Sample records for base flow concentrations

  1. Nitrate Loads and Concentrations in Surface-Water Base Flow and Shallow Groundwater for Selected Basins in the United States, Water Years 1990-2006

    USGS Publications Warehouse

    Spahr, Norman E.; Dubrovsky, Neil M.; Gronberg, JoAnn M.; Franke, O. Lehn; Wolock, David M.

    2010-01-01

    Hydrograph separation was used to determine the base-flow component of streamflow for 148 sites sampled as part of the National Water-Quality Assessment program. Sites in the Southwest and the Northwest tend to have base-flow index values greater than 0.5. Sites in the Midwest and the eastern portion of the Southern Plains generally have values less than 0.5. Base-flow index values for sites in the Southeast and Northeast are mixed with values less than and greater than 0.5. Hypothesized flow paths based on relative scaling of soil and bedrock permeability explain some of the differences found in base-flow index. Sites in areas with impermeable soils and bedrock (areas where overland flow may be the primary hydrologic flow path) tend to have lower base-flow index values than sites in areas with either permeable bedrock or permeable soils (areas where deep groundwater flow paths or shallow groundwater flow paths may occur). The percentage of nitrate load contributed by base flow was determined using total flow and base flow nitrate load models. These regression-based models were calibrated using available nitrate samples and total streamflow or base-flow nitrate samples and the base-flow component of total streamflow. Many streams in the country have a large proportion of nitrate load contributed by base flow: 40 percent of sites have more than 50 percent of the total nitrate load contributed by base flow. Sites in the Midwest and eastern portion of the Southern Plains generally have less than 50 percent of the total nitrate load contributed by base flow. Sites in the Northern Plains and Northwest have nitrate load ratios that generally are greater than 50 percent. Nitrate load ratios for sites in the Southeast and Northeast are mixed with values less than and greater than 50 percent. Significantly lower contributions of nitrate from base flow were found at sites in areas with impermeable soils and impermeable bedrock. These areas could be most responsive to nutrient management practices designed to reduce nutrient transport to streams by runoff. Conversely, sites with potential for shallow or deep groundwater contribution (some combination of permeable soils or permeable bedrock) had significantly greater contributions of nitrate from base flow. Effective nutrient management strategies would consider groundwater nitrate contributions in these areas. Mean annual base-flow nitrate concentrations were compared to shallow-groundwater nitrate concentrations for 27 sites. Concentrations in groundwater tended to be greater than base-flow concentrations for this group of sites. Sites where groundwater concentrations were much greater than base-flow concentrations were found in areas of high infiltration and oxic groundwater conditions. The lack of correspondingly high concentrations in the base flow of the paired surface-water sites may have multiple causes. In some settings, there has not been sufficient time for enough high-nitrate shallow groundwater to migrate to the nearby stream. In these cases, the stream nitrate concentrations lag behind those in the shallow groundwater, and concentrations may increase in the future as more high-nitrate groundwater reaches the stream. Alternatively, some of these sites may have processes that rapidly remove nitrate as water moves from the aquifer into the stream channel. Partitioning streamflow and nitrate load between the quick-flow and base-flow portions of the hydrograph coupled with relative scales of soil permeability can infer the importance of surface water compared to groundwater nitrate sources. Study of the relation of nitrate concentrations to base-flow index and the comparison of groundwater nitrate concentrations to stream nitrate concentrations during times when base-flow index is high can provide evidence of potential nitrate transport mechanisms. Accounting for the surface-water and groundwater contributions of nitrate is crucial to effective management and remediat

  2. Nutrient concentrations, loads, and yields in the Eucha-Spavinaw Basin, Arkansas and Oklahoma, 2002-09

    USGS Publications Warehouse

    Esralew, Rachel A.; Tortorelli, Robert L.

    2010-01-01

    The city of Tulsa, Oklahoma, uses Lake Eucha and Spavinaw Lake in the Eucha-Spavinaw Basin in northwestern Arkansas and northeastern Oklahoma for public water supply. The city has spent millions of dollars over the last decade to eliminate taste and odor problems in the drinking water from the Eucha-Spavinaw system, which may be attributable to blue-green algae. Increases in the algal biomass in the lakes may be attributable to increases in nutrient concentrations in the lakes and in the waters feeding the lakes. The U.S. Geological Survey, in cooperation with the City of Tulsa, investigated and summarized total nitrogen and total phosphorus concentrations in water samples and provided estimates of nitrogen and phosphorus loads, yields, and flow-weighted concentrations during base flow and runoff for two streams discharging to Lake Eucha for the period January 2002 through December 2009. This report updates a previous report that used data from water-quality samples collected from January 2002 through December 2006. Based on the results from the Mann-Whitney statistical test, unfiltered total nitrogen concentrations were significantly greater in runoff water samples than in base-flow water samples collected from Spavinaw Creek near Maysville and near Cherokee City, Arkansas; Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma. Nitrogen concentrations in runoff water samples collected from all stations generally increased with increasing streamflow. Nitrogen concentrations in base-flow and runoff water samples collected in Spavinaw Creek significantly increased from the station furthest upstream (near Maysville) to the Sycamore station and then significantly decreased from the Sycamore station to the station furthest downstream (near Colcord). Nitrogen concentrations in base-flow and runoff water samples collected from Beaty Creek were significantly less than base-flow and runoff water samples collected from Spavinaw Creek. Based on the results from the Mann-Whitney statistical test, unfiltered total phosphorus concentrations were significantly greater in runoff water samples than in base-flow water samples for the entire period for most stations, except in water samples collected from Spavinaw Creek near Cherokee City, in which no significant difference was detected for the entire period nor for any season. Phosphorus concentrations in runoff water samples collected from all stations generally increased with increasing streamflow. Based on results from a multi-stage Kruskal-Wallis statistical test, phosphorus concentrations in base-flow water samples collected from Spavinaw Creek significantly increased from the Maysville station to the Cherokee City station, probably because of discharge from a municipal wastewater-treatment plant between those stations. Phosphorus concentrations significantly decreased downstream from the Cherokee City station to the Colcord station. Phosphorus concentrations in base-flow water samples collected from Beaty Creek were significantly less than phosphorus in base-flow water samples collected from Spavinaw Creek downstream from the Maysville station. View report for unabridged abstract.

  3. Nutrient Concentrations, Loads, and Yields in the Eucha-Spavinaw Basin, Arkansas and Oklahoma, 2002-2004

    USGS Publications Warehouse

    Tortorelli, Robert L.

    2006-01-01

    The City of Tulsa, Oklahoma, uses Lake Eucha and Spavinaw Lake in the Eucha-Spavinaw basin in northwestern Arkansas and northeastern Oklahoma for public water supply. Taste and odor problems in the water attributable to blue-green algae have increased in frequency over time. Changes in the algae community in the lakes may be attributable to increases in nutrient levels in the lakes, and in the waters feeding the lakes. The U.S. Geological Survey, in cooperation with the City of Tulsa, conducted an investigation to summarize nitrogen and phosphorus concentrations and provide estimates of nitrogen and phosphorus loads, yields, and flow-weighted concentrations in the Eucha-Spavinaw basin for a 3-year period from January 2002 through December 2004. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple parties for interstate compacts. Nitrogen and phosphorus concentrations were significantly greater in runoff samples than in base-flow samples at Spavinaw Creek near Maysville, Arkansas; Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma. Runoff concentrations were not significantly greater than in base-flow samples at Spavinaw Creek near Cherokee, Arkansas; and Spavinaw Creek near Sycamore, Oklahoma. Nitrogen concentrations in base-flow samples significantly increased in the downstream direction in Spavinaw Creek from the Maysville to Sycamore stations then significantly decreased from the Sycamore to the Colcord stations. Nitrogen in base-flow samples from Beaty Creek was significantly less than in those from Spavinaw Creek. Phosphorus concentrations in base-flow samples significantly increased from the Maysville to Cherokee stations in Spavinaw Creek, probably due to a point source between those stations, then significantly decreased downstream from the Cherokee to Colcord stations. Phosphorus in base-flow samples from Beaty Creek was significantly less than phosphorus in base-flow samples from Spavinaw Creek downstream from the Maysville station. Nitrogen concentrations in runoff samples were not significantly different among the stations on Spavinaw Creek; however, the concentrations at Beaty Creek were significantly less than at all other stations. Phosphorus concentrations in runoff samples were not significantly different among the three downstream stations on Spavinaw Creek, and not significantly different at the Maysville station on Spavinaw Creek and the Beaty Creek station. Phosphorus and nitrogen concentrations in runoff samples from all stations generally increased with increasing streamflow. Estimated mean annual nitrogen total loads from 2002-2004 were substantially greater at the Spavinaw Creek stations than at Beaty Creek and increased in a downstream direction from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2 times that of Maysville station. Estimated mean annual nitrogen base-flow loads at the Spavinaw Creek stations were about 5 to 11 times greater than base-flow loads at Beaty Creek. The runoff component of the annual nitrogen total load for Beaty Creek was 85 percent, whereas, at the Spavinaw Creek stations, the range in the runoff component was 60 to 66 percent. Estimated mean annual phosphorus total loads from 2002-2004 were greater at the Spavinaw Creek stations from Cherokee to Colcord than at Beaty Creek and increased in a downstream direction from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2.5 times that of Maysville station. Estimated mean annual phosphorus base-flow loads at the Spavinaw Creek stations were about 2.5 to 19 times greater than at Beaty Creek. Phosphorus base-flow loads increased about 8 times from Maysville to Cherokee in Spavinaw Creek; the base-flow loads were about the same at the three downstream stations. The runoff component

  4. An Integrated Instrumentation System for Velocity, Concentration and Mass Flow Rate Measurement of Solid Particles Based on Electrostatic and Capacitance Sensors.

    PubMed

    Li, Jian; Kong, Ming; Xu, Chuanlong; Wang, Shimin; Fan, Ying

    2015-12-10

    The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within -3%-8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.

  5. Modeling sediment concentration in debris flow by Tsallis entropy

    NASA Astrophysics Data System (ADS)

    Singh, Vijay P.; Cui, Huijuan

    2015-02-01

    Debris flow is a natural hazard that occurs in landscapes having high slopes, such as mountainous areas. It can be so powerful that it destroys whatever comes in its way, that is, it can kill people and animals; decimate roads, bridges, railway tracks, homes and other property; and fill reservoirs. Owing to its frequent occurrence, it is receiving considerable attention these days. Of fundamental importance in debris flow modeling is the determination of concentration of debris (or sediment) in the flow. The usual approach to determining debris flow concentration is either empirical or hydraulic. Both approaches are deterministic and therefore say nothing about the uncertainty associated with the sediment concentration in the flow. This paper proposes to model debris flow concentration using the Tsallis entropy theory. Verification of the entropy-based distribution of debris flow concentration using the data and equations reported in the literature shows that the Tsallis entropy-proposed model is capable of mimicking the field observed concentration and has potential for practical application.

  6. Concentrations and Loads of Nutrients and Suspended Sediments in Englesby Brook and Little Otter Creek, Lake Champlain Basin, Vermont, 2000-2005

    USGS Publications Warehouse

    Medalie, Laura

    2007-01-01

    The effectiveness of best-management practices (BMPs) in improving water quality in Lake Champlain tributaries was evaluated from 2000 through 2005 on the basis of analysis of data collected on concentrations of total phosphorus and suspended sediment in Englesby Brook, an urban stream in Burlington, and Little Otter Creek, an agricultural stream in Ferrisburg. Data also were collected on concentrations of total nitrogen in the Englesby Brook watershed. In the winter of 2001-2002, one of three planned structural BMPs was installed in the urban watershed. At approximately the same time, a set of barnyard BMPs was installed in the agricultural watershed; however, the other planned BMPs, which included streambank fencing and nutrient management, were not implemented within the study period. At Englesby Brook, concentrations of phosphorus ranged from 0.024 to 0.3 milligrams per liter (mg/L) during base-flow and from 0.032 to 11.8 mg/L during high-flow conditions. Concentrations of suspended sediment ranged from 3 to 189 mg/L during base-flow and from 5 to 6,880 mg/L during high-flow conditions. An assessment of the effectiveness of an urban BMP was made by comparing concentrations and loads of phosphorus and suspended sediment before and after a golf-course irrigation pond in the Englesby Brook watershed was retrofitted with the objective of reducing sediment transport. Results from a modified paired watershed study design showed that the BMP reduced concentrations of phosphorus and suspended sediment during high-flow events - when average streamflow was greater than 3 cubic feet per second. While construction of the BMP did not reduce storm loads of phosphorus or suspended sediment, an evaluation of changes in slope of double-mass curves showing cumulative monthly streamflow plotted against cumulative monthly loads indicated a possible reduction in cumulative loads of phosphorus and suspended sediment after BMP construction. Results from the Little Otter Creek assessment of agricultural BMPs showed that concentrations of phosphorus ranged from 0.016 to 0.141 mg/L during base-flow and from 0.019 to 0.565 mg/L during high-flow conditions at the upstream monitoring station. Concentrations of suspended sediment ranged from 2 to 13 mg/L during base-flow and from 1 to 473 mg/L during high-flow conditions at the upstream monitoring station. Concentrations of phosphorus ranged from 0.018 to 0.233 mg/L during base-flow and from 0.019 to 1.95 mg/L during high-flow conditions at the downstream monitoring station. Concentrations of suspended sediment ranged from 10 to 132 mg/L during base-flow and from 8 to 1,190 mg/L during high-flow conditions at the downstream monitoring station. Annual loads of phosphorus at the downstream monitoring station were significantly larger than loads at the upstream monitoring station, and annual loads of suspended sediment at the downstream monitoring station were larger than loads at the upstream monitoring station for 4 out of 6 years. On a monthly basis, loads of phosphorus and suspended sediment at the downstream monitoring station were significantly larger than loads at the upstream monitoring station. Pairs of concentrations of phosphorus and monthly loads of phosphorus and suspended sediment from the upstream and downstream monitoring stations were evaluated using the paired watershed study design. The only significant reduction between the calibration and treatment periods was for monthly loads of phosphorus; all other evaluations showed no change between periods.

  7. Contributions of Phosphorus from Groundwater to Streams in the Piedmont, Blue Ridge, and Valley and Ridge Physiographic Provinces, Eastern United States

    USGS Publications Warehouse

    Denver, Judith M.; Cravotta,, Charles A.; Ator, Scott W.; Lindsey, Bruce D.

    2011-01-01

    Phosphorus from natural and human sources is likely to be discharged from groundwater to streams in certain geochemical environments. Water-quality data collected from 1991 through 2007 in paired networks of groundwater and streams in different hydrogeologic and land-use settings of the Piedmont, Blue Ridge, and Valley and Ridge Physiographic Provinces in the eastern United States were compiled and analyzed to evaluate the sources, fate, and transport of phosphorus. The median concentrations of phosphate in groundwater from the crystalline and siliciclastic bedrock settings (0.017 and 0.020 milligrams per liter, respectively) generally were greater than the median for the carbonate setting (less than 0.01 milligrams per liter). In contrast, the median concentrations of dissolved phosphate in stream base flow from the crystalline and siliciclastic bedrock settings (0.010 and 0.014 milligrams per liter, respectively) were less than the median concentration for base-flow samples from the carbonate setting (0.020 milligrams per liter). Concentrations of phosphorus in many of the stream base-flow and groundwater samples exceeded ecological criteria for streams in the region. Mineral dissolution was identified as the dominant source of phosphorus in the groundwater and stream base flow draining crystalline or siliciclastic bedrock in the study area. Low concentrations of dissolved phosphorus in groundwater from carbonate bedrock result from the precipitation of minerals and (or) from sorption to mineral surfaces along groundwater flow paths. Phosphorus concentrations are commonly elevated in stream base flow in areas underlain by carbonate bedrock, however, presumably derived from in-stream sources or from upland anthropogenic sources and transported along short, shallow groundwater flow paths. Dissolved phosphate concentrations in groundwater were correlated positively with concentrations of silica and sodium, and negatively with alkalinity and concentrations of calcium, magnesium, chloride, nitrate, sulfate, iron, and aluminum. These associations can result from the dissolution of alkali feldspars containing phosphorus; the precipitation of apatite; the precipitation of calcite, iron hydroxide, and aluminum hydroxide with associated sorption of phosphate ions; and the potential for release of phosphate from iron-hydroxide and other iron minerals under reducing conditions. Anthropogenic sources of phosphate such as fertilizer and manure and processes such as biological uptake, evapotranspiration, and dilution also affect phosphorus concentrations. The phosphate concentrations in surface water were not correlated with the silica concentration, but were positively correlated with concentrations of major cations and anions, including chloride and nitrate, which could indicate anthropogenic sources and effects of evapotranspiration on surface-water quality. Mixing of older, mineralized groundwater with younger, less mineralized, but contaminated groundwater was identified as a critical factor affecting the quality of stream base flow. In-stream processing of nutrients by biological processes also likely increases the phosphorus concentration in surface waters. Potential geologic contributions of phosphorus to groundwater and streams may be an important watershed-management consideration in certain hydrogeologic and geochemical environments. Geochemical controls effectively limit phosphorus transport through groundwater to streams in areas underlain by carbonate rocks; however, in crystalline and siliciclastic settings, phosphorus from mineral or human sources may be effectively transported by groundwater and contribute a substantial fraction to base-flow stream loads.

  8. Relation of water quality to land use in the drainage basins of four tributaries to the Toms River, New Jersey, 1994--1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunchak-Kariouk, K.

    1999-01-01

    This report describes the results of a study to determine the relation between land use and the water quality of four tributaries to the Toms River--Long Swamp Creek, Wrangel Brook, Davenport Branch, and Jakes Branch. The constituent concentrations and yield values presented in this report are based on water-quality and streamflow data collected at seven sites during base flow and stormflow conditions during May 1994 to October 1995. Concentrations and yields (area-normalized instantaneous load values) during periods of base flow and stormflow in the growing and nongrowing seasons are presented for sites on Long Swamp Creek, Wrangel Brook, and Davenportmore » Branch. Only concentrations during base flow are presented for the site on Jakes Branch. Water-quality constituents for which concentrations and yield values are reported include total nitrogen, ammonia, nitrate, organic nitrogen, hydrolyzable phosphorus plus orthophosphorus, orthophosphorus, total suspended solids, and fecal-coliform bacteria. Concentrations of nitrite and Escherichia coliform bacteria also are listed. Distributions of constituent concentrations and yields during base flow and stormflow in the growing and nongrowing season are shown in boxplots. Specific conductance, pH, temperature, and dissolved oxygen in the four tributaries also are discussed, and their values are listed.« less

  9. Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine

    NASA Astrophysics Data System (ADS)

    Jen, Coty N.; McMurry, Peter H.; Hanson, David R.

    2014-06-01

    This study experimentally explores how ammonia (NH3), methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) affect the chemical formation mechanisms of electrically neutral clusters that contain two sulfuric acid molecules (dimers). Dimers may also contain undetectable compounds, such as water or bases, that evaporate upon ionization and sampling. Measurements were conducted using a glass flow reactor which contained a steady flow of humidified nitrogen with sulfuric acid concentrations of 107 to 109 cm-3. A known molar flow rate of a basic gas was injected into the flow reactor. The University of Minnesota Cluster Chemical Ionization Mass Spectrometer was used to measure the resulting sulfuric acid vapor and cluster concentrations. It was found that, for a given concentration of sulfuric acid vapor, the dimer concentration increases with increasing concentration of the basic gas, eventually reaching a plateau. The base concentrations at which the dimer concentrations saturate suggest NH3 < MA < TMA ≲ DMA in forming stabilized sulfuric acid dimers. Two heuristic models for cluster formation by acid-base reactions are developed to interpret the data. The models provide ranges of evaporation rate constants that are consistent with observations and leads to an analytic expression for nucleation rates that is consistent with atmospheric observations.

  10. Phosphorus and nitrogen concentrations and loads at Illinois River south of Siloam Springs, Arkansas, 1997-1999

    USGS Publications Warehouse

    Green, W. Reed; Haggard, Brian E.

    2001-01-01

    Water-quality sampling consisting of every other month (bimonthly) routine sampling and storm event sampling (six storms annually) is used to estimate annual phosphorus and nitrogen loads at Illinois River south of Siloam Springs, Arkansas. Hydrograph separation allowed assessment of base-flow and surfacerunoff nutrient relations and yield. Discharge and nutrient relations indicate that water quality at Illinois River south of Siloam Springs, Arkansas, is affected by both point and nonpoint sources of contamination. Base-flow phosphorus concentrations decreased with increasing base-flow discharge indicating the dilution of phosphorus in water from point sources. Nitrogen concentrations increased with increasing base-flow discharge, indicating a predominant ground-water source. Nitrogen concentrations at higher base-flow discharges often were greater than median concentrations reported for ground water (from wells and springs) in the Springfield Plateau aquifer. Total estimated phosphorus and nitrogen annual loads for calendar year 1997-1999 using the regression techniques presented in this paper (35 samples) were similar to estimated loads derived from integration techniques (1,033 samples). Flow-weighted nutrient concentrations and nutrient yields at the Illinois River site were about 10 to 100 times greater than national averages for undeveloped basins and at North Sylamore Creek and Cossatot River (considered to be undeveloped basins in Arkansas). Total phosphorus and soluble reactive phosphorus were greater than 10 times and total nitrogen and dissolved nitrite plus nitrate were greater than 10 to 100 times the national and regional averages for undeveloped basins. These results demonstrate the utility of a strategy whereby samples are collected every other month and during selected storm events annually, with use of regression models to estimate nutrient loads. Annual loads of phosphorus and nitrogen estimated using regression techniques could provide similar results to estimates using integration techniques, with much less investment.

  11. CO and NO2 pollution in a long two-way traffic road tunnel: investigation of NO2/NOx ratio and modelling of NO2 concentration.

    PubMed

    Indrehus, O; Vassbotn, P

    2001-02-01

    The CO, NO and NO2 concentrations, visibility and air flow velocity were measured using continuous analysers in a long Norwegian road tunnel (7.5 km) with traffic in both directions in April 1994 and 1995. The traffic density was monitored at the same time. The NO2 concentration exceeded Norwegian air quality limits for road tunnels 17% of the time in 1994. The traffic through the tunnel decreased from 1994 to 1995, and the mean NO2 concentration was reduced from 0.73 to 0.22 ppm. The ventilation fan control, based on the CO concentration only, was unsatisfactory and the air flow was sometimes low for hours. Models for NO2 concentration based on CO concentration and absolute air flow velocity were developed and tested. The NO2/NOx ratio showed an increase for NOx levels above 2 ppm; a likely explanation for this phenomenon is NO oxidation by O2. Exposure to high NO2 concentrations may represent a health risk for people with respiratory and cardiac diseases. In long road tunnels with two-way traffic, this study indicates that ventilation fan control based on CO concentration should be adjusted for changes in vehicle CO emission and should be supplemented by air flow monitoring to limit the NO2 concentration.

  12. Concentrations, loads, and yields of total nitrogen and total phosphorus in the Barnegat Bay-Little Egg Harbor watershed, New Jersey, 1989-2011, at multiple spatial scales

    USGS Publications Warehouse

    Baker, Ronald J.; Wieben, Christine M.; Lathrop, Richard G.; Nicholson, Robert S.

    2014-01-01

    Concentrations, loads, and yields of nutrients (total nitrogen and total phosphorus) were calculated for the Barnegat Bay-Little Egg Harbor (BB-LEH) watershed for 1989–2011 at annual and seasonal (growing and nongrowing) time scales. Concentrations, loads, and yields were calculated at three spatial scales: for each of the 81 subbasins specified by 14-digit hydrologic unit codes (HUC-14s); for each of the three BB-LEH watershed segments, which coincide with segmentation of the BB-LEH estuary; and for the entire BB-LEH watershed. Base-flow and runoff values were calculated separately and were combined to provide total values. Available surface-water-quality data for all streams in the BB-LEH watershed for 1980–2011 were compiled from existing datasets and quality assured. Precipitation and streamflow data were used to distinguish between water-quality samples that were collected during base-flow conditions and those that were collected during runoff conditions. Base-flow separation of hydrographs of six streams in the BB-LEH watershed indicated that base flow accounts for about 72 to 94 percent of total flow in streams in the watershed. Base-flow mean concentrations (BMCs) of total nitrogen (TN) and total phosphorus (TP) for each HUC-14 subbasin were calculated from relations between land use and measured base-flow concentrations. These relations were developed from multiple linear regression models determined from water-quality data collected at sampling stations in the BB-LEH watershed under base-flow conditions and land-use percentages in the contributing drainage basins. The total watershed base-flow volume was estimated for each year and season from continuous streamflow records for 1989–2011 and relations between precipitation and streamflow during base-flow conditions. For each year and season, the base-flow load and yield were then calculated for each HUC-14 subbasin from the BMCs, total base-flow volume, and drainage area. The watershed-loading application PLOAD was used to calculate runoff concentrations, loads, and yields of TN and TP at the HUC-14 scale. Flow-weighted event-mean concentrations (EMCs) for runoff were developed for each major land-use type in the watershed using storm sampling data from four streams in the BB-LEH watershed and three streams outside the watershed. The EMCs were developed separately for the growing and nongrowing seasons, and were typically greater during the growing season. The EMCs, along with annual and seasonal precipitation amounts and percent imperviousness associated with land-use types, were used as inputs to PLOAD to calculate annual and seasonal runoff concentrations, loads, and yields at the HUC-14 scale. Over the period of study (1989–2011), total surface-water loads (base flow plus runoff) for the entire BB-LEH watershed for TN ranged from about 455,000 kilograms (kg) as N (1995) to 857,000 kg as N (2010). For TP, total loads for the watershed ranged from about 17,000 (1995) to 32,000 kg as P (2010). On average, the north segment accounted for about 66 percent of the annual TN load and 63 percent of the annual TP load, and the central and south segments each accounted for less than 20 percent of the nutrient loads. Loads and yields were strongly associated with precipitation patterns, ensuing hydrologic conditions, and land use. HUC-14 subbasins with the highest yields of nutrients are concentrated in the northern part of the watershed, and have the highest percentages of urban or agricultural land use. Subbasins with the lowest TN and TP yields are dominated by forest cover. Percentages of turf (lawn) cover and nonturf cover were estimated for the watershed. Of the developed land in the watershed, nearly one quarter (24.9 percent) was mapped as turf cover. Because there is a strong relation between percent turf and percent developed land, percent turf in the watershed typically increases with percent development, and the amount of development can be considered a reasonable predictor of the amount of turf cover in the watershed. In the BB-LEH watershed, calculated concentrations of TN and TP were greater for developed–turf areas than for developed–nonturf areas, which, in turn, were greater than those for undeveloped areas.

  13. Evaluation of water quality, suspended sediment, and stream morphology with an emphasis on effects of stormwater on Fountain and Monument Creek basins, Colorado Springs and vicinity, Colorado, 1981-2001

    USGS Publications Warehouse

    Edelmann, Patrick; Ferguson, Sheryl A.; Stogner, Sr., Robert W.; August, Marianne; Payne, William F.; Bruce, James F.

    2002-01-01

    This report documents water quality and suspended sediment with an emphasis on evaluating the effects of stormflow on Fountain Creek Basin in the vicinity of Colorado Springs, Colorado. Water-quality data collected at 11 sites between 1981 and 2001 were used to evaluate the effects of stormflow on water quality. Suspended-sediment data collected at seven sites from 1998 through 2001 were used to evaluate effects of stormflow on suspended-sediment concentrations, discharges, and yields. Data were separated into three flow regimes: base flow, normal flow, and stormflow. A comparison of stormwater-quality concentrations measured between 1981 and 2001 to Colorado acute instream standards indicated that, except for isolated occurrences, stormwater quality met acute instream standards. At several sites, 5-day biochemical oxygen demand, fecal coliform, and selected nutrient concentrations tended to be highest during stormflow and lowest during base flow. Dissimilar to the other nutrients, dissolved nitrite plus nitrate concentrations generally were highest during base flow and lowest during stormflow. Most dissolved trace-element concentrations associated with stormflow decreased or showed little change compared to base flow. However, median concentrations of total copper, iron, lead, nickel, manganese, and zinc for stormflow samples generally were much larger than nonstorm samples. The substantially larger concentrations of total copper, iron, lead, nickel, manganese, and zinc measured at site 5800 during stormflow as compared to other sites indicates a relatively large source of these metals in the reach between sites 5530 and 5800. Semi-volatile organic compounds in samples collected during stormflow were detected relatively infrequently at the four sites monitored; however, analysis of pesticide data collected during stormflow showed a relatively frequent detection of pesticides at low levels. Nitrogen, phosphorus, and particulate trace-element loads substantially increased during stormflow. Suspended-sediment concentrations, discharges, and yields associated with stormflow were significantly greater than during normal flow. Depending on the site and year, suspended-sediment concentrations associated with storm-flow generally were 3 to10 times greater than concentrations measured during normal flow, and suspended-sediment discharges were usually more than 10 times greater during stormflow. The April through October cumulative suspended-sediment discharges and streamflows were largest in 1999 at all sites. Although large spatial variations in suspended-sediment yields occurred during normal flows, the suspended-sediment yields associated with stormflow generally were more than 10 times greater than the suspended-sediment yields that occurred during normal flow. The smallest suspended-sediment yields generally were less than 1 ton per day per square mile during stormflow. The largest suspended-sediment yields occurred at sites located in the Cottonwood Creek Basin and were greater than 10 tons per day per square mile.

  14. Label-Free, Flow-Imaging Methods for Determination of Cell Concentration and Viability.

    PubMed

    Sediq, A S; Klem, R; Nejadnik, M R; Meij, P; Jiskoot, Wim

    2018-05-30

    To investigate the potential of two flow imaging microscopy (FIM) techniques (Micro-Flow Imaging (MFI) and FlowCAM) to determine total cell concentration and cell viability. B-lineage acute lymphoblastic leukemia (B-ALL) cells of 2 different donors were exposed to ambient conditions. Samples were taken at different days and measured with MFI, FlowCAM, hemocytometry and automated cell counting. Dead and live cells from a fresh B-ALL cell suspension were fractionated by flow cytometry in order to derive software filters based on morphological parameters of separate cell populations with MFI and FlowCAM. The filter sets were used to assess cell viability in the measured samples. All techniques gave fairly similar cell concentration values over the whole incubation period. MFI showed to be superior with respect to precision, whereas FlowCAM provided particle images with a higher resolution. Moreover, both FIM methods were able to provide similar results for cell viability as the conventional methods (hemocytometry and automated cell counting). FIM-based methods may be advantageous over conventional cell methods for determining total cell concentration and cell viability, as FIM measures much larger sample volumes, does not require labeling, is less laborious and provides images of individual cells.

  15. A numerical model for a thermally-regenerative ammonia-based flow battery using for low grade waste heat recovery

    NASA Astrophysics Data System (ADS)

    Wang, Weiguang; Shu, Gequn; Tian, Hua; Zhu, Xiuping

    2018-06-01

    A stationary and a transient two-dimensional models, based on the universal conservation laws and coupled with electrochemical reactions, are firstly applied to describe a single thermally-regenerative ammonia-based flow battery (TR-AFB), and emphasis is placed on studying the effects of reactant concentrations, physical properties of the electrolyte, flow rates and geometric parameters of flow channels on the battery performance. The model includes several experimental parameters measured by cyclic voltammetry (CV), chronoamperometry (CA) and Tafel plot. The results indicate that increasing NH3 concentration has a decisive effect on the improvement of power production and is beneficial to use higher Cu2+ concentrations, but the endurance of membrane and self-discharge need to be considered at the same time. It is also suggested that appropriately reducing the initial Cu(NH3)42+ concentration can promote power and energy densities and mitigate cyclical fluctuation. The relation between the energy and power densities is given, and the models are validated by some experimental data.

  16. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Zou, J.; Ren, Y. X.

    2017-06-01

    To eliminate the adverse impacts of hydrogen evolution on the capacity of iron-chromium redox flow batteries (ICRFBs) during the long-term operation and ensure the safe operation of the battery, a rebalance cell that reduces the excessive Fe(III) ions at the positive electrolyte by using the hydrogen evolved from the negative electrolyte is designed, fabricated and tested. The effects of the flow field, hydrogen concentration and H2/N2 mixture gas flow rate on the performance of the hydrogen-ferric ion rebalance cell have been investigated. Results show that: i) an interdigitated flow field based rebalance cell delivers higher limiting current densities than serpentine flow field based one does; ii) the hydrogen utilization can approach 100% at low hydrogen concentrations (≤5%); iii) the apparent exchange current density of hydrogen oxidation reaction in the rebalance cell is proportional to the square root of the hydrogen concentration at the hydrogen concentration from 1.3% to 50%; iv) a continuous rebalance process is demonstrated at the current density of 60 mA cm-2 and hydrogen concentration of 2.5%. Moreover, the cost analysis shows that the rebalance cell is just approximately 1% of an ICRFB system cost.

  17. Concentrations, loads, and yields of total phosphorus, total nitrogen, and suspended sediment and bacteria concentrations in the Wister Lake Basin, Oklahoma and Arkansas, 2011-13

    USGS Publications Warehouse

    Buck, Stephanie D.

    2014-01-01

    The Poteau Valley Improvement Authority uses Wister Lake in southeastern Oklahoma as a public water supply. Total phosphorus, total nitrogen, and suspended sediments from agricultural runoff and discharges from wastewater treatment plants and other sources have degraded water quality in the lake. As lake-water quality has degraded, water-treatment cost, chemical usage, and sludge production have increased for the Poteau Valley Improvement Authority. The U.S. Geological Survey (USGS), in cooperation with the Poteau Valley Improvement Authority, investigated and summarized concentrations of total phosphorus, total nitrogen, suspended sediment, and bacteria (Escherichia coli and Enterococcus sp.) in surface water flowing to Wister Lake. Estimates of total phosphorus, total nitrogen, and suspended sediment loads, yields, and flow-weighted mean concentrations of total phosphorus and total nitrogen concentrations were made for the Wister Lake Basin for a 3-year period from October 2010 through September 2013. Data from water samples collected at fixed time increments during base-flow conditions and during runoff conditions at the Poteau River at Loving, Okla. (USGS station 07247015), the Poteau River near Heavener, Okla. (USGS station 07247350), and the Fourche Maline near Leflore, Okla. (USGS station 07247650), water-quality stations were used to evaluate water quality over the range of streamflows in the basin. These data also were collected to estimate annual constituent loads and yields by using regression models. At the Poteau River stations, total phosphorus, total nitrogen, and suspended sediment concentrations in surface-water samples were significantly larger in samples collected during runoff conditions than in samples collected during base-flow conditions. At the Fourche Maline station, in contrast, concentrations of these constituents in water samples collected during runoff conditions were not significantly larger than concentrations during base-flow conditions. Flow-weighted mean total phosphorus concentrations at all three stations from 2011 to 2013 were several times larger than the Oklahoma State Standard for Scenic Rivers (0.037 milligrams per liter [mg/L]), with the largest flow-weighted phosphorus concentrations typically being measured at the Poteau River at Loving, Okla., station. Flow-weighted mean total nitrogen concentrations did not vary substantially between the Poteau River stations and the Fourche Maline near Leflore, Okla., station. At all of the sampled water-quality stations, bacteria (Escherichia coli and Enterococcus sp.) concentrations were substantially larger in water samples collected during runoff conditions than in water samples collected during base-flow conditions from 2011 to 2013. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Poteau River stations during runoff conditions ranged from 82 to 98 percent of the total annual loads of those constituents. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Fourche Maline during runoff conditions ranged from 86 to nearly 100 percent of the total annual loads. Estimated seasonal total phosphorus loads generally were smallest during base-flow and runoff conditions in autumn. Estimated seasonal total phosphorus loads during base-flow conditions tended to be largest in winter and during runoff conditions tended to be largest in the spring. Estimated seasonal total nitrogen loads tended to be smallest in autumn during base-flow and runoff conditions and largest in winter during runoff conditions. Estimated seasonal suspended sediment loads tended to be smallest during base-flow conditions in the summer and smallest during runoff conditions in the autumn. The largest estimated seasonal suspended sediment loads during runoff conditions typically were in the spring. The estimated mean annual total phosphorus yield was largest at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual total phosphorus yield was largest during base flow at the Poteau River at Loving, Okla., water-quality station and at both of the Poteau River water-quality stations during runoff conditions. The estimated mean annual total nitrogen yields were largest at the Poteau River water-quality stations. Estimated mean annual total nitrogen yields were largest during base-flow and runoff conditions at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual suspended sediment yield was largest at the Poteau River near Heavener, Okla., water-quality station during base-flow and runoff conditions. Flow-weighted mean concentrations indicated that total phosphorus inputs from the Poteau River Basin in the Wister Lake Basin were larger than from the Fourche Maline Basin. Flow-weighted mean concentrations of total nitrogen did not vary spatially in a consistent manner. The Poteau River and the Fourche Maline contributed estimated annual total phosphorus loads of 137 to 278 tons per year (tons/yr) to Wister Lake. Between 89 and 95 percent of the annual total phosphorus loads were transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total nitrogen loads of 657 to 1,294 tons/yr, with 86 to 94 percent of the annual total nitrogen loads being transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total suspended sediment loads of 110,919 to 234,637 tons/yr, with 94 to 99 percent of the annual suspended sediment loads being transported to Wister Lake during runoff conditions. Most of the total phosphorus and suspended sediment were delivered to Wister Lake during runoff conditions in the spring. The majority of the total nitrogen was delivered to Wister Lake during runoff conditions in winter.

  18. Nutrient Concentrations, Loads, and Yields in the Eucha-Spavinaw Basin, Arkansas and Oklahoma, 2002-2006

    USGS Publications Warehouse

    Tortorelli, Robert L.

    2008-01-01

    The City of Tulsa, Oklahoma, uses Lake Eucha and Spavinaw Lake in the Eucha-Spavinaw basin in northwestern Arkansas and northeastern Oklahoma for public water supply. Taste and odor problems in the water attributable to blue-green algae have increased in frequency. Changes in the algae community in the lakes may be attributable to increases in nutrient levels in the lakes, and in the waters feeding the lakes. The U.S. Geological Survey, in cooperation with the City of Tulsa, investigated and summarized nitrogen and phosphorus concentrations and provided estimates of nitrogen and phosphorus loads, yields, and flow-weighted concentrations in the Eucha-Spavinaw basin for three 3-year periods - 2002-2004, 2003-2005, and 2004-2006, to update a previous report that used data from water-quality samples for a 3-year period from January 2002 through December 2004. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple agencies for interstate agreements. Nitrogen and phosphorus concentrations were significantly greater in runoff samples than in base-flow samples for all three periods at Spavinaw Creek near Maysville, Arkansas; Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma. Runoff concentrations were not significantly greater than base-flow concentrations at Spavinaw Creek near Cherokee, Arkansas; and Spavinaw Creek near Sycamore, Oklahoma except for phosphorus during 2003-2005. Nitrogen concentrations in base-flow samples significantly increased downstream in Spavinaw Creek from the Maysville to Sycamore stations then significantly decreased from the Sycamore to the Colcord stations for all three periods. Nitrogen in base-flow samples from Beaty Creek was significantly less than in samples from Spavinaw Creek. Phosphorus concentrations in base-flow samples significantly increased from the Maysville to Cherokee stations in Spavinaw Creek for all three periods, probably because of a wastewater-treatment plant point source between those stations, and then significantly decreased downstream from the Cherokee to Colcord stations. Phosphorus in base-flow samples from Beaty Creek was significantly less than phosphorus in base-flow samples from Spavinaw Creek downstream from the Maysville station. Nitrogen concentrations in runoff samples were not significantly different among the stations on Spavinaw Creek for most of the three periods, except during 2003-2005 when runoff samples at the Colcord station were less than at the Sycamore station; however, the concentrations at Beaty Creek were significantly less than at all other stations. Phosphorus concentrations in runoff samples were not significantly different among the three downstream stations on Spavinaw Creek and were significantly different at the Maysville station on Spavinaw Creek and the Beaty Creek station, only during 2004-2006. Phosphorus and nitrogen concentrations in runoff samples from all stations generally increased with increasing streamflow. Estimated mean annual nitrogen total loads for the three 3-year periods were substantially greater at the Spavinaw Creek stations than at Beaty Creek and increased downstream from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2 times that at Maysville station. Estimated mean annual nitrogen base-flow loads at the Spavinaw Creek stations were about 5 to 11 times greater than base-flow loads at Beaty Creek. The runoff component of the annual nitrogen total load for Beaty Creek was 85 to 89 percent; whereas, the range in the runoff component at the Spavinaw Creek stations was 60 to 71 percent. Estimated mean annual phosphorus total loads for the three 3-year periods were greater at the Spavinaw Creek stations from Cherokee to Colcord than at Beaty Creek and increased downstream from Maysville to Colcord in Spavinaw Creek, wit

  19. Effects of nonpoint and selected point contaminant sources on stream-water quality and relation to land use in Johnson County, northeastern Kansas, October 2002 through June 2004

    USGS Publications Warehouse

    Lee, Casey J.; Mau, D.P.; Rasmussen, T.J.

    2005-01-01

    Water and sediment samples were collected by the U.S. Geological Survey in 12 watersheds in Johnson County, northeastern Kansas, to determine the effects of nonpoint and selected point contaminant sources on stream-water quality and their relation to varying land use. The streams studied were located in urban areas of the county (Brush, Dykes Branch, Indian, Tomahawk, and Turkey Creeks), developing areas of the county (Blue River and Mill Creek), and in more rural areas of the county (Big Bull, Captain, Cedar, Kill, and Little Bull Creeks). Two base-flow synoptic surveys (73 total samples) were conducted in 11 watersheds, a minimum of three stormflow samples were collected in each of six watersheds, and 15 streambed-sediment sites were sampled in nine watersheds from October 2002 through June 2004. Discharge from seven wastewater treatment facilities (WWTFs) were sampled during base-flow synoptic surveys. Discharge from these facilities comprised greater than 50 percent of streamflow at the farthest downstream sampling site in six of the seven watersheds during base-flow conditions. Nutrients, organic wastewater-indicator compounds, and prescription and nonprescription pharmaceutical compounds generally were found in the largest concentrations during base-flow conditions at sites at, or immediately downstream from, point-source discharges from WWTFs. Downstream from WWTF discharges streamflow conditions were generally stable, whereas nutrient and wastewater-indicator compound concentrations decreased in samples from sites farther downstream. During base-flow conditions, sites upstream from WWTF discharges had significantly larger fecal coliform and Escherichia coli densities than downstream sites. Stormflow samples had the largest suspended-sediment concentrations and indicator bacteria densities. Other than in samples from sites in proximity to WWTF discharges, stormflow samples generally had the largest nutrient concentrations in Johnson County streams. Discharge from WWTFs with trickling-filter secondary treatment processes had the largest concentrations of many potential contaminants during base-flow conditions. Samples from two of three trickling-filter WWTFs exceeded Kansas Department of Health and Environment pH- and temperature-dependent chronic aquatic-life criteria for ammonia when early-life stages of fish are present. Discharge from trickling-filter facilities generally had the most detections and largest concentrations of many organic wastewater-indicator compounds in Johnson County stream-water samples. Caffeine (stimulant), nonylphenol-diethoxylate (detergent surfactant), and tris(2-butoxyethyl) phosphate (floor polish, flame retardant, and plasticizer) were found at concentrations larger than maximum concentrations in comparable studies. Land use and seasonality affected the occurrence and magnitude of many potential water-quality contaminants originating from nonpoint sources. Base-flow samples from urban sites located upstream from WWTF discharges had larger indicator bacteria densities and wastewater-indicator compound concentrations than did base-flow samples from sites in nonurban areas. Dissolved-solids concentrations were the largest in winter stormflow samples from urban sites and likely were due to runoff from road-salt application. One sample from an urban watershed had a chloride concentration of 1,000 milligrams per liter, which exceeded the Kansas Department of Health and Environment's acute aquatic-life use criterion (860 milligrams per liter) likely due to effects from road-salt application. Pesticide concentrations were the largest in spring stormflow samples collected in nonurban watersheds. Although most wastewater-indicator compounds were found at the largest concentrations in samples from WWTF discharges, the compounds 9-10, anthraquinone (bird repellent), caffeine (stimulant), carbazole (component of coal tar, petroleum products), nonylphenol-diethoxylate (detergent surfactant),

  20. Modeling sediment concentration of rill flow

    NASA Astrophysics Data System (ADS)

    Yang, Daming; Gao, Peiling; Zhao, Yadong; Zhang, Yuhang; Liu, Xiaoyuan; Zhang, Qingwen

    2018-06-01

    Accurate estimation of sediment concentration is essential to establish physically-based erosion models. The objectives of this study were to evaluate the effects of flow discharge (Q), slope gradient (S), flow velocity (V), shear stress (τ), stream power (ω) and unit stream power (U) on sediment concentration. Laboratory experiments were conducted using a 10 × 0.1 m rill flume under four flow discharges (2, 4, 8 and 16 L min-1), and five slope gradients (5°, 10°, 15°, 20° and 25°). The results showed that the measured sediment concentration varied from 87.08 to 620.80 kg m-3 with a mean value of 343.13 kg m-3. Sediment concentration increased as a power function with flow discharge and slope gradient, with R2 = 0.975 and NSE = 0.945. The sediment concentration was more sensitive to slope gradient than to flow discharge. The sediment concentration was well predicted by unit stream power (R2 = 0.937, NSE = 0.865), whereas less satisfactorily by flow velocity (R2 = 0.470, NSE = 0.539) and stream power (R2 = 0.773, NSE = 0.732). In addition, using the equations to simulate the measured sediment concentration of other studies, the result further indicated that slope gradient, flow discharge and unit stream power were good predictors of sediment concentration. In general, slope gradient, flow discharge and unit stream power seem to be the preferred predictors for estimating sediment concentration.

  1. Response of Stream Chemistry During Base Flow to Gradients of Urbanization in Selected Locations Across the Conterminous United States, 2002-04

    USGS Publications Warehouse

    Sprague, Lori A.; Harned, Douglas A.; Hall, David W.; Nowell, Lisa H.; Bauch, Nancy J.; Richards, Kevin D.

    2007-01-01

    During 2002-2004, the U.S. Geological Survey's National Water-Quality Assessment Program conducted a study to determine the effects of urbanization on stream water quality and aquatic communities in six environmentally heterogeneous areas of the conterminous United States--Atlanta, Georgia; Raleigh-Durham, North Carolina; Milwaukee-Green Bay, Wisconsin; Dallas-Fort Worth, Texas; Denver, Colorado; and Portland, Oregon. This report compares and contrasts the response of stream chemistry during base flow to urbanization in different environmental settings and examines the relation between the exceedance of water-quality benchmarks and the level of urbanization in these areas. Chemical characteristics studied included concentrations of nutrients, dissolved pesticides, suspended sediment, sulfate, and chloride in base flow. In three study areas where the background land cover in minimally urbanized basins was predominantly forested (Atlanta, Raleigh-Durham, and Portland), urban development was associated with increased concentrations of nitrogen and total herbicides in streams. In Portland, there was evidence of mixed agricultural and urban influences at sites with 20 to 50 percent urban land cover. In two study areas where agriculture was the predominant background land cover (Milwaukee-Green Bay and Dallas-Fort Worth), concentrations of nitrogen and herbicides were flat or decreasing as urbanization increased. In Denver, which had predominantly shrub/grass as background land cover, nitrogen concentrations were only weakly related to urbanization, and total herbicide concentrations did not show any clear pattern relative to land cover - perhaps because of extensive water management in the study area. In contrast, total insecticide concentrations increased with increasing urbanization in all six study areas, likely due to high use of insecticides in urban applications and, for some study areas, the proximity of urban land cover to the sampling sites. Phosphorus concentrations increased with urbanization only in Portland; in Atlanta and Raleigh-Durham, leachate from septic tanks may have increased phosphorus concentrations in basins with minimal urban development. Concentrations of suspended sediment were only weakly associated with urbanization, probably because this study analyzed only base-flow samples, and the bulk of sediment loads to streams is transported in storm runoff rather than base flow. Sulfate and chloride concentrations increased with increasing urbanization in four study areas (Atlanta, Raleigh-Durham, Milwaukee-Green Bay, and Portland), likely due to increasing contributions from urban sources of these constituents. The weak relation between sulfate and chloride concentrations and urbanization in Dallas-Fort Worth and Denver was likely due in part to high sulfate and chloride concentrations in ground-water inflow, which would have obscured any pattern of increasing concentration with urbanization. Pesticides often were detected at multiple sites within a study area, so that the pesticide 'signature' for a given study area - the mixtures of pesticides detected, and their relative concentrations, at streams within the study area - tended to show some pesticides as dominant. The type and concentrations of the dominant pesticides varied markedly among sites within a study area. There were differences between pesticide signatures during high and low base-flow conditions in five of the six study areas. Normalization of absolute pesticide concentrations by the pesticide toxicity index (a relative index indicating potential toxicity to aquatic organisms) dramatically changed the pesticide signatures, indicating that the pesticides with the greatest potential to adversely affect cladocerans or fish were not necessarily the pesticides detected at the highest concentrations. In a screening-level assessment, measured contaminant concentrations in individual base-flow water samples were compared with various water-qual

  2. Nutrients, Dissolved Organic Carbon, Color, and Disinfection Byproducts in Base Flow and Stormflow in Streams of the Croton Watershed, Westchester and Putnam Counties, New York, 2000-02

    USGS Publications Warehouse

    Heisig, Paul M.

    2009-01-01

    The Croton Watershed is unique among New York City's water-supply watersheds because it has the highest percentages of suburban development (52 percent) and wetland area (6 percent). As the City moves toward filtration of this water supply, there is a need to document water-quality contributions from both human and natural sources within the watershed that can inform watershed-management decisions. Streamwater samples from 24 small (0.1 to 1.5 mi2) subbasins and three wastewater-treatment plants (2000-02) were used to document the seasonal concentrations, values, and formation potentials of selected nutrients, dissolved organic carbon (DOC), color, and disinfection byproducts (DBPs) during stormflow and base-flow conditions. The subbasins were categorized by three types of drainage efficiency and a range of land uses and housing densities. Analyte concentrations in subbasin streams differed in response to the subbasin charateristics. Nutrient concentrations were lowest in undeveloped, forested subbasins that were well drained and increased with all types of development, which included residential, urban commercial/industrial, golf-course, and horse-farm land uses. These concentrations were further modified by subbasin drainage efficiency. DOC, in contrast, was highly dependent on drainage efficiency. Color intensity and DBP formation potentials were, in turn, associated with DOC and thus showed a similar response to drainage efficiency. Every constituent exhibited seasonal changes in concentration. Nutrients. Total (unfiltered) phosphorus (TP), soluble reactive phosphorus (SRP), and nitrate were associated primarily with residential development, urban, golf-course, and horse-farm land uses. Base-flow and stormflow concentrations of the TP, SRP, and nitrate generally increased with increasing housing density. TP and SRP concentrations were nearly an order of magnitude higher in stormflow than in base flow, whereas nitrate concentrations showed little difference between these flow conditions. Organic nitrogen concentrations (calculated as the difference between concentrations of total dissolved N and of all other N species) was the dominant form of nitrogen in undeveloped and moderately to poorly drained subbasins. High TP concentrations in stormflows (800-1,750 ug/L) were associated with well drained and moderately drained residential subbasins with high- and medium-density housing and with the moderately drained golf-course subbasin. Areas with medium to high housing densities favor TP transport because they provide extensive impervious surfaces, storm sewers, and local relief, which together can rapidly route stormwater to streams. SRP concentrations were highest in the same types of subbasins as TP, but also in sewered residential and horse-farm subbasins. The ratio of SRP to TP was typically a smaller in stormflow than in base flow. Base-flow TP and SRP concentrations were highest during the warm-weather months (May to October). The highest nitrate concentrations (3.0-4.5 mg/L) were associated with the urban subbasin and the three well drained, high-density residential subbasins. The two moderately drained lake subbasins and the two poorly drained (colored-water wetland) subbasins had consistently low nitrate concentrations despite low and medium housing densities. Nitrate concentrations were generally highest during the winter months and lowest during the autumn leaf-fall period. Organic N concentrations were highest during the leaf-fall period. Dissolved Organic Carbon. DOC concentration was consistently highest in the two poorly drained (colored-water-wetland) subbasins and lowest in the well drained subbasins. Base-flow DOC concentration increased with decreasing drainage efficiency, except in the well drained sewered subbasin with high-density housing, where slightly elevated DOC concentrations throughout the year may indicate leakage from a nearby sewer main. Seasonal changes in stormflow DOC concentrat

  3. Flows of Wet Foamsand Concentrated Emulsions

    NASA Technical Reports Server (NTRS)

    Nemer, Martin B.

    2005-01-01

    The aim of this project was is to advance a microstructural understanding of foam and emulsion flows. The dynamics of individual surfactant-covered drops and well as the collective behavior of dilute and concentrated was explored using numerical simulations. The long-range goal of this work is the formulation of reliable microphysically-based statistical models of emulsion flows.

  4. Annual variability of PAH concentrations in the Potomac River watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maher, I.L.; Foster, G.D.

    1995-12-31

    Dynamics of organic contaminant transport in a large river system is influenced by annual variability in organic contaminant concentrations. Surface runoff and groundwater input control the flow of river waters. They are also the two major inputs of contaminants to river waters. The annual variability of contaminant concentrations in rivers may or may not represent similar trends to the flow changes of river waters. The purpose of the research is to define the annual variability in concentrations of polycyclic aromatic hydrocarbons (PAH) in riverine environment. To accomplish this, from March 1992 to March 1995 samples of Potomac River water weremore » collected monthly or bimonthly downstream of the Chesapeake Bay fall line (Chain Bridge) during base flow and main storm flow hydrologic conditions. Concentrations of selected PAHs were measured in the dissolved phase and the particulate phase via GC/MS. The study of the annual variability of PAH concentrations will be performed through comparisons of PAH concentrations seasonally, annually, and through study of PAH concentration river discharge dependency and rainfall dependency. For selected PAHs monthly and annual loadings will be estimated based on their measured concentrations and average daily river discharge. The monthly loadings of selected PAHs will be compared by seasons and annually.« less

  5. Twenty-year inter-annual trends and seasonal variations in precipitation and stream water chemistry at the Bear Brook Watershed in Maine, USA.

    PubMed

    Navrátil, Tomas; Norton, Stephen A; Fernandez, Ivan J; Nelson, Sarah J

    2010-12-01

    Mean annual concentration of SO4(-2) in wet-only deposition has decreased between 1988 and 2006 at the paired watershed study at Bear Brook Watershed in Maine, USA (BBWM) due to substantially decreased emissions of SO(2). Emissions of NO(x) have not changed substantially, but deposition has declined slightly at BBWM. Base cations, NH4+, and Cl(-) concentrations were largely unchanged, with small irregular changes of <1 μeq L(-1) per year from 1988 to 2006. Precipitation chemistry, hydrology, vegetation, and temperature drive seasonal stream chemistry. Low flow periods were typical in June-October, with relatively greater contributions of deeper flow solutions with higher pH; higher concentrations of acid-neutralizing capacity, Si, and non-marine Na; and low concentrations of inorganic Al. High flow periods during November-May were typically dominated by solutions following shallow flow paths, which were characterized by lower pH and higher Al and DOC concentrations. Biological activity strongly controlled NO3- and K(+). They were depressed during the growing season and elevated in the fall. Since 1987, East Bear Brook (EB), the reference stream, has been slowly responding to reduced but still elevated acid deposition. Calcium and Mg have declined fairly steadily and faster than SO4(-2), with consequent acidification (lower pH and higher inorganic Al). Eighteen years of experimental treatment with (NH(4))(2)SO(4) enhanced acidification of West Bear Brook's (WB) watershed. Despite the manipulation, NH4+ concentration remained below detection limits at WB, while leaching of NO3- increased. The seasonal pattern for NO3- concentrations in WB, however, remained similar to EB. Mean monthly concentrations of SO4(-2) have increased in WB since 1989, initially only during periods of high flow, but gradually also during base flow. Increases in mean monthly concentrations of Ca(2+), Mg(2+), and K(+) due to the manipulation occurred from 1989 until about 1995, during the depletion of base cations in shallow flow paths in WB. Progressive depletion of Ca and Mg at greater soil depth occurred, causing stream concentrations to decline to pre-manipulation values. Mean monthly Si concentrations did not change in EB or WB, suggesting that the manipulation had no effect on mineral weathering rates. DOC concentrations in both streams did not exhibit inter- or intra-annual trends.

  6. Rice agriculture impacts catchment hydrographic patterns and nitrogen export characteristics in subtropical central China: a paired-catchment study.

    PubMed

    Wang, Yi; Liu, Xinliang; Wang, Hua; Li, Yong; Li, Yuyuan; Liu, Feng; Xiao, Runlin; Shen, Jianlin; Wu, Jinshui

    2017-06-01

    Increased nitrogen (N) concentrations in water bodies have highlighted issues regarding nutrient pollution in agricultural catchments. In this study, the ammonium-N (NH 4 + -N), nitrate-N (NO 3 - -N), and total N (TN) concentrations were observed in the stream water and groundwater of two contrasting catchments (named Tuojia and Jianshan) in subtropical central China from 2010 to 2014, to determine the rice agriculture impacts on the hydrographic patterns, and N export characteristics of the catchments. The results suggested that greater amounts of stream flow (523.0 vs. 434.7 mm year -1 ) and base flow (237.6 vs. 142.8 mm year -1 ) were produced in Tuojia than in Jianshan, and a greater base flow contribution to stream flow and higher frequencies of high-base flow days were observed during the fallow season than during the rice-growing season, indicating that intensive rice agriculture strongly influences the catchment hydrographic pattern. Rice agriculture resulted in moderate N pollution in the stream water and groundwater, particularly in Tuojia. Primarily, rice agriculture increased the NH 4 + -N concentration in the stream water; however, it increased the NO 3 - -N concentrations in the groundwater, suggesting that the different N species in the paddy fields migrated out of the catchments through distinct hydrological pathways. The average TN loading via stream flow and base flow was greater in Tuojia than in Jianshan (1.72 and 0.58 vs. 0.72 and 0.15 kg N ha -1  month -1 , respectively). Greater TN loading via stream flow was observed during the fallow season in Tuojia and during the rice-growing season in Jianshan, and these different results were most likely a result of the higher base flow contribution to TN loading (33.5 vs. 21.3%) and greater base flow enrichment ratio (1.062 vs. 0.876) in Tuojia than in Jianshan. Therefore, the impact of rice agriculture on catchment eco-hydrological processes should be considered when performing water quality protection and treatment in subtropical central China.

  7. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    USGS Publications Warehouse

    Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.

    2014-01-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L−1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate show direct and rapid effects on forest streams that may be widespread, although undocumented, throughout nitrogen-polluted temperate forests. In contrast to a week-long nitrate decline during peak autumn litterfall, base flow DON concentrations increased after leaf fall and remained high for 2 months. Dissolved organic nitrogen was hydrologically flushed to the stream from riparian soils during stormflow. In contrast to distinct seasonal changes in base flow nitrate and DON concentrations, ammonium concentrations were typically at or below the detection limit, similar to the rest of the year. Our findings reveal couplings among catchment flow paths, nutrient sources, and transformations that control seasonal extremes of stream nitrogen in forested landscapes.

  8. Characterization of Stormflows and Wastewater Treatment-Plant Effluent Discharges on Water Quality, Suspended Sediment, and Stream Morphology for Fountain and Monument Creek Watersheds, Colorado, 1981-2006

    USGS Publications Warehouse

    Mau, David P.; Stogner, Sr., Robert W.; Edelmann, Patrick

    2007-01-01

    In 1998, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study of the Fountain and Monument Creek watersheds to characterize water quality and suspended-sediment conditions in the watershed for different flow regimes, with an emphasis on characterizing water quality during storm runoff. Water-quality and suspended-sediment samples were collected in the Fountain and Monument Creek watersheds from 1981 through 2006 to evaluate the effects of stormflows and wastewater-treatment effluent on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality data were collected at 11 sites between 1981 and 2001, and 14 tributary sites were added in 2003 to increase spatial coverage and characterize water quality throughout the watersheds. Suspended-sediment samples collected daily at 7 sites from 1998 through 2001, 6 sites daily from 2003 through 2006, and 13 tributary sites intermittently from 2003 through 2006 were used to evaluate the effects of stormflow on suspended-sediment concentrations, discharges, and yields. Data were separated into three flow regimes: base flow, normal flow, and stormflow. Stormflow concentrations from 1998 through 2006 were compared to Colorado acute instream standards and, with the exception of a few isolated cases, did not exceed water-quality standards for inorganic constituents that were analyzed. However, stormflow concentrations of both fecal coliform and Escherichia coli (E. coli) frequently exceeded water-quality standards during 1998 through 2006 on main-stem and tributary sites by more than an order of magnitude. There were two sites on Cottonwood Creek, a tributary to Monument Creek, with elevated concentrations of dissolved nitrite plus nitrate: site 07103985 (TbCr), a tributary to Cottonwood Creek and site 07103990 (lower_CoCr), downstream from site 07103985 (TbCr), and near the confluence with Monument Creek. During base-flow and normal-flow conditions, the median concentrations of dissolved nitrite plus nitrate ranged from 5.1 to 6.1 mg/L and were 4 to 7 times larger than concentrations at the nearest upstream site on Monument Creek, site 07103970 (MoCr_Woodmen). The source of these larger dissolved nitrite plus nitrate concentrations has not been identified, but the fact that all measurements had elevated dissolved nitrite plus nitrate concentrations indicates a relatively constant source. Most stormflow concentrations of dissolved trace elements were smaller than concentrations from base-flow or normal-flow samples. However, median concentrations of total arsenic, copper, lead, manganese, nickel, and zinc generally were much larger during periods of stormflow than during base flow or normal flow. Concentrations of dissolved and total copper, total manganese, total nickel, dissolved and total selenium, and dissolved and total zinc ranged from 3 to 27 times larger at site 07103707 (FoCr_8th) than site 07103700 (FoCr_Manitou) during base flow, indicating a large source of trace elements between these two sites. Both of these sites are located on Fountain Creek, upstream from the confluence with Monument Creek. The likely source area is Gold Hill Mesa, a former tailings pile for a gold refinery located just upstream from the confluence with Monument Creek, and upstream from site 07103707 (FoCr_8th). Farther downstream in Fountain Creek, stormflow samples for total copper, manganese, lead, nickel, and zinc were larger at the downstream site near the city of Security, site 07105800 (FoCr_Security), than at the upstream site near Janitell Road, site 07105530 (FoCr_Janitell), compared with other main-stem sites and indicated a relatively large source of these metals between the two sites. Nitrogen, phosphorus, and trace-element loads substantially increased during stormflow. Suspended-sediment concentrations, discharges, and yields associated with stormflow were significantly larger than those associated with normal flow. The Apr

  9. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocitymore » exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)« less

  10. Phosphorus Concentrations, Loads, and Yields in the Illinois River Basin, Arkansas and Oklahoma, 2000-2004

    USGS Publications Warehouse

    Tortorelli, Robert L.; Pickup, Barbara E.

    2006-01-01

    The Illinois River and tributaries, Flint Creek and Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus levels in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30-day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, conducted an investigation to summarize phosphorus concentrations and provide estimates of phosphorus loads, yields, and flow-weighted concentrations in the Illinois River and tributaries from January 2000 through December 2004. Data from water-quality samples collected from 2000 to 2004 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and mean flow-weighted concentrations in the Illinois River basin for three 3-year periods - 2000-2002, 2001-2003, and 2002-2004, to update a previous report that used data from water-quality samples from 1997 to 2001. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple parties for interstate compacts. Phosphorus concentrations in the Illinois River basin were significantly greater in runoff samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and decreased in the downstream direction in the Illinois River from the Watts to Tahlequah stations. Phosphorus concentrations generally increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus from nonpoint sources. Estimated mean annual phosphorus loads were greater at the Illinois River stations than at Flint Creek and Baron Fork. Annual total loads in the Illinois River from Watts to Tahlequah, increased slightly for the period 2000-2002 and decreased slightly for the periods 2001-2003 and 2002-2004. Estimated mean annual base-flow loads at stations on the Illinois River were about 11 to 20 times greater than base-flow loads at the station on Baron Fork and 4 to 10 times greater than base-flow loads at the station on Flint Creek. Estimated mean annual runoff loads ranged from 68 to 96 percent of the estimated mean annual total phosphorus loads from 2000-2004. Estimated mean seasonal base-flow loads were generally greatest in spring (March through May) and were least in fall (September through November). Estimated mean seasonal runoff loads generally were greatest in summer (June through August) for the period 2000-2002, but were greatest in winter (December through February) for the period 2001-2003, and greatest in spring for the period 2002-2004. Estimated mean total yields of phosphorus ranged from 192 to 811 pounds per year per square mile, with greatest yields being reported for Illinois River near Watts (576 to 811 pounds per year per square mile), and the least yields being reported for Baron Fork at Eldon for the periods 2000-2002 and 2001-2003 (501 and 192 pounds per year per square mile) and for Illinois River near Tahlequah for the period 2002-2004 (370 pounds per year per square mile). Estimated mean flow-weighted concentrations were more than 10 times greater than the median (0.022 milligram per liter) and were consistently greater than the 75th percentile of flow-weighted phosphorus concentrations in samples collected at relatively undeveloped basins of the United States (0.037 milligram per liter). In addition, flow-weighted phosphorus concentrations in 2000-2002 at all Illinois River stations and at Flint Creek near Kansas were equal to or greater than the 75th percentile of all National Water-Quality Assessment Program station

  11. Mitigating the Hook Effect in Lateral Flow Sandwich Immunoassays Using Real-Time Reaction Kinetics.

    PubMed

    Rey, Elizabeth G; O'Dell, Dakota; Mehta, Saurabh; Erickson, David

    2017-05-02

    The quantification of analyte concentrations using lateral flow assays is a low-cost and user-friendly alternative to traditional lab-based assays. However, sandwich-type immunoassays are often limited by the high-dose hook effect, which causes falsely low results when analytes are present at very high concentrations. In this paper, we present a reaction kinetics-based technique that solves this problem, significantly increasing the dynamic range of these devices. With the use of a traditional sandwich lateral flow immunoassay, a portable imaging device, and a mobile interface, we demonstrate the technique by quantifying C-reactive protein concentrations in human serum over a large portion of the physiological range. The technique could be applied to any hook effect-limited sandwich lateral flow assay and has a high level of accuracy even in the hook effect range.

  12. Improvement in precipitation-runoff model simulations by recalibration with basin-specific data, and subsequent model applications, Onondaga Lake Basin, Onondaga County, New York

    USGS Publications Warehouse

    Coon, William F.

    2011-01-01

    Simulation of streamflows in small subbasins was improved by adjusting model parameter values to match base flows, storm peaks, and storm recessions more precisely than had been done with the original model. Simulated recessional and low flows were either increased or decreased as appropriate for a given stream, and simulated peak flows generally were lowered in the revised model. The use of suspended-sediment concentrations rather than concentrations of the surrogate constituent, total suspended solids, resulted in increases in the simulated low-flow sediment concentrations and, in most cases, decreases in the simulated peak-flow sediment concentrations. Simulated orthophosphate concentrations in base flows generally increased but decreased for peak flows in selected headwater subbasins in the revised model. Compared with the original model, phosphorus concentrations simulated by the revised model were comparable in forested subbasins, generally decreased in developed and wetland-dominated subbasins, and increased in agricultural subbasins. A final revision to the model was made by the addition of the simulation of chloride (salt) concentrations in the Onondaga Creek Basin to help water-resource managers better understand the relative contributions of salt from multiple sources in this particular tributary. The calibrated revised model was used to (1) compute loading rates for the various land types that were simulated in the model, (2) conduct a watershed-management analysis that estimated the portion of the total load that was likely to be transported to Onondaga Lake from each of the modeled subbasins, (3) compute and assess chloride loads to Onondaga Lake from the Onondaga Creek Basin, and (4) simulate precolonization (forested) conditions in the basin to estimate the probable minimum phosphorus loads to the lake.

  13. Concentrations of dissolved solids and nutrients in water sources and selected streams of the Santa Ana Basin, California, Octoger 1998 - September 2001

    USGS Publications Warehouse

    Kent, Robert; Belitz, Kenneth

    2004-01-01

    Concentrations of total dissolved solids (TDS) and nutrients in selected Santa Ana Basin streams were examined as a function of water source. The principal water sources are mountain runoff, wastewater, urban runoff, and stormflow. Rising ground water also enters basin streams in some reaches. Data were collected from October 1998 to September 2001 from 6 fixed sites (including a mountain site), 6 additional mountain sites (including an alpine indicator site), and more than 20 synoptic sites. The fixed mountain site on the Santa Ana River near Mentone appears to be a good representative of reference conditions for water entering the basin. TDS can be related to water source. The median TDS concentration in base-flow samples from mountain sites was 200 mg/L (milligrams per liter). Base-flow TDS concentrations from sites on the valley floor typically ranged from 400 to 600 mg/L; base flow to most of these sites is predominantly treated wastewater, with minor contributions of rising ground water and urban runoff. Sparse data suggest that TDS concentrations in urban runoff are about 300 mg/L. TDS concentrations appear to increase on a downstream gradient along the main stem of the Santa Ana River, regardless of source inputs. The major-ion compositions observed in samples from the different sites can be related to water source, as well as to in-stream processes in the basin. Water compositions from mountain sites are categorized into two groups: one group had a composition close to that of the alpine indicator site high in the watershed, and another group had ionic characteristics closer to those in tributaries on the valley floor. The water composition at Warm Creek, a tributary urban indicator site, was highly variable but approximately intermediate to the compositions of the upgradient mountain sites. Water compositions at the Prado Dam and Imperial Highway sites, located 11 miles apart on the Santa Ana River, were similar to one another and appeared to be a mixture of the waters of the upstream sites, Santa Ana River at MWD Crossing, Cucamonga Creek, and Warm Creek. Rainfall usually dilutes stream TDS concentrations. The median TDS concentration in all storm-event discrete samples was 260 mg/L. The median flow-weighted average TDS concentration for stormflow, based on continuous measurement of specific conductance and hydrograph separation of the continuous discharge record, was 190 mg/L. However, stormflow TDS concentrations were variable, and depended on whether the storm was associated with a relatively small or large rainfall event. TDS concentrations in stormflow associated with relatively small events ranged from about 50 to 600 mg/L with a median of 220 mg/L, whereas concentrations in stormflow associated with relatively large events ranged from about 40 to 300 mg/L with a median of 100 mg/L. From the perspective of water managers, the nutrient species of highest concern in Santa Ana Basin streams is nitrate. Most mountain streams had median base-flow concentrations of nitrate below 0.3 mg/L as nitrogen. Nitrate concentrations in both urban runoff and stormflow were near 1 mg/L, which is close to the level found in rainfall for the region. In fact, results from this study suggest that much of the nitrate load in urban storm runoff comes from rainwater. Nitrate concentrations in the Santa Ana River and its major tributaries are highest downstream from wastewater inputs, where median base-flow concentrations of nitrite+nitrate ranged from about 5 to 7 mg/L. About 4 percent of samples collected from sites receiving treated wastewater had nitrate concentrations greater than 10 mg/L. Rising ground water also appears to have high nitrate concentrations (greater than 10 mg/L) in some reaches of the river. Concentrations of other nitrogen species were much lower than nitrate concentrations in base-flow samples. However, storm events increased concentrations and the proportion of organic nitro

  14. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery.

    PubMed

    Wei, Xiaoliang; Xu, Wu; Huang, Jinhua; Zhang, Lu; Walter, Eric; Lawrence, Chad; Vijayakumar, M; Henderson, Wesley A; Liu, Tianbiao; Cosimbescu, Lelia; Li, Bin; Sprenkle, Vincent; Wang, Wei

    2015-07-20

    Nonaqueous redox flow batteries hold the promise of achieving higher energy density because of the broader voltage window than aqueous systems, but their current performance is limited by low redox material concentration, cell efficiency, cycling stability, and current density. We report a new nonaqueous all-organic flow battery based on high concentrations of redox materials, which shows significant, comprehensive improvement in flow battery performance. A mechanistic electron spin resonance study reveals that the choice of supporting electrolytes greatly affects the chemical stability of the charged radical species especially the negative side radical anion, which dominates the cycling stability of these flow cells. This finding not only increases our fundamental understanding of performance degradation in flow batteries using radical-based redox species, but also offers insights toward rational electrolyte optimization for improving the cycling stability of these flow batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Prediction and validation of concentration gradient generation in a paper-based microfluidic channel

    NASA Astrophysics Data System (ADS)

    Jang, Ilhoon; Kim, Gang-June; Song, Simon

    2016-11-01

    A paper-based microfluidic channel has obtained attention as a diagnosis device that can implement various chemical or biological reactions. With benefits of thin, flexible, and strong features of paper devices, for example, it is often utilized for cell culture where controlling oxygen, nutrients, metabolism, and signaling molecules gradient affects the growth and movement of the cells. Among various features of paper-based microfluidic devices, we focus on establishment of concentration gradient in a paper channel. The flow is subject to dispersion and capillary effects because a paper is a porous media. In this presentation, we describe facile, fast and accurate method of generating a concentration gradient by using flow mixing of different concentrations. Both theoretical prediction and experimental validation are discussed along with inter-diffusion characteristics of porous flows. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIP) (No. 2016R1A2B3009541).

  16. Direction dependence of displacement time for two-fluid electroosmotic flow.

    PubMed

    Lim, Chun Yee; Lam, Yee Cheong

    2012-03-01

    Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings.

  17. Direction dependence of displacement time for two-fluid electroosmotic flow

    PubMed Central

    Lim, Chun Yee; Lam, Yee Cheong

    2012-01-01

    Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings. PMID:22662083

  18. Phosphorus Concentrations, Loads, and Yields in the Illinois River Basin, Arkansas and Oklahoma, 1997-2001

    USGS Publications Warehouse

    Pickup, Barbara E.; Andrews, William J.; Haggard, Brian E.; Green, W. Reed

    2003-01-01

    The Illinois River and tributaries, Flint Creek and the Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus increases in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30- day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. Data from water-quality samples from 1997 to 2001 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and flowweighted concentrations in the Illinois River basin. Phosphorus concentrations in the Illinois River basin generally were significantly greater in runoff-event samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus from nonpoint sources. Estimated mean annual phosphorus loads were greater at the Illinois River stations than at Flint Creek and the Baron Fork. Loads appeared to generally increase with time during 1997-2001 at all stations, but this increase might be partly attributable to the beginning of runoff-event sampling in the basin in July 1999. Base-flow loads at stations on the Illinois River were about 10 times greater than those on the Baron Fork and 5 times greater than those on Flint Creek. Runoff components of the annual total phosphorus load ranged from 58.7 to 96.8 percent from 1997-2001. Base-flow and runoff loads were generally greatest in spring (March through May) or summer (June through August), and were least in fall (September through November). Total yields of phosphorus ranged from 107 to 797 pounds per year per square mile. Greatest yields were at Flint Creek near Kansas (365 to 797 pounds per year per square mile) and the least yields were at Baron Fork at Eldon (107 to 440 pounds per year per square mile). Estimated mean flow-weighted concentrations were more than 10 times greater than the median and were consistently greater than the 75th percentile of flow-weighted phosphorus concentrations in samples collected at relatively undeveloped basins of the United States (0.022 milligram per liter and 0.037 milligram per liter, respectively). In addition, flow-weighted phosphorus concentrations in 1999-2001 at all Illinois River stations and at Flint Creek near Kansas were equal to or greater than the 75th percentile of all National Water-Quality Assessment program stations in the United States (0.29 milligram per liter). The annual average phosphorus load entering Lake Tenkiller was about 577,000 pounds per year, and more than 86 percent of the load was transported to the lake by runoff.The Illinois River and tributaries, Flint Creek and the Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus increases in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30- day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. Data from water-quality samples from 1997 to 2001 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and flowweighted concentrations in the Illinois River basin. Phosphorus concentrations in the Illinois River basin generally were significantly greater in runoff-event samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus

  19. Drought effects on water quality in the South Platte River Basin, Colorado

    USGS Publications Warehouse

    Sprague, Lori A.

    2005-01-01

    Twenty-three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite-plus-nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water-derived calcium bicarbonate type base flow likely led to elevated pH and specific-conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.

  20. Episodic acidification of a coastal plain stream in Virginia

    USGS Publications Warehouse

    O'Brien, A. K.; Eshleman, K.N.

    1996-01-01

    This study investigates the episodic acidification of Reedy Creek, a wetland-influenced coastal plain stream near Richmond, Virginia. Primary objectives of the study were to quantify the episodic variability of acid- base chemistry in Reedy Creek, to examine the seasonal variability in episodic response and to explain the hydrological and geochemical factors that contribute to episodic acidification. Chemical response was similar in each of the seven storms examined, however, the ranges in concentrations observed were commonly greater in summer/fall storms than in winter/spring storms. An increase in SO4/2- concentration with discharge was observed during all storms and peak concentration occurred at or near peak flow. Small increases in Mg2+, Ca2+, K+ concentrations and dissolved organic carbon (DOC) were observed during most storms. At the same time, ANC, Na+ and Cl- concentrations usually decreased with increasing discharge. In summer/fall storms, the absolute increase in SO4/2- concentration was one-third to 15 times the increase observed in winter/spring storms; the decrease in ANC during summer/fall storms was usually within the range of the decrease observed in winter/spring storms. In contrast, the decrease in Na+ and Cl- concentrations during winter/spring storms was much greater than that observed during summer/fall storms. Data show that while base flow anion deficit was higher in summer/fall than in winter/spring, anion deficit decreased during most summer/fall storms. In contrast, base flow anion deficit was lower in spring and winter, but increased during winter/spring storms. Increased SO4/2- concentration was the main cause of episodic acidification during storms at Reedy Creek, but increased anion deficit indicates organic acids may contribute to episodic acidification during winter/spring storms. Changes in SO4/2- concentration coincident with the hydrograph rise indicate quick routing of water through the watershed. Saturation overland flow appears to be the likely mechanism by which solutes are transported to the stream during storm flow.

  1. Flow electrochemical biosensors based on enzymatic porous reactor and tubular detector of silver solid amalgam.

    PubMed

    Josypčuk, Bohdan; Barek, Jiří; Josypčuk, Oksana

    2013-05-17

    A flow amperometric enzymatic biosensor for the determination of glucose was constructed. The biosensor consists of a flow reactor based on porous silver solid amalgam (AgSA) and a flow tubular detector based on compact AgSA. The preparation of the sensor and the determination of glucose occurred in three steps. First, a self-assembled monolayer of 11-mercaptoundecanoic acid (MUA) was formed at the porous surface of the reactor. Second, enzyme glucose oxidase (GOx) was covalently immobilized at MUA-layer using N-ethyl-N'-(3-dimethylaminopropyl) carboimide and N-hydroxysuccinimide chemistry. Finally, a decrease of oxygen concentration (directly proportional to the concentration of glucose) during enzymatic reaction was amperometrically measured on the tubular detector under flow injection conditions. The following parameters of glucose determination were optimized with respect to amperometric response: composition of the mobile phase, its concentration, the potential of detection and the flow rate. The calibration curve of glucose was linear in the concentration range of 0.02-0.80 mmol L(-1) with detection limit of 0.01 mmol L(-1). The content of glucose in the sample of honey was determined as 35.5±1.0 mass % (number of the repeated measurements n=7; standard deviation SD=1.2%; relative standard deviation RSD=3.2%) which corresponds well with the declared values. The tested biosensor proved good long-term stability (77% of the current response of glucose was retained after 35 days). Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Summary of and factors affecting pesticide concentrations in streams and shallow wells of the lower Susquehanna River basin, Pennsylvania and Maryland, 1993-95

    USGS Publications Warehouse

    Hainly, Robert A.; Zimmerman, Tammy M.; Loper, Connie A.; Lindsey, Bruce D.

    2001-01-01

    This report presents the detection frequency of 83 analyzed pesticides, describes the concentrations of those pesticides measured in water from streams and shallow wells, and presents conceptual models of the major factors affecting seasonal and areal patterns of pesticide concentrations in water from streams and shallow wells in the Lower Susquehanna River Basin. Seasonal and areal patterns of pesticide concentrations were observed in 577 samples and nearly 40,000 pesticide analyses collected from 155 stream sites and 169 shallow wells from 1993 to 1995. For this study, shallow wells were defined as those generally less than 200 feet deep.The most commonly detected pesticides were agricultural herbicides?atrazine, metolachlor, simazine, prometon, alachlor, and cyanazine. Atrazine and metolachlor are the two most-used agricultural pesticides in the Lower Susquehanna River Basin. Atrazine was detected in 92 percent of all the samples and in 98 percent of the stream samples. Metolachlor was detected in 83 percent of all the samples and in 95 percent of the stream samples. Nearly half of all the analyzed pesticides were not detected in any sample. Of the 45 pesticides that were detected at least once, the median concentrations of 39 of the pesticides were less than the detection limit for the individual compounds, indicating that for at least 50 percent of the samples collected, those pesticides were not detected. Only 10 (less than 0.025 percent) of the measured concentrations exceeded any established drinking-water standards; 25 concentrations exceeded 2 mg/L (micrograms per liter) and 55 concentrations exceeded 1 mg/L. None of the elevated concentrations were measured in samples collected from streams that are used for public drinking-water supplies, and 8 of the 10 were measured in storm-affected samples.The timing and rate of agricultural pesticide applications affect the seasonal and areal concentration patterns of atrazine, simazine, chlorpyrifos, and diazinon observed in water from wells and streams in the Lower Susquehanna River Basin. Average annual pesticide use for agricultural purposes and nonagricultural pesticide use indicators were used to explain seasonal and areal patterns. Elevated concentrations of some pesticides in streams during base-flow and storm-affected conditions were related to the seasonality of agricultural-use applications and local climate conditions. Agricultural-use patterns affected areal concentration patterns for the high-use pesticides, but indicators of nonagricultural use were needed to explain concentration patterns of pesticides with smaller amounts used for agricultural purposes.Bedrock type influences the movement and discharge of ground water, which in turn affects concentration patterns of pesticides. The ratio of atrazine concentrations in stream base flow to concentrations in shallow wells varied among the different general rock types found in the Lower Susquehanna River Basin. Median concentrations of atrazine in well water and stream base flow tended to be similar in individual areas underlain by carbonate bedrock, indicating the connectivity of water in streams and shallow wells in these areas. In areas underlain by noncarbonate bedrock, median concentrations of atrazine tended to be significantly higher in stream base flow than in well water. This suggests a deep ground-water system that delivers water to shallow wells and a near-surficial system that supplies base-flow water to streams. In addition to the presence or absence of carbonate bedrock, pesticide leaching potential and persistence, soil infiltration capacity, and agricultural land use affected areal patterns in detection frequency and concentration differences between samples collected from streams during base-flow conditions and shallow wells.

  3. SVM-based multisensor data fusion for phase concentration measurement in biomass-coal co-combustion

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxin; Hu, Hongli; Jia, Huiqin; Tang, Kaihao

    2018-05-01

    In this paper, the electrical method combines the electrostatic sensor and capacitance sensor to measure the phase concentration of pulverized coal/biomass/air three-phase flow through data fusion technology. In order to eliminate the effects of flow regimes and improve the accuracy of the phase concentration measurement, the mel frequency cepstrum coefficient features extracted from electrostatic signals are used to train the Continuous Gaussian Mixture Hidden Markov Model (CGHMM) for flow regime identification. Support Vector Machine (SVM) is introduced to establish the concentration information fusion model under identified flow regimes. The CGHMM models and SVM models are transplanted on digital signal processing (DSP) to realize on-line accurate measurement. The DSP flow regime identification time is 1.4 ms, and the concentration predict time is 164 μs, which can fully meet the real-time requirement. The average absolute value of the relative error of the pulverized coal is about 1.5% and that of the biomass is about 2.2%.

  4. Discrete unified gas kinetic scheme for all Knudsen number flows. III. Binary gas mixtures of Maxwell molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhu, Lianhua; Wang, Ruijie; Guo, Zhaoli

    2018-05-01

    Recently a discrete unified gas kinetic scheme (DUGKS) in a finite-volume formulation based on the Boltzmann model equation has been developed for gas flows in all flow regimes. The original DUGKS is designed for flows of single-species gases. In this work, we extend the DUGKS to flows of binary gas mixtures of Maxwell molecules based on the Andries-Aoki-Perthame kinetic model [P. Andries et al., J. Stat. Phys. 106, 993 (2002), 10.1023/A:1014033703134. A particular feature of the method is that the flux at each cell interface is evaluated based on the characteristic solution of the kinetic equation itself; thus the numerical dissipation is low in comparison with that using direct reconstruction. Furthermore, the implicit treatment of the collision term enables the time step to be free from the restriction of the relaxation time. Unlike the DUGKS for single-species flows, a nonlinear system must be solved to determine the interaction parameters appearing in the equilibrium distribution function, which can be obtained analytically for Maxwell molecules. Several tests are performed to validate the scheme, including the shock structure problem under different Mach numbers and molar concentrations, the channel flow driven by a small gradient of pressure, temperature, or concentration, the plane Couette flow, and the shear driven cavity flow under different mass ratios and molar concentrations. The results are compared with those from other reliable numerical methods. The results show that the proposed scheme is an effective and reliable method for binary gas mixtures in all flow regimes.

  5. Hydrodynamic study of an internal airlift reactor for microalgae culture.

    PubMed

    Rengel, Ana; Zoughaib, Assaad; Dron, Dominique; Clodic, Denis

    2012-01-01

    Internal airlift reactors are closed systems considered today for microalgae cultivation. Several works have studied their hydrodynamics but based on important solid concentrations, not with biomass concentrations usually found in microalgae cultures. In this study, an internal airlift reactor has been built and tested in order to clarify the hydrodynamics of this system, based on microalgae typical concentrations. A model is proposed taking into account the variation of air bubble velocity according to volumetric air flow rate injected into the system. A relationship between riser and downcomer gas holdups is established, which varied slightly with solids concentrations. The repartition of solids along the reactor resulted to be homogenous for the range of concentrations and volumetric air flow rate studied here. Liquid velocities increase with volumetric air flow rate, and they vary slightly when solids are added to the system. Finally, liquid circulation time found in each section of the reactor is in concordance with those employed in microalgae culture.

  6. Investigating the impact of oxygen concentration and blood flow variation on photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Penjweini, Rozhin; Kim, Michele M.; Finlay, Jarod C.; Zhu, Timothy C.

    2016-03-01

    Type II photodynamic therapy (PDT) is used for cancer treatment based on the combined action of a photosensitizer, a special wavelength of light, oxygen (3O2) and generation of singlet oxygen (1O2). Intra-patient and inter-patient variability of oxygen concentration ([3O2]) before and after the treatment as well as photosensitizer concentration and hemodynamic parameters such as blood flow during PDT has been reported. Simulation of these variations is valuable, as it would be a means for the rapid assessment of treatment effect. A mathematical model has been previously developed to incorporate the diffusion equation for light transport in tissue and the macroscopic kinetic equations for simulation of [3O2], photosensitizers in ground and triplet states and concentration of the reacted singlet oxygen ([1O₂]rx) during PDT. In this study, the finite-element based calculation of the macroscopic kinetic equations is done for 2-(1- Hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH)-mediated PDT by incorporating the information of the photosensitizer photochemical parameters as well as the tissue optical properties, photosensitizer concentration, initial oxygen concentration ([3O2]0), blood flow changes and Φ that have been measured in mice bearing radiation-induced fibrosarcoma (RIF) tumors. Then, [1O2]rx calculated by using the measured [3O2] during the PDT is compared with [1O2]rx calculated based on the simulated [3O₂]; both calculations showed a reasonably good agreement. Moreover, the impacts of the blood flow changes and [3O2]0 on [1O2]rx have been investigated, which showed no pronounced effect of the blood flow changes on the long-term 1O2 generation. When [3O2]0 becomes limiting, small changes in [3O₂] have large effects on [1O2]rx.

  7. Improved Back-Side Purge-Gas Chambers For Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    Ezell, Kenneth G.; Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Improved chambers for inert-gas purging of back sides of workpieces during plasma arc welding in keyhole (full-penetration) mode based on concept of directing flows of inert gases toward, and concentrating them on, hot weld zones. Tapered chamber concentrates flow of inert gas on plasma arc plume and surrounding metal.

  8. Hydrogeology and water quality of the Pepacton Reservoir Watershed in southeastern New York. Part 4. Quantity and quality of ground-water and tributary contributions to stream base flow in selected main-valley reaches

    USGS Publications Warehouse

    Heisig, Paul M.

    2004-01-01

    Estimates of the quantity and quality of ground-water discharge from valley-fill deposits were calculated for nine valley reaches within the Pepacton watershed in southeastern New York in July and August of 2001. Streamflow and water quality at the upstream and downstream end of each reach and at intervening tributaries were measured under base-flow conditions and used in mass-balance equations to determine quantity and quality of ground-water discharge. These measurements and estimates define the relative magnitudes of upland (tributary inflow) and valley-fill (ground-water discharge) contributions to the main-valley streams and provide a basis for understanding the effects of hydrogeologic setting on these contributions. Estimates of the water-quality of ground-water discharge also provide an indication of the effects of road salt, manure, and human wastewater from villages on the water quality of streams that feed the Pepacton Reservoir. The most common contaminant in ground-water discharge was chloride from road salt; concentrations were less than 15 mg/L.Investigation of ground-water quality within a large watershed by measurement of stream base-flow quantity and quality followed by mass-balance calculations has benefits and drawbacks in comparison to direct ground-water sampling from wells. First, sampling streams is far less expensive than siting, installing, and sampling a watershed-wide network of wells. Second, base-flow samples represent composite samples of ground-water discharge from the most active part of the ground-water flow system across a drainage area, whereas a well network would only be representative of discrete points within local ground-water flow systems. Drawbacks to this method include limited reach selection because of unfavorable or unrepresentative hydrologic conditions, potential errors associated with a large number of streamflow and water-quality measurements, and limited ability to estimate concentrations of nonconservative constituents such as nutrients.The total gain in streamflow from the upper end to the lower end of each valley reach was positively correlated with the annual-runoff volume calculated for the drainage area of the reach. This correlation was not greatly affected by the proportions of ground-water and tributary contributions, except at two reaches that lost much of their tributary flow after the July survey. In these reaches, the gain in total streamflow showed a negative departure from this correlation.Calculated ground-water discharge exceeded the total tributary inflow in each valley reach in both surveys. Groundwater discharge, as a percentage of streamflow gain, was greatest among reaches in wide valleys (about 1,000-ft wide valley floors) that contain permeable valley fill because tributary flows were seasonally diminished or absent as a result of streambed infiltration. Tributary inflows, as a percentage of streamflow gain, were highest in reaches of narrow valleys (200-500-ft wide valley floors) with little valley fill and high annual runoff.Stream-water and ground-water quality were characterized by major-ion type as either (1) naturally occurring water types, relatively unaffected by road salt, or (2) road-salt-affected water types having elevated concentrations of chloride and sodium. The naturally occurring waters were typically the calcium-bicarbonate type, but some contained magnesium and (or) sulfate as secondary ions. Magnesium concentration in base flow is probably related to the amount of till and its carbonate content, or to the amount of lime used on cultivated fields within a drainage area. Sulfate was a defining ion only in dilute waters (with short or unreactive flow paths) with low concentrations of bicarbonate. Nearly all tributary waters were classified as naturally occurring water types.Ground-water discharge from nearly all valley reaches that contain State or county highways had elevated concentrations of chloride and sodsodium. The mean chloride concentrations of ground-water discharge--from 8 to 13 milligrams per liter--did not exceed Federal or State standards, but were about 5 times higher than naturally occurring levels. Application of road salt along a valley bottom probably affects only the shallow ground water in the area between a road and a stream. The elevated concentrations of chloride and sodium in the base-flow samples from such reaches indicate that the concentrations in the affected ground water were high enough to offset the low concentrations in all unaffected ground water entering the reach.Nutrient (nitrate and orthophosphate) concentrations in base-flow samples collected throughout the valleyreach network could not generally be used to estimate their concentrations in ground-water discharge because these constituents can be transformed or removed from water through biological uptake, transformation, or by adsorption on sediments. Base-flow samples from streams with upgradient manure sources or villages served by septic systems consistently had the highest concentrations of these nutrients.

  9. Nutrient concentrations in surface water and groundwater, and nitrate source identification using stable isotope analysis, in the Barnegat Bay-Little Egg Harbor watershed, New Jersey, 2010–11

    USGS Publications Warehouse

    Wieben, Christine M.; Baker, Ronald J.; Nicholson, Robert S.

    2013-01-01

    Five streams in the Barnegat Bay-Little Egg Harbor (BB-LEH) watershed in southern New Jersey were sampled for nutrient concentrations and stable isotope composition under base-flow and stormflow conditions, and during the growing and nongrowing seasons, to help quantify and identify sources of nutrient loading. Samples were analyzed for concentrations of total nitrogen, ammonia, nitrate plus nitrite, organic nitrogen, total phosphorus, and orthophosphate, and for nitrogen and oxygen stable isotope ratios. Concentrations of total nitrogen in the five streams appear to be related to land use, such that streams in subbasins characterized by extensive urban development (and historical agricultural land use)—North Branch Metedeconk and Toms Rivers—exhibited the highest total nitrogen concentrations (0.84–1.36 milligrams per liter (mg/L) in base flow). Base-flow total nitrogen concentrations in these two streams were dominated by nitrate; nitrate concentrations decreased during storm events as a result of dilution by storm runoff. The two streams in subbasins with the least development—Cedar Creek and Westecunk Creek—exhibited the lowest total nitrogen concentrations (0.16–0.26 mg/L in base flow), with organic nitrogen as the dominant species in both base flow and stormflow. A large proportion of these subbasins lies within forested parts of the Pinelands Area, indicating the likelihood of natural inputs of organic nitrogen to the streams that increase during periods of storm runoff. Base-flow total nitrogen concentrations in Mill Creek, in a moderately developed basin, were 0.43 to 0.62 mg/L and were dominated by ammonia, likely associated with leachate from a landfill located upstream. Total phosphorus and orthophosphate were not found at detectable concentrations in most of the surface-water samples, with the exception of samples collected from the North Branch Metedeconk River, where concentrations ranged from 0.02 to 0.09 mg/L for total phosphorus and 0.008 to 0.011 mg/L for orthophosphate. Measurements of nitrogen and oxygen stable isotope ratios of nitrate in surface-water samples revealed that a mixture of multiple subsurface sources, which may include some combination of animal and septic waste, soil nitrogen, and commercial fertilizers, likely contribute to the base-flow nitrogen load. The results also indicate that atmospheric deposition is not a predominant source of nitrogen transported to the BB-LEH estuary from the watershed, although the contribution of nitrate from the atmosphere increases during stormflow. Atmospheric deposition of nitrate has a greater influence in the less developed subbasins within the BB-LEH watershed, likely because few other major sources of nitrogen (animal and septic waste, fertilizers) are present in the less developed subbasins. Atmospheric sources appear to contribute proportionally less of the overall nitrate as development increases within the BB-LEH watershed. Groundwater samples collected from five wells located within the BB-LEH watershed and screened in the unconfined Kirkwood-Cohansey aquifer system were analyzed for nutrient and stable isotope composition. Concentrations of nitrate ranged from not detected to 3.63 mg/L, with the higher concentrations occurring in the highly developed northern portion of the watershed, indicating the likelihood of anthropogenic sources of nitrogen. Isotope data for the two wells with the highest nitrate concentrations are more consistent with fertilizer sources than with animal or septic waste. Total phosphorus was not detected in any of the wells sampled, and orthophosphate was either not detected or measured at very low concentrations (0.005–0.009 mg/L) in each of the wells sampled.

  10. 40 CFR 90.301 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the test engine is operated using a steady state test cycle on an engine dynamometer. The exhaust... concentrations are converted to mass emission rates in grams per hour based on either fuel flow, fuel flow and engine intake air flow, or exhaust volume flow. Weighted emission rates are reported as grams per brake...

  11. Design of pressure-driven microfluidic networks using electric circuit analogy.

    PubMed

    Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P

    2012-02-07

    This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.

  12. Multi-stage separations based on dielectrophoresis

    DOEpatents

    Mariella, Jr., Raymond P.

    2004-07-13

    A system utilizing multi-stage traps based on dielectrophoresis. Traps with electrodes arranged transverse to the flow and traps with electrodes arranged parallel to the flow with combinations of direct current and alternating voltage are used to trap, concentrate, separate, and/or purify target particles.

  13. Flume experimental evaluation of the effect of rill flow path tortuosity on rill roughness based on the Manning–Strickler equation

    USDA-ARS?s Scientific Manuscript database

    Numerous soil erosion models compute concentrated flow hydraulics based on the Manning–Strickler equation (v = kSt R2/3 I1/2) even though the range of the application on rill flow is unclear. Unconfined rill morphologies generate local friction effects and consequently spatially variable rill roughn...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loisel, V.; Abbas, M., E-mail: micheline.abbas@ensiacet.fr; Masbernat, O.

    Laminar pressure-driven suspension flows are studied in the situation of neutrally buoyant particles at finite Reynolds number. The numerical method is validated for homogeneous particle distribution (no lateral migration across the channel): the increase of particle slip velocities and particle stress with inertia and concentration is in agreement with former works in the literature. In the case of a two-phase channel flow with freely moving particles, migration towards the channel walls due to the Segré-Silberberg effect is observed, leading to the development of a non-uniform concentration profile in the wall-normal direction (the concentration peaks in the wall region and tendsmore » towards zero in the channel core). The particle accumulation in the region of highest shear favors the shear-induced particle interactions and agitation, the profile of which appears to be correlated to the concentration profile. A 1D model predicting particle agitation, based on the kinetic theory of granular flows in the quenched state regime when Stokes number St = O(1) and from numerical simulations when St < 1, fails to reproduce the agitation profile in the wall normal direction. Instead, the existence of secondary flows is clearly evidenced by long time simulations. These are composed of a succession of contra-rotating structures, correlated with the development of concentration waves in the transverse direction. The mechanism proposed to explain the onset of this transverse instability is based on the development of a lift force induced by spanwise gradient of the axial velocity fluctuations. The establishment of the concentration profile in the wall-normal direction therefore results from the combination of the mean flow Segré-Silberberg induced migration, which tends to stratify the suspension and secondary flows which tend to mix the particles over the channel cross section.« less

  15. Comparison of Hydrologic and Water-Quality Characteristics of Two Native Tallgrass Prairie Streams with Agricultural Streams in Missouri and Kansas

    USGS Publications Warehouse

    Heimann, David C.

    2009-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, to analyze and compare hydrologic and water-quality characteristics of tallgrass prairie and agricultural basins located within the historical distribution of tallgrass prairie in Missouri and Kansas. Streamflow and water-quality data from two remnant, tallgrass prairie basins (East Drywood Creek at Prairie State Park, Missouri, and Kings Creek near Manhattan, Kansas) were compared to similar data from agricultural basins in Missouri and Kansas. Prairie streams, especially Kings Creek in eastern Kansas, received a higher percentage of base flow and a lower percentage of direct runoff than similar-sized agricultural streams in the region. A larger contribution of direct runoff from the agricultural streams made them much flashier than prairie streams. During 22 years of record, the Kings Creek base-flow component averaged 66 percent of total flow, but base flow was only 16 to 26 percent of flows at agricultural sites of various record periods. The large base-flow component likely is the result of greater infiltration of precipitation in prairie soils and the resulting greater contribution of groundwater to streamflow. The 1- and 3-day annual maximum flows were significantly greater at three agricultural sites than at Kings Creek. The effects of flashier agricultural streams on native aquatic biota are unknown, but may be an important factor in the sustainability of some native aquatic species. There were no significant differences in the distribution of dissolved-oxygen concentrations at prairie and agricultural sites, and some samples from most sites fell below the 5 milligrams per liter Missouri and Kansas standard for the protection of aquatic life. More than 10 percent of samples from the East Drywood Creek prairie stream were less than this standard. These data indicate low dissolved-oxygen concentrations during summer low-flow periods may be a natural phenomenon for small prairie streams in the Osage Plains. Nutrient concentrations including total nitrogen, ammonia, nitrate, and total phosphorus were significantly less in base-flow and runoff samples from prairie streams than from agricultural streams. The total nitrogen concentration at all sites other than one of two prairie sampling sites were, on occasion, above the U.S. Environmental Protection Agency recommended criterion for total nitrogen for the prevention of nutrient enrichment, and typically were above this recommended criterion in runoff samples at all sites. Nitrate and total phosphorus concentrations in samples from the prairie streams generally were below the U.S. Environmental Protection Agency recommended nutrient criteria in base-flow and runoff samples, whereas samples from agricultural sites generally were below the criteria in base-flow samples and generally above in runoff samples. The lower concentrations of nutrient species in prairie streams is likely because prairies are not fertilized like agricultural basins and prairie basins are able to retain nutrients better than agricultural basins. This retention is enhanced by increased infiltration of precipitation into the prairie soils, decreased surface runoff, and likely less erosion than in agricultural basins. Streamflow in the small native prairie streams had more days of zero flow and lower streamflow yields than similar-sized agricultural streams. The prairie streams were at zero flow about 50 percent of the time, and the agricultural streams were at zero flow 25 to 35 percent of the time. Characteristics of the prairie basins that could account for the greater periods of zero flow and lower yields when compared to agricultural streams include greater infiltration, greater interception and evapotranspiration, shallower soils, and possible greater seepage losses in the prairie basins. Another difference between the prairie and agricultural strea

  16. Visualizing dissolved oxygen transport for liquid ventilation in an in vitro model of the human airways

    NASA Astrophysics Data System (ADS)

    Janke, T.; Bauer, K.

    2017-04-01

    Up until to now, the measurement of dissolved oxygen concentrations during liquid ventilation is limited to the determination of averaged concentrations of the liquid entering or leaving the body. The work presented in this paper aims to extend the possible measurement techniques in the research of liquid ventilation. Therefore optical measurements of the dissolved oxygen concentration, using a luminescent sensor dye, are performed. The preparation of a suitable sensor liquid, based on the metal complex Dichlorotris(1,10)-(phenanthroline)ruthenium(II), is presented. A transparent simplified human lung geometry is used for conducting the experiments. Inspiratory as well as expiratory flow at three different constant flow rates is investigated, covering the flow regimes \\text{Re}=83 -333 and \\text{Pe}=33 300 -133 000. The applied measurement technique is capable to reveal distinctive concentration patterns during inspiration and expiration caused by the laminar flow characteristics. Allowing a sufficiently long flow duration, local concentration inhomogeneities disappear and an exponential rise and decay of the mean values can be observed for inspiration and expiration.

  17. River Induced Wellbore Flow Dynamics in Long-Screen Wells and their Impact on Aqueous Sampling Results

    NASA Astrophysics Data System (ADS)

    Vermeul, V.; McKinley, J. P.; Newcomer, D.; Fritz, B. G.; Mackley, R.; Zachara, J. M.

    2010-12-01

    Previously published field investigations and modeling studies have demonstrated the potential for sample bias associated with vertical wellbore flow in conventional monitoring wells constructed with long-screened intervals. In this study, simultaneous measurement of 1) wellbore flow using an electromagnetic borehole flowmeter (EBF), 2) depth discrete hydraulic head, and 3) aqueous uranium concentrations were used to quantify wellbore flow and assess the associated impacts on measured aqueous concentrations. Monitoring results demonstrate the utility of continuous (i.e., hourly measurements for ~ one month) ambient wellbore flow monitoring and show that relatively large wellbore flows (up to 4 LPM) can be induced by aquifer hydrodynamics associated with a fluctuating river boundary located approximately 250 m from the test well. The observed vertical wellbore flows were strongly correlated with fluctuations in river stage, alternating between upward and downward flow throughout the monitoring period in response to changes in river stage. Continuous monitoring of ambient wellbore flows using an EBF system allowed these effects to be evaluated in concert with continuously monitored river stage elevations (hourly) and aqueous uranium concentrations (daily) in a long-screen well and an adjacent multi-level well cluster. This study demonstrates that when contaminant concentrations within the aquifer vary significantly over the depth interval interrogated, river-induced vertical wellbore flow can result in variations in measured concentration that nearly encompass the full range of variation in aquifer contaminant concentration with depth. In addition, observed variability in aqueous concentrations measured during active tracer transport experiments provided additional evidence of wellbore flow impacts and showed that the magnitude and direction of wellbore flow varied spatially across the wellfield. An approach to mitigate these effects based on increasing hydraulic resistance within the wellbore was evaluated. This research is part of the ERSP Hanford IFRC at Pacific Northwest National Laboratory.

  18. Webcam-based flow cytometer using wide-field imaging for low cell number detection at high throughput.

    PubMed

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2014-09-07

    Here we describe a novel low-cost flow cytometer based on a webcam capable of low cell number detection in a large volume which may overcome the limitations of current flow cytometry. Several key elements have been combined to yield both high throughput and high sensitivity. The first element is a commercially available webcam capable of 187 frames per second video capture at a resolution of 320 × 240 pixels. The second element in this design is a 1 W 450 nm laser module for area-excitation, which combined with the webcam allows for rapid interrogation of a flow field. The final element is a 2D flow-cell which overcomes the flow limitation of hydrodynamic focusing and allows for higher sample throughput in a wider flow field. This cell allows for the linear velocity of target cells to be lower than in a conventional "1D" hydrodynamic focusing flow-cells typically used in cytometry at similar volumetric flow rates. It also allows cells to be imaged at the full frame rate of the webcam. Using this webcam-based flow cytometer with wide-field imaging, it was confirmed that the detection of fluorescently tagged 5 μm polystyrene beads in "1D" hydrodynamic focusing flow-cells was not practical for low cell number detection due to streaking from the motion of the beads, which did not occur with the 2D flow-cell design. The sensitivity and throughput of this webcam-based flow cytometer was then investigated using THP-1 human monocytes stained with SYTO-9 florescent dye in the 2D flow-cell. The flow cytometer was found to be capable of detecting fluorescently tagged cells at concentrations as low as 1 cell per mL at flow rates of 500 μL min(-1) in buffer and in blood. The effectiveness of detection was concentration dependent: at 100 cells per mL 84% of the cells were detected compared to microscopy, 10 cells per mL 79% detected and 1 cell per mL 59% of the cells were detected. With the blood samples spiked to 100 cells per mL, the average concentration for all samples was 91.4 cells per mL, with a 95% confidence interval of 86-97 cells per mL. These low cell concentrations and the large volume capabilities of the system may overcome the limitations of current cytometry, and are applicable to rare cell (such as circulating tumor cell) detection The simplicity and low cost of this device suggests that it may have a potential use in developing point-of-care clinical flow cytometry for resource-poor settings associated with global health.

  19. Kinetics of Zn sorption-desorption using a thin disk flow method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinz, C.; Selim, H.M.

    1999-02-01

    In this study the authors investigated the kinetics of Zn sorption and desorption using a short column or thin disk method. The method is based on continuous flow through a thin soil layer where the effluent was collected using a fraction collector. Two soils were used: a Windsor soil and Mahan soil. Breakthrough results (BTCs) for different flow velocities indicated that Zn sorption is instantaneous and equilibrium retention is dominant when a pulse of Zn with a concentration of 2.62 [times] 10[sup [minus]5] M is applied. However, based on flow interruption, time-dependent Zn sorption-desorption processes were most pronounced when themore » applied Zn pulse concentration was two orders of magnitude lower. This confirms earlier findings of concentration-dependent kinetics from batch experiments on Windsor soil. The removal of organic matter and iron oxide, based on peroxide and peroxide/dithionite-treatments, resulted in doubling and quadrupling Zn retention, respectively, compared with the untreated Windsor soil. Differences between the untreated, peroxide-, and peroxide/dithionite-treated Windsor soils were most pronounced at low input Zn concentrations, suggesting that more specific sites became available as a result of the different treatments. At high input Zn concentrations, increases of specific sites may not be significant. For the treated soil, stronger sorption and desorption kinetic behavior was exhibited compared with the untreated soil. Diffusion into soil minerals or surface-controlled reactions may cause such behavior.« less

  20. Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition

    EPA Science Inventory

    Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on ...

  1. Evaluation of groundwater pollution in a mining area using analytical solution: a case study of the Yimin open-pit mine in China.

    PubMed

    Li, Tianxin; Li, Li; Song, Hongqing; Meng, Linglong; Zhang, Shuli; Huang, Gang

    2016-01-01

    This study focused on using analytical and numerical models to develop and manage groundwater resources, and predict the effects of management measurements in the groundwater system. Movement of contaminants can be studied based on groundwater flow characteristics. This study can be used for prediction of ion concentration and evaluation of groundwater pollution as the theoretical basis. The Yimin open-pit mine is located in the northern part of the Inner Mongolia Autonomous Region of China. High concentrations of iron and manganese are observed in Yimin open-pit mine because of exploitation and pumping that have increased the concentration of the ions in groundwater. In this study, iron was considered as an index of contamination, and the solute model was calibrated using concentration observations from 14 wells in 2014. The groundwater flow model and analytical solutions were used in this study to forecast pollution concentration and variation trend after calibration. With continuous pumping, contaminants will migrate, and become enriched, towards the wellhead in the flow direction. The concentration of the contaminants and the range of pollution increase with the flow rate increased. The suitable flow rate of single well should be <380 m/day at Yimin open-pit for the standard value of pollution concentration.

  2. Seasonal dynamics of groundwater-lake interactions at Doñana National Park, Spain

    USGS Publications Warehouse

    Sacks, Laura A.; Herman, Janet S.; Konikow, Leonard F.; Vela, Antonio L.

    1992-01-01

    The hydrologic and solute budgets of a lake can be strongly influenced by transient groundwater flow. Several shallow interdunal lakes in southwest Spain are in close hydraulic connection with the shallow ground water. Two permanent lakes and one intermittent lake have chloride concentrations that differ by almost an order of magnitude. A two-dimensional solute-transport model, modified to simulate transient groundwater-lake interaction, suggests that the rising water table during the wet season leads to local flow reversals toward the lakes. Response of the individual lakes, however, varies depending on the lake's position in the regional flow system. The most dilute lake is a flow-through lake during the entire year; the through flow is driven by regional groundwater flow. The other permanent lake, which has a higher solute concentration, undergoes seasonal groundwater flow reversals at its downgradient end, resulting in complex seepage patterns and higher solute concentrations in the ground water near the lake. The solute concentration of the intermittent lake is influenced more strongly by the seasonal wetting and drying cycle than by the regional flow system. Although evaporation is the major process affecting the concentration of conservative solutes in the lakes, geochemical and biochemical reactions influence the concentration of nonconservative solutes. Probable reactions in the lakes include biological uptake of solutes and calcite precipitation; probable reactions as lake water seeps into the aquifer are sulfate reduction and calcite dissolution. Seepage reversals can result in water composition that appears inconsistent with predictions based on head measurements because, under transient flow conditions, the flow direction at any instant may not satisfactorily depict the source of the water. Understanding the dynamic nature of groundwater-lake interaction aids in the interpretation of hydrologic and chemical relations between the lakes and the ground water.

  3. Influence of time of concentration on variation of runoff from a small urbanized watershed

    Treesearch

    Devendra Amatya; Agnieszka Cupak; Andrzej Walega

    2015-01-01

    The main objective of the paper is to estimate the influence of time of concentration (TC) on maximum flow in an urbanized watershed. The calculations of maximum flow have been carried out using the Rational method, Technical Release 55 (TR55) procedure based on NRCS (National Resources Conservation Services) guidelines, and NRCS-UH rainfall-runoff model. Similarly,...

  4. Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay.

    PubMed

    Cai, Long-Fei; Zhu, Ying; Du, Guan-Sheng; Fang, Qun

    2012-01-03

    We described a microfluidic chip-based system capable of generating droplet array with a large scale concentration gradient by coupling flow injection gradient technique with droplet-based microfluidics. Multiple modules including sample injection, sample dispersion, gradient generation, droplet formation, mixing of sample and reagents, and online reaction within the droplets were integrated into the microchip. In the system, nanoliter-scale sample solution was automatically injected into the chip under valveless flow injection analysis mode. The sample zone was first dispersed in the microchannel to form a concentration gradient along the axial direction of the microchannel and then segmented into a linear array of droplets by immiscible oil phase. With the segmentation and protection of the oil phase, the concentration gradient profile of the sample was preserved in the droplet array with high fidelity. With a single injection of 16 nL of sample solution, an array of droplets with concentration gradient spanning 3-4 orders of magnitude could be generated. The present system was applied in the enzyme inhibition assay of β-galactosidase to preliminarily demonstrate its potential in high throughput drug screening. With a single injection of 16 nL of inhibitor solution, more than 240 in-droplet enzyme inhibition reactions with different inhibitor concentrations could be performed with an analysis time of 2.5 min. Compared with multiwell plate-based screening systems, the inhibitor consumption was reduced 1000-fold. © 2011 American Chemical Society

  5. The effects of urbanization on the hydrochemistry of base flow within the Chattahoochee River Basin (Georgia, USA)

    NASA Astrophysics Data System (ADS)

    Rose, Seth

    2007-07-01

    SummaryA comprehensive network of stream data ( n = 50) was used to assess the effects of urbanization upon the hydrochemical variation within base flow in the Chattahoochee River Basin (CRB), Georgia (USA). Base flow solute concentrations (particularly sulfate, chloride, bicarbonate alkalinity, and sodium) increase with the degree of urbanization and any degree of urbanization within the Atlanta Metropolitan Region (AMR) results in elevated base flow solute concentrations. This suggests that there are pervasive low-level non-point sources of contamination such as septic tanks systems and leaky sewer lines affecting the chemistry of shallow groundwater throughout much of the AMR and CRB. Six groups or subsets representing the "rural-to-urban gradient" were defined, characterized by the following order of increasing solute concentrations: rural basins < Chattahoochee River. semi-urbanized basins < urbanized basins < urban basins with main sewer trunk lines < urbanized basins directly receiving treated effluent and combined sewer overflow (CSO) basins. There is a strong and unusual basin-wide correlation ( r2 values >0.79) between Na-K-Cl within the CRB that likely reflects the widespread input of electrolytes present in human wastes and wastewater. The most likely source and pathway for contaminant input involves the mobilization of salts, originally present in waste water, within the riparian or hypoheric zone.

  6. Rheological Behaviors of Thickened Infant Formula Prepared with Xanthan Gum-Based Food Thickeners for Dysphagic Infants.

    PubMed

    Yoon, Sung-No; Yoo, Byoungseung

    2017-06-01

    Thickened infant formula (TIF) prepared with commercial xanthan gum (XG)-based food thickeners are commonly used to care for infants with swallowing difficulties or regurgitation. In this study, the rheological properties of TIF prepared with four commercial food thickeners (coded A-D) were determined as a function of thickener concentration, thickener type, and setting time because the selection of an appropriate food thickener for TIF preparation is necessary for managing dysphagia in infants. The flow and dynamic rheological properties of TIF were investigated at three different concentrations (1.0, 2.0, and 3.0% w/w) of XG-based thickener. The flow properties of TIF were described by the power law and Casson models. All TIF samples demonstrated high shear-thinning (n = 0.12-0.33) behavior at all concentrations (1.0-3.0%). Their apparent viscosity (η a,50 ), consistency index (K), yield stress (σ oc ), storage modulus (G'), and loss modulus (G″) increased with an increase in thickener concentration. In general, TIF with thickener A had much higher values for all flow parameters at each thickener concentration when compared to TIF with other thickeners (B, C, and D). However, the n values of TIF samples with thickener A were much lower, indicating that they are less slimy and have better mouthfeel than those of TIF samples with other thickeners. All TIF samples with different thickeners produced different thickening patterns over a setting time. The flow and dynamic rheological parameters demonstrated differences in the rheological behaviors between XG-based thickeners, indicating that their rheological properties are related to the concentration and type of thickener as well as the setting time. These results suggest the importance of considering not only the concentration and type of thickeners but also the time being administered after its addition to effectively treat dysphagic infants. In addition, selecting an appropriate commercial food thickener appears to be of great importance for the safe and easy swallowing of dysphagic infants.

  7. Estimates of tracer-based piston-flow ages of groundwater from selected sites-National Water-Quality Assessment Program, 1992-2005

    USGS Publications Warehouse

    Hinkle, Stephen R.; Shapiro, Stephanie D.; Plummer, Niel; Busenberg, Eurybiades; Widman, Peggy K.; Casile, Gerolamo C.; Wayland, Julian E.

    2011-01-01

    This report documents selected age data interpreted from measured concentrations of environmental tracers in groundwater from 1,399 National Water-Quality Assessment (NAWQA) Program groundwater sites across the United States. The tracers of interest were chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), and tritium/helium-3 (3H/3He). Tracer data compiled for this analysis primarily were from wells representing two types of NAWQA groundwater studies - Land-Use Studies (shallow wells, usually monitoring wells, in recharge areas under dominant land-use settings) and Major-Aquifer Studies (wells, usually domestic supply wells, in principal aquifers and representing the shallow, used resource). Reference wells (wells representing groundwater minimally impacted by anthropogenic activities) associated with Land-Use Studies also were included. Tracer samples were collected between 1992 and 2005, although two networks sampled from 2006 to 2007 were included because of network-specific needs. Tracer data from other NAWQA Program components (Flow System Studies, which are assessments of processes and trends along groundwater flow paths, and various topical studies) were not compiled herein. Tracer data from NAWQA Land-Use Studies and Major-Aquifer Studies that previously had been interpreted and published are compiled herein (as piston-flow ages), but have not been reinterpreted. Tracer data that previously had not been interpreted and published are evaluated using documented methods and compiled with aqueous concentrations, equivalent atmospheric concentrations (for CFCs and SF6), estimates of tracer-based piston-flow ages, and selected ancillary data, such as redox indicators, well construction, and major dissolved gases (N2, O2, Ar, CH4, and CO2). Tracer-based piston-flow ages documented in this report are simplistic representations of the tracer data. Tracer-based piston-flow ages are a convenient means of conceptualizing groundwater age. However, the piston-flow model is based on the potentially limiting assumptions that tracer transport is advective and that no mixing occurs. Additional uncertainties can arise from tracer degradation, sorption, contamination, or fractionation; terrigenic (natural) sources of tracers; spatially variable atmospheric tracer concentrations; and incomplete understanding of mechanisms of recharge or of the conditions under which atmospheric tracers were partitioned to recharge. The effects of some of these uncertainties are considered herein. For example, degradation, contamination, or fractionation often can be identified or inferred. However, detailed analysis of the effects of such uncertainties on the tracer-based piston-flow ages is constrained by sparse data and an absence of complementary lines of evidence, such as detailed solute transport simulations. Thus, the tracer-based piston-flow ages compiled in this report represent only an initial interpretation of the tracer data.

  8. Traveltime and dispersion in the Shenandoah River and its tributaries, Waynesboro, Virginia, to Harpers Ferry, West Virginia

    USGS Publications Warehouse

    Taylor, K.R.; James, R.W.; Helinsky, B.M.

    1986-01-01

    Two traveltime and dispersion measurements using rhodamin dye were conducted on a 178-mile reach of the Shenandoah River between Waynesboro, Virginia, and Harpers Ferry, West Virginia. The flows during the two measurements were at approximately the 85% and 45% flow durations. The two sets of data were used to develop a generalized procedure for predicting traveltimes and downstream concentrations resulting from spillage of water soluble substances at any point along the river reach studied. The procedure can be used to calculate traveltime and concentration data for almost any spillage that occurs during relatively steady flow between a 40% to 95% flow duration. Based on an analogy between the general shape of a time concentration curve and a scalene triangle, the procedures can be used on long river reaches to approximate the conservative time concentration curve for instantaneous spills of contaminants. The triangular approximation technique can be combined with a superposition technique to predict the approximate, conservative time concentration curve for constant rate and variable rate injections of contaminants. The procedure was applied to a hypothetical situation in which 5,000 pounds of contaminants is spilled instantaneously at Island Ford, Virginia. The times required for the leading edge, the peak concentration, and the trailing edge of the contaminant cloud to reach the water intake at Front Royal, Virginia (85 miles downstream), are 234,280, and 340 hrs, respectively, for a flow at an 80% flow duration. The conservative peak concentration would be approximately 940 micrograms/L at Front Royal. The procedures developed cannot be depended upon when a significant hydraulic wave or other unsteady flow condition exists in the flow system or when the spilled material floats or is immiscible in water. (Author 's abstract)

  9. Concentration of vorticity due to selective decay in doubly periodic vortices and a vortex pair

    NASA Astrophysics Data System (ADS)

    Hattori, Yuji

    2018-01-01

    Strong vortices like tornadoes, typhoons, and tropical cyclones are often created in geophysical flows. It is important to understand the mechanism for the creation of these strong vortices. Recently, we found a purely hydrodynamic mechanism for the concentration of vorticity: it is due to selective decay in which circulation decays faster than angular momentum and energy. In this paper, two problems are investigated by direct numerical simulation to seek universality of this mechanism: doubly periodic vortices disturbed by an unstable eigenmode and a vortex pair disturbed by localized disturbances. In the former case, concentration of vorticity occurs when the wavenumber of the eigenmode is large, while it does not occur for small wavenumbers. For small wavenumbers the disturbances grow to a large amplitude eventually destroying the base flow. For large wavenumber, on the other hand, the growth of the disturbances saturates before destroying the base flow. Selective decay of inviscid invariants is shown to be responsible for the concentration of vorticity as in the previous study. In the case of a vortex pair disturbed by localized disturbances concentration of vorticity occurs twice: the first concentration is not related to selective decay; however, the second weak concentration is most likely due to selective decay.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xiaoliang; Xu, Wu; Huang, Jinhua

    Nonaqueous redox flow batteries hold the promise to achieve higher energy density ascribed to the broader voltage window than their aqueous counterparts, but their current performance is limited by low redox material concentration, poor cell efficiency, and inferior cycling stability. We report a new nonaqueous total-organic flow battery based on high concentrations of 9-fluorenone as negative and 2,5-di-tert-butyl-1-methoxy-4-[2’-methoxyethoxy]benzene as positive redox materials. The supporting electrolytes are found to greatly affect the cycling stability of flow cells through varying chemical stabilities of the charged radical species, especially the 9-fluorenone radical anions, as confirmed by electron spin resonance. Such an electrolyte optimizationmore » sheds light on mechanistic understandings of capacity fading in flow batteries employing organic radical-based redox materials and demonstrates that rational design of supporting electrolyte is vital for stable cyclability.« less

  11. Occurrence of phosphorus, nitrate, and suspended solids in streams of the Cheney Reservoir Watershed, south-central Kansas, 1997-2000

    USGS Publications Warehouse

    Milligan, Chad R.; Pope, Larry M.

    2001-01-01

    Improving water quality of Cheney Reservoir in south-central Kansas is an important objective of State and local water managers. The reservoir serves as a water supply for about 350,00 people in the Wichita area and an important recreational resource for the area. In 1992, a task force was formed to study and prepare a plan to identify and mitigate potential sources of stream contamination in the Cheney Reservoir watershed. This task force was established to develop stream-water-quality goals to aid in the development and implementation of best-management practices in the watershed. In 1996, the U.S. Geological Survey entered into a cooperative study with the city of Wichita to assess the water quality in the Cheney Reservoir watershed. Water-quality constituents of particular concern in the Cheney Reservoir watershed are phosphorus, nitrate, and total suspended solids. Water-quality samples were collected at five streamflow-gaging sites upstream from the reservoir and at the outflow of the reservoir. The purpose of this report is to present the results of a 4-year (1997-2000) data-collection effort to quantify the occurrence of phosphorus, nitrate, and suspended solids during base-flow, runoff, and long-term streamflow conditions (all available data for 1997-2000) and to compare these results to stream-water-quality goals established by the Cheney Reservoir Task Force. Mean concentrations of each of the constituents examined during this study exceeded the Cheney Reservoir Task Force stream-water-quality goal for at least one of the streamflow conditions evaluated. Most notably, mean base-flow and mean long-term concentrations of total phosphorus and mean base-flow concentrations of dissolved nitrate exceeded the goals of 0.05, 0.10, and 0.25 milligram per liter, respectively, at all five sampling sites upstream from the reservoir. Additionally, the long-term stream-water-quality goal for dissolved nitrate was exceeded by the mean concentration at one upstream sampling site, and the base-flow total suspended solids goal (20 milligrams per liter) and long-term total suspended solids goal (100 milligrams per liter) were each exceeded by mean concentrations at three upstream sampling sites. Generally, it seems unlikely that water-quality goals for streams in the Cheney Reservoir watershed will be attainable for mean base-flow and mean long-term total phosphorus and total suspended solids concentrations and for mean base-flow dissolved nitrate concentrations as long as current (2001) watershed conditions and practices persist. However, future changes in these conditions and practices that mitigate the transport of these consitutents may modify this conclusion.

  12. Dissolved oxygen in the Tualatin River, Oregon, during winter flow conditions, 1991 and 1992

    USGS Publications Warehouse

    Kelly, V.J.

    1996-01-01

    Throughout the winter period, November through April, wastewater treatment plants in the Tualatin River Basin discharge from 10,000 to 15,000 pounds per day of biochemical oxygen demand to the river. These loads often increase substantially during storms when streamflow is high. During the early winter season, when streamflow is frequently less than the average winter flow, the treatment plants discharge about 2,000 pounds per day of ammonia. This study focused on the capacity of the Tualatin River to assimilat oxygen-demanding loads under winter streamflow conditions during the 1992 water year, with an emphasis on peak-flow conditions in the river, and winter-base-flow conditions during November 1992. Concentrations of dissolved oxygen throughout the main stem of the river during the winter remained generally high relative to the State standard for Oregon of 6 milligrams per liter. The most important factors controlling oxygen consumption during winter-low-flow conditions were carbonaceous biochemical oxygen demand and input of oxygen-depleted waters from tributaries. During peak-flow conditions, reduced travel time and increased dilution associated with the increased streamflow minimized the effect of increased oxygen-demanding loads. During the base-flow period in November 1992, concentrations of dissolved oxygen were consistently below 6 milligrams per liter. A hydrodynamic water-quality model was used to identify the processes depleting dissolved oxygen, including sediment oxygen demand, nitrification, and carbonaceous biochemical oxygen demand. Sediment oxygen demand was the most significant factor; nitrification was also important. Hypothetical scenarios were posed to evaluate the effect of different wastewater treatment plant loads during winter-base-flow conditions. Streamflow and temperature were significant factors governing concentrations of dissolved oxygen in the main-stem river.

  13. Water-Quality Characterization of Surface Water in the Onondaga Lake Basin, Onondaga County, New York, 2005-08

    USGS Publications Warehouse

    Coon, William F.; Hayhurst, Brett A.; Kappel, William M.; Eckhardt, David A.V.; Szabo, Carolyn O.

    2009-01-01

    Water-resources managers in Onondaga County, N.Y., have been faced with the challenge of improving the water-quality of Onondaga Lake. To assist in this endeavor, the U.S. Geological Survey undertook a 3-year basinwide study to assess the water quality of surface water in the Onondaga Lake Basin. The study quantified the relative contributions of nonpoint sources associated with the major land uses in the basin and also focused on known sources (streams with large sediment loads) and presumed sinks (Onondaga Reservoir and Otisco Lake) of sediment and nutrient loads, which previously had not been evaluated. Water samples were collected and analyzed for nutrients and suspended sediment at 26 surface-water sites and 4 springs in the 285-square-mile Onondaga Lake Basin from October 2005 through December 2008. More than 1,060 base-flow, stormflow, snowmelt, spring-water, and quality-assurance samples collected during the study were analyzed for ammonia, nitrite, nitrate-plus-nitrite, ammonia-plus-organic nitrogen, orthophosphate, phosphorus, and suspended sediment. The concentration of total suspended solids was measured in selected samples. Ninety-one additional samples were collected, including 80 samples from 4 county-operated sites, which were analyzed for suspended sediment or total suspended solids, and 8 precipitation and 3 snowpack samples, which were analyzed for nutrients. Specific conductance, salinity, dissolved oxygen, and water temperature were periodically measured in the field. The mean concentrations of selected constituents in base-flow, stormflow, and snowmelt samples were related to the land use or land cover that either dominated the basin or had a substantial effect on the water quality of the basin. Almost 40 percent of the Onondaga Lake Basin is forested, 30 percent is in agricultural uses, and almost 21 percent, including the city of Syracuse, is in developed uses. The data indicated expected relative differences among the land types for concentrations of nitrate, ammonia-plus-organic nitrogen, and orthophosphate. The data departed from the expected relations for concentrations of phosphorus and suspended sediment, and plausible explanations for these departures were posited. Snowmelt concentrations of dissolved constituents generally were greater and those of particulate constituents were less than concentrations of these constituents in storm runoff. Presumably, the snowpack acted as a short-term sink for dissolved constituents that had accumulated from atmospheric deposition, and streambed erosion and resuspension of previously deposited material, rather than land-surface erosion, were the primary sources of particulate constituents in snowmelt flows. Longitudinal assessments documented the changes in the median concentrations of constituents in base flows and event flows (combined stormflow and snowmelt) from upstream to downstream monitoring sites along the two major tributaries to Onondaga Lake - Onondaga Creek and Ninemile Creek. Median base-flow concentrations of ammonia and phosphorus and event concentrations of ammonia increased in the downstream direction in both streams. Whereas median event concentrations of other constituents in Onondaga Creek displayed no consistent trends, concentrations of ammonia-plus-organic nitrogen, orthophosphate, phosphorus, and suspended sediment in Ninemile Creek decreased from upstream to downstream sites. Springs discharging from the Onondaga and Bertie Limestone had measureable effects on water temperatures in the receiving streams and increased salinity and values of specific conductance in base flows. Loads of selected nutrients and suspended sediment transported in three tributaries of Otisco Lake were compared with loads from 1981-83. Loads of ammonia-plus-organic nitrogen and orthophosphate decreased from 1981-83 to 2005-08, but those of nitrate-plus-nitrite, phosphorus, and suspended sediment increased. The largest load increase was for suspende

  14. Using 87Sr/86Sr ratios to investigate changes in stream chemistry during snowmelt in the Provo River, Utah, USA

    NASA Astrophysics Data System (ADS)

    Hale, C. A.; Carling, G. T.; Fernandez, D. P.; Nelson, S.; Aanderud, Z.; Tingey, D. G.; Dastrup, D.

    2017-12-01

    Water chemistry in mountain streams is variable during spring snowmelt as shallow groundwater flow paths are activated in the watershed, introducing solutes derived from soil water. Sr isotopes and other tracers can be used to differentiate waters that have interacted with soils and dust (shallow groundwater) and bedrock (deep groundwater). To investigate processes controlling water chemistry during snowmelt, we analyzed 87Sr/86Sr ratios, Sr and other trace element concentrations in bulk snowpack, dust, soil, soil water, ephemeral channels, and river water during snowmelt runoff in the upper Provo River watershed in northern Utah, USA, over four years (2014-2017). Strontium concentrations in the river averaged 20 ppb during base flow and decreased to 10 ppb during snowmelt runoff. 87Sr/86Sr ratios were around 0.717 during base flow and decreased to 0.715 in 2014 and 0.713 in 2015 and 2016 during snowmelt, trending towards less radiogenic values of mineral dust inputs in the Uinta Mountain soils. Ephemeral channels, representing shallow flow paths with soil water inputs, had Sr concentrations between 7-20 ppb and 87Sr/86Sr ratios between 0.713-0.716. Snowpack Sr concentrations were generally <2 ppb with 87Sr/86Sr ratios between 0.710-711, similar to atmospheric dust inputs. The less radiogenic 87Sr/86Sr ratios and lower Sr concentrations in the river during snowmelt are likely a result of activating shallow groundwater flow paths, which allows melt water to interact with shallow soils that contain accumulated dust deposits with a less radiogenic 87Sr/86Sr ratio. These results suggest that flow paths and atmospheric dust are important to consider when investigating variable solute loads in mountain streams.

  15. Concentration-discharge relationships during an extreme event: Contrasting behavior of solutes and changes to chemical quality of dissolved organic material in the Boulder Creek Watershed during the September 2013 flood: SOLUTE FLUX IN A FLOOD EVENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rue, Garrett P.; Rock, Nathan D.; Gabor, Rachel S.

    During the week of September 10-17, 2013, close to 20 inches of rain fell across Boulder County, Colorado, USA. This rainfall represented a 1000-year event that caused massive hillslope erosion, landslides, and mobilization of sediments. The resultant stream flows corresponded to a 100-year flood. For the Boulder Creek Critical Zone Observatory (BC-CZO), this event provided an opportunity to study the effect of extreme rainfall on solute concentration-discharge relationships and biogeochemical catchment processes. We observed base cation and dissolved organic carbon (DOC) concentrations at two sites on Boulder Creek following the recession of peak flow. We also isolated three distinct fractionsmore » of dissolved organic matter (DOM) for chemical characterization. At the upper site, which represented the forested mountain catchment, the concentrations of the base cations Ca, Mg and Na were greatest at the peak flood and decreased only slightly, in contrast with DOC and K concentrations, which decreased substantially. At the lower site within urban corridor, all solutes decreased abruptly after the first week of flow recession, with base cation concentrations stabilizing while DOC and K continued to decrease. Additionally, we found significant spatiotemporal trends in the chemical quality of organic matter exported during the flood recession, as measured by fluorescence, 13C-NMR spectroscopy, and FTICR-MS. Similar to the effect of extreme rainfall events in driving landslides and mobilizing sediments, our findings suggest that such events mobilize solutes by the flushing of the deeper layers of the critical zone, and that this flushing regulates terrestrial-aquatic biogeochemical linkages during the flow recession.« less

  16. Microfluidic paper-based biomolecule preconcentrator based on ion concentration polarization.

    PubMed

    Han, Sung Il; Hwang, Kyo Seon; Kwak, Rhokyun; Lee, Jeong Hoon

    2016-06-21

    Microfluidic paper-based analytical devices (μPADs) for molecular detection have great potential in the field of point-of-care diagnostics. Currently, a critical problem being faced by μPADs is improving their detection sensitivity. Various preconcentration processes have been developed, but they still have complicated structures and fabrication processes to integrate into μPADs. To address this issue, we have developed a novel paper-based preconcentrator utilizing ion concentration polarization (ICP) with minimal addition on lateral-flow paper. The cation selective membrane (i.e., Nafion) is patterned on adhesive tape, and this tape is then attached to paper-based channels. When an electric field is applied across the Nafion, ICP is initiated to preconcentrate the biomolecules in the paper channel. Departing from previous paper-based preconcentrators, we maintain steady lateral fluid flow with the separated Nafion layer; as a result, fluorescent dyes and proteins (FITC-albumin and bovine serum albumin) are continuously delivered to the preconcentration zone, achieving high preconcentration performance up to 1000-fold. In addition, we demonstrate that the Nafion-patterned tape can be integrated with various geometries (multiplexed preconcentrator) and platforms (string and polymer microfluidic channel). This work would facilitate integration of various ICP devices, including preconcentrators, pH/concentration modulators, and micro mixers, with steady lateral flows in paper-based platforms.

  17. Effect of flow rate and concentration difference on reverse electrodialysis system

    NASA Astrophysics Data System (ADS)

    Kwon, Kilsugn; Han, Jaesuk; Kim, Daejoong

    2013-11-01

    Various energy conversion technologies have been developed to reduce dependency on limited fossil fuels, including wind power, solar power, hydropower, ocean power, and geothermal power. Among them, reverse electrodialysis (RED), which is one type of salinity gradient power (SGP), has received much attention due to high reliability and simplicity without moving parts. Here, we experimentally evaluated the RED performance with several parameters like flow rate of concentrated and dilute solution, concentration difference, and temperature. RED was composed of endplates, electrodes, spacers, anion exchange membrane, and cation exchange membrane. Endplates are made by a polypropylene. It included the electrodes, flow field for the electrode rinse solution, and path to supply a concentrated and dilute solution. Titanium coated by iridium and ruthenium was used as the electrode. The electrode rinse solution based on hexacyanoferrate system is used to reduce the power loss generated by conversion process form ionic current to electric current. Maximum power monotonously increases as increasing flow rate and concentration difference. Net power has optimal point because pumping power consumption increases with flow rate. This work was supported by Basic Science Research Program (Grat No. NRF-2011-0009993) through the National Research Foundation of Korea.

  18. Design and Performance of the Sorbent-Based Atmosphere Revitalization System for Orion

    NASA Technical Reports Server (NTRS)

    Ritter, James A.; Reynolds, Steven P.; Ebner, Armin D.; Knox, James C.; LeVan, M. Douglas

    2007-01-01

    Validation and simulations of a real-time dynamic cabin model were conducted on the sorbent-based atmosphere revitalization system for Orion. The dynamic cabin model, which updates the concentration of H2O and CO2 every second during the simulation, was able to predict the steady state model values for H2O and CO2 for long periods of steady metabolic production for a 4-person crew. It also showed similar trends for the exercise periods, where there were quick changes in production rates. Once validated, the cabin model was used to determine the effects of feed flow rate, cabin volume and column volume. A higher feed flow rate reduced the cabin concentrations only slightly over the base case, a larger cabin volume was able to reduce the cabin concentrations even further, and the lower column volume led to much higher cabin concentrations. Finally, the cabin model was used to determine the effect of the amount of silica gel in the column. As the amount increased, the cabin concentration of H2O decreased, but the cabin concentration of CO2 increased.

  19. Predicting nitrate discharge dynamics in mesoscale catchments using the lumped StreamGEM model and Bayesian parameter inference

    NASA Astrophysics Data System (ADS)

    Woodward, Simon James Roy; Wöhling, Thomas; Rode, Michael; Stenger, Roland

    2017-09-01

    The common practice of infrequent (e.g., monthly) stream water quality sampling for state of the environment monitoring may, when combined with high resolution stream flow data, provide sufficient information to accurately characterise the dominant nutrient transfer pathways and predict annual catchment yields. In the proposed approach, we use the spatially lumped catchment model StreamGEM to predict daily stream flow and nitrate concentration (mg L-1 NO3-N) in four contrasting mesoscale headwater catchments based on four years of daily rainfall, potential evapotranspiration, and stream flow measurements, and monthly or daily nitrate concentrations. Posterior model parameter distributions were estimated using the Markov Chain Monte Carlo sampling code DREAMZS and a log-likelihood function assuming heteroscedastic, t-distributed residuals. Despite high uncertainty in some model parameters, the flow and nitrate calibration data was well reproduced across all catchments (Nash-Sutcliffe efficiency against Log transformed data, NSL, in the range 0.62-0.83 for daily flow and 0.17-0.88 for nitrate concentration). The slight increase in the size of the residuals for a separate validation period was considered acceptable (NSL in the range 0.60-0.89 for daily flow and 0.10-0.74 for nitrate concentration, excluding one data set with limited validation data). Proportions of flow and nitrate discharge attributed to near-surface, fast seasonal groundwater and slow deeper groundwater were consistent with expectations based on catchment geology. The results for the Weida Stream in Thuringia, Germany, using monthly as opposed to daily nitrate data were, for all intents and purposes, identical, suggesting that four years of monthly nitrate sampling provides sufficient information for calibration of the StreamGEM model and prediction of catchment dynamics. This study highlights the remarkable effectiveness of process based, spatially lumped modelling with commonly available monthly stream sample data, to elucidate high resolution catchment function, when appropriate calibration methods are used that correctly handle the inherent uncertainties.

  20. Stability of parallel electroosmotic flow subject to an axial modulated electric field

    NASA Astrophysics Data System (ADS)

    Suresh, Vinod; Homsy, George

    2001-11-01

    The stability of parallel electroosmotic flow in a micro-channel subjected to an AC electric field is studied. A spatially uniform time harmonic electric field is applied along the length of a two-dimensional micro-channel containing a dilute electrolytic solution, resulting in a time periodic parallel flow. The top and bottom walls of the channel are maintained at constant potential. The base state ion concentrations and double layer potential are determined using the Poisson-Boltzmann equation in the Debye-Hückel approximation. Experiments by other workers (Santiago et. al., unpublished) have shown that such a system can exhibit instabilities that take the form of mixing motion occurring in the bulk flow outside the double layer. It is shown that such instabilities can potentially result from the coupling of disturbances in the ion concentrations or electric potential to the base state velocity or ion concentrations, respectively. The stability boundary of the system is determined using Floquet theory and its dependence on the modulation frequency and amplitude of the axial electric field is studied.

  1. Ion-neutral Clustering of Bile Acids in Electrospray Ionization Across UPLC Flow Regimes

    NASA Astrophysics Data System (ADS)

    Brophy, Patrick; Broeckling, Corey D.; Murphy, James; Prenni, Jessica E.

    2018-02-01

    Bile acid authentic standards were used as model compounds to quantitatively evaluate complex in-source phenomenon on a UPLC-ESI-TOF-MS operated in the negative mode. Three different diameter columns and a ceramic-based microfluidic separation device were utilized, allowing for detailed descriptions of bile acid behavior across a wide range of flow regimes and instantaneous concentrations. A custom processing algorithm based on correlation analysis was developed to group together all ion signals arising from a single compound; these grouped signals produce verified compound spectra for each bile acid at each on-column mass loading. Significant adduction was observed for all bile acids investigated under all flow regimes and across a wide range of bile acid concentrations. The distribution of bile acid containing clusters was found to depend on the specific bile acid species, solvent flow rate, and bile acid concentration. Relative abundancies of each cluster changed non-linearly with concentration. It was found that summing all MS level (low collisional energy) ions and ion-neutral adducts arising from a single compound improves linearity across the concentration range (0.125-5 ng on column) and increases the sensitivity of MS level quantification. The behavior of each cluster roughly follows simple equilibrium processes consistent with our understanding of electrospray ionization mechanisms and ion transport processes occurring in atmospheric pressure interfaces. [Figure not available: see fulltext.

  2. Microgravity flame spread over thick solids in low velocity opposed flow

    NASA Astrophysics Data System (ADS)

    Wang, Shuangfeng; Zhu, Feng

    2016-07-01

    Motivated primarily by fire safety of spacecraft, a renewed interest in microgravity flame spread over solid materials has arisen. With few exceptions, however, research on microgravity flame spread has been focused on thermally thin fuels due to the constraint on available test time. In this study, two sets of experiments are conducted to examine the flame spread and extinction behavior over thick PMMA in simulated and actual microgravity environments. The low-gravity flame spread environment is produced by a narrow channel apparatus in normal gravity. Extinction limits using flow velocity and oxygen concentration as coordinates are presented, and flame spread rates are determined as a function of the velocity and oxygen concentration of the gas flow. The microgravity experiments are also performed with varying low-velocity flow and varying ambient oxygen concentration. The important observations include flame behavior and appearance as a function of oxygen concentration and flow velocity, temperature variation in gas and solid phases, and flame spread rate. A comparison between simulated and actual microgravity data is made, and general agreement is found. Based on the experimental observations, mechanisms for flame spread and extinction in low velocity opposed flows are discussed.

  3. Relations of Water Quality to Streamflow, Season, and Land Use for Four Tributaries to the Toms River, Ocean County, New Jersey, 1994-99

    USGS Publications Warehouse

    Baker, Ronald J.; Hunchak-Kariouk, Kathryn

    2006-01-01

    The effects of nonpoint-source contamination on the water quality of four tributaries to the Toms River in Ocean County, New Jersey, have been investigated in a 5-year study by the U.S. Geological Survey (USGS), in cooperation with the New Jersey Department of Environmental Protection (NJDEP). The purpose of the study was to relate the extent of land development to loads of nutrients and other contaminants to these streams, and ultimately to Barnegat Bay. Volumetric streamflow (discharge) was measured at 6 monitoring sites during 37 stormflow and base-flow sampling events over a 5-year period (May 1994-September 1999). Concentrations and yields (area-normalized instantaneous load values) of nitrogen and phosphorus species, total suspended solids, and fecal coliform bacteria were quantified, and pH, dissolved oxygen, and stream stage were monitored during base-flow conditions and storms. Sufficient data were collected to allow for a statistical evaluation of differences in water quality among streams in subbasins with high, medium, and low levels of land development. Long Swamp Creek, in a highly developed subbasin (64.2 percent developed); Wrangle Brook, in a moderately developed subbasin (34.5 percent); Davenport Branch, in a slightly developed subbasin (22.8 percent); and Jakes Branch, in an undeveloped subbasin (0 percent) are the subbasins selected for this study. No point-source discharges are known to be present on these streams. Water samples were collected and analyzed by the NJDEP, and discharge measurements and data analysis were conducted by the USGS. Total nitrogen concentrations were lower in Davenport Branch than in Long Swamp Creek and Wrangle Brook during base flow and stormflow. Concentrations of total nitrogen and nitrate were highest in Wrangle Brook (as high as 3.0 mg/L and 1.6 mg/L, respectively) as a result of high concentrations of nitrate in samples collected during base flow; nitrate loading from ground-water discharge is much higher in Wrangle Brook than in any of the other streams, possibly as a result of an experimental wastewater-(secondary effluent) disposal site that was in operation during the 1980's. Ammonia concentrations were higher in samples from Long Swamp Creek than in those from the other two monitoring sites under all flow conditions, and ammonia yields were higher during stormflow than base flow at all monitoring sites. Concentrations and yields of fecal coliform bacteria and total suspended solids were higher during stormflow than during base flow at all monitoring sites. Concentrations and yields were significantly higher in Long Swamp Creek, a highly developed subbasin and Wrangle Brook, a moderately developed subbasin than in Davenport Branch, a slightly developed subbasin. Concentrations and yields of phosphate species, which also are strongly related to stormflow, were higher during stormflow in Long Swamp Creek than in the other subbasins. Base-flow separation techniques were used on hydrographs generated for storms to distinguish the fraction of discharge and constituent loading attributable to storm runoff (overland flow) from the fraction contributed by ground-water discharge. Precipitation records were used to determine the total annual volumes of ground-water discharge and runoff at each monitoring site. These volumes were used in conjunction with water-quality data to calculate total annual loads of each constituent at each monitoring site, separated into ground-water discharge and runoff fractions. It was determined that loads of ammonia, nitrate, organic nitrogen, total nitrogen, and orthophosphate in ground-water discharge were significantly higher in the moderately developed Wrangle Brook subbasin than in the highly developed Long Swamp Creek subbasin, and that no relation was apparent between the percent of land development and constituent loads from ground-water discharge. The loading of each constituent contributed by ground-water discharge is specific

  4. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries.

    PubMed

    Wei, Xiaoliang; Xu, Wu; Vijayakumar, Murugesan; Cosimbescu, Lelia; Liu, Tianbiao; Sprenkle, Vincent; Wang, Wei

    2014-12-03

    A TEMPO-based non-aqueous electrolyte with the TEMPO concentration as high as 2.0 m is demonstrated as a high-energy-density catholyte for redox flow battery applications. With a hybrid anode, Li|TEMPO flow cells using this electrolyte deliver an energy efficiency of ca. 70% and an impressively high energy density of 126 W h L(-1) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Computational analysis of plane and parabolic flow of MHD Carreau fluid with buoyancy and exponential heat source effects

    NASA Astrophysics Data System (ADS)

    Krishna, P. Mohan; Sandeep, N.; Sharma, Ram Prakash

    2017-05-01

    This paper presents the two-dimensional magnetohydrodynamic Carreau fluid flow over a plane and parabolic regions in the form of buoyancy and exponential heat source effects. Soret and Dufour effects are used to examine the heat and mass transfer process. The system of ODE's is obtained by utilizing similarity transformations. The RK-based shooting process is employed to generate the numerical solutions. The impact of different parameters of interest on fluid flow, concentration and thermal fields is characterized graphically. Tabular results are presented to discuss the wall friction, reduced Nusselt and Sherwood numbers. It is seen that the flow, thermal and concentration boundary layers of the plane and parabolic flows of Carreau fluid are non-uniform.

  6. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    PubMed

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results show that both of the temperature and H2O concentration rose with the arrival of detonation wave. With the increase of the vertical distance between the detonation tube nozzle and the laser path, the time of temperature and concentration coming to the peak delayed, and the temperature variation trend tended to slow down. At 20 cm from detonation tube nozzle, the maximum temperature hit 1 329 K and the maximum H2O concentration of 0.19 occurred at 4 ms after ignition. The research can provide with us the support for expanding the detonation test field with absorption spectroscopy technology, and can also help to promote the detonation mechanism research and to enhance the level of detonation engine control technology.

  7. The relationship between salivary histatin levels and oral yeast carriage.

    PubMed

    Jainkittivong, A; Johnson, D A; Yeh, C K

    1998-06-01

    Candida species are common commensal inhabitants of the oral cavity. Human saliva contains antifungal proteins called histatins. We tested the hypothesis that oral yeast status is related to salivary histatin levels. Thirty subjects were divided into two groups based on the presence (n = 15) or absence (n = 15) of yeast on oral mucosa surfaces. Unstimulated and stimulated submandibular and sublingual and parotid saliva was collected from each subject. Salivary flow rates were measured and histatin concentrations were determined in the stimulated saliva samples. The yeast colony positive group showed lower median unstimulated parotid saliva flow rates as well as lower median concentrations of total histatins in submandibular and sublingual saliva. There was a negative correlation between yeast colony-forming units and unstimulated parotid saliva flow rates and between yeast colony-forming units and submandibular and sublingual saliva histatin concentration and secretion. The results suggest that oral yeast status may be influenced by unstimulated parotid saliva flow rates and by submandibular and sublingual histatin concentration and secretion.

  8. Ptaquiloside from bracken in stream water at base flow and during storm events.

    PubMed

    Clauson-Kaas, Frederik; Ramwell, Carmel; Hansen, Hans Chr B; Strobel, Bjarne W

    2016-12-01

    The bracken fern (Pteridium spp.) densely populates both open and woodland vegetation types around the globe. Bracken is toxic to livestock when consumed, and a group of potent illudane-type carcinogens have been identified, of which the compound ptaquiloside (PTA) is the most abundant. The highly water soluble PTA has been shown to be leachable from bracken fronds, and present in the soil and water below bracken stands. This has raised concerns over whether the compound might pose a risk to drinking water sources. We investigated PTA concentrations in a small stream draining a bracken-infested catchment at base flow and in response to storm events during a growth season, and included sampling of the bracken canopy throughfall. Streams in other bracken-dominated areas were also sampled at base flow for comparison, and a controlled pulse experiment was conducted in the field to study the in-stream dynamics of PTA. Ptaquiloside concentrations in the stream never exceeded 61 ng L -1 in the base flow samples, but peaked at 2.2 μg L -1 during the studied storm events. The mass of PTA in the stream, per storm event, was 7.5-93 mg from this catchment. A clear temporal connection was observed between rainfall and PTA concentration in the stream, with a reproducible time lag of approx. 1 h from onset of rain to elevated concentrations, and returning rather quickly (about 2 h) to base flow concentration levels. The concentration of PTA behaved similar to an inert tracer (Cl - ) in the pulse experiment over a relative short time scale (minutes-hours) reflecting no PTA sorption, and dispersion and dilution considerably lowered the observed PTA concentrations downstream. Bracken throughfall revealed a potent and lasting source of PTA during rainfall, with concentrations up to 169 μg L -1 , that did not decrease over the course of the event. In the stream, the throughfall contribution to PTA cannot be separated from a possible below-ground input from litter, rhizomes and soil. Catchment-specific factors such as the soil pH, topography, hydrology, and bracken coverage will evidently affect the level of PTA observed in the receiving stream, as well as the distance from bracken, but time since precipitation seems most important. Studying PTA loads and transport in surface streams fed by bracken-infested catchments, simply taking occasional grab samples will not capture the precipitation-linked pulses. The place and time of sampling governs the findings, and including event-based sampling is essential to provide a more complete picture of PTA loads to surface water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Probabilistic determination of the ecological risk from OTNE in aquatic and terrestrial compartments based on US-wide monitoring data.

    PubMed

    McDonough, Kathleen; Casteel, Kenneth; Zoller, Ann; Wehmeyer, Kenneth; Hulzebos, Etje; Rila, Jean-Paul; Salvito, Daniel; Federle, Thomas

    2017-01-01

    OTNE [1-(1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethyl-2-naphthyl)ethan-1-one; trade name Iso E Super] is a fragrance ingredient commonly used in consumer products which are disposed down the drain. This research measured effluent and sludge concentrations of OTNE at 44 US wastewater treatment plants (WWTP). The mean effluent and sludge concentrations were 0.69 ± 0.65 μg/L and 20.6 ± 33.8 mg/kg dw respectively. Distribution of OTNE effluent concentrations and dilution factors were used to predict surface water and sediment concentrations and distributions of OTNE sludge concentrations and loading rates were used to predict terrestrial concentrations. The 90th percentile concentration of OTNE in US WWTP mixing zones was predicted to be 0.04 and 0.85 μg/L under mean and 7Q10 low flow (lowest river flow occurring over a 7 day period every 10 years) conditions respectively. The 90th percentile sediment concentrations under mean and 7Q10 low flow conditions were predicted to be 0.081 and 1.6 mg/kg dw respectively. Based on current US sludge application practices, the 90th percentile OTNE terrestrial concentration was 1.38 mg/kg dw. The probability of OTNE concentrations being below the predicted no effect concentration (PNEC) for the aquatic and sediment compartments was greater than 99%. For the terrestrial compartment, the probability of OTNE concentrations being lower than the PNEC was 97% for current US sludge application practices. Based on the results of this study, OTNE concentrations in US WWTP effluent and sludge do not pose an ecological risk to aquatic, sediment and terrestrial organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A Simple, Efficient and Effective Modeling Approach to Determine Baseflow Based on Concentration-Discharge Relationships

    NASA Astrophysics Data System (ADS)

    Liu, F.; Miller, M. P.; Conklin, M. H.

    2017-12-01

    Concentration-discharge relationships in streamflow are a precursor for diagnosing endmember mixing. With a strong power-law relationship between concentration and discharge, previous studies have shown that conservative solute concentrations in streamflow can be explained by mixing of two endmembers, i.e., quick runoff (QR) and baseflow (BF). This current study showed that the unique concentration-discharge power-law curve provides two characteristic values of solute concentrations at extremely high and low flows and these envelope values can be used to aid two-endmember mixing models. In an example conducted in the Upper Colorado River Basin (UCRB), daily specific conductance (SC) and discharge were strongly correlated by a power-law function on both rising and falling limbs from 1983 to 2015 (R2 > 0.9 for all years). The high envelope SC value in each year was directly used to characterize baseflow for that year, while the low envelope SC value was adjusted to represent quick runoff, a collective term for surface runoff and responsive shallow subsurface runoff. The peak flow was considered to be dominated by QR with only a small portion of BF. The ratio of minimum to maximum flows was used to calibrate the low envelope SC value. This ratio represents the least fraction of baseflow to total flow at the peak flow, as baseflow increases with total flow based on published studies. The SC value at the peak flow was considered to be a mixture of QR and BF with the minimum/maximum flow ratio as baseflow fraction and thus SC value in QR was determined with a mass balance equation. The baseflow fractions determined in two-endmember mixing models by this characterization of QR from 1983 to 2011 match those by Miller et al. [2014] very well (R2 = 0.96, slope = 1.07, intercept = -0.13). Baseflow fractions were slightly under-estimated by this approach mainly due to the fact that responsive shallow subsurface runoff was considered to be part of quick flow in this study rather than part of baseflow. This approach provides a simple, efficient and effective modeling tool for estimating baseflow without requiring any samples from endmembers in catchments with a strong power-law relation.

  11. Spatio-temporal Analysis of suspended sediment Concentration in the Yongjiang Estuary Based on GOCI

    NASA Astrophysics Data System (ADS)

    Kang, Yanyan; Dong, Chuan

    2018-01-01

    The concentration and spatio-temporal variation of suspended sediment concentration in the estuary area are of great significance to the nearshore engineering, port construction and coastal evolution. Based on multi-period GOCI images and corresponding measured suspended sediment concentration (SSC) data, three inversion models (the linear regression model, the power exponent model and the neural network model) were established after rapid atmospheric correction. The results show that the absolute error of the three models is 0.20, 0.16 and 0.10kg/m3 respectively, and the relative errors are 38%, 23% and 18% respectively. The accuracy of the neural network (8-17-17-1) is the best. The SSC distribution diagrams in an ebb and flow cycle are obtained using this ANN model. The results show that with Yongjiang estuary for segmentation, the high concentration area is located in the north and the lower is in the south around Jintang Island deeper water area. When the tide rises, the water flow disturbs a large amount of sediment, and then the sediment concentration increases and high area high concentrations water body moves along the SE-NW. When the tide falls, flow rate decreases and the sediment concentration decreases. However, with the falling tide, the concentration of suspended sediment in the northern sea areas gradually increases, and is higher than 1kg/m3, and gradually moves along the NW-SE until to the estuary.

  12. 40 CFR 1065.345 - Vacuum-side leak verification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... zero flow, or by detecting the dilution of a known concentration of span gas when it flows through the.... Measure and record the absolute pressure of the trapped gas and optionally the system absolute temperature... pressure and optionally temperature. (4) Calculate the leak flow rate based on an assumed value of zero for...

  13. 40 CFR 1065.345 - Vacuum-side leak verification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... zero flow, or by detecting the dilution of a known concentration of span gas when it flows through the.... Measure and record the absolute pressure of the trapped gas and optionally the system absolute temperature... pressure and optionally temperature. (4) Calculate the leak flow rate based on an assumed value of zero for...

  14. 40 CFR 1065.345 - Vacuum-side leak verification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... zero flow, or by detecting the dilution of a known concentration of span gas when it flows through the.... Measure and record the absolute pressure of the trapped gas and optionally the system absolute temperature... pressure and optionally temperature. (4) Calculate the leak flow rate based on an assumed value of zero for...

  15. 40 CFR 1065.345 - Vacuum-side leak verification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... zero flow, or by detecting the dilution of a known concentration of span gas when it flows through the.... Measure and record the absolute pressure of the trapped gas and optionally the system absolute temperature... pressure and optionally temperature. (4) Calculate the leak flow rate based on an assumed value of zero for...

  16. 40 CFR 1065.345 - Vacuum-side leak verification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... zero flow, or by detecting the dilution of a known concentration of span gas when it flows through the.... Measure and record the absolute pressure of the trapped gas and optionally the system absolute temperature... pressure and optionally temperature. (4) Calculate the leak flow rate based on an assumed value of zero for...

  17. Chemistry resolved kinetic flow modeling of TATB based explosives

    NASA Astrophysics Data System (ADS)

    Vitello, Peter; Fried, Laurence E.; William, Howard; Levesque, George; Souers, P. Clark

    2012-03-01

    Detonation waves in insensitive, TATB-based explosives are believed to have multiple time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. We term our model chemistry resolved kinetic flow, since CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. We present here two variants of our new rate model and comparison with hot, ambient, and cold experimental data for PBX 9502.

  18. Water-quality characteristics of urban runoff and estimates of annual loads in the Tampa Bay area, Florida, 1975-80

    USGS Publications Warehouse

    Lopez, M.A.; Giovannelli, R.F.

    1984-01-01

    Rainfall, runoff, and water quality data were collected at nine urban watersheds in the Tampa Bay area from 1975 to 1980. Watershed drainage area ranged from 0.34 to 0.45 sq mi. Land use was mixed. Development ranged from a mostly residential watershed with a 19% impervious surface, to a commercial-residential watershed with a 61% impervious surface. Average biochemical oxygen demand concentrations of base flow at two sites and of stormwater runoff at five sites exceeded treated sewage effluent standards. Average coliform concentrations of stormwater runoff at all sites were several orders of magnitude greater than standards for Florida Class III receiving water (for recreation or propagation and management of fish and wildlife). Average concentrations of lead and zinc in stormwater runoff were consistently higher than Class III standards. Stormwater-runoff loads and base-flow concentrations of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus, and lead were related to runoff volume, land use, urban development, and antecedent daily rainfall by multiple linear regression. Stormwater-runoff volume was related to pervious area, hydraulically connected impervious surfaces, storm rainfall, and soil-infiltration index. Base-flow daily discharge was related to drainage area and antecedent daily rainfall. The flow regression equations of this report were used to compute 1979 water-year loads of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus , and total lead for the nine Tampa Bay area urban watersheds. (Lantz-PTT)

  19. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Wang; X. Sun; H. Zhao

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do notmore » exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in which flow regime transition occurs.« less

  20. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia Wang; Xiaodong Sun; Benjamin Doup

    In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As twophase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present workmore » aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminator s are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.« less

  1. Using nitrate to quantify quick flow in a karst aquifer

    USGS Publications Warehouse

    Mahler, B.J.; Garner, B.D.

    2009-01-01

    In karst aquifers, contaminated recharge can degrade spring water quality, but quantifying the rapid recharge (quick flow) component of spring flow is challenging because of its temporal variability. Here, we investigate the use of nitrate in a two-endmember mixing model to quantify quick flow in Barton Springs, Austin, Texas. Historical nitrate data from recharging creeks and Barton Springs were evaluated to determine a representative nitrate concentration for the aquifer water endmember (1.5 mg/L) and the quick flow endmember (0.17 mg/L for nonstormflow conditions and 0.25 mg/L for stormflow conditions). Under nonstormflow conditions for 1990 to 2005, model results indicated that quick flow contributed from 0% to 55% of spring flow. The nitrate-based two-endmember model was applied to the response of Barton Springs to a storm and results compared to those produced using the same model with ??18O and specific conductance (SC) as tracers. Additionally, the mixing model was modified to allow endmember quick flow values to vary over time. Of the three tracers, nitrate appears to be the most advantageous because it is conservative and because the difference between the concentrations in the two endmembers is large relative to their variance. The ??18O- based model was very sensitive to variability within the quick flow endmember, and SC was not conservative over the timescale of the storm response. We conclude that a nitrate-based two-endmember mixing model might provide a useful approach for quantifying the temporally variable quick flow component of spring flow in some karst systems. ?? 2008 National Ground Water Association.

  2. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate.

    PubMed

    Hari, Ananda Rao; Katuri, Krishna P; Gorron, Eduardo; Logan, Bruce E; Saikaly, Pascal E

    2016-07-01

    Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57-96 %) was the largest electron sink and methane (0-2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.

  3. Chemical characteristics and temporal trends in eight streams of the Catskill Mountains, New York

    USGS Publications Warehouse

    Murdoch, Peter S.; Stoddard, J.L.

    1993-01-01

    Discharge to concentration relationships for eight streams studied by the U.S. Geological Survey (USGS) as part of the U.S. Environmental Protection Agency's (U.S. EPA) Long-Term Monitoring Project (1983-89) indicate acidification of some streams by H2SO4 and HNO3 in atmospheric deposition and by organic acids in soils. Concentrations of major ions in precipitation were similar to those reported at other sites in the northeastern United States. Average concentrations of SO42- and NO3- were similar among streams, but base cation concentrations differed widely, and these differences paralleled the differences in acid neutralizing capacity (ANC). Baseflow ANC is not a reliable predictor of stream acidity at high flow; some streams with high baseflow ANC (> 150 ??eq L-1) declined to near zero ANC at high flow, and one stream with low baseflow ANC (< 50 ??eq L-1) did not approach zero ANC as flow increased. Episodic decreases in ANC and pH during peak flows were associated with increased concentrations of NO3- and dissolved organic carbon (DOC). Aluminum concentrations exceeding 300 ??g L-1 were observed during peak flows in headwater streams of the Neversink River and Rondout Creek. Seasonal Kendall Tau tests for temporal trends indicate that SO42- concentrations in streamwater generally decreased and NO3- concentrations increased during the period 1983-1989. Combined acid anion concentrations (SO42- + NO3-) were generally unchanged throughout the period of record, indicating both that the status of these streams with respect to acidic deposition is unchanged, and that NO3- is gradually replacing SO42- as the dominant acid anion in the Catskill streams.Discharge to concentration relationships for eight streams studied by the US Geological Survey (USGS) as part of the Environmental Protection Agency's (US EPA) Long-term monitoring project (19831-89) indicate acidification of some streams by H2SO4 and HNO3 in atmospheric deposition and by organic acids in soils. Concentrations of major ions in precipitations were similar to those reported at other sites in the northeastern United States. Average concentrations of SO42- and No3- were similar among streams, but base cation concentrations differed widely, and these differences parallelel the differences in acid neutralizing capacity (ANC).

  4. An initial investigation of multidimensional flow and transverse mixing characteristics of the Ohio River near Cincinnati, Ohio

    USGS Publications Warehouse

    Holtschlag, David J.

    2009-01-01

    Two-dimensional hydrodynamic and transport models were applied to a 34-mile reach of the Ohio River from Cincinnati, Ohio, upstream to Meldahl Dam near Neville, Ohio. The hydrodynamic model was based on the generalized finite-element hydrodynamic code RMA2 to simulate depth-averaged velocities and flow depths. The generalized water-quality transport code RMA4 was applied to simulate the transport of vertically mixed, water-soluble constituents that have a density similar to that of water. Boundary conditions for hydrodynamic simulations included water levels at the U.S. Geological Survey water-level gaging station near Cincinnati, Ohio, and flow estimates based on a gate rating at Meldahl Dam. Flows estimated on the basis of the gate rating were adjusted with limited flow-measurement data to more nearly reflect current conditions. An initial calibration of the hydrodynamic model was based on data from acoustic Doppler current profiler surveys and water-level information. These data provided flows, horizontal water velocities, water levels, and flow depths needed to estimate hydrodynamic parameters related to channel resistance to flow and eddy viscosity. Similarly, dye concentration measurements from two dye-injection sites on each side of the river were used to develop initial estimates of transport parameters describing mixing and dye-decay characteristics needed for the transport model. A nonlinear regression-based approach was used to estimate parameters in the hydrodynamic and transport models. Parameters describing channel resistance to flow (Manning’s “n”) were estimated in areas of deep and shallow flows as 0.0234, and 0.0275, respectively. The estimated RMA2 Peclet number, which is used to dynamically compute eddy-viscosity coefficients, was 38.3, which is in the range of 15 to 40 that is typically considered appropriate. Resulting hydrodynamic simulations explained 98.8 percent of the variability in depth-averaged flows, 90.0 percent of the variability in water levels, 93.5 percent of the variability in flow depths, and 92.5 percent of the variability in velocities. Estimates of the water-quality-transport-model parameters describing turbulent mixing characteristics converged to different values for the two dye-injection reaches. For the Big Indian Creek dye-injection study, an RMA4 Peclet number of 37.2 was estimated, which was within the recommended range of 15 to 40, and similar to the RMA2 Peclet number. The estimated dye-decay coefficient was 0.323. Simulated dye concentrations explained 90.2 percent of the variations in measured dye concentrations for the Big Indian Creek injection study. For the dye-injection reach starting downstream from Twelvemile Creek, however, an RMA4 Peclet number of 173 was estimated, which is far outside the recommended range. Simulated dye concentrations were similar to measured concentration distributions at the first four transects downstream from the dye-injection site that were considered vertically mixed. Farther downstream, however, simulated concentrations did not match the attenuation of maximum concentrations or cross-channel transport of dye that were measured. The difficulty of determining a consistent RMA4 Peclet was related to the two-dimension model assumption that velocity distributions are closely approximated by their depth-averaged values. Analysis of velocity data showed significant variations in velocity direction with depth in channel reaches with curvature. Channel irregularities (including curvatures, depth irregularities, and shoreline variations) apparently produce transverse currents that affect the distribution of constituents, but are not fully accounted for in a two-dimensional model. The two-dimensional flow model, using channel resistance to flow parameters of 0.0234 and 0.0275 for deep and shallow areas, respectively, and an RMA2 Peclet number of 38.3, and the RMA4 transport model with a Peclet number of 37.2, may have utility for emergency-planning purposes. Emergency-response efforts would be enhanced by continuous streamgaging records downstream from Meldahl Dam, real-time water-quality monitoring, and three-dimensional modeling. Decay coefficients are constituent specific.

  5. Magma ascent and lava flow emplacement rates during the 2011 Axial Seamount eruption based on CO2 degassing

    NASA Astrophysics Data System (ADS)

    Jones, M. R.; Soule, S. A.; Gonnermann, H. M.; Le Roux, V.; Clague, D. A.

    2018-07-01

    Quantitative metrics for eruption rates at mid-ocean ridges (MORs) would improve our understanding of the structure and formation of the uppermost oceanic crust and would provide a means to link volcanic processes with the conditions of the underlying magmatic system. However, these metrics remain elusive because no MOR eruptions have been directly observed. The possibility of disequilibrium degassing in mid-ocean ridge basalts (MORB), due to high eruptive depressurization rates, makes the analysis of volatile concentrations in MORB glass a promising method for evaluating eruption rates. In this study, we estimate magma ascent and lava flow emplacement rates during the 2011 eruption of Axial Seamount based on numerical modeling of diffusion-controlled bubble growth and new measurements of dissolved volatiles, vesicularity, and vesicle size distributions in erupted basalts. This dataset provides a unique view of the variability in magma ascent (∼0.02-1.2 m/s) and lava flow rates (∼0.1-0.7 m/s) during a submarine MOR eruption based on 50 samples collected from a >10 km long fissure system and three individual lava flow lobes. Samples from the 2011 eruption display an unprecedented range in dissolved CO2 concentrations, nearly spanning the full range observed on the global MOR system. The variable vesicularity and dissolved CO2 concentrations in these samples can be explained by differences in the extent of degassing, dictated by flow lengths and velocities during both vertical ascent and horizontal flow along the seafloor. Our results document, for the first time, the variability in magma ascent rates during a submarine eruption (∼0.02-1.2 m/s), which spans the global range previously proposed based on CO2 degassing. The slowest ascent rates are associated with hummocky flows while faster ascent rates produce channelized sheet flows. This study corroborates degassing-based models for eruption rates using comparisons with independent methods and documents the relationship between eruption dynamics, magma ascent rates, and the morphology of eruptive products. Globally, this approach allows interrogation of the processes that govern mid-ocean ridge eruptions and influence the formation of the oceanic crust.

  6. Development of a Physiologically Based Computational Kidney Model to Describe the Renal Excretion of Hydrophilic Agents in Rats

    PubMed Central

    Niederalt, Christoph; Wendl, Thomas; Kuepfer, Lars; Claassen, Karina; Loosen, Roland; Willmann, Stefan; Lippert, Joerg; Schultze-Mosgau, Marcus; Winkler, Julia; Burghaus, Rolf; Bräutigam, Matthias; Pietsch, Hubertus; Lengsfeld, Philipp

    2013-01-01

    A physiologically based kidney model was developed to analyze the renal excretion and kidney exposure of hydrophilic agents, in particular contrast media, in rats. In order to study the influence of osmolality and viscosity changes, the model mechanistically represents urine concentration by water reabsorption in different segments of kidney tubules and viscosity dependent tubular fluid flow. The model was established using experimental data on the physiological steady state without administration of any contrast media or drugs. These data included the sodium and urea concentration gradient along the cortico-medullary axis, water reabsorption, urine flow, and sodium as well as urea urine concentrations for a normal hydration state. The model was evaluated by predicting the effects of mannitol and contrast media administration and comparing to experimental data on cortico-medullary concentration gradients, urine flow, urine viscosity, hydrostatic tubular pressures and single nephron glomerular filtration rate. Finally the model was used to analyze and compare typical examples of ionic and non-ionic monomeric as well as non-ionic dimeric contrast media with respect to their osmolality and viscosity. With the computational kidney model, urine flow depended mainly on osmolality, while osmolality and viscosity were important determinants for tubular hydrostatic pressure and kidney exposure. The low diuretic effect of dimeric contrast media in combination with their high intrinsic viscosity resulted in a high viscosity within the tubular fluid. In comparison to monomeric contrast media, this led to a higher increase in tubular pressure, to a reduction in glomerular filtration rate and tubular flow and to an increase in kidney exposure. The presented kidney model can be implemented into whole body physiologically based pharmacokinetic models and extended in order to simulate the renal excretion of lipophilic drugs which may also undergo active secretion and reabsorption. PMID:23355822

  7. Estimates of tracer-based piston-flow ages of groundwater from selected sites: National Water-Quality Assessment Program, 2006-2010

    USGS Publications Warehouse

    Shapiro, Stephanie D.; Plummer, Niel; Busenberg, Eurybiades; Widman, Peggy K.; Casile, Gerolamo C.; Wayland, Julian E.; Runkle, Donna L.

    2012-01-01

    Piston-flow age dates were interpreted from measured concentrations of environmental tracers from 812 National Water-Quality Assessment (NAWQA) Program groundwater sites from 27 Study Units across the United States. The tracers of interest include chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), and tritium/helium-3 (3H/3He). Tracer data compiled for this analysis were collected from 2006 to 2010 from groundwater wells in NAWQA studies, including: * Land-Use Studies (LUS, shallow wells, usually monitoring wells, located in recharge areas under dominant land-use settings), * Major-Aquifer Studies (MAS, wells, usually domestic supply wells, located in principal aquifers and representing the shallow drinking water supply), * Flow System Studies (FSS, networks of clustered wells located along a flowpath extending from a recharge zone to a discharge zone, preferably a shallow stream) associated with Land-Use Studies, and * Reference wells (wells representing groundwater minimally impacted by anthropogenic activities) also associated with Land-Use Studies. Tracer data were evaluated using documented methods and are presented as aqueous concentrations, equivalent atmospheric concentrations (for CFCs and SF6), and tracer-based piston-flow ages. Selected ancillary data, such as redox data, well-construction data, and major dissolved-gas (N2, O2, Ar, CH4, and CO2) data, also are presented. Recharge temperature was inferred using climate data (approximated by mean annual air temperature plus 1°C [MAAT +1°C]) as well as major dissolved-gas data (N2-Ar-based) where available. The N2-Ar-based temperatures showed significantly more variation than the climate-based data, as well as the effects of denitrification and degassing resulting from reducing conditions. The N2-Ar-based temperatures were colder than the climate-based temperatures in networks where recharge was limited to the winter months when evapotranspiration was reduced. The tracer-based piston-flow ages compiled in this report are provided as a consistent means of reporting the tracer data. The tracer-based piston-flow ages may provide an initial interpretation of age in cases in which mixing is minimal and may aid in developing a basic conceptualization of groundwater age in an aquifer. These interpretations are based on the assumption that tracer transport is by advection only and that no mixing occurs. In addition, it is assumed that other uncertainties are minimized, including tracer degradation, sorption, contamination, or fractionation, and that terrigenic (natural) sources of tracers, and spatially variable atmospheric tracer concentrations are constrained.

  8. Design and optimization of non-clogging counter-flow microconcentrator for enriching epidermoid cervical carcinoma cells.

    PubMed

    Tran-Minh, Nhut; Dong, Tao; Su, Qianhua; Yang, Zhaochu; Jakobsen, Henrik; Karlsen, Frank

    2011-02-01

    Clogging failure is common for microfilters in living cells concentration; for instance, the CaSki Cell-lines (Epidermoid cervical carcinoma cells) utilizing the flat membrane structure. In order to avoid the clogging, counter-flow concentration units with turbine blade-like micropillar are proposed in microconcentrator design. Due to the unusual geometrical-profiles and extraordinary microfluidic performance, the cells blocking does not occur even at permeate entrances. A counter-flow microconcentrator was designed, with both processing layer and collecting layer arranged in terms of the fractal based honeycomb structure. The device was optimized by coupling Artificial Neuron Network (ANN) and Computational Fluid Dynamics (CFD). The excellent concentration ratio of a final microconcentrator was presented in numerical results.

  9. Droplet Deformation in an Extensional Flow: The Role of Surfactant Physical Chemistry

    NASA Technical Reports Server (NTRS)

    Stebe, Kathleen J.

    1996-01-01

    Surfactant-induced Marangoni effects strongly alter the stresses exerted along fluid particle interfaces. In low gravity processes, these stresses can dictate the system behavior. The dependence of Marangoni effects on surfactant physical chemistry is not understood, severely impacting our ability to predict and control fluid particle flows. A droplet in an extensional flow allows the controlled study of stretching and deforming interfaces. The deformations of the drop allow both Marangoni stresses, which resist tangential shear, and Marangoni elasticities, which resist surface dilatation, to develop. This flow presents an ideal model system for studying these effects. Prior surfactant-related work in this flow considered a linear dependence of the surface tension on the surface concentration, valid only at dilute surface concentrations, or a non-linear framework at concentrations sufficiently dilute that the linear approximation was valid. The linear framework becomes inadequate for several reasons. The finite dimensions of surfactant molecules must be taken into account with a model that includes surfaces saturation. Nonideal interactions between adsorbed surfactant molecules alter the partitioning of surfactant between the bulk and the interface, the dynamics of surfactant adsorptive/desorptive exchange, and the sensitivity of the surface tension to adsorbed surfactant. For example, cohesion between hydrocarbon chains favors strong adsorption. Cohesion also slows the rate of desorption from interfaces, and decreases the sensitivity of the surface tension to adsorbed surfactant. Strong cohesive interactions result in first order surface phase changes with a plateau in the surface tension vs surface concentration. Within this surface concentration range, the surface tension is decoupled from surface concentration gradients. We are engaged in the study of the role of surfactant physical chemistry in determining the Marangoni stresses on a drop in an extensional flow in a numerical and experimental program. Using surfactants whose dynamics and equilibrium behavior have been characterized in our laboratory, drop deformation will be studied in ground-based experiment. In an accompanying numerical study, predictive drop deformations will be determined based on the isotherm and equation of state determined in our laboratory. This work will improve our abilities to predict and control all fluid particle flows.

  10. Detection of an amphiphilic biosample in a paper microchannel based on length.

    PubMed

    Chen, Yu-Tzu; Yang, Jing-Tang

    2015-01-01

    We developed a simple method to achieve semiquantitative detection of an amphiphilic biosample through measuring the length of flow on a microfluidic analytical device (μPAD) based on paper. When an amphiphilic sample was dripped into a straight microchannel defined with a printed wax barrier (hydrophobic) on filter paper (hydrophilic), the length of flow was affected by the reciprocal effect between the sample, the filter-paper channel and the wax barrier. The flow length decreased with increasing concentration of an amphiphilic sample because of adsorption of the sample on the hydrophobic barrier. Measurement of the flow length enabled a determination of the concentration of the amphiphilic sample. The several tested samples included surfactants (Tween 20 and Triton X-100), oligonucleotides (DNA), bovine serum albumin (BSA), human albumin, nitrite, glucose and low-density lipoprotein (LDL). The results show that the measurement of the flow length determined directly the concentration of an amphiphilic sample, whereas a non-amphiphilic sample was not amenable to this method. The proposed method features the advantages of small cost, simplicity, convenience, directness, rapidity (<5 min) and requirement of only a small volume (5 μL) of sample, with prospective applications in developing areas and sites near patients for testing at a point of care (POCT).

  11. On the peculiarities of LDA method in two-phase flows with high concentrations of particles

    NASA Astrophysics Data System (ADS)

    Poplavski, S. V.; Boiko, V. M.; Nesterov, A. U.

    2016-10-01

    Popular applications of laser Doppler anemometry (LDA) in gas dynamics are reviewed. It is shown that the most popular method cannot be used in supersonic flows and two-phase flows with high concentrations of particles. A new approach to implementation of the known LDA method based on direct spectral analysis, which offers better prospects for such problems, is presented. It is demonstrated that the method is suitable for gas-liquid jets. Owing to the progress in laser engineering, digital recording of spectra, and computer processing of data, the method is implemented at a higher technical level and provides new prospects of diagnostics of high-velocity dense two-phase flows.

  12. Trends in surface-water quality during implementation of best-management practices in Mill Creek and Muddy Run Basins, Lancaster County, Pennsylvania

    USGS Publications Warehouse

    Koerkle, Edward H.

    2000-01-01

    Analyses of water samples collected over a 5-year period (1993-98) in the Mill Creek and Muddy Run Basins during implementation of agricultural best-management practices (BMP’s) indicate statistically significant trends in the concentrations of several nutrient species and in nonfilterable residue (suspended solids). The strongest trends identified were those indicated by a more than 50- percent decrease in the flow-adjusted concentrations of total and dissolved phosphorus and total residue in base flow in the two streams. Analyses of stormflow samples showed a 31-percent decrease in the flow-adjusted concentration of total phosphorus in Mill Creek and a 54-percent decrease in total nonfilterable residue in Muddy Run. A 58-percent increase in the flow-adjusted concentration of total ammonia nitrogen in stormflow was found at Muddy Run.Although the effects of a specific BMP on the indicated trends is uncertain, results of statistical trend tests of the data suggest that stream fencing, possibly in concert with other practices, such as stream crossings for livestock, barnyard runoff control, manure-storage facilities, and rotational grazing, was effective in improving water quality during base flow and probably low to moderate stormflow conditions. Additional improvements in water quality in the Mill Creek and Muddy Run Basins seems likely as the implementation of BMP’s is expected to continue. Thus, the full effect of BMP implementation in the two basins may not be observed for some time.

  13. Flow cytometric HyPer-based assay for hydrogen peroxide.

    PubMed

    Lyublinskaya, O G; Antonov, S A; Gorokhovtsev, S G; Pugovkina, N A; Kornienko, Ju S; Ivanova, Ju S; Shatrova, A N; Aksenov, N D; Zenin, V V; Nikolsky, N N

    2018-05-30

    HyPer is a genetically encoded fluorogenic sensor for hydrogen peroxide which is generally used for the ratiometric imaging of H 2 O 2 fluxes in living cells. Here, we demonstrate the advantages of HyPer-based ratiometric flow cytometry assay for H 2 O 2 , by using K562 and human mesenchymal stem cell lines expressing HyPer. We show that flow cytometry analysis is suitable to detect HyPer response to submicromolar concentrations of extracellularly added H 2 O 2 that is much lower than concentrations addressed previously in the other HyPer-based assays (such as cell imaging or fluorimetry). Suggested technique is also much more sensitive to hydrogen peroxide than the widespread flow cytometry assay exploiting H 2 O 2 -reactive dye H 2 DCFDA and, contrary to the H 2 DCFDA-based assay, can be employed for the kinetic studies of H 2 O 2 utilization by cells, including measurements of the rate constants of H 2 O 2 removal. In addition, flow cytometry multi-parameter ratiometric measurements enable rapid and high-throughput detection of endogenously generated H 2 O 2 in different subpopulations of HyPer-expressing cells. To sum up, HyPer can be used in multi-parameter flow cytometry studies as a highly sensitive indicator of intracellular H 2 O 2 . Copyright © 2018. Published by Elsevier Inc.

  14. Flow distribution in parallel microfluidic networks and its effect on concentration gradient

    PubMed Central

    Guermonprez, Cyprien; Michelin, Sébastien; Baroud, Charles N.

    2015-01-01

    The architecture of microfluidic networks can significantly impact the flow distribution within its different branches and thereby influence tracer transport within the network. In this paper, we study the flow rate distribution within a network of parallel microfluidic channels with a single input and single output, using a combination of theoretical modeling and microfluidic experiments. Within the ladder network, the flow rate distribution follows a U-shaped profile, with the highest flow rate occurring in the initial and final branches. The contrast with the central branches is controlled by a single dimensionless parameter, namely, the ratio of hydrodynamic resistance between the distribution channel and the side branches. This contrast in flow rates decreases when the resistance of the side branches increases relative to the resistance of the distribution channel. When the inlet flow is composed of two parallel streams, one of which transporting a diffusing species, a concentration variation is produced within the side branches of the network. The shape of this concentration gradient is fully determined by two dimensionless parameters: the ratio of resistances, which determines the flow rate distribution, and the Péclet number, which characterizes the relative speed of diffusion and advection. Depending on the values of these two control parameters, different distribution profiles can be obtained ranging from a flat profile to a step distribution of solute, with well-distributed gradients between these two limits. Our experimental results are in agreement with our numerical model predictions, based on a simplified 2D advection-diffusion problem. Finally, two possible applications of this work are presented: the first one combines the present design with self-digitization principle to encapsulate the controlled concentration in nanoliter chambers, while the second one extends the present design to create a continuous concentration gradient within an open flow chamber. PMID:26487905

  15. Monitoring of surface velocity of hyper-concentrated flow in a laboratory flume by means of fully-digital PIV

    NASA Astrophysics Data System (ADS)

    Termini, Donatella; Di Leonardo, Alice

    2016-04-01

    High flow conditions, which are generally characterized by high sediment concentrations, do not permit the use of traditional measurement equipment. Traditional techniques usually are based on the intrusive measure of the vertical profile of flow velocity and on the linking of water depth with the discharge through the rating curve. The major disadvantage of these measurement techniques is that they are difficult to use and not safe for operators especially in high flow conditions. The point is that, as literature shows (see as an example Moramarco and Termini, 2015), especially in such conditions, the measurement of surface velocity distribution is important to evaluate the mean flow velocity and, thus, the flow discharge. In the last decade, image-based techniques have been increasingly used for surface velocity measurements (among others Joeau et al., 2008). Experimental program has been recently conducted at the Hydraulic laboratory of the Department of Civil, Environmental, Aerospatial and of Materials Engineering (DICAM) - University of Palermo (Italy) in order to analyze the propagation phenomenon of hyper-concentrated flow in a defense channel. The experimental apparatus includes a high-precision camera and a system allowing the images recording. This paper investigates the utility and the efficiency of the digital image-technique for remote monitoring of surface velocity in hyper-concentrated flow by the aid of data collected during experiments conducted in the laboratory flume. In particular the present paper attention is focused on the estimation procedure of the velocity vectors and on their sensitivity with parameters (number of images, spatial resolution of interrogation area,) of the images processing procedure. References Jodeau M., A. Hauet, A. Paquier, Le Coz J., Dramais G., Application and evaluation of LS-PIV technique for the monitoring of river surface in high flow conditions, Flow Measurements and Instrumentation, Vol.19, No.2, 2008, pp.117-127. Moramarco T., Termini D., Entropic approach to estimate the mean flow velocity: experimental investigation in laboratory flumes, Environmental Fluid mechanics, Vol. 15, No.1, 2015.

  16. Contrasting residence times and fluxes of water and sulfate in two small forested watersheds in Virginia, USA

    USGS Publications Warehouse

    Böhlke, J.K.; Michel, R.L.

    2009-01-01

    Watershed mass balances for solutes of atmospheric origin may be complicated by the residence times of water and solutes at various time scales. In two small forested headwater catchments in the Appalachian Mountains of Virginia, USA, mean annual export rates of SO4= differ by a factor of 2, and seasonal variations in SO4= concentrations in atmospheric deposition and stream water are out of phase. These features were investigated by comparing 3H, 35S, ??34S, ??2H, ??18O, ??3He, CFC-12, SF6, and chemical analyses of open deposition, throughfall, stream water, and spring water. The concentrations of SO4= and radioactive 35S were about twice as high in throughfall as in open deposition, but the weighted composite values of 35S/S (11.1 and 12.1 ?? 10- 15) and ??34S (+ 3.8 and + 4.1???) were similar. In both streams (Shelter Run, Mill Run), 3H concentrations and ??34S values during high flow were similar to those of modern deposition, ??2H and ??18O values exhibited damped seasonal variations, and 35S/S ratios (0-3 ?? 10- 15) were low throughout the year, indicating inter-seasonal to inter-annual storage and release of atmospheric SO4= in both watersheds. In the Mill Run watershed, 3H concentrations in stream base flow (10-13??TU) were consistent with relatively young groundwater discharge, most ??34S values were approximately the same as the modern atmospheric deposition values, and the annual export rate of SO4= was equal to or slightly greater than the modern deposition rate. In the Shelter Run watershed, 3H concentrations in stream base flow (1-3??TU) indicate that much of the discharging ground water had been deposited prior to the onset of atmospheric nuclear bomb testing in the 1950s, base flow ??34S values (+ 1.6???) were significantly lower than the modern deposition values, and the annual export rate of SO4= was less than the modern deposition rate. Concentrations of 3H and 35S in Shelter Run base flow, and of 3H, 3He, CFC-12, SF6, and 35S in a spring discharging to Shelter Run, all were consistent with a bimodal distribution of discharging ground-water ages with approximately 5-20% less than a few years old and 75-95% more than 40??years old. These results provide evidence for 3 important time-scales of SO4= transport through the watersheds: (1) short-term (weekly to monthly) storage and release of dry deposition in the forest canopy between precipitation events; (2) mid-term (seasonal to interannual) cycles in net storage in the near-surface environment, and (3) long-term (decadal to centennial) storage in deep ground water that appears to be related to relatively low SO4= concentrations in spring discharge that dominates Shelter Run base flow. It is possible that the relatively low concentrations and low ??34S values of SO4= in spring discharge and Shelter Run base flow may reflect those of atmospheric deposition before the middle of the 20th century. In addition to storage in soils and biota, variations in ground-water residence times at a wide range of time scales may have important effects on monitoring, modeling, and predicting watershed responses to changing atmospheric deposition in small watersheds.

  17. Release of dissolved nitrogen from water during depressurization

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1978-01-01

    Experiments were run to study depressurization of water containing various concentrations of dissolved nitrogen gas, the primary case being room temperature water saturated with nitrogen at 4 MPa. In a static depressurization experiment, water with very high nitrogen content was depressurized at rates from 0.09 to 0.50 MPa per second and photographed with high speed movies. The pictures showed that the bubble population at a given pressure increased strongly with decreasing depressurization rate. Flow experiments were performed in an axisymmetric converging-diverging nozzle and in a two-dimensional converging nozzle with glass sidewalls. Depressurization gradients were roughly 500 to 1200 MPa per second. Both nozzles exhibited choked flow behavior even at nitrogen concentration levels as low as 4 percent of saturated. The flow rates were independent of concentration level and could be computed as incompressible water flow based on the difference between stagnation and throat pressures; however, the throat pressures were significantly different between the two nozzles.

  18. Accurate live and dead bacterial cell enumeration using flow cytometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ou, Fang; McGoverin, Cushla; Swift, Simon; Vanholsbeeck, Frédérique

    2017-03-01

    Flow cytometry (FCM) is based on the detection of scattered light and fluorescence to identify cells with particular characteristics of interest. However most FCM cannot precisely control the flow through its interrogation point and hence the volume and concentration of the sample cannot be immediately obtained. The easiest, most reliable and inexpensive way of obtaining absolute counts with FCM is by using reference beads. We investigated a method of using FCM with reference beads to measure live and dead bacterial concentration over the range of 106 to 108 cells/mL and ratio varying from 0 to 100%. We believe we are the first to use this method for such a large cell concentration range while also establishing the effect of varying the live/dead bacteria ratios. Escherichia coli solutions with differing ratios of live:dead cells were stained with fluorescent dyes SYTO 9 and propidium iodide (PI), which label live and dead cells, respectively. Samples were measured using a LSR II Flow Cytometer (BD Biosciences); using 488 nm excitation with 20 mW power. Both SYTO 9 and PI fluorescence were collected and threshold was set to side scatter. Traditional culture-based plate count was done in parallel to the FCM analysis. The concentration of live bacteria from FCM was compared to that obtained by plate counts. Preliminary results show that the concentration of live bacteria obtained by FCM and plate counts correlate well with each other and indicates this may be extended to a wider concentration range or for studying other cell characteristics.

  19. Blood flow estimation in gastroscopic true-color images

    NASA Astrophysics Data System (ADS)

    Jacoby, Raffael S.; Herpers, Rainer; Zwiebel, Franz M.; Englmeier, Karl-Hans

    1995-05-01

    The assessment of blood flow in the gastrointestinal mucosa might be an important factor for the diagnosis and treatment of several diseases such as ulcers, gastritis, colitis, or early cancer. The quantity of blood flow is roughly estimated by computing the spatial hemoglobin distribution in the mucosa. The presented method enables a practical realization by calculating approximately the hemoglobin concentration based on a spectrophotometric analysis of endoscopic true-color images, which are recorded during routine examinations. A system model based on the reflectance spectroscopic law of Kubelka-Munk is derived which enables an estimation of the hemoglobin concentration by means of the color values of the images. Additionally, a transformation of the color values is developed in order to improve the luminance independence. Applying this transformation and estimating the hemoglobin concentration for each pixel of interest, the hemoglobin distribution can be computed. The obtained results are mostly independent of luminance. An initial validation of the presented method is performed by a quantitative estimation of the reproducibility.

  20. Investigation of micromixing by acoustically oscillated sharp-edges

    PubMed Central

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2016-01-01

    Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel. PMID:27158292

  1. Investigation of micromixing by acoustically oscillated sharp-edges.

    PubMed

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2016-03-01

    Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel.

  2. Wash water waste pretreatment system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Investigations were completed on wash waters based on each candidate personal cleansing agent. Evaluations of coagulants, antifoam agents, and the effect of promising antifoams on the chemical precipitation were included. Based on these evaluations two candidate soaps as well as their companion antifoam agents were selected for further work. Operating parameters included the effect of soap concentration, ferric chloride concentration, duration of mixing, and pore size of depth filters on the degree of soap removal. The effect of pressure on water flow through filter cartridges and on the rate of decline of water flow was also investigated. The culmination of the program was the recommendation of a pretreatment concept based on chemical precipitation followed by pressure filtration.

  3. Formulation development and release studies of indomethacin suppositories.

    PubMed

    Sah, M L; Saini, T R

    2008-01-01

    Indomethacin suppositories were prepared by using water-soluble and oil soluble suppository bases, and evaluated for in vitro release by USP I and modified continuous flow through bead bed apparatus. Effect of the Tween 80 (1% and 5%) was further studied on in vitro release of the medicament. Release rate was good in water-soluble suppositories bases in comparison to oil soluble suppositories bases. Release was found to be greater in modified continuous flow through bead bed apparatus. When surfactant was used in low concentration then release rate was much greater, as compared to high concentration. When stability studies were performed on the prepared indomethacin suppositories it was found that suppositories made by water-soluble base had no significant changes while suppositories prepared by oil soluble bases, had some signs of instability.

  4. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Wentao; Vemuri, Rama S.; Hu, Dehong

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, nonaqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of nonaqueous electrolytes. However, significant technical hurdles exist currently limiting nonaqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we report a nonaqueous flow battery based on amore » highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox materials exhibits an ambipolar electrochemical property with two reversible redox pairs that are moderately separated by a voltage gap of ~1.7 V. Therefore, PTIO can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry, which affords the advantages such as high effective redox concentrations and low irreversible redox material crossover. The PTIO flow battery shows decent electrochemical cyclability under cyclic voltammetry and flow cell conditions; an improved redox concentration of 0.5 M PTIO and operational current density of 20 mA cm-2 were achieved in flow cell tests. Moreover, we show that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC) as cross-validated by electron spin resonance measurements. This study suggests FTIR can be used as a reliable online SOC sensor to monitor flow battery status and ensure battery operations stringently in a safe SOC range.« less

  5. Occurrence and concentrations of selected trace elements, halogenated organic compounds, and polycyclic aromatic hydrocarbons in streambed sediments and results of water-toxicity testing in Westside Creeks and the San Antonio River, San Antonio, Texas, 2014

    USGS Publications Warehouse

    Crow, Cassi L.; Wilson, Jennifer T.; Kunz, James L.

    2016-12-01

    Sediment samples and samples for water-toxicity testing were collected during 2014 from several streams in San Antonio, Texas, known locally as the Westside Creeks (Alazán, Apache, Martínez, and San Pedro Creeks) and from the San Antonio River. Samples were collected during base flow and after periods of stormwater runoff (poststorm conditions) to determine baseline sediment- and water-quality conditions. Streambed-sediment samples were analyzed for selected constituents, including trace elements and organic contaminants such as pesticides, polychlorinated biphenyls (PCBs), brominated flame retardants, and polycyclic aromatic hydrocarbons (PAHs). Potential risks of contaminants in sediment were evaluated by comparing concentrations of contaminants in sediment to two effects-based sediment-quality guidelines: (1) a lower level, called the threshold effect concentration, below which, harmful effects to benthic biota are not expected, and (2) a higher level, the probable effect concentration (PEC), above which harmful effects are expected to occur frequently. Samples for water-toxicity testing were collected from each stream to provide information about fish toxicity in the study area. The trace metal lead was detected at potentially toxic concentrations greater than the PEC in both the base-flow and poststorm samples collected at two sites sampled on San Pedro Creek. The PECs for the pesticides dichlorodiphenyldichloroethane, dichlorodiphenyldichloroethylene, dichlorodiphenyltrichloroethane, and chlordane were exceeded in some of the samples at the same two sites on San Pedro Creek. Brominated flame retardants and polybrominated diphenyl ether (PBDE) 85, 153, and 154 were found in all streambed-sediment samples. Federal Environmental Quality Guidelines established by Environment Canada for PBDE 99 and PBDE 100 were exceeded in all samples in which PBDE 99 was detected and in a majority of the samples in which PBDE 100 was detected; the greatest concentrations occurred in samples collected at the same two sites on San Pedro Creek where the samples containing elevated lead and pesticide concentrations were collected. All concentrations of total PCBs (computed as the sum of the 18 reported PCB congeners) in the individual streambed-sediment samples were less than the threshold effect concentration, but the concentrations were elevated in the two sites on San Pedro Creek compared to concentrations at other sites. At one site on Apache Creek, 6 of the individual PAHs measured in the sample collected during base-flow conditions exceeded the PECs and 8 of the 9 PECs were exceeded in the sample collected during poststorm conditions. The total PAH concentration in the sample collected at the site during poststorm conditions was 3.3 times greater than the PEC developed for total PAHs. Average PAH profiles computed for base-flow samples and poststorm samples most closely resemble the parking lot coal-tar sealcoat dust PAH source profile, defined as the average PAH concentrations in dust swept from parking lots in six cities in the United States that were sealed with a black, viscous liquid containing coal-tar pitch. Six of ten water samples collected during base-flow conditions caused reductions in Pimephales promelas (fathead minnow) survival and were considered to be toxic.

  6. Quantifying ruminal nitrogen metabolism using the omasal sampling technique in cattle--a meta-analysis.

    PubMed

    Broderick, G A; Huhtanen, P; Ahvenjärvi, S; Reynal, S M; Shingfield, K J

    2010-07-01

    Mixed model analysis of data from 32 studies (122 diets) was used to evaluate the precision and accuracy of the omasal sampling technique for quantifying ruminal-N metabolism and to assess the relationships between nonammonia-N flow at the omasal canal and milk protein yield. Data were derived from experiments in cattle fed North American diets (n=36) based on alfalfa silage, corn silage, and corn grain and Northern European diets (n=86) composed of grass silage and barley-based concentrates. In all studies, digesta flow was quantified using a triple-marker approach. Linear regressions were used to predict microbial-N flow to the omasum from intake of dry matter (DM), organic matter (OM), or total digestible nutrients. Efficiency of microbial-N synthesis increased with DM intake and there were trends for increased efficiency with elevated dietary concentrations of crude protein (CP) and rumen-degraded protein (RDP) but these effects were small. Regression of omasal rumen-undegraded protein (RUP) flow on CP intake indicated that an average 32% of dietary CP escaped and 68% was degraded in the rumen. The slope from regression of observed omasal flows of RUP on flows predicted by the National Research Council (2001) model indicated that NRC predicted greater RUP supply. Measured microbial-N flow was, on average, 26% greater than that predicted by the NRC model. Zero ruminal N-balance (omasal CP flow=CP intake) was obtained at dietary CP and RDP concentrations of 147 and 106 g/kg of DM, corresponding to ruminal ammonia-N and milk urea N concentrations of 7.1 and 8.3mg/100mL, respectively. Milk protein yield was positively related to the efficiency of microbial-N synthesis and measured RUP concentration. Improved efficiency of microbial-N synthesis and reduced ruminal CP degradability were positively associated with efficiency of capture of dietary N as milk N. In conclusion, the results of this study indicate that the omasal sampling technique yields valuable estimates of RDP, RUP, and ruminal microbial protein supply in cattle. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. The spatial and temporal variation of total suspended solid concentration in Pearl River Estuary during 1987-2015 based on remote sensing.

    PubMed

    Wang, Chongyang; Li, Weijiao; Chen, Shuisen; Li, Dan; Wang, Danni; Liu, Jia

    2018-03-15

    The movement and migration of total suspended solid (TSS) are the essential component of global material cycling and change. Based on the TSS concentrations retrieved from 112 scenes of Landsat remote sensing imageries during 1987-2015, the spatial and temporal variations of TSS concentration in high flow season and low flow seasons of six sub-regions (west shoal, west channel, middle shoal, east channel, east shoal and Pearl River Estuary Chinese White Dolphin National Nature Reserve and its adjacent waters (NNR)) of Pearl River Estuary (PRE) were analyzed and compared by statistical simulation. It was found that TSS concentrations in east and west shoals were about 23mg/L and 64mg/L higher than that of the middle shoal, respectively. There was a significant decreasing trend of TSS concentration from the northwest (223.7mg/L) to southeast (51.4mg/L) of study area, with an average reduction of 5.86mg/Lperkm, which mainly attributes to unique interaction of runoff and tide in PRE. In high flow season, there existed a significant and definite annual cycle period (5-8years) of TSS concentration change primarily responding to the periodic variation of precipitation. There were five full-fledged period changes of TSS detected in west shoal and west channel (the years of changes in 1988, 1994, 1998, 2003, 2010, 2015), while there were the last four cycle periods found in middle shoal, east channel, east shoal and NNR only. TSS concentrations in shoals and channels of PRE showed a significant decreased trend mainly due to the dam construction at the same time, with an average annual TSS concentration decrease of 5.7-10.1mg/L in high flow season from 1988 to 2015. There was no significant change trend of TSS concentration in NNR before 2003, but the TSS concentration decreased significantly after the establishment of the NNR since June 2003, with an average annual decrease of 9.7mg/L from 2004 to 2015. It was deduced that man-made protection measures had a great influence on the variation trend and intensity of TSS concentration in PRE, but had little effect on the cycle of TSS changes, indicating that the cyclical change is a very strong natural law. In low flow season, there was no significant change trend of TSS concentrations in PRE except that TSS concentrations in west channel and middle shoal showed a weak increasing trend (2.1mg/L and 2.9mg/L, respectively), which is probably because of controlled discharge for avoiding the intrusion of saltwater in PRE. Evidently, the change trend and cycle periods of TSS concentration in high- and low-flow seasons in six sub-regions of PRE had significant difference. The decreasing trend and cycle periods of TSS concentration mainly occurred in high flow season. The change trend and cycle periods of TSS concentration in low flow season was relatively small in PRE. The study shows that long series mapping of Landsat remote sensing images is an effective way to help understanding the spatial and temporal variation of TSS concentrations of estuaries and coasts, and to increase awareness of environmental change and human activity effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Expression of Geochemical Controls on Water Quality in Loch Vale, Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Podzorski, H.; Navarre-Sitchler, A.; Stets, E.; Clow, D. W.

    2017-12-01

    Relationships between concentrations of rock weathering products and discharge provide insight into the interactions between climate and solute dynamics. This concentration-discharge (C-Q) relationship is especially interesting in high alpine regions, due to their susceptibility to changes in the timing and magnitude of snowmelt. Previous studies looking at C-Q relationships have concluded that concentrations of conservative solutes remain relatively constant as discharge varies; however, these results may be due to relatively small sample sizes, especially at higher discharge values. Using water chemistry data collected regularly by the U.S. Geological Survey from Loch Vale, a high-elevation catchment in Rocky Mountain National Park, C-Q relationships were examined to determine possible geochemical controls on stream solute concentrations. A record of over 20 years of C-Q data resulted in a pattern that shows little variation in conservative solute concentrations during base flow and larger variations in concentrations around peak discharge. This observed pattern is consistent with accumulation of solutes in pore water during base flow, which are then flushed out and diluted by snowmelt. Further evidence of this flushing out mechanism is found in patterns of hysteresis that are present in annual C-Q relationships. Before peak discharge, concentrations of weathering products are higher than after peak discharge at similar values of discharge. Based on these observations, we hypothesize that the geochemical processes controlling stream chemistry vary by season. During the winter, solute concentrations are transport-limited due to slow subsurface flushing resulting in concentrations that are effectively constant and close to equilibrium. During the spring and summer, concentrations drop sharply after peak discharge due to a combination of dilution and reaction-limited processes under conditions with faster subsurface flow and continued snowmelt. This study provides insight into seasonal geochemical controls on conservative solute concentrations that can be overlooked with small, or seasonally biased, data sets.

  9. CO2-vegetation feedbacks and other climate changes implicated in reducing base flow

    NASA Astrophysics Data System (ADS)

    Trancoso, Ralph; Larsen, Joshua R.; McVicar, Tim R.; Phinn, Stuart R.; McAlpine, Clive A.

    2017-03-01

    Changes in the hydrological cycle have a significant impact in water limited environments. Globally, some of these regions are experiencing declining precipitation yet are simultaneously becoming greener, partly due to vegetation feedbacks associated with increasing atmospheric CO2 concentrations. Reduced precipitation together with increasing rates of actual evapotranspiration diminishes streamflow, especially base flow, a critical freshwater dry-season resource. Here we assess recent changes in base flow in Australia from 1981-2013 and 1950-2013 and separate the contribution of precipitation, potential evapotranspiration, and other factors on base flow trends. Our findings reveal that these other factors influencing the base flow trends are best explained by an increase in photosynthetic activity. These results provide the first robust observational evidence that increasing atmospheric CO2 and its associated vegetation feedbacks are reducing base flow in addition to other climatic impacts. These findings have broad implications for water resource management, especially in the world's water limited regions.

  10. Modeling preferential water flow and solute transport in unsaturated soil using the active region model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, F.; Wang, K.; Zhang, R.

    2009-03-15

    Preferential flow and solute transport are common processes in the unsaturated soil, in which distributions of soil water content and solute concentrations are often characterized as fractal patterns. An active region model (ARM) was recently proposed to describe the preferential flow and transport patterns. In this study, ARM governing equations were derived to model the preferential soil water flow and solute transport processes. To evaluate the ARM equations, dye infiltration experiments were conducted, in which distributions of soil water content and Cl{sup -} concentration were measured. Predicted results using the ARM and the mobile-immobile region model (MIM) were compared withmore » the measured distributions of soil water content and Cl{sup -} concentration. Although both the ARM and the MIM are two-region models, they are fundamental different in terms of treatments of the flow region. The models were evaluated based on the modeling efficiency (ME). The MIM provided relatively poor prediction results of the preferential flow and transport with negative ME values or positive ME values less than 0.4. On the contrary, predicted distributions of soil water content and Cl- concentration using the ARM agreed reasonably well with the experimental data with ME values higher than 0.8. The results indicated that the ARM successfully captured the macroscopic behavior of preferential flow and solute transport in the unsaturated soil.« less

  11. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, Robert E.

    2015-12-08

    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  12. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, Robert B.

    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  13. A Bayesian geostatistical approach for evaluating the uncertainty of contaminant mass discharges from point sources

    NASA Astrophysics Data System (ADS)

    Troldborg, M.; Nowak, W.; Binning, P. J.; Bjerg, P. L.

    2012-12-01

    Estimates of mass discharge (mass/time) are increasingly being used when assessing risks of groundwater contamination and designing remedial systems at contaminated sites. Mass discharge estimates are, however, prone to rather large uncertainties as they integrate uncertain spatial distributions of both concentration and groundwater flow velocities. For risk assessments or any other decisions that are being based on mass discharge estimates, it is essential to address these uncertainties. We present a novel Bayesian geostatistical approach for quantifying the uncertainty of the mass discharge across a multilevel control plane. The method decouples the flow and transport simulation and has the advantage of avoiding the heavy computational burden of three-dimensional numerical flow and transport simulation coupled with geostatistical inversion. It may therefore be of practical relevance to practitioners compared to existing methods that are either too simple or computationally demanding. The method is based on conditional geostatistical simulation and accounts for i) heterogeneity of both the flow field and the concentration distribution through Bayesian geostatistics (including the uncertainty in covariance functions), ii) measurement uncertainty, and iii) uncertain source zone geometry and transport parameters. The method generates multiple equally likely realizations of the spatial flow and concentration distribution, which all honour the measured data at the control plane. The flow realizations are generated by analytical co-simulation of the hydraulic conductivity and the hydraulic gradient across the control plane. These realizations are made consistent with measurements of both hydraulic conductivity and head at the site. An analytical macro-dispersive transport solution is employed to simulate the mean concentration distribution across the control plane, and a geostatistical model of the Box-Cox transformed concentration data is used to simulate observed deviations from this mean solution. By combining the flow and concentration realizations, a mass discharge probability distribution is obtained. Tests show that the decoupled approach is both efficient and able to provide accurate uncertainty estimates. The method is demonstrated on a Danish field site contaminated with chlorinated ethenes. For this site, we show that including a physically meaningful concentration trend and the co-simulation of hydraulic conductivity and hydraulic gradient across the transect helps constrain the mass discharge uncertainty. The number of sampling points required for accurate mass discharge estimation and the relative influence of different data types on mass discharge uncertainty is discussed.

  14. Wind tunnel simulation of air pollution dispersion in a street canyon.

    PubMed

    Civis, Svatopluk; Strizík, Michal; Janour, Zbynek; Holpuch, Jan; Zelinger, Zdenek

    2002-01-01

    Physical simulation was used to study pollution dispersion in a street canyon. The street canyon model was designed to study the effect of measuring flow and concentration fields. A method of C02-laser photoacoustic spectrometry was applied for detection of trace concentration of gas pollution. The advantage of this method is its high sensitivity and broad dynamic range, permitting monitoring of concentrations from trace to saturation values. Application of this method enabled us to propose a simple model based on line permeation pollutant source, developed on the principle of concentration standards, to ensure high precision and homogeneity of the concentration flow. Spatial measurement of the concentration distribution inside the street canyon was performed on the model with reference velocity of 1.5 m/s.

  15. Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitello, P A; Fried, L E; Howard, W M

    2011-07-21

    Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. They use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. They term their model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonationmore » wave and calculates EOS values based on the concentrations. A HE-validation suite of model simulations compared to experiments at ambient, hot, and cold temperatures has been developed. They present here a new rate model and comparison with experimental data.« less

  16. Hydrogeology and Water Quality of the Pepacton Reservoir Watershed in Southeastern New York. Part 3. Responses of Stream Base-Flow Chemistry to Hydrogeologic Factors and Nonpoint-Sources of Contamination

    USGS Publications Warehouse

    Heisig, Paul M.; Phillips, Patrick J.

    2004-01-01

    The implications of this study are that seasonal and more frequent base-flow surveys of water chemistry from small stream basins can help refine the understanding of local hydrogeologic systems and define the effects of nonpointsource contamination on base-flow water quality. The concentration of most nonpoint sources in valley-bottom or lower-hillside areas helped indicate the relative contributions of water from hillside and valley-bottom areas at different times of year. The positive correlations between the intensity of nonpoint-source activities and nonpoint-source constituents in base flow underscores the link between land use (nonpoint sources), ground-water quality, and surface-water quality.

  17. Skills-demands compatibility as a determinant of flow experience in an inductive reasoning task.

    PubMed

    Schiefele, Ulrich; Raabe, Andreas

    2011-10-01

    The skills-demands fit hypothesis of flow theory was examined. Based on the earlier finding that high demands in a game situation do not reduce the experience of flow, a cognitive task paradigm was used. The effect of skills-demands compatibility on the experience of flow but not of other, similar psychological states (i.e., concentration, negative and positive activation) was also investigated. Participants were 89 undergraduate students who worked on a number of inductive reasoning tasks in four successive trials with or without skills-demands compatibility. The results clearly supported the skills-demands fit hypothesis; concentration and activation were affected only by the tasks' difficulty. Inductive reasoning tasks are a useful tool for the experimental analysis of flow, and skills-demands compatibility is a significant and powerful condition of flow, but not of other, similar psychological states.

  18. Traveltime and dispersion in the Potomac River, Cumberland, Maryland, to Washington, D.C.

    USGS Publications Warehouse

    Taylor, K.R.; James, R.W.; Helinsky, B.M.

    1984-01-01

    Data from two traveltime and dispersion studies, using rhodamine dye, are used to develop a generalized procedure for predicting traveltime and downstream concentrations resulting from spillage of water-soluble substances at any point along the Potomac River from Cumberland, Maryland, to Washington, D.C. The procedure will allow the approximate solution to almost any spillage problem concerning traveltime and concentration during periods of relatively steady flow between 50- and 95-percent flow duration. A new procedure for calculating unit peak concentration is derived. The new procedure, based on the similarity in shape of a time-concentration curve and a scalene triangle, allows unit peak concentration to be expressed in terms of the length of the dye cloud. This approach facilitates the linking of peak-concentration attenuation curves for long reaches of rivers which are divided into subreaches for study. An example problem is solved for a hypothetical spill of 20,000 pounds of contaminant at Magnolia, West Virginia. The predicted traveltime of the leading edge, peak concentration, and trailing edge to Point of Rocks, Maryland (110 miles downstream), are 295 , 375, and 540 hours, respectively, for a flow duration of 80 percent. The predicted maximum concentration is 340 micrograms/L. (USGS)

  19. Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Lin, H. S.

    2009-08-01

    The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage and thus is a useful indicator of possible subsurface flow path over a large area; and (3) observable Mn distribution in soil profiles can be used as a simple indicator of water flow paths in soils and over the landscape; however, it does require sufficient soil sampling (by excavation or augering) to possibly infer landscape-scale subsurface flow paths. In areas where subsurface interface topography varies similarly with surface topography, surface DEM can be used to simulate potential subsurface lateral flow path reasonably so the cost associated with obtaining depth to subsurface water-restricting layer can be minimized.

  20. Enrichment of viable bacteria in a micro-volume by free-flow electrophoresis.

    PubMed

    Podszun, Susann; Vulto, Paul; Heinz, Helene; Hakenberg, Sydney; Hermann, Carsten; Hankemeier, Thomas; Urban, Gerald A

    2012-02-07

    Macro- to micro-volume concentration of viable bacteria is performed in a microfluidic chip. The enrichment principle is based on free flow electrophoresis and is demonstrated for Gram positive bacteria. Bacteria from a suspension flow are trapped on a gel interface that separates the trapping location from integrated actuation electrodes in order to enable non-destructive trapping. The microfluidic chip contains integrated electrolytic gas expulsion structures and phaseguides for gel and liquid handling. Trapping efficiency is systematically optimized to reach 25 times the initial concentration from a theoretical maximum of 30. Finally, enrichment from analytically relevant concentrations down to 3 × 10(2) colony forming units per millilitre is demonstrated with a trapping efficiency of 80% which represents the most important parameter in enrichment.

  1. Protein Corona in Response to Flow: Effect on Protein Concentration and Structure.

    PubMed

    Jayaram, Dhanya T; Pustulka, Samantha M; Mannino, Robert G; Lam, Wilbur A; Payne, Christine K

    2018-04-09

    Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous injection and the subsequent shear flow will affect the protein corona. Our goal was to determine if shear flow changed the composition of the protein corona and if these changes affected cellular binding. Colorimetric assays of protein concentration and gel electrophoresis demonstrate that polystyrene nanoparticles subjected to flow have a greater concentration of serum proteins adsorbed on the surface, especially plasminogen. Plasminogen, in the absence of nanoparticles, undergoes changes in structure in response to flow, characterized by fluorescence and circular dichroism spectroscopy. The protein-nanoparticle complexes formed from fetal bovine serum after flow had decreased cellular binding, as measured with flow cytometry. In addition to the relevance for nanomedicine, these results also highlight the technical challenges of protein corona studies. The composition of the protein corona was highly dependent on the initial mixing step: rocking, vortexing, or flow. Overall, these results reaffirm the importance of the protein corona in nanoparticle-cell interactions and point toward the challenges of predicting corona composition based on nanoparticle properties. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Evaluation of cloud detection instruments and performance of laminar-flow leading-edge test articles during NASA Leading-Edge Flight-Test Program

    NASA Technical Reports Server (NTRS)

    Davis, Richard E.; Maddalon, Dal V.; Wagner, Richard D.; Fisher, David F.; Young, Ronald

    1989-01-01

    Summary evaluations of the performance of laminar-flow control (LFC) leading edge test articles on a NASA JetStar aircraft are presented. Statistics, presented for the test articles' performance in haze and cloud situations, as well as in clear air, show a significant effect of cloud particle concentrations on the extent of laminar flow. The cloud particle environment was monitored by two instruments, a cloud particle spectrometer (Knollenberg probe) and a charging patch. Both instruments are evaluated as diagnostic aids for avoiding laminar-flow detrimental particle concentrations in future LFC aircraft operations. The data base covers 19 flights in the simulated airline service phase of the NASA Leading-Edge Flight-Test (LEFT) Program.

  3. Stormflow chemistry in the Santa Ana River below Prado Dam and at the diversion downstream from Imperial Highway, southern California, 1995-98

    USGS Publications Warehouse

    Izbicki, John A.; Mendez, Gregory O.; Burton, Carmen A.

    2000-01-01

    The Santa Ana River drains about 2,670 square miles of the densely populated coastal area of southern California, near Los Angeles. Almost all the flow in the river, more than 200,000 acre-feet annually, is diverted into ponds where it infiltrates and recharges underlying aquifers. About 2 million people are dependent on these aquifers for water supply. Stormflow in the Santa Ana River is considered a source of 'high-quality' water suitable for use as a source of ground-water recharge. To test this assumption, stormflow samples were collected at two locations--below Prado Dam and at the diversion point downstream from Imperial Highway--for 12 winter storms between 1995 and 1998. Nitrate concentrations decreased during stormflow from a median concentration of 7.8 milligrams per liter in base flow to concentrations less than 1 milligram per liter in some large storms. Concentrations of chemically reduced forms of nitrogen (nitrite, ammonia, and organic nitrogen) increased during stormflow and are the predominant forms of nitrogen in large stormflows. Dissolved organic carbon (DOC) concentrations increased from a median concentration of 4.6 milligrams per liter in base flow to more than 20 milligrams per liter in some stormflows. Concentrations of DOC were especially high during the first storm of the rainy season, and large increases in DOC concentrations were measured even as a result of small early season storms that did not cause large increases in streamflow. DOC present during early season stormflow had less ultraviolet absorbance at 254 nanometers (UV254 ) per unit of carbon than did DOC from late season stormflows. DOC in water held in storage behind Prado Dam had the highest UV254 absorbance per unit of carbon. Maximum pesticide concentrations in stormflow did not exceed U.S. Environmental Protection Agency Maximum Contaminant Levels. Most pesticide concentrations were less than 1 microgram per liter and less than the detection limits obtained using standard drinking water analyses. Increases in concentrations of pesticides such as diazinon, malathion, and chlorpyrifos in stormflow result from runoff from urban areas downstream from Prado Dam. In general, large late season stormflows have the most pesticide detections of all stormflows sampled. Concentrations of methyl tert-butyl ether (MTBE), a gasoline additive, during base flow were as high as 0.9 microgram per liter and concentrations decreased during stormflow. Like pesticides, the concentrations did not exceed the U.S. Environmental Protection Agency Maximum Contaminant Levels for MTBE.

  4. Flow injection method for the determination of silver concentration in drinking water for spacecrafts.

    PubMed

    Bruzzoniti, Maria Concetta; Kobylinska, Dorota Korte; Franko, Mladen; Sarzanini, Corrado

    2010-04-14

    A flow injection method has been developed for determination of silver. The method is based on a reduction reaction with sodium borohydride which leads to the formation of a colloidal species which is monitored at a wavelength of 390 nm. The reaction variables flow rate, sodium borohydride concentration and pH, which affect sensitivity, were investigated and their effects were established using a two-levels, three-factor experimental design. Further optimization of manifold variables (reaction coil and injection volume) allowed us to determine silver in the range 0.050-5.0 mg L(-1) with a minimum detectable concentration of 0.050 mg L(-1). Silver is added, as biocide, to drinking water for spacecrafts. The chemical species of silver, present in this kind of sample, were characterized by a procedure based on the selective retention of Ag(+) onto a 2.2.2. cryptand based substrate followed by determination of the non-bound and bound (after elution) Ag(+) by the FIA method. The method optimized was applied to a drinking water sample provided for the launch with the Automated Transfer Vehicle (ATV) module Jule Verne to the International Space Station (March 9, 2008). Copyright 2010 Elsevier B.V. All rights reserved.

  5. Simulation of Helical Flow Hydrodynamics in Meanders and Advection-Turbulent Diffusion Using Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Gusti, T. P.; Hertanti, D. R.; Bahsan, E.; Soeryantono, H.

    2013-12-01

    Particle-based numerical methods, such as Smoothed Particle Hydrodynamics (SPH), may be able to simulate some hydrodynamic and morphodynamic behaviors better than grid-based numerical methods. This study simulates hydrodynamics in meanders and advection and turbulent diffusion in straight river channels using Microsoft Excel and Visual Basic. The simulators generate three-dimensional data for hydrodynamics and one-dimensional data for advection-turbulent diffusion. Fluid at rest, sloshing, and helical flow are simulated in the river meanders. Spill loading and step loading are done to simulate concentration patterns associated with advection-turbulent diffusion. Results indicate that helical flow is formed due to disturbance in morphology and particle velocity in the stream and the number of particles does not have a significant effect on the pattern of advection-turbulent diffusion concentration.

  6. A Geochemical Mass-Balance Method for Base-Flow Separation, Upper Hillsborough River Watershed, West-Central Florida, 2003-2005 and 2009

    USGS Publications Warehouse

    Kish, G.R.; Stringer, C.E.; Stewart, M.T.; Rains, M.C.; Torres, A.E.

    2010-01-01

    Geochemical mass-balance (GMB) and conductivity mass-balance (CMB) methods for hydrograph separation were used to determine the contribution of base flow to total stormflow at two sites in the upper Hillsborough River watershed in west-central Florida from 2003-2005 and at one site in 2009. The chemical and isotopic composition of streamflow and precipitation was measured during selected local and frontal low- and high-intensity storm events and compared to the geochemical and isotopic composition of groundwater. Input for the GMB method included cation, anion, and stable isotope concentrations of surface water and groundwater, whereas input for the CMB method included continuous or point-sample measurement of specific conductance. The surface water is a calcium-bicarbonate type water, which closely resembles groundwater geochemically, indicating that much of the surface water in the upper Hillsborough River basin is derived from local groundwater discharge. This discharge into the Hillsborough River at State Road 39 and at Hillsborough River State Park becomes diluted by precipitation and runoff during the wet season, but retains the calcium-bicarbonate characteristics of Upper Floridan aquifer water. Field conditions limited the application of the GMB method to low-intensity storms but the CMB method was applied to both low-intensity and high-intensity storms. The average contribution of base flow to total discharge for all storms ranged from 31 to 100 percent, whereas the contribution of base flow to total discharge during peak discharge periods ranged from less than 10 percent to 100 percent. Although calcium, magnesium, and silica were consistent markers of Upper Floridan aquifer chemistry, their use in calculating base flow by the GMB method was limited because the frequency of point data collected in this study was not sufficient to capture the complete hydrograph from pre-event base-flow to post-event base-flow concentrations. In this study, pre-event water represented somewhat diluted groundwater. Streamflow conductivity integrates the concentrations of the major ions, and the logistics of acquiring specific conductance at frequent time intervals are less complicated than data collection, sample processing, shipment, and analysis of water samples in a laboratory. The acquisition of continuous specific conductance data reduces uncertainty associated with less-frequently collected geochemical point data.

  7. Simulation Study of Nano Aqueous Flow Sensor Based on Amperometric Measurement

    PubMed Central

    Wu, Jian; Zhou, Qingli; Liu, Jun; Lou, Zhengguo

    2006-01-01

    In this paper, a novel nano aqueous flow sensor which consists of two closely spaced amperometric sensors is investigated by digital simulation. The simulation results indicate that the ratio of the responses of two closely spaced amperometric sensors is only related to flow rates in the channel, insensitive to the analyte concentration in the solution. By comparing the output of two amperometric sensors, the flow rate in the channel can be deduced. It is not necessary to determine the analyte concentration in advance. The simulation results show it is able to detect flow rate by in the range of several nano-liters per minute when the distance between the working electrodes of two amperometric sensors is 200 nm and the cross-section of the channel is 1 μm × 1 μm.

  8. 40 CFR 264.1035 - Recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...., temperatures, flow rates, or vent stream organic compounds and concentrations) that represent the conditions... the estimated or design flow rate and organic content of each vent stream and define the acceptable..., drawings, schematics, and piping and instrumentation diagrams based on the appropriate sections of “APTI...

  9. 40 CFR 264.1035 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...., temperatures, flow rates, or vent stream organic compounds and concentrations) that represent the conditions... the estimated or design flow rate and organic content of each vent stream and define the acceptable..., drawings, schematics, and piping and instrumentation diagrams based on the appropriate sections of “APTI...

  10. 40 CFR 264.1035 - Recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...., temperatures, flow rates, or vent stream organic compounds and concentrations) that represent the conditions... the estimated or design flow rate and organic content of each vent stream and define the acceptable..., drawings, schematics, and piping and instrumentation diagrams based on the appropriate sections of “APTI...

  11. 40 CFR 265.1035 - Recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...., temperatures, flow rates or vent stream organic compounds and concentrations) that represent the conditions... -include the estimated or design flow rate and organic content of each vent stream and define the..., drawings, schematics, and piping and instrumentation diagrams based on the appropriate sections of “APTI...

  12. 40 CFR 265.1035 - Recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...., temperatures, flow rates or vent stream organic compounds and concentrations) that represent the conditions... -include the estimated or design flow rate and organic content of each vent stream and define the..., drawings, schematics, and piping and instrumentation diagrams based on the appropriate sections of “APTI...

  13. 40 CFR 264.1035 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...., temperatures, flow rates, or vent stream organic compounds and concentrations) that represent the conditions... the estimated or design flow rate and organic content of each vent stream and define the acceptable..., drawings, schematics, and piping and instrumentation diagrams based on the appropriate sections of “APTI...

  14. 40 CFR 265.1035 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...., temperatures, flow rates or vent stream organic compounds and concentrations) that represent the conditions... -include the estimated or design flow rate and organic content of each vent stream and define the..., drawings, schematics, and piping and instrumentation diagrams based on the appropriate sections of “APTI...

  15. 40 CFR 265.1035 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...., temperatures, flow rates or vent stream organic compounds and concentrations) that represent the conditions... -include the estimated or design flow rate and organic content of each vent stream and define the..., drawings, schematics, and piping and instrumentation diagrams based on the appropriate sections of “APTI...

  16. Concentration polarization-based nonlinear electrokinetics in porous media: induced-charge electroosmosis.

    PubMed

    Leinweber, Felix C; Tallarek, Ulrich

    2005-11-24

    We have investigated induced-charge electroosmotic flow in a fixed bed of ion-permselective glass beads by quantitative confocal laser scanning microscopy. Externally applied electrical fields induce concentration polarization (CP) in the porous medium due to coupled mass and charge transport normal to the charge-selective interfaces. These data reveal the generation of a nonequilibrium electrical double layer in the depleted CP zones and the adjoining anodic hemispheres of the (cation-selective) glass beads above a critical field strength. This initiates CP-based induced-charge electroosmosis along curved interfaces of the quasi-electroneutral macropore space between glass beads. Caused by mutual interference of resulting nonlinear flow with (flow-inducing) space charge regions, an electrohydrodynamic instability can appear locally and realize turbulent flow behavior at low Reynolds numbers. It is characterized by a local destruction of the CP zones and concomitant removal of diffusion-limited mass transfer. More efficient pore-scale lateral mixing also improves macroscopic transport, which is reflected in the significantly reduced axial dispersion of a passive tracer.

  17. On laminar-turbulent transition in nanofluid flows

    NASA Astrophysics Data System (ADS)

    Rudyak, V. Ya.; Minakov, A. V.; Guzey, D. V.; Zhigarev, V. A.; Pryazhnikov, M. I.

    2016-09-01

    The paper presents experimental data on the laminar-turbulent transition in the nanofluid flow in the pipe. The transition in the flows of such fluids is shown to have lower Reynolds numbers than in the base fluid. The degree of the flow destabilization increases with an increase in concentration of nanoparticles and a decrease in their size. On the other hand, in the turbulent flow regime, the presence of particles in the flow leads to the suppression of smallscale turbulent fluctuations. The correlation of the measured viscosity coefficient of considered nanofluids is presented.

  18. Flow field and friction factor of slush nitrogen in a horizontal circular pipe

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Li, Yijian; Wu, Shuqin; Wei, Jianjian

    2018-04-01

    Slush nitrogen is the low-temperature two-phase fluid with solid nitrogen particle suspended in the liquid nitrogen. The flow characteristics of slush nitrogen in a horizontal pipe with the diameter of 16 mm have been experimentally and numerically investigated, under the operating conditions with the inlet flow velocity of 0-4 m/s and the solid volume fraction of 0-23%. The numerical results for pressure drop agree well with those of the experiments, with the relative errors of ±5%. The experimental and numerical results both show that the pressure drop of slush nitrogen is greater than that of subcooled liquid nitrogen and rises with the increasing particle concentration, under the working conditions in present work. Based on the simulation result, the flow pattern evolution of slush nitrogen with the increasing slush Reynolds number has been discussed, which can be classified into homogenous flow, heterogeneous flow and moving bed. The slush effective viscosity and the slush Reynolds number are calculated with Cheng & Law formula, which includes the effects of particle shape, size and type and has a high accuracy for high concentration slurries. Based on the slush Reynolds number, an experimental empirical correlation considering particle conditions for the friction factor of slush nitrogen flow is obtained.

  19. Effect of on-site wastewater disposal on quality of ground water and base flow: A pilot study in Chester County, Southeastern Pennsylvania, 2005

    USGS Publications Warehouse

    Senior, Lisa A.; Cinotto, Peter J.

    2007-01-01

    On-site wastewater disposal has the potential to introduce contaminants into ground water and subsequently, by ground-water discharge, to streams. A pilot study was conducted during 2005 by the U.S. Geological Survey in cooperation with the Chester County Health Department and the Chester County Water Resources Authority to determine if wastewater components, including inorganic constituents and selected organic wastewater compounds, such as detergents, considered to be emerging contaminants, were present in ground water and stream base flow in areas with on-site wastewater disposal. The study area was a small watershed (about 7.1 square miles) of mixed land use drained by Broad Run in central Chester County, Pa. The area is underlain by fractured metamorphic rocks that form aquifers recharged by precipitation. Surface- and ground-water sampling was done in areas with and without on-site wastewater disposal for comparison, including a relatively densely populated village with cesspools and septic systems, a residential area with septic systems, a residential area served by sewers, and agricultural land. Samples were collected in May-June and September 2005 from eight headwater stream sites under base-flow conditions and in June 2005 from eight wells and two springs. Samples were analyzed for major ions, nutrients, boron, bacteria, and a suite of organic wastewater compounds. Several emerging contaminant wastewater compounds, including detergent components, insect repellents, and flame retardants, were detected in base-flow and ground-water samples. Stream base-flow samples generally contained more compounds and higher concentrations of those compounds than did ground-water samples, and of the ground-water samples, samples from springs contained more compounds and higher concentrations than samples from wells. Concentrations of nitrate, chloride, and boron (inorganic constituents associated with wastewater) generally were all elevated in base-flow and ground-water samples in areas with relatively high densities of on-site wastewater disposal (septic systems or cesspools) compared to other areas sampled. Results of this pilot study should be considered preliminary because of limited data.

  20. CATS - A process-based model for turbulent turbidite systems at the reservoir scale

    NASA Astrophysics Data System (ADS)

    Teles, Vanessa; Chauveau, Benoît; Joseph, Philippe; Weill, Pierre; Maktouf, Fakher

    2016-09-01

    The Cellular Automata for Turbidite systems (CATS) model is intended to simulate the fine architecture and facies distribution of turbidite reservoirs with a multi-event and process-based approach. The main processes of low-density turbulent turbidity flow are modeled: downslope sediment-laden flow, entrainment of ambient water, erosion and deposition of several distinct lithologies. This numerical model, derived from (Salles, 2006; Salles et al., 2007), proposes a new approach based on the Rouse concentration profile to consider the flow capacity to carry the sediment load in suspension. In CATS, the flow distribution on a given topography is modeled with local rules between neighboring cells (cellular automata) based on potential and kinetic energy balance and diffusion concepts. Input parameters are the initial flow parameters and a 3D topography at depositional time. An overview of CATS capabilities in different contexts is presented and discussed.

  1. Effects of best-management practices in Bower Creek in the East River priority watershed, Wisconsin, 1991-2009

    USGS Publications Warehouse

    Corsi, Steven R.; Horwatich, Judy A.; Rutter, Troy D.; Bannerman, Roger T.

    2013-01-01

    Hydrologic and water-quality data were collected at Bower Creek during the periods before best-management practices (BMPs), and after BMPs were installed for evaluation of water-quality improvements. The monitoring was done between 1990 and 2009 with the pre-BMP period ending in July 1994 and the post-BMP period beginning in October 2006. BMPs installed in this basin included streambank protection and fencing, stream crossings, grade stabilization, buffer strips, various barnyard-runoff controls, nutrient management, and a low degree of upland BMPs. Water-quality evaluations included base-flow concentrations and storm loads for total suspended solids, total phosphorus, and ammonia nitrogen. The only reductions detected between the base-flow samples of the pre- and post-BMP periods were in median concentrations of total phosphorus from base-flow samples, but not for total suspended solids or dissolved ammonia nitrogen. Differences in storm loads for the three water-quality constituents monitored were not observed during the study period.

  2. Ultrasensitive SERS Flow Detector Using Hydrodynamic Focusing

    PubMed Central

    Negri, Pierre; Jacobs, Kevin T.; Dada, Oluwatosin O.; Schultz, Zachary D.

    2013-01-01

    Label-free, chemical specific detection in flow is important for high throughput characterization of analytes in applications such as flow injection analysis, electrophoresis, and chromatography. We have developed a surface-enhanced Raman scattering (SERS) flow detector capable of ultrasensitive optical detection on the millisecond time scale. The device employs hydrodynamic focusing to improve SERS detection in a flow channel where a sheath flow confines analyte molecules eluted from a fused silica capillary over a planar SERS-active substrate. Increased analyte interactions with the SERS substrate significantly improve detection sensitivity. The performance of this flow detector was investigated using a combination of finite element simulations, fluorescence imaging, and Raman experiments. Computational fluid dynamics based on finite element analysis was used to optimize the flow conditions. The modeling indicates that a number of factors, such as the capillary dimensions and the ratio of the sheath flow to analyte flow rates, are critical for obtaining optimal results. Sample confinement resulting from the flow dynamics was confirmed using wide-field fluorescence imaging of rhodamine 6G (R6G). Raman experiments at different sheath flow rates showed increased sensitivity compared with the modeling predictions, suggesting increased adsorption. Using a 50-millisecond acquisitions, a sheath flow rate of 180 μL/min, and a sample flow rate of 5 μL/min, a linear dynamic range from nanomolar to micromolar concentrations of R6G with a LOD of 1 nM is observed. At low analyte concentrations, rapid analyte desorption is observed, enabling repeated and high-throughput SERS detection. The flow detector offers substantial advantages over conventional SERS-based assays such as minimal sample volumes and high detection efficiency. PMID:24074461

  3. Unsteady Heat Transfer in Channel Flow using Small-Scale Vorticity Concentrations Effected by a Vibrating Reed

    NASA Astrophysics Data System (ADS)

    Hidalgo, Pablo; Glezer, Ari

    2011-11-01

    Heat transfer enhancement by small-scale vorticity concentrations that are induced within the core flow of a mm-scale heated channel are investigated experimentally. These small-scale motions are engendered by the cross stream vibrations of a streamwise cantilevered reed that spans most of the channel's width. The interactions between the reed the core flow over a range of flow rates lead to the formation, shedding, and advection of time-periodic vorticity concentrations that interact with the wall boundary layers, and increase cross stream mixing of the core flow. Heating of the channel walls is controlled using microfabricated serpentine resistive heaters embedded with streamwise arrays of temperature sensors. It is shown that the actuation disrupts the thermal boundary layers and result in significant enhancement of the local and global heat transfer along the channel compared to the baseline flow in the absence of the reed. The effect of the reed on the cross flow is measured using high resolution particle image velocimetry (PIV), and the reed motion is characterized using a laser-based position sensor. The blockage induced by the presence of the reed and its cross stream motion is characterized using detailed streamwise pressure distributions. Supported by DARPA and UTRC.

  4. Nonintrusive fast response oxygen monitoring system for high temperature flows

    NASA Technical Reports Server (NTRS)

    Oh, Daniel B.; Stanton, Alan C.

    1993-01-01

    A new technique has been developed for nonintrusive in situ measurement of oxygen concentration, gas temperature, and flow velocity of the test media in hypersonic wind tunnels. It is based on absorption of near-infrared radiation from inexpensive GaAlAs laser diodes used in optoelectronics industry. It is designed for simultaneous measurements along multiple lines of sight accessed by fiber optics. Molecular oxygen concentration is measured from the magnitude of absorption signals; rotational gas temperature is measured from the intensity ratio of two oxygen absorption lines; and the flow velocity is measured from the Doppler shift of the absorption line positions. This report describes the results of an extensive series of tests of the prototype instrument in laboratory flames emphasizing assessment of the instruments capabilities for quantitative measurement of O2 concentration (mole fraction) and gas temperature.

  5. Comparison between Flow Cytometry and Traditional Culture Methods for Efficacy Assessment of Six Disinfectant Agents against Nosocomial Bacterial Species

    PubMed Central

    Massicotte, Richard; Mafu, Akier A.; Ahmad, Darakhshan; Deshaies, Francis; Pichette, Gilbert; Belhumeur, Pierre

    2017-01-01

    The present study was undertaken to compare the use of flow cytometry (FCM) and traditional culture methods for efficacy assessment of six disinfectants used in Quebec hospitals including: two quaternary ammonium-based, two activated hydrogen peroxide-based, one phenol-based, and one sodium hypochlorite-based. Four nosocomial bacterial species, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Vancomycin-resistant Enterococci faecalis, were exposed to minimum lethal concentrations (MLCs) and sublethal concentrations (1/2 MLCs) of disinfectants under study. The results showed a strong correlation between the two techniques for the presence of dead and live cell populations, as well as, evidence of injured populations with the FCM. The only exception was observed with sodium hypochlorite at higher concentrations where fluorescence was diminished and underestimating dead cell population. The results also showed that FCM can replace traditional microbiological methods to study disinfectant efficacy on bacteria. Furthermore, FCM profiles for E. coli and E. faecalis cells exposed to sublethal concentrations exhibited distinct populations of injured cells, opening a new aspect for future research and investigation to elucidate the role of injured, cultural/noncuturable/resuscitable cell populations in infection control. PMID:28217115

  6. Asymmetric flow field flow fractionation with light scattering detection - an orthogonal sensitivity analysis.

    PubMed

    Galyean, Anne A; Filliben, James J; Holbrook, R David; Vreeland, Wyatt N; Weinberg, Howard S

    2016-11-18

    Asymmetric flow field flow fractionation (AF 4 ) has several instrumental factors that may have a direct effect on separation performance. A sensitivity analysis was applied to ascertain the relative importance of AF 4 primary instrument factor settings for the separation of a complex environmental sample. The analysis evaluated the impact of instrumental factors namely, cross flow, ramp time, focus flow, injection volume, and run buffer concentration on the multi-angle light scattering measurement of natural organic matter (NOM) molar mass (MM). A 2 (5-1) orthogonal fractional factorial design was used to minimize analysis time while preserving the accuracy and robustness in the determination of the main effects and interactions between any two instrumental factors. By assuming that separations resulting in smaller MM measurements would be more accurate, the analysis produced a ranked list of effects estimates for factors and interactions of factors based on their relative importance in minimizing the MM. The most important and statistically significant AF 4 instrumental factors were buffer concentration and cross flow. The least important was ramp time. A parallel 2 (5-2) orthogonal fractional factorial design was also employed on five environmental factors for synthetic natural water samples containing silver nanoparticles (NPs), namely: NP concentration, NP size, NOM concentration, specific conductance, and pH. None of the water quality characteristic effects or interactions were found to be significant in minimizing the measured MM; however, the interaction between NP concentration and NP size was an important effect when considering NOM recovery. This work presents a structured approach for the rigorous assessment of AF 4 instrument factors and optimal settings for the separation of complex samples utilizing efficient orthogonal factional factorial design and appropriate graphical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Development and Application of Regression Models for Estimating Nutrient Concentrations in Streams of the Conterminous United States, 1992-2001

    USGS Publications Warehouse

    Spahr, Norman E.; Mueller, David K.; Wolock, David M.; Hitt, Kerie J.; Gronberg, JoAnn M.

    2010-01-01

    Data collected for the U.S. Geological Survey National Water-Quality Assessment program from 1992-2001 were used to investigate the relations between nutrient concentrations and nutrient sources, hydrology, and basin characteristics. Regression models were developed to estimate annual flow-weighted concentrations of total nitrogen and total phosphorus using explanatory variables derived from currently available national ancillary data. Different total-nitrogen regression models were used for agricultural (25 percent or more of basin area classified as agricultural land use) and nonagricultural basins. Atmospheric, fertilizer, and manure inputs of nitrogen, percent sand in soil, subsurface drainage, overland flow, mean annual precipitation, and percent undeveloped area were significant variables in the agricultural basin total nitrogen model. Significant explanatory variables in the nonagricultural total nitrogen model were total nonpoint-source nitrogen input (sum of nitrogen from manure, fertilizer, and atmospheric deposition), population density, mean annual runoff, and percent base flow. The concentrations of nutrients derived from regression (CONDOR) models were applied to drainage basins associated with the U.S. Environmental Protection Agency (USEPA) River Reach File (RF1) to predict flow-weighted mean annual total nitrogen concentrations for the conterminous United States. The majority of stream miles in the Nation have predicted concentrations less than 5 milligrams per liter. Concentrations greater than 5 milligrams per liter were predicted for a broad area extending from Ohio to eastern Nebraska, areas spatially associated with greater application of fertilizer and manure. Probabilities that mean annual total-nitrogen concentrations exceed the USEPA regional nutrient criteria were determined by incorporating model prediction uncertainty. In all nutrient regions where criteria have been established, there is at least a 50 percent probability of exceeding the criteria in more than half of the stream miles. Dividing calibration sites into agricultural and nonagricultural groups did not improve the explanatory capability for total phosphorus models. The group of explanatory variables that yielded the lowest model error for mean annual total phosphorus concentrations includes phosphorus input from manure, population density, amounts of range land and forest land, percent sand in soil, and percent base flow. However, the large unexplained variability and associated model error precluded the use of the total phosphorus model for nationwide extrapolations.

  8. Numerical analysis of mixing by sharp-edge-based acoustofluidic micromixer

    NASA Astrophysics Data System (ADS)

    Nama, Nitesh; Huang, Po-Hsun; Jun Huang, Tony; Costanzo, Francesco

    2015-11-01

    Recently, acoustically oscillated sharp-edges have been employed to realize rapid and homogeneous mixing at microscales (Huang, Lab on a Chip, 13, 2013). Here, we present a numerical model, qualitatively validated by experimental results, to analyze the acoustic mixing inside a sharp-edge-based micromixer. We extend our previous numerical model (Nama, Lab on a Chip, 14, 2014) to combine the Generalized Lagrangian Mean (GLM) theory with the convection-diffusion equation, while also allowing for the presence of a background flow as observed in a typical sharp-edge-based micromixer. We employ a perturbation approach to divide the flow variables into zeroth-, first- and second-order fields which are successively solved to obtain the Lagrangian mean velocity. The Langrangian mean velocity and the background flow velocity are further employed with the convection-diffusion equation to obtain the concentration profile. We characterize the effects of various operational and geometrical parameters to suggest potential design changes for improving the mixing performance of the sharp-edge-based micromixer. Lastly, we investigate the possibility of generation of a spatio-temporally controllable concentration gradient by placing sharp-edge structures inside the microchannel.

  9. A multilayer microdevice for cell-based high-throughput drug screening

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Wang, Lei; Xu, Zheng; Li, Jingmin; Ding, Xiping; Wang, Qi; Chunyu, Li

    2012-06-01

    A multilayer polydimethylsiloxane microdevice for cell-based high-throughput drug screening is described in this paper. This established microdevice was based on a modularization method and it integrated a drug/medium concentration gradient generator (CGG), pneumatic microvalves and a cell culture microchamber array. The CGG was able to generate five steps of linear concentrations with the same outlet flow rate. The medium/drug flowed through CGG and then into the pear-shaped cell culture microchambers vertically. This vertical perfusion mode was used to reduce the impact of the shear stress on the physiology of cells induced by the fluid flow in the microchambers. Pear-shaped microchambers with two arrays of miropillars at each outlet were adopted in this microdevice, which were beneficial to cell distribution. The chemotherapeutics Cisplatin (DDP)-induced Cisplatin-resistant cell line A549/DDP apoptotic experiments were performed well on this platform. The results showed that this novel microdevice could not only provide well-defined and stable conditions for cell culture, but was also useful for cell-based high-throughput drug screening with less reagents and time consumption.

  10. Research on influence of wax deposition on flow state in coiled tubing with cable inside

    NASA Astrophysics Data System (ADS)

    Ye, Qinyou; Xian, Linyun; Zhang, Fan; Yu, Han; Li, Xiao

    2018-04-01

    The effect of the morphology of the wax on the flow state in the coiled tubing with concentric cable was studied by numerical simulation. The results show that flow stream lines of crude oil are parallel to each other in the tubing with no waxing. It is disturbed at the two ends of wax deposition, transvers flow is formed at ends of wax and flow oil is speeded up in gap between wax and cable, friction pressure loss is then increased. This kind of influence becomes more serious with the increase of wax deposition proportion and thickness. An equivalent thickness is proposed to incorporate the influence of wax deposition proportion, length and thickness. With this parameter, a model is developed to calculate the pressure loss induced by wax on the base of concentric model, which can be used conveniently in engineering.

  11. 40 CFR 98.295 - Procedures for estimating missing data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... value shall be the best available estimate(s) of the parameter(s), based on all available process data or data used for accounting purposes. (c) For each missing value collected during the performance test (hourly CO2 concentration, stack gas volumetric flow rate, or average process vent flow from mine...

  12. STUDY USING A THREE-DIMENSIONAL SMOG FORMATION MODEL UNDER CONDITIONS OF COMPLEX FLOW

    EPA Science Inventory

    To clarify the photochemical smog formation mechanisms under conditions of complex flow, the SAI Urban Airshed Model was evaluated using a 1981 field observed data base. In the Tokyo Metropolitan Area higher O3 concentrations are usually observed near the shore in the morning. As...

  13. A software-based sensor for combined sewer overflows.

    PubMed

    Leonhardt, G; Fach, S; Engelhard, C; Kinzel, H; Rauch, W

    2012-01-01

    A new methodology for online estimation of excess flow from combined sewer overflow (CSO) structures based on simulation models is presented. If sufficient flow and water level data from the sewer system is available, no rainfall data are needed to run the model. An inverse rainfall-runoff model was developed to simulate net rainfall based on flow and water level data. Excess flow at all CSO structures in a catchment can then be simulated with a rainfall-runoff model. The method is applied to a case study and results show that the inverse rainfall-runoff model can be used instead of missing rain gauges. Online operation is ensured by software providing an interface to the SCADA-system of the operator and controlling the model. A water quality model could be included to simulate also pollutant concentrations in the excess flow.

  14. Reference NO2 calibration system for ground-based intercomparisons during NASA's GTE/CITE 2 mission

    NASA Technical Reports Server (NTRS)

    Fried, Alan; Nunnermacker, Linda; Cadoff, Barry; Sams, Robert; Yates, Nathan

    1990-01-01

    An NO2 calibration system, based on a permeation device and a two-stage dynamic dilution system, was designed, constructed, and characterized at the National Bureau of Standards. In this system, calibrant flow entering the second stage was controlled without contacting a metal flow controller, and permeation oven temperature and flow were continuously maintained, even during transport. The system performance and the permeation emission rate were characterized by extensive laboratory tests. This system was capable of accurately delivering known NO2 concentrations in the ppbv and sub-ppbv concentration range with a total uncertainty of approximately 10 percent. The calibration system was placed on board NASA research aircraft at both the Wallops Island and Ames research facilities. There it was employed as the reference standard in NASA's Global Tropospheric Experiment/Chemical Instrumental Test and Evaluation 2 mission in August 1986.

  15. Hydrology and the hypothetical effects of reducing nutrient applications of water quality in the Bald Eagle Creek Headwaters, southeastern Pennsylvania prior to implementation of agricultural best-management practices

    USGS Publications Warehouse

    Fishel, D.K.; Langland, M.J.; Truhlar, M.V.

    1991-01-01

    The report characterizes a 0.43-square-mile agricultural watershed in York County, underlain by albite-chlorite and oligoclase-mica schist in the Lower Susquehanna River basin, that is being studied as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program. The water quality of Bald Eagle Creek was studied from October 1985 through September 1987 prior to the implementation of Best-Management Practices to reduce nutrient and sediment discharge into Muddy Creek, a tributary to the Chesapeake Bay. About 88 percent of the watershed is cropland and pasture, and nearly 33 percent of the cropland is used for corn. The animal population is entirely dairy cattle. About 85,640 pounds of nitrogen (460 pounds per acre) and 21,800 pounds of phosphorus (117 pounds per acre) were applied to fields; 52 percent of the nitrogen and 69 percent of the phosphorus was from commercial fertilizer. Prior to fertilization, nitrate nitrogen in the soil ranged from 36 to 136 pounds per acre and phosphorus ranged from 0.89 to 5.7 pounds per acre in the top 4 feet of soil. Precipitation was about 18 percent below normal and streamflow about 35 percent below normal during the 2-year study. Eighty-four percent of the 20.44 inches of runoff was base flow. Median concentrations of total nitrogen and dissolved phosphorous in base flow were 0.05 and 0.04 milligrams per liter as phosphorus, respectively. Concentrations of dissolved nitrate in base flow increased following wet periods after crops were harvested and manure was applied. During the growing season, concentrations decreased similarly to those observed in carbonate-rock areas as nutrient uptake and evapotranspiration by corn increased. About 4,550 pounds of suspended sediment, 5,250 pounds of nitrogen, and 66.6 pounds of phosphorus discharged in base flow during the 2-year period. The suspended sediment load was about 232,000 pounds in stormflow from 26 storms that contributed 51 percent of the total stormflow. The nitrogen load was about 651 pounds and the phosphorus load was about 74 pounds in stormflow from 16 storms that contributed 28 percent of the total stormflow. It is estimated that concentrations of total nitrogen and phosphorus in base flow need to be reduced by 12 and 48 percent, respectively, to detect changes during the nutrient-management phase. Likewise, loads to total nitrogen and phosphorus in base flow need to be reduced by 62 and 57 percent.

  16. Potentiometric perchlorate determination at nanomolar concentrations in vegetables.

    PubMed

    Leoterio, Dilmo M S; Paim, Ana Paula S; Belian, Mônica F; Galembeck, André; Lavorante, André F; Pinto, Edgar; Amorim, Célia G; Araújo, Alberto N; Montenegro, Maria C B S M

    2017-07-15

    In this work, an expeditious method based on the multi-commutated flow-analysis concept with potentiometric detection is proposed to perform determinations of the emergent contaminant perchlorate in vegetable matrices down to nanomolar concentration. To accomplish the task, a tubular shaped potentiometric sensor selective to perchlorate ion was constructed with a PVC membrane containing 12mmol/kg of the polyamine bisnaphthalimidopropyl-4,4'-diaminodiphenylmethane and 2-nitrophenyl phenyl ether 68% (w/w) as plasticizer casted on a conductive epoxy resin. Under optimal flow conditions, the sensor responded linearly in the concentration range of 6.3×10 -7 -1.0×10 -3 mol/L perchlorate. In order to extend the determinations to lower concentrations (4.6(±1.3)×10 -10 mol/L perchlorate), a column packed with 70mg of sodium 2,5,8,11,14-pentaoxa-1-silacyclotetradecane-polymer was coupled to the flow-system thus enabling prior pre-concentration of the perchlorate. The proposed procedure provides a simpler alternative for the determination of perchlorate in foods, nowadays only allowed by sophisticated and expensive equipment and laborious methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed

    USGS Publications Warehouse

    Schilling, K.E.; Helmers, M.

    2008-01-01

    The similarity of tiled-drained watersheds to karst drainage basins can be used to improve understanding of watershed-scale nutrient losses from subsurface tile drainage networks. In this study, short-term variations in discharge and chemistry were examined from a tile outlet collecting subsurface tile flow from a 963 ha agricultural watershed. Study objectives were to apply analytical techniques from karst springs to tile discharge to evaluate water sources and estimate the loads of agricultural pollutants discharged from the tile with conduit, intermediate and diffuse flow regimes. A two-member mixing model using nitrate, chloride and specific conductance was used to distinguish rainwater versus groundwater inputs. Results indicated that groundwater comprised 75% of the discharge for a three-day storm period and rainwater was primarily concentrated during the hydrograph peak. A contrasting pattern of solute concentrations and export loads was observed in tile flow. During base flow periods, tile flow consisted of diffuse flow from groundwater sources and contained elevated levels of nitrate, chloride and specific conductance. During storm events, suspended solids and pollutants adhered to soil surfaces (phosphorus, ammonium and organic nitrogen) were concentrated and discharged during the rapid, conduit flow portion of the hydrograph. During a three-day period, conduit flow occurred for 5.6% of the time but accounted for 16.5% of the total flow. Nitrate and chloride were delivered primarily with diffuse flow (more than 70%), whereas 80-94% of total suspended sediment, phosphorus and ammonium were exported with conduit and intermediate flow regimes. Understanding the water sources contributing to tile drainage and the manner by which pollutant discharge occurs from these systems (conduit, intermediate or diffuse flow) may be useful for designing, implementing and evaluating non-point source reduction strategies in tile-drained landscapes. ?? 2007 Elsevier B.V. All rights reserved.

  18. Inhibition of recombinase polymerase amplification by background DNA: a lateral flow-based method for enriching target DNA.

    PubMed

    Rohrman, Brittany; Richards-Kortum, Rebecca

    2015-02-03

    Recombinase polymerase amplification (RPA) may be used to detect a variety of pathogens, often after minimal sample preparation. However, previous work has shown that whole blood inhibits RPA. In this paper, we show that the concentrations of background DNA found in whole blood prevent the amplification of target DNA by RPA. First, using an HIV-1 RPA assay with known concentrations of nonspecific background DNA, we show that RPA tolerates more background DNA when higher HIV-1 target concentrations are present. Then, using three additional assays, we demonstrate that the maximum amount of background DNA that may be tolerated in RPA reactions depends on the DNA sequences used in the assay. We also show that changing the RPA reaction conditions, such as incubation time and primer concentration, has little effect on the ability of RPA to function when high concentrations of background DNA are present. Finally, we develop and characterize a lateral flow-based method for enriching the target DNA concentration relative to the background DNA concentration. This sample processing method enables RPA of 10(4) copies of HIV-1 DNA in a background of 0-14 μg of background DNA. Without lateral flow sample enrichment, the maximum amount of background DNA tolerated is 2 μg when 10(6) copies of HIV-1 DNA are present. This method requires no heating or other external equipment, may be integrated with upstream DNA extraction and purification processes, is compatible with the components of lysed blood, and has the potential to detect HIV-1 DNA in infant whole blood with high proviral loads.

  19. A Leaf-Inspired Luminescent Solar Concentrator for Energy-Efficient Continuous-Flow Photochemistry.

    PubMed

    Cambié, Dario; Zhao, Fang; Hessel, Volker; Debije, Michael G; Noël, Timothy

    2017-01-19

    The use of solar light to promote chemical reactions holds significant potential with regard to sustainable energy solutions. While the number of visible light-induced transformations has increased significantly, the use of abundant solar light has been extremely limited. We report a leaf-inspired photomicroreactor that constitutes a merger between luminescent solar concentrators (LSCs) and flow photochemistry to enable green and efficient reactions powered by solar irradiation. This device based on fluorescent dye-doped polydimethylsiloxane collects sunlight, focuses the energy to a narrow wavelength region, and then transports that energy to embedded microchannels where the flowing reactants are converted. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Impact of Wildfire on Solute Release in Forested Catchments, Jemez River, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Sanchez, R. A.; Meixner, T.; McIntosh, J. C.; Chorover, J.

    2017-12-01

    Wildfires represent a large disturbance to the hydrology and biogeochemistry of forested catchments. The number, size and severity of wildfires have significantly increased in the western United States since 1990. Nutrients and other elements (e.g. Ca) that were taken up and stored by biomass are released from burned vegetation during forest fires and transported downgradient via overland flow, shallow subsurface flow, and/or deep groundwater flow. Ash accumulations on hillslopes may also store particulate carbon and contain elevated concentrations of elements that maybe leached into surface and ground water over extended periods of time. In 2013, the Thompson Ridge wildfire burned headwater catchments in the Jemez River Basin Critical Zone Observatory (JRB-CZO) within the Valles Caldera National Preserve, New Mexico USA. The burn severity and area impacted were different in the three headwater catchments. This study investigated the impact of the wildfire on surface water quality, including how the fire-induced impacts evolved with time, and how biogeochemical processes controlled post-fire solute concentrations in the surface water. Comparison of pre- and post-fire surface water solute chemistry shows increases in major cations and anions following fire. Increases in nitrate and sulfate concentrations in streams after the wildfire were likely from leaching of burned biomass. The elevated NO3- and SO42- concentrations persisted for over two years, and were even higher during spring snowmelt. Meanwhile, base cation concentrations increased immediately, within a few weeks after the fire, likely related to leaching from combusted organic matter; and, over a period of approximately two months, base cation concentrations returned to pre-fire levels. Trace element behavior was also altered by fire. For example, while pre-fire aluminum concentrations in stream flow increased significantly during the wet seasons (snowmelt and monsoons), the post-fire observations do not show significant changes with increase in discharge.

  1. Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

    NASA Astrophysics Data System (ADS)

    Vitello, Peter; Fried, Lawrence; Howard, Mike; Levesque, George; Souers, Clark

    2011-06-01

    Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to ALE hydrodynamics codes to model detonations. We term our model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculate EOS values based on the concentrations. A validation suite of model simulations compared to recent high fidelity metal push experiments at ambient and cold temperatures has been developed. We present here a study of multi-time scale kinetic rate effects for these experiments. Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. Spatial scale effect on sediment dynamics in basin-wide floods within a typical agro-watershed: A case study in the hilly loess region of the Chinese Loess Plateau.

    PubMed

    Zhang, Le-Tao; Li, Zhan-Bin; Wang, Shan-Shan

    2016-12-01

    Scale issues, which have been extensively studied in the domain of soil erosion, are considerably significant in geomorphologic processes and hydrologic modelling. However, relatively scarce efforts have been made to quantify the spatial scale effect on event-based sediment dynamics in basin-wide floods. To address this issue, sediment-runoff yield data of 44 basin-wide flood events were collected from gauging stations at the Chabagou river basin, a typical agro-basin (unmanaged) in the hilly loess region of the Chinese Loess Plateau. Thus, the spatial scale effect on event-based sediment dynamics was investigated in the basin system across three different spatial scales from sublateral to basin outlet. Results showed that the event-based suspended sediment concentration, as well as the intra- and inter-scale flow-sediment relationships remained spatially constant. Hence, almost all the sediment-laden flows can reach at the detachment-limited maximum concentration across scales, specifically for hyperconcentrated flows. Consequently, limited influence was exerted by upstream sediment-laden flow on downstream sediment output, particularly for major sediment-producing events. However, flood peak discharge instead of total flood runoff amount can better interpret the dynamics of sediment yield across scales. As a composite parameter, the proposed stream energy factor combines flood runoff depth and flood peak discharge, thereby showing more advantages to describe the event-based inter-scale flow-sediment relationship than other flow-related variables. Overall, this study demonstrates the process-specific characteristics of soil erosion by water flows in the basin system. Therefore, event-based sediment control should be oriented by the process to cut off the connectivity of hyperconcentrated flows and redistribute the erosive energy of flowing water in terms of temporality and spatiality. Furthermore, evaluation of soil conservation benefits should be based on the process of runoff regulation to comprehensively assess the efficiency of anti-erosion strategies in sediment control at the basin scale. Copyright © 2016. Published by Elsevier B.V.

  3. Characteristics of an aerosol photometer while automatically controlling chamber dilution-air flow rate.

    PubMed

    O'Shaughnessy, P T; Hemenway, D R

    2000-10-01

    Trials were conducted to determine those factors that affect the accuracy of a direct-reading aerosol photometer when automatically controlling airflow rate within an exposure chamber to regulate airborne dust concentrations. Photometer response was affected by a shift in the aerosol size distribution caused by changes in chamber flow rate. In addition to a dilution effect, flow rate also determined the relative amount of aerosol lost to sedimentation within the chamber. Additional calculations were added to a computer control algorithm to compensate for these effects when attempting to automatically regulate flow based on a proportional-integral-derivative (PID) feedback control algorithm. A comparison between PID-controlled trials and those performed with a constant generator output rate and dilution-air flow rate demonstrated that there was no significant decrease in photometer accuracy despite the many changes in flow rate produced when using PID control. Likewise, the PID-controlled trials produced chamber aerosol concentrations within 1% of a desired level.

  4. Space-time least-squares finite element method for convection-reaction system with transformed variables

    PubMed Central

    Nam, Jaewook

    2011-01-01

    We present a method to solve a convection-reaction system based on a least-squares finite element method (LSFEM). For steady-state computations, issues related to recirculation flow are stated and demonstrated with a simple example. The method can compute concentration profiles in open flow even when the generation term is small. This is the case for estimating hemolysis in blood. Time-dependent flows are computed with the space-time LSFEM discretization. We observe that the computed hemoglobin concentration can become negative in certain regions of the flow; it is a physically unacceptable result. To prevent this, we propose a quadratic transformation of variables. The transformed governing equation can be solved in a straightforward way by LSFEM with no sign of unphysical behavior. The effect of localized high shear on blood damage is shown in a circular Couette-flow-with-blade configuration, and a physiological condition is tested in an arterial graft flow. PMID:21709752

  5. Research highlights: increasing paper possibilities.

    PubMed

    Wu, Chueh-Yu; Adeyiga, Oladunni; Lin, Jonathan; Di Carlo, Dino

    2014-09-07

    In this issue we highlight three recent papers that demonstrate new strategies to extend the capabilities of paper microfluidics. Paper (a mesh of porous fibers) has a long history as a substrate to perform biomolecular assays. Traditional lateral flow immunoassays (LFAs) are widely used for rapid diagnostic tests, and perform well when a yes or no answer is required and the analyte of interest is at relatively high concentrations. High concentrations are required because usually only a small volume of analyte-containing fluid flows past the detection region, leading to a limited signal. Further, the small pores within paper matrices prevent the use of paper to control the flow of larger particles and cells, limiting the use of paper microfluidics for cell-based diagnostics. The work we highlight addresses these important unmet challenges in paper microfluidics: enriching low concentration analytes to a higher concentration in a smaller volume that can be processed effectively, and using paper to pump flows in larger channels amenable to cells. Applying these new approaches may allow diagnosis of disease states currently technically unachievable using current LFA systems, while maintaining many of the "un-instrumented" advantages of an assay on self-wicking paper.

  6. Sparger system for MMH-helium vents

    NASA Technical Reports Server (NTRS)

    Rakow, A.

    1983-01-01

    Based on a calculated vent flow rate and MMH concentration, a TI-59 program was run to determine total sparger hole area for a given sparger inlet pressure. Hole diameter is determined from a mass transfer analysis in the holding tank to achieve complete capture of MMH. In addition, based on oxidation kinetics and vapor pressure data, MMh atmospheric concentrations are determined 2 ft above the holding tank.

  7. Film depth and concentration banding in free-surface Couette flow of a suspension.

    PubMed

    Timberlake, Brian D; Morris, Jeffrey F

    2003-05-15

    The film depth of a free-surface suspension flowing in a partially filled horizontal concentric-cylinder, or Couette, device has been studied in order to assess its role in the axial concentration banding observed in this flow. The flow is driven by rotation of the inner cylinder. The banding phenomenon is characterized by particle-rich bands which under flow appear as elevated regions at the free surface separated axially by regions dilute relative to the mean concentration. The concentric cylinders studied had outer radius R(o) = 2.22 cm and inner radii R(i) = 0.64, 0.95 and 1.27 cm; the suspension, of bulk particle volume fraction phi = 0.2 in all experiments described, was composed of particles of either 250-300 microm diameter or less than 106 microm diameter, with the suspending fluid an equal density liquid of viscosity 160 P. The ratio of the maximum to the minimum particle volume fraction along the axis in the segregated condition varies from O(1) to infinite. The latter case implies complete segregation, with bands of clear fluid separating the concentrated bands. The film depth has been varied through variation of the filled fraction, f, of the annular gap between the cylinders and through the rotation rate. Film depth was analysed by edge detection of video images of the free surface under flow, and the time required for band formation was determined for all conditions at which film depth was studied. The film depth increases roughly as the square root of rotation speed for f = 0.5. Band formation is more rapid for thicker films associated with more rapid rotation rates at f = 0.5, whereas slower formation rates are observed with thicker films caused by large f, f > 0.65. It is observed that the film depth over the inner cylinder grows prior to onset of banding, for as yet unknown reasons. A mechanism for segregation of particles and liquid in film flows based upon 'differential drainage' of the particle and liquid phase in the gravity-driven flow within the film over the inner cylinder is formulated to describe the onset of concentration fluctuations. This model predicts that suspension drainage flows lead to growth of fluctuations in phi under regions of negative surface curvature.

  8. Combinational concentration gradient confinement through stagnation flow.

    PubMed

    Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung

    2016-01-21

    Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays.

  9. Edge Vortex Flow Due to Inhomogeneous Ion Concentration

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2017-04-01

    The ion distribution of an open parallel electrode system is not known even though it is often used to measure the electrical characteristics of an electrolyte. Thus, for an open electrode system, we perform a non-steady direct multiphysics simulation based on the coupled Poisson-Nernst-Planck and Stokes equations and find that inhomogeneous ion concentrations at edges cause vortex flows and suppress the anomalous increase in the ion concentration near the electrodes. A surprising aspect of our findings is that the large vortex flows at the edges approximately maintain the ion-conserving condition, and thus the ion distribution of an open electrode system can be approximated by the solution of a closed electrode system that considers the ion-conserving condition rather than the Gouy-Chapman solution, which neglects the ion-conserving condition. We believe that our findings make a significant contribution to the understanding of surface science.

  10. Spatio-temporal Evolution of Velocity Structure, Concentration and Grain-size Stratification within Experimental Particulate Gravity Flows: Potential Input Parameters for Numerical Models

    NASA Astrophysics Data System (ADS)

    McCaffrey, W.; Choux, C.; Baas, J.; Haughton, P.

    2001-12-01

    Little is known about the combined spatio-temporal evolution of velocity structure, concentration and grain size stratification within particulate gravity currents. Yet these data are of primary importance for numerical model validation, prior to application to natural flows, such as pyroclastic density currents and turbidity currents. A comprehensive study was carried out on a series of experimental particulate gravity flows of 5% by volume initial concentration. The sediment analogue was polydisperse silica flour (mean grain size ~8 microns). A uniform 30 liter suspension was prepared in an overhead reservoir, then allowed to drain (in about one minute) into an flume 10 m long and 0.3 m wide, water-filled to a depth of 0.3 m. Each flow was siphoned continuously for 52 s at 5 different heights (spaced evenly from 0.6 to 4.6 cm) with samples collected at a frequency of 0.25Hz, generating 325 samples for grain-size and concentration analysis. Simultaneously, six 4-MHz UDVP (Ultrasonic Doppler Velocity Profiling) probes recorded the horizontal component of flow velocity. All but the highest probe were positioned at the same height as the siphons. The sampling location was shifted 1.32m down-current for each of five nominally identical flows, yielding sample locations at 1.32, 2.64, 3.96, 5.28 and 6.60m from the inlet point. These data can be combined to give both the temporal and spatial evolution of a single idealised flow. The concentration data can be used to defined the structure of the flow. The flow first propagated as a jet, then became stratified. The length of the head increased with increasing distance from the reservoir (although the head propagation velocity was uniform). The maximum concentration was located at the base of the flow towards the rear of the head. Grain-size analysis showed that the head was enriched in coarse particles even at the most distal sampling location. Distinct flow stratification developed at a distance between 1.3 m and 2.6 m from the reservoir. In the body of the current, the suspended sediment was normally graded, whereas the tail exhibited inverse grading. This inverse grading may be linked to coarse particles in the head being swept upwards and backwards, then falling back into the body of the current. Alternatively, body turbulence may inhibit the settling of coarse particles. Turbulence may also explain the presence of coarse particles in the flow's head, with turbulence intensity apparently correlated with the flow competence.

  11. Discharge-nitrate data clustering for characterizing surface-subsurface flow interaction and calibration of a hydrologic model

    NASA Astrophysics Data System (ADS)

    Shrestha, R. R.; Rode, M.

    2008-12-01

    Concentration of reactive chemicals has different chemical signatures in baseflow and surface runoff. Previous studies on nitrate export from a catchment indicate that the transport processes are driven by subsurface flow. Therefore nitrate signature can be used for understanding the event and pre-event contributions to streamflow and surface-subsurface flow interactions. The study uses flow and nitrate concentration time series data for understanding the relationship between these two variables. Unsupervised artificial neural network based learning method called self organizing map is used for the identification of clusters in the datasets. Based on the cluster results, five different pattern in the datasets are identified which correspond to (i) baseflow, (ii) subsurface flow increase, (iii) surface runoff increase, (iv) surface runoff recession, and (v) subsurface flow decrease regions. The cluster results in combination with a hydrologic model are used for discharge separation. For this purpose, a multi-objective optimization tool NSGA-II is used, where violation of cluster results is used as one of the objective functions. The results show that the use of cluster results as supplementary information for the calibration of a hydrologic model gives a plausible simulation of subsurface flow as well total runoff at the catchment outlet. The study is undertaken using data from the Weida catchment in the North-Eastern Germany, which is a sub-catchment of the Weisse Elster river in the Elbe river basin.

  12. Stagnation point flow of viscoelastic nanomaterial over a stretched surface

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Kiyani, M. Z.; Ahmad, I.; Khan, M. Ijaz; Alsaedi, A.

    2018-06-01

    Present communication aims to discuss magnetohydrodynamic (MHD) stagnation point flow of Jeffrey nanofluid by a stretching cylinder. Modeling is based upon Brownian motion, thermophoresis, thermal radiation and heat generation. Problem is attempted by using (HAM). Residual errors for h-curves are plotted. Convergent solutions for velocity, temperature and concentration are obtained. Skin friction coefficient, local Nusselt number and Sherwood number are studied. It is examined that velocity field decays in the presence of higher estimation of magnetic variable. Furthermore temperature and concentration fields are enhanced for larger magnetic variable.

  13. Derivation of Hunt equation for suspension distribution using Shannon entropy theory

    NASA Astrophysics Data System (ADS)

    Kundu, Snehasis

    2017-12-01

    In this study, the Hunt equation for computing suspension concentration in sediment-laden flows is derived using Shannon entropy theory. Considering the inverse of the void ratio as a random variable and using principle of maximum entropy, probability density function and cumulative distribution function of suspension concentration is derived. A new and more general cumulative distribution function for the flow domain is proposed which includes several specific other models of CDF reported in literature. This general form of cumulative distribution function also helps to derive the Rouse equation. The entropy based approach helps to estimate model parameters using suspension data of sediment concentration which shows the advantage of using entropy theory. Finally model parameters in the entropy based model are also expressed as functions of the Rouse number to establish a link between the parameters of the deterministic and probabilistic approaches.

  14. Characterization and simulation of fate and transport of selected volatile organic compounds in the vicinities of the Hadnot Point Industrial Area and landfill: Chapter A Supplement 6 in Analyses and historical reconstruction of groundwater flow, contaminant fate and transport, and distribution of drinking water within the service areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina

    USGS Publications Warehouse

    Jones, L. Elliott; Suárez-Soto, René J.; Anderson, Barbara A.; Maslia, Morris L.

    2013-01-01

    This supplement of Chapter A (Supplement 6) describes the reconstruction (i.e. simulation) of historical concentrations of tetrachloroethylene (PCE), trichloroethylene (TCE), and benzene3 in production wells supplying water to the Hadnot Base (USMCB) Camp Lejeune, North Carolina (Figure S6.1). A fate and transport model (i.e., MT3DMS [Zheng and Wang 1999]) was used to simulate contaminant migration from source locations through the groundwater system and to estimate mean contaminant concentrations in water withdrawn from water-supply wells in the vicinity of the Hadnot Point Industrial Area (HPIA) and the Hadnot Point landfill (HPLF) area.4 The reconstructed contaminant concentrations were subsequently input into a flow-weighted, materials mass balance (mixing) model (Masters 1998) to estimate monthly mean concentrations of the contaminant in finished water 5 at the HPWTP (Maslia et al. 2013). The calibrated fate and transport models described herein were based on and used groundwater velocities derived from groundwater-flow models that are described in Suárez-Soto et al. (2013). Information data pertinent to historical operations of water-supply wells are described in Sautner et al. (2013) and Telci et al. (2013).

  15. Lattice Boltzmann simulation of shear-induced particle migration in plane Couette-Poiseuille flow: Local ordering of suspension

    NASA Astrophysics Data System (ADS)

    Chun, Byoungjin; Kwon, Ilyoung; Jung, Hyun Wook; Hyun, Jae Chun

    2017-12-01

    The shear-induced migration of concentrated non-Brownian monodisperse suspensions in combined plane Couette-Poiseuille (C-P) flows is studied using a lattice Boltzmann simulation. The simulations are mainly performed for a particle volume fraction of ϕbulk = 0.4 and H/a = 44.3, 23.3, where H and a denote the channel height and radius of suspended particles, respectively. The simulation method is validated in two simple flows, plane Poiseuille and plane Couette flows. In the Poiseuille flow, particles migrate to the mid-plane of the channel where the local concentration is close to the limit of random-close-packing, and a random structure is also observed at the plane. In the Couette flow, the particle distribution remains in the initial uniform distribution. In the combined C-P flows, the behaviors of migration are categorized into three groups, namely, Poiseuille-dominant, Couette-dominant, and intermediate regimes, based on the value of a characteristic force, G, where G denotes the relative magnitude of the body force (P) against the wall-driving force (C). With respect to the Poiseuille-dominant regime, the location of the maximum concentration is shifted from the mid-plane to the lower wall moving in the same direction as the external body force, when G decreases. With respect to the Couette-dominant regime, the behavior is similar to that of a simple shear flow with the exception that a slightly higher concentration of particles is observed near the lower wall. However, with respect to the intermediate value of G, several layers of highly ordered particles are unexpectedly observed near the lower wall where the plane of maximum concentration is located. The locally ordered structure is mainly due to the lateral migration of particles and wall confinement. The suspended particles migrate toward a vanishingly small shear rate at the wall, and they are consequently layered into highly ordered two-dimensional structures at the high local volume fraction.

  16. An assessment of the suspended sediment rating curve approach for load estimation on the Rivers Bandon and Owenabue, Ireland

    NASA Astrophysics Data System (ADS)

    Harrington, Seán T.; Harrington, Joseph R.

    2013-03-01

    This paper presents an assessment of the suspended sediment rating curve approach for load estimation on the Rivers Bandon and Owenabue in Ireland. The rivers, located in the South of Ireland, are underlain by sandstone, limestones and mudstones, and the catchments are primarily agricultural. A comprehensive database of suspended sediment data is not available for rivers in Ireland. For such situations, it is common to estimate suspended sediment concentrations from the flow rate using the suspended sediment rating curve approach. These rating curves are most commonly constructed by applying linear regression to the logarithms of flow and suspended sediment concentration or by applying a power curve to normal data. Both methods are assessed in this paper for the Rivers Bandon and Owenabue. Turbidity-based suspended sediment loads are presented for each river based on continuous (15 min) flow data and the use of turbidity as a surrogate for suspended sediment concentration is investigated. A database of paired flow rate and suspended sediment concentration values, collected between the years 2004 and 2011, is used to generate rating curves for each river. From these, suspended sediment load estimates using the rating curve approach are estimated and compared to the turbidity based loads for each river. Loads are also estimated using stage and seasonally separated rating curves and daily flow data, for comparison purposes. The most accurate load estimate on the River Bandon is found using a stage separated power curve, while the most accurate load estimate on the River Owenabue is found using a general power curve. Maximum full monthly errors of - 76% to + 63% are found on the River Bandon with errors of - 65% to + 359% found on the River Owenabue. The average monthly error on the River Bandon is - 12% with an average error of + 87% on the River Owenabue. The use of daily flow data in the load estimation process does not result in a significant loss of accuracy on either river. Historic load estimates (with a 95% confidence interval) were hindcast from the flow record and average annual loads of 7253 ± 673 tonnes on the River Bandon and 1935 ± 325 tonnes on the River Owenabue were estimated to be passing the gauging stations.

  17. Solids-based concentrated solar power receiver

    DOEpatents

    None

    2018-04-10

    A concentrated solar power (CSP) system includes channels arranged to convey a flowing solids medium descending under gravity. The channels form a light-absorbing surface configured to absorb solar flux from a heliostat field. The channels may be independently supported, for example by suspension, and gaps between the channels are sized to accommodate thermal expansion. The light absorbing surface may be sloped so that the inside surfaces of the channels proximate to the light absorbing surface define downward-slanting channel floors, and the flowing solids medium flows along these floors. Baffles may be disposed inside the channels and oriented across the direction of descent of the flowing solids medium. The channels may include wedge-shaped walls forming the light-absorbing surface and defining multiple-reflection light paths for solar flux from the heliostat field incident on the light-absorbing surface.

  18. Flow enthalpimetric determination of glucose, based on oxidation by 1,4-benzoquinone and use of an immobilized glucose oxidase column.

    PubMed

    Kiba, N; Tomiyasu, T; Furusawa, M

    1984-02-01

    A flow enthalpimetric method for the determination of glucose is presented. The method is based on the reaction of glucose with 1,4-benzoquinone in the presence of immobilized glucose oxidase. d-Glucose concentrations ranging from 0.02 to 75mM can be determined. The method is applicable to the determination of glucose in soft drinks, wines, beers, jams and serum.

  19. Method and apparatus for making articles from particle based materials

    DOEpatents

    Moorhead, Arthur J.; Menchhofer, Paul A.

    1995-01-01

    A method and apparatus for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with the invention, a thermally settable slurry containing a relatively high concentration of the particles is conveyed through an elongate flow area having a desired cross-sectional configuration. The slurry is heated as it is advanced through the flow area causing the slurry to set or harden in a shape which conforms to the cross-sectional configuration of the flow area. The material discharges from the flow area as a self-supporting solid of near net final dimensions. The article may then be sintered to consolidate the particles and provide a high density product.

  20. Remedial Amendment Delivery near the Water Table Using Shear Thinning Fluids: Experiments and Numerical Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oostrom, Martinus; Truex, Michael J.; Vermeul, Vincent R.

    2014-08-19

    The use of shear thinning fluids (STFs) containing xanthan is a potential enhancement for emplacing a solute amendment near the water table and within the capillary fringe. Most research to date related to STF behavior has involved saturated and confined conditions. A series of flow cell experiments were conducted to investigate STF emplacement in variable saturated homogeneous and layered heterogeneous systems. Besides flow visualization using dyes, amendment concentrations and pressure data were obtained at several locations. The experiments showed that injection of STFs considerably improved the subsurface distribution near the water table by mitigating preferential flow through higher permeability zonesmore » compared to no-polymer injections. The phosphate amendment migrated with the xanthan SFT without retardation. Despite the high viscosity of the STF, no excessive mounding or preferential flow were observed in the unsaturated zone. The STOMP simulator was able to predict the experimentally observed fluid displacement and amendment concentrations reasonably well. Cross flow between layers could be interpreted as the main mechanism to transport STFs into lower permeability layers based on the observed pressure gradient and concentration data in layers of differing hydraulic conductivity.« less

  1. Viewing inside Pyroclastic Flows - Large-scale Experiments on hot pyroclast-gas mixture flows

    NASA Astrophysics Data System (ADS)

    Breard, E. C.; Lube, G.; Cronin, S. J.; Jones, J.

    2014-12-01

    Pyroclastic density currents are the largest threat from volcanoes. Direct observations of natural flows are persistently prevented because of their violence and remain limited to broad estimates of bulk flow behaviour. The Pyroclastic Flow Generator - a large-scale experimental facility to synthesize hot gas-particle mixture flows scaled to pyroclastic flows and surges - allows investigating the physical processes behind PDC behaviour in safety. The ability to simulate natural eruption conditions and to view and measure inside the hot flows allows deriving validation and calibration data sets for existing numerical models, and to improve the constitutive relationships necessary for their effective use as powerful tools in hazard assessment. We here report on a systematic series of large-scale experiments on up to 30 ms-1 fast, 2-4.5 m thick, 20-35 m long flows of natural pyroclastic material and gas. We will show high-speed movies and non-invasive sensor data that detail the internal structure of the analogue pyroclastic flows. The experimental PDCs are synthesized by the controlled 'eruption column collapse' of variably diluted suspensions into an instrumented channel. Experiments show four flow phases: mixture acceleration and dilution during free fall; impact and lateral blasting; PDC runout; and co-ignimbrite cloud formation. The fully turbulent flows reach Reynolds number up to 107 and depositional facies similar to natural deposits. In the PDC runout phase, the shear flows develop a four-partite structure from top to base: a fully turbulent, strongly density-stratified ash cloud with average particle concentrations <<1vol%; a transient, turbulent dense suspension region with particle concentrations between 1 and 10 vol%; a non-turbulent, aerated and highly mobile dense underflows with particle concentrations between 40 and 50 vol%; and a vertically aggrading bed of static material. We characterise these regions and the exchanges of energy and momentum through their interfaces via vertical time-series profiles of velocity, particle concentration, gas and particle transport directionality and turbulent eddy characteristics. We highlight the importance of each region for the PDC runout dynamics and introduce a new transport and sedimentation model for downslope evolving pyroclastic flows.

  2. Magnetic Cobalt Ferrite Nanocrystals For an Energy Storage Concentration Cell.

    PubMed

    Dai, Qilin; Patel, Ketan; Donatelli, Greg; Ren, Shenqiang

    2016-08-22

    Energy-storage concentration cells are based on the concentration gradient of redox-active reactants; the increased entropy is transformed into electric energy as the concentration gradient reaches equilibrium between two half cells. A recyclable and flow-controlled magnetic electrolyte concentration cell is now presented. The hybrid inorganic-organic nanocrystal-based electrolyte, consisting of molecular redox-active ligands adsorbed on the surface of magnetic nanocrystals, leads to a magnetic-field-driven concentration gradient of redox molecules. The energy storage performance of concentration cells is dictated by magnetic characteristics of cobalt ferrite nanocrystal carriers. The enhanced conductivity and kinetics of redox-active electrolytes could further induce a sharp concentration gradient to improve the energy density and voltage switching of magnetic electrolyte concentration cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Salivary protein concentration, flow rate, buffer capacity and pH estimation: A comparative study among young and elderly subjects, both normal and with gingivitis and periodontitis.

    PubMed

    Shaila, Mulki; Pai, G Prakash; Shetty, Pushparaj

    2013-01-01

    To evaluate the salivary protein concentration in gingivitis and periodontitis patients and compare the parameters like salivary total protein, salivary albumin, salivary flow rate, pH, buffer capacity and flow rate in both young and elderly patients with simple methods. One hundred and twenty subjects were grouped based on their age as young and elderly. Each group was subgrouped (20 subjects) as controls, gingivitis and periodontitis. Unstimulated whole saliva was collected from patients and flow rate was noted down during collection of the sample. Salivary protein estimation was done using the Biuret method and salivary albumin was assessed using the Bromocresol green method. pH was estimated with a pHmeter and buffering capacity was analyzed with the titration method. Student's t-test, Fisher's test (ANOVA) and Tukey HSD (ANOVA) tests were used for statistical analysis. A very highly significant rise in the salivary total protein and albumin concentration was noted in gingivitis and periodontitis subjects of both young and elderly. An overall decrease in salivary flow rate was observed among the elderly, and also the salivary flow rate of women was significantly lower than that of men. Significant associations between salivary total protein and albumin in gingivitis and periodontitis were found with simple biochemical tests. A decrease in salivary flow rate among elderly and among women was noted.

  4. Failure mechanisms of fibrin-based surgical tissue adhesives

    NASA Astrophysics Data System (ADS)

    Sierra, David Hugh

    A series of studies was performed to investigate the potential impact of heterogeneity in the matrix of multiple-component fibrin-based tissue adhesives upon their mechanical and biomechanical properties both in vivo and in vitro. Investigations into the failure mechanisms by stereological techniques demonstrated that heterogeneity could be measured quantitatively and that the variation in heterogeneity could be altered both by the means of component mixing and delivery and by the formulation of the sealant. Ex vivo tensile adhesive strength was found to be inversely proportional to the amount of heterogeneity. In contrast, in vivo tensile wound-closure strength was found to be relatively unaffected by the degree of heterogeneity, while in vivo parenchymal organ hemostasis in rabbits was found to be affected: greater heterogeneity appeared to correlate with an increase in hemostasis time and amount of sealant necessary to effect hemostasis. Tensile testing of the bulk sealant showed that mechanical parameters were proportional to fibrin concentration and that the physical characteristics of the failure supported a ductile mechanism. Strain hardening as a function of percentage of strain, and strain rate was observed for both concentrations, and syneresis was observed at low strain rates for the lower fibrin concentration. Blister testing demonstrated that burst pressure and failure energy were proportional to fibrin concentration and decreased with increasing flow rate. Higher fibrin concentration demonstrated predominately compact morphology debonds with cohesive failure loci, demonstrating shear or viscous failure in a viscoelastic rubbery adhesive. The lower fibrin concentration sealant exhibited predominately fractal morphology debonds with cohesive failure loci, supporting an elastoviscous material condition. The failure mechanism for these was hypothesized and shown to be flow-induced ductile fracture. Based on these findings, the failure mechanism was stochastic in nature because the mean failure energy and burst pressure values were not predictive of locus and morphology. Instead, flow rate and fibrin concentration showed the most predictive value, with the outcome best described as a probability distribution rather than a specific deterministic outcome.

  5. Refinement of current monitoring methodology for electroosmotic flow assessment under low ionic strength conditions

    PubMed Central

    Saucedo-Espinosa, Mario A.; Lapizco-Encinas, Blanca H.

    2016-01-01

    Current monitoring is a well-established technique for the characterization of electroosmotic (EO) flow in microfluidic devices. This method relies on monitoring the time response of the electric current when a test buffer solution is displaced by an auxiliary solution using EO flow. In this scheme, each solution has a different ionic concentration (and electric conductivity). The difference in the ionic concentration of the two solutions defines the dynamic time response of the electric current and, hence, the current signal to be measured: larger concentration differences result in larger measurable signals. A small concentration difference is needed, however, to avoid dispersion at the interface between the two solutions, which can result in undesired pressure-driven flow that conflicts with the EO flow. Additional challenges arise as the conductivity of the test solution decreases, leading to a reduced electric current signal that may be masked by noise during the measuring process, making for a difficult estimation of an accurate EO mobility. This contribution presents a new scheme for current monitoring that employs multiple channels arranged in parallel, producing an increase in the signal-to-noise ratio of the electric current to be measured and increasing the estimation accuracy. The use of this parallel approach is particularly useful in the estimation of the EO mobility in systems where low conductivity mediums are required, such as insulator based dielectrophoresis devices. PMID:27375813

  6. A computer program for estimating instream travel times and concentrations of a potential contaminant in the Yellowstone River, Montana

    USGS Publications Warehouse

    McCarthy, Peter M.

    2006-01-01

    The Yellowstone River is very important in a variety of ways to the residents of southeastern Montana; however, it is especially vulnerable to spilled contaminants. In 2004, the U.S. Geological Survey, in cooperation with Montana Department of Environmental Quality, initiated a study to develop a computer program to rapidly estimate instream travel times and concentrations of a potential contaminant in the Yellowstone River using regression equations developed in 1999 by the U.S. Geological Survey. The purpose of this report is to describe these equations and their limitations, describe the development of a computer program to apply the equations to the Yellowstone River, and provide detailed instructions on how to use the program. This program is available online at [http://pubs.water.usgs.gov/sir2006-5057/includes/ytot.xls]. The regression equations provide estimates of instream travel times and concentrations in rivers where little or no contaminant-transport data are available. Equations were developed and presented for the most probable flow velocity and the maximum probable flow velocity. These velocity estimates can then be used to calculate instream travel times and concentrations of a potential contaminant. The computer program was developed so estimation equations for instream travel times and concentrations can be solved quickly for sites along the Yellowstone River between Corwin Springs and Sidney, Montana. The basic types of data needed to run the program are spill data, streamflow data, and data for locations of interest along the Yellowstone River. Data output from the program includes spill location, river mileage at specified locations, instantaneous discharge, mean-annual discharge, drainage area, and channel slope. Travel times and concentrations are provided for estimates of the most probable velocity of the peak concentration and the maximum probable velocity of the peak concentration. Verification of estimates of instream travel times and concentrations for the Yellowstone River requires information about the flow velocity throughout the 520 mi of river in the study area. Dye-tracer studies would provide the best data about flow velocities and would provide the best verification of instream travel times and concentrations estimated from this computer program; however, data from such studies does not currently (2006) exist and new studies would be expensive and time-consuming. An alternative approach used in this study for verification of instream travel times is based on the use of flood-wave velocities determined from recorded streamflow hydrographs at selected mainstem streamflow-gaging stations along the Yellowstone River. The ratios of flood-wave velocity to the most probable velocity for the base flow estimated from the computer program are within the accepted range of 2.5 to 4.0 and indicate that flow velocities estimated from the computer program are reasonable for the Yellowstone River. The ratios of flood-wave velocity to the maximum probable velocity are within a range of 1.9 to 2.8 and indicate that the maximum probable flow velocities estimated from the computer program, which corresponds to the shortest travel times and maximum probable concentrations, are conservative and reasonable for the Yellowstone River.

  7. [The treatment of hyperhomocysteinemia in patients on dialysis: folic acid or the high-flow polysulphonic membrane?].

    PubMed

    Lovcić, Vesna; Kes, Petar; Zeljko, Reiner; Kusec, Vesna

    2006-06-01

    The aim of the study was to determine the effects of high-flow and low-flow hemodialysis (HD), with simultaneous treatment with folic acid and vitamin B12, on total homocysteine (tHcy) concentration in plasma of dialyzed patients. The planned clinical observation included 46 patients of both sexes, aged 21-82, treated with bicarbonate dialysis for a mean of 4.7 years. The patients were divided into group A, subsequently dialyzed by use of high-flow polysulphonic membrane (AN 69ST, Nephral 300), and group B that continued to be dialyzed by use of low-flow diacetate membrane (Diacepal 14 and 16). The subjects in both groups received 30 mg of folic acid at the end of each dialysis (3 times a week), and 500 g of vitamin B12 at the end of every other dialysis. The method of stable isotopic dilution mass spectrometry was used to measure tHcy. Folic acid was determined by the test based on ion capture technology. Vitamin B12 was determined by MEIA. An increase in the concentration of tHcy was observed in 39/46 (85%) patients with a mean concentration of 24.76 +/- 11.04 micromol/L. The mean concentration of folic acid and vitamin B12 was within the normal limits. In the group dialyzed by high-flow dialyzer, the values of tHcy and folic acid decreased (18.74 +/- 2.95 micromol/L and 13.90 +/- 6.78 pmol/L) after hemodialysis, which was significant compared to the initial value (p<0.01 and p<0.05, respectively). At four weeks of treatment, tHcy concentration before HD showed a significant decrease both in the group dialyzed by high-flow dialyzer (15.10 +/- 4.26 mmol/L, p<0.01) and in the group dialyzed by low-flow dialyzer (12.54 +/- 3.87 micromol/L, p<0.01) compared to the measure before HD and before the treatment. There was no statistically significant difference (z -0.40, p>0.68) in the percentage of tHcy change between the group treated by high-flow dialyzer and the group treated by low-flow dialyzer in the measurements before HD and before the treatment with folic acid and vitamin B12, and after the treatment. There is a literature report on the concentration increase by 26 micromol/L, which is very similar to our result. The absence of long-term effect on predialysis concentration of tHcy in HD by high-flow membrane has also been described, because the decrease of tHcy is mantained until the uremic toxins, enzyme inhibitors that are necessary for the process of remethylation of Hcy, accumulated again. During high-flow HD, the folic acid concentration decreased by 23.05% on an average, consistent with other literature reports. Some reports support our observation that the dosage of folic acid required for tHcy decrease is 15-30 mg, and that the dosage higher than 60 mg does not significantly decrease tHcy concentration. Our study confirmed the reported observations that treatment with folic acid and vitamin B12 rather than high-flow dialyzer contributes to tHcy decrease. The study confirmed the high prevalence of hyperhomocysteinemia in patients on dialysis. The treatment with folic acid and vitamin B12 results in a significant decrease of tHcy. After individual HD by high-flow dialyzer, there is a significant, but temporary decrease of tHcy concentration in plasma. There is no significant difference in the efficiency on pre-dialysis tHcy concentration between the high-flow and low-flow dialyzer membrane. Because of the atherogenic effect of hyperhomocysteinemia, the treatment with folic acid and vitamin B12 should be accepted as an options to lower the risk factors for the rapid atherosclerosis in patients on dialysis, thus reducing the occurrence and fatality of cardiovascular diseases.

  8. Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel.

    PubMed

    Peng, Ran; Li, Dongqing

    2015-02-15

    Effects of ionic concentration gradient on electroosmotic flow (EOF) mixing of one stream of a high concentration electrolyte solution with a stream of a low concentration electrolyte solution in a microchannel are investigated numerically. The concentration field, flow field and electric field are strongly coupled via concentration dependent zeta potential, dielectric constant and electric conductivity. The results show that the electric field and the flow velocity are non-uniform when the concentration dependence of these parameters is taken into consideration. It is also found that when the ionic concentration of the electrolyte solution is higher than 1M, the electrolyte solution essentially cannot enter the channel due to the extremely low electroosmotic flow mobility. The effects of the concentration dependence of zeta potential, dielectric constant and electric conductivity on electroosmotic flow mixing are studied. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Base-line O sub 2 extraction influences cerebral blood flow response to hematocrit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudak, M.L.; Tang, Yuilin; Massik, J.

    1988-01-01

    The authors have shown that the fall in cerebral blood flow (CBF) as hematocrit (Hct) rises is due to the independent effects of increasing red blood cell (RBC) concentration and arterial O{sub 2} content (Ca{sub O{sub 2}}). In the present study, they tested the hypothesis that the magnitude of the effect of RBC concentration depends on the base-line cerebral fractional oxygen extraction (E). Pentobarbital-anesthetized 1- to 7-day-old sheep were first exchange transfused with plasma to lower Hct to 20%. Base-line E was set to either high or low levels by induction of hypocarbia, or hypercarbia. A second isovolemic exchange transfusionmore » with pure methemoglobin-containing adult sheep red cells then raised Hct with no significant increase in Ca{sub O{sub 2}}. Pa{sub CO{sub 2}} was maintained and other variables with potential effect on CBF did not change. CBF corrected for any individual alteration in CMRo{sub 2}. This study supports the hypothesis that the magnitude of the decline in CBF secondary to an increase in RBC concentration depends on the initial E. The effect of RBC concentration on CBF is greatest when E is low.« less

  10. The Development of a Fiber Optic Raman Temperature Measurement System for Rocket Flows

    NASA Technical Reports Server (NTRS)

    Degroot, Wim A.

    1992-01-01

    A fiberoptic Raman diagnostic system for H2/O2 rocket flows is currently under development. This system is designed for measurement of temperature and major species concentration in the combustion chamber and part of the nozzle of a 100 Newton thrust rocket currently undergoing testing. This paper describes a measurement system based on the spontaneous Raman scattering phenomenon. An analysis of the principles behind the technique is given. Software is developed to measure temperature and major species concentrations by comparing theoretical Raman scattering spectra with experimentally obtained spectra. Equipment selection and experimental approach are summarized. This experimental program is part of a program, which is in progress, to evaluate Navier-Stokes based analyses for this class of rocket.

  11. Abandoned mine drainage in the Swatara Creek Basin, southern anthracite coalfield, Pennsylvania, USA: 1. stream quality trends coinciding with the return of fish

    USGS Publications Warehouse

    Cravotta, Charles A.; Brightbill, Robin A.; Langland, Michael J.

    2010-01-01

    Acidic mine drainage (AMD) from legacy anthracite mines has contaminated Swatara Creek in eastern Pennsylvania. Intermittently collected base-flow data for 1959–1986 indicate that fish were absent immediately downstream from the mined area where pH ranged from 3.5 to 7.2 and concentrations of sulfate, dissolved iron, and dissolved aluminum were as high as 250, 2.0, and 4.7 mg/L, respectively. However, in the 1990s, fish returned to upper Swatara Creek, coinciding with the implementation of AMD treatment (limestone drains, limestone diversion wells, limestone sand, constructed wetlands) in the watershed. During 1996–2006, as many as 25 species of fish were identified in the reach downstream from the mined area, with base-flow pH from 5.8 to 7.6 and concentrations of sulfate, dissolved iron, and dissolved aluminum as high as 120, 1.2, and 0.43 mg/L, respectively. Several of the fish taxa are intolerant of pollution and low pH, such as river chub (Nocomis icropogon) and longnose dace (Rhinichthys cataractae). Cold-water species such as brook trout (Salvelinus fontinalis) and warm-water species such as rock bass (Ambloplites rupestris) varied in predominance depending on stream flow and stream temperature. Storm flow data for 1996–2007 indicated pH, alkalinity, and sulfate concentrations decreased as the stream flow and associated storm-runoff component increased, whereas iron and other metal concentrations were poorly correlated with stream flow because of hysteresis effects (greater metal concentrations during rising stage than falling stage). Prior to 1999, pH\\5.0 was recorded during several storm events; however, since the implementation of AMD treatments, pH has been maintained near neutral. Flow-adjusted trends for1997–2006 indicated significant increases in calcium; decreases in hydrogen ion, dissolved aluminum, dissolved and total manganese, and total iron; and no change in sulfate or dissolved iron in Swatara Creek immediately downstream from the mined area. The increased pH and calcium from limestone in treatment systems can be important for mitigating toxic effects of dissolved metals. Thus, treatment of AMD during the 1990s improved pH buffering, reduced metals transport, and helped to decrease metals toxicity to fish.

  12. [Estimation of average traffic emission factor based on synchronized incremental traffic flow and air pollutant concentration].

    PubMed

    Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng

    2014-04-01

    On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors.

  13. Streak Imaging Flow Cytometer for Rare Cell Analysis.

    PubMed

    Balsam, Joshua; Bruck, Hugh Alan; Ossandon, Miguel; Prickril, Ben; Rasooly, Avraham

    2017-01-01

    There is a need for simple and affordable techniques for cytology for clinical applications, especially for point-of-care (POC) medical diagnostics in resource-poor settings. However, this often requires adapting expensive and complex laboratory-based techniques that often require significant power and are too massive to transport easily. One such technique is flow cytometry, which has great potential for modification due to the simplicity of the principle of optical tracking of cells. However, it is limited in that regard due to the flow focusing technique used to isolate cells for optical detection. This technique inherently reduces the flow rate and is therefore unsuitable for rapid detection of rare cells which require large volume for analysis.To address these limitations, we developed a low-cost, mobile flow cytometer based on streak imaging. In our new configuration we utilize a simple webcam for optical detection over a large area associated with a wide-field flow cell. The new flow cell is capable of larger volume and higher throughput fluorescence detection of rare cells than the flow cells with hydrodynamic focusing used in conventional flow cytometry. The webcam is an inexpensive, commercially available system, and for fluorescence analysis we use a 1 W 450 nm blue laser to excite Syto-9 stained cells with emission at 535 nm. We were able to detect low concentrations of stained cells at high flow rates of 10 mL/min, which is suitable for rapidly analyzing larger specimen volumes to detect rare cells at appropriate concentration levels. The new rapid detection capabilities, combined with the simplicity and low cost of this device, suggest a potential for clinical POC flow cytometry in resource-poor settings associated with global health.

  14. A PDF closure model for compressible turbulent chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Kollmann, W.

    1992-01-01

    The objective of the proposed research project was the analysis of single point closures based on probability density function (pdf) and characteristic functions and the development of a prediction method for the joint velocity-scalar pdf in turbulent reacting flows. Turbulent flows of boundary layer type and stagnation point flows with and without chemical reactions were be calculated as principal applications. Pdf methods for compressible reacting flows were developed and tested in comparison with available experimental data. The research work carried in this project was concentrated on the closure of pdf equations for incompressible and compressible turbulent flows with and without chemical reactions.

  15. A field study of colloid transport in surface and subsurface flows

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Tang, Xiang-Yu; Xian, Qing-Song; Weisbrod, Noam; Yang, Jae E.; Wang, Hong-Lan

    2016-11-01

    Colloids have been recognized to enhance the migration of strongly-sorbing contaminants. However, few field investigations have examined combined colloid transport via surface runoff and subsurface flows. In a headwater catchment of the upper Yangtze River, a 6 m (L) by 4 m (W) sloping (6°) farmland plot was built by cement walls to form no-flow side boundaries. The plot was monitored in the summer of 2014 for the release and transport of natural colloids via surface runoff and subsurface flows (i.e., the interflow from the soil-mudrock interface and fracture flow from the mudrock-sandstone interface) in response to rain events. The water sources of the subsurface flows were apportioned to individual rain events using a two end-member model (i.e., mobile pre-event soil water extracted by a suction-cup sampler vs. rainwater (event water)) based on δ18O measurements. For rain events with high preceding soil moisture, mobile pre-event soil water was the main contributor (generally >60%) to the fracture flow. The colloid concentration in the surface runoff was 1-2 orders of magnitude higher than that in the subsurface flows. The lowest colloid concentration was found in the subsurface interflow, which was probably the result of pore-scale colloid straining mechanisms. The rainfall intensity and its temporal variation govern the dynamics of the colloid concentrations in both surface runoff and subsurface flows. The duration of the antecedent dry period affected not only the relative contributions of the rainwater and the mobile pre-event soil water to the subsurface flows but also the peak colloid concentration, particularly in the fracture flow. The <10 μm fine colloid size fraction accounted for more than 80% of the total suspended particles in the surface runoff, while the colloid size distributions of both the interflow and the fracture flow shifted towards larger diameters. These results highlight the need to avoid the application of strongly-sorbing agrochemicals (e.g., pesticides, phosphorus fertilizers) immediately before rainfall following a long no-rain period because their transport in association with colloids may occur rapidly over long distances via both surface runoff and subsurface flows with rainfall.

  16. Numerical Investigation of Ice Slurry Flow in a Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Rawat, K. S.; Pratihar, A. K.

    2018-02-01

    In the last decade, phase changing material slurry (PCMS) gained much attention as a cooling medium due to its high energy storage capacity and transportability. However the flow of PCM slurry is a complex phenomenon as it affected by various parameters, i.e. fluid properties, velocity, particle size and concentration etc.. In the present work ice is used as a PCM and numerical investigation of heterogeneous slurry flow has been carried out using Eulerian KTGF model in a horizontal pipe. Firstly the present model is validated with existing experiment results available in the literature, and then model is applied to the present problem. Results show that, flow is almost homogeneous for ethanol based ice slurry with particle diameter of 0.1 mm at the velocity of 1 m/s. It is also found that ice particle distribution is more uniform at higher velocity, concentration of ice and ethanol in slurry. Results also show that ice concentration increases on the top of the pipe, and the effect of particle wall collision is more significant at higher particle diameter.

  17. Heat transfer analysis of radiator using graphene oxide nanofluids

    NASA Astrophysics Data System (ADS)

    Rao Ponangi, Babu; Sumanth, S.; Krishna, V.; Seetharam, T. R.; Seetharamu, K. N.

    2018-04-01

    As the technology is developing day by day, there is a requirement for enhancement in performance of automobile radiator to have a better performance of the IC Engine and fuel effectiveness. One of the major and recent approach to upgrade the performance of a radiator is that nanoparticles must be suspended in the general coolant (Ethylene Glycol – Water) which form nanofluids. Present work has been carried out by suspending graphene oxide nanoparticles in 50:50 Ethylene Glycol and RO-Water as base fluid. Experimentation is carried out by using three volume concentrations of the nanofluid (0.02%, 0.03% and 0.04%) and at different volumetric flow rates ranging from 3 to 6 LPM. Effect of volume concentration, inlet temperature and flow rate on Effectiveness, pressure drop and friction factor has been studied experimentally. Effectiveness versus NTU curves are plotted for further design calculations. The results show that the nanofluids will enhance the performance of an automobile radiator when compared with base fluid. Results also shows a maximum of 56.45% and 41.47% improvement in effectiveness for 0.03% volume concentration and 5 LPM flow rate at 40°C and 50°C inlet temperatures respectively.

  18. Hydrogeology of, and ground-water flow in, a valley-fill and carbonate-rock aquifer system near Long Valley in the New Jersey Highlands

    USGS Publications Warehouse

    Nicholson, R.S.; McAuley, S.D.; Barringer, J.L.; Gordon, A.D.

    1996-01-01

    The hydrogeology of and ground-water flow in a valley-fill and carbonate-rock aquifer system were evaluated by using numerical-modeling techniques and geochemical interpretations to address concerns about the adequacy of the aquifer system to meet increasing demand for water. The study was conducted during 1987-90 by the U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection and Energy. The effects of recent and anticipated ground-water withdrawals on water levels, stream base flows, and water budgets were estimated. Simulation results indicate that recent withdrawals of 4.7 million gallons per day have resulted in water-level declines of up to 35 feet. Under conditions of increases in withdrawals of 121 percent, water levels would decline up to an additional 28 feet. The magnitude of predicted average base-flow depletion, when compared with historic low flows, indicates that projected increases in withdrawals may substantially deplete seasonal low flow of Drakes Brook and South Branch Raritan River. Results of a water-budget analysis indicate that the sources of water to additional supply wells would include leakage from the overlying valley-fill aquifer and induced leakage of surface water into the aquifer system. Results of water-quality analyses indicate that human activities are affecting the quality of the ground water. With the exception of an elevated iron concentration in water from one well, concentrations of inorganic constituents in water from 75 wells did not exceed New Jersey primary or secondary drinking-water regulations. Volatile organic compounds were detected in water from several wells; in two samples, concentrations of specific compounds exceeded drinking-water regulations.

  19. On the Limitations of Breakthrough Curve Analysis in Fixed-Bed Adsorption

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Ebner, Armin D.; LeVan, M. Douglas; Coker, Robert F.; Ritter, James A.

    2016-01-01

    This work examined in detail the a priori prediction of the axial dispersion coefficient from available correlations versus obtaining it and also mass transfer information from experimental breakthrough data and the consequences that may arise when doing so based on using a 1-D axially dispersed plug flow model and its associated Danckwerts outlet boundary condition. These consequences mainly included determining the potential for erroneous extraction of the axial dispersion coefficient and/or the LDF mass transfer coefficient from experimental data, especially when non-plug flow conditions prevailed in the bed. Two adsorbent/adsorbate cases were considered, i.e., carbon dioxide and water vapor in zeolite 5A, because they both experimentally exhibited significant non-plug flow behavior, and the water-zeolite 5A system exhibited unusual concentration front sharpening that destroyed the expected constant pattern behavior (CPB) when modeled with the 1-D axially dispersed plug flow model. Overall, this work showed that it was possible to extract accurate mass transfer and dispersion information from experimental breakthrough curves using a 1-D axial dispersed plug flow model when they were measured both inside and outside the bed. To ensure the extracted information was accurate, the inside the bed breakthrough curves and their derivatives from the model were plotted to confirm whether or not the adsorbate/adsorbent system was exhibiting CPB or any concentration front sharpening near the bed exit. Even when concentration front sharpening was occurring with the water-zeolite 5A system, it was still possible to use the experimental inside and outside the bed breakthrough curves to extract fundamental mass transfer and dispersion information from the 1-D axial dispersed plug flow model based on the systematic methodology developed in this work.

  20. Handheld Fluorescence Microscopy based Flow Analyzer.

    PubMed

    Saxena, Manish; Jayakumar, Nitin; Gorthi, Sai Siva

    2016-03-01

    Fluorescence microscopy has the intrinsic advantages of favourable contrast characteristics and high degree of specificity. Consequently, it has been a mainstay in modern biological inquiry and clinical diagnostics. Despite its reliable nature, fluorescence based clinical microscopy and diagnostics is a manual, labour intensive and time consuming procedure. The article outlines a cost-effective, high throughput alternative to conventional fluorescence imaging techniques. With system level integration of custom-designed microfluidics and optics, we demonstrate fluorescence microscopy based imaging flow analyzer. Using this system we have imaged more than 2900 FITC labeled fluorescent beads per minute. This demonstrates high-throughput characteristics of our flow analyzer in comparison to conventional fluorescence microscopy. The issue of motion blur at high flow rates limits the achievable throughput in image based flow analyzers. Here we address the issue by computationally deblurring the images and show that this restores the morphological features otherwise affected by motion blur. By further optimizing concentration of the sample solution and flow speeds, along with imaging multiple channels simultaneously, the system is capable of providing throughput of about 480 beads per second.

  1. Occurrence and Transport of Agricultural Chemicals in Leary Weber Ditch Basin, Hancock County, Indiana, 2003-04

    USGS Publications Warehouse

    Baker, Nancy T.; Stone, Wesley W.; Wilson, John T.; Meyer, Michael T.

    2006-01-01

    Leary Weber Ditch Basin, Hancock County, Indiana, is one of seven first-order basins selected from across the United States as part of the Agricultural Chemicals: Source, Transport, and Fate study conducted by the National Water-Quality Assessment Program of the U.S. Geological Survey. The nationwide study was designed to increase the understanding of the links between the sources of water and agricultural chemicals (nutrients and pesticides) and the transport and fate of these chemicals through the environment. Agricultural chemicals were detected in Leary Weber Ditch and in every associated hydrologic compartment sampled during 2003 and 2004. Pesticides were detected more frequently in samples collected from overland flow and from the ditch itself and less frequently in ground-water samples. The lowest concentrations of pesticides and nutrients were detected in samples of rain, soil water, and ground water. The highest concentrations of pesticides and nutrients were detected in samples of tile-drain water, overland flow, and water from Leary Weber Ditch. Samples collected from the tile drain, overland flow and Leary Weber Ditch soon after chemical applications to the fields and coincident with rainfall and increased streamflow had higher concentrations of pesticides and nutrients than samples collected a longer time after the chemicals were applied. A mass-balance mixing analysis based on potassium concentrations indicated that tile drains are the primary contributor of water to Leary Weber Ditch, but overland flow is also an important contributor during periods of high-intensity rainfall. When maximum rainfall intensity was 0.5 inches per hour or lower, overland flow contributed about 10 percent and tile drains contributed about 90 percent of the flow to Leary Weber Ditch. When maximum rainfall intensity was 0.75 inches per hour or greater, overland flow contributed about 40 percent and tile drains contributed about 60 percent of the flow to the ditch. Ground-water flow to Leary Weber Ditch was negligible. Tile drains are an important agricultural-chemical transport path to Leary Weber Ditch, based on the hydrologic contributions of overland flow and tile drains to the ditch. Overland flow is also an important agricultural-chemical transport pathway during high-intensity rainfall; however, storms with high-intensity rainfall are sporadic throughout the year. Tile drains and the soil water moving to the tile drains are the primary transport pathway for agricultural-chemical transport to Leary Weber Ditch during most storms as well as between storms.

  2. Evaluation of passive diffusion bag samplers, dialysis samplers, and nylon-screen samplers in selected wells at Andersen Air Force Base, Guam, March-April 2002

    USGS Publications Warehouse

    Vroblesky, Don A.; Joshi, Manish; Morrell, Jeff; Peterson, J.E.

    2003-01-01

    During March-April 2002, the U.S. Geological Survey, Earth Tech, and EA Engineering, Science, and Technology, Inc., in cooperation with the Air Force Center for Environmental Excellence, tested diffusion samplers at Andersen Air Force Base, Guam. Samplers were deployed in three wells at the Main Base and two wells at Marianas Bonins (MARBO) Annex as potential ground-water monitoring alternatives. Prior to sampler deployment, the wells were tested using a borehole flowmeter to characterize vertical flow within each well. Three types of diffusion samplers were tested: passive diffusion bag (PDB) samplers, dialysis samplers, and nylon-screen samplers. The primary volatile organic compounds (VOCs) tested in ground water at Andersen Air Force Base were trichloroethene and tetrachloroethene. In most comparisons, trichloroethene and tetrachloroethene concentrations in PDB samples closely matched concentrations in pumped samples. Exceptions were in wells where the pumping or ambient flow produced vertical translocation of water in a chemically stratified aquifer. In these wells, PDB samplers probably would be a viable alternative sampling method if they were placed at appropriate depths. In the remaining three test wells, the trichloroethene or tetrachloroethene concentrations obtained with the diffusion samplers closely matched the result from pumped sampling. Chloride concentrations in nylon-screen samplers were compared with chloride concentrations in dialysis and pumped samples to test inorganic-solute diffusion into the samplers across a range of concentrations. The test showed that the results from nylon-screen samplers might have underestimated chloride concentrations at depths with elevated chloride concentrations. The reason for the discrepancy in this investigation is unknown, but may be related to nylon-screen-mesh size, which was smaller than that used in previous investigations.

  3. Optimal Concentrations in Transport Networks

    NASA Astrophysics Data System (ADS)

    Jensen, Kaare; Savage, Jessica; Kim, Wonjung; Bush, John; Holbrook, N. Michele

    2013-03-01

    Biological and man-made systems rely on effective transport networks for distribution of material and energy. Mass flow in these networks is determined by the flow rate and the concentration of material. While the most concentrated solution offers the greatest potential for mass flow, impedance grows with concentration and thus makes it the most difficult to transport. The concentration at which mass flow is optimal depends on specific physical and physiological properties of the system. We derive a simple model which is able to predict optimal concentrations observed in blood flows, sugar transport in plants, and nectar feeding animals. Our model predicts that the viscosity at the optimal concentration μopt =2nμ0 is an integer power of two times the viscosity of the pure carrier medium μ0. We show how the observed powers 1 <= n <= 6 agree well with theory and discuss how n depends on biological constraints imposed on the transport process. The model provides a universal framework for studying flows impeded by concentration and provides hints of how to optimize engineered flow systems, such as congestion in traffic flows.

  4. Response of surface water chemistry to reduced levels of acid precipitation: Comparison of trends in two regions of New York, USA

    USGS Publications Warehouse

    Burns, Douglas A.; McHale, M.R.; Driscoll, C.T.; Roy, K.M.

    2006-01-01

    In light of recent reductions in sulphur (S) and nitrogen (N) emissions mandated by Title IV of the Clean Air Act Amendments of 1990, temporal trends and trend coherence in precipitation (1984-2001 and 1992-2001) and surface water chemistry (1992-2001) were determined in two of the most acid-sensitive regions of North America, i.e. the Catskill and Adirondack Mountains of New York. Precipitation chemistry data from six sites located near these regions showed decreasing sulphate (SO42-), nitrate (NO3-), and base cation (CB) concentrations and increasing pH during 1984-2001, but few significant trends during 1992-2001. Data from five Catskill streams and 12 Adirondack lakes showed decreasing trends in SO42- concentrations at all sites, and decreasing trends in NO3-, CB, and H+ concentrations and increasing trends in dissolved organic carbon at most sites. In contrast, acid-neutralizing capacity (ANC increased significantly at only about half the Adirondack lakes and in one of the Catskill streams. Flow correction prior to trend analysis did not change any trend directions and had little effect on SO42- trends, but it caused several significant non-flow-corrected trends in NO3- and ANC to become non-significant, suggesting that trend results for flow-sensitive constituents are affected by flow-related climate variation. SO42- concentrations showed high temporal coherence in precipitation, surface waters, and in precipitation-surface water comparisons, reflecting a strong link between S emissions, precipitation SO42- concentrations, and the processes that affect S cycling within these regions. NO3- and H+ concentrations and ANC generally showed weak coherence, especially in surface waters and in precipitation-surface water comparisons, indicating that variation in local-scale processes driven by factors such as climate are affecting trends in acid-base chemistry in these two regions. Copyright ?? 2005 John Wiley & Sons, Ltd.

  5. Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials.

    PubMed

    Sun, Tian Yin; Bornhöft, Nikolaus A; Hungerbühler, Konrad; Nowack, Bernd

    2016-05-03

    The need for an environmental risk assessment for engineered nanomaterials (ENM) necessitates the knowledge about their environmental concentrations. Despite significant advances in analytical methods, it is still not possible to measure the concentrations of ENM in natural systems. Material flow and environmental fate models have been used to provide predicted environmental concentrations. However, almost all current models are static and consider neither the rapid development of ENM production nor the fact that many ENM are entering an in-use stock and are released with a lag phase. Here we use dynamic probabilistic material flow modeling to predict the flows of four ENM (nano-TiO2, nano-ZnO, nano-Ag and CNT) to the environment and to quantify their amounts in (temporary) sinks such as the in-use stock and ("final") environmental sinks such as soil and sediment. Caused by the increase in production, the concentrations of all ENM in all compartments are increasing. Nano-TiO2 had far higher concentrations than the other three ENM. Sediment showed in our worst-case scenario concentrations ranging from 6.7 μg/kg (CNT) to about 40 000 μg/kg (nano-TiO2). In most cases the concentrations in waste incineration residues are at the "mg/kg" level. The flows to the environment that we provide will constitute the most accurate and reliable input of masses for environmental fate models which are using process-based descriptions of the fate and behavior of ENM in natural systems and rely on accurate mass input parameters.

  6. Comparative performance of fixed-film biological filters: Application of reactor theory

    USGS Publications Warehouse

    Watten, B.J.; Sibrell, P.L.

    2006-01-01

    Nitrification is classified as a two-step consecutive reaction where R1 represents the rate of formation of the intermediate product NO2-N and R2 represents the rate of formation of the final product NO3-N. The relative rates of R1 and R2 are influenced by reactor type characterized hydraulically as plug-flow, plug-flow with dispersion and mixed-flow. We develop substrate conversion models for fixed-film biofilters operating in the first-order kinetic regime based on application of chemical reactor theory. Reactor type, inlet conditions and the biofilm kinetic constants Ki (h-1) are used to predict changes in NH4-N, NO2-N, NO3-N and BOD5. The inhibiting effects of the latter on R1 and R2 were established based on the ?? relation, e.g.:{A formula is presented}where BOD5,max is the concentration that causes nitrification to cease and N is a variable relating Ki to increasing BOD5. Conversion models were incorporated in spreadsheet programs that provided steady-state concentrations of nitrogen and BOD5 at several points in a recirculating aquaculture system operating with input values for fish feed rate, reactor volume, microscreen performance, make-up and recirculating flow rates. When rate constants are standardized, spreadsheet use demonstrates plug-flow reactors provide higher rates of R1 and R2 than mixed-flow reactors thereby reducing volume requirements for target concentrations of NH4-N and NO2-N. The benefit provided by the plug-flow reactor varies with hydraulic residence time t as well as the effective vessel dispersion number, D/??L. Both reactor types are capable of providing net increases in NO2-N during treatment but the rate of decrease in the mixed-flow case falls well behind that predicted for plug-flow operation. We show the potential for a positive net change in NO2-N increases with decreases in the dimensionless ratios K2, (R2 )/K1,( R1 ) and [NO2-N]/[NH4-N] and when the product K1, (R1) t provides low to moderate NH4-N conversions. Maintaining high levels of the latter reduces the effective reactor utilization rate (%) defined here as (RNavg/RNmax)100 where RNavg is the mean reactive nitrogen concentration ([NH4-N] + [NO2-N]) within the reactor, and RNmax represents the feed concentration of the same. Low utilization rates provide a hedge against unexpected increases in substrate loading and reduce water pumping requirements but force use of elevated reactor volumes. Further ?? effects on R1 and R2 can be reduced through use of a tanks-in-series versus a single mixed-flow reactor configuration and by improving the solids removal efficiency of microscreen treatment.

  7. Evaluation of between-cow variation in milk urea and rumen ammonia nitrogen concentrations and the association with nitrogen utilization and diet digestibility in lactating cows.

    PubMed

    Huhtanen, P; Cabezas-Garcia, E H; Krizsan, S J; Shingfield, K J

    2015-05-01

    Concentrations of milk urea N (MUN) are influenced by dietary crude protein concentration and intake and could therefore be used as a biomarker of the efficiency of N utilization for milk production (milk N/N intake; MNE) in lactating cows. In the present investigation, data from milk-production trials (production data set; n=1,804 cow/period observations from 21 change-over studies) and metabolic studies involving measurements of nutrient flow at the omasum in lactating cows (flow data set; n=450 cow/period observations from 29 studies) were used to evaluate the influence of between-cow variation on the relationship of MUN with MNE, urinary N (UN) output, and diet digestibility. All measurements were made on cows fed diets based on grass silage supplemented with a range of protein supplements. Data were analyzed by mixed-model regression analysis with diet within experiment and period within experiment as random effects, allowing the effect of diet and period to be excluded. Between-cow coefficient of variation in MUN concentration and MNE was 0.13 and 0.07 in the production data set and 0.11 and 0.08 in the flow data set, respectively. Based on residual variance, the best model for predicting MNE developed from the production data set was MNE (g/kg)=238 + 7.0 × milk yield (MY; kg/d) - 0.064 × MY(2) - 2.7 × MUN (mg/dL) - 0.10 body weight (kg). For the flow data set, including both MUN and rumen ammonia N concentration with MY in the model accounted for more variation in MNE than when either term was used with MY alone. The best model for predicting UN excretion developed from the production data set (n=443) was UN (g/d)=-29 + 4.3 × dry matter intake (kg/d) + 4.3 × MUN + 0.14 × body weight. Between-cow variation had a smaller influence on the association of MUN with MNE and UN output than published estimates of these relationships based on treatment means, in which differences in MUN generally arise from variation in dietary crude protein concentration. For the flow data set, between-cow variation in MUN and rumen ammonia N concentrations was positively associated with total-tract organic matter digestibility. In conclusion, evaluation of phenotypic variation in MUN indicated that between-cow variation in MUN had a smaller effect on MNE compared with published responses of MUN to dietary crude protein concentration, suggesting that a closer control over diet composition relative to requirements has greater potential to improve MNE and lower UN on farm than genetic selection. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. The use of random forests in modelling short-term air pollution effects based on traffic and meteorological conditions: A case study in Wrocław.

    PubMed

    Kamińska, Joanna A

    2018-07-01

    Random forests, an advanced data mining method, are used here to model the regression relationships between concentrations of the pollutants NO 2 , NO x and PM 2.5 , and nine variables describing meteorological conditions, temporal conditions and traffic flow. The study was based on hourly values of wind speed, wind direction, temperature, air pressure and relative humidity, temporal variables, and finally traffic flow, in the two years 2015 and 2016. An air quality measurement station was selected on a main road, located a short distance (40 m) from a large intersection equipped with a traffic flow measurement system. Nine different time subsets were defined, based among other things on the climatic conditions in Wrocław. An analysis was made of the fit of models created for those subsets, and of the importance of the predictors. Both the fit and the importance of particular predictors were found to be dependent on season. The best fit was obtained for models created for the six-month warm season (April-September) and for the summer season (June-August). The most important explanatory variable in the models of concentrations of nitrogen oxides was traffic flow, while in the case of PM 2.5 the most important were meteorological conditions, in particular temperature, wind speed and wind direction. Temporal variables (except for month in the case of PM 2.5 ) were found to have no significant effect on the concentrations of the studied pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effects of preferential concentration on direct radiation transmission in a turbulent duct flow

    NASA Astrophysics Data System (ADS)

    Villafane, Laura; Banko, Andrew; Kim, Ji Hoon; Elkins, Chris; Eaton, John

    2017-11-01

    Inertial particles in turbulent flows preferentially concentrate, giving rise to spatial and temporal fluctuations of particle number density that affect radiation transmission through the medium. Positive particle correlations enhance direct transmission when compared to the exponential attenuation predicted by the Beer's Law for randomly distributed particles. In the context of a particle based solar receiver, this work studies the effects of preferential concentration and optical depth on direct transmission through a particle laden turbulent duct flow. Time resolved measurements of transmission through the mixture were performed for various particle loadings and Reynolds numbers, thus varying particle correlation lengths, optical depth and concentration fluctuations. These measurements were made using a photodiode to record the transmission of a collimated laser beam along the wall bisector of the duct. A synchronized high-speed camera provided particle positions along most of the beam path. Average and fluctuating radiation transmission results are compared to predictions derived from the imaged number density fields and to simplified analytical models. Simplified models are able to capture the correct trends with varying loading and preferential concentration. This work is funded by the Department of Energy's National Nuclear Security Administration, Grant #DE-NA0002373-1.

  10. Optimization of a Nafion Membrane-Based System for Removal of Chloride and Fluoride from Lunar Regolith-Derived Water

    NASA Technical Reports Server (NTRS)

    Anthony, Stephen M.; Santiago-Maldonado, Edgardo; Captain, James G.; Pawate, Ashtamurthy S.; Kenis, Paul J. A.

    2012-01-01

    A long-term human presence in space will require self-sustaining systems capable of producing oxygen and potable water from extraterrestrial sources. Oxygen can be extracted from lunar regolith, and water contaminated with hydrochloric and hydrofluoric acids is produced as an intermediate in this process. We investigated the ability of Nafion proton exchange membranes to remove hydrochloric and hydrofluoric acids from water. The effect of membrane thickness, product stream flow rate, and acid solution temperature and concentration on water flux, acid rejection, and water and acid activity were studied. The conditions that maximized water transport and acid rejection while minimizing resource usage were determined by calculating a figure of merit. Water permeation is highest at high solution temperature and product stream flow rate across thin membranes, while chloride and fluoride permeation are lowest at low acid solution temperature and concentration across thin membranes. The figure of merit varies depending on the starting acid concentration; at low concentration, the figure of merit is highest across a thin membrane, while at high concentration, the figure of merit is highest at low solution temperature. In all cases, the figure of merit increases with increasing product stream flow rate.

  11. Functional language and data flow architectures

    NASA Technical Reports Server (NTRS)

    Ercegovac, M. D.; Patel, D. R.; Lang, T.

    1983-01-01

    This is a tutorial article about language and architecture approaches for highly concurrent computer systems based on the functional style of programming. The discussion concentrates on the basic aspects of functional languages, and sequencing models such as data-flow, demand-driven and reduction which are essential at the machine organization level. Several examples of highly concurrent machines are described.

  12. Hydrology and water quality in 13 watersheds in Gwinnett County, Georgia, 2001–15

    USGS Publications Warehouse

    Aulenbach, Brent T.; Joiner, John K.; Painter, Jaime A.

    2017-02-23

    The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds in Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and currently [2016] includes 13 watersheds.As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured every 15 minutes for water years 2001–15 at 12 of the 13 watershed monitoring stations and for water years 2010–15 at the other watershed. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally.The 13 watersheds were characterized for basin slope, population density, land use for 2012, and the percentage of impervious area from 2000 to 2014. Several droughts occurred during the study period—water years 2002, 2007–08, and 2011–12. Watersheds with the highest percentage of impervious areas had the highest runoff ratios, which is the portion of precipitation that occurs as runoff. Watershed base-flow indexes, the ratio of base-flow runoff to total runoff, were inversely correlated with watershed impervious area.Flood-frequency estimates were computed for 13 streamgages in the study area that have 10 or more years of annual peak flow data through water year 2015, using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows. Kendall’s tau nonparametric test was used to determine the statistical significance of trends in the annual peak flows, with none of the 13 streamgages exhibiting significant trends.A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples.Seasonality and long-term trends were identified for the period water years 2001–15 for 10 constituents—total nitrogen, total nitrate plus nitrite, total phosphorus, dissolved phosphorus, total organic carbon, total suspended solids, suspended-sediment concentration, total lead, total zinc, and total dissolved solids. Seasonal patterns were present in most watersheds for all constituents except total dissolved solids, and the watersheds had fairly similar patterns of higher concentrations in the summer and lower concentrations in the winter. A linear long-term trend analysis of residual concentrations from the flow-only load estimation model (without time-trend terms) identified significant trends in 67 of the 130 constituent-watershed combinations. Seventy percent of the significant trends were negative. Total organic carbon and total dissolved solids had predominantly positive trends. Total phosphorus, total suspended solids, suspended-sediment concentration, total lead, and total zinc had only negative trends. The other three constituents exhibited fewer trends, both positive and negative.Streamwater loads were estimated annually for the 13-year period water years 2003–15 for the same 10 constituents in the trend analysis. Loads were estimated using a regression-model-based approach developed by the USGS for the Gwinnett County LTTM program that accommodates the use of storm-event composited samples. Concentrations were modeled as a function of discharge, base flow, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion.Although the amount of annual runoff was the primary factor in variations in annual loads, climatic conditions (classified as dry, average, or wet) affected annual loads beyond what was attributed to climatic-related variations in annual runoff. Significant negative trends in loads were estimated for the combined area of the watersheds for all constituents except dissolved phosphorus, total organic carbon, and total dissolved solids. The trend analysis indicated that total suspended solids and suspended-sediment concentration loads in the study area were decreasing by 57,000 and 87,000 pounds per day per year, respectively.Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (as either total suspended solids or suspended-sediment concentrations), along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc), and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appeared to be associated with watersheds that had a low percentage of high-density development.

  13. Calculating discharge of phosphorus and nitrogen with groundwater base flow to a small urban stream reach

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Alex; Roy, James W.; Smith, James E.

    2015-09-01

    Elevated levels of nutrients, especially phosphorus, in urban streams can lead to eutrophication and general degradation of stream water quality. Contributions of phosphorus from groundwater have typically been assumed minor, though elevated concentrations have been associated with riparian areas and urban settings. The objective of this study was to investigate the importance of groundwater as a pathway for phosphorus and nitrogen input to a gaining urban stream. The stream at the 28-m study reach was 3-5 m wide and straight, flowing generally eastward, with a relatively smooth bottom of predominantly sand, with some areas of finer sediments and a few boulders. Temperature-based methods were used to estimate the groundwater flux distribution. Detailed concentration distributions in discharging groundwater were mapped using in-stream piezometers and diffusion-based peepers, and showed elevated levels of soluble reactive phosphorus (SRP) and ammonium compared to the stream (while nitrate levels were lower), especially along the south bank, where groundwater fluxes were lower and geochemically reducing conditions dominated. Field evidence suggests the ammonium may originate from nearby landfills, but that local sediments likely contribute the SRP. Ammonium and SRP mass discharges with groundwater were then estimated as the product of the respective concentration distributions and the groundwater flux distribution. These were determined as approximately 9 and 200 g d-1 for SRP and ammonium, respectively, which compares to stream mass discharges over the observed range of base flows of 20-1100 and 270-7600 g d-1, respectively. This suggests that groundwater from this small reach, and any similar areas along Dyment's Creek, has the potential to contribute substantially to the stream nutrient concentrations.

  14. Gas dynamics and mixture formation in swirled flows with precession of air flow

    NASA Astrophysics Data System (ADS)

    Tretyakov, V. V.; Sviridenkov, A. A.

    2017-10-01

    The effect of precessing air flow on the processes of mixture formation in the wake of the front winding devices of the combustion chambers is considered. Visual observations have shown that at different times the shape of the atomized jet is highly variable and has signs of precessing motion. The experimental data on the distribution of the velocity and concentration fields of the droplet fuel in the working volume of the flame tube of a typical combustion chamber are obtained. The method of calculating flows consisted in integrating the complete system of Reynolds equations written in Euler variables and closed with the two-parameter model of turbulence k-ε. Calculation of the concentration fields of droplet and vapor fuel is based on the use of models for disintegration into droplets of fuel jets, fragmentation of droplets and analysis of motion and evaporation of individual droplets in the air flow. Comparison of the calculation results with experimental data showed their good agreement.

  15. Water Quality and Biological Characteristics of the Middle Fork of the Saline River, Arkansas, 2003-06

    USGS Publications Warehouse

    Galloway, Joel M.; Petersen, James C.; Shelby, Erica L.; Wise, Jim A.

    2008-01-01

    The Middle Fork of the Saline River has many qualities that have been recognized by State and Federal agencies. The Middle Fork provides habitat for several rare aquatic species and is part of a larger stream system (the Upper Saline River) that is known for relatively high levels of species richness and relatively high numbers of species of concern. Water-quality samples were collected and streamflow was measured by the U.S. Geological Survey at three sites in the Middle Fork Basin between October 2003 and October 2006. The Arkansas Department of Environmental Quality collected discrete synoptic water-quality samples from eight sites between January 2004 and October 2006. The Arkansas Department of Environmental Quality also sampled fish (September-October 2003) and benthic macroinvertebrate communities (September 2003-December 2005) at five sites. Streamflow varied annually among the three streamflow sites from October 2003 to October 2006. The mean annual streamflow for Brushy Creek near Jessieville (MFS06) was 0.72 cubic meters per second for water years 2004-2006. The Middle Fork below Jessieville (MFS05) had a mean annual streamflow of 1.11 cubic meters per second for water years 2004-2006. The Middle Fork near Owensville (MFS02), the most downstream site, had a mean annual streamflow of 3.01 cubic meters per second. The greatest streamflows at the three sites generally occurred in the winter and spring and the least in the summer. Nutrient dynamics in the Middle Fork are controlled by activities in the basin and processes that occur in the stream. Point sources and nonpoint sources of nutrients occur in the Middle Fork Basin that could affect the water-quality. Nitrogen and phosphorus concentrations generally were greatest in Mill Creek (MFS04E) and in the Middle Fork immediately downstream from the confluence with Mill Creek (MFS04) with decreasing concentrations at sites farther downstream in Middle Fork. The site in Mill Creek is located downstream from a wastewater-treatment plant discharge and concentrations at sites farther downstream probably had lesser concentrations because of dilution effects and from algal uptake. Nutrient concentrations generally were significantly greater during high-flow conditions compared to base-flow conditions. Flow-weighted nutrient concentrations were computed for the three streamflow sites and were compared to 82 relatively undeveloped sites identified across the Nation, to the Alum Fork of the Saline River near Reform, Arkansas, and to the Illinois River south of Siloam Springs, Arkansas, a site influenced by numerous point and nonpoint sources of nutrients. Annual flow-weighted nutrient concentrations for MFS06, MFS05, and MFS02 were greater than relatively undeveloped sites, but were substantially less than the Illinois River south of Siloam Springs. Fecal indicator bacteria concentrations were slightly greater at MFS06 and MFS05 compared to concentrations at MFS02 for October 2003 to October 2006. MFS05 had the greatest E.coli concentrations and MFS06 had the greatest fecal coliform concentrations. Overall, fecal indicator bacteria concentrations were significantly greater for samples collected during high-flow conditions compared to samples collected during low-flow conditions at all three sites. Suspended-sediment concentrations did not vary significantly among MFS06, MFS05, and MFS02 for all the samples collected from October 2003 to October 2006. Suspended-sediment concentrations were significantly greater in samples collected during high-flow conditions compared to samples collected during base-flow conditions. Synoptic samples indicated varied total suspended-solids distributions from upstream to downstream in the Middle Fork between January 2004 and October 2006. Overall, total suspended-solids values were the greatest at site MFS02 and decreased at sites upstream and downstream. Turbidity measured when water-quality samples were

  16. Effects of grassland management practices and environmental conditions on nutrient concentrations in overland flow

    NASA Astrophysics Data System (ADS)

    Kurz, Isabelle; Coxon, Catherine; Tunney, Hubert; Ryan, Declan

    2005-03-01

    The loss of nutrients from agricultural land to water bodies is a serious concern in river basin management in many countries. To gain information on the contributions of agricultural grassland to the eutrophication of water bodies, this study set out to assess phosphorus (P) loss from grassland areas on poorly drained soils. A second aim was to look at the impact of grassland management practices on nutrient concentrations in overland flow. Edge-of-field measurements of overland flow quantity and of P and nitrogen (N) concentrations in overland flow were carried out at three study sites with different soil P levels. The amounts of overland flow and the P concentrations in overland flow varied considerably during events, and among sites and events. Despite this variability, there was a clear increase in P loss in overland flow from the low to the medium and high soil P sites. The inter-site variability of the P concentrations in overland flow greatly exceeded the variability of the amounts of overland flow from the different sites. Thus, P concentrations had a larger impact than the volume of overland flow on the differences in P exports from the three sites. Management practices which, at times, influenced the P and N concentrations in overland flow were grazing and N fertilisation.

  17. Effect of polyvinylpyrrolidone and sodium lauroyl isethionate on kaolinite suspension in an aqueous phase.

    PubMed

    Kwan, Chang-Chin; Chu, Wen-Hweu; Shimabayashi, Saburo

    2006-08-01

    Suspension of concentrated kaolinite (20 g/30 ml-medium) in the presence of polyvinylpyrrolidone (PVP) and sodium lauroyl isethionate (SLI) was allowed to evaluate its degree of dispersion based on their rheological studies. Flow curves at low shear rate, measured by means of cone-plate method, showed a non-Newtonian flow. Plastic viscosity and Bingham yield value were derived from the flow curves. Relative viscosity, effective volume fraction and void fraction of secondary particle were also obtained. Results of dispersity and fluidity of the suspension were explained. PVP acted as a flocculant at a concentration lower than 0.1% but as a dispersant at a higher concentration. The presence of SLI could decrease both the Bingham yield value and suspension viscosity. Cooperative and competitive effects of PVP and SLI were found. Results indicated that SLI enhanced the degree of dispersion of kaolinite when PVP was less than 0.1%. The suspension, however, showed a maximum flocculation (i.e., aggregation) at 4 mM SLI when the concentration of PVP was higher than 0.1%.

  18. Network structure of subway passenger flows

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Mao, B. H.; Bai, Y.

    2016-03-01

    The results of transportation infrastructure network analyses have been used to analyze complex networks in a topological context. However, most modeling approaches, including those based on complex network theory, do not fully account for real-life traffic patterns and may provide an incomplete view of network functions. This study utilizes trip data obtained from the Beijing Subway System to characterize individual passenger movement patterns. A directed weighted passenger flow network was constructed from the subway infrastructure network topology by incorporating trip data. The passenger flow networks exhibit several properties that can be characterized by power-law distributions based on flow size, and log-logistic distributions based on the fraction of boarding and departing passengers. The study also characterizes the temporal patterns of in-transit and waiting passengers and provides a hierarchical clustering structure for passenger flows. This hierarchical flow organization varies in the spatial domain. Ten cluster groups were identified, indicating a hierarchical urban polycentric structure composed of large concentrated flows at urban activity centers. These empirical findings provide insights regarding urban human mobility patterns within a large subway network.

  19. Student's social interaction in inquiry-based science education: how experiences of flow can increase motivation and achievement

    NASA Astrophysics Data System (ADS)

    Ellwood, Robin; Abrams, Eleanor

    2017-02-01

    This research investigated how student social interactions within two approaches to an inquiry-based science curriculum could be related to student motivation and achievement outcomes. This qualitative case study consisted of two cases, Off-Campus and On-Campus, and used ethnographic techniques of participant observation. Research participants included eight eighth grade girls, aged 13-14 years old. Data sources included formal and informal participant interviews, participant journal reflections, curriculum artifacts including quizzes, worksheets, and student-generated research posters, digital video and audio recordings, photographs, and researcher field notes. Data were transcribed verbatim and coded, then collapsed into emergent themes using NVIVO 9. The results of this research illustrate how setting conditions that promote focused concentration and communicative interactions can be positively related to student motivation and achievement outcomes in inquiry-based science. Participants in the Off-Campus case experienced more frequent states of focused concentration and out performed their peers in the On-Campus case on 46 % of classroom assignments. Off-Campus participants also designed and implemented a more cognitively complex research project, provided more in-depth analyses of their research results, and expanded their perceptions of what it means to act like a scientist to a greater extent than participants in the On-Campus case. These results can be understood in relation to Flow Theory. Student interactions that promoted the criteria necessary for initiating flow, which included having clearly defined goals, receiving immediate feedback, and maintaining a balance between challenges and skills, fostered enhanced student motivation and achievement outcomes. Implications for science teaching and future research include shifting the current focus in inquiry-based science from a continuum that progresses from teacher-directed to open inquiry experiences to a continuum that also deliberately includes and promotes the necessary criteria for establishing flow. Attending to Flow Theory and incorporating student experiences with flow into inquiry-based science lessons will enhance student motivation and achievement outcomes in science and bolster the success of inquiry-based science.

  20. Nitric oxide plays a role in the regulation of adrenal blood flow and adrenocorticomedullary functions in the llama fetus

    PubMed Central

    Riquelme, Raquel A; Sánchez, Gina; Liberona, Leonel; Sanhueza, Emilia M; Giussani, Dino A; Blanco, Carlos E; Hanson, Mark A; Llanos, Aníbal J

    2002-01-01

    The hypothesis that nitric oxide plays a key role in the regulation of adrenal blood flow and plasma concentrations of cortisol and catecholamines under basal and hypoxaemic conditions in the llama fetus was tested. At 0.6-0.8 of gestation, 11 llama fetuses were surgically prepared for long-term recording under anaesthesia with vascular and amniotic catheters. Following recovery all fetuses underwent an experimental protocol based on 1 h of normoxaemia, 1 h of hypoxaemia and 1 h of recovery. In nine fetuses, the protocol occurred during fetal i.v. infusion with saline and in five fetuses during fetal i.v. treatment with the nitric oxide synthase inhibitor l-NAME. Adrenal blood flow was determined by the radiolabelled microsphere method during each of the experimental periods during saline infusion and treatment with l-NAME. Treatment with l-NAME during normoxaemia led to a marked fall in adrenal blood flow and a pronounced increase in plasma catecholamine concentrations, but it did not affect plasma ACTH or cortisol levels. In saline-infused fetuses, acute hypoxaemia elicited an increase in adrenal blood flow and in plasma ACTH, cortisol, adrenaline and noradrenaline concentrations. Treatment with l-NAME did not affect the increase in fetal plasma ACTH, but prevented the increments in adrenal blood flow and in plasma cortisol and adrenaline concentrations during hypoxaemia in the llama fetus. In contrast, l-NAME further enhanced the increase in fetal plasma noradrenaline. These data support the hypothesis that nitric oxide has important roles in the regulation of adrenal blood flow and adrenal corticomedullary functions during normoxaemia and hypoxaemia functions in the late gestation llama fetus. PMID:12356897

  1. Transport and Reactive Flow Modelling Using A Particle Tracking Method Based on Continuous Time Random Walks

    NASA Astrophysics Data System (ADS)

    Oliveira, R.; Bijeljic, B.; Blunt, M. J.; Colbourne, A.; Sederman, A. J.; Mantle, M. D.; Gladden, L. F.

    2017-12-01

    Mixing and reactive processes have a large impact on the viability of enhanced oil and gas recovery projects that involve acid stimulation and CO2 injection. To achieve a successful design of the injection schemes an accurate understanding of the interplay between pore structure, flow and reactive transport is necessary. Dependent on transport and reactive conditions, this complex coupling can also be dependent on initial rock heterogeneity across a variety of scales. To address these issues, we devise a new method to study transport and reactive flow in porous media at multiple scales. The transport model is based on an efficient Particle Tracking Method based on Continuous Time Random Walks (CTRW-PTM) on a lattice. Transport is modelled using an algorithm described in Rhodes and Blunt (2006) and Srinivasan et al. (2010); this model is expanded to enable for reactive flow predictions in subsurface rock undergoing a first-order fluid/solid chemical reaction. The reaction-induced alteration in fluid/solid interface is accommodated in the model through changes in porosity and flow field, leading to time dependent transport characteristics in the form of transit time distributions which account for rock heterogeneity change. This also enables the study of concentration profiles at the scale of interest. Firstly, we validate transport model by comparing the probability of molecular displacement (propagators) measured by Nuclear Magnetic Resonance (NMR) with our modelled predictions for concentration profiles. The experimental propagators for three different porous media of increasing complexity, a beadpack, a Bentheimer sandstone and a Portland carbonate, show a good agreement with the model. Next, we capture the time evolution of the propagators distribution in a reactive flow experiment, where hydrochloric acid is injected into a limestone rock. We analyse the time-evolving non-Fickian signatures for the transport during reactive flow and observe an increase in transport heterogeneity at latter times, representing the increase in rock heterogeneity. Evolution of transit time distribution is associated with the evolution of concentration profiles, thus highlighting the impact of initial rock structure on the reactive transport for a range of Pe and Da numbers.

  2. Tracing ground water input to base flow using sulfate (S, O) isotopes

    USGS Publications Warehouse

    Gu, A.; Gray, F.; Eastoe, C.J.; Norman, L.M.; Duarte, O.; Long, A.

    2008-01-01

    Sulfate (S and O) isotopes used in conjunction with sulfate concentration provide a tracer for ground water contributions to base flow. They are particularly useful in areas where rock sources of contrasting S isotope character are juxtaposed, where water chemistry or H and O isotopes fail to distinguish water sources, and in arid areas where rain water contributions to base flow are minimal. Sonoita Creek basin in southern Arizona, where evaporite and igneous sources of sulfur are commonly juxtaposed, serves as an example. Base flow in Sonoita Creek is a mixture of three ground water sources: A, basin ground water with sulfate resembling that from Permian evaporite; B, ground water from the Patagonia Mountains; and C, ground water associated with Temporal Gulch. B and C contain sulfate like that of acid rock drainage in the region but differ in sulfate content. Source A contributes 50% to 70%, with the remainder equally divided between B and C during the base flow seasons. The proportion of B generally increases downstream. The proportion of A is greatest under drought conditions.

  3. Salinity trends in the Ebro River (Spain)

    NASA Astrophysics Data System (ADS)

    Lorenzo-Gonzalez, M.° Angeles; Isidoro, Daniel; Quilez, Dolores

    2016-04-01

    In the Ebro River Basin (Spain), the increase in water diversion for irrigation (following the increase in irrigated area) and the recovery of natural vegetation in the upper reaches, along with climate change have induced changes in the river flow and its associated salt loads. This study was supported by the Ebro River Basin Administration (CHE) and aimed to establish the trends in the salt concentrations and loads of the Ebro River at Tortosa (no 027, the extreme downstream gauging station). The CHE databases from 1972-73 to 2011-12, including mean monthly flows (Q) and concentration readings (electrical conductivity converted to total dissolved solids -TDS- by regression) from monthly grab samples, have been used. The trends were established by (i) harmonic regression analysis; (ii) linear regression by month; and (iii) the non-parametric Mann-Kendall method. Additionally, (iv) the regressions of TDS on Q in the current and previous months were established, allowing for analyzing separately the trends in TDS linked to- (TDSq) and independent of- (TDSaj) the observed changes in flow. In all cases, the trends were analyzed for different periods within the full span 1973-2012 (1973 to 2012, 1981 to 2012, 1990-2012 and 2001-2012), trying to account for periods with sensibly similar patterns of land use change. An increase in TDS was found for all the periods analyzed that was lower as shorter periods were used, suggesting that lower salinity changes might be taking place in the last years, possibly due to the reduction in the rate of irrigation development and to the on-going irrigation modernization process. The higher seasonal TDS increases were found in autumn and winter months and the increase in TDS was linked both to intrinsic changes in salinity (TDSaj) and to the observed decrease in flow (TDSq). On the other hand, the salt loads decreased, especially in autumn, as a result of the observed flow decrease. These results are based on the observed evolution of flows and salinity in 1973-2012 and can only be extrapolated into the future if the drivers of this evolution (climate and land use changes) remain unchanged in the following years, what is uncertain. A more comprehensive methodology to estimate the effects of irrigation on water salinity has been developed based on a mass balance approach. Using actual data on volumes and concentrations of return flows observed in the basin (dependent on the actual salinity of soils and waters and the irrigation systems, among other factors), the return flows of the irrigated areas are aggregated to match the actual flows and loads observed in the Ebro River. Once this balance is satisfied, the effect of new irrigated areas, drainage water reuse, irrigation modernization, or climate change would be incorporated to the balance yielding salinity forecasts based on planned irrigation developments and modernization or climate change predictions. A priori, irrigation modernization would produce lower, more concentrated volumes of return flows with lower salt loads that would result in lower TDS concentrations in the Ebro River.

  4. Label-free high-throughput imaging flow cytometry

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Chen, C.; Niazi, K. R.; Rabizadeh, S.; Jalali, B.

    2014-03-01

    Flow cytometry is an optical method for studying cells based on their individual physical and chemical characteristics. It is widely used in clinical diagnosis, medical research, and biotechnology for analysis of blood cells and other cells in suspension. Conventional flow cytometers aim a laser beam at a stream of cells and measure the elastic scattering of light at forward and side angles. They also perform single-point measurements of fluorescent emissions from labeled cells. However, many reagents used in cell labeling reduce cellular viability or change the behavior of the target cells through the activation of undesired cellular processes or inhibition of normal cellular activity. Therefore, labeled cells are not completely representative of their unaltered form nor are they fully reliable for downstream studies. To remove the requirement of cell labeling in flow cytometry, while still meeting the classification sensitivity and specificity goals, measurement of additional biophysical parameters is essential. Here, we introduce an interferometric imaging flow cytometer based on the world's fastest continuous-time camera. Our system simultaneously measures cellular size, scattering, and protein concentration as supplementary biophysical parameters for label-free cell classification. It exploits the wide bandwidth of ultrafast laser pulses to perform blur-free quantitative phase and intensity imaging at flow speeds as high as 10 meters per second and achieves nanometer-scale optical path length resolution for precise measurements of cellular protein concentration.

  5. Numerical modeling of carrier gas flow in atomic layer deposition vacuum reactor: A comparative study of lattice Boltzmann models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Dongqing; Chien Jen, Tien; Li, Tao

    2014-01-15

    This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domainmore » with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.« less

  6. Method and apparatus for making articles from particle based materials

    DOEpatents

    Moorhead, A.J.; Menchhofer, P.A.

    1995-12-19

    A method and apparatus are disclosed for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with the invention, a thermally settable slurry containing a relatively high concentration of the particles is conveyed through an elongate flow area having a desired cross-sectional configuration. The slurry is heated as it is advanced through the flow area causing the slurry to set or harden in a shape which conforms to the cross-sectional configuration of the flow area. The material discharges from the flow area as a self-supporting solid of near net final dimensions. The article may then be sintered to consolidate the particles and provide a high density product. 10 figs.

  7. Quantifying the fate of agricultural nitrogen in an unconfined aquifer: Stream-based observations at three measurement scales

    NASA Astrophysics Data System (ADS)

    Gilmore, Troy E.; Genereux, David P.; Solomon, D. Kip; Solder, John E.; Kimball, Briant A.; Mitasova, Helena; Birgand, François

    2016-03-01

    We compared three stream-based sampling methods to study the fate of nitrate in groundwater in a coastal plain watershed: point measurements beneath the streambed, seepage blankets (novel seepage-meter design), and reach mass-balance. The methods gave similar mean groundwater seepage rates into the stream (0.3-0.6 m/d) during two 3-4 day field campaigns despite an order of magnitude difference in stream discharge between the campaigns. At low flow, estimates of flow-weighted mean nitrate concentrations in groundwater discharge ([NO3-]FWM) and nitrate flux from groundwater to the stream decreased with increasing degree of channel influence and measurement scale, i.e., [NO3-]FWM was 654, 561, and 451 µM for point, blanket, and reach mass-balance sampling, respectively. At high flow the trend was reversed, likely because reach mass-balance captured inputs from shallow transient high-nitrate flow paths while point and blanket measurements did not. Point sampling may be better suited to estimating aquifer discharge of nitrate, while reach mass-balance reflects full nitrate inputs into the channel (which at high flow may be more than aquifer discharge due to transient flow paths, and at low flow may be less than aquifer discharge due to channel-based nitrate removal). Modeling dissolved N2 from streambed samples suggested (1) about half of groundwater nitrate was denitrified prior to discharge from the aquifer, and (2) both extent of denitrification and initial nitrate concentration in groundwater (700-1300 µM) were related to land use, suggesting these forms of streambed sampling for groundwater can reveal watershed spatial relations relevant to nitrate contamination and fate in the aquifer.

  8. Investigation of High-Level Synthesis tools’ applicability to data acquisition systems design based on the CMS ECAL Data Concentrator Card example

    NASA Astrophysics Data System (ADS)

    HUSEJKO, Michal; EVANS, John; RASTEIRO DA SILVA, Jose Carlos

    2015-12-01

    High-Level Synthesis (HLS) for Field-Programmable Logic Array (FPGA) programming is becoming a practical alternative to well-established VHDL and Verilog languages. This paper describes a case study in the use of HLS tools to design FPGA-based data acquisition systems (DAQ). We will present the implementation of the CERN CMS detector ECAL Data Concentrator Card (DCC) functionality in HLS and lessons learned from using HLS design flow. The DCC functionality and a definition of the initial system-level performance requirements (latency, bandwidth, and throughput) will be presented. We will describe how its packet processing control centric algorithm was implemented with VHDL and Verilog languages. We will then show how the HLS flow could speed up design-space exploration by providing loose coupling between functions interface design and functions algorithm implementation. We conclude with results of real-life hardware tests performed with the HLS flow-generated design with a DCC Tester system.

  9. Computed tomography measurement of gaseous fuel concentration by infrared laser light absorption

    NASA Astrophysics Data System (ADS)

    Kawazoe, Hiromitsu; Inagaki, Kazuhisa; Emi, Y.; Yoshino, Fumio

    1997-11-01

    A system to measure gaseous hydrocarbon distributions was devised, which is based on IR light absorption by C-H stretch mode of vibration and computed tomography method. It is called IR-CT method in the paper. Affection of laser light power fluctuation was diminished by monitoring source light intensity by the second IR light detector. Calibration test for methane fuel was carried out to convert spatial data of line absorption coefficient into quantitative methane concentration. This system was applied to three flow fields. The first is methane flow with lifted flame which is generated by a gourd-shaped fuel nozzle. Feasibility of the IR-CT method was confirmed through the measurement. The second application is combustion field with diffusion flame. Calibration to determine absorptivity was undertaken, and measured line absorption coefficient was converted spatial fuel concentration using corresponding temperature data. The last case is modeled in cylinder gas flow of internal combustion engine, where gaseous methane was led to the intake valve in steady flow state. The fuel gas flow simulates behavior of gaseous gasoline which is evaporated at intake valve tulip. Computed tomography measurement of inner flow is essentially difficult because of existence of surrounding wall. In this experiment, IR laser beam was led to planed portion by IR light fiber. It is found that fuel convection by airflow takes great part in air-fuel mixture formation and the developed IR-CT system to measure fuel concentration is useful to analyze air-fuel mixture formation process and to develop new combustors.

  10. Monitoring electrolyte concentrations in redox flow battery systems

    DOEpatents

    Chang, On Kok; Sopchak, David Andrew; Pham, Ai Quoc; Kinoshita, Kimio

    2015-03-17

    Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.

  11. Fundamentals and techniques of nonimaging optics research

    NASA Astrophysics Data System (ADS)

    Winston, R.; Ogallagher, J.

    1987-07-01

    Nonimaging Optics differs from conventional approaches in its relaxation of unnecessary constraints on energy transport imposed by the traditional methods for optimizing image formation and its use of more broadly based analytical techniques such as phase space representations of energy flow, radiative transfer analysis, thermodynamic arguments, etc. Based on these means, techniques for designing optical elements which approach and in some cases attain the maximum concentration permitted by the Second Law of Thermodynamics were developed. The most widely known of these devices are the family of Compound Parabolic Concentrators (CPC's) and their variants and the so called Flow-Line or trumpet concentrator derived from the geometric vector flux formalism developed under this program. Applications of these and other such ideal or near-ideal devices permits increases of typically a factor of four (though in some cases as much as an order of magnitude) in the concentration above that possible with conventional means. Present efforts can be classed into two main areas: (1) classical geometrical nonimaging optics, and (2) logical extensions of nonimaging concepts to the physical optics domain.

  12. Fundamentals and techniques of nonimaging optics research at the University of Chicago

    NASA Astrophysics Data System (ADS)

    Winston, R.; Ogallagher, J.

    1986-11-01

    Nonimaging Optics differs from conventional approaches in its relaxation of unnecessary constraints on energy transport imposed by the traditional methods for optimizing image formation and its use of more broadly based analytical techniques such as phase space representations of energy flow, radiative transfer analysis, thermodynamic arguments, etc. Based on these means, techniques for designing optical elements which approach and in some cases attain the maximum concentration permitted by the Second Law of Thermodynamics were developed. The most widely known of these devices are the family of Compound Parabolic Concentrators (CPC's) and their variants and the so called Flow-Line concentrator derived from the geometric vector flux formalism developed under this program. Applications of these and other such ideal or near-ideal devices permits increases of typically a factor of four (though in some cases as much as an order of magnitude) in the concentration above that possible with conventional means. In the most recent phase, our efforts can be classed into two main areas; (a) ''classical'' geometrical nonimaging optics; and (b) logical extensions of nonimaging concepts to the physical optics domain.

  13. Evaluation of Streamflow, Water Quality, and Permitted and Nonpermitted Loads and Yields in the Raritan River Basin, New Jersey, Water Years 1991-98

    USGS Publications Warehouse

    Reiser, Robert G.

    2003-01-01

    Seventeen water-quality constituents were analyzed in samples collected from 21 surface-water sampling sites in the Raritan River Basin during water years 1991-97. Loads were computed for seven constituents. Thirteen constituents have associated instream water-quality standards that are used as reference levels when evaluating the data. Nine of the 13 constituents did not meet water-quality reference levels in all samples at all sites. The constituents that most commonly failed to meet the water-quality reference levels in the 801 samples analyzed were total phosphorus (greater than 0.1 mg/L (milligrams per liter) in 32 percent of samples), fecal coliform bacteria (greater than 400 counts/100 milliliters in 29 percent), hardness (less than 50 mg/L in 21 percent), pH (greater than 8.5 or less than 6.5 in 17 percent), and water temperature in designated trout waters (greater than 20 degrees Celsius in 12 percent of samples). Concentrations of chloride, total dissolved solids, nitrate plus nitrite, and sulfate did not exceed water-quality reference levels in any sample. Results from previous studies on pesticides and volatile organic compounds in streamwater during 1996-98, and organic compounds and trace elements in sediments during 1976-93, were summarized for this study. Concentrations of pesticides in some samples exceeded the relevant standards. Water-quality data varied significantly as season and streamflow changed. Concentrations or values of 12 constituents were significantly higher in the growing season than in the nongrowing season at 1 to 21 sites, and concentrations of 6 constituents were significantly higher in the nongrowing season at 1 to 21 sites. Concentrations or values of seven constituents decreased significantly with increased streamflow, indicating a more significant contribution from base flow or permitted sources than from runoff. Concentrations or values of four constituents increased with increased flow, indicating a more significant contribution from runoff than from base flow or permitted sources. Phosphorus concentrations increased with flow at two sites with no point sources and decreased with flow at five sites with four or more permitted point sources. Concentrations of five constituents did not vary significantly with changes in streamflow at any of the sites. Concentrations of constituents differed significantly between sites. The sites with the most desirable values for the most constituents were Mulhockaway Creek, Spruce Run, Millstone River at Manalapan, Manalapan Brook, and Lamington River at Pottersville. The sites with the least desirable values for the most constituents were Millstone River at Blackwells Mills, Matchaponix Brook, Raritan River at Bound Brook, Neshanic River, and Millstone River at Grovers Mill. The total instream loads of seven constituents - total ammonia plus organic nitrogen (TKN), biochemical oxygen demand (BOD), total dissolved solids (TDS), nitrate plus nitrite (NO3+NO2), total organic carbon (TOC), total phosphorus, and total suspended solids (TSS) - were analyzed at low, median, and high flows. The quantities of total instream load that originated from facilities with permits issued by the New Jersey Department of Environmental Protection to discharge effluent to streams (permitted sources) and from other sources (nonpermitted sources) were estimated for each sampling site. TOC and TSS loads primarily were contributed by nonpermitted sources at all flows. BOD and TDS loads primarily were contributed by nonpermitted sources at median and high flows. At low flow, permitted sources contributed more than one-third of the TDS load at 10 sites and more than one-third of the BOD load at 3 sites. Permitted sources contributed more than one-third of the total phosphorus load at 15 and 14 sites at low and median flows, respectively. Permitted sources accounted for more than one-third of total instream load of NO3+NO2 at low- and median-flow conditions at nearly

  14. Theoretical study of reactive and nonreactive turbulent coaxial jets

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Wakelyn, N. T.

    1976-01-01

    The hydrodynamic properties and the reaction kinetics of axisymmetric coaxial turbulent jets having steady mean quantities are investigated. From the analysis, limited to free turbulent boundary layer mixing of such jets, it is found that the two-equation model of turbulence is adequate for most nonreactive flows. For the reactive flows, where an allowance must be made for second order correlations of concentration fluctuations in the finite rate chemistry for initially inhomogeneous mixture, an equation similar to the concentration fluctuation equation of a related model is suggested. For diffusion limited reactions, the eddy breakup model based on concentration fluctuations is found satisfactory and simple to use. The theoretical results obtained from these various models are compared with some of the available experimental data.

  15. Phosphorus doping of Si and Si1 - xGex grown by ultrahigh vacuum chemical vapor deposition using Si2H6 and GeH4

    NASA Astrophysics Data System (ADS)

    Chen, L. P.; Huang, G. W.; Chang, C. Y.

    1996-03-01

    100 ppm PH3 diluted in hydrogen is used as the n-type dopant gas in Si and Si1-xGex epilayers grown by ultrahigh vacuum chemical vapor deposition (UHVCVD) using Si2H6 and GeH4. The phosphorus concentration in Si increases linearly at a small PH3 flow rate and becomes nearly saturated at higher flow rates, while the phosphorus concentration in Si1-xGex only shows a nearly linear behavior with PH3 flow rate. The growth rates of Si and Si1-xGex epilayers decrease seriously (˜50%) and slightly (˜10%) with the increase of PH3 flow rate, respectively. These results can be explained by a model based on the enhancement of hydrogen desorption rate at smaller PH3 flow rates and different levels of the effects of phosphorus blocking of surface-activated sites between Si and Si1-xGex epilayers at higher PH3 flow rates.

  16. Distributed source pollutant transport module based on BTOPMC: a case study of the Laixi River basin in the Sichuan province of southwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbo; Ao, Tianqi; Gusyev, Maksym; Ishidaira, Hiroshi; Magome, Jun; Takeuchi, Kuniyoshi

    2018-06-01

    Nitrogen and phosphorus concentrations in Chinese river catchments are contributed by agricultural non-point and industrial point sources causing deterioration of river water quality and degradation of ecosystem functioning for a long distance downstream. To evaluate these impacts, a distributed pollutant transport module was developed on the basis of BTOPMC (Block-Wise Use of TOPMODEL with Muskingum-Cunge Method), a grid-based distributed hydrological model, using the water flow routing process of BTOPMC as the carrier of pollutant transport due a direct runoff. The pollutant flux at each grid is simulated based on mass balance of pollutants within the grid and surface water transport of these pollutants occurs between grids in the direction of the water flow on daily time steps. The model was tested in the study area of the Lu county area situated in the Laixi River basin in the Sichuan province of southwest China. The simulated concentrations of nitrogen and phosphorus are compared with the available monthly data at several water quality stations. These results demonstrate a greater pollutant concentration in the beginning of high flow period indicating the main mechanism of pollution transport. From these preliminary results, we suggest that the distributed pollutant transport model can reflect the characteristics of the pollutant transport and reach the expected target.

  17. Efficacy of controlled-release KMnO4 (CRP) for controlling dissolved TCE plume in groundwater: a large flow-tank study.

    PubMed

    Lee, Byung Sun; Kim, Jeong Hee; Lee, Ki Churl; Kim, Yang Bin; Schwartz, Franklin W; Lee, Eung Seok; Woo, Nam Chil; Lee, Myoung Ki

    2009-02-01

    A well-based, reactive barrier system using controlled-release potassium permanganate (CRP system) was recently developed as a long-term treatment option for dilute plumes of chlorinated solvents in groundwater. In this study, we performed large-scale (L x W x D = 8 m x 4 m x 2 m) flow-tank experiments to examine remedial efficacy of the CRP system. A total of 110 CRP rods (OD x L=5 cm x 150 cm) were used to construct a well-based CRP system (L x W x D = 3 m x 4 m x 1.5 m) comprising three discrete barriers installed at 1-m interval downstream. Natural sands having oxidant demand of 3.7 g MnO(4)(-)kg(-1) for 500 mg L(-1)MnO(4)(-) were used as porous media. After MnO(4)(-) concentrations were somewhat stabilized (0.5-6.0 mg L(-1)), trichloroethylene (TCE) plume was flowed through the flow-tank for 53 d by supplying 1.19 m(3)d(-1) of TCE solution. Mean initial TCE concentrations were 87 microg L(-1) for first 20 d and 172 microg L(-1) for the next 33 d. During TCE treatment, flow velocity (0.60md(-1)), pH (7.0-8.2), and concentrations of dissolved metals ([Al]=0.7 mg L(-1), [Fe]=0.01 mg L(-1)) showed little variations. The MnO(2)(s) contents in the sandy media measured after the TCE treatment ranged from 21 to 26 mg kg(-1), slightly increased from mean baseline value of 17 mg kg(-1). Strengths of the TCE plume considerably diminished by the CRP system. For the 87 microg L(-1) plume, TCE concentrations decreased by 38% (53), 67% (29), and 74% (23 microg L(-1)) after 1st, 2nd, and 3rd barriers, respectively. For the 172 microg L(-1) plume, TCE concentrations decreased by 27% (125), 46% (93), and 65% (61 microg L(-1)) after 1st, 2nd, and 3rd barriers, respectively. Incomplete destruction of TCE plume was attributed to the lack of lateral dispersion in the unpumped well-based barrier system. Development of delivery systems that can facilitate lateral spreading and mixing of permanganate with contaminant plume is warranted.

  18. Temporal evolution of age data under transient pumping conditions

    NASA Astrophysics Data System (ADS)

    Leray, S.; De Dreuzy, J.; Aquilina, L.; Vergnaud, V.; Labasque, T.; Bour, O.; Le Borgne, T.

    2013-12-01

    While most age data derived from tracers have been analyzed in steady-state flow conditions, we determine their temporal evolution under transient pumping conditions. Starting pumping in a well modifies the natural flow patterns induced by the topographical gradient to a mainly convergent flow to the well. Our study is based on a set of models made up of a shallowly dipping aquifer overlain by a less permeable aquitard. These settings are characteristic of the crystalline aquifer of Plœmeur (Brittany, France) located in a highly fractured zone at the contact between a granite and micaschists. Under a pseudo steady-state flow assumption (instantaneous shift between two steady-state flow fields), we solve the transport equation with a backward particle-tracking method and determine the temporal evolution of the concentrations at the pumping well of the four atmospheric tracers CFC 11, CFC 12, CFC 113 and SF6. We show that apparent ages deduced from these concentrations evolve both because of the flow patterns modifications and because of the non-linear evolution of the atmospheric tracer concentrations. Flow patterns modifications only intervene just after the start of pumping, when the initially piston-like residence time distribution is transformed to a broader distribution mixing residence times from a wide variety of flow lines. Later, while flow patterns and the supplying volume of the pumping well still evolve, the residence time distributions are hardly modified and apparent ages are solely altered by the non-linear atmospheric tracer concentrations that progressively modifies the weighting of the residence time distribution. These results are confirmed by the observations at the site of Plœmeur in the pumping area. First, long term chloride observations confirm the quick evolution of the flow patterns after the start of pumping. Second, posterior and more recent evolutions of apparent ages derived from CFCs are consistent with the modeling results revealing in turn the marginal effect of the 20-year pumping on the first 70 years of the residence time distribution. We conclude that the temporal evolution of apparent ages should be used with great care for identifying the temporal evolution of the flow patterns as the apparent age evolution can have two sources - the transient flow patterns and transient tracer atmospheric concentrations. We argue that both evolutions either controlled by transient flow patterns or by transient tracer atmospheric concentrations provide key information that can be further used for the characterization of the hydrogeological system. This study illustrates that the temporal evolution of apparent ages could be used for models segregation and slightly compensate for the small number of tracers.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsuddin Ilias

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In this report, we report our application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Based on our ultrafiltration experiments with apple juice, we conclude that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. Thus, flow reversal technology seems an attractive alternative to mitigate fouling problem in crossflow membrane filtration.« less

  20. Minimizing Concentration Effects in Water-Based, Laminar-Flow Condensation Particle Counters

    PubMed Central

    Lewis, Gregory S.; Hering, Susanne V.

    2013-01-01

    Concentration effects in water condensation systems, such as used in the water-based condensation particle counter, are explored through numeric modeling and direct measurements. Modeling shows that the condensation heat release and vapor depletion associated with particle activation and growth lowers the peak supersaturation. At higher number concentrations, the diameter of the droplets formed is smaller, and the threshold particle size for activation is higher. This occurs in both cylindrical and parallel plate geometries. For water-based systems we find that condensational heat release is more important than is vapor depletion. We also find that concentration effects can be minimized through use of smaller tube diameters, or more closely spaced parallel plates. Experimental measurements of droplet diameter confirm modeling results. PMID:24436507

  1. Speciation and equilibrium relations of soluble aluminum in a headwater stream at base flow and during rain events

    USGS Publications Warehouse

    Burns, Douglas A.

    1989-01-01

    In a small watershed in the Shenandoah National Park, Virginia, the short-term dynamics of soluble aluminum in stream water sampled during rain events differed significantly from stream water sampled during base flow conditions. Three fractions of dissolved aluminum were measured. The inorganic monomeric fraction made up approximately two thirds of the total reactive aluminum at base flow, followed by the acid-soluble and organic monomeric fractions, respectively. Equilibrium modeling showed that hydroxide complexes were the most abundant form of inorganic monomeric aluminum followed by fluoride, free aluminum ion, and sulfate. The activity of inorganic monomeric aluminum at base flow appears to be in equilibrium with an Al(OH)3 phase with solubility intermediate between microcrystalline gibbsite and natural gibbsite. During two rain events, the concentration of all three aluminum fractions increased significantly. Available chemical evidence indicates that acidic soil water was the primary source of dissolved aluminum. As flow increased, the Al(OH)3 saturation index in the stream water increased significantly. The primary cause of the transient increase in the Al(OH)3 saturation index appears to have been the neutralization of excess H+ added by soil water through reaction with stream water HCO3− at a more rapid rate than excess inorganic monomeric aluminum could be removed from solution by hydroxide mineral precipitation. A soil water/stream water mixing model was developed based on measured changes of stream water alkalinity, silica concentration, and charge imbalance during the rain events. Model results indicate that a small amount of soil water (3–11%) was present in the stream at peak stage.

  2. Antecedent flow conditions and nitrate concentrations in the Mississippi River basin

    USGS Publications Warehouse

    Murphy, Jennifer C.; Hirsch, Robert M.; Sprague, Lori A.

    2014-01-01

    The relationship between antecedent flow conditions and nitrate concentrations was explored at eight sites in the 2.9 million square kilometers (km2) Mississippi River basin, USA. Antecedent flow conditions were quantified as the ratio between the mean daily flow of the previous year and the mean daily flow from the period of record (Qratio), and the Qratio was statistically related to nitrate anomalies (the unexplained variability in nitrate concentration after filtering out season, long-term trend, and contemporaneous flow effects) at each site. Nitrate anomaly and Qratio were negatively related at three of the four major tributary sites and upstream in the Mississippi River, indicating that when mean daily streamflow during the previous year was lower than average, nitrate concentrations were higher than expected. The strength of these relationships increased when data were subdivided by contemporaneous flow conditions. Five of the eight sites had significant negative relationships (p ≤ 0.05) at high or moderately high contemporaneous flows, suggesting nitrate that accumulates in these basins during a drought is flushed during subsequent high flows. At half of the sites, when mean daily flow during the previous year was 50 percent lower than average, nitrate concentration can be from 9 to 27 percent higher than nitrate concentrations that follow a year with average mean daily flow. Conversely, nitrate concentration can be from 8 to 21 percent lower than expected when flow during the previous year was 50 percent higher than average. Previously documented for small, relatively homogenous basins, our results suggest that relationships between antecedent flows and nitrate concentrations are also observable at a regional scale. Relationships were not observed (using all contemporaneous flow data together) for basins larger than 1 million km2, suggesting that above this limit the overall size and diversity within these basins may necessitate the use of more complicated statistical approaches or that there may be no discernible basin-wide relationship with antecedent flow. The relationships between nitrate concentration and Qratio identified in this study serve as the basis for future studies that can better define specific hydrologic processes occurring during and after a drought (or high flow period) which influence nitrate concentration, such as the duration or magnitude of low flows, and the timing of low and high flows.

  3. Dynamics of Phosphorus export from small forested catchments in low mountain ranges in Germany

    NASA Astrophysics Data System (ADS)

    Julich, Stefan; Julich, Dorit; Benning, Raphael; Feger, Karl-Heinz

    2017-04-01

    Phosphorus (P) plays an important role in the nutrition of forest ecosystem. The transport of P in forest soils predominantly occurs along preferential water flow pathways bypassing large parts of the soil matrix. Therefore, rapid flow processes by preferential flow and/or during storm events may lead to significant P losses from forest soils. However only little knowledge about the dynamics, magnitude and driving processes of P exports into surface water exist. In this contribution, we present the results of two studies where two small forested catchments have been monitored for a period around 3 years. Both catchments are situated in low mountain ranges in Saxony (catchment size 21 ha) and Thuringia (catchment size 5 ha) representing medium P contents in the topsoil of 1142 mg kg-1 and 834 mg kg-1 respectively. During the regular sampling (monthly to weekly sampling frequency), the mean Total-P concentrations of 23 μg L-1(Thuringian Site) and 8 μg L-1(Saxonian Site) have been measured. However, during single storm events Total-P concentrations increased considerably with maximum concentrations of 134 μg L-1(Thuringian Site) and 203 μg L-1(Saxonian Site). Our findings indicate that during storm events, especially after longer dry periods, significant amounts of phosphorus can be exported from forest ecosystems. Comparison of discharge-concentration patterns of Total-P, Nitrogen and DOC, as well as dye tracer experiments, suggest that preferential flow along biopores and stone surfaces, and the interface between mineral soil and litter layer are main pathways of export from forests. For the site in Saxony we calculated mean annual export rates of 32.8 to 33.5 g ha-1 a-1 based on the weekly sampling with different load calculation methods (flow weighted methods up to linear regression models). If the events are included into the annual load calculation the mean annual export fluxes increase from 47.8 to 58.6 g ha-1 a-1 based on the different load calculation methods. This implies that the estimation of P-exports from forested catchments need to be based on appropriate monitoring schemes and load estimation methods.

  4. Fluvial sediments a summary of source, transportation, deposition, and measurement of sediment discharge

    USGS Publications Warehouse

    Colby, B.R.

    1963-01-01

    This paper presents a broad but undetailed picture of fluvial sediments in streams, reservoirs, and lakes and includes a discussion of the processes involved in the movement of sediment by flowing water. Sediment is fragmental material that originates from the chemical or physical disintegration of rocks. The disintegration products may have many different shapes and may range in size from large boulders to colloidal particles. In general, they retain about the same mineral composition as the parent rocks. Rock fragments become fluvial sediment when they are entrained in a stream of water. The entrainment may occur as sheet erosion from land surfaces, particularly for the fine particles, or as channel erosion after the surface runoff has accumulated in streams. Fluvial sediments move in streams as bedload (particles moving within a few particle diameters of the streambed) or as suspended sediment in the turbulent flow. The discharge of bedload varies with several factors, which may include particle size and a type of effective shear on the surface of the streambed. The discharge of suspended sediment depends partly on concentration of moving sediment near the streambed and hence on discharge of bedload. However, the concentration of fine sediment near the streambed varies widely, even for equal flows, and, therefore, the discharge of fine sediment normally cannot be computed theoretically. The discharge of suspended sediment also depends on velocity, turbulence, depth of flow, and fall velocity of the particles. In general, the coarse sediment transported by a stream moves intermittently and is discharged at a rate that depends on properties of the flow and of the sediment. If an ample supply of coarse sediment is available at the surface of the streambed, the discharge of the coarse sediment, such as sand, can be roughly computed from properties of the available sediment and of the flow. On the other hand, much of the fine sediment in a stream usually moves nearly continuously at about the velocity of the flow, and even low flows can transport large amounts of fine sediment. Hence, the discharge of fine sediments, being largely dependent on the availability of fine sediment upstream rather than on the properties of the sediment and of the flow at a cross section, can seldom be computed from properties, other than concentrations based directly on samples, that can be observed at the cross section. Sediment particles continually change their positions in the flow; some fall to the streambed, and others are removed from the bed. Sediment deposits form locally or over large areas if the volume rate at which particles settle to the bed exceeds the volume rate at which particles are removed from the bed. In general, large particles are deposited more readily than small particles, whether the point of deposition is behind a rock, on a flood plain, within a stream channel, or at the entrance to a reservoir, a lake, or the ocean. Most samplers used for sediment observations collect a water-sediment mixture from the water surface to within a few tenths of a foot of the streambed. They thus sample most of the suspended sediment, especially if the flow is deep or if the sediment is mostly fine; but they exclude the bedload and some of the suspended sediment in a layer near the streambed where the suspended-sediment concentrations are highest. Measured sediment discharges are usually based on concentrations that are averages of several individual sediment samples for a cross section. If enough average concentrations for a cross section have been determined, the measured sediment discharge can be computed by interpolating sediment concentrations between sampling times. If only occasional samples were collected, an average relation between sediment discharge and flow can be used with a flow-duration curve to compute roughly the average or the total sediment discharges for any periods of time for which the flow-duration c

  5. Water-quality assessment of the eastern Iowa basins- nitrogen, phosphorus, suspended sediment, and organic carbon in surface water, 1996-98

    USGS Publications Warehouse

    Becher, Kent D.; Kalkhoff, Stephen J.; Schnoebelen, Douglas J.; Barnes, Kimberlee K.; Miller, Von E.

    2001-01-01

    Synoptic samples collected during low and high base flow had nitrogen, phosphorus, and organic-carbon concentrations that varied spatially and seasonally. Comparisons of water-quality data from six basic-fixed sampling sites and 19 other synoptic sites suggest that the water-quality data from basic-fixed sampling sites were representative of the entire study unit during periods of low and high base flow when most streamflow originates from ground water.

  6. Simultaneous three-dimensional velocity and mixing measurements by use of laser Doppler velocimetry and fluorescence probes in a water tunnel

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Wing, David J.; Henderson, Uleses C., Jr.

    1994-01-01

    A water tunnel investigation was conducted to demonstrate the capabilities of a laser-based instrument that can measure velocity and fluorescence intensity simultaneously. Fluorescence intensity of an excited fluorescent dye is directly related to concentration level and is used to indicate the extent of mixing in flow. This instrument is a three-dimensional laser Doppler velocimeter (LDV) in combination with a fluorometer for measuring fluorescence intensity variations. This capability allows simultaneous flow measurements of the three orthogonal velocity components and mixing within the same region. Two different flows which were generated by two models were studied: a generic nonaxisymmetric nozzle propulsion simulation model with an auxiliary internal water source that generated a jet flow and an axisymmetric forebody model with a circular sector strake that generated a vortex flow. The off-body flow fields around these models were investigated in the Langley 16- by 24-Inch Water Tunnel. The experimental results were used to calculate 17 quantities that included mean and fluctuating velocities, Reynolds stresses, mean and fluctuating dye fluorescence intensities (proportional to concentration), and fluctuating velocity and dye concentration correlations. An uncertainty analysis was performed to establish confidence levels in the experimental results. In general, uncertainties in mean velocities varied between 1 and 7 percent of free-stream velocity; uncertainties in fluctuating velocities varied between 1 and 5 percent of reference values. The results show characteristics that are unique to each type of flow.

  7. Three-dimensional printed magnetophoretic system for the continuous flow separation of avian influenza H5N1 viruses.

    PubMed

    Wang, Yuhe; Li, Yanbin; Wang, Ronghui; Wang, Maohua; Lin, Jianhan

    2017-04-01

    As a result of the low concentration of avian influenza viruses in samples for routine screening, the separation and concentration of these viruses are vital for their sensitive detection. We present a novel three-dimensional printed magnetophoretic system for the continuous flow separation of the viruses using aptamer-modified magnetic nanoparticles, a magnetophoretic chip, a magnetic field, and a fluidic controller. The magnetic field was designed based on finite element magnetic simulation and developed using neodymium magnets with a maximum intensity of 0.65 T and a gradient of 32 T/m for dragging the nanoparticle-virus complexes. The magnetophoretic chip was designed by SOLIDWORKS and fabricated by a three-dimensional printer with a magnetophoretic channel for the continuous flow separation of the viruses using phosphate-buffered saline as carrier flow. The fluidic controller was developed using a microcontroller and peristaltic pumps to inject the carrier flow and the viruses. The trajectory of the virus-nanoparticle complexes was simulated using COMSOL for optimization of the carrier flow and the magnetic field, respectively. The results showed that the H5N1 viruses could be captured, separated, and concentrated using the proposed magnetophoretic system with the separation efficiency up to 88% in a continuous flow separation time of 2 min for a sample volume of 200 μL. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Boiling local heat transfer enhancement in minichannels using nanofluids

    PubMed Central

    2013-01-01

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445

  9. Water quality of the Flint River basin, Alabama and Tennessee, 1999-2000

    USGS Publications Warehouse

    Hoos, Anne B.; Garrett, Jerry W.; Knight, Rodney R.

    2002-01-01

    The U.S. Geological Survey monitored eight stream sites in the Flint River Basin during the period January 1999 through May 2000, to characterize patterns in the occurrence of pesticides, fecal-indicator bacteria, and nutrients in relation to season and streamflow conditions and to land-use patterns. This study is part of the National Water-Quality Assessment Program, which was designed to assess water quality as it relates to various land uses. Every water sample collected from the Flint River Basin had detectable levels of at least two pesticides; 64 percent of the samples contained mixtures of at least five pesticides. In general, pesticides detected most frequently and at highest concentrations in streams corresponded to the pesticides with the highest rates of use in the watersheds. Detections of fluometuron, norflurazon, and atrazine were more frequent (by a margin of 15 percent or more) in samples from the Flint River when compared with the frequencies of pesticide detections at 62 agricultural stream sites across the Nation. Detections of fluometuron in the Flint River were more frequent even when compared with a cotton-cultivation subset of the 62 sites. For most pesticides, maximum concentrations did not exceed criteria to protect aquatic life; however, maximum concentrations of atrazine, cyanazine, and malathion exceeded aquaticlife criteria in at least one sample. Concentrations near or exceeding the aquatic-life criteria occurred only during the spring and summer (April-July), and generally occurred during storm flows. Less than 5 percent of the estimated mass of pesticides applied annually to agricultural areas in the Flint River Basin was transported to the stream at the monitoring points on the Flint River near Brownsboro, Alabama, and on Hester Creek near Plevna, Alabama. The pesticides with the highest ratios (greater than 3 percent) of the amount transported instream to the amount applied?atrazine, metolachlor, fluometuron, and norflurazon?are preemergent herbicides applied to the soil before the crops have emerged, which increases the probability of transport in surface runoff. Concentrations of the fecal-bacteria indicator Escherichia coli (E. coli) in the Flint River and Hester Creek exceeded the U.S. Environmental Protection Agency criterion for recreation in almost all storm samples, and in many samples collected up to 6 days following a storm. Concentrations in the Flint River were strongly correlated with sample turbidity, suggesting that turbidity might be useful as a surrogate for estimating E. coli concentrations. Concentrations of the nutrients nitrogen and phosphorus in samples from the Flint River generally exceeded thresholds indicating eutrophic potential, whereas concentrations in samples from Hester Creek were generally below the thresholds. When compared with nutrient data from a set of 24 agricultural basins across the southeastern region of the United States, concentrations in the Flint River and Hester Creek were slightly above the regional median. Base-flow concentrations of certain pesticides, nutrients, and E. coli were compared to land-use information for eight sites in the Flint River Basin. The highest base-flow concentrations of aldicarb sulfoxide, fluometuron, and phosphorus were found in the tributaries with the greatest density of cotton acreage in the watershed. Similarly, high base-flow concentrations of total nitrogen were correlated with a high percentage of cultivated land in the watershed. Lack of information about distribution of stream access by livestock weakened the analysis of correlation between livestock and base-flow concentrations of E. coli and nutrients. Input of dissolved and suspended chemicals from the Flint River during storms influences water quality in the reach of the Tennessee River from which the City of Huntsville, Alabama, withdraws about 40 percent of its drinking water. During the storm of April 2-5, 2000, concentrations of several pesticides were

  10. Geology, Streamflow, and Water Chemistry of the Talufofo Stream Basin, Saipan, Northern Mariana Islands

    USGS Publications Warehouse

    Izuka, Scot K.; Ewart, Charles J.

    1995-01-01

    A study of the geology, streamflow, and water chemistry of Talufofo Stream Basin, Saipan, Commonwealth of the Northern Mariana Islands, was undertaken to determine the flow characteristics of Talufofo Stream and the relation to the geology of the drainage basin. The Commonwealth government is exploring the feasibility of using water from Talufofo Stream to supplement Saipan's stressed municipal water supply. Streamflow records from gaging stations on the principal forks of Talufofo Stream indicate that peak streamflows and long-term average flow are higher at the South Fork gaging station than at the Middle Fork gaging station because the drainage area of the South Fork gaging station is larger, but persistent base flow from ground-water discharge during dry weather is greater in the Middle Fork gaging station. The sum of the average flows at the Middle Fork and South Fork gaging stations, plus an estimate of the average flow at a point in the lower reaches of the North Fork, is about 2.96 cubic feet per second or 1.91 million gallons per day. Although this average represents the theoretical maximum long-term draft rate possible from the Talufofo Stream Basin if an adequate reservoir can be built, the actual amount of surface water available will be less because of evaporation, leaks, induced infiltration, and reservoir-design constraints. Base-flow characteristics, such as stream seepage and spring discharge, are related to geology of the basin. Base flow in the Talufofo Stream Basin originates as discharge from springs near the base of limestones located in the headwaters of Talufofo Stream, flows over low-permeability volcanic rocks in the middle reaches, and seeps back into the high-permeability limestones in the lower reaches. Water sampled from Talufofo Stream during base flow had high dissolved-calcium concentrations (between 35 and 98 milligrams per liter), characteristic of water from a limestone aquifer. Concentrations of potassium, sodium, and chloride ions in water samples from Talufofo Stream are characteristic of water draining a heavily vegetated basin near the ocean. The streamflow and water-chemistry data indicate that discharge from springs is in hydraulic connection with the limestone aquifer near the headwaters of the basin. The base flow therefore is subject to stresses placed on the nearby limestone ground-water system. Pumping from wells in the limestones at the headwaters of Talufofo Stream Basin may decrease spring flow in Talufofo Stream.

  11. Mercury dynamics in relation to dissolved organic carbon concentration and quality during high flow events in three northeastern U.S. streams

    USGS Publications Warehouse

    Dittman, Jason A.; Shanley, James B.; Driscoll, Charles T.; Aiken, George R.; Chalmers, Ann T.; Towse, Janet E.; Selvendiran, Pranesh

    2010-01-01

    Mercury (Hg) contamination is widespread in remote areas of the northeastern United States. Forested uplands have accumulated a large reservoir of Hg in soil from decades of elevated anthropogenic deposition that can be released episodically to stream water during high flows. The objective of this study was to evaluate spatial and temporal variations in stream water Hg species and organic matter fractions over a range of hydrologic conditions in three forested upland watersheds (United States). Mercury and organic matter concentrations increased with discharge at all three sites; however, the partitioning of Hg fractions (dissolved versus particulate) differed among sites and seasons. Associated with increased discharge, flow paths shifted from mineral soil under base flow to upper soil horizons. As flow paths shifted, greater concentrations of dissolved organic carbon (DOC) richer in aromatic substances were flushed from upper soil horizons to stream water. The hydrophobic organic matter associated with humic material from upper soils appears to have had a greater capacity to bind Hg. Because of the strong correlation between Hg and DOC, we hypothesize that there was a concurrent shift in the source of Hg with DOC from lower mineral soil to upper soil horizons. Our study suggests that stream discharge is an effective predictor of dissolved total Hg flux.

  12. Chemiluminescence from an oxidation reaction of rhodamine B with cerium(IV) in a reversed micellar medium of cetyltrimethylammonium chloride in 1-hexanol-cyclohexane/water.

    PubMed

    Hasanin, Tamer H A; Tsunemine, Yusuke; Tsukahara, Satoshi; Okamoto, Yasuaki; Fujiwara, Terufumi

    2011-01-01

    The chemiluminescence (CL) emission, observed when rhodamine B (RB) in 1-hexanol-cyclohexane was mixed with cerium(IV) sulfate in sulfuric acid dispersed in a reversed micellar medium of cetyltrimethylammonium chloride (CTAC) in 1-hexanol-cyclohexane/water, was investigated using a flow-injection system. The CL emission from the oxidation reaction of RB with Ce(IV) was found to be stronger in the CTAC reversed micellar solution compared with an aqueous solution. Bearing on the enhancement effect of the CTAC reverse micelles on the RB-Ce(IV) CL, several studies including stopped-flow, fluorescence and electron spin resonance (ESR) spectrometries were performed. Rapid spectral changes of an intermediate in the RB-Ce(IV) reaction in the aqueous and reversed micellar solutions were successfully observed using a stopped-flow method. The effect of the experimental variables, i.e., oxidant concentration, sulfuric acid concentration, the mole fraction of 1-hexanol, water-to-surfactant molar concentration ratio, flow rate, upon the CL intensity was evaluated. Under the experimental conditions optimized for a flow-injection determination of RB based on the new reversed micellar-mediated CL reaction with Ce(IV), a detection limit of 0.08 µmol dm(-3) RB was achieved, and a linear calibration graph was obtained with a dynamic range from 0.5 to 20 µmol dm(-3). The relative standard deviation (n = 6) obtained at an RB concentration of 3 µmol dm(-3) was 3%.

  13. Scaling Properties of Particle Density Fields Formed in Simulated Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Hogan, Robert C.; Cuzzi, Jeffrey N.; Dobrovolskis, Anthony R.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Direct numerical simulations (DNS) of particle concentrations in fully developed 3D turbulence were carried out in order to study the nonuniform structure of the particle density field. Three steady-state turbulent fluid fields with Taylor microscale Reynolds numbers (Re(sub lambda)) of 40, 80 and 140 were generated by solving the Navier-Stokes equations with pseudospectral methods. Large scale forcing was used to drive the turbulence and maintain temporal stationarity. The response of the particles to the fluid was parameterized by the particle Stokes number St, defined as the ratio of the particle's stopping time to the mean period of eddies on the Kolmogorov scale (eta). In this paper, we consider only passive particles optimally coupled to these eddies (St approx. = 1) because of their tendency to concentrate more than particles with lesser or greater St values. The trajectories of up to 70 million particles were tracked in the equilibrated turbulent flows until the particle concentration field reached a statistically stationary state. The nonuniform structure of the concentration fields was characterized by the multifractal singularity spectrum, f(alpha), derived from measures obtained after binning particles into cells ranging from 2(eta) to 15(eta) in size. We observed strong systematic variations of f(alpha) across this scale range in all three simulations and conclude that the particle concentration field is not statistically self similar across the scale range explored. However, spectra obtained at the 2(eta), 4(eta), and 8(eta) scales of each flow case were found to be qualitatively similar. This result suggests that the local structure of the particle concentration field may be flow-Independent. The singularity spectra found for 2n-sized cells were used to predict concentration distributions in good agreement with those obtained directly from the particle data. This Singularity spectrum has a shape similar to the analogous spectrum derived for the inertial-range energy dissipation fields of experimental turbulent flows at Re(sub lambda) = 110 and 1100. Based on this agreement, and the expectation that both dissipation and particle concentration are controlled by the same cascade process, we hypothesize that singularity spectra similar to the ones found in this work provide a good characterization of the spatially averaged statistical properties of preferentially concentrated particles in higher Re(sub lambda) turbulent flows.

  14. Relation of pesticide concentrations to season, streamflow, and land use in seven New Jersey streams

    USGS Publications Warehouse

    Reiser, Robert G.

    1999-01-01

    The presence and variability of pesticides in seven New Jersey streams was documented by analyzing 146 samples collected from the streams from April 1996 through June 1998. The samples were analyzed for 85 pesticides, including 50 herbicides, 28 insecticides, and 7 degradation products, at method detection limits that ranged from 0.001 to 0.018 μg/L (micrograms per liter). Pesticides were frequently detected; however, concentrations were generally low. The pesticides most frequently detected were atrazine, in 97 percent of the samples; prometon, 96 percent; metolachlor, 95 percent; desethyl-atrazine, 91 percent; simazine, 88 percent; diazinon, 58 percent; alachlor, 56 percent; and carbaryl, 54 percent. Detection frequencies were highest during the growing season (April-September). At least one pesticide was detected in all but one of these samples, and 49 percent of the samples contained 9 or more pesticides. The numbers of pesticides detected at a given site ranged from 13 to 29. Ten pesticides were detected at concentrations that exceeded established water-quality criteria. Thirty-one of these detections were in samples collected during the growing season and one during the nongrowing season. The pesticides that exceeded the U.S. Environmental Protection Agency (USEPA) maximum contaminant level for drinking water were atrazine, which exceeded 3 μg/L in four samples, and alachlor, 2 μg/L in two samples. Cyanazine exceeded the USEPA liftime health advisory level (HAL) of 1 μg/L in two samples. These eight detections occurred during runoff shortly after spring pesticide applications and represent a potential threat to municipal water supplies in the Raritan River basin. Concentrations of chlorpyrifos, chlorthalonil, diazinon, ethyl-parathion, and methyl-azinphos exceeded the chronic life criteria for the protection of aquatic life (ACQR) in 20 samples at four sites during the growing season. Dieldrin was detected in four samples and DDE in two samples at concentrations that exceeded New Jersey Department of Environmental Protection (NJDEP) human health criteria. Individual and total-pesticide concentrations and total numbers of pesticides detected in the samples varied with season and flow conditions. Median and maximum concentrations of most of the pesticides were highest during runoff in the growing season. Pesticide concentrations were typically lower and less variable in the nongrowing season than in the growing season, regardless of changes in hydrologic conditions; however, median concentrations of most pesticides were slightly lower during runoff than during base flow. The median total-pesticide concentration and median total number of pesticides detected were highest and most variable in runoff samples in the growing season. In the nongrowing season, the median total-pesticide concentration was lowest in runoff samples and least variable during base-flow conditions. Median total numbers of pesticides were lowest and least varibale in the nongrowing season during base-flow conditions at most sites. The highest total-pesticide concentrations were detected in samples from the two small agricultural basins (greater than 25 percent of land use is agricultural) during runoff in late spring and early summer. In general, insecticides were detected more frequently and in greater concentrations at urban sites. Concentrations of agricultural herbicides generally decreased with increasing flow at the four sites with less than 10 percent agriculture land use and increased with increasing flow at the three sites with more than 25 percent agricultural land use. Most of the pesticides that correlated positively with streamflow were detected at sites where land use in the basin would indicate the use of those particular pesticides. Most of the pesticides that correlated negatively with streamflow were present at the site in the Coastal Plain or at sites in which the land use in the basin would not indicate heavy u

  15. Tracer-monitored flow titrations.

    PubMed

    Sasaki, Milton K; Rocha, Diogo L; Rocha, Fábio R P; Zagatto, Elias A G

    2016-01-01

    The feasibility of implementing tracer-monitored titrations in a flow system is demonstrated. A dye tracer is used to estimate the instant sample and titrant volumetric fractions without the need for volume, mass or peak width measurements. The approach was applied to spectrophotometric flow titrations involving variations of sample and titrant flow-rates (i.e. triangle programmed technique) or concentration gradients established along the sample zone (i.e. flow injection system). Both strategies required simultaneous monitoring of two absorbing species, namely the titration indicator and the dye tracer. Mixing conditions were improved by placing a chamber with mechanical stirring in the analytical path aiming at to minimize diffusional effects. Unlike most of flow-based titrations, the innovation is considered as a true titration, as it does not require a calibration curve thus complying with IUPAC definition. As an application, acidity evaluation in vinegars involving titration with sodium hydroxide was selected. Phenolphthalein and brilliant blue FCF were used as indicator and dye tracer, respectively. Effects of sample volume, titrand/titrant concentrations and flow rates were investigated aiming at improved accuracy and precision. Results were reliable and in agreement with those obtained by a reference titration procedure. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Guiding principles for vortex flow controls

    NASA Technical Reports Server (NTRS)

    Wu, J. Z.; Wu, J. M.

    1991-01-01

    In the practice of vortex flow controls, the most important factor is that the persistency and obstinacy of a concentrated vortex depend on its stability and dissipation. In this paper, the modern nonlinear stability theory for circulation-preserving flows is summarized, and the dissipation for general viscous flows is analyzed in terms of the evolution of total enstrophy. These analyses provide a theoretical base for understanding relevant physics of vortex flows, and lead to some guiding principles and methods for their controls. Case studies taken from various theoretical and/or experimental works of vortex controls, due to the present authors as well as others, confirm the feasibility of the recommended principles and methods.

  17. Nitrate Accumulation and Leaching in Surface and Ground Water Based on Simulated Rainfall Experiments

    PubMed Central

    Wang, Hong; Gao, Jian-en; Li, Xing-hua; Zhang, Shao-long; Wang, Hong-jie

    2015-01-01

    To evaluate the process of nitrate accumulation and leaching in surface and ground water, we conducted simulated rainfall experiments. The experiments were performed in areas of 5.3 m2 with bare slopes of 3° that were treated with two nitrogen fertilizer inputs, high (22.5 g/m2 NH4NO3) and control (no fertilizer), and subjected to 2 hours of rainfall, with. From the 1st to the 7th experiments, the same content of fertilizer mixed with soil was uniformly applied to the soil surface at 10 minutes before rainfall, and no fertilizer was applied for the 8th through 12th experiments. Initially, the time-series nitrate concentration in the surface flow quickly increased, and then it rapidly decreased and gradually stabilized at a low level during the fertilizer experiments. The nitrogen loss in the surface flow primarily occurred during the first 18.6 minutes of rainfall. For the continuous fertilizer experiments, the mean nitrate concentrations in the groundwater flow remained at less than 10 mg/L before the 5th experiment, and after the 7th experiment, these nitrate concentrations were greater than 10 mg/L throughout the process. The time-series process of the changing concentration in the groundwater flow exhibited the same parabolic trend for each fertilizer experiment. However, the time at which the nitrate concentration began to change lagged behind the start time of groundwater flow by approximately 0.94 hours on average. The experiments were also performed with no fertilizer. In these experiments, the mean nitrate concentration of groundwater initially increased continuously, and then, the process exhibited the same parabolic trend as the results of the fertilization experiments. The nitrate concentration decreased in the subsequent experiments. Eight days after the 12 rainfall experiments, 50.53% of the total nitrate applied remained in the experimental soil. Nitrate residues mainly existed at the surface and in the bottom soil layers, which represents a potentially more dangerous pollution scenario for surface and ground water. The surface and subsurface flow would enter into and contaminate water bodies, thus threatening the water environment. PMID:26291616

  18. Nitrate Accumulation and Leaching in Surface and Ground Water Based on Simulated Rainfall Experiments.

    PubMed

    Wang, Hong; Gao, Jian-en; Li, Xing-hua; Zhang, Shao-long; Wang, Hong-jie

    2015-01-01

    To evaluate the process of nitrate accumulation and leaching in surface and ground water, we conducted simulated rainfall experiments. The experiments were performed in areas of 5.3 m2 with bare slopes of 3° that were treated with two nitrogen fertilizer inputs, high (22.5 g/m2 NH4NO3) and control (no fertilizer), and subjected to 2 hours of rainfall, with. From the 1st to the 7th experiments, the same content of fertilizer mixed with soil was uniformly applied to the soil surface at 10 minutes before rainfall, and no fertilizer was applied for the 8th through 12th experiments. Initially, the time-series nitrate concentration in the surface flow quickly increased, and then it rapidly decreased and gradually stabilized at a low level during the fertilizer experiments. The nitrogen loss in the surface flow primarily occurred during the first 18.6 minutes of rainfall. For the continuous fertilizer experiments, the mean nitrate concentrations in the groundwater flow remained at less than 10 mg/L before the 5th experiment, and after the 7th experiment, these nitrate concentrations were greater than 10 mg/L throughout the process. The time-series process of the changing concentration in the groundwater flow exhibited the same parabolic trend for each fertilizer experiment. However, the time at which the nitrate concentration began to change lagged behind the start time of groundwater flow by approximately 0.94 hours on average. The experiments were also performed with no fertilizer. In these experiments, the mean nitrate concentration of groundwater initially increased continuously, and then, the process exhibited the same parabolic trend as the results of the fertilization experiments. The nitrate concentration decreased in the subsequent experiments. Eight days after the 12 rainfall experiments, 50.53% of the total nitrate applied remained in the experimental soil. Nitrate residues mainly existed at the surface and in the bottom soil layers, which represents a potentially more dangerous pollution scenario for surface and ground water. The surface and subsurface flow would enter into and contaminate water bodies, thus threatening the water environment.

  19. Complex analysis of concentrated antibody-gold nanoparticle conjugates' mixtures using asymmetric flow field-flow fractionation.

    PubMed

    Safenkova, Irina V; Slutskaya, Elvira S; Panferov, Vasily G; Zherdev, Anatoly V; Dzantiev, Boris B

    2016-12-16

    Conjugates of gold nanoparticles (GNPs) with antibodies are powerful analytical tools. It is crucial to know the conjugates' state in both the concentrated and mixed solutions used in analytical systems. Herein, we have applied asymmetrical flow field-flow fractionation (AF4) to identify the conjugates' state. The influence of a conjugate's composition and concentration on aggregation was studied in a true analytical solution (a concentrated mixture with stabilizing components). GNPs with an average diameter of 15.3±1.2nm were conjugated by adsorption with eight antibodies of different specificities. We found that, while the GNPs have a zeta potential of -31.6mV, the conjugates have zeta potentials ranging from -5.8 to -11.2mV. Increased concentrations (up to 184nM, OD 520 =80) of the mixed conjugate (mixture of eight conjugates) did not change the form of fractograms, and the peak areas' dependence on concentration was strongly linear (R 2 values of 0.99919 and 0.99845 for absorption signal and light scattering, respectively). Based on the gyration (R g ) and hydrodynamic (R h ) radii measured during fractionation, we found that the nanoparticles were divided into two populations: (1) those with constant radii (R g =9.9±0.9nm; R h =14.3±0.5nm); and (2) those with increased radii from 9.9 to 24.4nm for R g and from 14.3 to 28.1nm for R h . These results confirm that the aggregate state of the concentrated and mixed conjugates' preparations is the same as that of diluted preparations and that AF4 efficiently characterizes the conjugates' state in a true analytical solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Measurement of trace impurities in ultra pure hydrogen and deuterium at the parts-per-billion level using gas chromatography

    NASA Astrophysics Data System (ADS)

    Ganzha, V.; Ivshin, K.; Kammel, P.; Kravchenko, P.; Kravtsov, P.; Petitjean, C.; Trofimov, V.; Vasilyev, A.; Vorobyov, A.; Vznuzdaev, M.; Wauters, F.

    2018-02-01

    A series of muon experiments at the Paul Scherrer Institute in Switzerland deploy ultra-pure hydrogen active targets. A new gas impurity analysis technique was developed, based on conventional gas chromatography, with the capability to measure part-per-billion (ppb) traces of nitrogen and oxygen in hydrogen and deuterium. Key ingredients are a cryogenic admixture accumulation, a directly connected sampling system and a dedicated calibration setup. The dependence of the measured concentration on the sample volume was investigated, confirming that all impurities from the sample gas are collected in the accumulation column and measured with the gas chromatograph. The system was calibrated utilizing dynamic dilution of admixtures into the gas flow down to sub-ppb level concentrations. The total amount of impurities accumulated in the purification system during a three month long experimental run was measured and agreed well with the calculated amount based on the measured concentrations in the flow.

  1. Assessment of macroinvertebrate communities in adjacent urban stream basins, Kansas City, Missouri, metropolitan area, 2007 through 2011

    USGS Publications Warehouse

    Christensen, Eric D.; Krempa, Heather M.

    2013-01-01

    Wastewater-treatment plant discharges during base flow, which elevated specific conductance and nutrient concentrations, combined sewer overflows, and nonpoint sources likely contributed to water-quality impairment and lower aquatic-life status at the Blue River Basin sites. Releases from upstream reservoirs to the Little Blue River likely decreased specific conductance, suspended-sediment, and dissolved constituent concentrations and may have benefitted water quality and aquatic life of main-stem sites. Chloride concentrations in base-flow samples, attributable to winter road salt application, had the highest correlation with the SUII (Spearman’s ρ equals 0.87), were negatively correlated with the SCI (Spearman’s ρ equals -0.53) and several pollution sensitive Ephemeroptera plus Plecoptera plus Trichoptera abundance and percent richness metrics, and were positively correlated with pollution tolerant Oligochaeta abundance and percent richness metrics. Study results show that the easily calculated SUII and the selected modeled multimetric indices are effective for comparing urban basins and for evaluation of water quality in the Kansas City metropolitan area.

  2. Scaling and modeling of turbulent suspension flows

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1989-01-01

    Scaling factors determining various aspects of particle-fluid interactions and the development of physical models to predict gas-solid turbulent suspension flow fields are discussed based on two-fluid, continua formulation. The modes of particle-fluid interactions are discussed based on the length and time scale ratio, which depends on the properties of the particles and the characteristics of the flow turbulence. For particle size smaller than or comparable with the Kolmogorov length scale and concentration low enough for neglecting direct particle-particle interaction, scaling rules can be established in various parameter ranges. The various particle-fluid interactions give rise to additional mechanisms which affect the fluid mechanics of the conveying gas phase. These extra mechanisms are incorporated into a turbulence modeling method based on the scaling rules. A multiple-scale two-phase turbulence model is developed, which gives reasonable predictions for dilute suspension flow. Much work still needs to be done to account for the poly-dispersed effects and the extension to dense suspension flows.

  3. Direct Determination of the Dependence of the Surface Shear and Dilatational Viscosities on the Thermodynamic State of the Interface: Theoretical Foundations.

    PubMed

    Lopez; Hirsa

    1998-10-01

    Recent developments in nonlinear optical techniques for noninvasive probing of a surfactant influenced gas/liquid interface allow for the measurement of the surfactant surface concentration, c, and thus provide new opportunities for the direct determination of its intrinsic viscosities. Here, we present the theoretical foundations, based on the Boussinesq-Scriven surface model without the usual simplification of constant viscosities, for an experimental technique to directly measure the surface shear (µs) and dilatational (kappas) viscosities of a Newtonian interface as functions of the surfactant surface concentration. This ability to directly measure the surfactant concentration permits the use of a simple surface flow for the measurement of the surface viscosities. The requirements are that the interface must be nearly flat, and the flow steady, axisymmetric, and swirling; these flow conditions can be achieved in the deep-channel viscometer driven at relatively fast rates. The tangential stress balance on such an interface leads to two equations; the balance in the azimuthal direction involves only µs and its gradients, and the balance in the radial direction involves both µs and kappas and their gradients. By further exploiting recent developments in laser-based flow measuring techniques, the surface velocities and their gradients which appear in the two equations can be measured directly. The surface tension gradient, which appears in the radial balance equation, is incorporated from the equation of state for the surfactant system and direct measurements of the surfactant surface concentration distribution. The stress balance equations are then ordinary differential equations in the surface viscosities as functions of radial position, which can be readily integrated. Since c is measured as a function of radial position, we then have a direct measurement of µs and kappas as functions of c. Numerical computations of the Navier-Stokes equations are performed to determine the appropriate conditions to achieve the requisite secondary flow. Copyright 1998 Academic Press.

  4. Using host-associated genetic markers to investigate sources of fecal contamination in two Vermont streams

    USGS Publications Warehouse

    Medalie, Laura; Matthews, Leslie J.; Stelzer, Erin A.

    2011-01-01

    The use of host-associated Bacteroidales-based 16S ribosomal ribonucleic acid genetic markers was investigated as a tool for providing information to managers on sources of bacterial impairment in Vermont streams. The study was conducted during 2009 in two watersheds on the U.S. Environmental Protection Agency's 303(d) List of Impaired Waters, the Huntington and the Mettawee Rivers. Streamwater samples collected during high-flow and base-flow conditions were analyzed for concentrations of Escherichia coli (E. coli) and Bacteroidales genetic markers (General AllBac, Human qHF183 and BacHum, Ruminant BoBac, and Canid BacCan) to identify humans, ruminants, and canids as likely or unlikely major sources of fecal contamination. Fecal reference samples from each of the potential source groups, as well as from common species of wildlife, were collected during the same season and from the same watersheds as water samples. The results were combined with data from other states to assess marker cross reaction and to relate marker results to E. coli, the regulated water-quality parameter, with a higher degree of statistical significance. Results from samples from the Huntington River collected under different flow conditions on three dates indicated that humans were unlikely to be a major source of fecal contamination, except for a single positive result at one station that indicated the potential for human sources. Ruminants (deer, moose, cow, or sheep) were potential sources of fecal contamination at all six stations on the Huntington River during one high-flow event and at all but two stations during the other high-flow event. Canids were potential sources of fecal contamination at some stations during two high-flow events, with genetic-marker concentrations in samples from two of the six stations showing consistent positive results for canids for both storm dates. A base-flow sample showed no evidence of major fecal contamination in the Huntington River from humans, ruminants, or canids. Results from samples from the Mettawee River watershed collected during high-flow conditions (12 storm samples on 2 dates at 6 stations) indicated that there was no evidence of fecal contamination from humans in seven samples and possible evidence in five samples. Results for humans were positive for only one station during both storm events. For two of the five samples with evidence for human fecal contamination, results for two different human genetic markers agreed, but results from three samples were inconsistent. In samples from five of the six Mettawee stations, ruminants were a potential source of fecal contamination on at least one of the three sampled dates, including three positive results for the base-flow sample. Yet samples from all of the stations that showed positive results for ruminants did so for only one or two of the three sampled dates. Samples from only one of the six stations gave consistent results, which were negative for ruminants for all three dates. In the Mettawee River base-flow sample, humans were an unlikely source of major fecal contamination. Factors that may influence results and conclusions include the timing of sample collection relative to the storm event; variability of E. coli and Bacteroidales concentrations in fecal reference samples and in water; sampling and analytical errors; the potential cross reactivity of host-associated genetic markers; and different persistence and survival rates of E. coli bacteria and Bacteroidales genetic markers on land, in water, and by season. These factors interfere with the ability to directly relate Bacteroidales concentrations to E. coli concentrations in river samples. It must be recognized that while use of Bacteroidales genetic markers as a source tracking tool coupled with the interpretive approach described in this report cannot be used quantitatively to pinpoint sources, it can be used to exclude potential sources as major contributors to fecal contamination.

  5. Effects on wetting by spray on concentrated flow erosion and intake rate

    USDA-ARS?s Scientific Manuscript database

    When water flows in dry rills (or furrows), fast wetting and aggregate slaking occur. Conversely, when rain wets the surface of the soil before applying concentrated flow, slow wetting precedes the concentrated flow, and less aggregate disintegration occurs. It is hypothesized that slow wetting by t...

  6. Use of flow-normalization to evaluate nutrient concentration and flux changes in Lake Champlain tributaries, 1990-2009

    USGS Publications Warehouse

    Medalie, Laura; Hirsch, Robert M.; Archfield, Stacey A.

    2012-01-01

    The U.S. Geological Survey evaluated 20 years of total phosphorus (P) and total nitrogen (N) concentration data for 18 Lake Champlain tributaries using a new statistical method based on weighted regressions to estimate daily concentration and flux histories based on discharge, season, and trend as explanatory variables. The use of all the streamflow discharge values for a given date in the record, in a process called "flow-normalization," removed the year-to-year variation due to streamflow and generated a smooth time series from which trends were calculated. This approach to data analysis can be of great value to evaluations of the success of restoration efforts because it filters out the large random fluctuations in the flux that are due to the temporal variability in streamflow. Results for the full 20 years of record showed a mixture of upward and downward trends for concentrations and yields of P and N. When the record was broken into two 10-year periods, for many tributaries, the more recent period showed a reversal in N from upward to downward trends and a similar reversal or reduction in magnitude of upward trends for P. Some measures of P and N concentrations and yields appear to be related to intensity of agricultural activities, point-source loads of P, or population density. Total flow-normalized P flux aggregated from the monitored tributaries showed a decrease of 30 metric tons per year from 1991 to 2009, which is about 15% of the targeted reduction established by the operational management plan for the Lake Champlain Basin.

  7. Pressure gradients fail to predict diffusio-osmosis

    NASA Astrophysics Data System (ADS)

    Liu, Yawei; Ganti, Raman; Frenkel, Daan

    2018-05-01

    We present numerical simulations of diffusio-osmotic flow, i.e. the fluid flow generated by a concentration gradient along a solid-fluid interface. In our study, we compare a number of distinct approaches that have been proposed for computing such flows and compare them with a reference calculation based on direct, non-equilibrium molecular dynamics simulations. As alternatives, we consider schemes that compute diffusio-osmotic flow from the gradient of the chemical potentials of the constituent species and from the gradient of the component of the pressure tensor parallel to the interface. We find that the approach based on treating chemical potential gradients as external forces acting on various species agrees with the direct simulations, thereby supporting the approach of Marbach et al (2017 J. Chem. Phys. 146 194701). In contrast, an approach based on computing the gradients of the microscopic pressure tensor does not reproduce the direct non-equilibrium results.

  8. Dynamic transition between fixed- and mobile-bed: mathematical and numerical aspects

    NASA Astrophysics Data System (ADS)

    Zugliani, Daniel; Pasqualini, Matteo; Rosatti, Giorgio

    2017-04-01

    Free-surface flows with high sediment transport (as debris flow or hyper-concentrated flow) are composed by a mixture of fluid and solid phase, usually water and sediment. When these flows propagate over loose beds, particles constituting the mixture of water and sediments strongly interact with the ones forming the bed, leading to erosion or deposition. However, there are lots of other situations when the mixture flows over rigid bedrocks or over artificially paved transects, so there is no mass exchange between bed and mixture. The two situations are usually referred to as, respectively, mobile- and fixed-bed conditions. From a mathematical point of view, the systems of Partial Differential Equations (PDEs) that describe these flows derive from mass and momentum balance of both phases, but, the two resulting PDEs systems are different. The main difference concerns the concentration: in the mobile-bed condition, the concentration is linked to the local flow conditions by means of a suitable rheological relation, while in the fixed-bed case, the concentration is an unknown of the problem. It is quite common that a free surface flow with high sediment transport, in its path, encounters both conditions. In the recent work of Rosatti & Zugliani 2015, the mathematical and numerical description of the transition between fixed- and mobile-bed was successfully resolved, for the case of low sediment transport phenomena, by the introduction of a suitable erodibility variable and satisfactory results were obtained. The main disadvantage of the approach is related to the erodibility variable, that changes in space, based on bed characteristics, but remains constant in time. However, the nature of the bed can change dynamically as result of deposition over fixed bed or high erosion over mobile bed. With this work, we extend the applicability of the mentioned approach to the more complex PDEs describing the hyper-concentrated flow. Moreover, we introduce a strategy that allows a dynamic time variation of the erodibility variable. The issue of the dynamic transition between fixed- and mobile-bed condition is tackled, from a numerical point of view, using a particular predictor corrector technique that compare the transported concentration related with the fixed bed and the equilibrium concentration, deriving from a closure relation, associated to the mobile bed condition. Through a comparison between exact solution, built using the generalized Rankine - Hugoniot condition, and the numeric results, we highlight capabilities and limits of this enhanced technique. Bibliography: G. Rosatti and D. Zugliani, 2015. "Modelling the transition between fixed and mobile bed conditions in two-phase free-surface flows: The Composite Riemann Problem and its numerical solution". Journal of Computational Physics, 285:226-250

  9. Viscosity changes of riparian water controls diurnal fluctuations of stream-flow and DOC concentration

    NASA Astrophysics Data System (ADS)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2015-04-01

    Diurnal fluctuations in stream-flow are commonly explained as being triggered by the daily evapotranspiration cycle in the riparian zone, leading to stream flow minima in the afternoon. While this trigger effect must necessarily be constrained by the extent of the growing season of vegetation, we here show evidence of daily stream flow maxima in the afternoon in a small headwater stream during the dormant season. We hypothesize that the afternoon maxima in stream flow are induced by viscosity changes of riparian water that is caused by diurnal temperature variations of the near surface groundwater in the riparian zone. The patterns were observed in the Weierbach headwater catchment in Luxembourg. The catchment is covering an area of 0.45 km2, is entirely covered by forest and is dominated by a schistous substratum. DOC concentration at the outlet of the catchment was measured with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH) with a high frequency of 15 minutes over several months. Discharge was measured with an ISCO 4120 Flow Logger. During the growing season, stream flow shows a frequently observed diurnal pattern with discharge minima in the afternoon. During the dormant season, a long dry period with daily air temperature amplitudes of around 10 ° C occurred in March and April 2014, with discharge maxima in the afternoon. The daily air temperature amplitude led to diurnal variations in the water temperature of the upper 10 cm of the riparian zone. Higher riparian water temperatures cause a decrease in water viscosity and according to the Hagen-Poiseuille equation, the volumetric flow rate is inversely proportional to viscosity. Based on the Hagen-Poiseuille equation and the viscosity changes of water, we calculated higher flow rates of near surface groundwater through the riparian zone into the stream in the afternoon which explains the stream flow maxima in the afternoon. With the start of the growing season, the viscosity induced diurnal effect is overlain by the stronger influence of evapotranspiration. Diurnal DOC fluctuations show daily maxima in the afternoon. While daily variations in DOC concentrations are often explained by faster in-stream biogeochemical processes during daylight, we here propose that the viscosity effect in the riparian zone could explain the afternoon peaks in DOC concentrations. Our records show that daily water temperature variations and therefore viscosity changes only occur in the near surface parts of the riparian zone, where the DOC concentrations are higher than in deeper parts of the riparian zone. We calculated, that the viscosity induced higher flow rates from the near surface parts of the riparian zone can explain the DOC concentration maxima in the afternoon. As the viscosity effect does not disappear during the growing season but is just smaller than the evapotranspiration effect, the DOC concentration pattern is not changing between the dormant and growing seasons. The different controls of diurnal fluctuations of stream-flow and water quality concentrations need to be carefully considered in order to better understand the different patterns in catchment hydrology.

  10. Hydrology and the effects of selected agricultural best-management practices in the Bald Eagle Creek Watershed, York County, Pennsylvania, prior to and during nutrient management : Water-Quality Study for the Chesapeake Bay Program

    USGS Publications Warehouse

    Langland, Michael J.; Fishel, David K.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the Susquehanna River Basin Commission and the Pennsylvania Department of Environmental Resources, conducted a study as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program to determine the effects of nutrient management of surface-water quality by reducing animal units in a 0.43-square-mile agricultural watershed in York County. The study was conducted primarily from October 1985 through September 1990 prior to and during the implementation of nutrient-management practices designed to reduce nutrient and sediment discharges. Intermittent sampling continued until August 1991. The Bald Eagle Creek Basin is underlain by schist and quartzite. About 87 percent of the watershed is cropland and pasture. Nearly 33 percent of the cropland was planted in corn prior to nutrient management, whereas 22 percent of the cropland was planted in corn during the nutrient-management phase. The animal population was reduced by 49 percent during nutrient management. Average annual applications of nitrogen and phosphorus from manure to cropland were reduced by 3,940 pounds (39 percent) and 910 pounds (46 percent), respectively, during nutrient management. A total of 94,560 pounds of nitrogen (538 pounds per acre) and 26,400 pounds of phosphorus (150 pounds per acre) were applied to the cropland as commercial fertilizer and manure during the 5-year study. Core samples from the top 4 feet of soil were collected prior to and during nutrient management and analyzed from concentrations of nitrogen and phosphorus. The average amount of nitrate nitrogen in the soil ranged from 36 to 135 pounds per acre, and soluble phosphorus ranged from 0.39 to 2.5 pounds per acre, prior to nutrient management. During nutrient management, nitrate nitrogen in the soil ranged from 21 to 291 pounds per acre and soluble phosphorus ranged from 0.73 to 1.7 pounds per acre. Precipitation was about 18 percent below normal and streamflow was about 35 percent below normal prior to nutrient management, whereas precipitation was 4 percent above normal and streamflow was 3 percent below normal during the first 2 years of nutrient management. Eighty-four percent of the 20.44 inches of streamflow was base flow prior to nutrient management and 54 percent of the 31.14 inches of streamflow was base flow during the first 2 years of the nutrient-management phase. About 31 percent of the measured precipitation during the first 4 years of the study was discharged as surface water; the remaining 69 percent was removed as evapotranspiration or remained in ground-water storage. Median concentrations of total nitrogen and dissolved nitrate plus nitrite in base flow increased from 4.9 and 4.1 milligrams per liter as nitrogen, respectively, prior to nutrient management to 5.8 and 5.0 milligrams per liter, respectively, during nutrient management. Median concentrations of ammonia nitrogen and organic nitrogen did not change significantly in base flow. Median concentrations of total and dissolved phosphorus in base flow did not change significantly and were 0.05 and 0.03 milligrams per liter as phosphorus, respectively, prior to the management phase, and 0.05 and 0.04 milligrams per liter, respectively, during the management phase. Concentrations and loads of dissolved nitrite plus nitrate in base flow increased following wet periods after crops were harvested and manure was applied. During the growing season, concentrations and loads decreased as nutrient utilization and evapotranspiration by corn increased. About 4,550 pounds of suspended sediment 5,300 pounds of nitrogen, and 70.4 pounds of phosphorous discharged in base flow in the 2 years prior to nutrient management. During the first 2 years of nutrient management about 2,860 pounds of suspended sediment, 5,700 pounds of nitrogen, and 46.6 pounds of phosphorus discharged in base flow. Prior to nutrient management, about 260,000 pounds of suspende

  11. Concentration Gradient Immunoassay I. A Rapid Immunoassay Based on Interdiffusion and Surface Binding in a Microchannel

    PubMed Central

    Nelson, Kjell E.; Foley, Jennifer O.; Yager, Paul

    2008-01-01

    We describe a novel microfluidic immunoassay method based on the diffusion of a small molecule analyte into a parallel-flowing stream containing cognate antibody. This interdiffusion results in a steady-state gradient of antibody binding site occupancy transverse to convective flow. In contrast to the diffusion immunoassay (Hatch et al. Nature Biotechnology,19:461−465 (2001)), this antibody occupancy gradient is interrogated by a sensor surface coated with a functional analog of the analyte. Antibodies with at least one unoccupied binding site may specifically bind to this functionalized surface, leading to a quantifiable change in surface coverage by the antibody. SPR imaging is used to probe the spatial distribution of antibody binding to the surface and, therefore, the outcome of the assay. We show that the pattern of antibody binding to the SPR sensing surface correlates with the concentration of a model analyte (phenytoin) in the sample stream. Using an inexpensive disposable microfluidic device, we demonstrate assays for phenytoin ranging in concentration from 75 to 1000 nM in phosphate buffer. At a total volumetric flow rate of 90 nL/sec, the assays are complete within 10 minutes. Inclusion of an additional flow stream on the side of the antibody stream opposite to that of the sample enables simultaneous calibration of the assay. This assay method is suitable for rapid quantitative detection of low-molecular weight analytes for point-of-care diagnostic instrumentation. PMID:17437332

  12. Sediment Vertical Flux in Unsteady Sheet Flows

    NASA Astrophysics Data System (ADS)

    Hsu, T.; Jenkins, J. T.; Liu, P. L.

    2002-12-01

    In models for sediment suspension, two different boundary conditions have been employed at the sediment bed. Either the sediment concentration is given or the vertical flux of sediment is specified. The specification of the latter is usually called the pick-up function. Recently, several developments towards a better understanding of the sediment bed boundary condition have been reported. Nielson et al (Coastal Engineering 2002, 45, p61-68) have indicated a better performance using the sediment vertical flux as the bed boundary condition in comparisons with experimental data. Also, Drake and Calantoni (Journal of Geophysical Research 2001, 106, C9, p19859-19868) have suggested that in the nearshore environment with its various unsteady flow conditions, the appropriate sediment boundary conditions of a large-scale morphology model must consider both the magnitude the free stream velocity and the acceleration of the flow. In this research, a small-scale sheet flow model based on the two-phase theory is implemented to further study these issues. Averaged two-phase continuum equations are presented for concentrated flows of sediment that are driven by strong, fully developed, unsteady turbulent shear flows over a mobile bed. The particle inter-granular stress is modeled using collisional granular flow theory and a two-equation closure for the fluid turbulence is adopted. In the context of the two-phase theory, sediment is transported through the sediment vertical velocity. Using the fully developed sediment phase continuity equation, it can be shown that the vertical velocity of the sediment must vanish when the flow reaches a steady state. In other words, in fully developed conditions, it is the unsteadiness of the flow that induces the vertical motion of the sediment and that changes the sediment concentration profile. Therefore, implementing a boundary condition based on sediment vertical flux is consistent with both the two-phase theory and with the observation that the flow acceleration is an important parameter. In this paper, the vertical flux of sediment is studied under various combinations of free stream velocity, acceleration, and sediment material properties using the two-phase sheet flow model. Some interesting features of sediment dynamics within the sheet, such as time history of sediment vertical velocity, collisional and turbulent suspension mechanisms are presented.

  13. A flow-cytometry-based method for detecting simultaneously five allergens in a complex food matrix.

    PubMed

    Otto, Gaetan; Lamote, Amandine; Deckers, Elise; Dumont, Valery; Delahaut, Philippe; Scippo, Marie-Louise; Pleck, Jessica; Hillairet, Caroline; Gillard, Nathalie

    2016-12-01

    To avoid carry-over contamination with allergens, food manufacturers implement quality control strategies relying primarily on detection of allergenic proteins by ELISA. Although sensitive and specific, this method allowed detection of only one allergen per analysis and effective control policies were thus based on multiplying the number of tests done in order to cover the whole range of allergens. We present in this work an immunoassay for the simultaneous detection of milk, egg, peanut, mustard and crustaceans in cookies samples. The method was based on a combination of flow cytometry with competitive ELISA where microbeads were used as sorbent surface. The test was able to detect the presence of the five allergens with median inhibitory concentrations (IC50) ranging from 2.5 to 15 mg/kg according to the allergen to be detected. The lowest concentrations of contaminants inducing a significant difference of signal between non-contaminated controls and test samples were 2 mg/kg of peanut, 5 mg/kg of crustaceans, 5 mg/kg of milk, 5 mg/kg of mustard and 10 mg/kg of egg. Assay sensitivity was influenced by the concentration of primary antibodies added to the sample extract for the competition and by the concentration of allergenic proteins bound to the surface of the microbeads.

  14. Simulated groundwater flow paths, travel time, and advective transport of nitrogen in the Kirkwood-Cohansey aquifer system, Barnegat Bay–Little Egg Harbor Watershed, New Jersey

    USGS Publications Warehouse

    Voronin, Lois M.; Cauller, Stephen J.

    2017-07-31

    Elevated concentrations of nitrogen in groundwater that discharges to surface-water bodies can degrade surface-water quality and habitats in the New Jersey Coastal Plain. An analysis of groundwater flow in the Kirkwood-Cohansey aquifer system and deeper confined aquifers that underlie the Barnegat Bay–Little Egg Harbor (BB-LEH) watershed and estuary was conducted by using groundwater-flow simulation, in conjunction with a particle-tracking routine, to provide estimates of groundwater flow paths and travel times to streams and the BB-LEH estuary.Water-quality data from the Ambient Groundwater Quality Monitoring Network, a long-term monitoring network of wells distributed throughout New Jersey, were used to estimate the initial nitrogen concentration in recharge for five different land-use classes—agricultural cropland or pasture, agricultural orchard or vineyard, urban non-residential, urban residential, and undeveloped. Land use at the point of recharge within the watershed was determined using a geographic information system (GIS). Flow path starting locations were plotted on land-use maps for 1930, 1973, 1986, 1997, and 2002. Information on the land use at the time and location of recharge, time of travel to the discharge location, and the point of discharge were determined for each simulated flow path. Particle-tracking analysis provided the link from the point of recharge, along the particle flow path, to the point of discharge, and the particle travel time. The travel time of each simulated particle established the recharge year. Land use during the year of recharge was used to define the nitrogen concentration associated with each flow path. The recharge-weighted average nitrogen concentration for all flow paths that discharge to the Toms River upstream from streamflow-gaging station 01408500 or to the BB-LEH estuary was calculated.Groundwater input into the Barnegat Bay–Little Egg Harbor estuary from two main sources— indirect discharge from base flow to streams that eventually flow into the bay and groundwater discharge directly into the estuary and adjoining coastal wetlands— is summarized by quantity, travel time, and estimated nitrogen concentration. Simulated average groundwater discharge to streams in the watershed that flow into the BB-LEH estuary is approximately 400 million gallons per day. Particle-tracking results indicate that the travel time of 56 percent of this discharge is less than 7 years. Fourteen percent of the groundwater discharge to the streams in the BB-LEH watershed has a travel time of less than 7 years and originates in urban land. Analysis of flow-path simulations indicate that approximately 13 percent of the total groundwater flow through the study area discharges directly to the estuary and adjoining coastal wetlands (approximately 64 million gallons per day). The travel time of 19 percent of this discharge is less than 7 years. Ten percent of this discharge (1 percent of the total groundwater flow through the study area) originates in urban areas and has a travel time of less than 7 years. Groundwater that discharges to the streams that flow into the BB-LEH, in general, has shorter travel times, and a higher percentage of it originates in urban areas than does direct groundwater discharge to the Barnegat Bay–Little Egg Harbor estuary.The simulated average nitrogen concentration in groundwater that discharges to the Toms River, upstream from streamflow-gaging station 01408500 was computed and compared to summary concentrations determined from analysis of multiple surface-water samples. The nitrogen concentration in groundwater that discharges directly to the estuary and adjoining coastal wetlands is a current data gap. The particle tracking methodology used in this study provides an estimate of this concentration."

  15. Examination of a high resolution laser optical plankton counter and FlowCAM for measuring plankton concentration and size

    NASA Astrophysics Data System (ADS)

    Kydd, Jocelyn; Rajakaruna, Harshana; Briski, Elizabeta; Bailey, Sarah

    2018-03-01

    Many commercial ships will soon begin to use treatment systems to manage their ballast water and reduce the global transfer of harmful aquatic organisms and pathogens in accordance with upcoming International Maritime Organization regulations. As a result, rapid and accurate automated methods will be needed to monitoring compliance of ships' ballast water. We examined two automated particle counters for monitoring organisms ≥ 50 μm in minimum dimension: a High Resolution Laser Optical Plankton Counter (HR-LOPC), and a Flow Cytometer with digital imaging Microscope (FlowCAM), in comparison to traditional (manual) microscopy considering plankton concentration, size frequency distributions and particle size measurements. The automated tools tended to underestimate particle concentration compared to standard microscopy, but gave similar results in terms of relative abundance of individual taxa. For most taxa, particle size measurements generated by FlowCAM ABD (Area Based Diameter) were more similar to microscope measurements than were those by FlowCAM ESD (Equivalent Spherical Diameter), though there was a mismatch in size estimates for some organisms between the FlowCAM ABD and microscope due to orientation and complex morphology. When a single problematic taxon is very abundant, the resulting size frequency distribution curves can become skewed, as was observed with Asterionella in this study. In particular, special consideration is needed when utilizing automated tools to analyse samples containing colonial species. Re-analysis of the size frequency distributions with the removal of Asterionella from FlowCAM and microscope data resulted in more similar curves across methods with FlowCAM ABD having the best fit compared to the microscope, although microscope concentration estimates were still significantly higher than estimates from the other methods. The results of our study indicate that both automated tools can generate frequency distributions of particles that might be particularly useful if correction factors can be developed for known differences in well-studied aquatic ecosystems.

  16. Optimization of nanoparticle focusing by coupling thermophoresis and engineered vortex in a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Zhao, Chao; Cao, Zhibo; Fraser, John; Oztekin, Alparslan; Cheng, Xuanhong

    2017-01-01

    Enriching nanoparticles in an aqueous solution is commonly practiced for various applications. Despite recent advances in microfluidic technologies, a general method to concentrate nanoparticles in a microfluidic channel in a label free and continuous flow fashion is not yet available, due to strong Brownian motion on the nanoscale. Recent research of thermophoresis indicates that thermophoretic force can overcome the Brownian force to direct nanoparticle movement. Coupling thermophoresis with natural convection on the microscale has been shown to induce significant enrichment of biomolecules in a thermal diffusion column. However, the column operates in a batch process, and the concentrated samples are inconvenient to retrieve. We have recently designed a microfluidic device that combines a helical fluid motion and simple one-dimensional temperature gradient to achieve effective nanoparticle focusing in a continuous flow. The helical convection is introduced by microgrooves patterned on the channel floor, which directly controls the focusing speed and power. Here, COMSOL simulations are conducted to study how the device geometry and flow rate influence transport and subsequent nanoparticle focusing, with a constant temperature gradient. The results demonstrate a complex dependence of nanoparticle accumulation on the microgroove tilting angle, depth, and spacing, as well as channel width and flow rate. Further dimensional analyses reveal that the ratio between particle velocities induced by thermophoretic and fluid inertial forces governs the particle concentration factor, with a maximum concentration at a ratio of approximately one. This simple relationship provides fundamental insights about nanoparticle transport in coupled flow and thermal fields. The study also offers a useful guideline to the design and operation of nanoparticle concentrators based on combining engineered helical fluid motion subject to phoretic fields.

  17. Optimization of tocopherol concentration process from soybean oil deodorized distillate using response surface methodology.

    PubMed

    Ito, Vanessa Mayumi; Batistella, César Benedito; Maciel, Maria Regina Wolf; Maciel Filho, Rubens

    2007-04-01

    Soybean oil deodorized distillate is a product derived from the refining process and it is rich in high value-added products. The recovery of these unsaponifiable fractions is of great commercial interest, because of the fact that in many cases, the "valuable products" have vitamin activities such as tocopherols (vitamin E), as well as anticarcinogenic properties such as sterols. Molecular distillation has large potential to be used in order to concentrate tocopherols, as it uses very low temperatures owing to the high vacuum and short operating time for separation, and also, it does not use solvents. Then, it can be used to separate and to purify thermosensitive material such as vitamins. In this work, the molecular distillation process was applied for tocopherol concentration, and the response surface methodology was used to optimize free fatty acids (FFA) elimination and tocopherol concentration in the residue and in the distillate streams, both of which are the products of the molecular distiller. The independent variables studied were feed flow rate (F) and evaporator temperature (T) because they are the very important process variables according to previous experience. The experimental range was 4-12 mL/min for F and 130-200 degrees C for T. It can be noted that feed flow rate and evaporator temperature are important operating variables in the FFA elimination. For decreasing the loss of FFA, in the residue stream, the operating range should be changed, increasing the evaporator temperature and decreasing the feed flow rate; D/F ratio increases, increasing evaporator temperature and decreasing feed flow rate. High concentration of tocopherols was obtained in the residue stream at low values of feed flow rate and high evaporator temperature. These results were obtained through experimental results based on experimental design.

  18. Deducing Water Concentrations in the Parent Magma of Cumulate Clinopyroxene and Olivine: Implications for a Hydrous Parent Melt of a Primitive Deccan Lava

    NASA Astrophysics Data System (ADS)

    Seaman, S. J.

    2017-12-01

    Water concentrations of clinopyroxene megacrysts in the Powai ankaramite flow, located near Mumbai, Deccan province, India, indicate that the parent magma of the flow hosted at least 4.3 wt.% water, an unusually high water concentration for a continental flood basalt magma. The Powai flow hosts clinopyroxene and olivine phenocrysts. Chatterjee and Sheth (2015) showed that phenocrysts in the flow were part of a cumulate layer intruded by basaltic melt at 6 kb and 1230oC, so the phenocrysts record characteristics of the cumulate parent melt. Clinopyroxene phenocrysts are oscillatorily zoned in water, Mg, Fe, and Ca concentrations, and have concentric bands 100-200 microns thick of 10-20 micron diameter melt inclusions. Olivine phenocrysts host only larger isolated melt inclusions. Zones in the cpx phenocrysts where melt inclusion-rich concentric bands occur have higher concentrations of water than inclusion-free zones. Water concentrations of cpx were used to calculate water concentrations in the melt from which the crystals formed using partition coefficients of Hauri et al. (2004). Water concentrations in the parent magma were between 4.3 and 8.2 wt. % based on water concentrations in cpx. Both Mg and Fe are relatively depleted in the water- and melt inclusion-rich zones in cpx, and Ca is enriched in these zones. Oscillatory zoning in cpx may be a result of repeated growth of cpx in water- richer and water-poorer boundary layers where water lowered melt viscosity and enhanced diffusion and crystal growth rates. Water-enhanced growth rates may have resulted in capture of melt inclusions preserved in water-rich cpx zones. Melt inclusions in olivine phenocrysts preserve lower water concentrations ( 1.2 wt. %) than those indicated by water concentration in cpx phenocrysts. This disparity may be evidence of water loss from melt inclusions in olivine (Gaetani et al., 2009) or may indicate that cpx and ol crystals did not crystallize from the same parent at the same time.

  19. Spatial characterization of riparian buffer effects on sediment loads from watershed systems.

    PubMed

    Momm, Henrique G; Bingner, Ronald L; Yuan, Yongping; Locke, Martin A; Wells, Robert R

    2014-09-01

    Understanding all watershed systems and their interactions is a complex, but critical, undertaking when developing practices designed to reduce topsoil loss and chemical/nutrient transport from agricultural fields. The presence of riparian buffer vegetation in agricultural landscapes can modify the characteristics of overland flow, promoting sediment deposition and nutrient filtering. Watershed simulation tools, such as the USDA-Annualized Agricultural Non-Point Source (AnnAGNPS) pollution model, typically require detailed information for each riparian buffer zone throughout the watershed describing the location, width, vegetation type, topography, and possible presence of concentrated flow paths through the riparian buffer zone. Research was conducted to develop GIS-based technology designed to spatially characterize riparian buffers and to estimate buffer efficiency in reducing sediment loads in a semiautomated fashion at watershed scale. The methodology combines modeling technology at different scales, at individual concentrated flow paths passing through the riparian zone, and at watershed scales. At the concentrated flow path scale, vegetative filter strip models are applied to estimate the sediment-trapping efficiency for each individual flow path, which are aggregated based on the watershed subdivision and used in the determination of the overall impact of the riparian vegetation at the watershed scale. This GIS-based technology is combined with AnnAGNPS to demonstrate the effect of riparian vegetation on sediment loadings from sheet and rill and ephemeral gully sources. The effects of variability in basic input parameters used to characterize riparian buffers, onto generated outputs at field scale (sediment trapping efficiency) and at watershed scale (sediment loadings from different sources) were evaluated and quantified. The AnnAGNPS riparian buffer component represents an important step in understanding and accounting for the effect of riparian vegetation, existing and/or managed, in reducing sediment loads at the watershed scale. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Simultaneous PIV and PLIF measurement of passive scalar mixing in a confined planar jet

    NASA Astrophysics Data System (ADS)

    Feng, Hua

    2005-11-01

    Simultaneous velocity and concentration fields in a confined liquid-phase planar jet with a Reynolds number based on hydraulic diameter of 50,000 were obtained using combined particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF). Data at six downstream locations were analyzed for flow statistics such as mean velocity, Reynolds stresses, turbulent kinetic energy, concentration mean and variance, turbulent fluxes, turbulent viscosity and diffusivity, and turbulent Schmidt number. Spatial correlation fields of turbulent fluxes and concentration were then determined. The Ru'φ' correlation was elliptical in shape with a major axis tilted downward with respect to the streamwise axis, whereas the Rv'φ' correlation was a horizontally oriented ellipse. The Rφ'φ' correlation field was found to be an ellipse with the major axis inclined at about 45-degrees with respect to the streamwise direction. Linear stochastic estimation was used to determine conditional flow structures. Large-scale structures were observed in the conditional velocity fields that are elliptical in shape with a streamwise major axis. The size of the structure initially increased linearly with respect to downstream distance, but then grew more slowly as the flow evolved towards channel flow.

  1. Empirical regression models for estimating nitrogen removal in a stormwater wetland during dry and wet days.

    PubMed

    Guerra, Heidi B; Park, Kisoo; Kim, Youngchul

    2013-01-01

    Due to the highly variable hydrologic quantity and quality of stormwater runoff, which requires more complex models for proper prediction of treatment, a relatively few and site-specific models for stormwater wetlands have been developed. In this study, regression models based on extensive operational data and wastewater wetlands were adapted to a stormwater wetland receiving both base flow and storm flow from an agricultural area. The models were calibrated in Excel Solver using 15 sets of operational data gathered from random sampling during dry days. The calibrated models were then applied to 20 sets of event mean concentration data from composite sampling during 20 independent rainfall events. For dry days, the models estimated effluent concentrations of nitrogen species that were close to the measured values. However, overestimations during wet days were made for NH(3)-N and total Kjeldahl nitrogen, which resulted from higher hydraulic loading rates and influent nitrogen concentrations during storm flows. The results showed that biological nitrification and denitrification was the major nitrogen removal mechanism during dry days. Meanwhile, during wet days, the prevailing aerobic conditions decreased the denitrification capacity of the wetland, and sedimentation of particulate organic nitrogen and particle-associated forms of nitrogen was increased.

  2. Analyses of exergy efficiency for forced convection heat transfer in a tube with CNT nanofluid under laminar flow conditions

    NASA Astrophysics Data System (ADS)

    Hazbehian, Mohammad; Mohammadiun, Mohammad; Maddah, Heydar; Alizadeh, Mostafa

    2017-05-01

    In the present study, the theoretical and experimental results of the second law analysis on the performance of a uniform heat flux tube using are presented in the laminar flow regime. For this purpose, carbon nanotube/water nanofluids is considered as the base fluid. The experimental investigations were undertaken in the Reynolds number range from 800 to 2600, volume concentrations of 0.1-1 %. Results are verified with well-known correlations. The focus will be on the entrance region under the laminar flow conditions for SWCNT nanofluid. The results showed that the Nu number increased about 90-270 % with the enhancement of nanoparticles volume concentration compared to water. The enhancement was particularly significant in the entrance region. Based on the exergy analysis, the results show that exergetic heat transfer effectiveness is increased by 22-67 % employing nanofluids. The exergetic efficiency is increase with increase in nanoparticles concentration. On the other hand, exergy loss was reduced by 23-43 % employing nanofluids as a heat transfer medium with comparing to conventional fluid. In addition, the empirical correlation for exergetic efficiency has also been developed. The consequential results obtained from the correlation are found to be in good agreement with the experimental results within ±5 % variation.

  3. Measuring Density Stratification and Understanding its Impact on Sediment Transport in Fine-grained Rivers, Based on Observations from the Lower Yellow River, China

    NASA Astrophysics Data System (ADS)

    Moodie, A. J.; Nittrouer, J. A.; Ma, H.; Lamb, M. P.; Carlson, B.; Kineke, G. C.; Parker, G.

    2017-12-01

    High concentrations of suspended sediment in channelized fluid flow produces density stratification that can alter the turbulent flow structure, thus limiting fluid momentum redistribution and affecting sediment transport capacity. A low channel-bed slope and large flow depth are hypothesized to be additional important factors contributing to density stratification. However, there are limited observations of density stratification in large rivers, especially those that carry significant fluxes of mud, and so the conditions leading to the development of density stratification are poorly constrained. The Yellow River, China, is a fine-grained and low-sloping river that maintains some of the highest suspended sediment concentrations in large rivers worldwide, making it an ideal natural laboratory for studying density stratification and its impact on sediment transport. Suspended sediment samples from the lower Yellow River, collected over a range of discharge conditions, produced sediment concentration profiles that are used in conjunction with velocity profiles to determine the threshold shear velocity for density stratification effects to develop. Comparing measured and predicted concentration and velocity profiles demonstrates that, there is no significant density stratification for base flow conditions; however, above a shear velocity value of 0.05 m/s, there is a progressive offset between the measured and predicted profiles, indicating that density stratification is increasingly important with higher shear stress values. The analyses further indicate that sediment entrainment from the bed and sediment diffusivity within the water column are significantly impacted by density stratification, suggesting that shear stress and sediment transport rates are inhibited by the development of density stratification. Near-bed concentration measurements are used to assess a stress-to-entrainment relationship, accounting for density stratification. These measurements are being used to refine relations for sediment entrainment and sediment flux in sandy and muddy, lowland rivers and deltas.

  4. Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Zheng, Qiong; Xing, Feng; Li, Xianfeng; Ning, Guiling; Zhang, Huamin

    2016-08-01

    Vanadium flow battery holds great promise for use in large scale energy storage applications. However, the power density is relatively low, leading to significant increase in the system cost. Apart from the kinetic and electronic conductivity improvement, the mass transport enhancement is also necessary to further increase the power density and reduce the system cost. To better understand the mass transport limitations, in the research, the space-varying and time-varying characteristic of the mass transport polarization is investigated based on the analysis of the flow velocity and reactant concentration in the bulk electrolyte by modeling. The result demonstrates that the varying characteristic of mass transport polarization is more obvious at high SoC or high current densities. To soften the adverse impact of the mass transport polarization, a new rectangular plug flow battery with a plug flow and short flow path is designed and optimized based on the mass transport polarization regulation (reducing the mass transport polarization and improving its uniformity of distribution). The regulation strategy of mass transport polarization is practical for the performance improvement in VFBs, especially for high power density VFBs. The findings in the research are also applicable for other flow batteries and instructive for practical use.

  5. Effects of physical and chemical heterogeneity on water-quality samples obtained from wells

    USGS Publications Warehouse

    Reilly, Thomas E.; Gibs, Jacob

    1993-01-01

    Factors that affect the mass of chemical constituents entering a well include the distributions of flow rate and chemical concentrations along and near the screened or open section of the well. Assuming a layered porous medium (with each layer being characterized by a uniform hydraulic conductivity and chemical concentration), a knowledge of the flow from each layer along the screened zone and of the chemical concentrations in each layer enables the total mass entering the well to be determined. Analyses of hypothetical systems and a site at Galloway, NJ, provide insight into the temporal variation of water-quality data observed when withdrawing water from screened wells in heterogeneous ground-water systems.The analyses of hypothetical systems quantitatively indicate the cause-and-effect relations that cause temporal variability in water samples obtained from wells. Chemical constituents that have relatively uniform concentrations with depth may not show variations in concentrations in the water discharged from a well after the well is purged (evacuation of standing water in the well casing). However, chemical constituents that do not have uniform concentrations near the screened interval of the well may show variations in concentrations in the well discharge water after purging because of the physics of ground-water flow in the vicinity of the screen.Water-quality samples were obtained through time over a 30 minute period from a site at Galloway, NJ. The water samples were analyzed for aromatic hydrocarbons, and the data for benzene, toluene, and meta+para xylene were evaluated for temporal variations. Samples were taken from seven discrete zones, and the flow-weighted concentrations of benzene, toluene, and meta+para xylene all indicate an increase in concentration over time during pumping. These observed trends in time were reproduced numerically based on the estimated concentration distribution in the aquifer and the flow rates from each zone.The results of the hypothetical numerical experiments and the analysis of the field data both corroborate the impact of physical and chemical heterogeneity in the aquifer on water-quality samples obtained from wells. If temporal variations in concentrations of chemical constituents are observed, they may indicate variability in the ground-water system being sampled, which may give insight into the chemical distributions within the aquifer and provide guidance in the positioning of new sampling devices or wells.

  6. Organic waste compounds in streams: Occurrence and aquatic toxicity in different stream compartments, flow regimes, and land uses in southeast Wisconsin, 2006–9

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven R.; Richards, Kevin D.; Geis, Steven W.; Magruder, Christopher

    2013-01-01

    An assessment of organic chemicals and aquatic toxicity in streams located near Milwaukee, Wisconsin, indicated high potential for adverse impacts on aquatic organisms that could be related to organic waste compounds (OWCs). OWCs used in agriculture, industry, and households make their way into surface waters through runoff, leaking septic-conveyance systems, regulated and unregulated discharges, and combined sewage overflows, among other sources. Many of these compounds are toxic at elevated concentrations and (or) known to have endocrine-disrupting potential, and often they occur as complex mixtures. There is still much to be learned about the chronic exposure effects of these compounds on aquatic populations. During 2006–9, the U.S. Geological Survey, in cooperation with the Milwaukee Metropolitan Sewerage District (MMSD), conducted a study to determine the occurrence and potential toxicity of OWCs in different stream compartments and flow regimes for streams in the Milwaukee area. Samples were collected at 17 sites and analyzed for a suite of 69 OWCs. Three types of stream compartments were represented: water column, streambed pore water, and streambed sediment. Water-column samples were subdivided by flow regime into stormflow and base-flow samples. One or more compounds were detected in all 196 samples collected, and 64 of the 69 compounds were detected at least once. Base-flow samples had the lowest detection rates, with a median of 12 compounds detected per sample. Median detection rates for stormflow, pore-water, and sediment samples were more than double that of base-flow samples. Compounds with the highest detection rates include polycyclic aromatic hydrocarbons (PAHs), insecticides, herbicides, and dyes/pigments. Elevated occurrence and concentrations of some compounds were detected in samples from urban sites, as compared with more rural sites, especially during stormflow conditions. These include the PAHs and the domestic waste-water-indicator compounds, among others. Urban runoff and storm-related leaks of sanitary sewers and (or) septic systems may be important sources of these and other compounds to the streams. The Kinnickinnic River, a highly urbanized site, had the highest detection rates and concentrations of compounds of all the sampled sites. The Milwaukee River near Cedarburg—one of the least urban sites—and the Outer Milwaukee Harbor site had the lowest detection rates and concentrations. Aquatic-toxicity benchmarks were exceeded for 12 of the 25 compounds with known benchmarks. The compounds with the greatest benchmark exceedances were the PAHs, both in terms of exceedance frequency (up to 93 percent for some compounds in sediment samples) and magnitude (concentrations up to 1,024 times greater than the benchmark value). Other compounds with toxicity-benchmark exceedances include Bis(2-ethylhexyl) phthalate (a plasticizer), 2-Methylnapthalene (a component of fuel and oil), phenol (an antimicrobial disinfectant with diverse uses), and 4-Nonylphenol (sum of all isomers; a detergent metabolite, among other uses). Analyzed as a mixture, the suite of PAH compounds were found to be potentially toxic for most non-base-flow samples. Bioassay tests were conducted on samples from 14 streams: Ceriodaphnia dubia in base-flow samples, Ceriodaphnia dubia and Hyallela azteca in pore-water samples, and Hyallela azteca and Chironomus tentans in sediment samples. The greatest adverse effect was observed in tests with Chironomus tentans from sediment samples. The weight of Chironomus tentans after exposure to sediments decreased with increased OWC concentrations. This was most evident in the relation between PAH results and Chironomus tentans bioassay results for the majority of samples; however, solvents and flame retardants appeared to be important for one site each. These results for PAHs were consistent with assessment of PAH potency factors for sediment, indicating that PAHs were likely to have adverse effects on aquatic organisms in many of the streams studied.

  7. Tempo-spatial dynamics of water quality and its response to river flow in estuary of Taihu Lake based on GOCI imagery.

    PubMed

    Du, Chenggong; Li, Yunmei; Wang, Qiao; Liu, Ge; Zheng, Zhubin; Mu, Meng; Li, Yuan

    2017-12-01

    Knowledge of tempo-spatial dynamics of water quality and its response to river flow is important for the management of lake water quality because river discharge associated with rainstorms can be an important source of pollutants to the estuary. Total phosphorus (TP), chlorophyll a (Chl-a), and total suspended matter (TSM) are important indexes of water quality and important factors influencing eutrophication and algal blooms. In this study, remote sensing was used to monitor these indexes to investigate the effects of river discharge on the estuary of Taihu Lake by the largest inflow river which is Chendong River using a total of 136 Geostationary Ocean Color Images (GOCI). In situ datasets collected during the four cruise experiments on Taihu Lake between 2011 and 2015 were used to develop the TP, Chl-a, and TSM inversion models based on simple empirical algorithms: 154 points for TP (mg/L), 114 for Chl-a (μg/L), and 181 for TSM (mg/L). The spatial and temporal changes of the concentration of the three parameters in the Chendong River estuary were analyzed by combining the GOCI data, the flow of the Chendong River, and meteorological data throughout the year in 2014. The several key findings are as follows: (1) In summer and autumn, TP, Chl-a, and TSM contents were significantly higher than in winter and spring. TP and Chl-a have a few similar distribution characteristics. And organic suspended matter in summer was the main reason for the increase of the TSM concentration. (2) The severe surface erosion in the rivers cannot be ignored; the high erodibility is an important factor in the increase of TP and TSM concentrations in the estuary. The concentration of the water quality parameter showed exponential decay with distance from the shore. The concentration decreased slowly after 12 km and then remained essentially constant. (3) TP content in the Chendong River estuary decreased under steady flow inputs and dramatically increased when the flow became large. The increase in Chl-a content was linked to higher levels of TP and good weather conditions after the rain event. Higher flow rates mainly play a dilution role for the Chl-a concentration. Erosion of the surface soil via rainfall is a major source of TSM to the estuary. This paper firstly analyzes tempo-spatial dynamics of water quality and its response to river flow in estuary of Taihu Lake, helps to further understand the impact of river input on lake water quality, and is important for lake eutrophication.

  8. Improving riverine constituent concentration and flux estimation by accounting for antecedent discharge conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Ball, William P.

    2017-04-01

    Regression-based approaches are often employed to estimate riverine constituent concentrations and fluxes based on typically sparse concentration observations. One such approach is the recently developed WRTDS ("Weighted Regressions on Time, Discharge, and Season") method, which has been shown to provide more accurate estimates than prior approaches in a wide range of applications. Centered on WRTDS, this work was aimed at developing improved models for constituent concentration and flux estimation by accounting for antecedent discharge conditions. Twelve modified models were developed and tested, each of which contains one additional flow variable to represent antecedent conditions and which can be directly derived from the daily discharge record. High-resolution (∼daily) data at nine diverse monitoring sites were used to evaluate the relative merits of the models for estimation of six constituents - chloride (Cl), nitrate-plus-nitrite (NOx), total Kjeldahl nitrogen (TKN), total phosphorus (TP), soluble reactive phosphorus (SRP), and suspended sediment (SS). For each site-constituent combination, 30 concentration subsets were generated from the original data through Monte Carlo subsampling and then used to evaluate model performance. For the subsampling, three sampling strategies were adopted: (A) 1 random sample each month (12/year), (B) 12 random monthly samples plus additional 8 random samples per year (20/year), and (C) flow-stratified sampling with 12 regular (non-storm) and 8 storm samples per year (20/year). Results reveal that estimation performance varies with both model choice and sampling strategy. In terms of model choice, the modified models show general improvement over the original model under all three sampling strategies. Major improvements were achieved for NOx by the long-term flow-anomaly model and for Cl by the ADF (average discounted flow) model and the short-term flow-anomaly model. Moderate improvements were achieved for SS, TP, and TKN by the ADF model. By contrast, no such achievement was achieved for SRP by any proposed model. In terms of sampling strategy, performance of all models (including the original) was generally best using strategy C and worst using strategy A, and especially so for SS, TP, and SRP, confirming the value of routinely collecting stormflow samples. Overall, this work provides a comprehensive set of statistical evidence for supporting the incorporation of antecedent discharge conditions into the WRTDS model for estimation of constituent concentration and flux, thereby combining the advantages of two recent developments in water quality modeling.

  9. MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders

    NASA Astrophysics Data System (ADS)

    Haq, Rizwan Ul; Shahzad, Faisal; Al-Mdallal, Qasem M.

    In this article, thermal performance of engine oil in the presence of both single and multiple wall carbon nanotubes (SWCNTs and MWCNTs) between two concentric cylinders is presented. Flow is driven with oscillatory pressure gradient and magneto-hydrodynamics (MHDs) effects are also introduced to control the random motion of the nanoparticles. Arrived broad, it is perceived that the inclusion of nanoparticles increases the thermal conductivity of working fluid significantly for both turbulent and laminar regimes. Fundamental momentum and energy equations are based upon partial differential equations (PDEs) that contain thermos-physical properties of both SWCNTs and MWCNTs. The solution has been evaluated for each mixture, namely: SWCNT-engine oil and MWCNT-engine oil. Results are determined for each velocity, temperature, pressure and stress gradient. Graphical results for the numerical values of the emerging parameters, namely: Hartmann number (M), the solid volume fraction of the nanoparticles (ϕ), Reynolds number (Reω), and the pulsation parameter based on the periodic pressure gradient are analyzed for pressure difference, frictional forces, velocity profile, temperature profile, crux, streamlines and vorticity phenomena. In addition, the assets of various parameters on the flow quantities of observation are investigated.

  10. A simple, mass balance model of carbon flow in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.

    1989-01-01

    Internal cycling of chemical elements is a fundamental aspect of a Controlled Ecological Life Support System (CELSS). Mathematical models are useful tools for evaluating fluxes and reservoirs of elements associated with potential CELSS configurations. A simple mass balance model of carbon flow in CELSS was developed based on data from the CELSS Breadboard project at Kennedy Space Center. All carbon reservoirs and fluxes were calculated based on steady state conditions and modelled using linear, donor-controlled transfer coefficients. The linear expression of photosynthetic flux was replaced with Michaelis-Menten kinetics based on dynamical analysis of the model which found that the latter produced more adequate model output. Sensitivity analysis of the model indicated that accurate determination of the maximum rate of gross primary production is critical to the development of an accurate model of carbon flow. Atmospheric carbon dioxide was particularly sensitive to changes in photosynthetic rate. The small reservoir of CO2 relative to large CO2 fluxes increases the potential for volatility in CO2 concentration. Feedback control mechanisms regulating CO2 concentration will probably be necessary in a CELSS to reduce this system instability.

  11. Dynamics of stream water TOC concentrations in a boreal headwater catchment: Controlling factors and implications for climate scenarios

    NASA Astrophysics Data System (ADS)

    Köhler, S. J.; Buffam, I.; Seibert, J.; Bishop, K. H.; Laudon, H.

    2009-06-01

    SummaryTwo different but complementary modelling approaches for reproducing the observed dynamics of total organic carbon (TOC) in a boreal stream are presented. One is based on a regression analysis, while the other is based on riparian soil conditions using a convolution of flow and concentration. Both approaches are relatively simple to establish and help to identify gaps in the process understanding of the TOC transport from soils to catchments runoff. The largest part of the temporal variation of stream TOC concentrations (4-46 mg L -1) in a forested headwater stream in the boreal zone in northern Sweden may be described using a four-parameter regression equation that has runoff and transformed air temperature as sole input variables. Runoff is assumed to be a proxy for soil wetness conditions and changing flow pathways which in turn caused most of the stream TOC variation. Temperature explained a significant part of the observed inter-annual variability. Long-term riparian hydrochemistry in soil solutions within 4 m of the stream also captures a surprisingly large part of the observed variation of stream TOC and highlights the importance of riparian soils. The riparian zone was used to reproduce stream TOC with the help of a convolution model based on flow and average riparian chemistry as input variables. There is a significant effect of wetting of the riparian soil that translates into a memory effect for subsequent episodes and thus contributes to controlling stream TOC concentrations. Situations with high flow introduce a large amount of variability into stream water TOC that may be related to memory effects, rapid groundwater fluctuations and other processes not identified so far. Two different climate scenarios for the region based on the IPCC scenarios were applied to the regression equation to test what effect the expected increase in precipitation and temperature and resulting changes in runoff would have on stream TOC concentrations assuming that the soil conditions remain unchanged. Both scenarios resulted in a mean increase of stream TOC concentrations of between 1.5 and 2.5 mg L -1 during the snow free season, which amounts to approximately 15% more TOC export compared to present conditions. Wetter and warmer conditions in the late autumn led to a difference of monthly average TOC of up to 5 mg L -1, suggesting that stream TOC may be particularly susceptible to climate variability during this season.

  12. Flow restrictor silicon membrane microvalve actuated by optically controlled paraffin phase transition

    NASA Astrophysics Data System (ADS)

    Kolari, K.; Havia, T.; Stuns, I.; Hjort, K.

    2014-08-01

    Restrictor valves allow proportional control of fluid flow but are rarely integrated in microfluidic systems. In this study, an optically actuated silicon membrane restrictor microvalve is demonstrated. Its actuation is based on the phase transition of paraffin, using a paraffin wax mixed with a suitable concentration of optically absorbing nanographite particles. Backing up the membrane with oil (the melted paraffin) allows for a compliant yet strong contact to the valve seat, which enables handling of high pressures. At flow rates up to 30 µL min-1 and at a pressure of 2 bars, the valve can successfully be closed and control the flow level by restriction. The use of this paraffin composite as an adhesive layer sandwiched between the silicon valve and glass eases fabrication. This type of restrictor valve is best suited for high pressure, low volume flow silicon-based nanofluidic systems.

  13. Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data

    USGS Publications Warehouse

    Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.

    2012-01-01

    Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (HgT, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream HgT. We found that shallow subsurface flow is a potentially important transport mechanism of particulate HgT during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate HgT in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved HgT concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-HgT complexes from surface soils can also occur during this period, DOC-complexed HgT becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily HgT loadings, but shallow subsurface flow is important for HgT loads during high-flow events. Results suggest limited seasonal trends in HgT dynamics.

  14. Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data

    USGS Publications Warehouse

    Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.

    2012-01-01

    Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (Hg T, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream Hg T. We found that shallow subsurface flow is a potentially important transport mechanism of particulate Hg T during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate Hg T in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved Hg T concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-Hg T complexes from surface soils can also occur during this period, DOC-complexed Hg T becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily Hg T loadings, but shallow subsurface flow is important for Hg T loads during high-flow events. Results suggest limited seasonal trends in Hg T dynamics. Copyright 2012 by the American Geophysical Union.

  15. The simulation and experimental validation on gas-solid two phase flow in the riser of a dense fluidized bed

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Yao; Jiang, Fan; Xu, Xiang; Wang, Sheng-Dian; Fan, Bao-Guo; Xiao, Yun-Han

    2009-06-01

    Gas-solid flow in dense CFB (circulating fluidized bed)) riser under the operating condition, superficial gas 15.5 m/s and solid flux 140 kg/m2s using Geldart B particles (sand) was investigated by experiments and CFD (computational fluid dynamics) simulation. The overall and local flow characteristics are determined using the axial pressure profiles and solid concentration profiles. The cold experimental results indicate that the axial solid concentration distribution contains a dilute region towards the up-middle zone and a dense region near the bottom and the top exit zones. The typical core-annulus structure and the back-mixing phenomenon near the wall of the riser can be observed. In addition, owing to the key role of the drag force of gas-solid phase, a revised drag force coefficient, based on the EMMS (energy-minimization multi-scale) model which can depict the heterogeneous character of gas-solid two phase flow, was proposed and coupled into the CFD control equations. In order to find an appropriate drag force model for the simulation of dense CFB riser, not only the revised drag force model but some other kinds of drag force model were used in the CFD. The flow structure, solid concentration, clusters phenomenon, fluctuation of two phases and axial pressure drop were analyzed. By comparing the experiment with the simulation, the results predicted by the EMMS drag model showed a better agreement with the experimental axial average pressure drop and apparent solid volume fraction, which proves that the revised drag force based on the EMMS model is an appropriate model for the dense CFB simulation.

  16. Gold nanoparticle based Tuberculosis immunochromatographic assay: the quantitative ESE Quanti analysis of the intensity of test and control lines.

    PubMed

    Mdluli, Phumlani; Tetyana, Phumlani; Sosibo, Ndabenhle; van der Walt, Hendriëtte; Mlambo, Mbuso; Skepu, Amanda; Tshikhudo, Robert

    2014-04-15

    A rapid dual channel lateral flow assay for the detection of Mycobacterium Tuberculosis antibodies (MTB 38 kDa monoclonal antibody) in human blood was developed. The MTB 6-14-38 kDa fusion antigen and anti-Protein A were used as the capture proteins for test and control lines respectively. Protein A labeled 40 nm gold nanoparticles were used as the detection conjugate. Whole blood and serum were spiked with MTB 38 kDa monoclonal antibody to make a positive sample model. The developed lateral flow was used to test MTB 38 kDa monoclonal antibody, and a detection limit of 5 ng/ml was used as a cut-off concentration of the analytes. The effect of the analyte concentration on the MTB lateral flow assay was studied using the variation of the intensity obtained from a ESE Quanti reader. There was a direct correlation between the analyte (MTB 38 kDa monoclonal antibody) concentration and the intensity of the test line. The intensity increased with an increase in the concentration of MTB 38 kDa monoclonal antibody, while in contrast, an increase in analyte concentration decreased the intensity of the control line. © 2013 Published by Elsevier B.V.

  17. Continuous protein concentration via free-flow moving reaction boundary electrophoresis.

    PubMed

    Kong, Fanzhi; Zhang, Min; Chen, Jingjing; Fan, Liuyin; Xiao, Hua; Liu, Shaorong; Cao, Chengxi

    2017-07-28

    In this work, we developed the model and theory of free-flow moving reaction boundary electrophoresis (FFMRB) for continuous protein concentration for the first time. The theoretical results indicated that (i) the moving reaction boundary (MRB) can be quantitatively designed in free-flow electrophoresis (FFE) system; (ii) charge-to-mass ratio (Z/M) analysis could provide guidance for protein concentration optimization; and (iii) the maximum processing capacity could be predicted. To demonstrate the model and theory, three model proteins of hemoglobin (Hb), cytochrome C (Cyt C) and C-phycocyanin (C-PC) were chosen for the experiments. The experimental results verified that (i) stable MRBs with different velocities could be established in FFE apparatus with weak acid/weak base neutralization reaction system; (ii) proteins of Hb, Cyt C and C-PC were well concentrated with FFMRB; and (iii) a maximum processing capacity and recovery ratio of Cyt C enrichment were 126mL/h and 95.5% respectively, and a maximum enrichment factor was achieved 12.6 times for Hb. All of the experiments demonstrated the protein concentration model and theory. In contrast to other methods, the continuous processing ability enables FFMRB to efficiently enrich diluted protein or peptide in large volume solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Approach to identifying pollutant source and matching flow field

    NASA Astrophysics Data System (ADS)

    Liping, Pang; Yu, Zhang; Hongquan, Qu; Tao, Hu; Wei, Wang

    2013-07-01

    Accidental pollution events often threaten people's health and lives, and it is necessary to identify a pollutant source rapidly so that prompt actions can be taken to prevent the spread of pollution. But this identification process is one of the difficulties in the inverse problem areas. This paper carries out some studies on this issue. An approach using single sensor information with noise was developed to identify a sudden continuous emission trace pollutant source in a steady velocity field. This approach first compares the characteristic distance of the measured concentration sequence to the multiple hypothetical measured concentration sequences at the sensor position, which are obtained based on a source-three-parameter multiple hypotheses. Then we realize the source identification by globally searching the optimal values with the objective function of the maximum location probability. Considering the large amount of computation load resulting from this global searching, a local fine-mesh source search method based on priori coarse-mesh location probabilities is further used to improve the efficiency of identification. Studies have shown that the flow field has a very important influence on the source identification. Therefore, we also discuss the impact of non-matching flow fields with estimation deviation on identification. Based on this analysis, a method for matching accurate flow field is presented to improve the accuracy of identification. In order to verify the practical application of the above method, an experimental system simulating a sudden pollution process in a steady flow field was set up and some experiments were conducted when the diffusion coefficient was known. The studies showed that the three parameters (position, emission strength and initial emission time) of the pollutant source in the experiment can be estimated by using the method for matching flow field and source identification.

  19. Use of environmental tritium to characterize ground water flow systems in regolith and crystalline fractured-rock hydrogeologic settings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, L.M.; Rose, S.E.

    1993-03-01

    Environmental tritium concentrations measured in 84 ground-water, surface-water, and precipitation samples collected throughout the Piedmont and Blue Ridge physiographic provinces of northern Georgia were used in conjunction with available geological and hydrochemical data to develop general concepts of ground-water flow within a regolith and crystalline fractured-rock system. Tritium concentrations ranged from 0 tritium units (TU) in water sampled from unpumped wells completed in fractured bedrock to 34 TU in water sampled from pumped wells screened at various intervals within the overlying regolith. Tritium concentrations measured in spring discharge, streamflow, and precipitation also were within this range. The distribution of tritiummore » indicates that tritiated water is retained within the regolith and that pumping is an important mechanism for mixing water of different ages within the flow system. Simulations using an analytical mixing model were performed to estimate the degree of mixing and the residence time of ground water within the flow system. Results of the simulations compared favorably with other geological and hydrochemical data. Simulated residence times for tritiated water indicated that ground-water residence times may be greater than 37 years within the bedrock fractures, but as little as 15 years in pumped bedrock wells and streams. Estimates of ground-water ages were based on environmental tritium concentrations produced by thermonuclear bomb testing conducted during the years of 1961-1962.« less

  20. "I am a scientist": How setting conditions that enhance focused concentration positively relate to student motivation and achievement outcomes in inquiry-based science

    NASA Astrophysics Data System (ADS)

    Ellwood, Robin B.

    This research investigated how student social interactions within two approaches to an inquiry-based science curriculum could be related to student motivation and achievement outcomes. This qualitative case study consisted of two cases, Off-Campus and On-Campus, and used ethnographic techniques of participant observation. Research participants included eight eighth grade girls, aged thirteen to fourteen years old. Data sources included formal and informal participant interviews, participant journal reflections, curriculum artifacts including quizzes, worksheets, and student-generated research posters, digital video and audio recordings, photographs, and researcher field notes. Data were transcribed verbatim and coded, then collapsed into emergent themes using NVIVO 9. The results of this research illustrate how setting conditions that promote focused concentration and communicative interactions can be positively related to student motivation and achievement outcomes in inquiry-based science. Participants in the Off-Campus case experienced more frequent states of focused concentration and out performed their peers in the On-Campus case on forty-six percent of classroom assignments. Off-Campus participants also designed and implemented a more cognitively complex research project, provided more in-depth analyses of their research results, and expanded their perceptions of what it means to act like a scientist to a greater extent than participants in the On-Campus case. These results can be understood in relation to Flow Theory. Student interactions that promoted the criteria necessary for initiating flow, which included having clearly defined goals, receiving immediate feedback, and maintaining a balance between challenges and skills, fostered enhanced student motivation and achievement outcomes. This research also illustrates the positive gains in motivation and achievement outcomes that emerge from student experiences with extended time in isolated areas referred to as "hot spots." Implications for science teaching and future research include shifting the current focus in inquiry-based science from a continuum that progresses from teacher-directed to open inquiry experiences to a continuum that also deliberately includes and promotes the necessary criteria for establishing flow. Attending to Flow Theory and incorporating student experiences with flow into inquiry-based science lessons will enhance student motivation and achievement outcomes in science and bolster the success of inquiry-based science.

  1. Data on Streamflow and Quality of Water and Bottom Sediment in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1998-2000

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.

    2003-01-01

    This study was initiated to expand upon previous findings that indicated concentrations of dissolved solids, arsenic, boron, mercury, molybdenum, selenium, and uranium were either above geochemical background concentrations or were approaching or exceeding ecological criteria in the lower Humboldt River system. Data were collected from May 1998 to September 2000 to further characterize streamflow and surface-water and bottom-sediment quality in the lower Humboldt River, selected agricultural drains, Upper Humboldt Lake, and Lower Humboldt Drain (ephemeral outflow from Humboldt Sink). During this study, flow in the lower Humboldt River was either at or above average. Flows in Army and Toulon Drains generally were higher than reported in previous investigations. An unnamed agricultural drain contributed a small amount to the flow measured in Army Drain. In general, measured concentrations of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium were higher in water from agricultural drains than in Humboldt River water during this study. Mercury concentrations in water samples collected during the study period typically were below the laboratory reporting level. However, low-level mercury analyses showed that samples collected in August 1999 from Army Drain had higher mercury concentrations than those collected from the river or Toulon Drain or the Lower Humboldt Drain. Ecological criteria and effect concentrations for sodium, chloride, dissolved solids, arsenic, boron, mercury, and molybdenum were exceeded in some water samples collected as part of this study. Although water samples from the agricultural drains typically contained higher concentrations of sodium, chloride, dissolved solids, arsenic, boron, and uranium, greater instantaneous loads of these constituents were carried in the river near Lovelock than in agricultural drains during periods of high flow or non-irrigation. During this study, the high flows in the lower Humboldt River produced the maximum instantaneous loads of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium at all river-sampling sites, except molybdenum near Imlay. Nevada Division of Environmental Protection monitoring reports on mine-dewatering discharge for permitted releases of treated effluent to the surface waters of the Humboldt River and its tributaries were reviewed for reported discharges and trace-element concentrations from June 1998 to September 1999. These data were compared with similar information for the river near Imlay. In all bottom sediments collected for this study, arsenic concentrations exceeded the Canadian Freshwater Interim Sediment-Quality Guideline for the protection of aquatic life and probable-effect level (concentration). Sediments collected near Imlay, Rye Patch Reservoir, Lovelock, and from Toulon Drain and Army Drain were found to contain cadmium and chromium concentrations that exceeded Canadian criteria. Chromium concentrations in sediments collected from these sites also exceeded the consensus-based threshold-effect concentration. The Canadian criterion for sediment copper concentration was exceeded in sediments collected from the Humboldt River near Lovelock and from Toulon, Army, and the unnamed agricultural drains. Mercury in sediments collected near Imlay and from Toulon Drain in August 1999 exceeded the U.S. Department of the Interior sediment probable-effect level. Nickel concentrations in sediments collected during this study were above the consensus-based threshold-effect concentration. All other river and drain sediments had constituent concentrations below protective criteria and toxicity thresholds. In Upper Humboldt Lake, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium concentrations in surface-water samples collected near the mouth of the Humboldt River generally were higher than in samples collected near the mouth of Army Drain. Ecological criteria or effect con

  2. Condensation of nano-refrigerant inside a horizontal tube

    NASA Astrophysics Data System (ADS)

    Darzi, Milad; Sadoughi, M. K.; Sheikholeslami, M.

    2018-05-01

    In this paper, condensing pressure drop of refrigerant-based nanofluid inside a tube is studied. Isobutene was selected as the base fluid while CuO nanoparticles were utilized to prepare nano-refrigerant. However, for the feasibility of nanoparticle dispersion into the refrigerant, Polyester oil (POE) was utilized as lubricant oil and added to the pure refrigerant by 1% mass fraction. Various values of mass flux, vapor quality, concentration of nanoparticle are investigated. Results indicate that adding nanoparticles leads to enhance frictional pressure drop. Nanoparticles caused larger pressure drop penalty at relatively lower vapor qualities which may be attributed to the existing condensation flow pattern such that annular flow is less influenced by nanoparticles compared to intermittent flow regime.

  3. Self-assembled PEG monolayer based SPR immunosensor for label-free detection of insulin.

    PubMed

    Gobi, K Vengatajalabathy; Iwasaka, Hiroyuki; Miura, Norio

    2007-02-15

    A simple and rapid continuous-flow immunosensor based on surface plasmon resonance (SPR) has been developed for detection of insulin as low as 1 ng ml-1 (ppb) with a response time of less than 5 min. At first, a heterobifunctional oligo(ethyleneglycol)-dithiocarboxylic acid derivative (OEG-DCA) containing dithiol and carboxyl end groups was used to functionalize the thin Au-film of SPR chip. Insulin was covalently bound to the Au-thiolate monolayer of OEG-DCA for activating the sensor surface to immunoaffinity interactions. An on-line competitive immunosensing principle is examined for detection of insulin, in which the direct affinity binding of anti-insulin antibody to the insulin on sensor surface is examined in the presence and absence of various concentrations of insulin. Immunoreaction of anti-insulin antibody with the sensor surface was optimized with reference to antibody concentration, sample analysis time and flow-rate to provide the desired detection limit and determination range. With the immunosensor developed, the lowest detectable concentration of insulin is 1 ng ml-1 and the determination range covers a wide concentration of 1-300 ng ml-1. The developed OEG-monolayer based sensor chip exhibited high resistance to non-specific adsorption of proteins, and an uninterrupted highly sensitive detection of insulin from insulin-impregnated serum samples has been demonstrated. After an immunoreaction cycle, active sensor surface was regenerated simply by a brief flow of an acidic buffer (glycine.HCl; pH 2.0) for less than 1 min. A same sensor chip was found reusable for more than 25 cycles without an appreciable change in the original sensor activity.

  4. Study on Sumbawa gold recovery using centrifuge

    NASA Astrophysics Data System (ADS)

    Ferdana, A. D.; Petrus, H. T. B. M.; Bendiyasa, I. M.; Prijambada, I. D.; Hamada, F.; Sachiko, T.

    2018-01-01

    The Artisanal Small Gold Mining in Sumbawa has been processing gold with mercury (Hg), which poses a serious threat to the mining and global environment. One method of gold processing that does not use mercury is by gravity method. Before processing the ore first performed an analysis of Mineragraphy and analysis of compound with XRD. Mineragraphy results show that gold is associated with chalcopyrite and covelite and is a single particle (native) on size 58.8 μm, 117 μm up to 294 μm. characterization with XRD shows that the Sumbawa Gold Ore is composed of quartz, pyrite, pyroxene, and sericite compounds. Sentrifugation is one of separation equipment of gravity method to increase concentrate based on difference of specific gravity. The optimum concentration result is influenced by several variables, such as water flow rate and particle size. In this present research, the range of flow rate is 5 lpm and 10 lpm, the particle size - 100 + 200 mesh and -200 +300 mesh. Gold concentration in concentrate is measured by EDX. The result shows that the optimum condition is obtained at a separation with flow rate 5 lpm and a particle size of -100 + 200 mesh.

  5. Rapid Sample Processing for Detection of Food-Borne Pathogens via Cross-Flow Microfiltration

    PubMed Central

    Li, Xuan; Ximenes, Eduardo; Amalaradjou, Mary Anne Roshni; Vibbert, Hunter B.; Foster, Kirk; Jones, Jim; Liu, Xingya; Bhunia, Arun K.

    2013-01-01

    This paper reports an approach to enable rapid concentration and recovery of bacterial cells from aqueous chicken homogenates as a preanalytical step of detection. This approach includes biochemical pretreatment and prefiltration of food samples and development of an automated cell concentration instrument based on cross-flow microfiltration. A polysulfone hollow-fiber membrane module having a nominal pore size of 0.2 μm constitutes the core of the cell concentration instrument. The aqueous chicken homogenate samples were circulated within the cross-flow system achieving 500- to 1,000-fold concentration of inoculated Salmonella enterica serovar Enteritidis and naturally occurring microbiota with 70% recovery of viable cells as determined by plate counting and quantitative PCR (qPCR) within 35 to 45 min. These steps enabled 10 CFU/ml microorganisms in chicken homogenates or 102 CFU/g chicken to be quantified. Cleaning and sterilizing the instrument and membrane module by stepwise hydraulic and chemical cleaning (sodium hydroxide and ethanol) enabled reuse of the membrane 15 times before replacement. This approach begins to address the critical need for the food industry for detecting food pathogens within 6 h or less. PMID:24014538

  6. Design and characterization of poly(dimethylsiloxane)-based valves for interfacing continuous-flow sampling to microchip electrophoresis.

    PubMed

    Li, Michelle W; Huynh, Bryan H; Hulvey, Matthew K; Lunte, Susan M; Martin, R Scott

    2006-02-15

    This work describes the fabrication and evaluation of a poly(dimethyl)siloxane (PDMS)-based device that enables the discrete injection of a sample plug from a continuous-flow stream into a microchannel for subsequent analysis by electrophoresis. Devices were fabricated by aligning valving and flow channel layers followed by plasma sealing the combined layers onto a glass plate that contained fittings for the introduction of liquid sample and nitrogen gas. The design incorporates a reduced-volume pneumatic valve that actuates (on the order of hundreds of milliseconds) to allow analyte from a continuously flowing sampling channel to be injected into a separation channel for electrophoresis. The injector design was optimized to include a pushback channel to flush away stagnant sample associated with the injector dead volume. The effect of the valve actuation time, the pushback voltage, and the sampling stream flow rate on the performance of the device was characterized. Using the optimized design and an injection frequency of 0.64 Hz showed that the injection process is reproducible (RSD of 1.77%, n = 15). Concentration change experiments using fluorescein as the analyte showed that the device could achieve a lag time as small as 14 s. Finally, to demonstrate the potential uses of this device, the microchip was coupled to a microdialysis probe to monitor a concentration change and sample a fluorescein dye mixture.

  7. An improved optical scheme for self-mixing low-coherence flowmeters

    NASA Astrophysics Data System (ADS)

    Di Cecilia, Luca; Rovati, Luigi; Cattini, Stefano

    2017-02-01

    In this paper we present a fiber-based low-coherence self-mixing interferometer exploiting a single-arm approach to measure the flow in a pipe. The main advantages of the proposed system are the flexibility offered by fiber-connected optical head, a greater ease of alignment, the rejection of "common-mode" vibrations, and greater stability. Thanks to the use of a low-coherence source, the proposed system investigates the velocity of the scattering particles owing only in a fixed and well defined region located close to the duct wall itself. The reported experimental results demonstrate that in laminar flow regime the developed system is able to determine the flow and it is quite robust to variation in the scatterers concentration. Increasing the scatterers concentration of about 24 times, the sensitivity S has reduced of less than 30%.

  8. Multiresponse modeling of variably saturated flow and isotope tracer transport for a hillslope experiment at the Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    Scudeler, Carlotta; Pangle, Luke; Pasetto, Damiano; Niu, Guo-Yue; Volkmann, Till; Paniconi, Claudio; Putti, Mario; Troch, Peter

    2016-10-01

    This paper explores the challenges of model parameterization and process representation when simulating multiple hydrologic responses from a highly controlled unsaturated flow and transport experiment with a physically based model. The experiment, conducted at the Landscape Evolution Observatory (LEO), involved alternate injections of water and deuterium-enriched water into an initially very dry hillslope. The multivariate observations included point measures of water content and tracer concentration in the soil, total storage within the hillslope, and integrated fluxes of water and tracer through the seepage face. The simulations were performed with a three-dimensional finite element model that solves the Richards and advection-dispersion equations. Integrated flow, integrated transport, distributed flow, and distributed transport responses were successively analyzed, with parameterization choices at each step supported by standard model performance metrics. In the first steps of our analysis, where seepage face flow, water storage, and average concentration at the seepage face were the target responses, an adequate match between measured and simulated variables was obtained using a simple parameterization consistent with that from a prior flow-only experiment at LEO. When passing to the distributed responses, it was necessary to introduce complexity to additional soil hydraulic parameters to obtain an adequate match for the point-scale flow response. This also improved the match against point measures of tracer concentration, although model performance here was considerably poorer. This suggests that still greater complexity is needed in the model parameterization, or that there may be gaps in process representation for simulating solute transport phenomena in very dry soils.

  9. Ice dynamics of the Allan Hills meteorite concentration sites revealed by satellite aperture radar interferometry

    NASA Astrophysics Data System (ADS)

    Coren, F.; Delisle, G.; Sterzai, P.

    2003-09-01

    The ice flow conditions of a 100 x 100 km area of Victoria Land, Antarctica were analyzed with the synthetic aperture radar (SAR) technique. The area includes a number of meteorite concentration sites, in particular the Allan Hills ice fields. Regional ice flow velocities around the Mid- western and Near-western ice fields and the Allan Hills main ice field are shown to be 2.5 m yr-1. These sites are located on a horseshoe-shaped area that bounds an area characterized by higher ice flow velocities of up to 5 m yr-1. Meteorite find locations on the Elephant Moraine are located in this "high ice flow" area. The SAR derived digital elevation model (DEM) shows atypical low surface slopes for Antarctic conditions, which are the cause for the slow ice movements. Numerous ice rises in the area are interpreted to cap sub-ice obstacles, which were formed by tectonic processes in the past. The ice rises are considered to represent temporary features, which develop only during warm stages when the regional ice stand is lowered. Ice depressions, which develop in warm stages on the lee side of ice rises, may act as the sites of temporary build-up of meteorite concentrations, which turn inoperative during cold stages when the regional ice level rises and the ice rises disappear. Based on a simplified ice flow model, we argue that the regional ice flow in cold stages is reduced by a factor of at least 3.

  10. [Explore the spatial and temporal patterns of water pollution in the Yincungang canal of the Lake Taihu basin, China].

    PubMed

    Yang, Xiao-Ying; Luo, Xing-Zhang; Zheng, Zheng; Fang, Shu-Bo

    2012-09-01

    Two high-density snap-shot samplings were conducted along the Yincungang canal, one important tributary of the Lake Tai, in April (low flow period) and June (high flow period) of 2010. Geostatistical analysis based on the river network distance was used to analyze the spatial and temporal patterns of the pollutant concentrations along the canal with an emphasis on chemical oxygen demand (COD) and total nitrogen (TN). Study results have indicated: (1) COD and TN concentrations display distinctly different spatial and temporal patterns between the low and high flow periods. COD concentration in June is lower than that in April, while TN concentration has the contrary trend. (2) COD load is relatively constant during the period between the two monitoring periods. The spatial correlation structure of COD is exponential for both April and June, and the change of COD concentration is mainly influenced by hydrological conditions. (3) Nitrogen load from agriculture increased significantly during the period between the two monitoring periods. Large amount of chaotic fertilizing by individual farmers has led to the loss of the spatial correlation among the observed TN concentrations. Hence, changes of TN concentration in June are under the dual influence of agricultural fertilizing and hydrological conditions. In the view of the complex hydrological conditions and serious water pollution in the Lake Taihu region, geostatistical analysis is potentially a useful tool for studying the characteristics of pollutant distribution and making predictions in the region.

  11. The impact of agricultural land use on stream chemistry in the Middle Hills of the Himalayas, Nepal

    NASA Astrophysics Data System (ADS)

    Collins, Robert; Jenkins, Alan

    1996-11-01

    The chemistry of streams draining agricultural and forested catchments in the Middle Hills of Nepal is described. Differences between mean streamwater chemistry are attributable to the effects of the terraced agriculture and land management practices. The agricultural catchments were found to exhibit higher mean concentrations of base cations (Na, Mg, K), bicarbonate, acid anions (SO 4, Cl), metals (Al, Fe) and nutrients (NO 3, PO 4). Increased base cations apparently result from tillage practices exposing fresh soil material to weathering. Increased acid anions result from inputs of inorganic fertiliser, notably ammonium sulphate, and from an apparent increase in evapotranspiration from the flooded terraces in the agricultural catchments. Increased metal concentrations may be promoted by increased weathering and erosion rates, and this is further supported by observations of dramatically higher turbidity in the streamwater draining the agricultural catchments. Higher levels of nutrients are the direct result of fertiliser input but concentrations are generally low from all catchments as a result of denitrification, indicating that eutrophication downstream is not a likely consequence of land use change. The major dynamics of water chemistry occur during the monsoon, which is also the main season for agricultural production. Mean wet season concentrations of base cations tend to be lower than in the dry season at all catchments as higher flow dilutes the relatively constant weathering input. Ammonium concentrations are higher from the agricultural catchments in the wet season as a result of direct washout of fertiliser. Detailed monitoring through storm periods at one agricultural catchment indicates that the chemistry responds very rapidly to changing flow, with cations decreasing and acid anions increasing followed by equally rapid recovery as flow recedes. Bicarbonate concentrations also decline markedly but are still sufficiently high to maintain pH near neutral throughout the storm event. The impacts of agricultural land use on streamwater chemistry are unlikely to lead to potentially damaging consequences for the aquatic biota at present or in the short-term future. The potential for acidity generation as a result of the high loads of nitrogenous fertilisers applied is apparently buffered by the land tillage practices, which promote higher weathering and so higher concentrations of base cations.

  12. Development of Design Review Procedures for Army Air Pollution Abatement Projects. Volume II. Appendices.

    DTIC Science & Technology

    1980-07-01

    flow rate wet based on %02 (ACFMWX) RAO RGWO2 (Ts + 460 ) 29.92 2 2 x 530 (Pb + Ps/13.6) OPTION TWO 25. Percent oxygen in flue gas as calculated from...Flow Characteristics of Gas Stream A-29 A.3.5.1 Flow Rate A-29 A.3.5.2 Variations in Flow Rate A-30 A.3.5.3 Changes in Properties A-30 A.3.5.4 Control ...Size and Concentration B-3 B.l.l.2 Electrical Conditions B-5 B.1.1.3 Reentrainment of Dust B-7 B.l.l.4 Gas Flow Uniformity B-7 B.1.2 Flue Gas

  13. Software defined network architecture based research on load balancing strategy

    NASA Astrophysics Data System (ADS)

    You, Xiaoqian; Wu, Yang

    2018-05-01

    As a new type network architecture, software defined network has the key idea of separating the control place of the network from the transmission plane, to manage and control the network in a concentrated way; in addition, the network interface is opened on the control layer and the data layer, so as to achieve programmable control of the network. Considering that only the single shortest route is taken into the calculation of traditional network data flow transmission, and congestion and resource consumption caused by excessive load of link circuits are ignored, a link circuit load based flow media business QoS gurantee system is proposed in this article to divide the flow in the network into ordinary data flow and QoS flow. In this way, it supervises the link circuit load with the controller so as to calculate reasonable route rapidly and issue the flow table to the exchanger, to finish rapid data transmission. In addition, it establishes a simulation platform to acquire optimized result through simulation experiment.

  14. Improving Riverine Constituent Concentration and Flux Estimation by Accounting for Antecedent Discharge Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Ball, W. P.

    2016-12-01

    Regression-based approaches are often employed to estimate riverine constituent concentrations and fluxes based on typically sparse concentration observations. One such approach is the WRTDS ("Weighted Regressions on Time, Discharge, and Season") method, which has been shown to provide more accurate estimates than prior approaches. Centered on WRTDS, this work was aimed at developing improved models for constituent concentration and flux estimation by accounting for antecedent discharge conditions. Twelve modified models were developed and tested, each of which contains one additional variable to represent antecedent conditions. High-resolution ( daily) data at nine monitoring sites were used to evaluate the relative merits of the models for estimation of six constituents - chloride (Cl), nitrate-plus-nitrite (NOx), total Kjeldahl nitrogen (TKN), total phosphorus (TP), soluble reactive phosphorus (SRP), and suspended sediment (SS). For each site-constituent combination, 30 concentration subsets were generated from the original data through Monte Carlo sub-sampling and then used to evaluate model performance. For the sub-sampling, three sampling strategies were adopted: (A) 1 random sample each month (12/year), (B) 12 random monthly samples plus additional 8 random samples per year (20/year), and (C) 12 regular (non-storm) and 8 storm samples per year (20/year). The modified models show general improvement over the original model under all three sampling strategies. Major improvements were achieved for NOx by the long-term flow-anomaly model and for Cl by the ADF (average discounted flow) model and the short-term flow-anomaly model. Moderate improvements were achieved for SS, TP, and TKN by the ADF model. By contrast, no such achievement was achieved for SRP by any proposed model. In terms of sampling strategy, performance of all models was generally best using strategy C and worst using strategy A, and especially so for SS, TP, and SRP, confirming the value of routinely collecting storm-flow samples. Overall, this work provides a comprehensive set of statistical evidence for supporting the incorporation of antecedent discharge conditions into WRTDS for constituent concentration and flux estimation, thereby combining the advantages of two recent developments in water quality modeling.

  15. 40 CFR 61.356 - Recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...

  16. 40 CFR 61.356 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...

  17. 40 CFR 61.356 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...

  18. The generation of concentration gradients using electroosmotic flow in micro reactors allowing stereoselective chemical synthesis.

    PubMed

    Skelton, V; Greenway, G M; Haswell, S J; Styring, P; Morgan, D O; Warrington, B H; Wong, S Y

    2001-01-01

    The stereoselective control of chemical reactions has been achieved by applying electrical fields in a micro reactor generating controlled concentration gradients of the reagent streams. The chemistry based upon well-established Wittig synthesis was carried out in a micro reactor device fabricated in borosilicate glass using photolithographic and wet etching techniques. The selectivity of the cis (Z) to trans (E) isomeric ratio in the product synthesised was controlled by varying the applied voltages to the reagent reservoirs within the micro reactor. This subsequently altered the relative reagent concentrations within the device resulting in Z/E ratios in the range 0.57-5.21. By comparison, a traditional batch method based on the same reaction length, concentration, solvent and stoichiometry (i.e., 1.0:1.5:1.0 reagent ratios) gave a Z/E in the range 2.8-3.0. However, when the stoichiometric ratios were varied up to ten times as much, the Z/E ratios varied in accordance to the micro reactor i.e., when the aldehyde is in excess, the Z isomer predominates whereas when the aldehyde is in low concentrations, the E isomer is the more favourable form. Thus indicating that localised concentration gradients generated by careful flow control due to the diffusion limited non-turbulent mixing regime within a micro reactor, leads to the observed stereo selectivity for the cis and trans isomers.

  19. Occurrence of organic wastewater compounds in effluent-dominated streams in Northeastern Kansas

    USGS Publications Warehouse

    Lee, C.J.; Rasmussen, T.J.

    2006-01-01

    Fifty-nine stream-water samples and 14 municipal wastewater treatment facility (WWTF) discharge samples in Johnson County, northeastern Kansas, were analyzed for 55 compounds collectively described as organic wastewater compounds (OWCs). Stream-water samples were collected upstream, in, and downstream from WWTF discharges in urban and rural areas during base-flow conditions. The effect of secondary treatment processes on OWC occurrence was evaluated by collecting eight samples from WWTF discharges using activated sludge and six from WWTFs samples using trickling filter treatment processes. Samples collected directly from WWTF discharges contained the largest concentrations of most OWCs in this study. Samples from trickling filter discharges had significantly larger concentrations of many OWCs (p-value < 0.05) compared to samples collected from activated sludge discharges. OWC concentrations decreased significantly in samples from WWTF discharges compared to stream-water samples collected from sites greater than 2000??m downstream. Upstream from WWTF discharges, base-flow samples collected in streams draining predominantly urban watersheds had significantly larger concentrations of cumulative OWCs (p-value = 0.03), caffeine (p-value = 0.01), and tris(2-butoxyethyl) phosphate (p-value < 0.01) than those collected downstream from more rural watersheds.

  20. Effect of varying experimental conditions on the viscosity of α-pinene derived secondary organic material

    DOE PAGES

    Grayson, James W.; Zhang, Yue; Mutzel, Anke; ...

    2016-05-18

    Knowledge of the viscosity of particles containing secondary organic material (SOM) is useful for predicting reaction rates and diffusion in SOM particles. In this study we investigate the viscosity of SOM particles as a function of relative humidity and SOM particle mass concentration, during SOM synthesis. The SOM was generated via the ozonolysis of α-pinene at < 5 % relative humidity (RH). Experiments were carried out using the poke-and-flow technique, which measures the experimental flow time ( τ exp, flow) of SOM after poking the material with a needle. In the first set of experiments, we show that τ exp,more » flow increased by a factor of 3600 as the RH increased from < 0.5 RH to 50 % RH, for SOM with a production mass concentration of 121 µg m -3. Based on simulations, the viscosities of the particles were between 6 × 10 5 and 5 × 10 7 Pa s at < 0.5 % RH and between 3 × 10 2 and 9 × 10 3 Pa s at 50 % RH. In the second set of experiments we show that under dry conditions τ exp, flow decreased by a factor of 45 as the production mass concentration increased from 121 to 14 000 µg m -3. From simulations of the poke-and-flow experiments, the viscosity of SOM with a production mass concentration of 14 000 µg m -3 was determined to be between 4 × 10 4 and 1.5 × 10 6 Pa s compared to between 6 × 10 5 and 5 × 10 7 Pa s for SOM with a production mass concentration of 121 µg m -3. The results can be rationalized by a dependence of the chemical composition of SOM on production conditions. Lastly, these results emphasize the shifting characteristics of SOM, not just with RH and precursor type, but also with the production conditions, and suggest that production mass concentration and the RH at which the viscosity was determined should be considered both when comparing laboratory results and when extrapolating these results to the atmosphere.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grayson, James W.; Zhang, Yue; Mutzel, Anke

    Knowledge of the viscosity of particles containing secondary organic material (SOM) is useful for predicting reaction rates and diffusion in SOM particles. In this study we investigate the viscosity of SOM particles as a function of relative humidity and SOM particle mass concentration, during SOM synthesis. The SOM was generated via the ozonolysis of α-pinene at < 5 % relative humidity (RH). Experiments were carried out using the poke-and-flow technique, which measures the experimental flow time ( τ exp, flow) of SOM after poking the material with a needle. In the first set of experiments, we show that τ exp,more » flow increased by a factor of 3600 as the RH increased from < 0.5 RH to 50 % RH, for SOM with a production mass concentration of 121 µg m -3. Based on simulations, the viscosities of the particles were between 6 × 10 5 and 5 × 10 7 Pa s at < 0.5 % RH and between 3 × 10 2 and 9 × 10 3 Pa s at 50 % RH. In the second set of experiments we show that under dry conditions τ exp, flow decreased by a factor of 45 as the production mass concentration increased from 121 to 14 000 µg m -3. From simulations of the poke-and-flow experiments, the viscosity of SOM with a production mass concentration of 14 000 µg m -3 was determined to be between 4 × 10 4 and 1.5 × 10 6 Pa s compared to between 6 × 10 5 and 5 × 10 7 Pa s for SOM with a production mass concentration of 121 µg m -3. The results can be rationalized by a dependence of the chemical composition of SOM on production conditions. Lastly, these results emphasize the shifting characteristics of SOM, not just with RH and precursor type, but also with the production conditions, and suggest that production mass concentration and the RH at which the viscosity was determined should be considered both when comparing laboratory results and when extrapolating these results to the atmosphere.« less

  2. Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney.

    PubMed

    Marcano, Mariano; Layton, Anita T; Layton, Harold E

    2010-02-01

    In a mathematical model of the urine concentrating mechanism of the inner medulla of the rat kidney, a nonlinear optimization technique was used to estimate parameter sets that maximize the urine-to-plasma osmolality ratio (U/P) while maintaining the urine flow rate within a plausible physiologic range. The model, which used a central core formulation, represented loops of Henle turning at all levels of the inner medulla and a composite collecting duct (CD). The parameters varied were: water flow and urea concentration in tubular fluid entering the descending thin limbs and the composite CD at the outer-inner medullary boundary; scaling factors for the number of loops of Henle and CDs as a function of medullary depth; location and increase rate of the urea permeability profile along the CD; and a scaling factor for the maximum rate of NaCl transport from the CD. The optimization algorithm sought to maximize a quantity E that equaled U/P minus a penalty function for insufficient urine flow. Maxima of E were sought by changing parameter values in the direction in parameter space in which E increased. The algorithm attained a maximum E that increased urine osmolality and inner medullary concentrating capability by 37.5% and 80.2%, respectively, above base-case values; the corresponding urine flow rate and the concentrations of NaCl and urea were all within or near reported experimental ranges. Our results predict that urine osmolality is particularly sensitive to three parameters: the urea concentration in tubular fluid entering the CD at the outer-inner medullary boundary, the location and increase rate of the urea permeability profile along the CD, and the rate of decrease of the CD population (and thus of CD surface area) along the cortico-medullary axis.

  3. Performance analysis of vortex based mixers for confined flows

    NASA Astrophysics Data System (ADS)

    Buschhagen, Timo

    The hybrid rocket is still sparsely employed within major space or defense projects due to their relatively poor combustion efficiency and low fuel grain regression rate. Although hybrid rockets can claim advantages in safety, environmental and performance aspects against established solid and liquid propellant systems, the boundary layer combustion process and the diffusion based mixing within a hybrid rocket grain port leaves the core flow unmixed and limits the system performance. One principle used to enhance the mixing of gaseous flows is to induce streamwise vorticity. The counter-rotating vortex pair (CVP) mixer utilizes this principle and introduces two vortices into a confined flow, generating a stirring motion in order to transport near wall media towards the core and vice versa. Recent studies investigated the velocity field introduced by this type of swirler. The current work is evaluating the mixing performance of the CVP concept, by using an experimental setup to simulate an axial primary pipe flow with a radially entering secondary flow. Hereby the primary flow is altered by the CVP swirler unit. The resulting setup therefore emulates a hybrid rocket motor with a cylindrical single port grain. In order to evaluate the mixing performance the secondary flow concentration at the pipe assembly exit is measured, utilizing a pressure-sensitive paint based procedure.

  4. Characterization of water quality and suspended sediment during cold-season flows, warm-season flows, and stormflows in the Fountain and Monument Creek watersheds, Colorado, 2007–2015

    USGS Publications Warehouse

    Miller, Lisa D.; Stogner, Sr., Robert W.

    2017-09-01

    From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: cold-season flow (November–April), warm-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in warm-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during warm-season flows. Six samples (three warm-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water-quality standard for total arsenic of 50 micrograms per liter. All concentrations of dissolved copper, selenium, and zinc measured in samples were below the water-quality standard.Concentrations of dissolved nitrate plus nitrite generally increased from upstream to downstream during all flow periods. The largest downstream increase in dissolved nitrate plus nitrite concentration was measured between sites 07103970 and 07104905 on Monument Creek. All but one tributary that drain into Monument Creek between the two sites had higher median nitrate plus nitrite concentrations than the nearest upstream site on Monument Creek, site 07103970 (MoCr_Woodmen). Increases in the concentration of dissolved nitrate plus nitrite were also evident below wastewater treatment plants located on Fountain Creek.Most stormflow concentrations of dissolved trace elements were smaller than concentrations from cold-season flow or warm-season samples. However, median concentrations of total arsenic, lead, manganese, nickel, and zinc generally were much larger during periods of stormflow than during cold-season flow or warm-season fl. Median concentrations of total arsenic, total copper, total lead, dissolved and total manganese, total nickel, dissolved and total selenium, and dissolved and total zinc concentrations increased from 1.5 to 28.5 times from site 07103700 (FoCr_Manitou) to 07103707 (FoCr_8th) during cold-season and warm-season flows, indicating a large source of trace elements between these two sites. Both of these sites are located on Fountain Creek, upstream from the confluence with Monument Creek.Median suspended-sediment concentrations and median suspended-sediment loads increased in the downstream direction during all streamflow regimes between Monument Creek sites 07103970 (MoCr_Woodmen) and 07104905 (MoCr_Bijou); however, statistically significant increase (p-value less than 0.05) were only present during warm-season flow and stormflow. Significant increases in median suspended sediment concentrations were measured during cold-season flow and warm-season flow between Upper Fountain Creek site 07103707 (FoCr_8th) and Lower Fountain Creek site 07105500 (FoCr_Nevada) because of inflows from Monument Creek with higher suspended-sediment concentrations. Median suspended-sediment concentrations between sites 07104905 (MoCr_Bijou) and 07105500 (FoCr_Nevada) increased significantly during warm-season flow but showed no significant differences during cold-season flow and stormflow. Significant decreases in median suspended-sediment concentrations were measured between sites 07105500 (FoCr_Nevada) and 07105530 (FoCr_Janitell) during all flow regimes.Suspended-sediment concentrations, discharges, and yields associated with stormflow were significantly larger than those associated with warm-season flow. Although large spatial variations in suspended-sediment yields occurred during warm-season flows, the suspended-sediment yield associated with stormflow were as much as 1,000 times larger than the suspended-sediment yields that occurred during warm-season flow. 

  5. Flow pattern changes influenced by variation of viscosities of a heterogeneous gas-liquid mixture flow in a vertical channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keska, Jerry K.; Hincapie, Juan; Jones, Richard

    In the steady-state flow of a heterogeneous mixture such as an air-liquid mixture, the velocity and void fraction are space- and time-dependent parameters. These parameters are the most fundamental in the analysis and description of a multiphase flow. The determination of flow patterns in an objective way is extremely critical, since this is directly related to sudden changes in spatial and temporal changes of the random like characteristic of concentration. Flow patterns can be described by concentration signals in time, amplitude, and frequency domains. Despite the vital importance and countless attempts to solve or incorporate the flow pattern phenomena intomore » multiphase models, it has still been a very challenging topic in the scientific community since the 1940's and has not yet reached a satisfactory solution. This paper reports the experimental results of the impact of fluid viscosity on flow patterns for two-phase flow. Two-phase flow was created in laboratory equipment using air and liquid as phase medium. The liquid properties were changed by using variable concentrations of glycerol in water mixture which generated a wide-range of dynamic viscosities ranging from 1 to 1060 MPa s. The in situ spatial concentration vs. liquid viscosity and airflow velocity of two-phase flow in a vertical ID=50.8 mm pipe were measured using two concomitant computer-aided measurement systems. After acquiring data, the in situ special concentration signals were analyzed in time (spatial concentration and RMS of spatial concentration vs. time), amplitude (PDF and CPDF), and frequency (PSD and CPSD) domains that documented broad flow pattern changes caused by the fluid viscosity and air velocity changes. (author)« less

  6. A multitracer system for multizone ventilation measurement

    NASA Astrophysics Data System (ADS)

    Sherman, Max

    1990-09-01

    Mass transfer due to pressure-driven air flow is one of the most important processes for determining both environmental quality and energy requirements in buildings. Heat, moisture, and contaminants are all transported by air movement between indoors and outdoors as well as between different zones within a building. Measurement of these air flows is critical to understanding the performance of buildings. Virtually all measurements of ventilation are made using the dilution of a tracer gas. The vast majority of such measurements have been made in a single zone, using a single tracer gas. For the past several years LBL has been developing the MultiTracer Measurement System (MTMS) to provide full multizone air flow information in an accurate, real-time manner. MTMS is based on a quadrupole mass spectrometer to provide high-speed concentration analysis of multiple tracer gases in the (low) ppm level that are injected into multiple zones using mass-flow controllers. The measurement and injection system is controlled by a PC and can measure all concentrations in all zones (and adjust the injected tracer flows) within 2 min and can operate unattended for weeks. The resulting injection rate and concentration data can be analyzed to infer the bulk air movement between zones. The system also measures related quantities such as weather and zonal temperature to assist in the data interpretation. Using MTMS, field measurements have been made for the past two years.

  7. High-concentrate diets based on forages harvested at different maturity stages affect ruminal synthesis of B vitamins in lactating dairy cows.

    PubMed

    Castagnino, D S; Kammes, K L; Allen, M S; Gervais, R; Chouinard, P Y; Girard, C L

    2017-04-01

    Effects of plant maturity on apparent ruminal synthesis and post-ruminal supply of B vitamins were evaluated in two feeding trials. Diets containing alfalfa (Trial 1) or orchardgrass (Trial 2) silages harvested either (1) early cut, less mature (EC) or (2) late cut, more mature (LC) as the sole forage were offered to ruminally and duodenally cannulated lactating Holstein cows in crossover design experiments. In Trial 1, conducted with 16 cows (569±43 kg of empty BW (ruminal content removed) and 43.7±8.6 kg/day of 3.5% fat-corrected milk yield; mean±SD) in two 17-day treatment periods, both diets provided ~22% forage NDF and 27% total NDF, and the forage-to-concentrate ratios were 53 : 47 and 42 : 58 for EC and LC, respectively. In Trial 2, conducted with 13 cows (588±55 kg of empty BW and 43.7±7.7 kg/day of 3.5% fat-corrected milk yield; mean±SD) in two 18-day treatment periods, both diets provided ~25% forage NDF and 31% total NDF; the forage-to-concentrate ratios were 58 : 42 and 46 : 54 for EC and LC, respectively. Thiamin, riboflavin, niacin, vitamin B6, folates and vitamin B12 were measured in feed and duodenal content. Apparent ruminal synthesis was calculated as the duodenal flow minus the intake. Diets based on EC alfalfa decreased the amounts of thiamin, niacin and folates reaching the duodenum, whereas diets based on EC orchardgrass increased riboflavin duodenal flow. Daily apparent ruminal synthesis of thiamin, riboflavin, niacin and vitamin B6 were correlated negatively with their intake, suggesting a microbial regulation of their concentration in the rumen. Vitamin B12 apparent ruminal synthesis was correlated negatively with total volatile fatty acids concentration, but positively with ruminal pH and microbial N duodenal flow.

  8. Optimal concentrations in transport systems

    PubMed Central

    Jensen, Kaare H.; Kim, Wonjung; Holbrook, N. Michele; Bush, John W. M.

    2013-01-01

    Many biological and man-made systems rely on transport systems for the distribution of material, for example matter and energy. Material transfer in these systems is determined by the flow rate and the concentration of material. While the most concentrated solutions offer the greatest potential in terms of material transfer, impedance typically increases with concentration, thus making them the most difficult to transport. We develop a general framework for describing systems for which impedance increases with concentration, and consider material flow in four different natural systems: blood flow in vertebrates, sugar transport in vascular plants and two modes of nectar drinking in birds and insects. The model provides a simple method for determining the optimum concentration copt in these systems. The model further suggests that the impedance at the optimum concentration μopt may be expressed in terms of the impedance of the pure (c = 0) carrier medium μ0 as μopt∼2αμ0, where the power α is prescribed by the specific flow constraints, for example constant pressure for blood flow (α = 1) or constant work rate for certain nectar-drinking insects (α = 6). Comparing the model predictions with experimental data from more than 100 animal and plant species, we find that the simple model rationalizes the observed concentrations and impedances. The model provides a universal framework for studying flows impeded by concentration, and yields insight into optimization in engineered systems, such as traffic flow. PMID:23594815

  9. Nutrient and Suspended-Sediment Trends in the Missouri River Basin, 1993-2003

    USGS Publications Warehouse

    Sprague, Lori A.; Clark, Melanie L.; Rus, David L.; Zelt, Ronald B.; Flynn, Jennifer L.; Davis, Jerri V.

    2007-01-01

    Trends in streamflow and concentration of total nitrogen, nitrite plus nitrate, ammonia, total phosphorus, orthophosphorus, and suspended sediment were determined for the period from 1993 to 2003 at selected stream sites in the Missouri River Basin. Flow-adjusted trends in concentration (the trends that would have occurred in the absence of natural changes in streamflow) and non-flow-adjusted trends in concentration (the overall trends resulting from natural and human factors) were determined. In the analysis of flow-adjusted trends, the removal of streamflow as a variable affecting concentration allowed trends caused by other factors such as implementation of best management practices to be identified. In the analysis of non-flow-adjusted trends, the inclusion of any and all factors affecting concentration allowed trends affecting aquatic ecosystems and the status of streams relative to water-quality standards to be identified. Relations between the flow-adjusted and non-flow-adjusted trends and changes in streamflow, nutrient sources, ground-water inputs, and implementation of management practices also were examined to determine the major factors affecting the trends. From 1993 to 2003, widespread downward trends in streamflow indicated that drought conditions from about 2000 to 2003 led to decreasing streamflow throughout much of the Missouri River Basin. Flow-adjusted trends in nitrite plus nitrate and ammonia concentrations were split nearly equally between nonsignificant and downward; at about one-half of the sites, management practices likely were contributing to measurable decreases in concentrations of nitrite plus nitrate and ammonia. Management practices had less of an effect on concentrations of total nitrogen; downward flow-adjusted trends in total nitrogen concentrations occurred at only 2 of 19 sites. The pattern of non-flow-adjusted trends in nitrite plus nitrate concentrations was similar to the pattern of flow-adjusted trends; non-flow-adjusted trends were split nearly equally between nonsignificant and downward. A substantial source of nitrite plus nitrate to these streams likely was ground water; because of the time required for ground water to travel to streams, there may have been a lag time between the implementation of some pollution-control strategies and improvement in stream quality, contributing to the nonsignificant trends in nitrite plus nitrate. There were more sites with downward non-flow-adjusted trends than flow-adjusted trends in both ammonia and total nitrogen concentrations, possibly a result of decreased surface runoff from nonpoint sources associated with the downward trends in streamflow. No strong relations between any of the nitrogen trends and changes in nutrient sources or landscape characteristics were identified. Although there were very few upward trends in nitrogen from 1993 to 2003, there were upward flow-adjusted trends in total phosphorus concentrations at nearly one-half of the sites. At these sites, not only were pollution-control strategies not contributing to measurable decreases in total phosphorus concentrations, there was likely an increase in phosphorus loading on the land surface. There were fewer upward non-flow-adjusted than flow-adjusted trends in total phosphorus concentrations; at the majority of sites, overall total phosphorus concentrations did not change significantly during this period. The preponderance of upward flow-adjusted trends and nonsignificant non-flow-adjusted trends indicates that in some areas of the Missouri River Basin, overall concentrations of total phosphorus would have been higher without the decrease in streamflow and the associated decrease in surface runoff during the study period. During the study period, phosphorus loads from fertilizer generally increased at over one-half of the sites in the basin. Upward flow-adjusted trends were related to increasing fertilizer use in the upstream drainage area, particularly in the 10 percent

  10. A Fast and Easily-Realized Concentration Sensor for Binary Gas Mixtures and Its Design Analysis.

    PubMed

    Guan, Yu; Lu, Song; Zhang, Dan; Hu, Yang; Yuan, Wei

    2018-04-19

    A low-cost and easily-realized sensing device used for the detection of gas mixtures at different concentrations is presented. Its sensing part includes a small critical nozzle, a laminar structure, and a differential pressure sensor. When gas flows through the laminar structure, there is a pressure drop between both ends of it, and for different components of gas, the pressure drop is different. Based on this feature, the concentration detection is achieved. Concentration tests for two types of fire extinguishing agents CBrF₃ and C₃HF₇ are presented. The results show the characteristics of fast response/recovery time, high accuracy, and good repeatability. Based on the theoretical analysis, the effects of the design parameters on the sensing performance to concentration detection are discussed in detail.

  11. Focusing particle concentrator with application to ultrafine particles

    DOEpatents

    Hering, Susanne; Lewis, Gregory; Spielman, Steven R.

    2013-06-11

    Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.

  12. Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment.

    PubMed

    Gottschalk, Fadri; Lassen, Carsten; Kjoelholt, Jesper; Christensen, Frans; Nowack, Bernd

    2015-05-22

    Predictions of environmental concentrations of engineered nanomaterials (ENM) are needed for their environmental risk assessment. Because analytical data on ENM-concentrations in the environment are not yet available, exposure modeling represents the only source of information on ENM exposure in the environment. This work provides material flow data and environmental concentrations of nine ENM in Denmark. It represents the first study that distinguishes between photostable TiO₂ (as used in sunscreens) and photocatalytic TiO₂ (as used in self-cleaning surfaces). It also provides first exposure estimates for quantum dots, carbon black and CuCO₃. Other ENM that are covered are ZnO, Ag, CNT and CeO₂. The modeling is based for all ENM on probability distributions of production, use, environmental release and transfer between compartments, always considering the complete life-cycle of products containing the ENM. The magnitude of flows and concentrations of the various ENM depends on the one hand on the production volume but also on the type of products they are used in and the life-cycles of these products and their potential for release. The results reveal that in aquatic systems the highest concentrations are expected for carbon black and photostable TiO₂, followed by CuCO₃ (under the assumption that the use as wood preservative becomes important). In sludge-treated soil highest concentrations are expected for CeO₂ and TiO₂. Transformation during water treatments results in extremely low concentrations of ZnO and Ag in the environment. The results of this study provide valuable environmental exposure information for future risk assessments of these ENM.

  13. Monitoring urban impacts on suspended sediment, trace element, and nutrient fluxes within the City of Atlanta, Georgia, USA: Program design, methodological considerations, and initial results

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2008-01-01

    Atlanta, Georgia (City of Atlanta, COA), is one of the most rapidly growing urban areas in the US. Beginning in 2003, the US Geological Survey established a long-term water-quantity/quality monitoring network for the COA. The results obtained during the first 2 years have provided insights into the requirements needed to determine the extent of urban impacts on water quality, especially in terms of estimating the annual fluxes of suspended sediment, trace/major elements, and nutrients. During 2004/2005, suspended sediment fluxes from the City of Atlanta (COA) amounted to about 150 000 t year-1; ??? 94% of the transport occurred in conjunction with storm-flow, which also accounted for ??? 65% of the annual discharge. Typically, storm-flow averaged ??? 20% of theyear. Normally, annual suspended sediment fluxes are determined by summing daily loads based on a single calculation step using mean-daily discharge and a single rating curve-derived suspended sediment concentration. Due to the small and 'flashy' nature of the COAs streams, this approach could produce underestimates ranging from 25% to 64%. Accurate estimates (?? 15%) require calculation time-steps as short as every 2-3 h. Based on annual median base-flow/storm-flow chemical concentrations, the annual fluxes of ??? 75% of trace elements (e.g. Cu, Pb, Zn), major elements (e.g. Fe, Al), and total P occur in association with suspended sediment; in turn, ??? 90% of the transport of these constituents occur in conjunction with storm-flow. As such, base-flow sediment-associated and dissolved contributions represent relatively insignificant portions of the total annual load. An exception is total N, whose sediment-associated fluxes range from 50% to 60%; even so, storm-related transport typically exceeds 80%. Hence, in urban environments, non-point-source appear to be the dominant contributors to the fluxes of these constituents.

  14. Concentration Dependence of VO2+ Crossover of Nafion for Vanadium Redox Flow Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, Jamie; Jones, Amanda; Zawodzinski, Thomas A

    2013-01-01

    The VO2+ crossover, or permeability, through Nafion in a vanadium redox flow battery (VRFB) was monitored as a function of sulfuric acid concentration and VO2+ concentration. A vanadium rich solution was flowed on one side of the membrane through a flow field while symmetrically on the other side a blank or vanadium deficit solution was flowed. The blank solution was flowed through an electron paramagnetic resonance (EPR) cavity and the VO2+ concentration was determined from the intensity of the EPR signal. Concentration values were fit using a solution of Fick s law that allows for the effect of concentration changemore » on the vanadium rich side. The fits resulted in permeability values of VO2+ ions across the membrane. Viscosity measurements of many VO2+ and H2SO4 solutions were made at 30 60 C. These viscosity values were then used to determine the effect of the viscosity of the flowing solution on the permeability of the ion. 2013 The Electrochemical Society. [DOI: 10.1149/2.004306jes] All rights reserved.« less

  15. Mercury flow through an Asian rice-based food web.

    PubMed

    Abeysinghe, Kasun S; Qiu, Guangle; Goodale, Eben; Anderson, Christopher W N; Bishop, Kevin; Evers, David C; Goodale, Morgan W; Hintelmann, Holger; Liu, Shengjie; Mammides, Christos; Quan, Rui-Chang; Wang, Jin; Wu, Pianpian; Xu, Xiao-Hang; Yang, Xiao-Dong; Feng, Xinbin

    2017-10-01

    Mercury (Hg) is a globally-distributed pollutant, toxic to humans and animals. Emissions are particularly high in Asia, and the source of exposure for humans there may also be different from other regions, including rice as well as fish consumption, particularly in contaminated areas. Yet the threats Asian wildlife face in rice-based ecosystems are as yet unclear. We sought to understand how Hg flows through rice-based food webs in historic mining and non-mining regions of Guizhou, China. We measured total Hg (THg) and methylmercury (MeHg) in soil, rice, 38 animal species (27 for MeHg) spanning multiple trophic levels, and examined the relationship between stable isotopes and Hg concentrations. Our results confirm biomagnification of THg/MeHg, with a high trophic magnification slope. Invertivorous songbirds had concentrations of THg in their feathers that were 15x and 3x the concentration reported to significantly impair reproduction, at mining and non-mining sites, respectively. High concentrations in specialist rice consumers and in granivorous birds, the later as high as in piscivorous birds, suggest rice is a primary source of exposure. Spiders had the highest THg concentrations among invertebrates and may represent a vector through which Hg is passed to vertebrates, especially songbirds. Our findings suggest there could be significant population level health effects and consequent biodiversity loss in sensitive ecosystems, like agricultural wetlands, across Asia, and invertivorous songbirds would be good subjects for further studies investigating this possibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Modeling Of In-Vehicle Human Exposure to Ambient Fine Particulate Matter

    PubMed Central

    Liu, Xiaozhen; Frey, H. Christopher

    2012-01-01

    A method for estimating in-vehicle PM2.5 exposure as part of a scenario-based population simulation model is developed and assessed. In existing models, such as the Stochastic Exposure and Dose Simulation model for Particulate Matter (SHEDS-PM), in-vehicle exposure is estimated using linear regression based on area-wide ambient PM2.5 concentration. An alternative modeling approach is explored based on estimation of near-road PM2.5 concentration and an in-vehicle mass balance. Near-road PM2.5 concentration is estimated using a dispersion model and fixed site monitor (FSM) data. In-vehicle concentration is estimated based on air exchange rate and filter efficiency. In-vehicle concentration varies with road type, traffic flow, windspeed, stability class, and ventilation. Average in-vehicle exposure is estimated to contribute 10 to 20 percent of average daily exposure. The contribution of in-vehicle exposure to total daily exposure can be higher for some individuals. Recommendations are made for updating exposure models and implementation of the alternative approach. PMID:23101000

  17. Instability patterns in a miscible core annular flow

    NASA Astrophysics Data System (ADS)

    D'Olce, Marguerite; Martin, Jerome; Rakotomalala, Nicole; Salin, Dominique; Talon, Laurent

    2006-11-01

    Laboratoire FAST, batiment 502, campus universitaire, 91405 Orsay Cedex (France). Experiments are performed with two miscible fluids of equal density but different viscosities. The fluids are injected co-currently and concentrically into a cylindrical pipe. The so-obtained base state is an axisymmetric parallel flow, for which the ratio of the flow rates of the two fluids monitors the relative amount (and so the radius) of the fluids. Depending on this relative amount and on the total flow rate of the fluids, unstable axisymmetric patterns such as mushrooms and pearls are observed. We delineate the diagram of occurrence of the two patterns and characterize the instabilities.

  18. The Event Based Language and Its Multiple Processor Implementations.

    DTIC Science & Technology

    1980-01-01

    10 6.1 "Recursive" Linear Fibonacci ................................................ 105 6.2 The Readers Writers Problem...kinds. Examples of such systems are: C.mmp [Wu-72], Pluribus [He-73], Data Flow [ De -75], the boolean n-cube parallel machine [Su-77], and the MuNet [Wa...concurrency within programs; therefore, we hate concentrated on two types of systems which seem suitable: a processor network, and a data flow processor [ De -77

  19. Characterization of anthropogenic and natural sources of acid rock drainage at the Cinnamon Gulch abandoned mine land inventory site, Summit County, Colorado

    USGS Publications Warehouse

    Bird, D.A.

    2003-01-01

    Colorado's Cinnamon Gulch releases acid rock drainage (ARD) from anthropogenic and natural sources. In 2001, the total discharge from Cinnamon Gulch was measured at 1.02 cfs (29 L/s) at base flow and 4.3 cfs (122 L/s) at high flow (spring runoff). At base flow, natural sources account for 98% of the discharge from the watershed, and about 96% of the chemical loading. At high flow, natural sources contribute 96% of discharge and 92 to 95% of chemical loading. The pH is acidic throughout the Cinnamon Gulch watershed, ranging from 2.9 to 5.4. At baseflow, nearly all of the trace metals analyzed in the 18 samples exceeded state hardness-dependent water quality standards for aquatic life. Maximum dissolved concentrations of selected constituents included 16 mg/ L aluminum, 15 mg/L manganese, 40 mg/L iron, 2 mg/L copper, 560 ??g/L lead, 8.4 mg/L zinc, and 300 mg/L sulfate. Average dissolved concentrations of selected metals at baseflow were 5.5 mg/L aluminum, 5.5 mg/L manganese, 14 ??g/L cadmium, 260 ??g/L copper, 82 ??g/L lead, and 2.8 mg/L zinc.

  20. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA.

    PubMed

    Takalkar, Sunitha; Baryeh, Kwaku; Liu, Guodong

    2017-12-15

    We report a fluorescent carbon nanoparticle (FCN)-based lateral flow biosensor for ultrasensitive detection of DNA. Fluorescent carbon nanoparticle with a diameter of around 15nm was used as a tag to label a detection DNA probe, which was complementary with the part of target DNA. A capture DNA probe was immobilized on the test zone of the lateral flow biosensor. Sandwich-type hybridization reactions among the FCN-labeled DNA probe, target DNA and capture DNA probe were performed on the lateral flow biosensor. In the presence of target DNA, FCNs were captured on the test zone of the biosensor and the fluorescent intensity of the captured FCNs was measured with a portable fluorescent reader. After systematic optimizations of experimental parameters (the components of running buffers, the concentration of detection DNA probe used in the preparation of FCN-DNA conjugates, the amount of FCN-DNA dispensed on the conjugate pad and the dispensing cycles of the capture DNA probes on the test-zone), the biosensor could detect a minimum concentration of 0.4 fM DNA. This study provides a rapid and low-cost approach for DNA detection with high sensitivity, showing great promise for clinical application and biomedical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Oxidized Nitrogen in Precipitation, Throughfall, and Streamfall from a Forested Watershed in Oklahoma

    USGS Publications Warehouse

    Lawrence, Stephen J.; Wigington, Parker J.

    1987-01-01

    Oxidized nitrogen (nitrite plus nitrate N) concentrations were measured from bulk precipitation, bulk throughfall, and screamflow in a 7. 86 hectare forested watershed in southeastern Oklahoma during the wet season from March through June 1983. Oxidized nitrogen inputs comparable to results of other studies were recorded during the 19 rainstorms sampled. Oxidized nitrogen concentrations appeared to increase after rainfall interacted with the pine and hardwood canopies and were inversely related to both rainfall and throughfall depth. Oxidized N concentrations in streamflow were greatest during the rising limb of storm flow with subsequent decreases during the falling limb of storm hydrographs and lowest during base flow. The oxidized N inputs from bulk precipitation were considerably greater than outputs from streamflow resulting in a net retention of oxidized nitrogen within the watershed during the study period.

  2. Distributional patterns of arsenic concentrations in contaminant plumes offer clues to the source of arsenic in groundwater at landfills

    USGS Publications Warehouse

    Harte, Philip T.

    2015-01-01

    The distributional pattern of dissolved arsenic concentrations from landfill plumes can provide clues to the source of arsenic contamination. Under simple idealized conditions, arsenic concentrations along flow paths in aquifers proximal to a landfill will decrease under anthropogenic sources but potentially increase under in situ sources. This paper presents several conceptual distributional patterns of arsenic in groundwater based on the arsenic source under idealized conditions. An example of advanced subsurface mapping of dissolved arsenic with geophysical surveys, chemical monitoring, and redox fingerprinting is presented for a landfill site in New Hampshire with a complex flow pattern. Tools to assist in the mapping of arsenic in groundwater ultimately provide information on the source of contamination. Once an understanding of the arsenic contamination is achieved, appropriate remedial strategies can then be formulated.

  3. Determination of Organic and Inorganic Percentages and Mass of Suspended Material at Four Sites in the Illinois River in Northwestern Arkansas and Northeastern Oklahoma, 2005-07

    USGS Publications Warehouse

    Galloway, Joel M.

    2008-01-01

    The Illinois River located in northwestern Arkansas and northeastern Oklahoma is influenced by point and nonpoint sources of nutrient enrichment. This has led to increased algal growth within the stream, reducing water clarity. Also, sediment runoff from fields, pastures, construction sites, and other disturbed areas, in addition to frequent streambank failure, has increased sedimentation within the stream and decreased water clarity. A study was conducted by the U.S. Geological Survey in cooperation with the Arkansas Department of Environmental Quality and the U.S. Environmental Protection Agency to characterize the increased turbidity by determining the organic and inorganic composition and mass of suspended material in the Illinois River from August 2005 through July 2007. Water-quality samples were collected at four sites on the Illinois River (listed in downstream order): near Viney Grove, Arkansas; at Savoy, Arkansas; south of Siloam Springs, Arkansas; and near Tahlequah, Oklahoma. In general, turbidity, total suspended solids, suspended-sediment concentration, organic material concentration (measured as volatile suspended solids and ash-free dry mass), and chlorophyll a concentration were the greatest in samples collected from the Illinois River at Savoy and the least in samples from the most upstream Illinois River site (near Viney Grove) and the most downstream site (near Tahlequah) from August 2005 through July 2007. For example, the suspended-sediment concentration at the Illinois River at Savoy had a median of 15 milligrams per liter, and the total suspended solids had a median of 12 milligrams per liter. The Illinois River near Tahlequah had the least suspended-sediment concentration with a median of 10 milligrams per liter and the least total suspended solids with a median of 6 milligrams per liter. The turbidity, total suspended solids, suspended-sediment concentration, organic material concentration, and chlorophyll a concentration in samples collected during high-flow events were greater than in samples collected during base-flow conditions at the Illinois River at Savoy, south of Siloam Springs, and near Tahlequah. For example, the median turbidity for the Illinois River at Savoy was 3 nephelometric turbidity ratio units during base-flow conditions and 52 nephelometric turbidity ratio units during high-flow conditions. Organic material in the Illinois River generally composed between 13 and 47 percent of the total suspended material in samples collected from August 2005 through July 2007. Therefore, most of the suspended material in samples collected from the sites was inorganic material. Overall, the highest percentage of organic material was found at the Illinois River near Viney Grove and at the Illinois River near Tahlequah. The Illinois River south of Siloam Springs had the lowest percentage of organic material among the four sites. In general, the percentage of organic material was greater in samples collected during base-flow conditions compared to samples collected during high-flow conditions. The mean seasonal concentrations and percentages of organic material were the least in the fall (September through November) in samples collected from August 2005 to July 2007 from the four Illinois River sites, while the greatest concentrations and percentages of organic material occurred at various times of the year depending on the site. The greatest concentrations of organic material occurred in the summer (June through August) in samples from sites on the Illinois River near Viney Grove, at Savoy and south of Siloam Springs, but in the spring (March through May) in samples from the Illinois River near Tahlequah. The greatest percentages of organic material (least percentages of inorganic material) occurred in the summer in samples from the site near Viney Grove, the winter and summer at the site at Savoy, in the spring, fall, and winter (December through February) at the site south of Siloam Springs, an

  4. Flow behaviour and structure of heterogeneous particles-water mixture in horizontal and inclined pipes

    NASA Astrophysics Data System (ADS)

    Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří

    2018-06-01

    The effect of slurry velocity and mean concentration of heterogeneous particle-water mixture on flow behaviour and structure in the turbulent regime was studied in horizontal and inclined pipe sections of inner diameter D = 100 mm. The stratified flow pattern of heterogeneous particle-water mixture in the inclined pipe sections was revealed. The particles moved mostly near to the pipe invert. Concentration distribution in ascending and descending vertical pipe sections confirmed the effect of fall velocity on particle-carrier liquid slip velocity and increase of in situ concentration in the ascending pipe section. Slip velocity in two-phase flow, which is defined as the velocity difference between the solid and liquid phase, is one of mechanism of particle movement in two-phase flow. Due to the slip velocity, there is difference between transport and in situ concentrations, and the slip velocity can be determined from comparison of the in situ and transport concentration. For heterogeneous particle-water mixture flow the slip velocity depends on the flow structure.

  5. Vitamin A determination in milk samples based on the luminol-periodate chemiluminescence system.

    PubMed

    Rishi, Lubna; Yaqoob, Mohammad; Waseem, Amir; Nabi, Abdul

    2014-01-01

    A simple and rapid flow injection (FI) method for the determination of retinyl acetate is reported based on its enhancing effect on the luminol-periodate chemiluminescence (CL) system in an alkaline medium. The detection limit (3s×blank) was 8.0×10⁻⁸ mol L⁻¹, with an injection throughput of 90 h⁻¹. The method allows linear increase of CL intensity over the retinyl acetate concentration range of 1.0-100×10⁻⁷ mol L⁻¹ (R²=0.9996) with relative standard deviations of 2.4% (n=10) for 5.0×10⁻⁷ mol L⁻¹. The key chemical and physical variables (reagent concentrations, flow rates, sample volume, and photomultiplier tube (PMT) voltage) were optimized and potential interferences were investigated. The method was successfully applied to human milk, fresh cow's milk and infant milk-based formulas and the results were in good agreement with the previously reported HPLC method. A brief discussion on the possible CL reaction mechanism is also presented.

  6. [The influence of corvitin on secretory processes and blood flow in the rat gastric mucosa].

    PubMed

    Vovkun, T V; Ianchuk, P I; Shtanova, L Ia; Vesel'skyĭ, S P; Baranovs'kyĭ, V A

    2013-01-01

    We studied parameters of gastric secretion in pylorus-ligated rat and blood flow in the rat gastric mucosa under the influence of drug corvitin used intragastrically in doses of 2.5 and 5 mg/kg. Biochemical analysis of gastric juice was based on the determination of pH, total hydrochloric acid production and total protein, hexosamine and cysteine concentration. Gastric juice analysis in control rats found the presence of hexosamines-- a gastric mucus indicators and cysteine--free amino acid whith properties of a strong antioxidant. Concentration of these compounds in the gastric juice increased as a consequence of corvitin action. However, corvitin did not affect at these parameters of gastric secretion as the volume of gastric juice, pH, hydrochloric acid output rate, protein concentration. Additionally it was shown that corvitin in dose-dependent manner increased blood flow in the gastric mucosa. This results give reason to believe that corvitin can be considered as a tool that amplifies gastric mucosal defense mechanisms without affecting the secretion of gastric hydrochloric acid and total protein.

  7. Tubing length for long-term oxygen therapy.

    PubMed

    Aguiar, Carolina; Davidson, Josy; Carvalho, Andréa K; Iamonti, Vinícius C; Cortopassi, Felipe; Nascimento, Oliver A; Jardim, José R

    2015-02-01

    Most patients on long-term oxygen therapy use stationary oxygen delivery systems. It is not uncommon for guidelines to instruct patients to use tubing lengths no longer than 19.68 ft (6 m) when using an oxygen concentrator and 49.21 ft (15 m) when using cylinders. However, these concepts are not based on sufficient evidence. Thus, our objective was to evaluate whether a 98.42-ft (30-m) tubing length affects oxygen flow and FIO2 delivery from 1 cylinder and 2 oxygen concentrators. The 3 oxygen delivery systems were randomly selected, and 1, 3, and 5 L/min flows and FIO2 were measured 5 times at each flow at the proximal and distal outlets of the tubing by a gas-flow analyzer. Paired Student t test was used to analyze the difference between flows and FIO2 at proximal and distal outlets of tubing length. A total of 45 flows were measured between proximal and distal outlets of the 98.42-ft (30-m) tubing. Flows were similar for 1 and 3 L/min, but distal flow was higher than proximal flow at 5 L/min (5.57×5.14 L/min, P<.001). FIO2 was lower at distal than proximal outlet tubing at flows 1, 3, and 5 L/min, but the mean difference between measurements was less than 1%. Tubing length of 98.42 ft (30 m) may be used by patients for home delivery oxygen with flows up to 5 L/min, as there were no important changes in flows or FIO2. Copyright © 2015 by Daedalus Enterprises.

  8. Validation of two dilution models to predict chloramine-T concentrations in aquaculture facility effluent

    USGS Publications Warehouse

    Gaikowski, M.P.; Larson, W.J.; Steuer, J.J.; Gingerich, W.H.

    2004-01-01

    Accurate estimates of drug concentrations in hatchery effluent are critical to assess the environmental risk of hatchery drug discharge resulting from disease treatment. This study validated two dilution simple n models to estimate chloramine-T environmental introduction concentrations by comparing measured and predicted chloramine-T concentrations using the US Geological Survey's Upper Midwest Environmental Sciences Center aquaculture facility effluent as an example. The hydraulic characteristics of our treated raceway and effluent and the accuracy of our water flow rate measurements were confirmed with the marker dye rhodamine WT. We also used the rhodamine WT data to develop dilution models that would (1) estimate the chloramine-T concentration at a given time and location in the effluent system and (2) estimate the average chloramine-T concentration at a given location over the entire discharge period. To test our models, we predicted the chloramine-T concentration at two sample points based on effluent flow and the maintenance of chloramine-T at 20 mg/l for 60 min in the same raceway used with rhodamine WT. The effluent sample points selected (sample points A and B) represented 47 and 100% of the total effluent flow, respectively. Sample point B is-analogous to the discharge of a hatchery that does not have a detention lagoon, i.e. The sample site was downstream of the last dilution water addition following treatment. We then applied four chloramine-T flow-through treatments at 20mg/l for 60 min and measured the chloramine-T concentration in water samples collected every 15 min for about 180 min from the treated raceway and sample points A and B during and after application. The predicted chloramine-T concentration at each sampling interval was similar to the measured chloramine-T concentration at sample points A and B and was generally bounded by the measured 90% confidence intervals. The predicted aver,age chloramine-T concentrations at sample points A or B (2.8 and 1.3 mg/l, respectively) were not significantly different (P > 0.05) from the average measured chloramine-T concentrations (2.7 and 1.3 mg/l, respectively). The close agreement between our predicted and measured chloramine-T concentrations indicate either of the dilution models could be used to adequately predict the chloramine-T environmental introduction concentration in Upper Midwest Environmental Sciences Center effluent. (C) 2003 Elsevier B.V. All rights reserved.

  9. Continuous real-time water-quality monitoring and regression analysis to compute constituent concentrations and loads in the North Fork Ninnescah River upstream from Cheney Reservoir, south-central Kansas, 1999–2012

    USGS Publications Warehouse

    Stone, Mandy L.; Graham, Jennifer L.; Gatotho, Jackline W.

    2013-01-01

    Cheney Reservoir, located in south-central Kansas, is the primary water supply for the city of Wichita. The U.S. Geological Survey has operated a continuous real-time water-quality monitoring station since 1998 on the North Fork Ninnescah River, the main source of inflow to Cheney Reservoir. Continuously measured water-quality physical properties include streamflow, specific conductance, pH, water temperature, dissolved oxygen, and turbidity. Discrete water-quality samples were collected during 1999 through 2009 and analyzed for sediment, nutrients, bacteria, and other water-quality constituents. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to compute concentrations of those constituents of interest that are not easily measured in real time because of limitations in sensor technology and fiscal constraints. Regression models were published in 2006 that were based on data collected during 1997 through 2003. This report updates those models using discrete and continuous data collected during January 1999 through December 2009. Models also were developed for four new constituents, including additional nutrient species and indicator bacteria. In addition, a conversion factor of 0.68 was established to convert the Yellow Springs Instruments (YSI) model 6026 turbidity sensor measurements to the newer YSI model 6136 sensor at the North Ninnescah River upstream from Cheney Reservoir site. Newly developed models and 14 years of hourly continuously measured data were used to calculate selected constituent concentrations and loads during January 1999 through December 2012. The water-quality information in this report is important to the city of Wichita because it allows the concentrations of many potential pollutants of interest to Cheney Reservoir, including nutrients and sediment, to be estimated in real time and characterized over conditions and time scales that would not be possible otherwise. In general, model forms and the amount of variance explained by the models was similar between the original and updated models. The amount of variance explained by the updated models changed by 10 percent or less relative to the original models. Total nitrogen, nitrate, organic nitrogen, E. coli bacteria, and total organic carbon models were newly developed for this report. Additional data collection over a wider range of hydrological conditions facilitated the development of these models. The nitrate model is particularly important because it allows for comparison to Cheney Reservoir Task Force goals. Mean hourly computed total suspended solids concentration during 1999 through 2012 was 54 milligrams per liter (mg/L). The total suspended solids load during 1999 through 2012 was 174,031 tons. On an average annual basis, the Cheney Reservoir Task Force runoff (550 mg/L) and long-term (100 mg/L) total suspended solids goals were never exceeded, but the base flow goal was exceeded every year during 1999 through 2012. Mean hourly computed nitrate concentration was 1.08 mg/L during 1999 through 2012. The total nitrate load during 1999 through 2012 was 1,361 tons. On an annual average basis, the Cheney Reservoir Task Force runoff (6.60 mg/L) nitrate goal was never exceeded, the long-term goal (1.20 mg/L) was exceeded only in 2012, and the base flow goal of 0.25 mg/L was exceeded every year. Mean nitrate concentrations that were higher during base flow, rather than during runoff conditions, suggest that groundwater sources are the main contributors of nitrate to the North Fork Ninnescah River above Cheney Reservoir. Mean hourly computed phosphorus concentration was 0.14 mg/L during 1999 through 2012. The total phosphorus load during 1999 through 2012 was 328 tons. On an average annual basis, the Cheney Reservoir Task Force runoff goal of 0.40 mg/L for total phosphorus was exceeded in 2002, the year with the largest yearly mean turbidity, and the long-term goal (0.10 mg/L) was exceeded in every year except 2011 and 2012, the years with the smallest mean streamflows. The total phosphorus base flow goal of 0.05 mg/L was exceeded every year. Given that base flow goals for total suspended solids, nitrate, and total phosphorus were exceeded every year despite hydrologic conditions, the established base flow goals are either unattainable or substantially more best management practices will need to be implemented to attain them. On an annual average basis, no discernible patterns were evident in total suspended sediment, nitrate, and total phosphorus concentrations or loads over time, in large part because of hydrologic variability. However, more rigorous statistical analyses are required to evaluate temporal trends. A more rigorous analysis of temporal trends will allow evaluation of watershed investments in best management practices.

  10. Mechanisms of recharge in a fractured porous rock aquifer in a semi-arid region

    NASA Astrophysics Data System (ADS)

    Manna, Ferdinando; Walton, Kenneth M.; Cherry, John A.; Parker, Beth L.

    2017-12-01

    Eleven porewater profiles in rock core from an upland exposed sandstone vadose zone in southern California, with thickness varying between 10 and 62 m, were analyzed for chloride (Cl) concentration to examine recharge mechanisms, estimate travel times in the vadose zone, assess spatial and temporal variability of recharge, and determine effects of land use changes on recharge. As a function of their location and the local terrain, the profiles were classified into four groups reflecting the range of site characteristics. Century- to millennium-average recharge varied from 4 to 23 mm y-1, corresponding to <1-5% of the average annual precipitation (451 mm over the 1878-2016 period). Based on the different average Cl concentrations in the vadose zone and in groundwater, the contribution of diffuse flow (estimated at 80%) and preferential flow (20%) to the total recharge was quantified. This model of dual porosity recharge was tested by simulating transient Cl transport along a physically based narrow column using a discrete fracture-matrix numerical model. Using a new approach based on partitioning both water and Cl between matrix and fracture flow, porewater was dated and vertical displacement rates estimated to range in the sandstone matrix from 3 to 19 cm y-1. Moreover, the temporal variability of recharge was estimated and, along each profile, past recharge rates calculated based on the sequence of Cl concentrations in the vadose zone. Recharge rates increased at specific times coincident with historical changes in land use. The consistency between the timing of land use modifications and changes in Cl concentration and the match between observed and simulated Cl concentration values in the vadose zone provide confidence in porewater age estimates, travel times, recharge estimates, and reconstruction of recharge histories. This study represents an advancement of the application of the chloride mass balance method to simultaneously determine recharge mechanisms and reconstruct location-specific recharge histories in fractured porous rock aquifers. The proposed approach can be applied worldwide at sites with similar climatic and geologic characteristics.

  11. Coulometric determination of NAD+ and NADH in normal and cancer cells using LDH, RVC and a polymer mediator.

    PubMed

    Torabi, F; Ramanathan, K; Larsson, P O; Gorton, L; Svanberg, K; Okamoto, Y; Danielsson, B; Khayyami, M

    1999-11-15

    An electrochemical method for the measurement of NAD(+) and NADH in normal and cancer tissues using flow injection analysis (FIA) is reported. Reticulated vitreous carbon (RVC) electrodes with entrapped l-lactate dehydrogenase (LDH) and a new redox polymer containing covalently bound toluidine blue O (TBO) were employed for this purpose. Both NAD(+) and NADH were estimated coulometrically based on their reaction with LDH. The latter was immobilized on controlled pore glass (CPG) by cross-linking with glutaraldehyde and packed within the RVC. The concentrations of NAD(+) and NADH in the tissues, estimated using different electron mediators such as ferricyanide (FCN), meldola blue (MB) and TBO have also been compared. The effects of flow rate, pH, applied potential (versus Ag/AgCl reference) and adsorption of the mediators have also been investigated. Based on the measurements of NAD(+) and NADH in normal and cancer tissues it has been concluded that the NADH concentration is lower, while the NAD(+) concentration is higher in cancer tissues. Amongst the electron mediators TBO was found to be a more stable mediator for such measurements.

  12. Measurements of multi-scalar mixing in a turbulent coaxial jet

    NASA Astrophysics Data System (ADS)

    Hewes, Alais; Mydlarski, Laurent

    2017-11-01

    There are relatively few studies of turbulent multi-scalar mixing, despite the occurrence of this phenomenon in common processes (e.g. chemically reacting flows, oceanic mixing). In the present work, we simultaneously measure the evolution of two passive scalars (temperature and helium concentration) and velocity in a coaxial jet. Such a flow is particularly relevant, as coaxial jets are regularly employed in applications of turbulent non-premixed combustion, which relies on multi-scalar mixing. The coaxial jet used in the current experiment is based on the work of Cai et al. (J. Fluid Mech., 2011), and consists of a vertically oriented central jet of helium and air, surrounded by an annular flow of (unheated) pure air, emanating into a slow co-flow of (pure) heated air. The simultaneous two-scalar and velocity measurements are made using a 3-wire hot-wire anemometry probe. The first two wires of this probe form an interference (or Way-Libby) probe, and measure velocity and concentration. The third wire, a hot-wire operating at a low overheat ratio, measures temperature. The 3-wire probe is used to obtain concurrent velocity, concentration, and temperature statistics to characterize the mixing process by way of single and multivariable/joint statistics. Supported by the Natural Sciences and Engineering Research Council of Canada (Grant 217184).

  13. Exact Analytical Solution of the Peristaltic Nanofluids Flow in an Asymmetric Channel with Flexible Walls and Slip Condition: Application to the Cancer Treatment

    PubMed Central

    Ebaid, Abdelhalim; Aly, Emad H.

    2013-01-01

    In the cancer treatment, magnetic nanoparticles are injected into the blood vessel nearest to the cancer's tissues. The dynamic of these nanoparticles occurs under the action of the peristaltic waves generated on the flexible walls of the blood vessel. Studying such nanofluid flow under this action is therefore useful in treating tissues of the cancer. In this paper, the mathematical model describing the slip peristaltic flow of nanofluid was analytically investigated. Exact expressions were deduced for the temperature distribution and nano-particle concentration. In addition, the effects of the slip, thermophoresis, and Brownian motion parameters on the temperature and nano-particle concentration profiles were discussed and further compared with other approximate results in the literatures. In particular, these results have been obtained at the same values of the physical examined parameters that was considered in Akbar et al., “Peristaltic flow of a nanofluid with slip effects,” 2012. The results reveal that remarkable differences are detected between the exact current results and those approximately obtained in the literatures for behaviour of the temperature profile and nano-particles concentration. Accordingly, the current analysis and results are considered as optimal and therefore may be taken as a base for any future comparisons. PMID:24151526

  14. Estimation of the quantification uncertainty from flow injection and liquid chromatography transient signals in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Laborda, Francisco; Medrano, Jesús; Castillo, Juan R.

    2004-06-01

    The quality of the quantitative results obtained from transient signals in high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) and flow injection-inductively coupled plasma mass spectrometry (FI-ICPMS) was investigated under multielement conditions. Quantification methods were based on multiple-point calibration by simple and weighted linear regression, and double-point calibration (measurement of the baseline and one standard). An uncertainty model, which includes the main sources of uncertainty from FI-ICPMS and HPLC-ICPMS (signal measurement, sample flow rate and injection volume), was developed to estimate peak area uncertainties and statistical weights used in weighted linear regression. The behaviour of the ICPMS instrument was characterized in order to be considered in the model, concluding that the instrument works as a concentration detector when it is used to monitorize transient signals from flow injection or chromatographic separations. Proper quantification by the three calibration methods was achieved when compared to reference materials, although the double-point calibration allowed to obtain results of the same quality as the multiple-point calibration, shortening the calibration time. Relative expanded uncertainties ranged from 10-20% for concentrations around the LOQ to 5% for concentrations higher than 100 times the LOQ.

  15. Theory to predict particle migration and margination in the pressure-driven channel flow of blood

    NASA Astrophysics Data System (ADS)

    Qi, Qin M.; Shaqfeh, Eric S. G.

    2017-09-01

    The inhomogeneous concentration distribution of erythrocytes and platelets in microchannel flows particularly in directions normal to the mean flow plays a significant role in hemostasis, drug delivery, and microfluidic applications. In this paper, we develop a coarse-grained theory to predict these distributions in pressure-driven channel flow at zero Reynolds number and compare them to experiments and simulations. We demonstrate that the balance between the deformability-induced lift force and the shear-induced diffusion created by hydrodynamic interactions in the suspension results in both a peak concentration of red blood cells at the channel center and a cell-free or Fahraeus-Lindqvist layer near the walls. On the other hand, the absence of a lift force and the strong red blood cell-platelet interactions result in an excess concentration of platelets in the cell-free layer. We demonstrate a strong role of hematocrit (i.e., erythrocyte volume fraction) in determining the cell-free layer thickness and the degree of platelet margination. We also demonstrate that the capillary number of the erythrocytes, based on the membrane shear modulus, plays a relatively insignificant role in the regimes that we have studied. Our theory serves as a good and simple alternative to large-scale computer simulations of the cross-stream transport processes in these mixtures.

  16. Global Visualization in Water using AnodizedAluminum PressureSensitive Paint and Dissolved Oxygen as Tracer

    NASA Astrophysics Data System (ADS)

    Ozaki, Tatsuya; Ishikawa, Hitoshi; Sakaue, Hirotaka

    2009-11-01

    We have developed anodized-aluminum pressuresensitive paint (AA-PSP) for flow visualization in water using dissolved oxygen as a tracer. Developed AA-PSP is characterized using water calibration setup by controlling a dissolved oxygen concentration. It is shown that the developed AA-PSP gives 4.0 percent change in luminescence per 1 mg/l of oxygen concentration. This AA-PSP is applied to visualize flows in a water tunnel. Oxygen concentrations of the water tunnel and the dissolved oxygen are 9.5 mg/l and 20 mg/l, respectively. We can capture horseshoe vortices over the base of 10 mm cylinder by using this technique at Reynolds number of 1000 and a water speed of 100 mm/s, respectively. Unlike conventional tracers such as ink, milk, and fluorescent dyes, this visualization technique gives flow information on the AA-PSP coated surface without integrating flows between the AA-PSP and an optical detector. Because of using dissolved oxygen as a tracer, it holds the material properties of testing water except for the amount of oxygen. The tracer does not interfere with optical measurements and it does not contaminate the testing water. A conventional visualization technique using milk as a tracer is also employed for comparison.

  17. Capturing the lost phosphorus.

    PubMed

    Rittmann, Bruce E; Mayer, Brooke; Westerhoff, Paul; Edwards, Mark

    2011-08-01

    Minable phosphorus (P) reserves are being depleted and will need to be replaced by recovering P that currently is lost from the agricultural system, causing water-quality problems. The largest two flows of lost P are in agricultural runoff and erosion (∼46% of mined P globally) and animal wastes (∼40%). These flows are quite distinct. Runoff has a very high volumetric flow rate, but a low P concentration; animal wastes have low flow rates, but a high P concentration together with a high concentration of organic material. Recovering the lost P in animal wastes is technically and economically more tractable, and it is the focus for this review of promising P-capture technologies. P capture requires that organic P be transformed into inorganic P (phosphate). For high-strength animal wastes, P release can be accomplished in tandem with anaerobic treatment that converts the energy value in the organic matter to CH(4), H(2), or electricity. Once present as phosphate, the P can be captured in a reusable form by four approaches. Most well developed is precipitation as magnesium or calcium solids. Less developed, but promising are adsorption to iron-based adsorbents, ion exchange to phosphate-selective solids, and uptake by photosynthetic microorganisms or P-selective proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Uncertainties in stormwater runoff data collection from a small urban catchment, Southeast China.

    PubMed

    Huang, Jinliang; Tu, Zhenshun; Du, Pengfei; Lin, Jie; Li, Qingsheng

    2010-01-01

    Monitoring data are often used to identify stormwater runoff characteristics and in stormwater runoff modelling without consideration of their inherent uncertainties. Integrated with discrete sample analysis and error propagation analysis, this study attempted to quantify the uncertainties of discrete chemical oxygen demand (COD), total suspended solids (TSS) concentration, stormwater flowrate, stormwater event volumes, COD event mean concentration (EMC), and COD event loads in terms of flow measurement, sample collection, storage and laboratory analysis. The results showed that the uncertainties due to sample collection, storage and laboratory analysis of COD from stormwater runoff are 13.99%, 19.48% and 12.28%. Meanwhile, flow measurement uncertainty was 12.82%, and the sample collection uncertainty of TSS from stormwater runoff was 31.63%. Based on the law of propagation of uncertainties, the uncertainties regarding event flow volume, COD EMC and COD event loads were quantified as 7.03%, 10.26% and 18.47%.

  19. Dielectrophoretic systems without embedded electrodes

    DOEpatents

    Cummings, Eric B [Livermore, CA; Singh, Anup K [San Francisco, CA

    2006-03-21

    Method and apparatus for dielectrophoretic separation of particles in a fluid based using array of insulating structures arranged in a fluid flow channel. By utilizing an array of insulating structures, a spatially inhomogeneous electric field is created without the use of the embedded electrodes conventionally employed for dielectrophoretic separations. Moreover, by using these insulating structures a steady applied electric field has been shown to provide for dielectrophoresis in contrast to the conventional use of an alternating electric field. In a uniform array of posts, dielectrophoretic effects have been produced flows having significant pressure-driven and electrokinetic transport. Above a threshold applied electric field, filaments of concentrated and rarefied particles appear in the flow as a result of dielectrophoresis. Above a higher threshold applied voltage, dielectrophoresis produces zones of highly concentrated and immobilized particles. These patterns are strongly influenced by the angle of the array of insulating structures with respect to the mean applied electric field and the shape of the insulating structures.

  20. EVALUATION OF VENTILATION PERFORMANCE FOR INDOOR SPACE

    EPA Science Inventory

    The paper discusses a personal-computer-based application of computational fluid dynamics that can be used to determine the turbulent flow field and time-dependent/steady-state contaminant concentration distributions within isothermal indoor space. (NOTE: Ventilation performance ...

  1. A Method for Computing the Core Flow in Three-Dimensional Leading-Edge Vortices. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    1985-01-01

    A theory is presented for calculating the flow in the core of a separation-induced leading-edge vortex. The method is based on matching inner and outer representations of the vortex. The inner model of the vortex is based on the quasicylindrical Navier-Stokes equations; the flow is assumed to be steady, axially symmetric, and incompressible and in addition, gradients in the radial direction are assumed to be much larger then gradients in the axial direction. The outer model is based on the three-dimensional free-vortex-sheet theory, a higher-order panel method which solves the Prandtl-Glauert equation including nonlinear boundary conditions pertinent to the concentrated vorticity representation of the leading edge vortex. The resultant flow is evaluated a posteriori for evidence of incipient vortex breakdown and the critical helix angle concept, in conjunction with an adverse longitudinal pressure gradient, is found to correlate well with the occurrence of vortex breakdown at the trailing edge of delta, arrow, and diamond wings.

  2. Optimum aerobic volume control based on continuous in-line oxygen uptake monitoring.

    PubMed

    Svardal, K; Lindtner, S; Winkler, S

    2003-01-01

    Dynamic adaptation of the aerated volume to changing load conditions is essential to maximise the nitrogen removal performance and to minimise energy consumption. A control strategy is presented which provides optimum aerobic volume control (OAV-control concept) based on continuous in-line oxygen uptake monitoring. For ammonium concentrations below 1 mg/l the oxygen uptake rate shows a strong and almost linear dependency on the ammonium concentration. Therefore, the oxygen uptake rate is an ideal indicator for the nitrification performance in activated sludge systems. The OAV-control concept provides dynamic variation of the minimum aerobic volume required for complete nitrification and therefore maximises the denitrification performance. In-line oxygen uptake monitoring is carried out by controlling the oxygen concentration in a continuous aerated zone of the aeration tank and measuring the total air flow to the aeration tank. The total air flow to the aeration tank is directly proportional to the current oxygen uptake rate and can therefore be used as an indicator for the required aerobic volume. The instrumentation requirements for installation of the OAV-control are relatively low, oxygen sensors in the aeration tank and an on-line air flow measurement are needed. This enables individual control of aeration tanks operated in parallel at low investment costs. The OAV-control concept is installed at the WWTP Linz-Asten (1 Mio PE) and shows very good results. Full scale results are presented.

  3. Multi-year microbial source tracking study characterizing fecal contamination in an urban watershed

    USGS Publications Warehouse

    Bushon, Rebecca N.; Brady, Amie M. G.; Christensen, Eric D.; Stelzer, Erin A.

    2017-01-01

    Microbiological and hydrological data were used to rank tributary stream contributions of bacteria to the Little Blue River in Independence, Missouri. Concentrations, loadings and yields of E. coli and microbial source tracking (MST) markers, were characterized during base flow and storm events in five subbasins within Independence, as well as sources entering and leaving the city through the river. The E. coli water quality threshold was exceeded in 29% of base-flow and 89% of storm-event samples. The total contribution of E. coli and MST markers from tributaries within Independence to the Little Blue River, regardless of streamflow, did not significantly increase the median concentrations leaving the city. Daily loads and yields of E. coli and MST markers were used to rank the subbasins according to their contribution of each constituent to the river. The ranking methodology used in this study may prove useful in prioritizing remediation in the different subbasins.

  4. Preferential flow estimates to an agricultural tile drain with implications for glyphosate transport

    USGS Publications Warehouse

    Stone, W.W.; Wilson, J.T.

    2006-01-01

    Agricultural subsurface drains, commonly referred to as tile drains, are potentially significant pathways for the movement of fertilizers and pesticides to streams and ditches in much of the Midwest. Preferential flow in the unsaturated zone provides a route for water and solutes to bypass the soil matrix and reach tile drains faster than predicted by traditional displacement theory. This paper uses chloride concentrations to estimate preferential flow contributions to a tile drain during two storms in May 2004. Chloride, a conservative anion, was selected as the tracer because of differences in chloride concentrations between the two sources of water to the tile drain, preferential and matrix flow. A strong correlation between specific conductance and chloride concentration provided a mechanism to estimate chloride concentrations in the tile drain throughout the storm hydrographs. A simple mixing analysis was used to identify the preferential flow component of the storm hydrograph. During two storms, preferential flow contributed 11 and 51% of total storm tile drain flow; the peak contributions, 40 and 81%, coincided with the peak tile drain flow. Positive relations between glyphosate [N-(phosphonomethyl)glycine] concentrations and preferential flow for the two storms suggest that preferential flow is an important transport pathway to the tile drain. ?? ASA, CSSA, SSSA.

  5. Transient heat transfer in viscous rarefied gas between concentric cylinders. Effect of curvature

    NASA Astrophysics Data System (ADS)

    Gospodinov, P.; Roussinov, V.; Dankov, D.

    2015-10-01

    The thermoacoustic waves arising in cylindrical or planar Couette rarefied gas flow between rotating cylinders is studied in the cases of suddenly cylinder (active) wall velocity direction turn on. An unlimited increase in the radius of the inner cylinder flow can be interpreted as Couette flow between the two flat plates. Based on the developed in previous publications Navier-Stockes-Fourier (NSF) model and Direct Simulation Monte Carlo (DSMC) method and their numerical solutions, are considered transient processes in the gas phase. Macroscopic flow characteristics (velocity, density, temperature) are received. The cylindrical flow cases for fixed velocity and temperature of the both walls are considered. The curvature effects over the wave's distribution and attenuation are studied numerically.

  6. Active ultrasonic cross-correlation flowmeters for mixed-phase pipe flows

    NASA Astrophysics Data System (ADS)

    Sheen, S. H.; Raptis, A. C.

    Two ultrasonic flowmeters which employ the active cross-correlation technique and use a simple clamp-on transducer arrangement are discussed. The flowmeter for solid/liquid flows was tested over a wide range of coal concentration in water and oil. The measured velocity based on the peak position of the cross-correlation function is consistently higher by about 15% than the average velocity measured by flow diversion. The origin of the difference results mainly from the flow velocity profiles and the transit-time probability distribution. The flowmeter that can measure particle velocity in a solid/gas flow requires acoustic decoupling arrangement between two sensing stations. The measured velocity is mainly associated with the particles near the wall. Performance of both flowmeters is presented.

  7. The use of vitamins as tracer dyes for laser-induced fluorescence in liquid flow applications

    NASA Astrophysics Data System (ADS)

    Zähringer, Katharina

    2014-04-01

    Tracers commonly used in experimental flow studies are mostly nocuous to the environment and human health. Particularly, in large flow installations, this can become a problem. In this study, a solution of this problem is presented, based on using water-soluble vitamins. Five of them are examined here for their applicability in flow studies. Vitamins B2 and B6 turned out to be the most promising candidates, and the dependency of their fluorescence intensity on parameters like concentration, laser energy, temperature, and pH are determined for two commonly used laser excitation wavelengths (532, 355 nm). Two examples of application in a static mixer and a spray flow are shown and demonstrate the applicability of the vitamin tracers.

  8. Effect of hydrocolloid on rheology and microstructure of high-protein soy desserts.

    PubMed

    Arancibia, Carla; Bayarri, Sara; Costell, Elvira

    2015-10-01

    Due to the rheological and structural basis of texture perceived in semisolid foods, the aim of this work was to study the effects of two thickening agents, on rheology and microstructure of soy protein desserts. As rheological parameter values may not be enough to explain the possible perceived texture differences, the effect of composition on two instrumental indexes of oral consistency (apparent viscosity at 50 s(-1) and complex dynamic viscosity at 8 Hz) was also studied. Samples were prepared at two soy protein isolate (SPI) concentrations (6 and 8 % w/w), each with four modified starch concentrations (2, 2.5, 3 and 3.5 % w/w) or four Carboxymethyl cellulose (CMC) concentrations (0.3, 0.5, 0.7 and 0.9 % w/w). Two more samples without added thickener were prepared as control samples. The flow curves of all systems showed a typical shear-thinning behaviour and observable hysteresis loops. Control sample flow fitted well with the Ostwald-de Waele model and the flow of samples with thickener to the Herschel-Bulkley model. Viscoelastic properties of samples ranged from fluid-like to weak gel, depending on thickener and SPI concentrations. Starch-based samples exhibited a globular structure with SPI aggregates distributed among starch granules. In CMC-based samples, a coarse stranded structure with SPI aggregates partially embedded was observed. Variation of the two thickness index values with composition showed a similar trend with good correlation between them (R(2) = 0.92). Soy desserts with different composition but with similar rheological behaviour or instrumental thickness index values can be obtained.

  9. Rapid Analysis of Copper Ore in Pre-Smelter Head Flow Slurry by Portable X-ray Fluorescence.

    PubMed

    Burnett, Brandon J; Lawrence, Neil J; Abourahma, Jehad N; Walker, Edward B

    2016-05-01

    Copper laden ore is often concentrated using flotation. Before the head flow slurry can be smelted, it is important to know the concentration of copper and contaminants. The concentration of copper and other elements fluctuate significantly in the head flow, often requiring modification of the concentrations in the slurry prior to smelting. A rapid, real-time analytical method is needed to support on-site optimization of the smelter feedstock. A portable, handheld X-ray fluorescence spectrometer was utilized to determine the copper concentration in a head flow suspension at the slurry origin. The method requires only seconds and is reliable for copper concentrations of 2.0-25%, typically encountered in such slurries. © The Author(s) 2016.

  10. Continuum-mechanics-based rheological formulation for debris flow

    USGS Publications Warehouse

    Chen, Cheng-lung; Ling, Chi-Hai; ,

    1993-01-01

    This paper aims to assess the validity of the generalized viscoplastic fluid (GVF) model in the light of both the classical relative-viscosity versus concentration relation and the dimensionless stress versus shear-rate squared relations based on kinetic theory, thereby addressing how to evaluate the rheological parameters of the GVF model using Bagnold's data.

  11. Trends in Streamflow and Nutrient and Suspended-Sediment Concentrations and Loads in the Upper Mississippi, Ohio, Red, and Great Lakes River Basins, 1975-2004

    USGS Publications Warehouse

    Lorenz, David L.; Robertson, Dale M.; Hall, David W.; Saad, David A.

    2009-01-01

    Many actions have been taken to reduce nutrient and suspended-sediment concentrations and the amount of nutrients and sediment transported in streams as a result of the Clean Water Act and subsequent regulations. This report assesses how nutrient and suspended-sediment concentrations and loads in selected streams have changed during recent years to determine if these actions have been successful. Flow-adjusted and overall trends in concentrations and trends in loads from 1993 to 2004 were computed for total nitrogen, dissolved ammonia, total organic nitrogen plus ammonia, dissolved nitrite plus nitrate, total phosphorus, dissolved phosphorus, total suspended material (total suspended solids or suspended sediment), and total suspended sediment for 49 sites in the Upper Mississippi, Ohio, Red, and Great Lakes Basins. Changes in total nitrogen, total phosphorus, and total suspended-material loads were examined from 1975 to 2003 at six sites to provide a longer term context for the data examined from 1993 to 2004. Flow-adjusted trends in total nitrogen concentrations at 19 of 24 sites showed tendency toward increasing concentrations, and overall trends in total nitrogen concentrations at 16 of the 24 sites showed a general tendency toward increasing concentrations. The trends in these flow-adjusted total nitrogen concentrations are related to the changes in fertilizer nitrogen applications. Flow-adjusted trends in dissolved ammonia concentrations from 1993 to 2004 showed a widespread tendency toward decreasing concentrations. The widespread, downward trends in dissolved ammonia concentrations indicate that some of the ammonia reduction goals of the Clean Water Act are being met. Flow-adjusted and overall trends in total organic plus ammonia nitrogen concentrations from 1993 to 2004 did not show a distinct spatial pattern. Flow-adjusted and overall trends in dissolved nitrite plus nitrate concentrations from 1993 to 2004 also did not show a distinct spatial pattern. Flow-adjusted trends in total phosphorus concentrations were upward at 24 of 40 sites. Overall trends in total phosphorus concentrations were mixed and showed no spatial pattern. Flow-adjusted and overall trends in dissolved phosphorus concentrations were consistently downward at all of the sites in the eastern part of the basins studied. The reduction in phosphorus fertilizer use and manure production east of the Mississippi River could explain most of the observed trends in dissolved phosphorus. Flow-adjusted trends in total suspended-material concentrations showed distinct spatial patterns of increasing tendencies throughout the western part of the basins studied and in Illinois and decreasing concentrations throughout most of Wisconsin, Iowa, and in the eastern part of the basins studied. Flow-adjusted trends in total phosphorus were strongly related to the flow-adjusted trends in suspended materials. The trends in the flow-adjusted suspended-sediment concentrations from 1993 to 2004 resembled those for suspended materials. The long-term, nonmonotonic trends in total nitrogen, total phosphorus, and suspended-material loads for 1975 to 2003 were described by local regression, LOESS, smoothing for six sites. The statistical significance of those trends cannot be determined; however, the long-term changes found for annual streamflow and load data indicate that the monotonic trends from 1993 to 2004 should not be extrapolated backward in time.

  12. Capillary-driven surface-enhanced Raman scattering (SERS)-based microfluidic chip for abrin detection

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Deng, Min; Ga, Shan; Chen, Shouhui; Kang, Lin; Wang, Junhong; Xin, Wenwen; Zhang, Tao; You, Zherong; An, Yuan; Wang, Jinglin; Cui, Daxiang

    2014-03-01

    Herein, we firstly demonstrate the design and the proof-of-concept use of a capillary-driven surface-enhanced Raman scattering (SERS)-based microfluidic chip for abrin detection. The micropillar array substrate was etched and coated with a gold film by microelectromechanical systems (MEMS) process to integrate into a lateral flow test strip. The detection of abrin solutions of various concentrations was performed by the as-prepared microfluidic chip. It was shown that the correlation between the abrin concentration and SERS signal was found to be linear within the range of 0.1 ng/mL to 1 μg/mL with a limit of detection of 0.1 ng/mL. Our microfluidic chip design enhanced the operability of SERS-based immunodiagnostic techniques, significantly reducing the complication and cost of preparation as compared to previous SERS-based works. Meanwhile, this design proved the superiority to conventional lateral flow test strips in respect of both sensitivity and quantitation and showed great potential in the diagnosis and treatment for abrin poisoning as well as on-site screening of abrin-spiked materials.

  13. On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow.

    PubMed

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2015-01-01

    Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the conceptualization of nonlinear bioreactive transport in complex multidimensional domains by quasi 1-D travel-time models is valid for steady-state flow fields if the reactants are introduced over a wide cross-section, flow is at quasi steady state, and dispersive mixing is adequately parametrized. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Phosphorus loss from an agricultural watershed as a function of storm size.

    PubMed

    Sharpley, Andrew N; Kleinman, Peter J A; Heathwaite, A Louise; Gburek, William J; Folmar, Gordon J; Schmidt, John P

    2008-01-01

    Phosphorus (P) loss from agricultural watersheds is generally greater in storm rather than base flow. Although fundamental to P-based risk assessment tools, few studies have quantified the effect of storm size on P loss. Thus, the loss of P as a function of flow type (base and storm flow) and size was quantified for a mixed-land use watershed (FD-36; 39.5 ha) from 1997 to 2006. Storm size was ranked by return period (<1, 1-3, 3-5, 5-10, and >10 yr), where increasing return period represents storms with greater peak and total flow. From 1997 to 2006, storm flow accounted for 32% of watershed discharge yet contributed 65% of dissolved reactive P (DP) (107 g ha(-1) yr(-1)) and 80% of total P (TP) exported (515 g ha(-1) yr(-1)). Of 248 storm flows during this period, 93% had a return period of <1 yr, contributing most of the 10-yr flow (6507 m(3) ha(-1); 63%) and export of DP (574 g ha(-1); 54%) and TP (2423 g ha(-1); 47%). Two 10-yr storms contributed 23% of P exported between 1997 and 2006. A significant increase in storm flow DP concentration with storm size (0.09-0.16 mg L(-1)) suggests that P release from soil and/or area of the watershed producing runoff increase with storm size. Thus, implementation of P-based Best Management Practice needs to consider what level of risk management is acceptable.

  15. Temporal evolution of age data under transient pumping conditions

    NASA Astrophysics Data System (ADS)

    Leray, S.; de Dreuzy, J.-R.; Aquilina, L.; Vergnaud-Ayraud, V.; Labasque, T.; Bour, O.; Le Borgne, T.

    2014-04-01

    While most age data derived from tracers have been analyzed in steady-state flow conditions, we determine their temporal evolution when starting a pumping. Our study is based on a model made up of a shallowly dipping aquifer overlain by a less permeable aquitard characteristic of the crystalline aquifer of Plœmeur (Brittany, France). Under a pseudo transient flow assumption (instantaneous shift between two steady-state flow fields), we solve the transport equation with a backward particle-tracking method and determine the temporal evolution of the concentrations at the pumping well of CFC-11, CFC-12, CFC-113 and SF6. Apparent ages evolve because of the modifications of the flow pattern and because of the non-linear evolution of the tracer atmospheric concentrations. To identify the respective role of these two causes, we propose two successive analyses. We first convolute residence time distributions initially arising at different times at the same sampling time. We secondly convolute one residence time distribution at various sampling times. We show that flow pattern modifications control the apparent ages evolution in the first pumping year when the residence time distribution is modified from a piston-like distribution to a much broader distribution. In the first pumping year, the apparent age evolution contains transient information that can be used to better constrain hydrogeological systems and slightly compensate for the small number of tracers. Later, the residence time distribution hardly evolves and apparent ages only evolve because of the tracer atmospheric concentrations. In this phase, apparent age time-series do not reflect any evolution in the flow pattern.

  16. Computational modelling of the scaffold-free chondrocyte regeneration: a two-way coupling between the cell growth and local fluid flow and nutrient concentration.

    PubMed

    Hossain, Md Shakhawath; Bergstrom, D J; Chen, X B

    2015-11-01

    The in vitro chondrocyte cell culture process in a perfusion bioreactor provides enhanced nutrient supply as well as the flow-induced shear stress that may have a positive influence on the cell growth. Mathematical and computational modelling of such a culture process, by solving the coupled flow, mass transfer and cell growth equations simultaneously, can provide important insight into the biomechanical environment of a bioreactor and the related cell growth process. To do this, a two-way coupling between the local flow field and cell growth is required. Notably, most of the computational and mathematical models to date have not taken into account the influence of the cell growth on the local flow field and nutrient concentration. The present research aimed at developing a mathematical model and performing a numerical simulation using the lattice Boltzmann method to predict the chondrocyte cell growth without a scaffold on a flat plate placed inside a perfusion bioreactor. The model considers the two-way coupling between the cell growth and local flow field, and the simulation has been performed for 174 culture days. To incorporate the cell growth into the model, a control-volume-based surface growth modelling approach has been adopted. The simulation results show the variation of local fluid velocity, shear stress and concentration distribution during the culture period due to the growth of the cell phase and also illustrate that the shear stress can increase the cell volume fraction to a certain extent.

  17. Characteristics of coal mine ventilation air flows.

    PubMed

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  18. A Thermally-Regenerative Ammonia-Based Flow Battery for Electrical Energy Recovery from Waste Heat.

    PubMed

    Zhu, Xiuping; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce

    2016-04-21

    Large amounts of low-grade waste heat (temperatures <130 °C) are released during many industrial, geothermal, and solar-based processes. Using thermally-regenerative ammonia solutions, low-grade thermal energy can be converted to electricity in battery systems. To improve reactor efficiency, a compact, ammonia-based flow battery (AFB) was developed and tested at different solution concentrations, flow rates, cell pairs, and circuit connections. The AFB achieved a maximum power density of 45 W m(-2) (15 kW m(-3) ) and an energy density of 1260 Wh manolyte (-3) , with a thermal energy efficiency of 0.7 % (5 % relative to the Carnot efficiency). The power and energy densities of the AFB were greater than those previously reported for thermoelectrochemical and salinity-gradient technologies, and the voltage or current could be increased using stacked cells. These results demonstrated that an ammonia-based flow battery is a promising technology to convert low-grade thermal energy to electricity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Occurrence and Distribution of Organic Wastewater Compounds in Rock Creek Park, Washington, D.C., 2007-08

    USGS Publications Warehouse

    Phelan, Daniel J.; Miller, Cherie V.

    2010-01-01

    The U.S. Geological Survey, and the National Park Service Police Aviation Group, conducted a high-resolution, low-altitude aerial thermal infrared survey of the Washington, D.C. section of Rock Creek Basin within the Park boundaries to identify specific locations where warm water was discharging from seeps or pipes to the creek. Twenty-three stream sites in Rock Creek Park were selected based on the thermal infrared images. Sites were sampled during the summers of 2007 and 2008 for the analysis of organic wastewater compounds to verify potential sources of sewage and other anthropogenic wastewater. Two sets of stormwater samples were collected, on June 27-28 and September 6, 2008, at the Rock Creek at Joyce Road water-quality station using an automated sampler that began sampling when a specified stage threshold value was exceeded. Passive-sampler devices that accumulate organic chemicals over the duration of deployment were placed in July 2008 at the five locations that had the greatest number of detections of organic wastewater compounds from the June 2007 base-flow sampling. During the 2007 base-flow synoptic sampling, there were ubiquitous low-level detections of dissolved organic wastewater indicator compounds such as DEET, caffeine, HHCB, and organophosphate flame retardants at more than half of the 23 sites sampled in Rock Creek Park. Concentrations of DEET and caffeine in the tributaries to Rock Creek were variable, but in the main stem of Rock Creek, the concentrations were constant throughout the length of the creek, which likely reflects a distributed source. Organophosphate flame retardants in the main stem of Rock Creek were detected at estimated concentrations of 0.2 micrograms per liter or less, and generally did not increase with distance downstream. Overall, concentrations of most wastewater indicators in whole-water samples in the Park were similar to the concentrations found at the upstream sampling station at the Maryland/District of Columbia boundary. Polycyclic aromatic hydrocarbons were the dominant organic compounds found in the stormwater samples at the Joyce Road station. Polycyclic aromatic hydrocarbons were consistently found in higher concentrations either in sediment or in whole-water samples than in the dissolved samples collected during base-flow conditions at the 23 synoptic sites, or in the Joyce Road station stormwater samples.

  20. Turbulent structures of non-Newtonian solutions containing rigid polymers

    NASA Astrophysics Data System (ADS)

    Mohammadtabar, M.; Sanders, R. S.; Ghaemi, S.

    2017-10-01

    The turbulent structure of a channel flow of Xanthan Gum (XG) polymer solution is experimentally investigated and compared with water flow at a Reynolds number of Re = 7200 (based on channel height and properties of water) and Reτ = 220 (based on channel height and friction velocity, uτ0). The polymer concentration is varied from 75, 100, and 125 ppm to reach the point of maximum drag reduction (MDR). Measurements are carried out using high-resolution, two-component Particle Image Velocimetry (PIV) to capture the inner and outer layer turbulence. The measurements showed that the logarithmic layer shifts away from the wall with increasing polymer concentration. The slopes of the mean velocity profile for flows containing 100 and 125 ppm XG are greater than that measured for XG at 75 ppm, which is parallel with the slope obtained for deionized water. The increase in slope results in thickening buffer layer. At MDR, the streamwise Reynolds stresses are as large as those of the Newtonian flow while the wall-normal Reynolds stresses and Reynolds shear stresses are significantly attenuated. The sweep-dominated region in the immediate vicinity of the wall extends further from the wall with increasing polymer concentration. The near-wall skewness intensifies towards positive streamwise fluctuations and covers a larger wall-normal length at larger drag reduction values. The quadrant analysis at y + 0 = 25 shows that the addition of polymers inclines the principal axis of v versus u plot to almost zero (horizontal) as the joint probability density function of fluctuations becomes symmetric with respect to the u axis at MDR. The reduction of turbulence production is mainly associated with the attenuation of the ejection motions. The spatial-correlation of the fluctuating velocity field shows that increasing the polymer concentration increases the spatial coherence of u fluctuations in the streamwise direction while they appear to have the opposite effect in the wall-normal direction. The proper orthogonal decomposition of velocity fluctuations shows that the inclined shear layer structure of Newtonian wall flows becomes horizontal at the MDR and does not contribute to turbulence production.

  1. Flow Cytometry Techniques in Radiation Biology

    DTIC Science & Technology

    1988-06-01

    Henidtopoietic stem cells SUMMARY Hematopoietic stem cells ( HSC ) are present in the marrow at a concentration of approximately 2-3 HSC per 1000 nucleated marrow...cells. In the past, only clonogenic assays requiring 8-13 days and ten irradiated recipient rodents were available for assaying HSC . Because of the...importance of HSC in the postirradiation syndrome, we have developed a new rapid method based on flow cytometry not only to assay but also to purify and

  2. Monitoring and assessment of tumor hemodynamics during pleural PDT

    NASA Astrophysics Data System (ADS)

    Ong, Yi Hong; Kim, Michele M.; Penjweini, Rozhin; Rodriguez, Carmen E.; Dimofte, Andrea; Finlay, Jarod C.; Busch, Theresa M.; Yodh, Arjun G.; Cengel, Keith A.; Singhal, Sunil; Zhu, Timothy C.

    2017-02-01

    Intrapleural photodynamic therapy (PDT) has been used in combination with lung sparing surgery to treat patients with malignant pleural mesothelioma. The light, photosensitizers and tissue oxygen are the three most important factors required by type II PDT to produce singlet oxygen, 1O2, which is the main photocytotoxic agent that damages the tumor vasculature and stimulates the body's anti-tumor immune response. Although light fluence rate and photosensitizer concentrations are routinely monitored during clinical PDT, there is so far a lack of a Food and Drug Administration (FDA)-approved non-invasive technique that can be employed clinically to monitor tissue oxygen in vivo. In this paper, we demonstrated that blood flow correlates well with tissue oxygen concentration during PDT and can be used in place of [3O2] to calculate reacted singlet oxygen concentration [1O2]rx using the macroscopic singlet oxygen model. Diffuse correlation spectroscopy (DCS) was used to monitor the change in tissue blood flow non-invasively during pleural PDT. A contact probe with three source and detectors separations, 0.4, 0.7 and 1.0-cm, was sutured to the pleural cavity wall of the patients after surgical resection of the pleural mesothelioma tumor to monitor the tissue blood flow during intraoperative PDT treatment. The changes of blood flow during PDT of 2 patients are found to be in good correlation with the treatment light fluence rate recorded by the isotropic detector placed adjacent to the DCS probe. [1O2]rx calculated based on light fluence, mean photosensitizer concentration, and relative blood flow was found to be 32% higher in patient #4 (0.50mM) than that for patient #3 (0.38mM).

  3. Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous media.

    PubMed

    Zhong, Hua; Zhang, Hui; Liu, Zhifeng; Yang, Xin; Brusseau, Mark L; Zeng, Guangming

    2016-09-13

    Experiments were conducted with a two-dimensional flow cell to examine the effect of monorhamnolipid surfactant at sub-CMC concentrations on solubilization of dodecane in porous media under dynamic flow conditions. Quartz sand was used as the porous medium and artificial groundwater was used as the background solution. The effectiveness of the monorhamnolipid was compared to that of SDBS, Triton X-100, and ethanol. The results demonstrated the enhancement of dodecane solubility by monorhamnolipid surfactant at concentrations lower than CMC. The concentrations (50-210 μM) are sufficiently low that they do not cause mobilization of the dodecane. Retention of rhamnolipid in the porous medium and detection of nano-size aggregates in the effluent show that the solubilization is based on a sub-CMC aggregate-formation mechanism, which is significantly stronger than the solubilization caused by the co-solvent effect. The rhamnolipid biosurfactant is more efficient for the solubilization compared to the synthetic surfactants. These results indicate a strategy of employing low concentrations of rhamnolipid for surfactant-enhanced aquifer remediation (SEAR), which may overcome the drawbacks of using surfactants at hyper-CMC concentrations.

  4. Hydrogeologic setting and potential for denitrification in ground water, coastal plain of southern Maryland

    USGS Publications Warehouse

    Krantz, David E.; Powars, David S.

    2000-01-01

    The types and distribution of Coastal Plain sediments in the Patuxent River Basin may contribute to relatively low concentrations of nitrate (typically less than 1 milligram per liter) in stream base flow because of the chemical reduction of dissolved nitrate (denitrification) in ground water. Water chemistry data from synoptic stream base-flow surveys in the Patuxent River Basin show higher dissolved nitrate concentrations in the Piedmont than in the Coastal Plain section of the watershed. Stream base flow reflects closely the chemistry of ground water discharging from the surficial (unconfined) aquifer to the stream. Because land use in the sampled subbasins is virtually the same in each section, differences in the physical and geochemical characteristics of the surficial aquifer may explain the observed differences in water chemistry. One possible cause of lower nitrate concentrations in the Coastal Plain is denitrification within marine sediments that contain chemically reduced compounds. During denitrification, the oxygen atoms on the nitrate (N03-) molecule are transferred to a reduced compound and N gas is produced. Organic carbon and ferrous iron (Fe2+), derived from the dissolution of minerals such as pyrite (FeS2) and glauconite (an iron aluminosilicate clay), can act as reducing substrates; these reduced chemical species are common in the marine and estuarine deposits in Southern Maryland. The spatial distribution of geologic units and their lithology (sediment type) has been used to create a map of the potential for denitrification of ground water in the surficial aquifer of the Coastal Plain in Southern Maryland.

  5. Source water controls on the character and origin of dissolved organic matter in streams of the Yukon River basin, Alaska

    USGS Publications Warehouse

    O'Donnell, Jonathan A.; Aiken, George R.; Kane, Evan S.; Jones, Jeremy B.

    2010-01-01

    Climate warming and permafrost degradation at high latitudes will likely impact watershed hydrology, and consequently, alter the concentration and character of dissolved organic carbon (DOC) in northern rivers. We examined seasonal variation of DOC chemistry in 16 streams of the Yukon River basin, Alaska. Our primary objective was to evaluate the relationship between source water (shallow versus deep groundwater flow paths) and DOC chemical composition. Using base cation chemistry and principal component analysis, we observed high contributions of deep groundwater to glacial and clearwater streams, whereas blackwater streams received larger contributions from shallow groundwater sources. DOC concentration and specific ultraviolet absorbance peaked during spring snowmelt in all streams, and were consistently higher in blackwater streams than in glacial and clearwater streams. The hydrophobic acid fraction of DOC dominated across all streams and seasons, comprising between 35% and 56% of total DOC. The hydrophilic acid fraction of DOC was more prominent in glacial (23% ± 3%) and clearwater streams (19% ± 1%) than in blackwater streams (16% ± 1%), and was enriched during winter base flow (29% ± 1%) relative to snowmelt and summer base flow. We observed that an increase in the contribution of deep groundwater to streamflow resulted in decreased DOC concentration, aromaticity, and DOC-to-dissolved organic nitrogen ratio, and an increase in the proportion of hydrophilic acids relative to hydrophobic acids. Our findings suggest that future permafrost degradation and higher contributions of groundwater to streamflow may result in a higher fraction of labile DOM in streams of the Yukon basin.

  6. A simple and sensitive flow injection method based on the catalytic activity of CdS quantum dots in an acidic permanganate chemiluminescence system for determination of formaldehyde in water and wastewater.

    PubMed

    Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza

    2016-04-01

    A simple and sensitive flow injection chemiluminescence (CL) method in which CdS quantum dots (QDs) enhanced the CL intensity of a KMnO4-formaldehyde (HCHO) reaction was offered for the determination of HCHO. This CL system was based on the catalytic activity of CdS QDs and their participation in the CL resonance energy transfer (CRET) phenomenon. A possible mechanism for the supplied CL system was proposed using the kinetic curves of the CL systems and the spectra of CL, photoluminescence (PL) and ultraviolet-visible (UV-Vis). The emanated CL intensity of the KMnO4-CdS QDs system was amplified in the presence of a trace level of HCHO. Based on this enhancement effect, a simple and sensitive flow injection CL method was suggested for the determination of HCHO concentration in environmental water and wastewater samples. Under selected optimized experimental conditions, the increased CL intensity was proportional to the HCHO concentration in the range of 0.03-4.5 μg L(-1) and 4.5-10.0 μg L(-1). The detection limits (3σ) were 0.0003 μg L(-1) and 1.2 μg L(-1). The relative standard deviations (RSD%) for eleven replicate determinations of 4.0 μg L(-1) HCHO were 2.2%. Furthermore, the feasibility of the developed method was investigated via the determination of HCHO concentration in environmental water and wastewater samples.

  7. Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous media

    NASA Astrophysics Data System (ADS)

    Yang, X.; Zhong, H.; Zhang, H.; Brusseau, M. L.

    2016-12-01

    Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous mediaXin Yang1,Hua Zhong1, 2, 3 *, Hui Zhang1, Mark L Brusseau31 College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;2 School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China;3 Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona 85721;*Corresponding author, E-mail: zhonghua@hnu.edu.cn, Tel: +86-731-88664182Purpose: Investigate solubilization of dodecane by monorhamnolipid at sub-CMC concentrations in porous media under dynamic flow conditions. Testify aggregate formation mechanism for the solubilization. Methods:One-dimension column experiment was implemented to test dodecane solubilization in glass beads by rhamnolipid at sub-CMC concentrations, and the effect of solubilization on the residual NAPL morphology was examined using X-ray tomography. A two-dimension flow cell was used to examine mobilization and solubilization of dodecane in quartz sand by sub-CMC rhamnolipid. The result of solubilization was compared to that of two synthetic surfactants, SDBS and Triton X-100, and a solvent, ethanol. Size, zeta potential and the morphology of particles in the effluent were also examined. Results: Results of the column and 2-D flow cell studies show enhancement of dodecane solubility by sub-CMC monorhamnolipid in the porous medium. Retention of rhamnolipid and detection of nano-size aggregates show that the solubilization is based on a sub-CMC aggregate-formation mechanism. The rhamnolipid is more efficient for the solubilization compared to the synthetic surfactants and ethanol, and significant solubilization could occur at a rhamnolipid concentration that did not cause mobilization. Conclusions:Results of the study demonstrate the aggregate-based solubilization of dodecane in porous media by rhamnolipid at sub-CMC concentrations. These results indicate a strategy of employing low concentrations of rhamnolipid for surfactant-enhanced aquifer remediation (SEAR), which may promote the cost-effectiveness of rhamnolipid application and overcome the drawbacks of using surfactants at hyper-CMC concentrations.

  8. Concentration Measurements in a Cold Flow Model Annular Combustor Using Laser Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Morgan, Douglas C.

    1996-01-01

    A nonintrusive concentration measurement method is developed for determining the concentration distribution in a complex flow field. The measurement method consists of marking a liquid flow with a water soluble fluorescent dye. The dye is excited by a two dimensional sheet of laser light. The fluorescent intensity is shown to be proportional to the relative concentration level. The fluorescent field is recorded on a video cassette recorder through a video camera. The recorded images are analyzed with image processing hardware and software to obtain intensity levels. Mean and root mean square (rms) values are calculated from these intensity levels. The method is tested on a single round turbulent jet because previous concentration measurements have been made on this configuration by other investigators. The previous results were used to comparison to qualify the current method. These comparisons showed that this method provides satisfactory results. 'Me concentration measurement system was used to measure the concentrations in the complex flow field of a model gas turbine annular combustor. The model annular combustor consists of opposing primary jets and an annular jet which discharges perpendicular to the primary jets. The mixing between the different jet flows can be visualized from the calculated mean and rms profiles. Concentration field visualization images obtained from the processing provide further qualitative information about the flow field.

  9. Active control of jet flowfields

    NASA Astrophysics Data System (ADS)

    Kibens, Valdis; Wlezien, Richard W.

    1987-06-01

    Passive and active control of jet shear layer development were investigated as mechanisms for modifying the global characteristics of jet flowfields. Slanted and stepped indeterminate origin (I.O.) nozzles were used as passive, geometry-based control devices which modified the flow origins. Active control techniques were also investigated, in which periodic acoustic excitation signals were injected into the I.O. nozzle shear layers. Flow visualization techniques based on a pulsed copper-vapor laser were used in a phase-conditioned image acquisition mode to assemble optically averaged sets of images acquired at known times throughout the repetition cycle of the basic flow oscillation period. Hot wire data were used to verify the effect of the control techniques on the mean and fluctuating flow properties. The flow visualization images were digitally enhanced and processed to show locations of prominent vorticity concentrations. Three-dimensional vortex interaction patterns were assembled in a format suitable for movie mode on a graphic display workstation, showing the evolution of three-dimensional vortex system in time.

  10. Patterns and sources of fecal coliform bacteria in three streams in Virginia, 1999-2000

    USGS Publications Warehouse

    Hyer, Kenneth; Moyer, Douglas

    2003-01-01

    Surface-water impairment by fecal coliform bacteria is a water-quality issue of national scope and importance. In Virginia, more than 175 stream segments are on the Commonwealth's 1998 303(d) list of impaired waters because of elevated concentrations of fecal coliform bacteria. These fecal coliform-impaired stream segments require the development of total maximum daily load (TMDL) and associated implementation plans, but accurate information on the sources contributing these bacteria usually is lacking. The development of defendable fecal coliform TMDLs and management plans can benefit from reliable information on the bacteria sources that are responsible for the impairment. Bacterial source tracking (BST) recently has emerged as a powerful tool for identifying the sources of fecal coliform bacteria that impair surface waters. In a demonstration of BST technology, three watersheds on Virginia's 1998 303(d) list with diverse land-use practices (and potentially diverse bacteria sources) were studied. Accotink Creek is dominated by urban land uses, Christians Creek by agricultural land uses, and Blacks Run is affected by both urban and agricultural land uses. During the 20-month field study (March 1999?October 2000), water samples were collected from each stream during a range of flow conditions and seasons. For each sample, specific conductance, dissolved oxygen concentration, pH, turbidity, flow, and water temperature were measured. Fecal coliform concentrations of each water sample were determined using the membrane filtration technique. Next, Escherichia coli (E. coli) were isolated from the fecal coliform bacteria and their sources were identified using ribotyping (a method of 'genetic fingerprinting'). Study results provide enhanced understanding of the concentrations and sources of fecal coliform bacteria in these three watersheds. Continuum sampling (sampling along the length of the streams) indicated that elevated concentrations of fecal coliform bacteria (maximum observed concentration of 290,000 colonies/100 milliliters (col/100mL) could occur along the entire length of each stream, and that the samples collected at the downstream monitoring station of each stream were generally representative of the entire upstream reach. Seasonal patterns were observed in the base-flow fecal coliform concentrations of all streams; concentrations were typically highest in the summer and lowest in the winter. Fecal coliform concentrations were lowest during periods of base flow (typically 200?2,000 col/100mL) and increased by 3?4 orders of magnitude during storm events (as high as 700,000 col/100mL). Multiple linear regression models were developed to predict fecal coliform concentrations as a function of streamflow and other water-quality parameters. The source tracking technique provided identification of bacteria contributions from diverse sources that included (but were not limited to) humans, cattle, poultry, horses, dogs, cats, geese, ducks, raccoons, and deer. Seasonal patterns were observed in the contributions of cattle and poultry sources. There were relations between the identified sources of fecal coliform bacteria and the land-use practices within each watershed. There were only minor differences in the distribution of bacteria sources between low-flow periods and high-flow periods. A coupled approach that utilized both a large available source library and a smaller, location-specific source library provided the most success in identifying the unknown E. coli isolates. BST data should provide valuable support and guidance for producing more defendable and scientifically rigorous watershed models. Incorporation of these bacteria-source data into watershed management strategies also should result in the selection of more efficient source-reduction scenarios for improving water quality.

  11. Monitoring and control of the biogas process based on propionate concentration using online VFA measurement.

    PubMed

    Boe, Kanokwan; Steyer, Jean-Philippe; Angelidaki, Irini

    2008-01-01

    Simple logic control algorithms were tested for automatic control of a lab-scale CSTR manure digester. Using an online VFA monitoring system, propionate concentration in the reactor was used as parameter for control of the biogas process. The propionate concentration was kept below a threshold of 10 mM by manipulating the feed flow. Other online parameters such as pH, biogas production, total VFA, and other individual VFA were also measured to examine process performance. The experimental results showed that a simple logic control can successfully prevent the reactor from overload, but with fluctuations of the propionate level due to the nature of control approach. The fluctuation of propionate concentration could be reduced, by adding a lower feed flow limit into the control algorithm to prevent undershooting of propionate response. It was found that use of the biogas production as a main control parameter, rather than propionate can give a more stable process, since propionate was very persistent and only responded very slowly to the decrease of the feed flow which lead to high fluctuation of biogas production. Propionate, however, was still an excellent parameter to indicate process stress under gradual overload and thus recommended as an alarm in the control algorithm. Copyright IWA Publishing 2008.

  12. On the calculation of air flow rates to ventilate closed-type stations in subway with the double-track tunnel

    NASA Astrophysics Data System (ADS)

    Kiyanitsa, LA

    2018-03-01

    Metro is not only the most promising kind of public transport but also an important part of infrastructure in a modern city. As a place where large groups of people gather, subway is to ensure the required air exchange at the passenger platforms of the stations. The air flow rate for airing the stations is also determined based on the required temperature, humidity and MAC of gases. The present study estimates the required air flow rate at the passenger platform of the closed-type subway station with the double-track tunnel given the standard air temperature, humidity and gas concentration, as well as based on the condition of the specified air flow feed and air changes per hour. The article proposes the scheme of air recirculation from the double-track tunnel to the station.

  13. Theoretical analysis of stack gas emission velocity measurement by optical scintillation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Dong, Feng-Zhong; Ni, Zhi-Bo; Pang, Tao; Zeng, Zong-Yong; Wu, Bian; Zhang, Zhi-Rong

    2014-04-01

    Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously.

  14. Microbial and Dissolved Organic Carbon Characterization of Stormflow in the Santa Ana River at Imperial Highway, Southern California, 1999-2002

    USGS Publications Warehouse

    Izbicki, John A.; Pimentel, M. Isabel; Leddy, Menu; Bergamaschi, Brian A.

    2004-01-01

    The Santa Ana River drains about 2,670 square miles of densely populated coastal southern California, near Los Angeles. Almost all the flow in the river, more than 200,000 acre-feet annually, is diverted to ponds where it infiltrates and recharges underlying aquifers pumped to supply water for more than 2 million people. Base flow in the river is almost entirely treated municipal wastewater discharged from upstream treatment plants and, in the past, stormflow was considered a source of high-quality water suitable for use as a source of ground-water recharge that would dilute poorer quality water recharged during base flow. Stormflow in the Santa Ana River at the Imperial Highway diversion contains total coliform bacteria concentrations as high as 3,400,000 colonies per 100 mL (milliliters). Fecal indicator bacteria concentrations, including fecal coliforms, Escherichia coli, and enterococci, were as high as 310,000, 84,000, and 102,000 colonies per 100 mL, respectively. Although concentrations were high owing to urban runoff during the first stormflow of the rainy season, the highest concentrations occurred during the recessional flows of the first stormflow of the rainy season after streamflow returned to pre-storm conditions. Molecular indicators of microbiological organisms in stormflow, including phospholipid fatty acid (PLFA) and genetic data, show that the diversity of the total microbial population decreases during stormflow while fecal indicator bacteria concentrations increase. This suggests that the source of the bacteria must be poorly diverse and dominated by only a few types of bacteria. Although direct runoff of fecal indicator bacteria from urban areas occurs, this process cannot explain the very high concentrations of fecal indicator bacteria in runoff from upstream parts of the basin characterized by urban, agricultural (including more than 300,000 head of dairy cattle), and other land uses. Although other explanations are possible, fecal indicator bacteria concentrations and molecular microbiological data indicate accumulation and extended survival of bacteria in streambed sediments, and subsequent mobilization of those sediments and associated bacteria during stormflow. Both PLFA and genetic data indicate that water from dairy-waste storage ponds was not present during sampled stormflows. This is consistent with the relatively dry conditions and the absence of large stormflows during the study. Dissolved organic carbon (DOC) concentrations in stormflow ranged from 3 to 15.3 mg/L. In general, concentrations increased during stormflow and were distributed across the stormflow hydrograph in a manner similar to that of fecal indicator bacteria. DOC concentrations typically remained high for several days after flow returned to pre-storm conditions. Ultraviolet absorbance, excitation emission spectroscopy, and sequential fractionation of DOC using XAD-8 and XAD-4 resins showed that the composition of DOC changed rapidly during stormflow. Hydrophobic and hydrophilic acids were the largest fraction of DOC composing between 27 and 45 percent and between 24 and 37 percent of the DOC, respectively. The fraction of DOC composed of hydrophobic acids decreased due to urban runoff and increased during the recession of the first stormflow of the rainy season; the hydrophilic-acid fraction generally decreased throughout the stormflow hydrograph; the transhydrophilic-acid fraction did not vary greatly during stormflow; and the hydrophobic-neutral fraction increased from low values in base flow to almost 30 percent of the DOC after more soluble and more mobile hydrophobic and hydrophilic acids were washed from urban areas. Comparison of ultraviolet absorbance data with data collected during previous studies shows that the optical properties and, presumably, the composition of the DOC were different in this study than DOC collected during wetter periods. Samples of shallow ground water collec

  15. Identification of karst sinkholes in a forested karst landscape using airborne laser scanning data and water flow analysis

    NASA Astrophysics Data System (ADS)

    Hofierka, Jaroslav; Gallay, Michal; Bandura, Peter; Šašak, Ján

    2018-05-01

    Karst sinkholes (dolines) play an important role in a karst landscape by controlling infiltration of surficial water, air flow or spatial distribution of solar energy. These landforms also present a limiting factor for human activities in agriculture or construction. Therefore, mapping such geomorphological forms is vital for appropriate landscape management and planning. There are several mapping techniques available; however, their applicability can be reduced in densely forested areas with poor accessibility and visibility of the landforms. In such conditions, airborne laser scanning (ALS) provides means for efficient and accurate mapping of both land and landscape canopy surfaces. Taking the benefits of ALS into account, we present an innovative method for identification and evaluation of karst sinkholes based on numerical water flow modelling. The suggested method was compared to traditional techniques for sinkhole mapping which use topographic maps and digital terrain modelling. The approach based on simulation of a rainfall event very closely matched the reference datasets derived by manual inspection of the ALS digital elevation model and field surveys. However, our process-based approach provides advantage of assessing the magnitude how sinkholes influence concentration of overland water flow during extreme rainfall events. This was performed by calculating the volume of water accumulated in sinkholes during the simulated rainfall. In this way, the influence of particular sinkholes on underground geomorphological systems can be assessed. The method was demonstrated in a case study of Slovak Karst in the West Carpathians where extreme rainfalls or snow-thaw events occur annually. We identified three spatially contiguous groups of sinkholes with a different effect on overland flow concentration. These results are discussed in relation to the known underground hydrological systems.

  16. Assessment of concentrated flow through riparian buffers

    Treesearch

    M.G. Dosskey; M.J. Helmers; D.E. Eisenhauer; T.G. Franti; K.D. Hoagland

    2002-01-01

    Concentrated flow of surface runoff from agricultural fields may limit the capability of riparian buffers to remove pollutants. This study was conducted on four farms in southeastern Nebraska to develop a method for assessing the extent of concentrated flow in riparian buffers and for evaluating the impact that it has on sediment-trapping efficiency. Field methods...

  17. Investigation of particle inertial migration in high particle concentration suspension flow by multi-electrodes sensing and Eulerian-Lagrangian simulation in a square microchannel

    PubMed Central

    Zhao, Tong; Liu, Kai; Takei, Masahiro

    2016-01-01

    The inertial migration of neutrally buoyant spherical particles in high particle concentration (αpi > 3%) suspension flow in a square microchannel was investigated by means of the multi-electrodes sensing method which broke through the limitation of conventional optical measurement techniques in the high particle concentration suspensions due to interference from the large particle numbers. Based on the measured particle concentrations near the wall and at the corner of the square microchannel, particle cross-sectional migration ratios are calculated to quantitatively estimate the migration degree. As a result, particle migration to four stable equilibrium positions near the centre of each face of the square microchannel is found only in the cases of low initial particle concentration up to 5.0 v/v%, while the migration phenomenon becomes partial as the initial particle concentration achieves 10.0 v/v% and disappears in the cases of the initial particle concentration αpi ≥ 15%. In order to clarify the influential mechanism of particle-particle interaction on particle migration, an Eulerian-Lagrangian numerical model was proposed by employing the Lennard-Jones potential as the inter-particle potential, while the inertial lift coefficient is calculated by a pre-processed semi-analytical simulation. Moreover, based on the experimental and simulation results, a dimensionless number named migration index was proposed to evaluate the influence of the initial particle concentration on the particle migration phenomenon. The migration index less than 0.1 is found to denote obvious particle inertial migration, while a larger migration index denotes the absence of it. This index is helpful for estimation of the maximum initial particle concentration for the design of inertial microfluidic devices. PMID:27158288

  18. Perspectives in flow-based microfluidic gradient generators for characterizing bacterial chemotaxis

    PubMed Central

    Wolfram, Christopher J.; Rubloff, Gary W.; Luo, Xiaolong

    2016-01-01

    Chemotaxis is a phenomenon which enables cells to sense concentrations of certain chemical species in their microenvironment and move towards chemically favorable regions. Recent advances in microbiology have engineered the chemotactic properties of bacteria to perform novel functions, but traditional methods of characterizing chemotaxis do not fully capture the associated cell motion, making it difficult to infer mechanisms that link the motion to the microbiology which induces it. Microfluidics offers a potential solution in the form of gradient generators. Many of the gradient generators studied to date for this application are flow-based, where a chemical species diffuses across the laminar flow interface between two solutions moving through a microchannel. Despite significant research efforts, flow-based gradient generators have achieved mixed success at accurately capturing the highly subtle chemotactic responses exhibited by bacteria. Here we present an analysis encompassing previously published versions of flow-based gradient generators, the theories that govern their gradient-generating properties, and new, more practical considerations that result from experimental factors. We conclude that flow-based gradient generators present a challenge inherent to their design in that the residence time and gradient decay must be finely balanced, and that this significantly narrows the window for reliable observation and quantification of chemotactic motion. This challenge is compounded by the effects of shear on an ellipsoidal bacterium that causes it to preferentially align with the direction of flow and subsequently suppresses the cross-flow chemotactic response. These problems suggest that a static, non-flowing gradient generator may be a more suitable platform for chemotaxis studies in the long run, despite posing greater difficulties in design and fabrication. PMID:27917249

  19. Perspectives in flow-based microfluidic gradient generators for characterizing bacterial chemotaxis.

    PubMed

    Wolfram, Christopher J; Rubloff, Gary W; Luo, Xiaolong

    2016-11-01

    Chemotaxis is a phenomenon which enables cells to sense concentrations of certain chemical species in their microenvironment and move towards chemically favorable regions. Recent advances in microbiology have engineered the chemotactic properties of bacteria to perform novel functions, but traditional methods of characterizing chemotaxis do not fully capture the associated cell motion, making it difficult to infer mechanisms that link the motion to the microbiology which induces it. Microfluidics offers a potential solution in the form of gradient generators. Many of the gradient generators studied to date for this application are flow-based, where a chemical species diffuses across the laminar flow interface between two solutions moving through a microchannel. Despite significant research efforts, flow-based gradient generators have achieved mixed success at accurately capturing the highly subtle chemotactic responses exhibited by bacteria. Here we present an analysis encompassing previously published versions of flow-based gradient generators, the theories that govern their gradient-generating properties, and new, more practical considerations that result from experimental factors. We conclude that flow-based gradient generators present a challenge inherent to their design in that the residence time and gradient decay must be finely balanced, and that this significantly narrows the window for reliable observation and quantification of chemotactic motion. This challenge is compounded by the effects of shear on an ellipsoidal bacterium that causes it to preferentially align with the direction of flow and subsequently suppresses the cross-flow chemotactic response. These problems suggest that a static, non-flowing gradient generator may be a more suitable platform for chemotaxis studies in the long run, despite posing greater difficulties in design and fabrication.

  20. Use of a turbine in a breath-by-breath computer-based respiratory measurement system.

    PubMed

    Venkateswaran, R S; Gallagher, R R

    1997-01-01

    The Computer-Based Respiratory Measurement System (CBRMS) is capable of analyzing individual breaths to monitor the kinetics of oxygen uptake, carbon dioxide production, tidal volumes, pulmonary ventilation, and other respiratory parameters during rest, exercise, and recovery. Respiratory gas volumes are measured by a calibrated turbine transducer while the respiratory gas concentrations are measured by a calibrated, fast-responding medical gas analyzer. To improve accuracy of the results, the inspiratory volumes and gas concentrations are measured and not assumed to be equal to expiratory volumes or ambient concentrations respectively. The respiratory gas volumes and concentration signals are digitized and stored in arrays. The gas volumes are converted to flow signals by software differentiation. These digitized data arrays are stored as files in a personal computer. Time alignment of the flow and gas concentration signals is performed at each breath for maximum accuracy in analysis. For system verification, data were obtained under resting conditions and under constant load exercises at 50 W, 100 W, and 150 W. These workloads were performed by a healthy, male subject on a bicycle ergometer. A strong correlation existed between the CBRMS steady-state results and the standard end-expirate bag collection technique. Thus, there is reason to believe that the CBRMS is capable of calculating respiratory transient responses accurately, a significant contribution to an understanding of total respiratory system function.

  1. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vent. (D) Design analysis based on accepted chemical engineering principles, measurable process.... (i) For the purpose of determining de minimis status for emission points, engineering assessment may... operating conditions expected to yield the highest flow rate and concentration. Engineering assessment...

  2. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vent. (D) Design analysis based on accepted chemical engineering principles, measurable process.... (i) For the purpose of determining de minimis status for emission points, engineering assessment may... operating conditions expected to yield the highest flow rate and concentration. Engineering assessment...

  3. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vent. (D) Design analysis based on accepted chemical engineering principles, measurable process.... (i) For the purpose of determining de minimis status for emission points, engineering assessment may... operating conditions expected to yield the highest flow rate and concentration. Engineering assessment...

  4. Microfluidic diffusion diluter: bulging of PDMS microchannels under pressure-driven flow

    NASA Astrophysics Data System (ADS)

    Holden, Matthew A.; Kumar, Saurabh; Beskok, Ali; Cremer, Paul S.

    2003-05-01

    The bulging of microfluidic systems during pressure-driven flow is potentially a major consideration for polydimethylsiloxane (PDMS)-based devices. Microchannel cross-sectional areas can change drastically as a function of flow rate and downstream microchannel position. Such geometrical flexibility leads to difficulties in predicting convective/diffusive transport for these systems. We have previously introduced a non-dimensional parameter, kappa, for characterizing convection and diffusion behavior for pressure-driven flow in rigid all-glass systems. This paper describes a modification of that concept for application to non-rigid systems, which is accomplished by incorporating an experimental step to account for the bulging in PDMS/glass microsystems. Specifically, an experimental measurement of channel height by fluorescence microscopy is combined with the aforementioned theory to characterize convective/diffusive behavior at a single location in the device. This allowed the parameter kappa to be determined at that point and applied to predict fluid flow in the subsequent portion of the PDMS microsystem. This procedure was applied to a PDMS/glass microfluidic diffusion dilution (muDD) device designed for generating concentration gradients. Theoretically predicted and experimentally measured distributions of concentrations within the microsystem matched well.

  5. Optimized Lateral Flow Immunoassay Reader for the Detection of Infectious Diseases in Developing Countries.

    PubMed

    Pilavaki, Evdokia; Demosthenous, Andreas

    2017-11-20

    Detection and control of infectious diseases is a major problem, especially in developing countries. Lateral flow immunoassays can be used with great success for the detection of infectious diseases. However, for the quantification of their results an electronic reader is required. This paper presents an optimized handheld electronic reader for developing countries. It features a potentially low-cost, low-power, battery-operated device with no added optical accessories. The operation of this proof of concept device is based on measuring the reflected light from the lateral flow immunoassay and translating it into the concentration of the specific analyte of interest. Characterization of the surface of the lateral flow immunoassay has been performed in order to accurately model its response to the incident light. Ray trace simulations have been performed to optimize the system and achieve maximum sensitivity by placing all the components in optimum positions. A microcontroller enables all the signal processing to be performed on the device and a Bluetooth module allows transmission of the results wirelessly to a mobile phone app. Its performance has been validated using lateral flow immunoassays with influenza A nucleoprotein in the concentration range of 0.5 ng/mL to 200 ng/mL.

  6. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow.

    PubMed

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2013-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space.

  7. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow

    PubMed Central

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2012-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space. PMID:23554584

  8. Stability analysis of rimming flow inside a horizontally rotating cylinder in the presence of an insoluble surfactant

    NASA Astrophysics Data System (ADS)

    Kumawat, Tara Chand; Tiwari, Naveen

    2017-12-01

    Two-dimensional base state solutions for rimming flows and their stability analysis to small axial perturbations are analyzed numerically. A thin liquid film which is uniformly covered with an insoluble surfactant flows inside a counterclockwise rotating horizontal cylinder. In the present work, a mathematical model is obtained which consists of coupled thin film thickness and surfactant concentration evolution equations. The governing equations are obtained by simplifying the momentum and species transport equations using the thin-film approximation. The model equations include the effect of gravity, viscosity, capillarity, inertia, and Marangoni stress. The concentration gradients generated due to flow result in the surface tension gradient that generates the Marangoni stress near the interface region. The oscillations in the flow due to inertia are damped out by the Marangoni stress. It is observed that the Marangoni stress has stabilizing effect, whereas inertia and surface tension enhance the instability growth rate. In the presence of low diffusion of the surfactant or large value of the Péclet number, the Marangoni stress becomes more effective. The analytically obtained eigenvalues match well with the numerically computed eigenvalues in the absence of gravity.

  9. Mass transport enhancement in redox flow batteries with corrugated fluidic networks

    NASA Astrophysics Data System (ADS)

    Lisboa, Kleber Marques; Marschewski, Julian; Ebejer, Neil; Ruch, Patrick; Cotta, Renato Machado; Michel, Bruno; Poulikakos, Dimos

    2017-08-01

    We propose a facile, novel concept of mass transfer enhancement in flow batteries based on electrolyte guidance in rationally designed corrugated channel systems. The proposed fluidic networks employ periodic throttling of the flow to optimally deflect the electrolytes into the porous electrode, targeting enhancement of the electrolyte-electrode interaction. Theoretical analysis is conducted with channels in the form of trapezoidal waves, confirming and detailing the mass transport enhancement mechanism. In dilute concentration experiments with an alkaline quinone redox chemistry, a scaling of the limiting current with Re0.74 is identified, which compares favourably against the Re0.33 scaling typical of diffusion-limited laminar processes. Experimental IR-corrected polarization curves are presented for high concentration conditions, and a significant performance improvement is observed with the narrowing of the nozzles. The adverse effects of periodic throttling on the pumping power are compared with the benefits in terms of power density, and an improvement of up to 102% in net power density is obtained in comparison with the flow-by case employing straight parallel channels. The proposed novel concept of corrugated fluidic networks comes with facile fabrication and contributes to the improvement of the transport characteristics and overall performance of redox flow battery systems.

  10. Effect of flow velocity on the photoacoustic detection for glucose aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Ding, Yu; Yao, Qingkai

    2018-01-01

    The blood glucose non-invasive detection has become the research hot-spot. The photoacoustic spectroscopy is a well-promising, high-efficient and noninvasive detection method because it combines the advantages of the pure optic and pure ultrasonic. In practice, the photoacoustic detection of blood glucose is impacted by many factors because the human body is a complicated bio-system. To study the effect of flow velocity in the blood vessel on the photoacoustic detection of blood glucose, a photoacoustic detection system based on optical parameter oscillator (OPO) pulsed laser induced ultrasonic was established. In this system, a 532nm pumped Nd: YAG OPO pulsed laser was used as the excitation source, and the photoacoustic signals of glucose were captured by ultrasonic transducer. Moreover, a set of blood circulation system was built to simulate the real blood flow situation in the human body. The experiments of the photoacoustic detection of glucose aqueous solutions with different concentrations at different flow velocities were experimentally investigated. Experimental results show that the photoacoustic peak-to-peak value linearly increases with the glucose concentration, but it decreases with the increase of the flow velocity although the profiles of photoacoustic signals don't change.

  11. Phase-Field Simulation of Concentration and Temperature Distribution During Dendritic Growth in a Forced Liquid Metal Flow

    NASA Astrophysics Data System (ADS)

    Du, Lifei; Zhang, Rong

    2014-12-01

    A phase-field model with convection is employed to investigate the effect of liquid flow on the dendritic structure formation of a Ni-Cu alloy during rapid solidification. Temperature and solute diffusion are significantly changed with induced liquid metal flow, and distribution changes of concentration and temperature are also analyzed and discussed. The solute segregation is affected due to the concentration diffusion layer thickness change caused by the liquid flow. The flow reduces the solute segregation in the upstream and leads to a fast dendrite growing, while solidifying in the downstream gets constrained with the large solute diffusion layer. Increasing flow velocity increases the asymmetry of dendrite morphology with much more suppressed growth in the downstream. The temperature distribution is also asymmetrical due to the non-uniform latent heat released during solidification coupling with heat diffusion changed by the liquid flow. Therefore, the forced liquid flow significantly affects the dendrite morphology, concentration, and temperature distributions in the solidifying microstructure.

  12. A level-set method for two-phase flows with moving contact line and insoluble surfactant

    NASA Astrophysics Data System (ADS)

    Xu, Jian-Jun; Ren, Weiqing

    2014-04-01

    A level-set method for two-phase flows with moving contact line and insoluble surfactant is presented. The mathematical model consists of the Navier-Stokes equation for the flow field, a convection-diffusion equation for the surfactant concentration, together with the Navier boundary condition and a condition for the dynamic contact angle derived by Ren et al. (2010) [37]. The numerical method is based on the level-set continuum surface force method for two-phase flows with surfactant developed by Xu et al. (2012) [54] with some cautious treatment for the boundary conditions. The numerical method consists of three components: a flow solver for the velocity field, a solver for the surfactant concentration, and a solver for the level-set function. In the flow solver, the surface force is dealt with using the continuum surface force model. The unbalanced Young stress at the moving contact line is incorporated into the Navier boundary condition. A convergence study of the numerical method and a parametric study are presented. The influence of surfactant on the dynamics of the moving contact line is illustrated using examples. The capability of the level-set method to handle complex geometries is demonstrated by simulating a pendant drop detaching from a wall under gravity.

  13. Herbicides and herbicide degradation products in upper midwest agricultural streams during august base-flow conditions

    USGS Publications Warehouse

    Kalkhoff, S.J.; Lee, K.E.; Porter, S.D.; Terrio, P.J.; Thurman, E.M.

    2003-01-01

    Herbicide concentrations in streams of the U.S. Midwest have been shown to decrease through the growing season due to a variety of chemical and physical factors. The occurrence of herbicide degradation products at the end of the growing season is not well known. This study was conducted to document the occurrence of commonly used herbicides and their degradation products in Illinois, Iowa, and Minnesota streams during base-flow conditions in August 1997. Atrazine, the most frequently detected herbicide (94%), was present at relatively low concentrations (median 0.17 μg L−1). Metolachlor was detected in 59% and cyanazine in 37% of the samples. Seven of nine compounds detected in more than 50% of the samples were degradation products. The total concentration of the degradation products (median of 4.4 μg L−1) was significantly greater than the total concentration of parent compounds (median of 0.26 μg L−1). Atrazine compounds were present less frequently and in significantly smaller concentrations in streams draining watersheds with soils developed on less permeable tills than in watersheds with soils developed on more permeable loess. The detection and concentration of triazine compounds was negatively correlated with antecedent rainfall (April–July). In contrast, acetanalide compounds were positively correlated with antecedant rainfall in late spring and early summer that may transport the acetanalide degradates into ground water and subsequently into nearby streams. The distribution of atrazine degradation products suggests regional differences in atrazine degradation processes.

  14. Relationships between stream nitrate concentration and spatially distributed snowmelt in high-elevation catchments of the western U.S.

    NASA Astrophysics Data System (ADS)

    Perrot, Danielle; Molotch, Noah P.; Williams, Mark W.; Jepsen, Steven M.; Sickman, James O.

    2014-11-01

    This study compares stream nitrate (NO3-) concentrations to spatially distributed snowmelt in two alpine catchments, the Green Lakes Valley, Colorado (GLV4) and Tokopah Basin, California (TOK). A snow water equivalent reconstruction model and Landsat 5 and 7 snow cover data were used to estimate daily snowmelt at 30 m spatial resolution in order to derive indices of new snowmelt areas (NSAs). Estimates of NSA were then used to explain the NO3- flushing behavior for each basin over a 12 year period (1996-2007). To identify the optimal method for defining NSAs and elucidate mechanisms underlying catchment NO3- flushing, we conducted a series of regression analyses using multiple thresholds of snowmelt based on temporal and volumetric metrics. NSA indices defined by volume of snowmelt (e.g., snowmelt ≤ 30 cm) rather than snowmelt duration (e.g., snowmelt ≤ 9 days) were the best predictors of stream NO3- concentrations. The NSA indices were better correlated with stream NO3- concentration in TOK (average R2= 0.68) versus GLV4 (average R2= 0.44). Positive relationships between NSA and stream NO3- concentration were observed in TOK with peak stream NO3- concentration occurring on the rising limb of snowmelt. Positive and negative relationships between NSA and stream NO3- concentration were found in GLV4 with peak stream NO3- concentration occurring as NSA expands. Consistent with previous works, the contrasting NO3- flushing behavior suggests that streamflow in TOK was primarily influenced by overland flow and shallow subsurface flow, whereas GLV4 appeared to be more strongly influenced by deeper subsurface flow paths.

  15. Effect of blood flow on near-the-wall mass transport of drugs and other bioactive agents: a simple formula to estimate boundary layer concentrations.

    PubMed

    Rugonyi, Sandra

    2008-04-01

    Transport of bioactive agents through the blood is essential for cardiovascular regulatory processes and drug delivery. Bioactive agents and other solutes infused into the blood through the wall of a blood vessel or released into the blood from an area in the vessel wall spread downstream of the infusion/release region and form a thin boundary layer in which solute concentration is higher than in the rest of the blood. Bioactive agents distributed along the vessel wall affect endothelial cells and regulate biological processes, such as thrombus formation, atherogenesis, and vascular remodeling. To calculate the concentration of solutes in the boundary layer, researchers have generally used numerical simulations. However, to investigate the effect of blood flow, infusion rate, and vessel geometry on the concentration of different solutes, many simulations are needed, leading to a time-consuming effort. In this paper, a relatively simple formula to quantify concentrations in a tube downstream of an infusion/release region is presented. Given known blood-flow rates, tube radius, solute diffusivity, and the length of the infusion region, this formula can be used to quickly estimate solute concentrations when infusion rates are known or to estimate infusion rates when solute concentrations at a point downstream of the infusion region are known. The developed formula is based on boundary layer theory and physical principles. The formula is an approximate solution of the advection-diffusion equations in the boundary layer region when solute concentration is small (dilute solution), infusion rate is modeled as a mass flux, and there is no transport of solute through the wall or chemical reactions downstream of the infusion region. Wall concentrations calculated using the formula developed in this paper were compared to the results from finite element models. Agreement between the results was within 10%. The developed formula could be used in experimental procedures to evaluate drug efficacy, in the design of drug-eluting stents, and to calculate rates of release of bioactive substances at active surfaces using downstream concentration measurements. In addition to being simple and fast to use, the formula gives accurate quantifications of concentrations and infusion rates under steady-state and oscillatory flow conditions, and therefore can be used to estimate boundary layer concentrations under physiological conditions.

  16. Carbofuran removal in continuous-photocatalytic reactor: Reactor optimization, rate-constant determination and carbofuran degradation pathway analysis.

    PubMed

    Vishnuganth, M A; Remya, Neelancherry; Kumar, Mathava; Selvaraju, N

    2017-05-04

    Carbofuran (CBF) removal in a continuous-flow photocatalytic reactor with granular activated carbon supported titanium dioxide (GAC-TiO 2 ) catalyst was investigated. The effects of feed flow rate, TiO 2 concentration and addition of supplementary oxidants on CBF removal were investigated. The central composite design (CCD) was used to design the experiments and to estimate the effects of feed flow rate and TiO 2 concentration on CBF removal. The outcome of CCD experiments demonstrated that reactor performance was influenced mainly by feed flow rate compared to TiO 2 concentration. A second-order polynomial model developed based on CCD experiments fitted the experimental data with good correlation (R 2 ∼ 0.964). The addition of 1 mL min -1 hydrogen peroxide has shown complete CBF degradation and 76% chemical oxygen demand removal under the following operating conditions of CBF ∼50 mg L -1 , TiO 2 ∼5 mg L -1 and feed flow rate ∼82.5 mL min -1 . Rate constant of the photodegradation process was also calculated by applying the kinetic data in pseudo-first-order kinetics. Four major degradation intermediates of CBF were identified using GC-MS analysis. As a whole, the reactor system and GAC-TiO 2 catalyst used could be constructive in cost-effective CBF removal with no impact to receiving environment through getaway of photocatalyst.

  17. The flow dynamics of an extremely large volume pyroclastic flow, the 2.08-Ma Cerro Galán Ignimbrite, NW Argentina, and comparison with other flow types

    USGS Publications Warehouse

    Cas, Ray A.F.; Wright, Heather M.; Folkes, Christopher B.; Lesti, Chiara; Porreca, Massimiliano; Giordano, Guido; Viramonte, Jose G.

    2011-01-01

    The 2.08-Ma Cerro Galán Ignimbrite (CGI) represents a >630-km3 dense rock equivalent (VEI 8) eruption from the long-lived Cerro Galán magma system (∼6 Ma). It is a crystal-rich (35–60%), pumice (<10% generally) and lithic-poor (<5% generally) rhyodacitic ignimbrite, lacking a preceding plinian fallout deposit. The CGI is preserved up to 80 km from the structural margins of the caldera, but almost certainly was deposited up to 100 km from the caldera in some places. Only one emplacement unit is preserved in proximal to medial settings and in most distal settings, suggesting constant flow conditions, but where the pyroclastic flow moved into a palaeotopography of substantial valleys and ridges, it interacted with valley walls, resulting in flow instabilities that generated multiple depositional units, often separated by pyroclastic surge deposits. The CGI preserves a widespread sub-horizontal fabric, defined by aligned elongate pumice and lithic clasts, and minerals (e.g. biotite). A sub-horizontal anisotropy of magnetic susceptibility fabric is defined by minute magnetic minerals in all localities where it has been analysed. The CGI is poor in both vent-derived (‘accessory’) lithics and locally derived lithics from the ground surface (‘accidental’) lithics. Locally derived lithics are small (<20 cm) and were not transported far from source points. All data suggest that the pyroclastic flow system producing the CGI was characterised throughout by high sedimentation rates, resulting from high particle concentration and suppressed turbulence at the depositional boundary layer, despite being a low aspect ratio ignimbrite. Based on these features, we question whether high velocity and momentum are necessary to account for extensive flow mobility. It is proposed that the CGI was deposited by a pyroclastic flow system that developed a substantial, high particle concentration granular under-flow, which flowed with suppressed turbulence. High particle concentration and fine-ash content hindered gas loss and maintained flow mobility. In order to explain the contemporaneous maintenance of high particle concentration, high sedimentation rate at the depositional boundary layer and a high level of mobility, it is also proposed that the flow(s) was continuously supplied at a high mass feeding rate. It is also proposed that internal gas pressure within the flow, directed downwards onto the substrate over which the flow was passing, reduced the friction between the flow and the substrate and also enhanced its mobility. The pervasive sub-horizontal fabric of aligned pumice, lithic and even biotite crystals indicates a consistent horizontal shear force existed during transport and deposition in the basal granular flow, consistent with the existence of a laminar, shearing, granular flow regime during the final stages of transport and deposition.

  18. Apparatus and method for controlling autotroph cultivation

    DOEpatents

    Fuxman, Adrian M; Tixier, Sebastien; Stewart, Gregory E; Haran, Frank M; Backstrom, Johan U; Gerbrandt, Kelsey

    2013-07-02

    A method includes receiving at least one measurement of a dissolved carbon dioxide concentration of a mixture of fluid containing an autotrophic organism. The method also includes determining an adjustment to one or more manipulated variables using the at least one measurement. The method further includes generating one or more signals to modify the one or more manipulated variables based on the determined adjustment. The one or more manipulated variables could include a carbon dioxide flow rate, an air flow rate, a water temperature, and an agitation level for the mixture. At least one model relates the dissolved carbon dioxide concentration to one or more manipulated variables, and the adjustment could be determined by using the at least one model to drive the dissolved carbon dioxide concentration to at least one target that optimize a goal function. The goal function could be to optimize biomass growth rate, nutrient removal and/or lipid production.

  19. Mixed convection heat transfer: an experimental study on Cu/heat transfer oil nanofluids inside annular tube

    NASA Astrophysics Data System (ADS)

    Abbasian Arani, Ali Akbar; Aberoumand, Hossein; Jafarimoghaddam, Amin; Aberoumand, Sadegh

    2017-09-01

    The heat transfer and flow characteristics of Cu-heat transfer oil nanofluid during mixed convection through horizontal annular tubes under uniform heat flux as boundary condition are investigated experimentally. Data were acquired at low Reynolds number ranged from about 26 to 252. The applied nanofluid prepared by Electrical Explosion of Wire technique with no nanoparticles agglomeration during nanofluid preparation process and experiments. Pure heat transfer oil and nanofluids with nanoparticles weight concentrations of 0.12, 0.36 and 0.72% were used as the working fluids. Based on these results, Effects of nanoparticles concentration, heat flux and free convection on the thermal field development are studied under buoyancy assisted flow condition for Grashof number, Richardson number between 2820 and 12,686, and 0.1-10, respectively. Results show that Nusselt number increases with an increase of nanoparticles weight concentrations from 0 to 0.72% under certain Richardson numbers.

  20. The application of improved flow diverter for first flush management.

    PubMed

    Mrowiec, M

    2010-01-01

    The paper presents the investigations on first flush phenomenon based on the total suspended solids (TSS) concentration measurement during selected rainfalls at central part of Czestochowa (Poland) and also the hydrodynamic model of the catchment. The model allows to present the conception of first flush management using an improved flow diverter Septurn. Flow diverters used in the separate sewer systems create a hybrid system called "semi-separate" sewage system, which allows to treat the first flush volume in the waste water treatment plant (WWTP). Proposed construction of the flow diverter makes possible to capture significant part of the pollutant load (TSS) and simultaneously to reduce volume discharges to WWTPs during wet weather.

  1. Factors affecting the viscosity of sodium hypochlorite and their effect on irrigant flow.

    PubMed

    Bukiet, F; Soler, T; Guivarch, M; Camps, J; Tassery, H; Cuisinier, F; Candoni, N

    2013-10-01

    To assess the influence of concentration, temperature and surfactant addition to a sodium hypochlorite solution on its dynamic viscosity and to calculate the corresponding Reynolds number to determine the corresponding flow regimen. The dynamic viscosity of the irrigant was assessed using a rotational viscometer. Sodium hypochlorite with concentrations ranging from 0.6% to 9.6% was tested at 37 and 22 °C. A wide range of concentrations of three different surfactants was mixed in 2.4% sodium hypochlorite for viscosity measurements. The Reynolds number was calculated under each condition. Data were analysed using two-way anova. There was a significant influence of sodium hypochlorite concentration (P < 0.001) and temperature (P < 0.001) on dynamic viscosity: the latter significantly increased with sodium hypochlorite concentration and decreased with temperature. A significant influence of surfactant concentration on dynamic viscosity (P < 0.001) occurred, especially for high surfactant concentrations: 6.25% for benzalkonium chloride, 15% for Tween 80 and 6.25% for Triton X-100. Reynolds number values calculated for a given flow rate (0.14 mL s(-1)), and root canal diameter (sizes 45 and 70) clearly qualified the irrigant flow regimen as laminar. Dynamic viscosity increased with sodium hypochlorite and surfactant concentration but decreased with temperature. Under clinical conditions, all viscosities measured led to laminar flow. The transition between laminar and turbulent flow may be reached by modifying different parameters at the same time: increasing flow rate and temperature whilst decreasing irrigant viscosity by adding surfactants with a high value of critical micellar concentration. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  2. Combustion of hydrogen-air jets in local chemical equilibrium: A guide to the CHARNAL computer program

    NASA Technical Reports Server (NTRS)

    Spalding, D. B.; Launder, B. E.; Morse, A. P.; Maples, G.

    1974-01-01

    A guide to a computer program, written in FORTRAN 4, for predicting the flow properties of turbulent mixing with combustion of a circular jet of hydrogen into a co-flowing stream of air is presented. The program, which is based upon the Imperial College group's PASSA series, solves differential equations for diffusion and dissipation of turbulent kinetic energy and also of the R.M.S. fluctuation of hydrogen concentration. The effective turbulent viscosity for use in the shear stress equation is computed. Chemical equilibrium is assumed throughout the flow.

  3. Experimental Investigation of Droplet Evaporation of Water with Ground Admixtures while Motion in a Flame of Liquid Fuel

    NASA Astrophysics Data System (ADS)

    Dmitriyenko, Margarita A.; Nyashina, Galina S.; Zhdanova, Alena O.; Vysokomornaya, Olga V.

    2016-02-01

    The evaporation features for the atomized flow of suspension on the base of water with ground admixtures in an area of high-temperature combustion products of liquid flammable substance (acetone) were investigated experimentally by the optical methods of gas flow diagnostic and the high-speed video recording. The scales of influence of clay and silt concentration in droplets of atomized flow on the intensity of its evaporation were determined. The approximation dependences describing a decrease in typical size of suspension droplets at various values of ground admixtures were obtained.

  4. Chemical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas Chromatography-Mass Spectrometry

    PubMed Central

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-01-01

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance. PMID:25325339

  5. Chemical discrimination in turbulent gas mixtures with MOX sensors validated by gas chromatography-mass spectrometry.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-10-16

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance.

  6. Turbulent behaviour of non-cohesive sediment gravity flows at unexpectedly high flow density

    NASA Astrophysics Data System (ADS)

    Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian

    2016-04-01

    Experimental lock exchange-type turbidity currents laden with non-cohesive silica-flour were found to be highly dynamic at remarkably high suspended sediment concentrations. These experiments were conducted to produce sediment gravity flows of volumetric concentrations ranging from 1% to 52%, to study how changes in suspended sediment concentration affects the head velocities and run-out distances of these flows, in natural seawater. Increasing the volumetric concentration of suspended silica-flour, C, up to C = 46%, within the flows led to a progressive increase in the maximum head velocity. This relationship suggests that suspended sediment concentration intensifies the density difference between the turbulent suspension and the ambient water, which drives the flow, even if almost half of the available space is occupied by sediment particles. However, from C = 46% to C = 52% a rapid reduction in the maximum head velocity was measured. It is inferred that at C = 46%, friction from grain-to-grain interactions begins to attenuate turbulence within the flows. At C > 46%, the frictional stresses become progressively more dominant over the turbulent forces and excess density, thus producing lower maximum head velocities. This grain interaction process started to rapidly reduce the run-out distance of the silica-flour flows at equally high concentrations of C ≥ 47%. All flows with C < 47% reflected off the end of the 5-m long tank, but the head velocities gradually reduced along the tank. Bagnold (1954, 1963) estimated that, for sand flows, grain-to-grain interactions start to become important in modulating turbulence at C > 9%. Yet, the critical flow concentration at which turbulence modulation commenced for these silica-flour laden flows appeared to be much higher. We suggest that Bagnold's 9% criterion cannot be applied to flows that carry fine-grained sediment, because turbulent forces are more important than dispersive forces, and frictional forces start to affect the flows only at concentrations just below the cubic packing density of spheres of C = 52%. These experimental results also imply that natural flows may be able to transport vast volumes of non-cohesive sediment with relative ease, especially considering that the experimental flows moved on a horizontal slope. References Bagnold, R. A. (1954). Experiments on a Gravity-Free Dispersion of Large Solid Spheres in Newtonian Fluid under Shear. Proceedings of the Royal Society series A: Mathematical, Physical and Engineering Sciences, 225(1160), 49-63. Bagnold, R. A. (1963). Beach and nearshore processes: Part 1. Mechanics of marine sedimentation. In: Hill, M. N. (Ed.) The Earth Beneath the Sea, vol. 3. Wiley-Interscience, London, 507-533.

  7. Effect of subalpine canopy removal on snowpack, soil solution, and nutrient export, Fraser Experimental Forest, CO

    USGS Publications Warehouse

    Stottlemyer, R.; Troendle, C.A.

    1999-01-01

    Research on the effects of vegetation manipulation on snowpack, soil water, and streamwater chemistry and flux has been underway at the Fraser Experimental Forest (FEF), CO, since 1982. Greater than 95% of FEF snowmelt passes through watersheds as subsurface flow where soil processes significantly alter meltwater chemistry. To better understand the mechanisms accounting for annual variation in watershed streamwater ion concentration and flux with snowmelt, we studied subsurface water flow, its ion concentration, and flux in conterminous forested and clear cut plots. Repetitive patterns in subsurface flow and chemistry were apparent. Control plot subsurface flow chemistry had the highest ion concentrations in late winter and fall. When shallow subsurface flow occurred, its Ca2+, SO42-, and HCO3- concentrations were lower and K+ higher than deep flow. The percentage of Ca2+, NO3-, SO42-, and HCO3- flux in shallow depths was less and K+ slightly greater than the percentage of total flow. Canopy removal increased precipitation reaching the forest floor by about 40%, increased peak snowpack water equivalent (SWE) > 35%, increased the average snowpack Ca2+, NO3-, and NH4+ content, reduced the snowpack K+ content, and increased the runoff four-fold. Clear cutting doubled the percentage of subsurface flow at shallow depths, and increased K+ concentration in shallow subsurface flow and NO3- concentrations in both shallow and deep flow. The percentage change in total Ca2+, SO42-, and HCO3- flux in shallow depths was less than the change in water flux, while that of K+ and NO3- flux was greater. Relative to the control, in the clear cut the percentage of total Ca2+ flux at shallow depths increased from 5 to 12%, SO42- 5.4 to 12%, HCO3- from 5.6 to 8.7%, K+ from 6 to 35%, and NO3- from 2.7 to 17%. The increases in Ca2+ and SO42- flux were proportional to the increase in water flux, the flux of HCO3- increased proportionally less than water flux, and NO3- and K+ were proportionally greater than water flux. Increased subsurface flow accounted for most of the increase in non-limiting nutrient loss. For limiting nutrients, loss of plant uptake and increased shallow subsurface flow accounted for the greater loss. Seasonal ion concentration patterns in streamwater and subsurface flow were similar.Research on the effects of vegetation manipulation on snowpack, soil water, and streamwater chemistry and flux has been underway at the Fraser Experimental Forest (FEF), CO, since 1982. Greater than 95% of FEF snowmelt passes through watersheds as subsurface flow where soil processes significantly alter meltwater chemistry. To better understand the mechanisms accounting for annual variation in watershed streamwater ion concentration and flux with snowmelt, we studied subsurface water flow, its ion concentration, and flux in conterminous forested and clear cut plots. Repetitive patterns in subsurface flow and chemistry were apparent. Control plot subsurface flow chemistry had the highest ion concentrations in late winter and fall. When shallow subsurface flow occurred, its Ca2+, SO42-, and HCO3- concentrations were lower and K+ higher than deep flow. The percentage of Ca2+, NO3-, SO42-, and HCO3- flux in shallow depths was less and K+ slightly greater than the percentage of total flow. Canopy removal increased precipitation reaching the forest floor by about 40%, increased peak snowpack water equivalent (SWE) > 35%, increased the average snowpack Ca2+, NO3-, and NH4+ content, reduced the snowpack K+ content, and increased the runoff four-fold. Clear cutting doubled the percentage of subsurface flow at shallow depths, and increased K+ concentration in shallow subsurface flow and NO3- concentrations in both shallow and deep flow. The percentage change in total Ca2+, SO42-, and HCO3- flux in shallow depths was less than the change in water flux, while that of K+ and NO3- flux was greater. Relative to the control, in the clear cut the percentage of total Ca

  8. Airfoil Drag Reduction using Controlled Trapped Vorticity Concentrations

    NASA Astrophysics Data System (ADS)

    Desalvo, Michael; Glezer, Ari

    2017-11-01

    The aerodynamic performance of a lifting surface at low angles of attack (when the base flow is fully attached) is improved through fluidic modification of its ``apparent'' shape by superposition of near-surface trapped vorticity concentrations. In the present wind tunnel investigations, a controlled trapped vorticity concentration is formed on the pressure surface of an airfoil (NACA 4415) using a hybrid actuator comprising a passive obstruction of scale O(0.01c) and an integral synthetic jet actuator. The jet actuation frequency [Stact O(10)] is selected to be at least an order of magnitude higher than the characteristic unstable frequency of the airfoil wake, thereby decoupling the actuation from the global instabilities of the base flow. Regulation of vorticity accumulation in the vicinity of the actuator by the jet effects changes in the local pressure, leading in turn to changes in the airfoil's drag and lift. Trapped vorticity can lead to a significant reduction in drag and reduced lift (owing to the sense of the vorticity), e.g. at α =4° and Re = 6.7 .105 the drag and lift reductions are 14% and 2%, respectively. PIV measurements show the spatial variation in the distribution of vorticity concentrations and yield estimates of the corresponding changes in circulation.

  9. Effectiveness of a flow-based device using riboflavin photochemistry in damaging blood-borne viral nucleic acids.

    PubMed

    Zhu, Liguo; Tong, Hongli; Wang, Shufang; Yu, Yang; Liu, Zhong; Li, Changqing; Wang, Deqing

    2018-05-03

    Effectiveness of a flow-based treatment device using riboflavin photochemistry was demonstrated by cytopathic effect method using indicator viruses. However, inactivation efficacy against real blood-borne viruses needs to be evaluated, especially at nucleic acid level. Special plasma samples with varying concentrations of blood-borne virus were selected using a strict blood selection procedure and were treated with device treatment (DT). Nucleic acid test (NAT) using polymerase chain reaction fluorescence method was used to detect virus copies. The NAT value of 4325 in plasma with high Hepatitis B Virus (HBV) concentrations decreased to 1330 with DT. After 100-fold dilution, the NAT value was below the NAT detection limits with DT compared with 23.0 that without DT. The NAT value of 61.9 in plasma with medium HBV concentrations decreased to 37.8 with DT, and after 10-fold dilution, the NAT value was below the NAT detection limits with DT compared with below 20 that without DT. The Ct values of plasma with low concentrations of blood-borne viruses were below the NAT detection limits with DT. There was a dose effect with DT which was effective in blood-borne viruses damaging nucleic acids to a level below the NAT detection limits. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Spatial and Temporal Dynamics of Fecal Coliform and Associated with Suspended Solids and Water within Five Northern California Estuaries.

    PubMed

    Lewis, David J; Atwill, Edward R; Pereira, Maria das Graças C; Bond, Ronald

    2013-01-01

    Fecal coliform and associated with suspended solids (SS) and water in five northern California estuaries were studied to document process influences and water quality monitoring biases affecting indicator bacteria concentrations. We collected and analyzed 2371 samples during 10 sampling events for the five studied estuaries. Concentrations during wet-season stormflow conditions were greater than during wet-season base flow and dry-season base flow conditions. Results also document concentration gradients across the length of the studied estuaries and with depth of sample collection. Highest concentrations were associated with shallow samples collected furthest inland. Corresponding decreases occurred the deeper and closer to the estuary mouth a sample was collected. Results also identify direct relationships of wind speed and discharge velocity and indirect relationship of tide stage to indicator bacteria concentrations. Bacteria associated with suspended solids (SS), after conversion to the same units of measurement (mass), were three orders of magnitude greater than in the water fraction. However, the mean proportion contributed by SS to composite water sample concentrations was 8% (SE 0.3) for fecal coliform and 7% (SE 0.3) for . Bacteria from the SS proportion is related to seasonality, tide stage, and discharge velocity that are consistent with mechanisms for entrainment, transport of SS, and reduced particle settling. These results are important for both managing and monitoring these systems by improving sample spatial and temporal context and corresponding bacteria concentration values across the freshwater-saltwater interface. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Regional-scale analysis of karst underground flow deduced from tracing experiments: examples from carbonate aquifers in Malaga province, southern Spain

    NASA Astrophysics Data System (ADS)

    Barberá, J. A.; Mudarra, M.; Andreo, B.; De la Torre, B.

    2018-02-01

    Tracer concentration data from field experiments conducted in several carbonate aquifers (Malaga province, southern Spain) were analyzed following a dual approach based on the graphical evaluation method (GEM) and solute transport modeling to decipher flow mechanisms in karst systems at regional scale. The results show that conduit system geometry and flow conditions are the principal factors influencing tracer migration through the examined karst flow routes. Solute transport is mainly controlled by longitudinal advection and dispersion throughout the conduit length, but also by flow partitioning between mobile and immobile fluid phases, while the matrix diffusion process appears to be less relevant. The simulation of tracer breakthrough curves (BTCs) suggests that diffuse and concentrated flow through the unsaturated zone can have equivalent transport properties under extreme recharge, with high flow velocities and efficient mixing due to the high hydraulic gradients generated. Tracer mobilization within the saturated zone under low flow conditions mainly depends on the hydrodynamics (rather than on the karst conduit development), which promote a lower longitudinal advection and retardation in the tracer migration, resulting in a marked tailing effect of BTCs. The analytical advection-dispersion equation better approximates the effective flow velocity and longitudinal dispersion estimations provided by the GEM, while the non-equilibrium transport model achieves a better adjustment of most asymmetric and long-tailed BTCs. The assessment of karst underground flow properties from tracing tests at regional scale can aid design of groundwater management and protection strategies, particularly in large hydrogeological systems (i.e. transboundary carbonate aquifers) and/or in poorly investigated ones.

  12. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery.

    PubMed

    Duan, Wentao; Vemuri, Rama S; Hu, Dehong; Yang, Zheng; Wei, Xiaoliang

    2017-02-13

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, non-aqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of non-aqueous electrolytes. However, significant technical hurdles exist currently limiting non-aqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we recently reported a non-aqueous flow battery based on a highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox material exhibits an ambipolar electrochemical property, and therefore can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry. Moreover, we demonstrated that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC), as cross-validated by electron spin resonance (ESR) measurements. Herein we present a video protocol for the electrochemical evaluation and SOC diagnosis of the PTIO symmetric flow battery. With a detailed description, we experimentally demonstrated the route to achieve such purposes. This protocol aims to spark more interests and insights on the safety and reliability in the field of non-aqueous redox flow batteries.

  13. Product selectivity control induced by using liquid-liquid parallel laminar flow in a microreactor.

    PubMed

    Amemiya, Fumihiro; Matsumoto, Hideyuki; Fuse, Keishi; Kashiwagi, Tsuneo; Kuroda, Chiaki; Fuchigami, Toshio; Atobe, Mahito

    2011-06-07

    Product selectivity control based on a liquid-liquid parallel laminar flow has been successfully demonstrated by using a microreactor. Our electrochemical microreactor system enables regioselective cross-coupling reaction of aldehyde with allylic chloride via chemoselective cathodic reduction of substrate by the combined use of suitable flow mode and corresponding cathode material. The formation of liquid-liquid parallel laminar flow in the microreactor was supported by the estimation of benzaldehyde diffusion coefficient and computational fluid dynamics simulation. The diffusion coefficient for benzaldehyde in Bu(4)NClO(4)-HMPA medium was determined to be 1.32 × 10(-7) cm(2) s(-1) by electrochemical measurements, and the flow simulation using this value revealed the formation of clear concentration gradient of benzaldehyde in the microreactor channel over a specific channel length. In addition, the necessity of the liquid-liquid parallel laminar flow was confirmed by flow mode experiments.

  14. Fluid Dynamic Modeling to Support the Development of Flow-Based Hepatocyte Culture Systems for Metabolism Studies

    PubMed Central

    Pedersen, Jenny M.; Shim, Yoo-Sik; Hans, Vaibhav; Phillips, Martin B.; Macdonald, Jeffrey M.; Walker, Glenn; Andersen, Melvin E.; Clewell, Harvey J.; Yoon, Miyoung

    2016-01-01

    Accurate prediction of metabolism is a significant outstanding challenge in toxicology. The best predictions are based on experimental data from in vitro systems using primary hepatocytes. The predictivity of the primary hepatocyte-based culture systems, however, is still limited due to well-known phenotypic instability and rapid decline of metabolic competence within a few hours. Dynamic flow bioreactors for three-dimensional cell cultures are thought to be better at recapitulating tissue microenvironments and show potential to improve in vivo extrapolations of chemical or drug toxicity based on in vitro test results. These more physiologically relevant culture systems hold potential for extending metabolic competence of primary hepatocyte cultures as well. In this investigation, we used computational fluid dynamics to determine the optimal design of a flow-based hepatocyte culture system for evaluating chemical metabolism in vitro. The main design goals were (1) minimization of shear stress experienced by the cells to maximize viability, (2) rapid establishment of a uniform distribution of test compound in the chamber, and (3) delivery of sufficient oxygen to cells to support aerobic respiration. Two commercially available flow devices – RealBio® and QuasiVivo® (QV) – and a custom developed fluidized bed bioreactor were simulated, and turbulence, flow characteristics, test compound distribution, oxygen distribution, and cellular oxygen consumption were analyzed. Experimental results from the bioreactors were used to validate the simulation results. Our results indicate that maintaining adequate oxygen supply is the most important factor to the long-term viability of liver bioreactor cultures. Cell density and system flow patterns were the major determinants of local oxygen concentrations. The experimental results closely corresponded to the in silico predictions. Of the three bioreactors examined in this study, we were able to optimize the experimental conditions for long-term hepatocyte cell culture using the QV bioreactor. This system facilitated the use of low system volumes coupled with higher flow rates. This design supports cellular respiration by increasing oxygen concentrations in the vicinity of the cells and facilitates long-term kinetic studies of low clearance test compounds. These two goals were achieved while simultaneously keeping the shear stress experienced by the cells within acceptable limits. PMID:27747210

  15. PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HALGREN DL

    2010-03-12

    The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the samemore » six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.« less

  16. The flow structure of pyroclastic density currents: evidence from particle models and large-scale experiments

    NASA Astrophysics Data System (ADS)

    Dellino, Pierfrancesco; Büttner, Ralf; Dioguardi, Fabio; Doronzo, Domenico Maria; La Volpe, Luigi; Mele, Daniela; Sonder, Ingo; Sulpizio, Roberto; Zimanowski, Bernd

    2010-05-01

    Pyroclastic flows are ground hugging, hot, gas-particle flows. They represent the most hazardous events of explosive volcanism, one striking example being the famous historical eruption of Pompeii (AD 79) at Vesuvius. Much of our knowledge on the mechanics of pyroclastic flows comes from theoretical models and numerical simulations. Valuable data are also stored in the geological record of past eruptions, i.e. the particles contained in pyroclastic deposits, but they are rarely used for quantifying the destructive potential of pyroclastic flows. In this paper, by means of experiments, we validate a model that is based on data from pyroclastic deposits. It allows the reconstruction of the current's fluid-dynamic behaviour. We show that our model results in likely values of dynamic pressure and particle volumetric concentration, and allows quantifying the hazard potential of pyroclastic flows.

  17. Debris flows: behavior and hazard assessment

    USGS Publications Warehouse

    Iverson, Richard M.

    2014-01-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  18. Characterization of Buoyant Fluorescent Particles for Field Observations of Water Flows

    PubMed Central

    Tauro, Flavia; Aureli, Matteo; Porfiri, Maurizio; Grimaldi, Salvatore

    2010-01-01

    In this paper, the feasibility of off-the-shelf buoyant fluorescent microspheres as particle tracers in turbid water flows is investigated. Microspheres’ fluorescence intensity is experimentally measured and detected in placid aqueous suspensions of increasing concentrations of clay to simulate typical conditions occurring in natural drainage networks. Experiments are conducted in a broad range of clay concentrations and particle immersion depths by using photoconductive cells and image-based sensing technologies. Results obtained with both methodologies exhibit comparable trends and show that the considered particles are fairly detectable in critically turbid water flows. Further information on performance and integration of the studied microspheres in low-cost measurement instrumentation for field observations is obtained through experiments conducted in a custom built miniature water channel. This experimental characterization provides a first assessment of the feasibility of commercially available buoyant fluorescent beads in the analysis of high turbidity surface water flows. The proposed technology may serve as a minimally invasive sensing system for hazardous events, such as pollutant diffusion in natural streams and flash flooding due to extreme rainfall. PMID:22163540

  19. Characterization of buoyant fluorescent particles for field observations of water flows.

    PubMed

    Tauro, Flavia; Aureli, Matteo; Porfiri, Maurizio; Grimaldi, Salvatore

    2010-01-01

    In this paper, the feasibility of off-the-shelf buoyant fluorescent microspheres as particle tracers in turbid water flows is investigated. Microspheres' fluorescence intensity is experimentally measured and detected in placid aqueous suspensions of increasing concentrations of clay to simulate typical conditions occurring in natural drainage networks. Experiments are conducted in a broad range of clay concentrations and particle immersion depths by using photoconductive cells and image-based sensing technologies. Results obtained with both methodologies exhibit comparable trends and show that the considered particles are fairly detectable in critically turbid water flows. Further information on performance and integration of the studied microspheres in low-cost measurement instrumentation for field observations is obtained through experiments conducted in a custom built miniature water channel. This experimental characterization provides a first assessment of the feasibility of commercially available buoyant fluorescent beads in the analysis of high turbidity surface water flows. The proposed technology may serve as a minimally invasive sensing system for hazardous events, such as pollutant diffusion in natural streams and flash flooding due to extreme rainfall.

  20. Generalized Fluid System Simulation Program (GFSSP) - Version 6

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul

    2015-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.

  1. Molecular Materials for Nonaqueous Flow Batteries with a High Coulombic Efficiency and Stable Cycling.

    PubMed

    Milton, Margarita; Cheng, Qian; Yang, Yuan; Nuckolls, Colin; Hernández Sánchez, Raúl; Sisto, Thomas J

    2017-12-13

    This manuscript presents a working redox battery in organic media that possesses remarkable cycling stability. The redox molecules have a solubility over 1 mol electrons/liter, and a cell with 0.4 M electron concentration is demonstrated with steady performance >450 cycles (>74 days). Such a concentration is among the highest values reported in redox flow batteries with organic electrolytes. The average Coulombic efficiency of this cell during cycling is 99.868%. The stability of the cell approaches the level necessary for a long lifetime nonaqueous redox flow battery. For the membrane, we employ a low cost size exclusion cellulose membrane. With this membrane, we couple the preparation of nanoscale macromolecular electrolytes to successfully avoid active material crossover. We show that this cellulose-based membrane can support high voltages in excess of 3 V and extreme temperatures (-20 to 110 °C). These extremes in temperature and voltage are not possible with aqueous systems. Most importantly, the nanoscale macromolecular platforms we present here for our electrolytes can be readily tuned through derivatization to realize the promise of organic redox flow batteries.

  2. Videodensitometric Methods for Cardiac Output Measurements

    NASA Astrophysics Data System (ADS)

    Mischi, Massimo; Kalker, Ton; Korsten, Erik

    2003-12-01

    Cardiac output is often measured by indicator dilution techniques, usually based on dye or cold saline injections. Developments of more stable ultrasound contrast agents (UCA) are leading to new noninvasive indicator dilution methods. However, several problems concerning the interpretation of dilution curves as detected by ultrasound transducers have arisen. This paper presents a method for blood flow measurements based on UCA dilution. Dilution curves are determined by real-time densitometric analysis of the video output of an ultrasound scanner and are automatically fitted by the Local Density Random Walk model. A new fitting algorithm based on multiple linear regression is developed. Calibration, that is, the relation between videodensity and UCA concentration, is modelled by in vitro experimentation. The flow measurement system is validated by in vitro perfusion of SonoVue contrast agent. The results show an accurate dilution curve fit and flow estimation with determination coefficient larger than 0.95 and 0.99, respectively.

  3. Sheathless Size-Based Acoustic Particle Separation

    PubMed Central

    Guldiken, Rasim; Jo, Myeong Chan; Gallant, Nathan D.; Demirci, Utkan; Zhe, Jiang

    2012-01-01

    Particle separation is of great interest in many biological and biomedical applications. Flow-based methods have been used to sort particles and cells. However, the main challenge with flow based particle separation systems is the need for a sheath flow for successful operation. Existence of the sheath liquid dilutes the analyte, necessitates precise flow control between sample and sheath flow, requires a complicated design to create sheath flow and separation efficiency depends on the sheath liquid composition. In this paper, we present a microfluidic platform for sheathless particle separation using standing surface acoustic waves. In this platform, particles are first lined up at the center of the channel without introducing any external sheath flow. The particles are then entered into the second stage where particles are driven towards the off-center pressure nodes for size based separation. The larger particles are exposed to more lateral displacement in the channel due to the acoustic force differences. Consequently, different-size particles are separated into multiple collection outlets. The prominent feature of the present microfluidic platform is that the device does not require the use of the sheath flow for positioning and aligning of particles. Instead, the sheathless flow focusing and separation are integrated within a single microfluidic device and accomplished simultaneously. In this paper, we demonstrated two different particle size-resolution separations; (1) 3 μm and 10 μm and (2) 3 μm and 5 μm. Also, the effects of the input power, the flow rate, and particle concentration on the separation efficiency were investigated. These technologies have potential to impact broadly various areas including the essential microfluidic components for lab-on-a-chip system and integrated biological and biomedical applications. PMID:22368502

  4. Research and proposal on selective catalytic reduction reactor optimization for industrial boiler.

    PubMed

    Yang, Yiming; Li, Jian; He, Hong

    2017-08-24

    The advanced computational fluid dynamics (CFD) software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two selective catalytic reduction (SCR) reactors were developed: reactor 1 was optimized and reactor 2 was developed based on reactor 1. Various indicators, including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle, and system pressure drop were analyzed. The analysis indicated that reactor 2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of the reactor, was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG 3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle, and temperature distribution are subjected to SCR reactor shape to a great extent, and reactor 2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to ammonia injection grid (AIG) shape, and AIG 3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The developments above on the reactor and the AIG are both of great application value and social efficiency.

  5. Contaminant concentration versus flow velocity: drivers of biodegradation and microbial growth in groundwater model systems.

    PubMed

    Grösbacher, Michael; Eckert, Dominik; Cirpka, Olaf A; Griebler, Christian

    2018-06-01

    Aromatic hydrocarbons belong to the most abundant contaminants in groundwater systems. They can serve as carbon and energy source for a multitude of indigenous microorganisms. Predictions of contaminant biodegradation and microbial growth in contaminated aquifers are often vague because the parameters of microbial activity in the mathematical models used for predictions are typically derived from batch experiments, which don't represent conditions in the field. In order to improve our understanding of key drivers of natural attenuation and the accuracy of predictive models, we conducted comparative experiments in batch and sediment flow-through systems with varying concentrations of contaminant in the inflow and flow velocities applying the aerobic Pseudomonas putida strain F1 and the denitrifying Aromatoleum aromaticum strain EbN1. We followed toluene degradation and bacterial growth by measuring toluene and oxygen concentrations and by direct cell counts. In the sediment columns, the total amount of toluene degraded by P. putida F1 increased with increasing source concentration and flow velocity, while toluene removal efficiency gradually decreased. Results point at mass transfer limitation being an important process controlling toluene biodegradation that cannot be assessed with batch experiments. We also observed a decrease in the maximum specific growth rate with increasing source concentration and flow velocity. At low toluene concentrations, the efficiencies in carbon assimilation within the flow-through systems exceeded those in the batch systems. In all column experiments the number of attached cells plateaued after an initial growth phase indicating a specific "carrying capacity" depending on contaminant concentration and flow velocity. Moreover, in all cases, cells attached to the sediment dominated over those in suspension, and toluene degradation was performed practically by attached cells only. The observed effects of varying contaminant inflow concentration and flow velocity on biodegradation could be captured by a reactive-transport model. By monitoring both attached and suspended cells we could quantify the release of new-grown cells from the sediments to the mobile aqueous phase. Studying flow velocity and contaminant concentrations as key drivers of contaminant transformation in sediment flow-through microcosms improves our system understanding and eventually the prediction of microbial biodegradation at contaminated sites.

  6. Microplasma-based flowing atmospheric-pressure afterglow (FAPA) source for ambient desorption-ionization mass spectrometry.

    PubMed

    Zeiri, Offer M; Storey, Andrew P; Ray, Steven J; Hieftje, Gary M

    2017-02-01

    A new direct-current microplasma-based flowing atmospheric pressure afterglow (FAPA) source was developed for use in ambient desorption-ionization mass spectrometry. The annular-shaped microplasma is formed in helium between two concentric stainless-steel capillaries that are separated by an alumina tube. Current-voltage characterization of the source shows that this version of the FAPA operates in the normal glow-discharge regime. A glass surface placed in the path of the helium afterglow reaches temperatures of up to approximately 400 °C; the temperature varies with distance from the source and helium flow rate through the source. Solid, liquid, and vapor samples were examined by means of a time-of-flight mass spectrometer. Results suggest that ionization occurs mainly through protonation, with only a small amount of fragmentation and adduct formation. The mass range of the source was shown to extend up to at least m/z 2722 for singly charged species. Limits of detection for several small organic molecules were in the sub-picomole range. Examination of competitive ionization revealed that signal suppression occurs only at high (mM) concentrations of competing substances. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Protein separation through preliminary experiments concerning pH and salt concentration by tube radial distribution chromatography based on phase separation multiphase flow using a polytetrafluoroethylene capillary tube.

    PubMed

    Kan, Hyo; Tsukagoshi, Kazuhiko

    2017-07-01

    Protein mixtures were separated using tube radial distribution chromatography (TRDC) in a polytetrafluoroethylene (PTFE) capillary (internal diameter=100µm) separation tube. Separation by TRDC is based on the annular flow in phase separation multiphase flow and features an open-tube capillary without the use of specific packing agents or application of high voltages. Preliminary experiments were conducted to examine the effects of pH and salt concentration on the phase diagram of the ternary mixed solvent solution of water-acetonitrile-ethyl acetate (8:2:1 volume ratio) and on the TRDC system using the ternary mixed solvent solution. A model protein mixture containing peroxidase, lysozyme, and bovine serum albumin was analyzed via TRDC with the ternary mixed solvent solution at various pH values, i.e., buffer-acetonitrile-ethyl acetate (8:2:1 volume ratio). Protein was separated on the chromatograms by the TRDC system, where the elution order was determined by the relation between the isoelectric points of protein and the pH values of the solvent solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effects of Building‒roof Cooling on Flow and Distribution of Reactive Pollutants in street canyons

    NASA Astrophysics Data System (ADS)

    Park, S. J.; Choi, W.; Kim, J.; Jeong, J. H.

    2016-12-01

    The effects of building‒roof cooling on flow and dispersion of reactive pollutants were investigated in the framework of flow dynamics and chemistry using a coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons in the presence of building‒roof cooling. A portal vortex was generated in street canyon, producing dominant reverse and outward flows near the ground in all the cases. The building‒roof cooling increased horizontal wind speeds at the building roof and strengthened the downward motion near the downwind building in the street canyon, resultantly intensifying street canyon vortex strength. The flow affected the distribution of primary and secondary pollutants. Concentrations of primary pollutants such as NOx, VOC and CO was high near the upwind building because the reverse flows were dominant at street level, making this area the downwind region of emission sources. Concentration of secondary pollutant such as O3 was lower than the background near the ground, where NOX concentrations were high. Building‒roof cooling decreased the concentration of primary pollutants in contrasted to those under non‒cooling conditions. In contrast, building‒roof cooling increased O3 by reducing NO concentrations in urban street canyon compared to concentrations under non‒cooling conditions.

  9. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters... purpose of determining de minimis status for emission points, engineering assessment may be used to... expected to yield the highest flow rate and concentration. Engineering assessment includes, but is not...

  10. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters... purpose of determining de minimis status for emission points, engineering assessment may be used to... expected to yield the highest flow rate and concentration. Engineering assessment includes, but is not...

  11. ESTIMATING THE LIKELIHOOD OF OCCURRENCE OF SELECTED PESTICIDES AND NUTRIENTS EXCEEDING SPECIFIC CONCENTRATIONS IN COASTAL PLAIN STREAMS BASED ON LANDSCAPE CHARACTERISTICS

    EPA Science Inventory

    The occurrence of selected pesticides and nutrient compounds in nontidal headwater streams of the Mid-Atlantic Coastal Plain (North Carolina through New Jersey) during winter and spring base flow is related to land use, soils, and other geographic variables that reflect sources a...

  12. Microbial water pollution: a screening tool for initial catchment-scale assessment and source apportionment.

    PubMed

    Kay, D; Anthony, S; Crowther, J; Chambers, B J; Nicholson, F A; Chadwick, D; Stapleton, C M; Wyer, M D

    2010-11-01

    The European Union Water Framework Directive requires that Management Plans are developed for individual River Basin Districts. From the point of view of faecal indicator organisms (FIOs), there is a critical need for screening tools that can provide a rapid assessment of the likely FIO concentrations and fluxes within catchments under base- and high-flow conditions, and of the balance ('source apportionment') between agriculture- and sewage-derived sources. Accordingly, the present paper reports on: (1) the development of preliminary generic models, using water quality and land cover data from previous UK catchment studies for assessing FIO concentrations, fluxes and source apportionment within catchments during the summer bathing season; (2) the calibration of national land use data, against data previously used in the models; and (3) provisional FIO concentration and source-apportionment assessments for England and Wales. The models clearly highlighted the crucial importance of high-flow conditions for the flux of FIOs within catchments. At high flow, improved grassland (and associated livestock) was the key FIO source; FIO loadings derived from catchments with high proportions of improved grassland were shown to be as high as from urbanized catchments; and in many rural catchments, especially in NW and SW England and Wales, which are important areas of lowland livestock (especially dairy) farming, ≥ 40% of FIOs was assessed to be derived from agricultural sources. In contrast, under base-flow conditions, when there was little or no runoff from agricultural land, urban (i.e. sewerage-related) sources were assessed to dominate, and even in rural areas the majority of FIOs were attributed to urban sources. The results of the study demonstrate the potential of this type of approach, particularly in light of climate change and the likelihood of more high-flow events, in underpinning informed policy development and prioritization of investment. Copyright © 2009 Elsevier B.V. All rights reserved.

  13. Advanced technologies and devices for inhalational anesthetic drug dosing.

    PubMed

    Meyer, J-U; Kullik, G; Wruck, N; Kück, K; Manigel, J

    2008-01-01

    Technological advances in micromechanics, optical sensing, and computing have led to innovative and reliable concepts of precise dosing and sensing of modern volatile anesthetics. Mixing of saturated desflurane flow with fresh gas flow (FGF) requires differential pressure sensing between the two circuits for precise delivery. The medical gas xenon is administered most economically in a closed circuit breathing system. Sensing of xenon in the breathing system is achieved with miniaturized and unique gas detector systems. Innovative sensing principles such as thermal conductivity and sound velocity are applied. The combination of direct injection of volatile anesthetics and low-flow in a closed circuit system requires simultaneous sensing of the inhaled and exhaled gas concentrations. When anesthetic conserving devices are used for sedation with volatile anesthetics, regular gas concentration monitoring is advised. High minimal alveolar concentration (MAC) of some anesthetics and low-flow conditions bear the risk of hypoxic gas delivery. Oxygen sensing based on paramagnetic thermal transduction has become the choice when long lifetime and one-time calibration are required. Compact design of beam splitters, infrared filters, and detectors have led to multiple spectra detector systems that fit in thimble-sized housings. Response times of less than 500 ms allow systems to distinguish inhaled from exhaled gas concentrations. The compact gas detector systems are a prerequisite to provide "quantitative anesthesia" in closed circuit feedback-controlled breathing systems. Advanced anesthesia devices in closed circuit mode employ multiple feedback systems. Multiple feedbacks include controls of volume, concentrations of anesthetics, and concentration of oxygen with a corresponding safety system. In the ideal case, the feedback system delivers precisely what the patient is consuming. In this chapter, we introduce advanced technologies and device concepts for delivering inhalational anesthetic drugs. First, modern vaporizers are described with special attention to the particularities of delivering desflurane. Delivery of xenon is presented, followed by a discussion of direct injection of volatile anesthetics and of a device designed to conserve anesthetic drugs. Next, innovative sensing technologies are presented for reliable control and precise metering of the delivered volatile anesthetics. Finally, we discuss the technical challenges of automatic control in low-flow and closed circuit breathing systems in anesthesia.

  14. Influence of dissolved organic matter on dissolved vanadium speciation in the Churchill River estuary (Manitoba, Canada).

    PubMed

    Shi, Yong Xiang; Mangal, Vaughn; Guéguen, Céline

    2016-07-01

    Diffusive gradients in thin films (DGT) devices were used to investigate the temporal and spatial changes in vanadium (V) speciation in the Churchill estuary system (Manitoba). Thirty-six DGT sets and 95 discrete water samples were collected at 8 river and 3 estuary sites during spring freshet and summer base flow. Dissolved V concentration in the Churchill River at summer base flow was approximately 5 times higher than those during the spring high flow (27.3 ± 18.9 nM vs 4.8 ± 3.5 nM). DGT-labile V showed an opposite trend with greater values found during the spring high flow (2.6 ± 1.8 nM vs 1.4 ± 0.3 nM). Parallel factor analysis (PARAFAC) conducted on 95 excitation-emission matrix spectra validated four humic-like (C1C4) and one protein-like (C5) fluorescent components. Significant positive relationship was found between protein-like DOM and DGT-labile V (r = 0.53, p < 0.05), indicating that protein-like DOM possibly affected the DGT-labile V concentration in Churchill River. Sediment leachates were enriched in DGT-labile V and protein-like DOM, which can be readily released when river sediment began to thaw during spring freshet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Nitrate in the Mississippi River and its tributaries, 1980 to 2008: Are we making progress?

    USGS Publications Warehouse

    Sprague, Lori A.; Hirsch, Robert M.; Aulenbach, Brent T.

    2011-01-01

    Changes in nitrate concentration and flux between 1980 and 2008 at eight sites in the Mississippi River basin were determined using a new statistical method that accommodates evolving nitrate behavior over time and produces flow-normalized estimates of nitrate concentration and flux that are independent of random variations in streamflow. The results show that little consistent progress has been made in reducing riverine nitrate since 1980, and that flow-normalized concentration and flux are increasing in some areas. Flow-normalized nitrate concentration and flux increased between 9 and 76% at four sites on the Mississippi River and a tributary site on the Missouri River, but changed very little at tributary sites on the Ohio, Iowa, and Illinois Rivers. Increases in flow-normalized concentration and flux at the Mississippi River at Clinton and Missouri River at Hermann were more than three times larger than at any other site. The increases at these two sites contributed much of the 9% increase in flow-normalized nitrate flux leaving the Mississippi River basin. At most sites, concentrations increased more at low and moderate streamflows than at high streamflows, suggesting that increasing groundwater concentrations are having an effect on river concentrations.

  16. Land cover impacts on stream nutrients and fecal coliform in the lower Piedmont of West Georgia

    NASA Astrophysics Data System (ADS)

    Schoonover, Jon E.; Lockaby, B. Graeme

    2006-12-01

    SummaryAs urbanization infiltrates into rural areas, stream water quality is expected to decline as a result from increased impervious surface and greater sources for pollutants. Consequently, West Georgia's water quality is threatened by extensive development as well as other land uses such as livestock grazing and silvicultural activity. Maintenance of stream water quality, as land development occurs, is critical for the protection of drinking water and biotic integrity. A 2-phase, watershed-scale study was established to develop relationships among land cover and water quality within western Georgia. During phase 1, nutrient and fecal coliform data were collected within 18 mixed land use watersheds, ranging in size from 500 to 2500 ha. Regression models were developed that related land cover to stream water nutrient and fecal coliform concentrations. Nutrient and fecal coliform concentrations within watersheds having >24% impervious surface (IS) were often higher than those in nonurban watersheds (i.e., <5% IS) during both base flow (N: 1.64 mg/L versus 0.61 mg/L, and FC: 430 versus 120 MPN/100 ml) and storm flow (N: 1.93 mg/L versus 0.36 mg/L, and FC: 1600 versus 167 MPN/100 ml). Fecal coliform bacteria in urbanized areas consistently exceeded the US EPA's review criterion for recreational waters during both base flow and to a greater extent storm flow. During phase 2, regression models were tested based on data from six newly chosen watersheds with similar land use/cover patterns. Lastly, theoretical watersheds, based on land use percentages, were created to illustrate trends in water quality impairment as land development occurs. The models developed from this research could be used to forecast water quality changes under various land use scenarios in the developing Piedmont region of the US.

  17. A diffuse-interface method for two-phase flows with soluble surfactants

    PubMed Central

    Teigen, Knut Erik; Song, Peng; Lowengrub, John; Voigt, Axel

    2010-01-01

    A method is presented to solve two-phase problems involving soluble surfactants. The incompressible Navier–Stokes equations are solved along with equations for the bulk and interfacial surfactant concentrations. A non-linear equation of state is used to relate the surface tension to the interfacial surfactant concentration. The method is based on the use of a diffuse interface, which allows a simple implementation using standard finite difference or finite element techniques. Here, finite difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Results are presented for a drop in shear flow in both 2D and 3D, and the effect of solubility is discussed. PMID:21218125

  18. Phosphorus and E. coli in the Fanno and Bronson Creek subbasins of the Tualatin River basin, Oregon, during summer low-flow conditions, 1996

    USGS Publications Warehouse

    McCarthy, Kathleen A.

    2000-01-01

    As part of an ongoing cooperative study between the Unified Sewerage Agency of Washington County, Oregon, and the U.S. Geological Survey, phosphorus and Escherichia coli (E. coli) concentrations were measured in the Fanno and Bronson Creek subbasins of the Tualatin River Basin during September 1996. Data were collected at 19 main-stem and 22 tributary sites in the Fanno Creek subbasin, and at 14 main-stem and 4 tributary sites in the Bronson Creek subbasin. These data provided the following information on summer base-flow conditions in the subbasins. Concentrations of total phosphorus at 70% of the sites sampled in the Fanno Creek subbasin were between 0.1 and 0.2 mg/L (milligrams per liter), very near the estimated background level of 0.14 mg/L attributed to ground-water base flow. These data indicate that ground-water discharge could account for the phosphorus measured at most sites in this subbasin.Concentrations of phosphorus at all but one of the sites sampled in the Bronson Creek subbasin were also between 0.1 and 0.2 mg/L, indicating that ground-water discharge could account for the phosphorus measured at most sites in this subbasin.A few sites in the Fanno Creek subbasin had phosphorus concentrations above background levels, indicating a source other than ground water. Some of these sites- Pendleton Creek and the tributary near Gemini, for example-were probably affected by the decomposition of avian waste materials and the release of phosphorus from bottom sediments in nearby ponds.Concentrations of E. coli--an indicator of fecal contamination and the potential presence of bacterial pathogens-exceeded the current single-sample criterion for recreational contact in freshwater (406 organisms/100 mL [organisms per 100 milliliters]) at 70% of the sites sampled in the Fanno Creek subbasin.Concentrations of E. coli in the Bronson Creek subbasin exceeded the single-sample criterion at one-third of the sites sampled.Most occurrences of elevated E. coli levels were probably due to sources such as domestic pet and wildlife waste, failing septic systems, or improperly managed hobby farms. The data did not indicate any large breaks in sewer lines or other large-scale sources of bacterial contamination to surface water in either subbasin during this low-flow period.

  19. Investigation of transition from thermal- to solutal-Marangoni flow in dilute alcohol/water mixtures using nano-plasmonic heaters

    NASA Astrophysics Data System (ADS)

    Namura, Kyoko; Nakajima, Kaoru; Suzuki, Motofumi

    2018-02-01

    We experimentally investigated Marangoni flows around a microbubble in diluted 1-butanol/water, 2-propanol/water, and ethanol/water mixtures using the thermoplasmonic effect of gold nanoisland film. A laser spot on the gold nanoisland film acted as a highly localized heat source that was utilized to generate stable air microbubbles with diameters of 32-48 μm in the fluid and to induce a steep temperature gradient on the bubble surface. The locally heated bubble has a flow along the bubble surface, with the flow direction showing a clear transition depending on the alcohol concentrations. The fluid is driven from the hot to cold regions when the alcohol concentration is lower than the transition concentration, whereas it is driven from the cold to hot regions when the concentration is higher than the transition concentration. In addition, the transition concentration increases as the carbon number of the alcohol decreases. The observed flow direction transition is explained by the balance of the thermal- and solutal-Marangoni forces that are cancelled out for the transition concentration. The selective evaporation of the alcohol at the locally heated surface allows us to generate stable and rapid thermoplasmonic solutal-Marangoni flows in the alcohol/water mixtures.

  20. Flow-Meter and Passive Diffusion Bag Tests and Potential Influences on the Vertical Distribution of Contaminants in Wells at Galena Airport, Galena, Alaska, August to October 2002

    USGS Publications Warehouse

    Vroblesky, Don A.; Peterson, J.E.

    2004-01-01

    Past activities at Galena Airport, a U.S. Air Force Base in Galena, Alaska, have resulted in ground-water contamination by volatile organic compounds. The primary contaminants are petroleum hydrocarbons and chlorinated aliphatic hydrocarbons. The U.S. Geological Survey and Earth Tech, in cooperation with the Air Force Center for Environmental Excellence, conducted investigations at Galena Airport from August to October 2002 using polyethylene diffusion bag samplers and borehole flow-meter testing to examine the vertical distribution of ground-water contamination in selected wells. This investigation was limited to the vicinity of building 1845 and to the area between building 1845 and the Yukon River. In addition, the U.S. Geological Survey was asked to determine whether additional wells are needed to more clearly define the nature and extent of the ground-water contamination at the Air Force Base. Little or no vertical water movement occurred under ambient conditions in the wells tested at Galena Airport, Alaska, in August 2002. All of the ambient vertical flows detected in wells were at rates less than the quantitative limit of the borehole flow meter (0.03 gallons per minute). In wells 06-MW-07 and 10-MW-01, no vertical flow was detected. In wells where ambient flow was detected, the direction of flow was downward. In general, concentrations of volatile organic compounds detected in the low-flow samples from wells at Galena Airport were approximately the same concentrations detected in the closest polyethylene diffusion bag sample for a wide variety of volatile organic compounds. The data indicate that the polyethylene diffusion bag sample results are consistent with the low-flow sample results. Vertical profiling of selected wells using polyethylene diffusion bag samplers at Galena Airport showed that from September 30 to October 1, 2002, little vertical change occurred in volatile organic compound concentrations along the screen length despite the fact that little or no vertical flow was measured in most of the tested wells in August 2002. Two of the wells (10-MW-03 and 06-MW-01) had slightly greater vertical concentration variation for some constituents. In these wells, the contaminant depth probably is lithologically influenced. The close match between concentrations measured in polyethylene diffusion bag and low-flow samples indicates that the bag samples accurately represent the distribution of volatile organic compounds in the wells. It is unclear, however, whether the distribution of volatile organic compounds in the wells, as indicated by the bag samplers, represents contaminant distributions in the aquifer or transient movement within the wells. The probable change in well hydraulics between August and late September to October indicates that the relatively uniform vertical distribution of volatile organic compounds in some of the wells may represent in-well mixing. This uncertainty could be clarified by the installation and sampling of well clusters at various times of the year. Additional insight into the vertical distribution of contamination and flow possibly could be obtained by conducting flow-meter tests and collecting polyethylene diffusion bag samples from selected wells at different times of the year. The westernmost contaminant plume at Million Gallon Hill appears to be surrounded by sufficient monitoring wells to detect changes in the plume extent; however, the installation of additional wells at Galena Airport has the potential to provide additional information on the extent of ground-water contamination in the remaining plumes. The additional information to be gained includes better definition of the vertical and lateral extents of the plumes and better definition of the ground-water flow directions.

  1. Industrial application of ultrasound based in-line rheometry: Visualization of steady shear pipe flow of chocolate suspension in pre-crystallization process

    NASA Astrophysics Data System (ADS)

    Ouriev, Boris; Windhab, Erich; Braun, Peter; Zeng, Yuantong; Birkhofer, Beat

    2003-12-01

    In the present work an in-line ultrasonic method for investigation of the rheological flow behavior of concentrated suspensions was created. It is based on a nondestructive rheological measuring technique for pilot plant and industrial scale applications. Elsewhere the author discusses a tremendous need for in-line rheological characterization of highly concentrated suspensions exposed to pressure driven shear flow conditions. Most existing on-line methods are based on destructive macro actuators, which are not suitable for materials with sensitive to applied deformation structure. Since the process of our basic interest influences the structure of suspension it would be difficult to separate the effects of rheometric measurement and weakly pronounced structural changes arising from a fine adjustment of the process parameters. The magnitude of these effects is usually associated with the complex flow dynamics of structured liquids and is sensitive to density or temperature fluctuations around the moving rheometric actuator. Interpretation of the results of such measurements can be hindered by process parameter influences on liquid product structure. Therefore, the author introduces an in-line noninvasive rheometric method, which is implemented in a pre-crystallization process of chocolate suspension. Use of ultrasound velocity profile pressure difference (UVP-PD) technique enabled process monitoring of the chocolate pre-crystallization process. Influence of seeded crystals on Rheology of chocolate suspension was recorded and monitored on line. It was shown that even slight velocity pulsations in chocolate mainstream can strongly influence rheological properties besides influencing flow velocity profiles. Based on calculations of power law fit in raw velocity profiles and calculation of wall shear stress from pressure difference measurement, a viscosity function was calculated and monitored on line. On-line results were found to be in a good agreement with off-line data. The results of the industrial test of the UVP-PD system brought practical knowledge and stipulated further development of a Smart UVP-PD noninventive on-line rheometer.

  2. High water concentrations in a primitive Deccan lava: evidence from clinopyroxene crystals

    NASA Astrophysics Data System (ADS)

    Seaman, Sheila

    2017-04-01

    Measurements of water concentrations in clinopyroxene phenocrysts in the Powai ankaramite flow, located near Mumbai, west of the Western Ghats escarpment of the Deccan province, India, indicate that the parent magma of the flow hosted at least 4.3 wt.% water, an unusually high water concentration for a continental flood basalt magma. However, similar water concentrations (3.39 to 6.61 wt.%) were calculated by Xia et al. (2016), also on the basis of water concentrations in clinopyroxene crystals, for continental basalts of the Tarin basin in northwestern China, which hosts >200,000 km3 of flood basalts (Xia et al., 2016). In the Powai ankaramite flow, textural and compositional features of clinopyroxene phenocrysts further support crystallization in a water-rich melt. The flow hosts clinopyroxene and olivine phenocrysts. Chatterjee and Sheth (2015) showed that phenocrysts in the flow were part of a cumulate layer intruded by high-temperature basaltic melt at 6 kb and 1230oC, so the phenocrysts record characteristics of the cumulate parent melt. Clinopyroxene phenocrysts are large (to 0.5 cm diameter), euhedral, are oscillatorily zoned in water, Mg, Fe, and Ca concentrations, and have concentric bands 100-200 microns thick of fine (10-20 micron diameter) melt inclusions. Olivine phenocrysts are smaller (to 0.1 cm diameter, are unzoned, and host only larger isolated melt inclusions. Zones in the cpx phenocrysts where melt inclusion-rich concentric bands occur have higher concentrations of water than inclusion-free zones. Water concentrations of cpx were used to calculate water concentrations in the melt from which the crystals formed using partition coefficients of Hauri et al. (2004). Water concentrations in the parent magma were between 4.35 and 8.26 wt. % based on water concentrations in cpx. Both Mg and Fe are relatively depleted in the water- and melt inclusion-rich zones in cpx, and Ca is enriched in these zones. Oscillatory zoning in cpx may be a result of repeated growth of cpx in water-richer and water-poorer boundary layers in which water lowered melt viscosity and enhanced diffusion and crystal growth rates. Water-enhanced growth rates may have resulted in capture of melt inclusions preserved in water-rich cpx zones. Mg was preferentially incorporated into the cpx, causing Ca and water to build up in the boundary layer, and Mg and Fe to become relatively depleted in the boundary layer, as discussed for oscillatorially-zoned minerals by Wang and Merino (1993). These apparently water-dependent variations in crystal growth processes ugsuggest that at least this Deccan magma was relatively hydrous. Melt inclusions in olivine phenocrysts, however, preserve lower water concentrations ( 1.2 wt. %) than those indicated by water concentration in cpx phenocrysts. This disparity may be evidence of water loss from melt inclusions in olivine (Gaetani et al., 2009) or may indicate that cpx and ol crystals did not crystallize from the same parent at the same time.

  3. Friction factor and heat transfer of nanofluids containing cylindrical nanoparticles in laminar pipe flow

    NASA Astrophysics Data System (ADS)

    Lin, Jianzhong; Xia, Yi; Ku, Xiaoke

    2014-10-01

    Numerical simulations of polyalphaolefins-Al2O3 nanofluids containing cylindrical nanoparticles in a laminar pipe flow are performed by solving the Navier-Stokes equation with term of cylindrical nanoparticles, the general dynamic equation for cylindrical nanoparticles, and equation for nanoparticle orientation. The distributions of particle number and volume concentration, the friction factor, and heat transfer are obtained and analyzed. The results show that distributions of nanoparticle number and volume concentration are non-uniform across the section, with larger and smaller values in the region near the pipe center and near the wall, respectively. The non-uniformity becomes significant with the increase in the axial distance from the inlet. The friction factor decreases with increasing Reynolds number. The relationships between the friction factor and the nanoparticle volume concentration as well as particle aspect ratio are dependent on the Reynolds number. The Nusselt number of nanofluids, directly proportional to the Reynolds number, particle volume concentration, and particle aspect ratio, is higher near the pipe entrance than at the downstream locations. The rate of increase in Nusselt number at lower particle volume concentration is more than that at higher concentration. Finally, the expressions of friction factor and Nusselt number as a function of particle volume concentration, particle aspect ratio, and Reynolds number are derived based on the numerical data.

  4. Numerical simulation of haemodynamics and low-density lipoprotein transport in the rabbit aorta and their correlation with atherosclerotic plaque thickness

    PubMed Central

    Liu, Xiao; Zhang, Peng; Feng, Chenglong; Sun, Anqiang; Kang, Hongyan; Deng, Xiaoyan; Fan, Yubo

    2017-01-01

    Two mechanisms of shear stress and mass transport have been recognized to play an important role in the development of localized atherosclerosis. However, their relationship and roles in atherogenesis are still obscure. It is necessary to investigate quantitatively the correlation among low-density lipoproteins (LDL) transport, haemodynamic parameters and plaque thickness. We simulated blood flow and LDL transport in rabbit aorta using computational fluid dynamics and evaluated plaque thickness in the aorta of a high-fat-diet rabbit. The numerical results show that regions with high luminal LDL concentration tend to have severely negative haemodynamic environments (HEs). However, for regions with moderately and slightly high luminal LDL concentration, the relationship between LDL concentration and the above haemodynamic indicators is not clear cut. Point-by-point correlation with experimental results indicates that severe atherosclerotic plaque corresponds to high LDL concentration and seriously negative HEs, less severe atherosclerotic plaque is related to either moderately high LDL concentration or moderately negative HEs, and there is almost no atherosclerotic plaque in regions with both low LDL concentration and positive HEs. In conclusion, LDL distribution is closely linked to blood flow transport, and the synergetic effects of luminal surface LDL concentration and wall shear stress-based haemodynamic indicators may determine plaque thickness. PMID:28424305

  5. Prediction of local concentration statistics in variably saturated soils: Influence of observation scale and comparison with field data

    NASA Astrophysics Data System (ADS)

    Graham, Wendy; Destouni, Georgia; Demmy, George; Foussereau, Xavier

    1998-07-01

    The methodology developed in Destouni and Graham [Destouni, G., Graham, W.D., 1997. The influence of observation method on local concentration statistics in the subsurface. Water Resour. Res. 33 (4) 663-676.] for predicting locally measured concentration statistics for solute transport in heterogeneous porous media under saturated flow conditions is applied to the prediction of conservative nonreactive solute transport in the vadose zone where observations are obtained by soil coring. Exact analytical solutions are developed for both the mean and variance of solute concentrations measured in discrete soil cores using a simplified physical model for vadose-zone flow and solute transport. Theoretical results show that while the ensemble mean concentration is relatively insensitive to the length-scale of the measurement, predictions of the concentration variance are significantly impacted by the sampling interval. Results also show that accounting for vertical heterogeneity in the soil profile results in significantly less spreading in the mean and variance of the measured solute breakthrough curves, indicating that it is important to account for vertical heterogeneity even for relatively small travel distances. Model predictions for both the mean and variance of locally measured solute concentration, based on independently estimated model parameters, agree well with data from a field tracer test conducted in Manatee County, Florida.

  6. Estimation of streamflow, base flow, and nitrate-nitrogen loads in Iowa using multiple linear regression models

    USGS Publications Warehouse

    Schilling, K.E.; Wolter, C.F.

    2005-01-01

    Nineteen variables, including precipitation, soils and geology, land use, and basin morphologic characteristics, were evaluated to develop Iowa regression models to predict total streamflow (Q), base flow (Qb), storm flow (Qs) and base flow percentage (%Qb) in gauged and ungauged watersheds in the state. Discharge records from a set of 33 watersheds across the state for the 1980 to 2000 period were separated into Qb and Qs. Multiple linear regression found that 75.5 percent of long term average Q was explained by rainfall, sand content, and row crop percentage variables, whereas 88.5 percent of Qb was explained by these three variables plus permeability and floodplain area variables. Qs was explained by average rainfall and %Qb was a function of row crop percentage, permeability, and basin slope variables. Regional regression models developed for long term average Q and Qb were adapted to annual rainfall and showed good correlation between measured and predicted values. Combining the regression model for Q with an estimate of mean annual nitrate concentration, a map of potential nitrate loads in the state was produced. Results from this study have important implications for understanding geomorphic and land use controls on streamflow and base flow in Iowa watersheds and similar agriculture dominated watersheds in the glaciated Midwest. (JAWRA) (Copyright ?? 2005).

  7. Treating landfill gas hydrogen sulphide with mineral wool waste (MWW) and rod mill waste (RMW).

    PubMed

    Bergersen, Ove; Haarstad, Ketil

    2014-01-01

    Hydrogen sulphide (H2S) gas is a major odorant at municipal landfills. The gas can be generated from different waste fractions, for example demolition waste containing gypsum based plaster board. The removal of H2S from landfill gas was investigated by filtering it through mineral wool waste products. The flow of gas varied from 0.3 l/min to 3.0 l/min. The gas was typical for landfill gas with a mean H2S concentration of ca. 4500 ppm. The results show that the sulphide gas can effectively be removed by mineral wool waste products. The ratios of the estimated potential for sulphide precipitation were 19:1 for rod mill waste (RMW) and mineral wool waste (MWW). A filter consisting of a mixture of MWW and RMW, with a vertical perforated gas tube through the center of filter material and with a downward gas flow, removed 98% of the sulfide gas over a period of 80 days. A downward gas flow was more efficient in contacting the filter materials. Mineral wool waste products are effective in removing hydrogen sulphide from landfill gas given an adequate contact time and water content in the filter material. Based on the estimated sulphide removal potential of mineral wool and rod mill waste of 14 g/kg and 261 g/kg, and assuming an average sulphide gas concentration of 4500 ppm, the removal capacity in the filter materials has been estimated to last between 11 and 308 days. At the studied location the experimental gas flow was 100 times less than the actual gas flow. We believe that the system described here can be upscaled in order to treat this gas flow. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Continuous flow nanoparticle concentration using alternating current-electroosmotic flow.

    PubMed

    Hoettges, Kai F; McDonnell, Martin B; Hughes, Michael P

    2014-02-01

    Achieving real-time detection of environmental pathogens such as viruses and bacterial spores requires detectors with both rapid action and a suitable detection threshold. However, most biosensors have detection limits of an order of magnitude or more above the potential infection threshold, limiting their usefulness. This can be improved through the use of automated sample preparation techniques such as preconcentration. In this paper, we describe the use of AC electroosmosis to concentrate nanoparticles from a continuous flow. Electrodes at an optimized angle across a flow cell, and energized by a 1 kHz signal, were used to push nanoparticles to one side of a flow cell, and to extract the resulting stream with a high particle concentration from that side of the flow cell. A simple model of the behavior of particles in the flow cell has been developed, which shows good agreement with experimental results. The method indicates potential for higher concentration factors through cascading devices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 40 CFR 75.58 - General recordkeeping provisions for specific situations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... C to this part, for each hour of missing SO2 concentration or volumetric flow data: (i) The information required in § 75.57(c) for SO2 concentration and volumetric flow, if either one of these monitors... SO2 concentration and volumetric flow using Codes 1-55 in Table 4a of § 75.57; and (xii) Inlet and...

  10. Concentrated flow paths in riparian buffer zones of southern Illinois

    Treesearch

    R.C. Pankau; J.E. Schoonover; K.W.J. Willard; P.J. Edwards

    2012-01-01

    Riparian buffers in agricultural landscapes should be designed to trap pollutants in overland flow by slowing, filtering, and infiltrating surface runoff entering the buffer via sheet flow. However, observational evidence suggests that concentrated flow is prevalent from agricultural fields. Over time sediment can accumulate in riparian buffers forming berms that...

  11. Methodology Development of a Gas-Liquid Dynamic Flow Regime Transition Model

    NASA Astrophysics Data System (ADS)

    Doup, Benjamin Casey

    Current reactor safety analysis codes, such as RELAP5, TRACE, and CATHARE, use flow regime maps or flow regime transition criteria that were developed for static fully-developed two-phase flows to choose interfacial transfer models that are necessary to solve the two-fluid model. The flow regime is therefore difficult to identify near the flow regime transitions, in developing two-phase flows, and in transient two-phase flows. Interfacial area transport equations were developed to more accurately predict the dynamic nature of two-phase flows. However, other model coefficients are still flow regime dependent. Therefore, an accurate prediction of the flow regime is still important. In the current work, the methodology for the development of a dynamic flow regime transition model that uses the void fraction and interfacial area concentration obtained by solving three-field the two-fluid model and two-group interfacial area transport equation is investigated. To develop this model, detailed local experimental data are obtained, the two-group interfacial area transport equations are revised, and a dynamic flow regime transition model is evaluated using a computational fluid dynamics model. Local experimental data is acquired for 63 different flow conditions in bubbly, cap-bubbly, slug, and churn-turbulent flow regimes. The measured parameters are the group-1 and group-2 bubble number frequency, void fraction, interfacial area concentration, and interfacial bubble velocities. The measurements are benchmarked by comparing the prediction of the superficial gas velocities, determined using the local measurements with those determined from volumetric flow rate measurements and the agreement is generally within +/-20%. The repeatability four-sensor probe construction process is within +/-10%. The repeatability of the measurement process is within +/-7%. The symmetry of the test section is examined and the average agreement is within +/-5.3% at z/D = 10 and +/-3.4% at z/D = 32. Revised source/sink terms for the two-group interfacial area transport equations are derived and fit to area-averaged experimental data to determine new model coefficients. The average agreement between this model and the experiment data for the void fraction and interfacial area concentration is 10.6% and 15.7%, respectively. This revised two-group interfacial area transport equation and the three-field two-fluid model are used to solve for the group-1 and group-2 interfacial area concentration and void fraction. These values and a dynamic flow regime transition model are used to classify the flow regimes. The flow regimes determined using this model are compared with the flow regimes based on the experimental data and on a flow regime map using Mishima and Ishii's (1984) transition criteria. The dynamic flow regime transition model is shown to predict the flow regimes dynamically and has improved the prediction of the flow regime over that using a flow regime map. Safety codes often employ the one-dimensional two-fluid model to model two-phase flows. The area-averaged relative velocity correlation necessary to close this model is derived from the drift flux model. The effects of the necessary assumptions used to derive this correlation are investigated using local measurements and these effects are found to have a limited impact on the prediction of the area-averaged relative velocity.

  12. Depressurization and two-phase flow of water containing high levels of dissolved nitrogen gas

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1981-01-01

    Depressurization of water containing various concentrations of dissolved nitrogen gas was studied. In a nonflow depressurization experiment, water with very high nitrogen content was depressurized at rates from 0.09 to 0.50 MPa per second and a metastable behavior which was a strong function of the depressurization rate was observed. Flow experiments were performed in an axisymmetric, converging diverging nozzle, a two dimensional, converging nozzle with glass sidewalls, and a sharp edge orifice. The converging diverging nozzle exhibited choked flow behavior even at nitrogen concentration levels as low as 4 percent of the saturation level. The flow rates were independent of concentration level. Flow in the two dimensional, converging, visual nozzle appeared to have a sufficient pressure drop at the throat to cause nitrogen to come out of solution, but choking occurred further downstream. The orifice flow motion pictures showed considerable oscillation downstream of the orifice and parallel to the flow. Nitrogen bubbles appeared in the flow at back pressures as high as 3.28 MPa, and the level at which bubbles were no longer visible was a function of nitrogen concentration.

  13. Statistical modelling of suspended sediment load in small basin located at Colombian Andes

    NASA Astrophysics Data System (ADS)

    Javier, Montoya Luis

    2016-04-01

    In this study a statistical modelling for the estimate the sediment yield based on available observations of water discharge and suspended sediment concentration were done. A multivariate model was applicate to analyze the 33 years of daily suspended sediments load available at a La Garrucha gauging station. A regional analysis were conducted to find a non-dimensional sediment load duration curve. These curves were used to estimate flow and sediments regimen at other inner point at the basin where there are located the Calderas reservoir. The record of sedimentation in the reservoir were used to validate the estimate mean sediments load. A periodical flushing in the reservoir is necessary to maintain the reservoir at the best operating capacity. The non-dimensional sediment load duration curve obtaining was used to find a sediment concentration during high flow regimen (10% of time these values were met or exceeded).These sediment concentration of high flow regimen has been assumed as a concentration that allow an 'environmental flushing', because it try to reproduce the natural regimen of sediments at the river and it sends a sediment concentration that environment can withstand. The sediment transport capacity for these sediment load were verified with a 1D model in order to respect the environmental constraints downstream of the dam. Field data were collected to understand the physical phenomena involved in flushing dynamics in the reservoir and downstream of the dam. These model allow to define an operations rules for the flushing to minimize the environmental effects.

  14. Variability of isotope and major ion chemistry in the Allequash Basin, Wisconsin

    USGS Publications Warehouse

    Walker, John F.; Hunt, Randall J.; Bullen, Thomas D.; Krabbenhoft, David P.; Kendall, Carol

    2003-01-01

    As part of ongoing research conducted at one of the U.S. Geological Survey's Water, Energy, and Biogeochem-ical Budgets sites, work was undertaken to describe the spatial and temporal variability of stream and ground water isotopic composition and cation chemistry in the Trout Lake watershed, to relate the variability to the watershed flow system, and to identify the linkages of geochemical evolution and source of water in the watershed. The results are based on periodic sampling of sites at two scales along Allequash Creek, a small headwater stream in northern Wisconsin. Based on this sampling, there are distinct water isotopic and geochemical differences observed at a smaller hillslope scale and the larger Allequash Creek scale. The variability was larger than expected for this simple watershed, and is likely to be seen in more complex basins. Based on evidence from multiple isotopes and stream chemistry, the flow system arises from three main source waters (terrestrial-, lake-, or wetland-derived recharge) that can be identified along any flowpath using water isotopes together with geochemical characteristics such as iron concentrations. The ground water chemistry demonstrates considerable spatial variability that depends mainly on the flow-path length and water mobility through the aquifer. Calcium concentrations increase with increasing flowpath length, whereas strontium isotope ratios increase with increasing extent of stagnation in either the unsaturated or saturated zones as waters move from source to sink. The flowpath distribution we identify provides important constraints on the calibration of ground water flow models such as that undertaken by Pint et al. (this issue).

  15. Abundance, size distributions and trace-element binding of organic and iron-rich nanocolloids in Alaskan rivers, as revealed by field-flow fractionation and ICP-MS

    NASA Astrophysics Data System (ADS)

    Stolpe, Björn; Guo, Laodong; Shiller, Alan M.; Aiken, George R.

    2013-03-01

    Water samples were collected from six small rivers in the Yukon River basin in central Alaska to examine the role of colloids and organic matter in the transport of trace elements in Northern high latitude watersheds influenced by permafrost. Concentrations of dissolved organic carbon (DOC), selected elements (Al, Si, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Ba, Pb, U), and UV-absorbance spectra were measured in 0.45 μm filtered samples. 'Nanocolloidal size distributions' (0.5-40 nm, hydrodynamic diameter) of humic-type and chromophoric dissolved organic matter (CDOM), Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pb were determined by on-line coupling of flow field-flow fractionation (FFF) to detectors including UV-absorbance, fluorescence, and ICP-MS. Total dissolved and nanocolloidal concentrations of the elements varied considerably between the rivers and between spring flood and late summer base flow. Data on specific UV-absorbance (SUVA), spectral slopes, and the nanocolloidal fraction of the UV-absorbance indicated a decrease in aromaticity and size of CDOM from spring flood to late summer. The nanocolloidal size distributions indicated the presence of different 'components' of nanocolloids. 'Fulvic-rich nanocolloids' had a hydrodynamic diameter of 0.5-3 nm throughout the sampling season; 'organic/iron-rich nanocolloids' occurred in the <8 nm size range during the spring flood; whereas 'iron-rich nanocolloids' formed a discrete 4-40 nm components during summer base flow. Mn, Co, Ni, Cu and Zn were distributed between the nanocolloid components depending on the stability constant of the metal (+II)-organic complexes, while stronger association of Cr to the iron-rich nanocolloids was attributed to the higher oxidation states of Cr (+III or +IV). Changes in total dissolved element concentrations, size and composition of CDOM, and occurrence and size of organic/iron and iron-rich nanocolloids were related to variations in their sources from either the upper organic-rich soil or the deeper mineral layer, depending on seasonal variations in hydrological flow patterns and permafrost dynamics.

  16. [Characteristics and Transport Patterns of Ammonia, Nitrites, Nitrates and Inorganic Nitrogen Flux at Epikarst Springs and a Subterranean Stream in Nanshan, Chongqing].

    PubMed

    Zhang, Yuan-zhu; He, Qiu-fang; Jiang, Yong-jun; Li, Yong

    2016-04-15

    In a karst groundwater system, it develops complex multiple flows because of its special geological structure and unique physical patterns of aquifers. In order to investigate the characteristics and transport patterns of ammonia, nitrite and nitrate in epikarst water and subterranean stream, the water samples were collected monthly in a fast-urbanizing karst region. The results showed distinctive characteristics of three forms of inorganic nitrogen. The concentration of inorganic nitrogen was stable in the epikarst water while it was fluctuant in the subterranean stream. Epikarst water was less affected by rainfall and sewage compared with subterranean stream. In epikarst water, the nitrate concentration was much higher than the ammonia concentration. Dissolved inorganic nitrogen, mainly from non-point source pollution related to agricultural activities, passed in and out of the epikarst water based on a series of physical; chemical and biological processes in the epikarst zone, such as ammonification, adsorption and nitrification. On the contrary, subterranean stream showed a result of NH₄⁺-N > NO₃⁻-N in dry seasons and NO₃⁻-N > NH₄⁺-N in rainy seasons. This can be due to the fact that sanitary and industrial sewage flowed into subterranean river through sinkholes, fissures and grikes in dry season. Dissolved inorganic nitrogen in subterranean river was mainly from the non-point source pollution in wet season. Non-point source pollutants entered into subterranean water by two transport ways, one by penetration along with vadose flow through fissures and grikes, and the other by conduit flow through sinkholes from the surface runoff, soil water flow and epikarst flow. The export flux of DIN was 56.05 kg · (hm² · a)⁻¹, and NH₄⁺-N and NO₃⁻-N accounted for 46.03% and 52.51%, respectively. The contributions of point-source pollution and non point-source pollution to the export flux of DIN were 25.08% and 74.92%, respectively, based on run-off division method.

  17. A flow system for the spectrophotometric determination of lead in different types of waters using ion-exchange for pre-concentration and elimination of interferences.

    PubMed

    Mesquita, Raquel B R; Fernandes, Sílvia M V; Rangel, António O S S

    2004-02-06

    A flow system for the spectrophotometric determination of lead in natural and waste waters is proposed. The determination is based on the colorimetric reaction between malachite green and iodide, followed by the formation of a ternary complex between those reagents and lead cations. The developed flow system includes a lead pre-concentration step in a column packed with a cationic resin (Chelex 100) operating in a sequential injection mode. To improve the mixture of sample and reagents, a flow injection approach was adopted for the colorimetric determination. This way a hybrid flow system, involving both sequential and flow injection concepts was designed. Another feature of the proposed system is the efficient elimination of major interferent species, such as cadmium and copper. The elimination of cadmium interference is obtained by complexing Cd(2+) with chloride and retaining the formed negatively charged complexes in an anionic resin, AG1 X-8. As for copper, with the presence of both ionic resins as well as the conditions for cadmium elimination, it no longer acts as an interferent. Different ranges of lead concentration (50-300 and 300-1000mugl(-1)) can be determined with minor changes in the controlling software, useful for application to both natural and waste waters. Therefore, a detection limit of 25mugl(-1) was achieved. Repeatability was evaluated from 10 consecutive determinations being the results better than 4%. The recoveries of lead spikes added to the samples ranged from 93 to 102%. The sampling frequency was 17 and 24 determinations per hour, for 50-300 and 300-1000mugl(-1) ranges, respectively.

  18. Time-dependent particle migration and margination in the pressure-driven channel flow of blood

    NASA Astrophysics Data System (ADS)

    Qi, Qin M.; Shaqfeh, Eric S. G.

    2018-03-01

    We present a theory to describe the time evolution of the red blood cell (RBC) and platelet concentration distributions in pressure-driven flow through a straight channel. This model is based on our previous theory for the steady-state distributions [Qi and Shaqfeh, Phys. Rev. Fluids 2, 093102 (2017), 10.1103/PhysRevFluids.2.093102] and captures the flow-induced nonuniformity of the concentrations of RBCs and platelets in the cross-flow direction. Starting with a uniform concentration, RBCs migrate away from the channel walls due to a shear-induced lift force and eventually reach steady state due to shear-induced diffusion, i.e., hydrodynamic "collisions" with other RBCs. On the other hand, platelets exit the cell-laden region due to RBC-platelet interactions and enter the cell-free layer, resulting in margination. To validate the theory, we also perform boundary integral simulations of blood flow in microchannels and directly compare various measureables between theory and simulation. The timescales associated with RBC migration and platelet margination are discussed in the context of the simulation and theory, and their importance in the function of microfluidic devices as well as the vascular network are elucidated. Due to the varying shear rate in pressure-driven flow and the wall-induced RBC lift, we report a separation of timescales for the transport in the near-wall region and in the bulk region. We also relate the transient problem to the axial variation of migration and margination, and we demonstrate how the relevant timescales can be used to predict corresponding entrance lengths. Our theory can serve as a fast and convenient alternative to large-scale simulations of these phenomena.

  19. Eddy interaction model for turbulent suspension in Reynolds-averaged Euler-Lagrange simulations of steady sheet flow

    NASA Astrophysics Data System (ADS)

    Cheng, Zhen; Chauchat, Julien; Hsu, Tian-Jian; Calantoni, Joseph

    2018-01-01

    A Reynolds-averaged Euler-Lagrange sediment transport model (CFDEM-EIM) was developed for steady sheet flow, where the inter-granular interactions were resolved and the flow turbulence was modeled with a low Reynolds number corrected k - ω turbulence closure modified for two-phase flows. To model the effect of turbulence on the sediment suspension, the interaction between the turbulent eddies and particles was simulated with an eddy interaction model (EIM). The EIM was first calibrated with measurements from dilute suspension experiments. We demonstrated that the eddy-interaction model was able to reproduce the well-known Rouse profile for suspended sediment concentration. The model results were found to be sensitive to the choice of the coefficient, C0, associated with the turbulence-sediment interaction time. A value C0 = 3 was suggested to match the measured concentration in the dilute suspension. The calibrated CFDEM-EIM was used to model a steady sheet flow experiment of lightweight coarse particles and yielded reasonable agreements with measured velocity, concentration and turbulence kinetic energy profiles. Further numerical experiments for sheet flow suggested that when C0 was decreased to C0 < 3, the simulation under-predicted the amount of suspended sediment in the dilute region and the Schmidt number is over-predicted (Sc > 1.0). Additional simulations for a range of Shields parameters between 0.3 and 1.2 confirmed that CFDEM-EIM was capable of predicting sediment transport rates similar to empirical formulations. Based on the analysis of sediment transport rate and transport layer thickness, the EIM and the resulting suspended load were shown to be important when the fall parameter is less than 1.25.

  20. Use of Numerical Models to Simulate Transport of Sewage-Derived Nitrate in a Coastal Aquifer, Central and Western Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.

    2008-01-01

    The unconsolidated glacial sediments underlying Cape Cod, Massachusetts compose a regional aquifer system that is used both as a source of drinking water and as a disposal site for wastewater; in addition, the discharge of clean ground water from the aquifer system is needed for the maintenance of freshwater and marine ecosystems throughout the region. Because these uses of the aquifer conflict with one another in many areas of the Cape, local and regional planners have begun to develop sustainable wastewater plans that will facilitate the disposal of wastewater while protecting water supplies and improving the health of aquatic ecosystems. To assist local and regional planners in these efforts, the U.S. Geological Survey conducted a 2-year investigation to (1) assist local and regional planners in the evaluation of potential wastewater scenarios, (2) use results and interpretation from these analyses to develop hydrologic concepts transferable throughout the region, and (3) establish and test methods that would be of use in future evaluations. Wastewater-disposal scenarios need to be evaluated in the context of the regional ground-water-flow system. For a given rate of disposal, wastewater from sites at or near a regional ground-water divide is transported in a wider arc of flow directions, flows deeper in the system, and contaminates a larger part of the aquifer than does wastewater discharged from sites farther from the divide. Also, traveltimes of wastewater from sites near a ground-water divide to receptors are longer (as much as several hundred years) than traveltimes from sites farther from the divide. Thus, wastewater disposal at or near a divide will affect a larger part of the aquifer and likely contribute wastewater to more receptors than wastewater disposal farther from a divide; however, longer traveltimes could allow for more attenuation of wastewater-derived nitrate from those sites. Ground-water-flow models and particle tracking can be used to identify advective-transport patterns downgradient from wastewater-disposal sites and estimate traveltimes; however, these tools cannot predict the distribution of mass or concentrations of wastewater constituents, such as nitrate, in the aquifer. Flow-based particle-tracking analyses can be used to estimate mass-loading rates and time-varying concentrations at wells and ecological receptors by the accounting of mass-weighted particles discharging into the receptor of interest. This method requires no additional development beyond the flow model; however, post-modeling analyses are required. In addition, the method is based on the assumption that no mass is lost during transport, an assumption that likely is not valid in many systems. Solute-transport models simulate the subsurface transport of nitrate through the aquifer and predict the distribution of the mass of a solute in the aquifer at different transport times. This method does require additional model development beyond the flow model, but can predict timevarying concentrations at receptors. Estimates of mass-loading rates require minimal post-modeling analyses. Time-varying concentrations and mass-loading rates calculated for wells in eastern Barnstable by the two methods generally were in reasonable agreement. Inherent in the flow-based particle-tracking method is the assumption that mass is conserved along a given flow line and that there is no spreading of mass in the aquifer. Although the solute-transport models also incorporate a system-wide conservation of mass, these models allow for a spreading of mass in the aquifer, and mass is not conserved along a given flow line. As a result, estimates of concentrations and mass loading rates generally were higher in particle-tracking analyses than in solute-transport simulations. Results from the two types of simulations agreed best for wells that receive large amounts of wastewater with short traveltimes (less than 10 years) because insufficient transport

Top