differences between acid- and base-catalyzed ester syntheses and to introduce the principles of atom economy. The hydrochloric acid-catalyzed formation of an ester was compared with the 4-dimethylaminopyradine-catalyzed ester synthesis.

  6. Substrate-dependent temperature sensitivity of soil organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Myachina, Olga; Blagodatskaya, Evgenia

    2015-04-01

    Activity of extracellular enzymes responsible for decomposition of organics is substrate dependent. Quantity of the substrate is the main limiting factor for enzymatic or microbial heterotrophic activity in soils. Different mechanisms of enzymes response to temperature suggested for low and high substrate availability were never proved for real soil conditions. We compared the temperature responses of enzymes-catalyzed reactions in soils. Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation.

  7. Copper-Catalyzed Cascade Substitution/Cyclization of N-Isocyanates: A Synthesis of 1-Aminobenzimidazolones.

    PubMed

    An, Jing; Alper, Howard; Beauchemin, André M

    2016-07-15

    A copper-catalyzed cascade reaction of in situ generated nitrogen-substituted isocyanates (N-isocyanates) and 2-iodoanilines has been developed. The cascade relies on the base-catalyzed substitution of masked N-isocyanates, followed by Cu(I)-catalyzed coupling to afford a variety of 1-aminobenzimidazolones in moderate to excellent yields. This is the first example of a transition-metal-catalyzed cascade reaction involving N-isocyanate intermediates. PMID:27341005

  8. Copper-Catalyzed Cascade Substitution/Cyclization of N-Isocyanates: A Synthesis of 1-Aminobenzimidazolones.

    PubMed

    An, Jing; Alper, Howard; Beauchemin, André M

    2016-07-15

    A copper-catalyzed cascade reaction of in situ generated nitrogen-substituted isocyanates (N-isocyanates) and 2-iodoanilines has been developed. The cascade relies on the base-catalyzed substitution of masked N-isocyanates, followed by Cu(I)-catalyzed coupling to afford a variety of 1-aminobenzimidazolones in moderate to excellent yields. This is the first example of a transition-metal-catalyzed cascade reaction involving N-isocyanate intermediates.

  9. Real-time object recognition in multidimensional images based on joined extended structural tensor and higher-order tensor decomposition methods

    NASA Astrophysics Data System (ADS)

    Cyganek, Boguslaw; Smolka, Bogdan

    2015-02-01

    In this paper a system for real-time recognition of objects in multidimensional video signals is proposed. Object recognition is done by pattern projection into the tensor subspaces obtained from the factorization of the signal tensors representing the input signal. However, instead of taking only the intensity signal the novelty of this paper is first to build the Extended Structural Tensor representation from the intensity signal that conveys information on signal intensities, as well as on higher-order statistics of the input signals. This way the higher-order input pattern tensors are built from the training samples. Then, the tensor subspaces are built based on the Higher-Order Singular Value Decomposition of the prototype pattern tensors. Finally, recognition relies on measurements of the distance of a test pattern projected into the tensor subspaces obtained from the training tensors. Due to high-dimensionality of the input data, tensor based methods require high memory and computational resources. However, recent achievements in the technology of the multi-core microprocessors and graphic cards allows real-time operation of the multidimensional methods as is shown and analyzed in this paper based on real examples of object detection in digital images.

  10. Exploring Patterns of Soil Organic Matter Decomposition with Students through the Global Decomposition Project (GDP) and the Interactive Model of Leaf Decomposition (IMOLD)

    NASA Astrophysics Data System (ADS)

    Steiner, S. M.; Wood, J. H.

    2015-12-01

    As decomposition rates are affected by climate change, understanding crucial soil interactions that affect plant growth and decomposition becomes a vital part of contributing to the students' knowledge base. The Global Decomposition Project (GDP) is designed to introduce and educate students about soil organic matter and decomposition through a standardized protocol for collecting, reporting, and sharing data. The Interactive Model of Leaf Decomposition (IMOLD) utilizes animations and modeling to learn about the carbon cycle, leaf anatomy, and the role of microbes in decomposition. Paired together, IMOLD teaches the background information and allows simulation of numerous scenarios, and the GDP is a data collection protocol that allows students to gather usable measurements of decomposition in the field. Our presentation will detail how the GDP protocol works, how to obtain or make the materials needed, and how results will be shared. We will also highlight learning objectives from the three animations of IMOLD, and demonstrate how students can experiment with different climates and litter types using the interactive model to explore a variety of decomposition scenarios. The GDP demonstrates how scientific methods can be extended to educate broader audiences, and data collected by students can provide new insight into global patterns of soil decomposition. Using IMOLD, students will gain a better understanding of carbon cycling in the context of litter decomposition, as well as learn to pose questions they can answer with an authentic computer model. Using the GDP protocols and IMOLD provide a pathway for scientists and educators to interact and reach meaningful education and research goals.

  11. Gold-catalyzed naphthalene functionalization.

    PubMed

    Pérez, Pedro J; Díaz-Requejo, M Mar; Rivilla, Iván

    2011-01-01

    The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'(4) (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO(2)Et (R = H, Me) from N(2)C(R)CO(2)Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C-H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed.

  12. Gold-catalyzed naphthalene functionalization

    PubMed Central

    Rivilla, Iván

    2011-01-01

    Summary The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'4 (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO2Et (R = H, Me) from N2C(R)CO2Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C–H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed. PMID:21647320

  13. Gold-catalyzed naphthalene functionalization.

    PubMed

    Pérez, Pedro J; Díaz-Requejo, M Mar; Rivilla, Iván

    2011-01-01

    The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'(4) (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO(2)Et (R = H, Me) from N(2)C(R)CO(2)Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C-H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed. PMID:21647320

  14. Decomposing Nekrasov decomposition

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Zenkevich, Y.

    2016-02-01

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions — this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition — into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair "interaction" is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  15. How localized is ``local?'' Efficiency vs. accuracy of O(N) domain decomposition in local orbital based all-electron electronic structure theory

    NASA Astrophysics Data System (ADS)

    Havu, Vile; Blum, Volker; Scheffler, Matthias

    2007-03-01

    Numeric atom-centered local orbitals (NAO) are efficient basis sets for all-electron electronic structure theory. The locality of NAO's can be exploited to render (in principle) all operations of the self-consistency cycle O(N). This is straightforward for 3D integrals using domain decomposition into spatially close subsets of integration points, enabling critical computational savings that are effective from ˜tens of atoms (no significant overhead for smaller systems) and make large systems (100s of atoms) computationally feasible. Using a new all-electron NAO-based code,^1 we investigate the quantitative impact of exploiting this locality on two distinct classes of systems: Large light-element molecules [Alanine-based polypeptide chains (Ala)n], and compact transition metal clusters. Strict NAO locality is achieved by imposing a cutoff potential with an onset radius rc, and exploited by appropriately shaped integration domains (subsets of integration points). Conventional tight rc<= 3å have no measurable accuracy impact in (Ala)n, but introduce inaccuracies of 20-30 meV/atom in Cun. The domain shape impacts the computational effort by only 10-20 % for reasonable rc. ^1 V. Blum, R. Gehrke, P. Havu, V. Havu, M. Scheffler, The FHI Ab Initio Molecular Simulations (aims) Project, Fritz-Haber-Institut, Berlin (2006).

  16. Spatially and size selective synthesis of Fe-based nanoparticles on ordered mesoporous supports as highly active and stable catalysts for ammonia decomposition.

    PubMed

    Lu, An-Hui; Nitz, Joerg-Joachim; Comotti, Massimiliano; Weidenthaler, Claudia; Schlichte, Klaus; Lehmann, Christian W; Terasaki, Osamu; Schüth, Ferdi

    2010-10-13

    Uniform and highly dispersed γ-Fe(2)O(3) nanoparticles with a diameter of ∼6 nm supported on CMK-5 carbons and C/SBA-15 composites were prepared via simple impregnation and thermal treatment. The nanostructures of these materials were characterized by XRD, Mössbauer spectroscopy, XPS, SEM, TEM, and nitrogen sorption. Due to the confinement effect of the mesoporous ordered matrices, γ-Fe(2)O(3) nanoparticles were fully immobilized within the channels of the supports. Even at high Fe-loadings (up to about 12 wt %) on CMK-5 carbon no iron species were detected on the external surface of the carbon support by XPS analysis and electron microscopy. Fe(2)O(3)/CMK-5 showed the highest ammonia decomposition activity of all previously described Fe-based catalysts in this reaction. Complete ammonia decomposition was achieved at 700 °C and space velocities as high as 60,000 cm(3) g(cat)(-1) h(-1). At a space velocity of 7500 cm(3) g(cat)(-1) h(-1), complete ammonia conversion was maintained at 600 °C for 20 h. After the reaction, the immobilized γ-Fe(2)O(3) nanoparticles were found to be converted to much smaller nanoparticles (γ-Fe(2)O(3) and a small fraction of nitride), which were still embedded within the carbon matrix. The Fe(2)O(3)/CMK-5 catalyst is much more active than the benchmark NiO/Al(2)O(3) catalyst at high space velocity, due to its highly developed mesoporosity. γ-Fe(2)O(3) nanoparticles supported on carbon-silica composites are structurally much more stable over extended periods of time but less active than those supported on carbon. TEM observation reveals that iron-based nanoparticles penetrate through the carbon layer and then are anchored on the silica walls, thus preventing them from moving and sintering. In this way, the stability of the carbon-silica catalyst is improved. Comparison with the silica supported iron oxide catalyst reveals that the presence of a thin layer of carbon is essential for increased catalytic activity. PMID:20849104

  17. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent

    PubMed Central

    WALL, DIANA H; BRADFORD, MARK A; ST JOHN, MARK G; TROFYMOW, JOHN A; BEHAN-PELLETIER, VALERIE; BIGNELL, DAVID E; DANGERFIELD, J MARK; PARTON, WILLIAM J; RUSEK, JOSEF; VOIGT, WINFRIED; WOLTERS, VOLKMAR; GARDEL, HOLLEY ZADEH; AYUKE, FRED O; BASHFORD, RICHARD; BELJAKOVA, OLGA I; BOHLEN, PATRICK J; BRAUMAN, ALAIN; FLEMMING, STEPHEN; HENSCHEL, JOH R; JOHNSON, DAN L; JONES, T HEFIN; KOVAROVA, MARCELA; KRANABETTER, J MARTY; KUTNY, LES; LIN, KUO-CHUAN; MARYATI, MOHAMED; MASSE, DOMINIQUE; POKARZHEVSKII, ANDREI; RAHMAN, HOMATHEVI; SABARÁ, MILLOR G; SALAMON, JOERG-ALFRED; SWIFT, MICHAEL J; VARELA, AMANDA; VASCONCELOS, HERALDO L; WHITE, DON; ZOU, XIAOMING

    2008-01-01

    Climate and litter quality are primary drivers of terrestrial decomposition and, based on evidence from multisite experiments at regional and global scales, are universally factored into global decomposition models. In contrast, soil animals are considered key regulators of decomposition at local scales but their role at larger scales is unresolved. Soil animals are consequently excluded from global models of organic mineralization processes. Incomplete assessment of the roles of soil animals stems from the difficulties of manipulating invertebrate animals experimentally across large geographic gradients. This is compounded by deficient or inconsistent taxonomy. We report a global decomposition experiment to assess the importance of soil animals in C mineralization, in which a common grass litter substrate was exposed to natural decomposition in either control or reduced animal treatments across 30 sites distributed from 43°S to 68°N on six continents. Animals in the mesofaunal size range were recovered from the litter by Tullgren extraction and identified to common specifications, mostly at the ordinal level. The design of the trials enabled faunal contribution to be evaluated against abiotic parameters between sites. Soil animals increase decomposition rates in temperate and wet tropical climates, but have neutral effects where temperature or moisture constrain biological activity. Our findings highlight that faunal influences on decomposition are dependent on prevailing climatic conditions. We conclude that (1) inclusion of soil animals will improve the predictive capabilities of region- or biome-scale decomposition models, (2) soil animal influences on decomposition are important at the regional scale when attempting to predict global change scenarios, and (3) the statistical relationship between decomposition rates and climate, at the global scale, is robust against changes in soil faunal abundance and diversity.

  18. Algorithms for sparse nonnegative Tucker decompositions.

    PubMed

    Mørup, Morten; Hansen, Lars Kai; Arnfred, Sidse M

    2008-08-01

    There is a increasing interest in analysis of large-scale multiway data. The concept of multiway data refers to arrays of data with more than two dimensions, that is, taking the form of tensors. To analyze such data, decomposition techniques are widely used. The two most common decompositions for tensors are the Tucker model and the more restricted PARAFAC model. Both models can be viewed as generalizations of the regular factor analysis to data of more than two modalities. Nonnegative matrix factorization (NMF), in conjunction with sparse coding, has recently been given much attention due to its part-based and easy interpretable representation. While NMF has been extended to the PARAFAC model, no such attempt has been done to extend NMF to the Tucker model. However, if the tensor data analyzed are nonnegative, it may well be relevant to consider purely additive (i.e., nonnegative) Tucker decompositions). To reduce ambiguities of this type of decomposition, we develop updates that can impose sparseness in any combination of modalities, hence, proposed algorithms for sparse nonnegative Tucker decompositions (SN-TUCKER). We demonstrate how the proposed algorithms are superior to existing algorithms for Tucker decompositions when the data and interactions can be considered nonnegative. We further illustrate how sparse coding can help identify what model (PARAFAC or Tucker) is more appropriate for the data as well as to select the number of components by turning off excess components. The algorithms for SN-TUCKER can be downloaded from Mørup (2007).

  19. Pd-catalyzed arylation of chlorotrifluoroethylene using arylboronic acids.

    PubMed

    Yamamoto, Tetsuya; Yamakawa, Tetsu

    2012-07-01

    The palladium-catalyzed cross-coupling of chlorotrifluoroethylene and arylboronic acids proceeds in the presence of a base and H(2)O to provide α,β,β-trifluorostyrene derivatives in satisfactory yields. PMID:22691065

  20. Modular establishment of a diketopyrrolopyrrole-based polymer library via Pd-catalyzed direct C-H (Hetero)arylation: a highly efficient approach to discover low-bandgap polymers.

    PubMed

    Guo, Qiang; Dong, Jiaxing; Wan, Danyang; Wu, Di; You, Jingsong

    2013-03-25

    A concise, highly efficient palladium-catalyzed direct C-H (hetero)arylation is developed to modularly assemble a diketopyrrolopyrrole (DTDPP)-based polymer library to screen low-bandgap and near-infrared (NIR) absorbing materials. The DTDPP-based copolymers P1 and P2 with an alternating donor-acceptor-donor-acceptor (D-A-D-A) sequence and the homopolymer P9 exhibit planarity and excellent π-conjugation, which lead to low bandgaps (down to 1.22 eV) as well as strong and broad NIR absorption bands (up to 1000 nm).