Science.gov

Sample records for base height cloud

  1. Biogeography, Cloud Base Heights and Cloud Immersion in Tropical Montane Cloud Forests

    NASA Astrophysics Data System (ADS)

    Welch, R. M.; Asefi, S.; Zeng, J.; Nair, U. S.; Lawton, R. O.; Ray, D. K.; Han, Q.; Manoharan, V. S.

    2007-05-01

    Tropical Montane Cloud Forests (TMCFs) are ecosystems characterized by frequent and prolonged immersion within orographic clouds. TMCFs often lie at the core of the biological hotspots, areas of high biodiversity, whose conservation is necessary to ensure the preservation of a significant amount of the plant and animal species in the world. TMCFs support islands of endemism dependent on cloud water interception that are extremely susceptible to environmental and climatic changes at regional or global scales. Due to the ecological and hydrological importance of TMCFs it is important to understand the biogeographical distribution of these ecosystems. The best current list of TMCFs is a global atlas compiled by the United Nations Environmental Program (UNEP). However, this list is incomplete, and it does not provide information on cloud immersion, which is the defining characteristic of TMCFs and sorely needed for ecological and hydrological studies. The present study utilizes MODIS satellite data both to determine orographic cloud base heights and then to quantify cloud immersion statistics over TMCFs. Results are validated from surface measurements over Northern Costa Rica for the month of March 2003. Cloud base heights are retrieved with approximately 80m accuracy, as determined at Monteverde, Costa Rica. Cloud immersion derived from MODIS data is also compared to an independent cloud immersion dataset created using a combination of GOES satellite data and RAMS model simulations. Comparison against known locations of cloud forests in Northern Costa Rica shows that the MODIS-derived cloud immersion maps successfully identify these cloud forest locations, including those not included in the UNEP data set. Results also will be shown for cloud immersion in Hawaii. The procedure appears to be ready for global mapping.

  2. Toward autonomous surface-based infrared remote sensing of polar clouds: cloud-height retrievals

    NASA Astrophysics Data System (ADS)

    Rowe, Penny M.; Cox, Christopher J.; Walden, Von P.

    2016-08-01

    Polar regions are characterized by their remoteness, making measurements challenging, but an improved knowledge of clouds and radiation is necessary to understand polar climate change. Infrared radiance spectrometers can operate continuously from the surface and have low power requirements relative to active sensors. Here we explore the feasibility of retrieving cloud height with an infrared spectrometer that would be designed for use in remote polar locations. Using a wide variety of simulated spectra of mixed-phase polar clouds at varying instrument resolutions, retrieval accuracy is explored using the CO2 slicing/sorting and the minimum local emissivity variance (MLEV) methods. In the absence of imposed errors and for clouds with optical depths greater than ˜ 0.3, cloud-height retrievals from simulated spectra using CO2 slicing/sorting and MLEV are found to have roughly equivalent high accuracies: at an instrument resolution of 0.5 cm-1, mean biases are found to be ˜ 0.2 km for clouds with bases below 2 and -0.2 km for higher clouds. Accuracy is found to decrease with coarsening resolution and become worse overall for MLEV than for CO2 slicing/sorting; however, the two methods have differing sensitivity to different sources of error, suggesting an approach that combines them. For expected errors in the atmospheric state as well as both instrument noise and bias of 0.2 mW/(m2 sr cm-1), at a resolution of 4 cm-1, average retrieval errors are found to be less than ˜ 0.5 km for cloud bases within 1 km of the surface, increasing to ˜ 1.5 km at 4 km. This sensitivity indicates that a portable, surface-based infrared radiance spectrometer could provide an important complement in remote locations to satellite-based measurements, for which retrievals of low-level cloud are challenging.

  3. Cumulus cloud base height estimation from high spatial resolution Landsat data - A Hough transform approach

    NASA Technical Reports Server (NTRS)

    Berendes, Todd; Sengupta, Sailes K.; Welch, Ron M.; Wielicki, Bruce A.; Navar, Murgesh

    1992-01-01

    A semiautomated methodology is developed for estimating cumulus cloud base heights on the basis of high spatial resolution Landsat MSS data, using various image-processing techniques to match cloud edges with their corresponding shadow edges. The cloud base height is then estimated by computing the separation distance between the corresponding generalized Hough transform reference points. The differences between the cloud base heights computed by these means and a manual verification technique are of the order of 100 m or less; accuracies of 50-70 m may soon be possible via EOS instruments.

  4. [Retrieval of the Optical Thickness and Cloud Top Height of Cirrus Clouds Based on AIRS IR High Spectral Resolution Data].

    PubMed

    Cao, Ya-nan; Wei, He-li; Dai, Cong-ming; Zhang, Xue-hai

    2015-05-01

    A study was carried out to retrieve optical thickness and cloud top height of cirrus clouds from the Atmospheric Infrared Sounder (AIRS) high spectral resolution data in 1070~1135 cm-1 IR band using a Combined Atmospheric Radiative Transfer model (CART) by brightness temperature difference between model simulation and AIRS observation. The research is based on AIRS LIB high spectral infrared observation data combined with Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product data. Brightness temperature spectra based, on the retrieved cirrus optical thickness and cloud top height were simulated and compared with brightness temperature spectra of AIRS observation in the 650~1150 cm-1 band. The cirrus optical thickness and cloud top height retrieved were compared with brightness temperature of AIRS for channel 760 (900.56 cm-1, 11. 1 µm) and cirrus reflectance of MODIS cloud product. And cloud top height retrieved was compared with cloud top height from MODIS. Results show that the brightness temperature spectra simulated were basically consistent with AIRS observation under the condition of retrieval in the 650~1150 cm-1 band. It means that CART can be used to simulate AIRS brightness temperature spectra. The retrieved cirrus parameters are consistent with brightness temperature of AIRS for channel 11. 1 µm with low brightness temperature corresponding to large cirrus optical thickness and high cloud top height. And the retrieved cirrus parameters are consistent with cirrus reflectance of MODIS cloud product with high cirrus reflectance corresponding to large cirrus optical thickness and high cloud top height. Correlation coefficient of brightness temperature between retrieved cloud top height and MODIS cloud top height was relatively high. They are mostly located in the range of 8. 5~11.5 km, and their probability distribution trend is approximately identical. CART model is feasible to retrieve cirrus properties, and the retrieval is reliable.

  5. Method of estimation of cloud base height using ground-based digital stereophotography

    NASA Astrophysics Data System (ADS)

    Chulichkov, Alexey I.; Andreev, Maksim S.; Emilenko, Aleksandr S.; Ivanov, Victor A.; Medvedev, Andrey P.; Postylyakov, Oleg V.

    2015-11-01

    Errors of the retrieval of the atmospheric composition using optical methods (DOAS et al.) are under the determining influence of the cloudiness during the measurements. Information on cloud characteristics helps to adjust the optical model of the atmosphere used to interpret the measurements and to reduce the retrieval errors are. For the reconstruction of some geometrical characteristics of clouds a method was developed based on taking pictures of the sky by a pair of digital photo cameras and subsequent processing of the obtained sequence of stereo frames to obtain the height of the cloud base. Since the directions of the optical axes of the stereo cameras are not exactly known, a procedure of adjusting of obtained frames was developed which use photographs of the night starry sky. In the second step, the method of the morphological analysis of images is used to determine the relative shift of the coordinates of some fragment of cloud. The shift is used to estimate the searched cloud base height. The proposed method can be used for automatic processing of stereo data and getting the cloud base height. The report describes a mathematical model of stereophotography measurement, poses and solves the problem of adjusting of optical axes of the cameras, describes method of searching of cloud fragments at another frame by the morphological image analysis; the problem of estimating the cloud base height is formulated and solved. Theoretical investigation shows that for the stereo base of 60 m and shooting with a resolution of 1600x1200 pixels in field of view of 60° the errors do not exceed 10% for the cloud base height up to 4 km. Optimization of camera settings can farther improve the accuracy. Available for authors experimental setup with the stereo base of 17 m and a resolution of 640x480 pixels preliminary confirmed theoretical estimations of the accuracy in comparison with laser rangefinder.

  6. Cloud Base Height Measurements at Manila Observatory: Initial Results from Constructed Paired Sky Imaging Cameras

    NASA Astrophysics Data System (ADS)

    Lagrosas, N.; Tan, F.; Antioquia, C. T.

    2014-12-01

    Fabricated all sky imagers are efficient and cost effective instruments for cloud detection and classification. Continuous operation of this instrument can result in the determination of cloud occurrence and cloud base heights for the paired system. In this study, a fabricated paired sky imaging system - consisting two commercial digital cameras (Canon Powershot A2300) enclosed in weatherproof containers - is developed in Manila Observatory for the purpose of determining cloud base heights at the Manila Observatory area. One of the cameras is placed on the rooftop of Manila Observatory and the other is placed on the rooftop of the university dormitory, 489m from the first camera. The cameras are programmed to simultaneously gather pictures every 5 min. Continuous operation of these cameras were implemented since the end of May of 2014 but data collection started end of October 2013. The data were processed following the algorithm proposed by Kassianov et al (2005). The processing involves the calculation of the merit function that determines the area of overlap of the two pictures. When two pictures are overlapped, the minimum of the merit function corresponds to the pixel column positions where the pictures have the best overlap. In this study, pictures of overcast sky prove to be difficult to process for cloud base height and were excluded from processing. The figure below shows the initial results of the hourly average of cloud base heights from data collected from November 2013 to July 2014. Measured cloud base heights ranged from 250m to 1.5km. These are the heights of cumulus and nimbus clouds that are dominant in this part of the world. Cloud base heights are low in the early hours of the day indicating low convection process during these times. However, the increase in the convection process in the atmosphere can be deduced from higher cloud base heights in the afternoon. The decrease of cloud base heights after 15:00 follows the trend of decreasing solar

  7. Latitudinal variations of cloud base height and lightning parameters in the tropics

    NASA Technical Reports Server (NTRS)

    Mushtak, V. C.; Williams, E. R.; Boccippio, D. J.

    2006-01-01

    The observed reduction in cloud-to-ground lightning in the new-equational zone is examined from the perspective of the width of the main negative charge region. Thermodynamic observations of cloud base height also show a climatological minimum value in the near-equatorial region. The association of low cloud base with both narrow updrafts and narrow changing zones may impede the bridging of the large air gap to ground, and thereby suppress cloud-to-ground lightning activity. This width dependence may be more important than the approx. 10% variation in height of the freezing level in the encouraging flashes to ground.

  8. Urbanization Causes Increased Cloud Base Height and Decreased Fog in Coastal Southern California

    NASA Technical Reports Server (NTRS)

    Williams, A. Park; Schwartz, Rachel E.; Iacobellis, Sam; Seager, Richard; Cook, Benjamin I.; Still, Christopher J.; Husak, Gregory; Michaelsen, Joel

    2015-01-01

    Subtropical marine stratus clouds regulate coastal and global climate, but future trends in these clouds are uncertain. In coastal Southern California (CSCA), interannual variations in summer stratus cloud occurrence are spatially coherent across 24 airfields and dictated by positive relationships with stability above the marine boundary layer (MBL) and MBL height. Trends, however, have been spatially variable since records began in the mid-1900s due to differences in nighttime warming. Among CSCA airfields, differences in nighttime warming, but not daytime warming, are strongly and positively related to fraction of nearby urban cover, consistent with an urban heat island effect. Nighttime warming raises the near-surface dew point depression, which lifts the altitude of condensation and cloud base height, thereby reducing fog frequency. Continued urban warming, rising cloud base heights, and associated effects on energy and water balance would profoundly impact ecological and human systems in highly populated and ecologically diverse CSCA.

  9. Urbanization causes increased cloud base height and decreased fog in coastal Southern California

    NASA Astrophysics Data System (ADS)

    Williams, A. Park; Schwartz, Rachel E.; Iacobellis, Sam; Seager, Richard; Cook, Benjamin I.; Still, Christopher J.; Husak, Gregory; Michaelsen, Joel

    2015-03-01

    Subtropical marine stratus clouds regulate coastal and global climate, but future trends in these clouds are uncertain. In coastal Southern California (CSCA), interannual variations in summer stratus cloud occurrence are spatially coherent across 24 airfields and dictated by positive relationships with stability above the marine boundary layer (MBL) and MBL height. Trends, however, have been spatially variable since records began in the mid-1900s due to differences in nighttime warming. Among CSCA airfields, differences in nighttime warming, but not daytime warming, are strongly and positively related to fraction of nearby urban cover, consistent with an urban heat island effect. Nighttime warming raises the near-surface dew point depression, which lifts the altitude of condensation and cloud base height, thereby reducing fog frequency. Continued urban warming, rising cloud base heights, and associated effects on energy and water balance would profoundly impact ecological and human systems in highly populated and ecologically diverse CSCA.

  10. Verification and correction of cloud base and top height retrievals from Ka-band cloud radar in Boseong, Korea

    NASA Astrophysics Data System (ADS)

    Oh, Su-Bin; Kim, Yeon-Hee; Kim, Ki-Hoon; Cho, Chun-Ho; Lim, Eunha

    2016-01-01

    In this study, cloud base height (CBH) and cloud top height (CTH) observed by the Ka-band (33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013 (September-November) were verified and corrected. For comparative verification, CBH and CTH were obtained using a ceilometer (CL51) and the Communication, Ocean and Meteorological Satellite (COMS). During rainfall, the CBH and CTH observed by the cloud radar were lower than observed by the ceilometer and COMS because of signal attenuation due to raindrops, and this difference increased with rainfall intensity. During dry periods, however, the CBH and CTH observed by the cloud radar, ceilometer, and COMS were similar. Thin and low-density clouds were observed more effectively by the cloud radar compared with the ceilometer and COMS. In cases of rainfall or missing cloud radar data, the ceilometer and COMS data were proven effective in correcting or compensating the cloud radar data. These corrected cloud data were used to classify cloud types, which revealed that low clouds occurred most frequently.

  11. The computation of cloud base height from paired whole-sky imaging cameras

    SciTech Connect

    Allmen, M.C.; Kegelmeyer, W.P. Jr.

    1994-03-01

    A major goal for global change studies is to improve the accuracy of general circulation models (GCMs) capable of predicting the timing and magnitude of greenhouse gas-induced global warming. Research has shown that cloud radiative feedback is the single most important effect determining the magnitude of possible climate responses to human activity. Of particular value to reducing the uncertainties associated with cloud-radiation interactions is the measurement of cloud base height (CBH), both because it is a dominant factor in determining the infrared radiative properties of clouds with respect to the earth`s surface and lower atmosphere and because CBHs are essential to measuring cloud cover fraction. We have developed a novel approach to the extraction of cloud base height from pairs of whole sky imaging (WSI) cameras. The core problem is to spatially register cloud fields from widely separated WSI cameras; this complete, triangulation provides the CBH measurements. The wide camera separation (necessary to cover the desired observation area) and the self-similarity of clouds defeats all standard matching algorithms when applied to static views of the sky. To address this, our approach is based on optical flow methods that exploit the fact that modern WSIs provide sequences of images. We will describe the algorithm and present its performance as evaluated both on real data validated by ceilometer measurements and on a variety of simulated cases.

  12. The Role of Cloud Base Height in the Convective Vigor and Flash Rate of Thunderstorms

    NASA Astrophysics Data System (ADS)

    Williams, E. R.; Mushtak, V. C.; Boccippio, D. J.

    2002-12-01

    Earlier studies of atmospheric convection have established the following results: (1) Convective Available Potential Energy (CAPE) over tropical land areas is of the same order as over warm ocean regions, (2) updraft strengths in continental clouds are more than twice those in oceanic clouds, (3) cumulonimbus updraft widths are larger over land than over ocean, (4) thermal widths in the planetary boundary layer over land increase with the depth of the boundary layer. The present study is concerned with tests of the hypothesis that cumulonimbus updraft width scales with cloud base height, and the greater the width, the more efficient is the conversion of CAPE to updraft kinetic energy. The greater the kinetic energy, the greater is the lightning flash rate. Comparisons are made between cloud base height inferred from routine thermodynamic measurements throughout the tropics and thunderstorm flash rates (in proximity to the surface stations) observed by the Lightning Imaging Sensor on the NASA TRMM (Tropical Rainfall Measuring Mission) satellite. These comparisons indicate that, on average, thunderstorm flash rates increase exponentially with cloud base height, with an order of magnitude change in flash rate for a change in height from 500 m values typical for tropical oceans, to 2500 m values typical of extreme tropical continental conditions. These correlations, found to be statistically significant, support the foregoing hypothesis.

  13. An Air Temperature Cloud Height Precipitation Phase Determination Scheme for Surface Based Modeling

    NASA Astrophysics Data System (ADS)

    Feiccabrino, J. M.

    2015-12-01

    Many hydrological and ecological models use simple surface temperature threshold equations rather than coupling with a complex meteorological model to determine if precipitation is rain or snow. Some comparative studies have found, the most common rain/snow threshold variable, air temperature to have more precipitation phase error than dew-point or wet-bulb temperature, which account for the important secondary role of humidity in the melting and sublimation processes. However, just like surface air temperature, surface humidity is often effected by soil conditions and vegetation and is therefore not always representative of the atmospheric humidity precipitation falls through. A viable alternative to using surface humidity as a proxy for atmospheric moisture would be to adjust the rain snow threshold for changes in cloud height. The height of a cloud base above the ground gives the depth of an unsaturated layer. An unsaturated atmospheric layer should have much different melting and sublimation rates than a saturated cloud layer. Therefore, rain and snow percentages at a given surface air temperature should change with the height of the lowest cloud base. This study uses hourly observations from 12 U.S. manually augmented meteorological stations located in the Great Plains and Midwest upwind or away from major water bodies in relatively flat areas in an attempt to limit geographical influences. The surface air temperature threshold for the ground to 200 feet (under 100m) was 0.0°C, 0.6°C for 300-600 feet (100-200m), 1.1°C for 700-1200 feet (300-400m), 1.7°C for 1300-2000 feet (500-600m), and 2.2°C for 2100-3300 feet (700-1000m). Total precipitation error for these cloud height air temperature thresholds reduced the error from the single air temperature threshold 1.1°C by 15% from 14% to 12% total error between -2.2°C and 3.9°C. These air temperature cloud height thresholds resulted in 1.5% less total error than the dew-point temperature threshold 0.0

  14. New Stereo Vision Digital Camera System for Simultaneous Measurement of Cloud Base Height and Atmospheric Visibility

    NASA Astrophysics Data System (ADS)

    Janeiro, F. M.; Carretas, F.; Palma, N.; Ramos, P. M.; Wagner, F.

    2013-12-01

    Clouds play an important role in many aspects of everyday life. They affect both the local weather as well as the global climate and are an important parameter on climate change studies. Cloud parameters are also important for weather prediction models which make use of actual measurements. It is thus important to have low-cost instrumentation that can be deployed in the field to measure those parameters. This kind of instruments should also be automated and robust since they may be deployed in remote places and be subject to adverse weather conditions. Although clouds are very important in environmental systems, they are also an essential component of airplane safety when visual flight rules (VFR) are enforced, such as in most small aerodromes where it is not economically viable to install instruments for assisted flying. Under VFR there are strict limits on the height of the cloud base, cloud cover and atmospheric visibility that ensure the safety of the pilots and planes. Although there are instruments, available in the market, to measure those parameters, their relatively high cost makes them unavailable in many local aerodromes. In this work we present a new prototype which has been recently developed and deployed in a local aerodrome as proof of concept. It is composed by two digital cameras that capture photographs of the sky and allow the measurement of the cloud height from the parallax effect. The new developments consist on having a new geometry which allows the simultaneous measurement of cloud base height, wind speed at cloud base height and atmospheric visibility, which was not previously possible with only two cameras. The new orientation of the cameras comes at the cost of a more complex geometry to measure the cloud base height. The atmospheric visibility is calculated from the Lambert-Beer law after the measurement of the contrast between a set of dark objects and the background sky. The prototype includes the latest hardware developments that

  15. Evaluation of Satellite-Based Upper Troposphere Cloud Top Height Retrievals in Multilayer Cloud Conditions During TC4

    NASA Technical Reports Server (NTRS)

    Chang, Fu-Lung; Minnis, Patrick; Ayers, J. Kirk; McGill, Matthew J.; Palikonda, Rabindra; Spangenberg, Douglas A.; Smith, William L., Jr.; Yost, Christopher R.

    2010-01-01

    Upper troposphere cloud top heights (CTHs), restricted to cloud top pressures (CTPs) less than 500 hPa, inferred using four satellite retrieval methods applied to Twelfth Geostationary Operational Environmental Satellite (GOES-12) data are evaluated using measurements during the July August 2007 Tropical Composition, Cloud and Climate Coupling Experiment (TC4). The four methods are the single-layer CO2-absorption technique (SCO2AT), a modified CO2-absorption technique (MCO2AT) developed for improving both single-layered and multilayered cloud retrievals, a standard version of the Visible Infrared Solar-infrared Split-window Technique (old VISST), and a new version of VISST (new VISST) recently developed to improve cloud property retrievals. They are evaluated by comparing with ER-2 aircraft-based Cloud Physics Lidar (CPL) data taken during 9 days having extensive upper troposphere cirrus, anvil, and convective clouds. Compared to the 89% coverage by upper tropospheric clouds detected by the CPL, the SCO2AT, MCO2AT, old VISST, and new VISST retrieved CTPs less than 500 hPa in 76, 76, 69, and 74% of the matched pixels, respectively. Most of the differences are due to subvisible and optically thin cirrus clouds occurring near the tropopause that were detected only by the CPL. The mean upper tropospheric CTHs for the 9 days are 14.2 (+/- 2.1) km from the CPL and 10.7 (+/- 2.1), 12.1 (+/- 1.6), 9.7 (+/- 2.9), and 11.4 (+/- 2.8) km from the SCO2AT, MCO2AT, old VISST, and new VISST, respectively. Compared to the CPL, the MCO2AT CTHs had the smallest mean biases for semitransparent high clouds in both single-layered and multilayered situations whereas the new VISST CTHs had the smallest mean biases when upper clouds were opaque and optically thick. The biases for all techniques increased with increasing numbers of cloud layers. The transparency of the upper layer clouds tends to increase with the numbers of cloud layers.

  16. Observations of orographic Cloud Base Heights from satellite and in-situ measurements at the Monteverde Cloud Mist Forest Reserve, Costa Rica

    NASA Astrophysics Data System (ADS)

    Asefi, S.; Zeng, J.; Han, Q.; Welch, R. M.; Lawton, R. O.; Nair, U. S.; Ray, D.; McCarty, W. R.; Jedlovec, G.

    2005-12-01

    Tropical montane cloud mist forests are among the most biologically rich and diverse ecosystems, providing habitats for many of the world's endangered species. Survival of these habitats depends strongly on regular and frequent immersion in orographic clouds. At the Monteverde Cloud Mist Forest Reserve in Costa Rica, the bases of the clouds have shifted upslope, leading to anuran population crashes, an increase in the upper elevation of bird ranges on the Pacific slope, and longer dry season mist-free intervals. Satellite remote sensing techniques have been developed to determine the orographic cloud base heights; these are tested for the dry season month of March 2003 over the Monteverde cloud forests. The approach derives MODIS cloud top pressures and then converts them to cloud top heights using geopotential height profiles. The NCAR Land Use and Cloud Interaction Experiment (LUCIE), consisting of paired mobile radiosonde systems deployed in Costa Rica, provided the means for validating the retrievals. Results show that the four MODIS CO2 slicing channels do not provide sufficiently accurate cloud top height values, although some of the differences are due to a mismatch in the observational periods. In order to improve the results, two alternative approaches are examined. Simulated geopotential height profiles from the CSU Regional Atmospheric Modeling System (RAMS) initialized with soundings provided superior results. Another approach investigated the utility of multiple combinations of channels in the CO2 slicing technique using Atmospheric Infrared Sounder (AIRS) data for cloud height assignment. Using AIRS a more accurate determination of cloud top height is achieved. Cloud thicknesses are estimated using three different approaches: 1) constant liquid water content (CLWC); 2) an empirical relationship; and 3) an adiabatic model. The CLWC approach provided the most consistent results. Cloud base heights are computed from subtracting cloud thickness from cloud

  17. Stereoscopic ground-based determination of the cloud base height: theory of camera position calibration with account for lens distortion

    NASA Astrophysics Data System (ADS)

    Chulichkov, Alexey I.; Postylyakov, Oleg V.

    2016-05-01

    For the reconstruction of some geometrical characteristics of clouds a method was developed based on taking pictures of the sky by a pair of digital photo cameras and subsequent processing of the obtained sequence of stereo frames to obtain the height of the cloud base. Since the directions of the optical axes of the stereo cameras are not exactly known, a procedure of adjusting of obtained frames was developed which use photographs of the night starry sky. In the second step, the method of the morphological analysis of images is used to determine the relative shift of the coordinates of some fragment of cloud. The shift is used to estimate the searched cloud base height. The proposed method can be used for automatic processing of stereo data and getting the cloud base height. The earlier paper described a mathematical model of stereophotography measurement, poses and solves the problem of adjusting of optical axes of the cameras in paraxial (first-order geometric optics) approximation and was applied for the central part of the sky frames. This paper describes the model of experiment which takes into account lens distortion in Seidel approximation (depending on the third order of the distance from optical axis). We developed procedure of simultaneous camera position calibration and estimation of parameters of lens distortion in Seidel approximation.

  18. Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn

    NASA Astrophysics Data System (ADS)

    Sato, K.; Inoue, J.; Kodama, Y.; Overland, J. E.

    2012-12-01

    Cloud-base observations over the ice-free Chukchi and Beaufort Seas in autumn were conducted using a shipboard ceilometer and radiosondes during the 1999-2010 cruises of the Japanese R/V Mirai. To understand the recent change in cloud base height over the Arctic Ocean, these cloud-base height data were compared with the observation data under ice-covered situation during SHEBA (the Surface Heat Budget of the Arctic Ocean project in 1998). Our ice-free results showed a 30 % decrease (increase) in the frequency of low clouds with a ceiling below (above) 500 m. Temperature profiles revealed that the boundary layer was well developed over the ice-free ocean in the 2000s, whereas a stable layer dominated during the ice-covered period in 1998. The change in surface boundary conditions likely resulted in the difference in cloud-base height, although it had little impact on air temperatures in the mid- and upper troposphere. Data from the 2010 R/V Mirai cruise were investigated in detail in terms of air-sea temperature difference. This suggests that stratus cloud over the sea ice has been replaced as stratocumulus clouds with low cloud fraction due to the decrease in static stability induced by the sea-ice retreat. The relationship between cloud-base height and air-sea temperature difference (SST-Ts) was analyzed in detail using special section data during 2010 cruise data. Stratus clouds near the sea surface were predominant under a warm advection situation, whereas stratocumulus clouds with a cloud-free layer were significant under a cold advection situation. The threshold temperature difference between sea surface and air temperatures for distinguishing the dominant cloud types was 3 K. Anomalous upward turbulent heat fluxes associated with the sea-ice retreat have likely contributed to warming of the lower troposphere. Frequency distribution of the cloud-base height (km) detected by a ceilometer/lidar (black bars) and radiosondes (gray bars), and profiles of potential

  19. Cloud base and top heights in the Hawaiian region determined with satellite and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Chunxi; Wang, Yuqing; Lauer, Axel; Hamilton, Kevin; Xie, Feiqin

    2012-08-01

    We present a multi-year climatology of cloud-base-height (CBH), cloud-top-height (CTH), and trade wind inversion base height (TWIBH) for the Hawaiian region (18°N-22.5°N, 153.7°W-160.7°W). The new climatology is based on data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO), the Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC), ceilometer observations and radiosondes. The climatology reported here is well suited to evaluate climate model simulations and can serve as a reference state for studies of the impact of climate change on Hawaiian ecosystems. The averaged CBH from CALIPSO in the Hawaiian Region is 890 m. The mean CTH from CALIPSO is 2110 m, which is close to the mean TWIBH from COSMIC. For non-precipitating cases, the mean TWIBH at both Lihue and Hilo is close to 2000 m. For precipitating cases, the mean TWIBH is 2450 m and 2280 m at Hilo and Lihue, respectively. The potential cloud thickness (PCT) is defined as the difference between TWIBH and CBH and the mean PCT is several hundred meters thicker for precipitating than for the non-precipitating cases at both stations. We find that the PCT is more strongly correlated to the TWIBH than the CBH and that precipitation is unlikely to occur if the TWIBH is below 1500 m. The observed rainfall intensity is correlated to the PCT, i.e., thicker clouds are more likely to produce heavy rain.

  20. Development of an analysis tool for cloud base height and visibility

    NASA Astrophysics Data System (ADS)

    Umdasch, Sarah; Reinhold, Steinacker; Manfred, Dorninger; Markus, Kerschbaum; Wolfgang, Pöttschacher

    2014-05-01

    The meteorological variables cloud base height (CBH) and horizontal atmospheric visibility (VIS) at surface level are of vital importance for safety and effectiveness in aviation. Around 20% of all civil aviation accidents in the USA from 2003 to 2007 were due to weather related causes, around 18% of which were owing to decreased visibility or ceiling (main CBH). The aim of this study is to develop a system generating quality-controlled gridded analyses of the two parameters based on the integration of various kinds of observational data. Upon completion, the tool is planned to provide guidance for nowcasting during take-off and landing as well as for flights operated under visual flight rules. Primary input data consists of manual as well as instrumental observation of CBH and VIS. In Austria, restructuring of part of the standard meteorological stations from human observation to automatic measurement of VIS and CBH is currently in progress. As ancillary data, satellite derived products can add 2-dimensional information, e.g. Cloud Type by NWC SAF (Nowcasting Satellite Application Facilities) MSG (Meteosat Second Generation). Other useful available data are meteorological surface measurements (in particular of temperature, humidity, wind and precipitation), radiosonde, radar and high resolution topography data. A one-year data set is used to study the spatial and weather-dependent representativeness of the CBH and VIS measurements. The VERA (Vienna Enhanced Resolution Analysis) system of the Institute of Meteorology and Geophysics of the University of Vienna provides the framework for the analysis development. Its integrated "Fingerprint" technique allows the insertion of empirical prior knowledge and ancillary information in the form of spatial patterns. Prior to the analysis, a quality control of input data is performed. For CBH and VIS, quality control can consist of internal consistency checks between different data sources. The possibility of two

  1. Estimation of Cirrus and Stratus Cloud Heights Using Landsat Imagery

    NASA Technical Reports Server (NTRS)

    Inomata, Yasushi; Feind, R. E.; Welch, R. M.

    1996-01-01

    A new method based upon high-spatial-resolution imagery is presented that matches cloud and shadow regions to estimate cirrus and stratus cloud heights. The distance between the cloud and the matching shadow pattern is accomplished using the 2D cross-correlation function from which the cloud height is derived. The distance between the matching cloud-shadow patterns is verified manually. The derived heights also are validated through comparison with a temperature-based retrieval of cloud height. It is also demonstrated that an estimate of cloud thickness can be retrieved if both the sunside and anti-sunside of the cloud-shadow pair are apparent. The technique requires some intepretation to determine the cloud height level retrieved (i.e., the top, base, or mid-level). It is concluded that the method is accurate to within several pixels, equivalent to cloud height variations of about +/- 250 m. The results show that precise placement of the templates is unnecessary, so that the development of a semi-automated procedure is possible. Cloud templates of about 64 pixels on a side or larger produce consistent results. The procedure was repeated for imagery degraded to simulate lower spatial resolutions. The results suggest that spatial resolution of 150-200 m or better is necessary in order to obtain stable cloud height retrievals.

  2. Evaluation of SCIAMACHY Oxygen A band cloud heights using Cloudnet measurements

    NASA Astrophysics Data System (ADS)

    Wang, P.; Stammes, P.

    2014-05-01

    Two SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) O2 A band cloud height products are evaluated using ground-based radar/lidar measurements between January 2003 and December 2011. The products are the ESA (European Space Agency) Level 2 (L2) version 5.02 cloud top height and the FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A band) version 6 cloud height. The radar/lidar profiles are obtained at the Cloudnet sites of Cabauw and Lindenberg, and are averaged for 1 h centered at the SCIAMACHY overpass time. In total we have 217 cases of single-layer clouds and 204 cases of multilayer clouds. We find that the ESA L2 cloud top height has a better agreement with the Cloudnet cloud top height than the Cloudnet cloud middle height. The ESA L2 cloud top height is on average 0.4 km higher than the Cloudnet cloud top height, with a standard deviation of 3.1 km. The FRESCO cloud height is closer to the Cloudnet cloud middle height than the Cloudnet cloud top height. The mean difference between the FRESCO cloud height and the Cloudnet cloud middle height is -0.1 km with a standard deviation of 1.9 km. The ESA L2 cloud top height is higher than the FRESCO cloud height. The differences between the SCIAMACHY cloud (top) height and the Cloudnet cloud top height are linked to cloud optical thickness. The SCIAMACHY cloud height products are further compared to the Cloudnet cloud top height and the Cloudnet cloud middle height in 1 km bins. For single-layer clouds, the difference between the ESA L2 cloud top height and the Cloudnet cloud top height is less than 1 km for each cloud bin at 3-7 km. The difference between the FRESCO cloud height and the Cloudnet cloud middle height is less than 1 km for each cloud bin at 0-6 km. The results are similar for multilayer clouds, but the percentage of cases having a bias within 1 km is smaller than for single-layer clouds. We may conclude that the FRESCO cloud height is accurate for low and middle

  3. Validation of SCIAMACHY O2 A band cloud heights using Cloudnet radar/lidar measurements

    NASA Astrophysics Data System (ADS)

    Wang, P.; Stammes, P.

    2013-10-01

    For the first time two SCIAMACHY O2 A band cloud height products are validated using ground-based radar/lidar measurements between January 2003 and December 2011. The products are the ESA Level 2 (L2) version 5.02 cloud top height and the FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A band) version 6 cloud height. The radar/lidar profiles are obtained at the Cloudnet sites of Cabauw and Lindenberg, and are averaged for one hour centered at the SCIAMACHY overpass time to achieve an optimal temporal and spatial match. In total we have about 220 cases of single layer clouds and 200 cases of multi-layer clouds. The FRESCO cloud height and ESA L2 cloud top height are compared with the Cloudnet cloud top height and Cloudnet cloud middle height. We find that the ESA L2 cloud top height has a better agreement with the Cloudnet cloud top height than the Cloudnet cloud middle height. The ESA L2 cloud top height is on average 0.44 km higher than the Cloudnet cloud top height, with a standard deviation of 3.07 km. The FRESCO cloud height is closer to the Cloudnet cloud middle height than the Cloudnet cloud top height. The mean difference between the FRESCO cloud height and the Cloudnet cloud middle height is -0.14 km with a standard deviation of 1.88 km. The SCIAMACHY cloud height products are further compared to the Cloudnet cloud top height and the Cloudnet cloud middle height in 1 km bins. For single layer clouds, the difference between the ESA L2 cloud top height and the Cloudnet cloud top height is less than 1 km for each cloud bin at 3-7 km, which is 24 % percent of the data. The difference between the FRESCO cloud height and the Cloudnet cloud middle height is less than 1 km for each cloud bin at 0-6 km, which is 85 % percent of the data. The results are similar for multi-layer clouds, but the percentage of cases having a bias within 1 km is smaller than for single layer clouds. Since globally about 60 % of all clouds are low clouds and 42 % are single

  4. Exploiting the sensitivity of two satellite cloud height retrievals to cloud vertical distribution

    NASA Astrophysics Data System (ADS)

    Carbajal Henken, C. K.; Doppler, L.; Lindstrot, R.; Preusker, R.; Fischer, J.

    2015-08-01

    This work presents a study on the sensitivity of two satellite cloud height retrievals to cloud vertical distribution. The difference in sensitivity is exploited by relating the difference in the retrieved cloud heights to cloud vertical extent. The two cloud height retrievals, performed within the Freie Universität Berlin AATSR MERIS Cloud (FAME-C) algorithm, are based on independent measurements and different retrieval techniques. First, cloud-top temperature (CTT) is retrieved from Advanced Along Track Scanning Radiometer (AATSR) measurements in the thermal infrared. Second, cloud-top pressure (CTP) is retrieved from Medium Resolution Imaging Spectrometer (MERIS) measurements in the oxygen-A absorption band and a nearby window channel. Both CTT and CTP are converted to cloud-top height (CTH) using atmospheric profiles from a numerical weather prediction model. First, a sensitivity study using radiative transfer simulations in the near-infrared and thermal infrared was performed to demonstrate, in a quantitative manner, the larger impact of the assumed cloud vertical extinction profile, described in terms of shape and vertical extent, on MERIS than on AATSR top-of-atmosphere measurements. Consequently, cloud vertical extinction profiles will have a larger influence on the MERIS than on the AATSR cloud height retrievals for most cloud types. Second, the difference in retrieved CTH (ΔCTH) from AATSR and MERIS are related to cloud vertical extent (CVE), as observed by ground-based lidar and radar at three ARM sites. To increase the impact of the cloud vertical extinction profile on the MERIS-CTP retrievals, single-layer and geometrically thin clouds are assumed in the forward model. Similarly to previous findings, the MERIS-CTP retrievals appear to be close to pressure levels in the middle of the cloud. Assuming a linear relationship, the ΔCTH multiplied by 2.5 gives an estimate on the CVE for single-layer clouds. The relationship is stronger for single

  5. Predicting Daily Insolation with Hourly Cloud Height and Coverage.

    NASA Astrophysics Data System (ADS)

    Meyers, T. P.; Dale, R. F.

    1983-04-01

    Solar radiation information is used in crop growth, boundary layer, entomological and plant pathological models, and in determining the potential use of active and passive solar energy systems. Yet solar radiation is among the least measured meteorological variables.A semi-physical model based on standard meteorological data was developed to estimate solar radiation received at the earth's surface. The radiation model includes the effects of Rayleigh scattering, absorption by water vapor and permanent gases, and absorption and scattering by aerosols and clouds. Cloud attenuation is accounted for by assigning transmission coefficients based on cloud height and amount. The cloud transmission coefficients for various heights and coverages were derived empirically from hourly observations of solar radiation in conjunction with corresponding cloud observations at West Lafayette, Indiana. The model was tested with independent data from West Lafayette and Indianapolis, Madison, WI, Omaha, NE, Columbia, MO, Nashville, TN, Seattle, WA, Los Angeles, CA, Phoenix, AZ, Lake Charles, LA, Miami, FL, and Sterling, VA. For each of these locations a 16% random sample of days was drawn within each of the 12 months in a year for testing the model. Excellent agreement between predicted and observed radiation values was obtained for all stations tested. Mean absolute errors ranged from 1.05 to 1.80 MJ m2 day1 and root-mean-square errors ranged from 1.31 to 2.32 MJ m2 day1. The model's performance judged by relative error was found to be independent of season and cloud amount for all locations tested.

  6. Analysis of cloud top height and cloud coverage from satellites using the O2 A and B bands

    NASA Technical Reports Server (NTRS)

    Kuze, Akihiko; Chance, Kelly V.

    1994-01-01

    Cloud height and cloud coverage detection are important for total ozone retrieval using ultraviolet and visible scattered light. Use of the O2 A and B bands, around 761 and 687 nm, by a satellite-borne instrument of moderately high spectral resolution viewing in the nadir makes it possible to detect cloud top height and related parameters, including fractional coverage. The measured values of a satellite-borne spectrometer are convolutions of the instrument slit function and the atmospheric transmittance between cloud top and satellite. Studies here determine the optical depth between a satellite orbit and the Earth or cloud top height to high accuracy using FASCODE 3. Cloud top height and a cloud coverage parameter are determined by least squares fitting to calculated radiance ratios in the oxygen bands. A grid search method is used to search the parameter space of cloud top height and the coverage parameter to minimize an appropriate sum of squares of deviations. For this search, nonlinearity of the atmospheric transmittance (i.e., leverage based on varying amounts of saturation in the absorption spectrum) is important for distinguishing between cloud top height and fractional coverage. Using the above-mentioned method, an operational cloud detection algorithm which uses minimal computation time can be implemented.

  7. Cloud-Top Height Estimation by Geostationary Satellite Split-Window Measurements using CloudSat Measurements

    NASA Astrophysics Data System (ADS)

    Hamada, A.; Nishi, N.

    2009-12-01

    Estimation of cloud-top height and visible optical thickness of upper-tropospheric clouds by brightness temperature (TB) measurements of geostationary satellite at two infrared split-window wavelengths was conducted. These cloud parameters were estimated by regressing the measurements of 94-GHz cloud radar onboard CloudSat satellite in terms of TB at 10.8 um (T11) and its difference from TB at 12 um (ΔT = T11 - T12) measured by geostationary satellite MTSAT-1R. Estimation by geostationary satellite measurements are fairly useful in field campaigns aiming mesoscale cloud systems, where cloud-top heights are compared with the vertical profiles of ground-based measurements such as wind and cloud condensates in a short time interval. Hamada et al. (2008) conducted the estimation of cloud-top height by T11 and ΔT measured by GMS-5, using ship-borne cloud radar measurements. However, their ground-based result was limited to the non-rainy clouds, since cloud radar signal is heavily attenuated by precipitation particles. Spaceborne radar measurements enables an estimation of cloud-top height without concern for the existence of precipitation. We examined the dependences of the estimates of cloud-top height on latitude, season, satellite zenith angle, day-night, and land-sea differences. It was shown that these dependences were considered as being uniform in tropics, except for the region with large satellite zenith angle. The dependences on latitude and season were negligible in tropics, while they became the most significant factor affecting the estimates at higher latitudes. Estimation of visible optical thickness was also conducted, although limited to the non-rainy high clouds. The distributions of estimates in TB-ΔT space were qualitatively consistent with those expected from a simplified radiative transfer equation, although the standard deviations of measurements were slightly large. Since the CloudSat conducts cloud radar observations on a global scale, the

  8. Retrieval of cloud height from SCIAMACHY using oxygen absorption around 630nm

    NASA Astrophysics Data System (ADS)

    Grzegorski, Michael; Deutschmann, Tim; Platt, Ulrich; Wang, Ping; Wagner, Thomas

    2010-05-01

    The SCanning Imaging Absorption spectrometer for Atmospheric ChartographY (SCIAMACHY) on ENVISAT allows measurements of different atmospheric trace gases (e.g. O3, NO2, SO2, CH4, HCHO, CO, BrO, H2O, O2, O4) using the DOAS technique. The HICRU algorithm retrieves cloud height using the spectral analysis of the oxygen absorption around 630nm combined with results of the Monte-Carlo model TRACY-II and a new SCIAMACHY surface albedo database. The results are compared to: 1.) cloud height retrievals of other satellite instruments (MERIS, MODIS) 2.) ISCCP climatology 3.) SCIAMACHY cloud algorithms (SACURA, FRESCO+) 4.) LIDAR/RADAR measurements. For low clouds, the HICRU algorithm retrieves cloud heights more close to the the top, because of the assumption of an appropriate cloud model with a realistic estimation of the scattering inside the cloud. It is also demonstrated, that none the three SCIAMACHY cloud algorithms HICRU, SACURA and FRESCO+ is able to retrieve the top of high clouds because of principal characteristics of the retrieval methods based on oxygen absorption. But oxygen absorptions can provide important additional information on the vertical cloud structure and multiple cloud layers if the method is combined with cloud-top-retrieval using windows in the thermal infrared. An application of these concepts to the GOSAT instrument will be discussed.

  9. Aerosol - cloud - water vapor relations for cloud systems of different heights

    NASA Astrophysics Data System (ADS)

    Stathopoulos, Stavros; Kourtidis, Konstantinos; Georgoulias, Aristeidis

    2016-04-01

    Here we examine the annual and seasonal aerosol - cloud relations over three major urban clusters of China, for different cloud heights and atmospheric water vapor amounts, using a decade of Aerosol Optical Depth at 550nm (AOD), Cloud Cover (CC), Cloud Optical Depth (COD), Water Vapor (WV) and Cloud Top Pressure (CTP) data from the MODIS instrument. Over all regions (spanning from temperate to tropical monsoon climates) and for all seasons, CC is found to increase with AOD, WV and cloud height. Aerosols, at low WV environments and under constant cloud height, have less impact on CC than at high WV environments. In addition, AOD has a varying influence on COD depending on CTP. Finally, COD is found to increase with height for low and middle height clouds, and with increasing AOD, especially at low AOD, the latter being in line with the expected first indirect effect. This research has been financed under the FP7 Programme MarcoPolo (Grand Number 606953, Theme SPA.2013.3.2-01).

  10. A Polar Specific 20-year Data Set of Cloud Fraction and Height Derived from Satellite Radiances

    NASA Technical Reports Server (NTRS)

    Francis, Jennifer; Schweiger, Axel

    2004-01-01

    This is a final report to fulfill reporting requirements on NASA grant NASA NAG5-11800. Jennifer Francis, PI at Rutgers University is currently continuing work on this project under a no-cost extension. Work at the University of Washington portion of the project is completed and reported here. Major accomplishments and results from this portion of the project include: 1) Extension and reprocessing of TOVS Polar Pathfinder (Path-P) data set; 2) Analysis of Arctic cloud variability; 3) Validation of Southern Hemisphere ocean cloud retrievals; 4) Intercompared cloud height information from AVHRR retrievals and surface-based cloud radar information.

  11. Cloud Height Maps for Hurricanes Frances and Ivan

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Multi-angle Imaging SpectroRadiometer (MISR) captured these images and cloud-top height retrievals of Hurricane Frances on September 4, 2004, when the eye sat just off the coast of eastern Florida, and Hurricane Ivan on September 5th, after this cyclone had devastated Grenada and was heading toward the central and western Caribbean. Hurricane Frances made landfall in the early hours of September 5, and was downgraded to Tropical Storm status as it swept inland through the Florida panhandle and continued northward. On the heels of Frances is Hurricane Ivan, which is on record as the strongest tropical cyclone to form at such a low latitude in the Atlantic, and was the most powerful hurricane to have hit the Caribbean in nearly a decade.

    The ability of forecasters to predict the intensity and amount of rainfall associated with hurricanes still requires improvement, especially on the 24 to 48 hour timescale vital for disaster planning. To improve the operational models used to make hurricane forecasts, scientists need to better understand the multi-scale interactions at the cloud, mesoscale and synoptic scales that lead to hurricane intensification and dissipation, and the various physical processes that affect hurricane intensity and rainfall distributions. Because these uncertainties with regard to how to represent cloud processes still exist, it is vital that the model findings be evaluated against hurricane observations whenever possible. Two-dimensional maps of cloud height such as those shown here offer an unprecedented opportunity for comparing simulated cloud fields against actual hurricane observations.

    The left-hand panel in each image pair is a natural color view from MISR's nadir camera. The right-hand panels are cloud-top height retrievals produced by automated computer recognition of the distinctive spatial features between images acquired at different view angles. These results indicate that at the time that these images were

  12. Cloud Coverage and Height Distribution from the GLAS Polar Orbiting Lidar: Comparison to Passive Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Spinhime, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.

    2004-01-01

    The Geoscience Laser Altimeter System (GLAS) began full on orbit operations in September 2003. A main application of the two-wavelength GLAS lidar is highly accurate detection and profiling of global cloud cover. Initial analysis indicates that cloud and aerosol layers are consistently detected on a global basis to cross-sections down to 10(exp -6) per meter. Images of the lidar data dramatically and accurately show the vertical structure of cloud and aerosol to the limit of signal attenuation. The GLAS lidar has made the most accurate measurement of global cloud coverage and height to date. In addition to the calibrated lidar signal, GLAS data products include multi level boundaries and optical depth of all transmissive layers. Processing includes a multi-variable separation of cloud and aerosol layers. An initial application of the data results is to compare monthly cloud means from several months of GLAS observations in 2003 to existing cloud climatologies from other satellite measurement. In some cases direct comparison to passive cloud retrievals is possible. A limitation of the lidar measurements is nadir only sampling. However monthly means exhibit reasonably good global statistics and coverage results, at other than polar regions, compare well with other measurements but show significant differences in height distribution. For polar regions where passive cloud retrievals are problematic and where orbit track density is greatest, the GLAS results are particularly an advance in cloud cover information. Direct comparison to MODIS retrievals show a better than 90% agreement in cloud detection for daytime, but less than 60% at night. Height retrievals are in much less agreement. GLAS is a part of the NASA EOS project and data products are thus openly available to the science community (see http://glo.gsfc.nasa.gov).

  13. Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results

    NASA Astrophysics Data System (ADS)

    Eichmann, Kai-Uwe; Lelli, Luca; von Savigny, Christian; Sembhi, Harjinder; Burrows, John P.

    2016-03-01

    Cloud top heights (CTHs) are retrieved for the period 1 January 2003 to 7 April 2012 using height-resolved limb spectra measured with the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) on board ENVISAT (ENVIronmental SATellite). In this study, we present the retrieval code SCODA (SCIAMACHY cloud detection algorithm) based on a colour index method and test the accuracy of the retrieved CTHs in comparison to other methods. Sensitivity studies using the radiative transfer model SCIATRAN show that the method is capable of detecting cloud tops down to about 5 km and very thin cirrus clouds up to the tropopause. Volcanic particles can be detected that occasionally reach the lower stratosphere. Upper tropospheric ice clouds are observable for a nadir cloud optical thickness (COT) ≥ 0.01, which is in the subvisual range. This detection sensitivity decreases towards the lowermost troposphere. The COT detection limit for a water cloud top height of 5 km is roughly 0.1. This value is much lower than thresholds reported for passive cloud detection methods in nadir-viewing direction. Low clouds at 2 to 3 km can only be retrieved under very clean atmospheric conditions, as light scattering of aerosol particles interferes with the cloud particle scattering. We compare co-located SCIAMACHY limb and nadir cloud parameters that are retrieved with the Semi-Analytical CloUd Retrieval Algorithm (SACURA). Only opaque clouds (τN,c > 5) are detected with the nadir passive retrieval technique in the UV-visible and infrared wavelength ranges. Thus, due to the frequent occurrence of thin clouds and subvisual cirrus clouds in the tropics, larger CTH deviations are detected between both viewing geometries. Zonal mean CTH differences can be as high as 4 km in the tropics. The agreement in global cloud fields is sufficiently good. However, the land-sea contrast, as seen in nadir cloud occurrence frequency distributions, is not

  14. Cloud Height Estimation with a Single Digital Camera and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Carretas, Filipe; Janeiro, Fernando M.

    2014-05-01

    Clouds influence the local weather, the global climate and are an important parameter in the weather prediction models. Clouds are also an essential component of airplane safety when visual flight rules (VFR) are enforced, such as in most small aerodromes where it is not economically viable to install instruments for assisted flying. Therefore it is important to develop low cost and robust systems that can be easily deployed in the field, enabling large scale acquisition of cloud parameters. Recently, the authors developed a low-cost system for the measurement of cloud base height using stereo-vision and digital photography. However, due to the stereo nature of the system, some challenges were presented. In particular, the relative camera orientation requires calibration and the two cameras need to be synchronized so that the photos from both cameras are acquired simultaneously. In this work we present a new system that estimates the cloud height between 1000 and 5000 meters. This prototype is composed by one digital camera controlled by a Raspberry Pi and is installed at Centro de Geofísica de Évora (CGE) in Évora, Portugal. The camera is periodically triggered to acquire images of the overhead sky and the photos are downloaded to the Raspberry Pi which forwards them to a central computer that processes the images and estimates the cloud height in real time. To estimate the cloud height using just one image requires a computer model that is able to learn from previous experiences and execute pattern recognition. The model proposed in this work is an Artificial Neural Network (ANN) that was previously trained with cloud features at different heights. The chosen Artificial Neural Network is a three-layer network, with six parameters in the input layer, 12 neurons in the hidden intermediate layer, and an output layer with only one output. The six input parameters are the average intensity values and the intensity standard deviation of each RGB channel. The output

  15. Deep Convective Cloud Top Heights and Their Thermodynamic Control During CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Sherwood, Steven C.; Minnis, Patrick; McGill, Matthew

    2004-01-01

    Infrared (11 micron) radiances from GOES-8 and local radiosonde profiles, collected during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) in July 2002, are used to assess the vertical distribution of Florida-area deep convective cloud top height and test predictions as to its variation based on parcel theory. The highest infrared tops (Z(sub 11)) reached approximately to the cold point, though there is at least a 1-km uncertainty due to unknown cloud-environment temperature differences. Since lidar shows that visible 'tops' are 1 km or more above Z(sub 11), visible cloud tops frequently penetrated the lapse-rate tropopause (approx. 15 km). Further, since lofted ice content may be present up to approx. 1 km above the visible tops, lofting of moisture through the mean cold point (15.4 km) was probably common. Morning clouds, and those near Key West, rarely penetrated the tropopause. Non-entraining parcel theory (i.e., CAPE) does not successfully explain either of these results, but can explain some of the day-to-day variations in cloud top height over the peninsula. Further, moisture variations above the boundary layer account for most of the day-today variability not explained by CAPE, especially over the oceans. In all locations, a 20% increase in mean mixing ratio between 750 and 500 hPa was associated with about 1 km deeper maximum cloud penetration relative to the neutral level. These results suggest that parcel theory may be useful for predicting changes in cumulus cloud height over time, but that parcel entrainment must be taken into account even for the tallest clouds. Accordingly, relative humidity above the boundary layer may exert some control on the height of the tropical troposphere.

  16. Inter-Comparisons between Radiometric and Geometric Cloud Top Height Products

    NASA Astrophysics Data System (ADS)

    Madani, H.; Carr, J. L.; Heidinger, A. K.; Wanzong, S.

    2015-12-01

    The accurate retrieval of cloud properties such as cloud top height from satellite imagery is important for early warning of severe weather development and for reliable aviation weather forecasts. This paper describes a comparison between cloud top height products (Stereo-CTH), determined using an algorithm based on stereoscopy, and operational cloud top height products which are generated by using the Clouds from AVHRR Extended (CLAVR-x) cloud processing system. Both methods work with Geostationary Operational Environmental Satellite (GOES) data, and in limited cases, we also compare with data from CALIPSO. The Stereo-CTH algorithm is based on matching images of the same or similar spectral bands acquired quasi-simultaneously by satellites from two or three different vantage points. The CTH product generated by CLAVR-x is based on the Algorithm Working Group (AWG) Cloud Height Algorithm (ACHA) and uses only Infrared (IR) observations from a single sensor. The Stereo-CTH algorithm was applied to GOES data when all three satellites (GOES 13-15) were operational at the same time allowing for the generation of a two-satellite CTH in areas of overlap between two satellites and a three-satellite CTH where geographic coverage is available for all three satellites. The comparison was applied to the three-satellite CTH, which is considered the best quality data. The comparison between the two products displays an approximately linear relationship between the Stereo-CTH and the CLAVR-CTH for most of the data as shown in Figure 1. The observed differences are investigated and discussed.

  17. A Simple Stochastic Model for Generating Broken Cloud Optical Depth and Top Height Fields

    NASA Technical Reports Server (NTRS)

    Prigarin, Sergei M.; Marshak, Alexander

    2007-01-01

    A simple and fast algorithm for generating two correlated stochastic twodimensional (2D) cloud fields is described. The algorithm is illustrated with two broken cumulus cloud fields: cloud optical depth and cloud top height retrieved from Moderate Resolution Imaging Spectrometer (MODIS). Only two 2D fields are required as an input. The algorithm output is statistical realizations of these two fields with approximately the same correlation and joint distribution functions as the original ones. The major assumption of the algorithm is statistical isotropy of the fields. In contrast to fractals and the Fourier filtering methods frequently used for stochastic cloud modeling, the proposed method is based on spectral models of homogeneous random fields. For keeping the same probability density function as the (first) original field, the method of inverse distribution function is used. When the spatial distribution of the first field has been generated, a realization of the correlated second field is simulated using a conditional distribution matrix. This paper is served as a theoretical justification to the publicly available software that has been recently released by the authors and can be freely downloaded from http://i3rc.gsfc.nasa.gov/Public codes clouds.htm. Though 2D rather than full 3D, stochastic realizations of two correlated cloud fields that mimic statistics of given fields have proved to be very useful to study 3D radiative transfer features of broken cumulus clouds for better understanding of shortwave radiation and interpretation of the remote sensing retrievals.

  18. Tornado occurrences related to overshooting cloud-top heights as determined from ATS pictures

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.

    1972-01-01

    A sequence of ATS 3 pictures including the development history of large anvil clouds near Salina, Kansas was enlarged by NASA into 8X negatives which were used to obtain the best quality prints by mixing scan lines in 8 steps to minimize checker-board patterns. These images resulted in the best possible resolution, permitting use to compute the heights of overshooting tops above environmental anvil levels based on cloud shadow relationships along with the techniques of lunar topographic mapping. Of 39 heights computed, 6 were within 15 miles of reported positions of 3 tornadoes. It was found that the tornado proximity tops were mostly less than 5000 ft, with one exception of 7000 ft, suggesting that tornadoes are most likely to occur when overshooting height decreases. In order to simulate surface vortices induced by cloud-scale rotation and updraft fields, a laboratory model was constructed. The model experiment has shown that the rotation or updraft field induces a surface vortex but their combination does prevent the formation of the surface vortex. This research leads to a conclusion that the determination of the cloud-top topography and its time variation is of extreme importance in predicting severe local storms for a period of 0 to 6 hours.

  19. Development of a Cloud-Top Height Estimation Method by Geostationary Satellite Split-Window Measurements Trained with CloudSat Data

    NASA Astrophysics Data System (ADS)

    Hamada, Atsushi; Nishi, Noriyuki; Inoue, Toshiro

    2010-05-01

    Estimation of cloud-top height and visible optical thickness of upper-tropospheric clouds by brightness temperature (TB) measurements of geostationary satellite at two infrared split-window wavelengths was conducted. These cloud parameters were estimated by regressing the measurements of 94-GHz cloud radar onboard CloudSat satellite in terms of TB at 10.8 um (T11) and its difference from TB at 12 um (?T = T11 -T12) measured by geostationary satellite MTSAT-1R. Estimation by geostationary satellite measurements are fairly useful in field campaigns aiming mesoscale cloud systems, where cloud-top heights are compared with the vertical profiles of ground-based measurements such as wind and cloud condensates in a short time interval. Hamada et al. (2008) conducted the estimation of cloud-top height by T11 and ?T measured by GMS-5, using ship-borne cloud radar measurements. However, their ground-based result was limited to the non-rainy clouds, since cloud radar signal is heavily attenuated by precipitation particles. Spaceborne radar measurements enables an estimation of cloud-top height without concern for the existence of precipitation. We examined the dependences of the estimates of cloud-top height on latitude, season, satellite zenith angle, day-night, and land-sea differences. It was shown that these dependences were considered as being uniform in tropics, except for the region with large satellite zenith angle. The dependences on latitude and season were negligible in tropics, while they became the most significant factor affecting the estimates at higher latitudes. Estimation of visible optical thickness was also conducted, although limited to the non-rainy high clouds. The distributions of estimates in TB-?T space were qualitatively consistent with those expected from a simplified radiative transfer equation, although the standard deviations of measurements were slightly large. The near real-time products has already been provided on our Website (http

  20. Temporal variation of the cloud top height over the tropical Pacific observed by geostationary satellites

    NASA Astrophysics Data System (ADS)

    Nishi, N.; Hamada, A.

    2012-12-01

    Stratiform clouds (nimbostratus and cirriform clouds) in the upper troposphere accompanied with cumulonimbus activity cover large part of the tropical region and largely affect the radiation and water vapor budgets there. Recently new satellites (CloudSat and CALIPSO) can give us the information of cloud height and cloud ice amount even over the open ocean. However, their coverage is limited just below the satellite paths; it is difficult to capture the whole shape and to trace the lifecycle of each cloud system by using just these datasets. We made, as a complementary product, a dataset of cloud top height and visible optical thickness with one-hour resolution over the wide region, by using infrared split-window data of the geostationary satellites (AGU fall meeting 2011) and released on the internet (http://database.rish.kyoto-u.ac.jp/arch/ctop/). We made lookup tables for estimating cloud top height only with geostationary infrared observations by comparing them with the direct cloud observation by CloudSat (Hamada and Nishi, 2010, JAMC). We picked out the same-time observations by MTSAT and CloudSat and regressed the cloud top height observation of CloudSat back onto 11μm brightness temperature (Tb) and the difference between the 11μm Tb and 12μm Tb. We will call our estimated cloud top height as "CTOP" below. The area of our coverage is 85E-155W (MTSAT2) and 80E-160W(MTSAT1R), and 20S-20N. The accuracy of the estimation with the IR split-window observation is the best in the upper tropospheric height range. We analyzed the formation and maintenance of the cloud systems whose top height is in the upper troposphere with our CTOP analysis, CloudSat 2B-GEOPROF, and GSMaP (Global Satellite Mapping of Precipitation) precipitation data. Most of the upper tropospheric stratiform clouds have their cloud top within 13-15 km range. The cloud top height decreases slowly when dissipating but still has high value to the end. However, we sometimes observe that a little

  1. Specifying heights and velocities of cloud motion from geostationary sounding data

    NASA Technical Reports Server (NTRS)

    Menzel, P.; Stewart, T. R.; Smith, W. L.

    1983-01-01

    Data from the geostationary Visible Infrared Spin-Scan Radiometer (VISSR) Atmospheric Sounder (VAS) for assigning simultaneous heights and velocities of cloud motion winds were processed. The following two techniques are discussed: The technique which delivers qualitative height assignments from imagery; and which uses the radiometric information contained in the VAS data to calculate quantitative heights.

  2. Arctic PBL Cloud Height and Motion Retrievals from MISR and MINX

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.

    2012-01-01

    How Arctic clouds respond and feedback to sea ice loss is key to understanding of the rapid climate change seen in the polar region. As more open water becomes available in the Arctic Ocean, cold air outbreaks (aka. off-ice flow from polar lows) produce a vast sheet of roll clouds in the planetary boundary layer (PBl). The cold air temperature and wind velocity are the critical parameters to determine and understand the PBl structure formed under these roll clouds. It has been challenging for nadir visible/IR sensors to detect Arctic clouds due to lack of contrast between clouds and snowy/icy surfaces. In addition) PBl temperature inversion creates a further problem for IR sensors to relate cloud top temperature to cloud top height. Here we explore a new method with the Multiangle Imaging Spectro-Radiometer (MISR) instrument to measure cloud height and motion over the Arctic Ocean. Employing a stereoscopic-technique, MISR is able to measure cloud top height accurately and distinguish between clouds and snowy/icy surfaces with the measured height. We will use the MISR INteractive eXplorer (MINX) to quantify roll cloud dynamics during cold-air outbreak events and characterize PBl structures over water and over sea ice.

  3. Remote Sensing of Cloud Layer Heights using the Research Scanning Polarimeter

    NASA Astrophysics Data System (ADS)

    Sinclair, K.; van Diedenhoven, B.; Cairns, B.; Yorks, J. E.

    2015-12-01

    Clouds cover roughly two thirds of the globe and act as an important regulator of Earth's radiation budget. Of these, multilayered clouds occur about half of the time and are predominantly two-layered. Changes in cloud top height (CTH) have been predicted by models to have a globally averaged positive feedback, however observational changes in CTH have shown uncertain results. Additional CTH observations are necessary to better and quantify the effect. Improved CTH observations will also allow for improved sub-grid parameterizations in large-scale models and accurate CTH information is important when studying variations in freezing point and cloud microphysics. NASA's airborne Research Scanning Polarimeter (RSP) is able to measure cloud top height using a novel multi-angular contrast approach. RSP scans along the aircraft track and obtains measurements at 152 viewing angles at any aircraft location. The approach presented here aggregates measurements from multiple scans to a single location at cloud altitude using a correlation function designed to identify the location-distinct features in each scan. During NASA's SEAC4RS air campaign, the RSP was mounted on the ER-2 aircraft along with the Cloud Physics Lidar (CPL), which made simultaneous measurements of CTH. The RSP's unique method of determining CTH is presented. The capabilities of using single and combinations of channels within the approach are investigated. A detailed comparison of RSP retrieved CTH's with those of CPL reveal the accuracy of the approach. Results indicate a strong ability for the RSP to accurately identify cloud heights. Interestingly, the analysis reveals an ability for the approach to identify multiple cloud layers in a single scene and estimate the CTH of each layer. Capabilities and limitations of identifying single and multiple cloud layers heights are explored. Special focus is given to sources of error in the method including optically thin clouds, physically thick clouds, multi

  4. Remote Sensing of Cloud Top Heights Using the Research Scanning Polarimeter

    NASA Technical Reports Server (NTRS)

    Sinclair, Kenneth; van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John; Wasilewski, Andrzej

    2015-01-01

    Clouds cover roughly two thirds of the globe and act as an important regulator of Earth's radiation budget. Of these, multilayered clouds occur about half of the time and are predominantly two-layered. Changes in cloud top height (CTH) have been predicted by models to have a globally averaged positive feedback, however observational changes in CTH have shown uncertain results. Additional CTH observations are necessary to better and quantify the effect. Improved CTH observations will also allow for improved sub-grid parameterizations in large-scale models and accurate CTH information is important when studying variations in freezing point and cloud microphysics. NASA's airborne Research Scanning Polarimeter (RSP) is able to measure cloud top height using a novel multi-angular contrast approach. RSP scans along the aircraft track and obtains measurements at 152 viewing angles at any aircraft location. The approach presented here aggregates measurements from multiple scans to a single location at cloud altitude using a correlation function designed to identify the location-distinct features in each scan. During NASAs SEAC4RS air campaign, the RSP was mounted on the ER-2 aircraft along with the Cloud Physics Lidar (CPL), which made simultaneous measurements of CTH. The RSPs unique method of determining CTH is presented. The capabilities of using single and combinations of channels within the approach are investigated. A detailed comparison of RSP retrieved CTHs with those of CPL reveal the accuracy of the approach. Results indicate a strong ability for the RSP to accurately identify cloud heights. Interestingly, the analysis reveals an ability for the approach to identify multiple cloud layers in a single scene and estimate the CTH of each layer. Capabilities and limitations of identifying single and multiple cloud layers heights are explored. Special focus is given to sources of error in the method including optically thin clouds, physically thick clouds, multi

  5. A development of cloud top height retrieval using thermal infrared spectra observed with GOSAT and comparison with CALIPSO data

    NASA Astrophysics Data System (ADS)

    Someya, Yu; Imasu, Ryoichi; Saitoh, Naoko; Ota, Yoshifumi; Shiomi, Kei

    2016-05-01

    An algorithm based on CO2 slicing, which has been used for cirrus cloud detection using thermal infrared data, was developed for high-resolution radiance spectra from satellites. The channels were reconstructed based on sensitivity height information of the original spectral channels to reduce the effects of measurement errors. Selection of the reconstructed channel pairs was optimized for several atmospheric profile patterns using simultaneous studies assuming a cloudy sky. That algorithm was applied to data by the Greenhouse gases Observing SATellite (GOSAT). Results were compared with those obtained from the space-borne lidar instrument on-board Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). Monthly mean cloud amounts from the slicing generally agreed with those from CALIPSO observations despite some differences caused by surface temperature biases, optically very thin cirrus, multilayer structures of clouds, extremely low cloud tops, and specific atmospheric conditions. Comparison of coincident data showed good agreement, except for some cases, and revealed that the improved slicing method is more accurate than the traditional slicing method. Results also imply that improved slicing can detect low-level clouds with cloud top heights as low as approximately 1.5 km.

  6. Thermal disequilibrium at the top of volcanic clouds and its effect on estimates of the column height

    NASA Technical Reports Server (NTRS)

    Woods, Andrew W.; Self, Stephen

    1992-01-01

    Satellite images of large volcanic explosions reveal that the tops of volcanic eruptions columns are much cooler than the surrounding atmosphere. It is proposed that this effect occurs whenever a mixture of hot volcanic ash and entrained air ascends sufficiently high into a stably stratified atmosphere. Although the mixture is initially very hot, it expands and cools as the ambient pressure decreases. It is shown that cloud-top undercoolings in excess of 20 C may develop in clouds that penetrate the stratosphere, and it is predicted that, for a given cloud-top temperature, variations in the initial temperature of 100-200 C may correspond to variations in the column height of 5-10 km. It is deduced that the present practice of converting satellite-based measurements of the temperature at the top of volcanic eruptions columns to estimates of the column height will produce rather inaccurate results and should therefore be discontinued.

  7. Synergy of stereo cloud top height and ORAC optimal estimation cloud retrieval: evaluation and application to AATSR

    NASA Astrophysics Data System (ADS)

    Fisher, Daniel; Poulsen, Caroline A.; Thomas, Gareth E.; Muller, Jan-Peter

    2016-03-01

    In this paper we evaluate the impact on the cloud parameter retrievals of the ORAC (Optimal Retrieval of Aerosol and Cloud) algorithm following the inclusion of stereo-derived cloud top heights as a priori information. This is performed in a mathematically rigorous way using the ORAC optimal estimation retrieval framework, which includes the facility to use such independent a priori information. Key to the use of a priori information is a characterisation of their associated uncertainty. This paper demonstrates the improvements that are possible using this approach and also considers their impact on the microphysical cloud parameters retrieved. The Along-Track Scanning Radiometer (AATSR) instrument has two views and three thermal channels, so it is well placed to demonstrate the synergy of the two techniques. The stereo retrieval is able to improve the accuracy of the retrieved cloud top height when compared to collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), particularly in the presence of boundary layer inversions and high clouds. The impact of the stereo a priori information on the microphysical cloud properties of cloud optical thickness (COT) and effective radius (RE) was evaluated and generally found to be very small for single-layer clouds conditions over open water (mean RE differences of 2.2 (±5.9) microns and mean COD differences of 0.5 (±1.8) for single-layer ice clouds over open water at elevations of above 9 km, which are most strongly affected by the inclusion of the a priori).

  8. Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results

    NASA Astrophysics Data System (ADS)

    Eichmann, K.-U.; Lelli, L.; von Savigny, C.; Sembhi, H.; Burrows, J. P.

    2015-08-01

    Cloud top heights (CTH) were retrieved for the period 1 January 2003 to 7 April 2012 using height-resolved limb spectra measured with the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on board ENVISAT (ENVIronmental SATellite). In this study, we tested the sensitivity of the colour index method used in the retrieval code SCODA (SCIAMACHY Cloud Detection Algorithm) and the accuracy of the retrieved CTHs in comparison to other methods. Sensitivity studies using the radiative transfer model SCIATRAN showed that the method is capable of generally detecting cloud tops down to about 5 km and very thin cirrus clouds even up to the tropopause. Volcanic particles can also be detected that occasionally reach the lower stratosphere. Low clouds at 2-3 km can only be retrieved under very clean atmospheric conditions, as light scattering of aerosols interferes with the cloud retrieval. Upper tropospheric ice clouds are detectable for cloud optical depths down to about τN = 0.005, which is in the subvisual range. The detection sensitivity decreases towards the surface. An optical thickness of roughly 0.1 was the lower detection limit for water cloud top heights at 5 km. This value is much lower than thresholds reported for the passive cloud detection in nadir viewing direction. Comparisons with SCIAMACHY nadir cloud top heights, calculated with the Semi-Analytical CloUd Retrieval Algorithm (SACURA), showed a good agreement in the global cloud field distribution. But only opaque clouds (τN > 5) are detectable with the nadir passive retrieval technique in the UV-visible and infrared wavelength range. So due to the frequent occurrence of thin and sub-visual cirrus clouds in the tropics, large cloud top height deviations were detected between both viewing geometries. Also the land/sea contrast seen in nadir retrievals was not detected in limb mode. Co-located cloud top height measurements of the limb viewing Michelson Interferometer for Passive

  9. Effects of explosively venting aerosol-sized particles through earth-containment systems on the cloud-stabilization height

    SciTech Connect

    Dyckes, G.W.

    1980-07-01

    A method of approximating the cloud stabilization height for aerosol-sized particles vented explosively through earth containment systems is presented. The calculated values for stabilization heights are in fair agreement with those obtained experimentally.

  10. Cloud Height Retrieval with Oxygen A and B Bands for the Deep Space Climate Observatory (DSCOVR) Mission

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Mao, Jianping; Lyapustin, Alexei; Herman, Jay

    2012-01-01

    Planned to fly in 2014, the Deep Space Climate Observatory (DSCOVR) would see the whole sunlit half of the Earth from the L 1 Lagrangian point and would provide simultaneous data on cloud and aerosol properties with its Earth Polychromatic Imaging Camera (EPIC). EPIC images the Earth on a 2Kx2K CCD array, which gives a horizontal resolution of about 10 km at nadir. A filter-wheel provides consecutive images in 10 spectral channels ranging from the UV to the near-IR, including the oxygen A and B bands. This paper presents a study of retrieving cloud height with EPIC's oxygen A and B bands. As the first step, we analyzed the effect of cloud optical and geometrical properties, sun-view geometry, and surface type on the cloud height determination. Second, we developed two cloud height retrieval algorithms that are based on the Mixed Lambertian-Equivalent Reflectivity (MLER) concept: one utilizes the absolute radiances at the Oxygen A and B bands and the other uses the radiance ratios between the absorption and reference channels of the two bands. Third, we applied the algorithms to the simulated EPIC data and to the data from SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) observations. Results show that oxygen A and B bands complement each other: A band is better suited for retrievals over ocean, while B band is better over vegetated land due to a much darker surface. Improvements to the MLER model, including corrections to surface contribution and photon path inside clouds, will also be discussed.

  11. Satellite and Surface Data Synergy for Developing a 3D Cloud Structure and Properties Characterization Over the ARM SGP. Stage 1: Cloud Amounts, Optical Depths, and Cloud Heights Reconciliation

    NASA Technical Reports Server (NTRS)

    Genkova, I.; Long, C. N.; Heck, P. W.; Minnis, P.

    2003-01-01

    One of the primary Atmospheric Radiation Measurement (ARM) Program objectives is to obtain measurements applicable to the development of models for better understanding of radiative processes in the atmosphere. We address this goal by building a three-dimensional (3D) characterization of the cloud structure and properties over the ARM Southern Great Plains (SGP). We take the approach of juxtaposing the cloud properties as retrieved from independent satellite and ground-based retrievals, and looking at the statistics of the cloud field properties. Once these retrievals are well understood, they will be used to populate the 3D characterization database. As a first step we determine the relationship between surface fractional sky cover and satellite viewing angle dependent cloud fraction (CF). We elaborate on the agreement intercomparing optical depth (OD) datasets from satellite and ground using available retrieval algorithms with relation to the CF, cloud height, multi-layer cloud presence, and solar zenith angle (SZA). For the SGP Central Facility, where output from the active remote sensing cloud layer (ARSCL) valueadded product (VAP) is available, we study the uncertainty of satellite estimated cloud heights and evaluate the impact of this uncertainty for radiative studies.

  12. Retrieval of cloud top height, effective emissivity, and particle size, from aircraft high-spectral-resolution infrared measurements

    NASA Astrophysics Data System (ADS)

    Antonelli, Paolo B.; Ackerman, Steven A.; Menzel, W. Paul; Huang, Hung-Lung; Baum, Bryan A.; Smith, William L.

    2002-02-01

    In this study we compare different approaches to retrieve Cloud Top Height (CTH), Cloud Effective Emissivity (CEE), and the Cloud Particle Size (CPS) from aircraft high-spectral resolution infrared measurements. Two independent methods are used to infer CTH. One approach is based on a high spectral resolution version of the CO2 Slicing algorithm characterized by a statistically based selection of the optimal channel pairs. Another approach the Minimum Local Emissivity Variance algorithm (MLEV) takes advantage of high-resolution observations in the 8-12 micron region to simultaneously derive CTH and CEE. Once CTH has been retrieved a third method, based on the comparison between simulated and observed radiances, is used to infer CPS and CEE. Simulated radiances are computed for 18 microwindows between 8.5 and 12 microns. The cirrus scattering calculations are based on three-dimensional randomly oriented ice columns assuming six different particle size distributions. Multiple scattering calculations are performed for 26 different cloud optical thicknesses (COT) between 0 and 20. The simulated radiances are then compared to the observed radiances to infer COT and CPS for each spectral measurement. We applied these approaches to High-resolution Interferometer Sounder (HIS), National Polar-Orbiting Operational Environmental Satellite System Airborne Sounder Testbed-Interferometer (NAST-I) and Scanning-HIS (S-HIS) data. The preliminary results, consistent between the different algorithms, suggest that the high spectral resolution measurements improve the accuracy of the cloud property retrievals.

  13. Automatic determination of trunk diameter, crown base and height of scots pine (Pinus Sylvestris L.) Based on analysis of 3D point clouds gathered from multi-station terrestrial laser scanning. (Polish Title: Automatyczne okreslanie srednicy pnia, podstawy korony oraz wysokosci sosny zwyczajnej (Pinus Silvestris L.) Na podstawie analiz chmur punktow 3D pochodzacych z wielostanowiskowego naziemnego skanowania laserowego)

    NASA Astrophysics Data System (ADS)

    Ratajczak, M.; Wężyk, P.

    2015-12-01

    Rapid development of terrestrial laser scanning (TLS) in recent years resulted in its recognition and implementation in many industries, including forestry and nature conservation. The use of the 3D TLS point clouds in the process of inventory of trees and stands, as well as in the determination of their biometric features (trunk diameter, tree height, crown base, number of trunk shapes), trees and lumber size (volume of trees) is slowly becoming a practice. In addition to the measurement precision, the primary added value of TLS is the ability to automate the processing of the clouds of points 3D in the direction of the extraction of selected features of trees and stands. The paper presents the original software (GNOM) for the automatic measurement of selected features of trees, based on the cloud of points obtained by the ground laser scanner FARO. With the developed algorithms (GNOM), the location of tree trunks on the circular research surface was specified and the measurement was performed; the measurement covered the DBH (l: 1.3m), further diameters of tree trunks at different heights of the tree trunk, base of the tree crown and volume of the tree trunk (the selection measurement method), as well as the tree crown. Research works were performed in the territory of the Niepolomice Forest in an unmixed pine stand (Pinussylvestris L.) on the circular surface with a radius of 18 m, within which there were 16 pine trees (14 of them were cut down). It was characterized by a two-storey and even-aged construction (147 years old) and was devoid of undergrowth. Ground scanning was performed just before harvesting. The DBH of 16 pine trees was specified in a fully automatic way, using the algorithm GNOM with an accuracy of +2.1%, as compared to the reference measurement by the DBH measurement device. The medium, absolute measurement error in the cloud of points - using semi-automatic methods "PIXEL" (between points) and PIPE (fitting the cylinder) in the FARO Scene 5.x

  14. CloudSat-Constrained Cloud Ice Water Path and Cloud Top Height Retrievals from MHS 157 and 183.3 GHz Radiances

    NASA Technical Reports Server (NTRS)

    Gong, J.; Wu, D. L.

    2014-01-01

    Ice water path (IWP) and cloud top height (ht) are two of the key variables in determining cloud radiative and thermodynamical properties in climate models. Large uncertainty remains among IWP measurements from satellite sensors, in large part due to the assumptions made for cloud microphysics in these retrievals. In this study, we develop a fast algorithm to retrieve IWP from the 157, 183.3+/-3 and 190.3 GHz radiances of the Microwave Humidity Sounder (MHS) such that the MHS cloud ice retrieval is consistent with CloudSat IWP measurements. This retrieval is obtained by constraining the empirical forward models between collocated and coincident measurements of CloudSat IWP and MHS cloud-induced radiance depression (Tcir) at these channels. The empirical forward model is represented by a lookup table (LUT) of Tcir-IWP relationships as a function of ht and the frequency channel.With ht simultaneously retrieved, the IWP is found to be more accurate. The useful range of the MHS IWP retrieval is between 0.5 and 10 kg/sq m, and agrees well with CloudSat in terms of the normalized probability density function (PDF). Compared to the empirical model, current operational radiative transfer models (RTMs) still have significant uncertainties in characterizing the observed Tcir-IWP relationships. Therefore, the empirical LUT method developed here remains an effective approach to retrieving ice cloud properties from the MHS-like microwave channels.

  15. Comparing Icesat/glas Based Elevation Heights with Photogrammetric Terrain Heights from Uav-Imagery on the East Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Enßle, F.; Fritz, A.; Koch, B.

    2015-08-01

    Digital elevation models (DEMs) and height measurements are broadly used in environmental studies. Two common elevation sources are the Ice Cloud and land elevation Satellite (ICESat), which acquired laser range measurements with the Geoscience Laser Altimeter System (GLAS) across the globe and elevation data from the Shuttle Radar Topography Mission (SRTM). Current developments of small unmanned aerial vehicles (UAV) provide the opportunity to collect aerial images of remote areas at a high spatial resolution. These can be further processed to digital surface models by stereophotogrammetry and provide a reliable data source to evaluate coarse scale Digital Elevation Models (DEMs). This study compares ICESat/GLAS and SRTM90 elevation data against photogrammetric terrain heights within GLAS footprints on high altitudes on the East Tibetan Plateau. Without vegetation-bias, we were able to examine height differences under different topographic conditions and of different acquisition dates. Several resampling techniques were applied to SRTM90 data and averaged height within each footprint was calculated. ICESat/GLAS heights (n = 148) are most similar to UAV data based elevations with an averaged difference of -0.8m ±3.1m. Results furthermore indicate the validity of ICESat/GLAS heights, which are usually removed from analyses by applying different quality flags. Smallest difference of SRTM90 to UAV based heights could be observed by a natural neighbour resampling technique (averaged 3.6m ±14m), whereat other techniques achieved quite similar results. It can be confirmed that within a range of 3,800-4,200m above mean sea level the ICESat/GLAS heights are a precise source to determine elevation at footprint geolocation.

  16. 10 Years of Height Resolved, Cloud-Track, Vector Winds from MISR

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Mueller, K. J.; Moroney, C. M.; Jovanovic, V.; Wu, D. L.; Diner, D. J.

    2009-12-01

    By utilizing multiple camera views and fast image matching algorithms to identify common features and determine feature motion, the MISR instrument on NASA’s Terra satellite has now collected nearly 10 years of height-resolved, cloud-track, vector winds using a single, globally consistent algorithm. The MISR cloud-track winds are reported globally on mesoscale domains of 70.4 km × 70.4 km and referenced to stereoscopically derived heights above the earth ellipsoid, which have a nominal vertical resolution of approximately 500 m. Importantly, from the standpoint of climate research, the stereo height assignment and wind retrieval are largely insensitive to instrument calibration changes because the pattern matcher relies only on relative brightness values, rather than the absolute magnitude of the brightness. We will describe comparisons with other wind datasets, including geostationary cloud drift winds, scatterometer surface winds, and reanalysis model winds, that demonstrate the quality of the MISR winds. We will also show the coverage and resolution advantages that MISR provides relative to these other datasets. Additionally, because the global winds are driven primarily by the global (im)balance of heating, monitoring variations in the winds over 10 years promises to yield important insights into the processes related to the hydrologic cycle and transport of heat and water vapor, such as the Madden-Julian Oscillation (MJO) and the El Niño Southern Oscillation (ENSO).

  17. A neural network approach for monitoring of volcanic SO2 and cloud height using hyperspectral measurements

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; Carboni, Elisa; Del Frate, Fabio; Grainger, Roy Gordon

    2014-10-01

    In this study two neural networks were implemented in order to emulate a retrieval model and to estimate the sulphur dioxide (SO2) columnar content and cloud height from volcanic eruption. ANNs were trained using all Infrared Atmospheric Sounding Interferometer (IASI) channels in Thermal Infrared (TIR) as inputs, and the corresponding values of SO2 content and height of volcanic cloud obtained using the Oxford SO2 retrievals as target outputs. The retrieval is demonstrated for the eruption of the Eyjafjallajökull volcano (Iceland) occurred in 2010 and to three IASI images of the Grímsvötn volcanic eruption that occurred in May 2011, in order to evaluate the networks for an unknown eruption. The results of validation, both for Eyjafjallajökull independent data-sets, provided root mean square error (RMSE) values between neural network outputs and targets lower than 20 DU for SO2 total column and 200 mb for cloud height, therefore demonstrating the feasibility to estimate SO2 values using a neural network approach, and its importance in near real time monitoring activities, owing to its fast application. Concerning the validation carried out with neural networks on images from the Grímsvötn eruption, the RMSE of the outputs remained lower than the Standard Deviation (STD) of targets, and the neural network underestimated retrieval only where target outputs showed different statistics than those used during the training phase.

  18. Accuracy analysis of height difference models derived from terrestrial laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Glira, Philipp; Briese, Christian; Pfeifer, Norbert; Dusik, Jana; Hilger, Ludwig; Neugirg, Fabian; Baewert, Henning

    2014-05-01

    In many research areas the temporal development of the earth surface topography is investigated for geomorphological analysis (e.g. landslide monitoring). Terrestrial laser scanning (TLS) often is used for this purpose, as it allows a fast and detailed 3d reconstruction of the sampled object. The temporal development of the earth surface usually is investigated on the basis of rasterized data, i.e. digital terrain models (DTM). The difference between two DTMs - the difference model - should preferably correspond to the terrain height changes occurred between the measurement campaigns. Actually, these height differences can be influenced by numerous potential error sources. The height accuracy of each raster cell is affected primarily by (a) the measurement accuracy of the deployed TLS, (b) the terrain topography (e.g. roughness), (c) the registration accuracy, (d) the georeferencing accuracy and (e) the raster interpolation method. Thus, in this contribution, height differences are treated as stochastic variables in order to estimate their precision. For an accurate estimation of the height difference precision a detailed knowledge about the whole processing pipeline (from the raw point clouds to the final difference model) is essential. In this study, first the height difference precision is estimated by a rigorous error propagation. As main result, for each raster cell of the difference model, a corresponding height error is estimated, forming an error map. A statistical hypothesis test is presented in order to judge the significance of a height difference. Furthermore, in order to asses the effect of single factors on the final height difference precision, multivariate statistic methods are applied. This analysis allows the deduction of a simple error propagation model, neglecting error sources with small impact on the final precision. The proposed method is demonstrated by means of TLS data acquired at the Gepatschferner (Tyrol, Austria). This study was carried

  19. Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms

    NASA Astrophysics Data System (ADS)

    Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P. N.; Heidinger, A.; Joro, S.; Kniffka, A.; Le Gléau, H.; Lockhoff, M.; Lutz, H.-J.; Meirink, J. F.; Minnis, P.; Palikonda, R.; Roebeling, R.; Thoss, A.; Platnick, S.; Watts, P.; Wind, G.

    2014-09-01

    The role of clouds remains the largest uncertainty in climate projections. They influence solar and thermal radiative transfer and the earth's water cycle. Therefore, there is an urgent need for accurate cloud observations to validate climate models and to monitor climate change. Passive satellite imagers measuring radiation at visible to thermal infrared (IR) wavelengths provide a wealth of information on cloud properties. Among others, the cloud top height (CTH) - a crucial parameter to estimate the thermal cloud radiative forcing - can be retrieved. In this paper we investigate the skill of ten current retrieval algorithms to estimate the CTH using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). In the first part we compare ten SEVIRI cloud top pressure (CTP) data sets with each other. The SEVIRI algorithms catch the latitudinal variation of the CTP in a similar way. The agreement is better in the extratropics than in the tropics. In the tropics multi-layer clouds and thin cirrus layers complicate the CTP retrieval, whereas a good agreement among the algorithms is found for trade wind cumulus, marine stratocumulus and the optically thick cores of the deep convective system. In the second part of the paper the SEVIRI retrievals are compared to CTH observations from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR) instruments. It is important to note that the different measurement techniques cause differences in the retrieved CTH data. SEVIRI measures a radiatively effective CTH, while the CTH of the active instruments is derived from the return time of the emitted radar or lidar signal. Therefore, some systematic differences are expected. On average the CTHs detected by the SEVIRI algorithms are 1.0 to 2.5 km lower than CALIOP observations, and the correlation coefficients between the SEVIRI and the CALIOP data sets range between 0.77 and 0.90. The

  20. Remote Sensing of Cloud Top Height from SEVIRI: Analysis of Eleven Current Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P. N.; Heidinger, A.; Joro, S.; Kniffka, A.; Le Gleau, H.; Lockhoff, M.; Lutz, H.-J.; Meirink, J. F.; Minnis, P.; Palikonda, R.; Roebeling, R.; Thoss, A.; Platnick, S.; Watts, P.; Wind, G.

    2014-01-01

    The role of clouds remains the largest uncertainty in climate projections. They influence solar and thermal radiative transfer and the earth's water cycle. Therefore, there is an urgent need for accurate cloud observations to validate climate models and to monitor climate change. Passive satellite imagers measuring radiation at visible to thermal infrared (IR) wavelengths provide a wealth of information on cloud properties. Among others, the cloud top height (CTH) - a crucial parameter to estimate the thermal cloud radiative forcing - can be retrieved. In this paper we investigate the skill of ten current retrieval algorithms to estimate the CTH using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). In the first part we compare ten SEVIRI cloud top pressure (CTP) data sets with each other. The SEVIRI algorithms catch the latitudinal variation of the CTP in a similar way. The agreement is better in the extratropics than in the tropics. In the tropics multi-layer clouds and thin cirrus layers complicate the CTP retrieval, whereas a good agreement among the algorithms is found for trade wind cumulus, marine stratocumulus and the optically thick cores of the deep convective system. In the second part of the paper the SEVIRI retrievals are compared to CTH observations from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR) instruments. It is important to note that the different measurement techniques cause differences in the retrieved CTH data. SEVIRI measures a radiatively effective CTH, while the CTH of the active instruments is derived from the return time of the emitted radar or lidar signal. Therefore, some systematic differences are expected. On average the CTHs detected by the SEVIRI algorithms are 1.0 to 2.5 kilometers lower than CALIOP observations, and the correlation coefficients between the SEVIRI and the CALIOP data sets range between 0.77 and 0

  1. Dependence of the drizzle growth process on the cloud top height and its relevance to the aerosol vertical profile

    NASA Astrophysics Data System (ADS)

    Kawamoto, K.; Suzuki, K.

    2013-12-01

    Transitional processes among cloud droplets, drizzle and raindrops are still uncertain and more efforts are required for the better understanding. In this situation, difference in the drizzle growth process was examined according to the cloud top height using the CloudSat and MODIS synergetic datasets. From the CloudSat products such as 2B-GEOPROF, 2B-TAU, ECMWF-AUX, only one-layered water clouds whose top temperatures were warmer than 273K were extracted over China (a circular area having a diameter of 1800km of the center at 35°N and 120°E) and over ocean (a circular area having a diameter of 1500km of the center at 35°N and 150°E). Then a threshold of 3km of the cloud top height was adopted to divide the extracted clouds into upper and lower cases. First, the probability distribution functions (PDF) of the cloud droplet number density (Nc) and the effective particle radius (Re) were calculated for these four cases (land/ocean/upper/lower). Nc was obtained assuming the adiabatic liquid water content from MODIS-derived cloud optical depth and Re. Oceanic clouds had fewer Nc than land clouds, and almost the same for upper and lower cases. Land clouds had more Nc for the lower case than for the higher case. On the other hand, oceanic clouds had larger Re than land clouds, and almost the same for upper and lower cases. Land clouds had smaller Re for the lower case than for the higher case. These results quite agreed with our existing knowledge on the vertical profile of the aerosol number concentration over ocean (pristine) and land (polluted). Although the number of aerosol particles is fewer and almost the same regardless of the height over the ocean, it is more near the surface and it rapidly decreases according to the height over the land. Next, examining PDF of the radar reflectivity (Ze), we found that although PDFs of Ze were almost the same for oceanic clouds regardless of the cloud top height, PDF of land lower clouds were less frequent at around from

  2. Past, present, and future of the MISR height-resolved, cloud-track wind retrieval

    NASA Astrophysics Data System (ADS)

    Mueller, K. J.; Moroney, C. M.; Garay, M. J.; Jovanovic, V. M.

    2009-12-01

    MISR multi-angle measurements offer the unique capability of resolving position, altitude, and motion of clouds over a 7 minute interval, purely by image correspondence and geometric triangulation. Cloud motion is retrieved operationally at 70.4km x 70.4km horizontal resolution and packaged as part of the MISR standard suite of products. A consistent approach, requiring no a priori information and applied globally throughout MISR’s 10-year history, make this product suitable for reanalysis of wind in observation sparse regions such as the Poles or the Southern Ocean. Featuring far superior resolution (17.6km along satellite trajectory, 1.1km across), 2.5 times the coverage, and increased precision and accuracy, the upcoming MISR cloud motion product will extend scientific applicability to the mesoscale: including hurricane modeling, and marine stratocumulus organization. This product release will build upon a steady evolution of algorithm enhancements that have transformed cloud motion retrieval from a measurement first conceived as a means of calculating unbiased cloud height, into a first-class science product. Here we will review previous and upcoming milestones in this evolution. The accuracy, bias, and coverage of past and forthcoming algorithm revisions relative to standard wind validation datasets including rawinsonde retrievals and NCEP reanalysis will be reviewed.

  3. Cloud Based Applications and Platforms (Presentation)

    SciTech Connect

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  4. Ground-Based Lidar and Radar Remote Sensing of Tropical Cirrus Clouds at Nauru Island: Cloud Statistics and Radiative Impacts

    SciTech Connect

    Comstock, Jennifer M.; Ackerman, Thomas P.; Mace, Gerald G.

    2002-12-12

    Ground based active and passive remote sensing instrumentation are combined to derive radiative and macrophysical properties of tropical cirrus clouds. Eight months of cirrus observations at the Department of Energy Atmospheric Radiation Measurement site located on Nauru Island provide independent retrieval of cloud height and visible optical depth using lidar and radar techniques. Comparisons reveal the millimeter cloud radar does not detect 13% of cirrus clouds with a cloud base higher than 15 km that are detected by the lidar. Lidar and radar cloud heights demonstrate good agreement when the cloud lies below 15 km. Radar and lidar retrievals of visible optical depth also compare well for all but the optically thinnest clouds. Cloud occurrence at Nauru as measured by lidar, reveal clear sky conditions occur on average 40%, low clouds 16%, and high clouds 44% of the time. Analysis of observed cirrus macrophysical and radiative properties suggests that two different types of cirrus exist in the tropical western Pacific: high, thin, laminar cirrus with cloud base higher than 15 km, and lower, physically thicker, more structured cirrus clouds. Differences in cirrus types are likely linked to their formation mechanisms. Radiosonde profiles of temperature and equivalent potential temperature near the tropical tropopause show a clear transition between neutrally stable and stable air at ~15 km, which may also explain the presence of two distinct cirrus types. Radiative heating rate and cloud forcing calculations for specific cirrus cases reveal the impact of tropical cirrus clouds on the earth?s radiation budget.

  5. A new 500-m resolution map of canopy height for Amazon forest using spaceborne LiDAR and cloud-free MODIS imagery

    NASA Astrophysics Data System (ADS)

    Sawada, Yoshito; Suwa, Rempei; Jindo, Keiji; Endo, Takahiro; Oki, Kazuo; Sawada, Haruo; Arai, Egidio; Shimabukuro, Yosio Edemir; Celes, Carlos Henrique Souza; Campos, Moacir Alberto Assis; Higuchi, Francisco Gasparetto; Lima, Adriano José Nogueira; Higuchi, Niro; Kajimoto, Takuya; Ishizuka, Moriyoshi

    2015-12-01

    In the present study, we aimed to map canopy heights in the Brazilian Amazon mainly on the basis of spaceborne LiDAR and cloud-free MODIS imagery with a new method (the Self-Organizing Relationships method) for spatial modeling of the LiDAR footprint. To evaluate the general versatility, we compared the created canopy height map with two different canopy height estimates on the basis of our original field study plots (799 plots located in eight study sites) and a previously developed canopy height map. The compared canopy height estimates were obtained by: (1) a stem diameter at breast height (D) - tree height (H) relationship specific to each site on the basis of our original field study, (2) a previously developed D-H model involving environmental and structural factors as explanatory variables (Feldpausch et al., 2011), and (3) a previously developed canopy height map derived from the spaceborne LiDAR data with different spatial modeling method and explanatory variables (Simard et al., 2011). As a result, our canopy height map successfully detected a spatial distribution pattern in canopy height estimates based on our original field study data (r = 0.845, p = 8.31 × 10-3) though our canopy height map showed a poor correlation (r = 0.563, p = 0.146) with the canopy height estimate based on a previously developed model by Feldpausch et al. (2011). We also confirmed that the created canopy height map showed a similar pattern with the previously developed canopy height map by Simard et al. (2011). It was concluded that the use of the spaceborne LiDAR data provides a sufficient accuracy in estimating the canopy height at regional scale.

  6. Thin and thick cloud top height retrieval algorithm with the Infrared Camera and LIDAR of the JEM-EUSO Space Mission

    NASA Astrophysics Data System (ADS)

    Sáez-Cano, G.; Morales de los Ríos, J. A.; del Peral, L.; Neronov, A.; Wada, S.; Rodríguez Frías, M. D.

    2015-03-01

    The origin of cosmic rays have remained a mistery for more than a century. JEM-EUSO is a pioneer space-based telescope that will be located at the International Space Station (ISS) and its aim is to detect Ultra High Energy Cosmic Rays (UHECR) and Extremely High Energy Cosmic Rays (EHECR) by observing the atmosphere. Unlike ground-based telescopes, JEM-EUSO will observe from upwards, and therefore, for a properly UHECR reconstruction under cloudy conditions, a key element of JEM-EUSO is an Atmospheric Monitoring System (AMS). This AMS consists of a space qualified bi-spectral Infrared Camera, that will provide the cloud coverage and cloud top height in the JEM-EUSO Field of View (FoV) and a LIDAR, that will measure the atmospheric optical depth in the direction it has been shot. In this paper we will explain the effects of clouds for the determination of the UHECR arrival direction. Moreover, since the cloud top height retrieval is crucial to analyze the UHECR and EHECR events under cloudy conditions, the retrieval algorithm that fulfills the technical requierements of the Infrared Camera of JEM-EUSO to reconstruct the cloud top height is presently reported.

  7. Tropical cloud-top height distributions revealed by the Ice, Cloud, and Land Elevation Satellite (ICESat)/Geoscience Laser Altimeter System (GLAS)

    NASA Astrophysics Data System (ADS)

    Dessler, A. E.; Palm, S. P.; Spinhirne, J. D.

    2006-06-01

    We analyze cloud-top height data obtained at tropical latitudes between 29 September and 17 November, 2003, from the Geoscience Laser Altimeter System (GLAS), carried onboard the Ice, Cloud, and Land Elevation Satellite (ICESat). About 66% of the tropical observations show one or more cloud layers. Of those observations that do show a cloud, about half show two or more cloud layers. Maxima in the cloud-top height distribution occur in the upper troposphere, between 12 and 17 km, and in the lower troposphere, below about 4 km. A less prominent maximum occurs in the midtroposphere, between 6 and 8 km. The occurrence of cloud layers tends to be consistent with the well-known diurnal cycles of continental and oceanic convection, and we find that cloud layers tend to occur more frequently over land than ocean, except in the lower troposphere, where the opposite is true. A particular emphasis of this paper is the convection that penetrates into the so-called tropical tropopause layer (TTL). We find more frequent occurrence of thick clouds in the TTL and above the tropopause than other studies, with 3.0% and 19% of the thick and thin cloud observations, respectively, showing a cloud top in the TTL and 0.34% and 3.1% showing a cloud top above the average level of the tropopause. These values are higher than those found in other data sets and suggest that an upward revision of TTL cloud frequency might be necessary. TTL clouds are observed more frequently in the evening than in the morning and more frequently over land than over ocean.

  8. Novel Spectrograph/Radiometer for Cloud Top Height Measurement Using Three Complementary Techniques

    NASA Technical Reports Server (NTRS)

    Park, Hongwoo; Soulen, Peter F.; Prasad, Coorg R.

    1997-01-01

    A proof-of-concept (POC) instrument system to measure cloud top height from space using three complementary techniques is presented. These techniques use measurements of: (1) thermal infrared (IR); (2) molecular oxygen 'A' band absorption; and (3) filling-in of Fraunhofer lines (the Ring effect), respectively. Combining three techniques is achieved with a single grating spectrograph with bandpass and order sorting filters by measuring I I jim radiation from the zeroth order of the grating for the IR, 750-780 nm radiation from the first order for the 'A' band absorption, and 390-400 mn radiation from the second order for the Ca K and H Fraunhofer line filling-in effect. The POC system and its measurement results with the POC system are described.

  9. Preliminarily Assessment of Long-term Cloud Top Heights in Central Taiwan

    NASA Astrophysics Data System (ADS)

    Lai, Y. J.; Po-Hsiung, L.

    2015-12-01

    The Xitou region, as the epitome of mid-elevation forest ecosystem and known as a famous forest recreation area in Taiwan. Although two disasters, "921 earthquake" in 1999 and typhoon Toraji in 2001, heavily hit this area and cause a significant reduction in visitors from 1 to about 0.4 million per year, the tourists have returned after the reconstruction in 2003 and approached 1.5 million high since 2010. The high quantity of tourists obviously drives the development of tourism industry which, unfortunately, increases the local sources of heating. A preliminarily analysis showed the warming rate was 0.29 oC/decade for June 2005 to May 2013 while from the 1940s to the 1980s, it was only 0.1 oC/decade. The warming pattern in Xitou region is similar to the global warming situation that a more dramatic trend happened during the past 10 years. The change of land use, which derived from the pressure of tourism industry, might accelerate regional climate warming. For the purpose of understanding cloud response to anthropogenic forcing, the long-term 1-km spatial resolution cloud top heights (cth) data sets (collection 6) from the Moderate Resolution Imaging Spectroradiometer (MODIS) were assessed. The results showed the annual cloud event amounts of the Terra and Aqua changed insignificantly since 2003 disregard of the cth. However, the cloud fraction of the cth less than 2000m was 18% in 2003 and dropped dramatically to 7% since 2011. Correspondingly, the cth between 2000m to 4000m was increased from 35% in 2003 to 45% in 2014. Further analysis the nighttime events indicated similar pattern but only 6% different between 2003 and 2014. The Aqua daytime events showed a more dramatic fraction anomaly which was decreased 18% at the cth less than 2000m and increased 18% at the cth between 2000m to 4000m. This preliminary assessment represents the cloud is pushing higher which might be caused by the anthropogenic forcing during the last decade. However, this study also found

  10. A physically based algorithm for non-blackbody correction of the cloud top temperature for the convective clouds

    NASA Astrophysics Data System (ADS)

    Wang, C.; Luo, Z. J.; Chen, X.; Zeng, X.; Tao, W.; Huang, X.

    2012-12-01

    Cloud top temperature is a key parameter to retrieval in the remote sensing of convective clouds. Passive remote sensing cannot directly measure the temperature at the cloud tops. Here we explore a synergistic way of estimating cloud top temperature by making use of the simultaneous passive and active remote sensing of clouds (in this case, CloudSat and MODIS). Weighting function of the MODIS 11μm band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat retrievals and temperature and humidity profiles based on ECMWF ERA-interim reanalysis into a radiation transfer model. Among 19,699 tropical deep convective clouds observed by the CloudSat in 2008, the averaged effective emission level (EEL, where the weighting function attains its maximum) is at optical depth 0.91 with a standard deviation of 0.33. Furthermore, the vertical gradient of CloudSat radar reflectivity, an indicator of the fuzziness of convective cloud top, is linearly proportional to, d_{CTH-EEL}, the distance between the EEL of 11μm channel and cloud top height (CTH) determined by the CloudSat when d_{CTH-EEL}<0.6km. Beyond 0.6km, the distance has little sensitivity to the vertical gradient of CloudSat radar reflectivity. Based on these findings, we derive a formula between the fuzziness in the cloud top region, which is measurable by CloudSat, and the MODIS 11μm brightness temperature assuming that the difference between effective emission temperature and the 11μm brightness temperature is proportional to the cloud top fuzziness. This formula is verified using the simulated deep convective cloud profiles by the Goddard Cumulus Ensemble model. We further discuss the application of this formula in estimating cloud top buoyancy as well as the error characteristics of the radiative calculation within such deep-convective clouds.

  11. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    SciTech Connect

    Liu, Y.; Wu, W.; Jensen, M. P.; Toto, T.

    2011-07-21

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surface-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fraction, and cloud albedo. The analytical expression is then used to deduce a new approach for inferring cloud albedo from concurrent surface-based measurements of downwelling surface shortwave radiation and cloud fraction. High-resolution decade-long data on cloud albedos are obtained by use of this surface-based approach over the US Department of Energy's Atmospheric Radiaton Measurement (ARM) Program at the Great Southern Plains (SGP) site. The surface-based cloud albedos are further compared against those derived from the coincident GOES satellite measurements. The three long-term (1997-2009) sets of hourly data on shortwave cloud radiative forcing, cloud fraction and cloud albedo collected over the SGP site are analyzed to explore the multiscale (diurnal, annual and inter-annual) variations and covariations. The analytical formulation is useful for diagnosing deficiencies of cloud-radiation parameterizations in climate models.

  12. Registration of point cloud data for HDD stamped base inspection

    NASA Astrophysics Data System (ADS)

    Suh, Sungho; Cho, Hansang

    2015-09-01

    As a part of the HDD manufacturing process, HDD stamped base, an exterior container, is one of the most essential components in which various parts become assembled to compose a hard disk drive (HDD). Height errors that are caused by pressing, breaking or cracking can occur on the base, because it is designed by a stamping method. In order to detect the height errors, the inspection process is essential in the production fields. In the current industry, CMM (Coordinate Measurement Machine) is one of the representative machines that inspect certain regions on the product. The machine probes a designated point by an operator and judges the defect by comparing the height of the point to the originally designed height. However, the method takes much time to inspect each designated point resulting in a total of 17 minutes. In order to reduce the total inspection time, we propose an inspection method using 3D point cloud data acquired from a holographic sensor. To compare the height from acquired 3D point cloud data with the one from the originally designed CAD data, the exact point cloud registration is important. There are differences between 2D image registration and 3D point cloud registration, such as translation on each plane, rotation, tilt, and nonlinear transformations. The relationship between the acquired 3D point cloud data and the originally designed CAD data can be obtained by projective transformation. If the projective transformation matrix between the two is obtained, 3D point cloud data registration can be performed. In order to calculate 3D projective transformation matrix, corresponding points between 3D point cloud data and CAD data are required. To find the corresponding points, we use the height map which is projected from 3D point cloud data onto XY plane. The height map has pixel intensity from the height value of each point. If the height maps from 3D point cloud data and CAD data are matched, corresponding points can be estimated. As one of the

  13. Cloud-Based Data Storage

    ERIC Educational Resources Information Center

    Waters, John K.

    2011-01-01

    The vulnerability and inefficiency of backing up data on-site is prompting school districts to switch to more secure, less troublesome cloud-based options. District auditors are pushing for a better way to back up their data than the on-site, tape-based system that had been used for years. About three years ago, Hendrick School District in…

  14. Comparing remotely sensed Pictometry Web-based height estimates with in situ clinometer and laser range finder height estimates

    NASA Astrophysics Data System (ADS)

    Unger, Daniel R.; Hung, I.-Kuai; Kulhavy, David L.

    2014-01-01

    Heights of 30 light poles were measured with a telescopic height pole. Clinometer and laser range finder in situ estimated light pole height was compared to Pictometry estimated light pole height using hyperspatial 4-in. (10.2-cm) multispectral imagery within a Web-based interface. Average percent agreement between light pole height and clinometer and laser range finder estimated that light pole height ranged from 3.97% to 3.79% for clinometer and laser range finder estimated light pole height, respectively. Average percent agreement between light pole height and Pictometry estimated light pole height at image magnification factors of 100%, 125%, 150%, 200%, and 300% magnification ranged from 1.77% to 2.39%. Root-mean-square error (RMSE) between light pole height and clinometer and laser range finder estimated that light pole height ranged from 0.22 to 0.20 m for clinometer and laser range finder estimated light pole height, respectively. RMSE between light pole height and Pictometry estimated light pole height ranged from 0.10 to 0.14 m. An analysis of variance between absolute errors of light pole height estimate by different techniques indicated that Pictometry was significantly more accurate than both clinometer and laser range finder light pole height estimates.

  15. A new approach to retrieving cirrus cloud height with a combination of MODIS 1.24- and 1.38-μm channels

    NASA Astrophysics Data System (ADS)

    Wang, Chenxi; Ding, Shouguo; Yang, Ping; Baum, Bryan; Dessler, Andrew E.

    2012-12-01

    An approach is developed for inferring cloud top height (CTH) by using two shortwave infrared (SWIR) channels (i.e., 1.24- and 1.38-μm) with similar cloud scattering and absorption properties but very different water vapor absorption properties. This channel combination is used to accurately infer the column water vapor amount above the clouds, from which the CTH can be retrieved. The approach performs best for ice clouds located in the upper troposphere. For those clouds, our approach performs as well or better than the current operational cloud height retrieval algorithm adopted by the MODIS science team.

  16. Integration of Satellite-Derived Cloud Phase, Cloud Top Height, and Liquid Water Path into an Operational Aircraft Icing Nowcasting System

    NASA Technical Reports Server (NTRS)

    Haggerty, Julie; McDonough, Frank; Black, Jennifer; Landott, Scott; Wolff, Cory; Mueller, Steven; Minnis, Patrick; Smith, William, Jr.

    2008-01-01

    Operational products used by the U.S. Federal Aviation Administration to alert pilots of hazardous icing provide nowcast and short-term forecast estimates of the potential for the presence of supercooled liquid water and supercooled large droplets. The Current Icing Product (CIP) system employs basic satellite-derived information, including a cloud mask and cloud top temperature estimates, together with multiple other data sources to produce a gridded, three-dimensional, hourly depiction of icing probability and severity. Advanced satellite-derived cloud products developed at the NASA Langley Research Center (LaRC) provide a more detailed description of cloud properties (primarily at cloud top) compared to the basic satellite-derived information used currently in CIP. Cloud hydrometeor phase, liquid water path, cloud effective temperature, and cloud top height as estimated by the LaRC algorithms are into the CIP fuzzy logic scheme and a confidence value is determined. Examples of CIP products before and after the integration of the LaRC satellite-derived products will be presented at the conference.

  17. Global trends of cloud cover and cloud height derived from GOME satellite observations 1996-2003 and their relation to surface-near temperature

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Grzegorski, M.; Platt, U.

    2006-12-01

    We analyzed global data sets of the atmospheric O2 absorption and the effective cloud fraction from GOME satellite observations for the period 1996-2003. The O2 absorption is a measure of the average photon path- length, it can be retrieved with high precision from the measured spectra of back-scattered sunlight by differential optical absorption spectroscopy (DOAS) and is almost not affected by instrument degradation. Thus it is especially well suited for trend studies. the effective cloud fraction from broad band intensity measurements. From the combination with the effective cloud fraction, in particular information on the cloud altitude can be derived. We find that an increase of the surface-near temperatures in general leads to a decrease of the O2 absorption; this dependency is especially strong over the tropical oceans and the northern hemispheric continents. For the globally averaged values we find a negative trend of the O2 absorption (-0.8 percent over 7 years), while for the effective cloud fraction the analyzed trend (+0.33 percent over 7 years) is not significant. During the same period the surface-near temperatures increased by +0.1K. The decrease of the O2 absorption can be mainly attributed to an increase of the average cloud top height indicating a positive cloud feedback.

  18. Cloud top height retrieval using the imaging polarimeter (3MI) top-of-atmosphere reflectance measurements in the oxygen absorption band

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, Alexander; Munro, Rose

    2016-04-01

    The determination of cloud top height from a satellite has a number of applications both for climate studies and aviation safety. A great variety of methods are applied using both active and passive observation systems in the optical and microwave spectral regions. One of the most popular methods with good spatial coverage is based on the measurement of outgoing radiation in the spectral range where oxygen strongly absorbs incoming solar light. Clouds shield tropospheric oxygen reducing the depth of the corresponding absorption line as detected by a satellite instrument. Radiative transfer models are used to connect the solar light reflectance, e.g., in the oxygen A-band located around 761nm, and the cloud top height. The inverse problem is then solved e.g. using look-up tables, to determine the cloud top height. In this paper we propose a new fast and robust oxygen A-band method for the retrieval of cloud altitude using the Multi-viewing Multi-channel Multi-polarization Imaging instrument (3MI) on board the EUMETSAT Polar System Second Generation (EPS-SG). The 3MI measures the intensity at the wavelengths of 410, 443, 490, 555, 670, 763, 765, 865, 910, 1370, 1650, and 2130nm, and (for selected channels) the second and third Stokes vector components which allows the degree of linear polarization and the polarization orientation angle of reflected solar light to be derived at up to 14 observation angles. The instrument response function (to a first approximation) can be modelled by a Gaussian distribution with the full width at half maximum (FWHM) equal to 20nm for all channels except 765nm, 865nm, 1370nm, 1650nm, and 2130nm, where it is equal to 40nm. The FWHM at 763nm (the oxygen A-band location) is equal to 10nm. The following 3MI channels are used in the retrieval procedure: 670, 763, and 865nm. The channels at 670 and 865 nm are not affected by the oxygen absorption. The channel at 763nm is affected by the oxygen concentration vertical profile. The higher

  19. Height estimations based on eye measurements throughout a gait cycle.

    PubMed

    Yang, Sylvia X M; Larsen, Peter K; Alkjær, Tine; Juul-Kristensen, Birgit; Simonsen, Erik B; Lynnerup, Niels

    2014-03-01

    Anthropometric measurements (e.g. the height to the head, nose tip, eyes or shoulders) of a perpetrator based on video material may be used in criminal cases. However, several height measurements may be difficult to assess as the perpetrators may be disguised by clothes or headwear. The eye height (EH) measurement, on the other hand, is less prone to concealment. The purpose of the present study was to investigate: (1) how the eye height varies during the gait cycle, and (2) how the eye height changes with head position. The eyes were plotted manually in APAS for 16 test subjects during a complete gait cycle. The influence of head tilt on the EH was investigated in 20 healthy men. Markers were attached to the face and the subjects were instructed to stand relaxed, tilt their head to the right, to the left, forward and backward. The marker data for the right eye were used to calculate the EH. The respective deviation and SD from the relaxed standing EH and the EH in the Frankfurt plane, left tilted, right tilted, forward tilted and backward tilted, in addition to the corresponding head tilt angles were calculated. There was no correlation between the height of the subject and the maximum vertical displacement of the EH throughout the gait cycle nor between height of the subjects and the variation of the EH throughout the gait cycle. The average maximum vertical displacement for the test subject group was 4.76 cm (± 1.56 cm). The average EH was lower when the subjects were standing in the relaxed position than in the Frankfurt plane. The average EH was higher in the relaxed position than when the subjects tilted their heads, except when they tilted their heads backwards. The subjects had a slightly larger range of motion to the right than to the left, which was not significant. The results of this study provide a range for eye height estimates and may be readily implemented in forensic case work. It can be used as a reference in height estimates in cases with height

  20. Point Cloud Based Change Detection - an Automated Approach for Cloud-based Services

    NASA Astrophysics Data System (ADS)

    Collins, Patrick; Bahr, Thomas

    2016-04-01

    The fusion of stereo photogrammetric point clouds with LiDAR data or terrain information derived from SAR interferometry has a significant potential for 3D topographic change detection. In the present case study latest point cloud generation and analysis capabilities are used to examine a landslide that occurred in the village of Malin in Maharashtra, India, on 30 July 2014, and affected an area of ca. 44.000 m2. It focuses on Pléiades high resolution satellite imagery and the Airbus DS WorldDEMTM as a product of the TanDEM-X mission. This case study was performed using the COTS software package ENVI 5.3. Integration of custom processes and automation is supported by IDL (Interactive Data Language). Thus, ENVI analytics is running via the object-oriented and IDL-based ENVITask API. The pre-event topography is represented by the WorldDEMTM product, delivered with a raster of 12 m x 12 m and based on the EGM2008 geoid (called pre-DEM). For the post-event situation a Pléiades 1B stereo image pair of the AOI affected was obtained. The ENVITask "GeneratePointCloudsByDenseImageMatching" was implemented to extract passive point clouds in LAS format from the panchromatic stereo datasets: • A dense image-matching algorithm is used to identify corresponding points in the two images. • A block adjustment is applied to refine the 3D coordinates that describe the scene geometry. • Additionally, the WorldDEMTM was input to constrain the range of heights in the matching area, and subsequently the length of the epipolar line. The "PointCloudFeatureExtraction" task was executed to generate the post-event digital surface model from the photogrammetric point clouds (called post-DEM). Post-processing consisted of the following steps: • Adding the geoid component (EGM 2008) to the post-DEM. • Pre-DEM reprojection to the UTM Zone 43N (WGS-84) coordinate system and resizing. • Subtraction of the pre-DEM from the post-DEM. • Filtering and threshold based classification of

  1. Validation of Satellite-Based Objective Overshooting Cloud-Top Detection Methods Using CloudSat Cloud Profiling Radar Observations

    NASA Technical Reports Server (NTRS)

    Bedka, Kristopher M.; Dworak, Richard; Brunner, Jason; Feltz, Wayne

    2012-01-01

    Two satellite infrared-based overshooting convective cloud-top (OT) detection methods have recently been described in the literature: 1) the 11-mm infrared window channel texture (IRW texture) method, which uses IRW channel brightness temperature (BT) spatial gradients and thresholds, and 2) the water vapor minus IRW BT difference (WV-IRW BTD). While both methods show good performance in published case study examples, it is important to quantitatively validate these methods relative to overshooting top events across the globe. Unfortunately, no overshooting top database currently exists that could be used in such study. This study examines National Aeronautics and Space Administration CloudSat Cloud Profiling Radar data to develop an OT detection validation database that is used to evaluate the IRW-texture and WV-IRW BTD OT detection methods. CloudSat data were manually examined over a 1.5-yr period to identify cases in which the cloud top penetrates above the tropopause height defined by a numerical weather prediction model and the surrounding cirrus anvil cloud top, producing 111 confirmed overshooting top events. When applied to Moderate Resolution Imaging Spectroradiometer (MODIS)-based Geostationary Operational Environmental Satellite-R Series (GOES-R) Advanced Baseline Imager proxy data, the IRW-texture (WV-IRW BTD) method offered a 76% (96%) probability of OT detection (POD) and 16% (81%) false-alarm ratio. Case study examples show that WV-IRW BTD.0 K identifies much of the deep convective cloud top, while the IRW-texture method focuses only on regions with a spatial scale near that of commonly observed OTs. The POD decreases by 20% when IRW-texture is applied to current geostationary imager data, highlighting the importance of imager spatial resolution for observing and detecting OT regions.

  2. Low altitude cloud height and methane humidity retrievals on Titan in the near-IR

    NASA Astrophysics Data System (ADS)

    Adamkovics, M.; Hayes, A.; Mitchell, J.; De Pater, I.; Young, E.

    2013-12-01

    The formation of low altitude clouds on Titan, with cloud-top altitudes below ~10km, likely occurs by a fundamentally different mechanism than for the clouds commonly observed to have cloud-tops in the upper troposphere, above ~15km [1]. Near-infrared spectroscopy of clouds has been the method of choice for determining cloud altitudes [2], however, uncertainties in aerosols scattering properties and opacities, together with limitations in laboratory measurements of gas opacities (in particular for methane), lead to uncertainties in how accurately the altitude of low clouds can be retrieved [3]. Here we revisit near-IR spectra obtained with Keck and Cassini using new laboratory methane line data in the HITRAN 2012 database [4] to address the problem of measuring the altitudes of low clouds. We discuss the role of topography in relation to the formation of low clouds and other diagnostics of conditions near the surface, such as the tropospheric methane humidity. We reanalyze measurements the tropospheric humidity variation [5] and describe observational strategies for improved diagnostics of the tropospheric humidity on Titan . Acknowledgements: Funding for this work is provided by the NSF grant AST-1008788 and NASA OPR grant NNX12AM81G. References: [1] Brown, et al. (2009) ApJ, 706, L110-L113. [2] Ádámkovics et al. (2010) Icarus, 208, 868-877. [3] Griffith et al. (2012) Icarus, 218, 975-988. [4] Rothman et al. (2013) AIP Conf. Proc., 1545, 223-231. [5] Penteado & Griffith (2010) Icarus, 206, 345-351.

  3. Camera-based independent couch height verification in radiation oncology.

    PubMed

    Kusters, Martijn; Louwe, Rob; Biemans-van Kastel, Liesbeth; Nieuwenkamp, Henk; Zahradnik, Rien; Claessen, Roy; van Seters, Ronald; Huizenga, Henk

    2015-01-01

    For specific radiation therapy (RT) treatments, it is advantageous to use the isocenter-to-couch distance (ICD) for initial patient setup.(1) Since sagging of the treatment couch is not properly taken into account by the electronic readout of the treatment machine, this readout cannot be used for initial patient positioning using the isocenter-to-couch distance (ICD). Therefore, initial patient positioning to the prescribed ICD has been carried out using a ruler prior to each treatment fraction in our institution. However, the ruler method is laborious and logging of data is not possible. The objective of this study is to replace the ruler-based setup of the couch height with an independent, user-friendly, optical camera-based method whereby the radiation technologists have to move only the couch to the correct couch height, which is visible on a display. A camera-based independent couch height measurement system (ICHS) was developed in cooperation with Panasonic Electric Works Western Europe. Clinical data showed that the ICHS is at least as accurate as the application of a ruler to verify the ICD. The camera-based independent couch height measurement system has been successfully implemented in seven treatment rooms, since 10 September 2012. The benefits of this system are a more streamlined workflow, reduction of human errors during initial patient setup, and logging of the actual couch height at the isocenter. Daily QA shows that the systems are stable and operate within the set 1 mm tolerance. Regular QA of the system is necessary to guarantee that the system works correctly. PMID:26699308

  4. Observation-based Understanding of the Cloud Properties over East China Region

    NASA Astrophysics Data System (ADS)

    Zhao, C.

    2015-12-01

    Cloud properties over East China are described based on observations from satellite (MODIS), ground site and aircraft. Based on satellite observations, 10-year averaged cloud fraction over the whole China region is around 66%, similar to the average value of global, with the largest cloud occurrence in Summer; the cloud fraction increases slightly during last 10 years; more clouds are found at southeast region than at northwest region; cloud droplet effective radius shows the smallest values around 10 um at mid-latitude regions and largest values at high latitude regions; further PDF analysis shows that cloud droplet effective radius demonstrates a bimodal distribution with maximum occurrences around 10-16 um. Ground site observations show that cloud fraction at Taihu site is around 65% for 2013, consistent with that found by MODIS at the closest grid to the site; more clouds are found at night than during day. In-situ aircraft observations over Huanghua city show that cloud droplet effective radius increases with height, with values from 3-5 um at low altitude, 7-9 um at mid altitude, to 10-13 um at high altitude. While the aircraft observation sample volume is limited, the in-situ observed cloud properties demonstrate that cloud droplet re increases with height, consistent with many findings by in-situ aircraft at other locations. The consistency of satellite observed cloud droplet re between East China and other regions is likely caused by the fact that the cloud properties observed by satellite is more representative of those clouds at high altitudes which are weakly affected by the aerosols within the boundary layers. On the other hand, the cloud droplet re at the cloud bases over East China is much smaller than those found at other locations, likely demonstrating the significant impacts by the heavy aerosol loadings at this region. Further studies with more site and aircraft observations over East China are needed.

  5. Aerosol cloud interaction: a multiplatform-scenario-based methodology

    NASA Astrophysics Data System (ADS)

    Landulfo, Eduardo; Lopes, Fabío. J. S.; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas

    2015-10-01

    Suspended atmospheric particles i.e. aerosol particles go through many chemical and physical processes and those interactions and transformations may cause particle change in size, structure and composition regulated by mechanisms, which are also present in clouds. These interactions play a great role in the radiation transfer in the atmosphere and are not completely understood as competing effects might occur which are known as indirect aerosol effects. Performing measurements and experiments in remote sensing to improve the knowledge of these processes are also a challenge. In face of that we propose a multi-platform approach based lidar, sun photometry and satellite observations which should be characterized under a scenario perspective in which given the cloud height, geometric and optical geometries in a diurnal/nocturnal basis will make possible to apply different analytical tools in each a set of product that specify the aerosol present in the vicinity of clouds, their optical and physical properties. These scenarios are meant to aid in tagging the expected products and help in creating a robust database to systematically study the aerosol-cloud interaction.In total we will present 6 scenarios: 3 under daylight conditions, 3 under at nighttime. Each scenario and their counterpart should be able to provide the cloud base/top height, aerosol backscattering profile and cloud optical/geometric thickness. In each instance we should count on a 5 wavelength Raman lidar system measurement, a collocated sun photometer and CALIPSO/MODIS observation from AQUA/TERRA platforms. To further improve the aerosol cloud interaction the Raman lidar system should have a water vapor channel or moreover a liquid water channel. In our study we will present a two-day case study to show the methodology feasibility and its potential application.

  6. Determining Stand Parameters from Uas-Based Point Clouds

    NASA Astrophysics Data System (ADS)

    Yilmaz, V.; Serifoglu, C.; Gungor, O.

    2016-06-01

    In Turkey, forest management plans are produced by terrestrial surveying techniques for 10 or 20 year periods, which can be considered quite long to maintain the sustainability of forests. For a successful forest management plan, it is necessary to collect accurate information about the stand parameters and store them in dynamic and robust databases. The position, number, height and closure of trees are among the most important stand parameters required for a forest management plan. Determining the position of each single tree is challenging in such an area consisting of too many interlocking trees. Hence, in this study, an object-based tree detection methodology has been developed in MATLAB programming language to determine the position of each tree top in a highly closed area. The developed algorithm uses the Canopy Height Model (CHM), which is computed from the Digital Terrain Model (DTM) and Digital Surface Model (DSM) generated by using the point cloud extracted from the images taken from a UAS (Unmanned Aerial System). The heights of trees have been determined by using the CHM. The closure of the trees has been determined with the written MATLAB script. The results show that the developed tree detection methodology detected more than 70% of the trees successfully. It can also be concluded that the stand parameters may be determined by using the UAS-based point clouds depending on the characteristics of the study area. In addition, determination of the stand parameters by using point clouds reduces the time needed to produce forest management plans.

  7. The effects of cloud inhomogeneities upon radiative fluxes, and the supply of a cloud truth validation dataset

    NASA Technical Reports Server (NTRS)

    Welch, Ronald M.

    1993-01-01

    A series of cloud and sea ice retrieval algorithms are being developed in support of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team objectives. These retrievals include the following: cloud fractional area, cloud optical thickness, cloud phase (water or ice), cloud particle effective radius, cloud top heights, cloud base height, cloud top temperature, cloud emissivity, cloud 3-D structure, cloud field scales of organization, sea ice fractional area, sea ice temperature, sea ice albedo, and sea surface temperature. Due to the problems of accurately retrieving cloud properties over bright surfaces, an advanced cloud classification method was developed which is based upon spectral and textural features and artificial intelligence classifiers.

  8. Correction and Densification of Uas-Based Photogrammetric Thermal Point Cloud

    NASA Astrophysics Data System (ADS)

    Akcay, O.; Erenoglu, R. C.; Erenoglu, O.

    2016-06-01

    Photogrammetric processing algorithms can suffer problems due to either the initial image quality (noise, low radiometric quality, shadows and so on) or to certain surface materials (shiny or textureless objects). This can result in noisy point clouds and/or difficulties in feature extraction. Specifically, dense point clouds which are generated with photogrammetric method using a lightweight thermal camera, are more noisy and sparse than the point clouds of high-resolution digital camera images. In this paper, new method which produces more reliable and dense thermal point cloud using the sparse thermal point cloud and high resolution digital point cloud was considered. Both thermal and digital images were obtained with UAS (Unmanned Aerial System) based lightweight Optris PI 450 and Canon EOS 605D camera images. Thermal and digital point clouds, and orthophotos were produced using photogrammetric methods. Problematic thermal point cloud was transformed to a high density thermal point cloud using image processing methods such as rasterizing, registering, interpolation and filling. The results showed that the obtained thermal point cloud - up to chosen processing parameters - was 87% more densify than the original point cloud. The second improvement was gained at the height accuracy of the thermal point cloud. New densified point cloud has more consistent elevation model while the original thermal point cloud shows serious deviations from the expected surface model.

  9. Use of Lidar Derived Optical Extinction and Backscattering Coefficients Near Cloud Base to Explore Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonhgua; Gross, Barry; Moshary, Fred

    2016-06-01

    Combination of microwave radiometer (MWR) and mutlifilter rotating shadowband radiometer (MFRSR) measurement data together with SBDART radiative transfer model to compute cloud optical depth (COD) and cloud droplet effective radius (Reff). Quantify the first aerosol indirect effect using calculated Reff and aerosol extinction from Raman lidar measurement in urban coastal region. Illustrate comparison between ground-based and satellite retrievals. Demonstrate relationship between surface aerosol (PM2.5) loading and Reff. We also explain the sensitivity of aerosol-cloud-index (ACI) depend on the aerosol layer from cloud base height. Potential used of less noisy elastic backscattering to calculate the ACI instead of using Raman extinction. We also present comparison of elastic backscattering and Raman extinction correlation to Reff.

  10. Access Control of Cloud Service Based on UCON

    NASA Astrophysics Data System (ADS)

    Danwei, Chen; Xiuli, Huang; Xunyi, Ren

    Cloud computing is an emerging computing paradigm, and cloud service is also becoming increasingly relevant. Most research communities have recently embarked in the area, and research challenges in every aspect. This paper mainly discusses cloud service security. Cloud service is based on Web Services, and it will face all kinds of security problems including what Web Services face. The development of cloud service closely relates to its security, so the research of cloud service security is a very important theme. This paper introduces cloud computing and cloud service firstly, and then gives cloud services access control model based on UCON and negotiation technologies, and also designs the negotiation module.

  11. Biological ice nuclei at tropospheric cloud heights: potential conditioning of precipitation

    NASA Astrophysics Data System (ADS)

    Stopelli, Emiliano; Conen, Franz; Alewell, Christine; Morris, Cindy

    2014-05-01

    Different substances present in the atmosphere enhance the aggregation of water molecules into ice structures, but particularly effective seem to be aerosols of biological origin, active at temperatures up to -2°C. Yet, the relevance of biological ice nucleation for cloud processes, such as initiating precipitation, remains ambiguous. We try to understand the meteorological conditions and the environmental factors controlling the abundance of biological ice nuclei (IN) in precipitation. One full year of observations has been carried out at the High Altitude Research station of Jungfraujoch, in the Swiss Alps, 3580 m a.s.l. Fresh snow was collected each month and analysed immediately on site for the concentration of IN active at temperatures warmer than -12°C. For this purpose we had developed an innovative system automatically recording freezing events of samples in closed tubes. Additional information was gained through the recording of meteorological parameters associated with the precipitation events, and the determination of stable isotopes (2H and 18O) and of bacterial concentrations (direct epifluorescence microscope counting, live/dead staining) in precipitation. Our analysis of the data suggests that the abundance of ice nuclei in snowfall is characterized not only by seasonality, but also by the geographical origin of precipitating air masses. Further, it seems that the more water an air mass has lost through previous precipitation, the smaller is the biological IN abundance in the remaining precipitation. Moreover, the loss of biological IN with precipitation seems to be much faster than that of other suspended particles in the same air mass, pointing towards a role of biological IN in conditioning the development of precipitation at its early stages.

  12. Raman LIDAR Detection of Cloud Base

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Starr, David; Whiteman, David; Evans, Keith; Hlavka, Dennis; Peravali, Ravindra

    1999-01-01

    Advantages introduced by Raman lidar systems for cloud base determination during precipitating periods are explored using two case studies of light rain and virga conditions. A combination of the Raman lidar derived profiles of water vapor mixing ratio and aerosol scattering ratio, together with the Raman scattered signals from liquid drops, can minimize or even eliminate some of the problems associated with cloud boundary detection using elastic backscatter lidars.

  13. An improved algorithm for polar cloud-base detection by ceilometer over the ice sheets

    NASA Astrophysics Data System (ADS)

    Van Tricht, K.; Gorodetskaya, I. V.; Lhermitte, S.; Turner, D. D.; Schween, J. H.; Van Lipzig, N. P. M.

    2014-05-01

    Optically thin ice and mixed-phase clouds play an important role in polar regions due to their effect on cloud radiative impact and precipitation. Cloud-base heights can be detected by ceilometers, low-power backscatter lidars that run continuously and therefore have the potential to provide basic cloud statistics including cloud frequency, base height and vertical structure. The standard cloud-base detection algorithms of ceilometers are designed to detect optically thick liquid-containing clouds, while the detection of thin ice clouds requires an alternative approach. This paper presents the polar threshold (PT) algorithm that was developed to be sensitive to optically thin hydrometeor layers (minimum optical depth τ ≥ 0.01). The PT algorithm detects the first hydrometeor layer in a vertical attenuated backscatter profile exceeding a predefined threshold in combination with noise reduction and averaging procedures. The optimal backscatter threshold of 3 × 10-4 km-1 sr-1 for cloud-base detection near the surface was derived based on a sensitivity analysis using data from Princess Elisabeth, Antarctica and Summit, Greenland. At higher altitudes where the average noise level is higher than the backscatter threshold, the PT algorithm becomes signal-to-noise ratio driven. The algorithm defines cloudy conditions as any atmospheric profile containing a hydrometeor layer at least 90 m thick. A comparison with relative humidity measurements from radiosondes at Summit illustrates the algorithm's ability to significantly discriminate between clear-sky and cloudy conditions. Analysis of the cloud statistics derived from the PT algorithm indicates a year-round monthly mean cloud cover fraction of 72% (±10%) at Summit without a seasonal cycle. The occurrence of optically thick layers, indicating the presence of supercooled liquid water droplets, shows a seasonal cycle at Summit with a monthly mean summer peak of 40 % (±4%). The monthly mean cloud occurrence frequency

  14. Quantification of volcanic cloud top heights and thicknesses using A-train observations for the 2008 Chaitén eruption

    NASA Astrophysics Data System (ADS)

    Prata, A. T.; Siems, S. T.; Manton, M. J.

    2015-04-01

    New evidence of vertically thin (< 400 m), low-level (< 10 km) volcanic ash clouds, as well as confirmation of previously reported high-level (>10 km) ash clouds, from the May 2008 Chaitén eruption in southern Chile is presented. A-train remote sensors were used to measure high-resolution volcanic cloud top heights (VCTHs) during the explosive phase (2-10 May 2008) of the eruption. Ash clouds were identified using a reverse absorption technique applied to hyperspectral measurements taken by the Atmospheric Infrared Sounder. Once identified, heights and thicknesses were derived from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument. As these two instruments are part of the same constellation of satellites, coincident retrievals are routinely possible. Collocation of the data allowed for detection of volcanic ash within CALIOP profiles. Using a simple thresholding algorithm, VCTH and thickness were derived from the CALIOP profiles. A total of 12 VCTH measurements, ranging from 3.7 to 16.6 km, have been derived. Back trajectories from the Hybrid Single Particle Lagrangian Integrated Trajectory dispersion model were used as a check on volcanic origin of the detected ash clouds. Ensemble forward trajectories were generated to demonstrate how the new data could be used to improve Volcanic Ash Advisory Center operations. The findings reported here demonstrate several cases where low-level ash was not recorded previously and include observations of thin ash clouds at large distances (˜4000 km) from the volcano.

  15. The ESA Cloud CCI project: Generation of Multi Sensor consistent Cloud Properties with an Optimal Estimation Based Retrieval Algorithm

    NASA Astrophysics Data System (ADS)

    Jerg, M.; Stengel, M.; Hollmann, R.; Poulsen, C.

    2012-04-01

    The ultimate objective of the ESA Climate Change Initiative (CCI) Cloud project is to provide long-term coherent cloud property data sets exploiting and improving on the synergetic capabilities of past, existing, and upcoming European and American satellite missions. The synergetic approach allows not only for improved accuracy and extended temporal and spatial sampling of retrieved cloud properties better than those provided by single instruments alone but potentially also for improved (inter-)calibration and enhanced homogeneity and stability of the derived time series. Such advances are required by the scientific community to facilitate further progress in satellite-based climate monitoring, which leads to a better understanding of climate. Some of the primary objectives of ESA Cloud CCI Cloud are (1) the development of inter-calibrated radiance data sets, so called Fundamental Climate Data Records - for ESA and non ESA instruments through an international collaboration, (2) the development of an optimal estimation based retrieval framework for cloud related essential climate variables like cloud cover, cloud top height and temperature, liquid and ice water path, and (3) the development of two multi-annual global data sets for the mentioned cloud properties including uncertainty estimates. These two data sets are characterized by different combinations of satellite systems: the AVHRR heritage product comprising (A)ATSR, AVHRR and MODIS and the novel (A)ATSR - MERIS product which is based on a synergetic retrieval using both instruments. Both datasets cover the years 2007-2009 in the first project phase. ESA Cloud CCI will also carry out a comprehensive validation of the cloud property products and provide a common data base as in the framework of the Global Energy and Water Cycle Experiment (GEWEX). The presentation will give an overview of the ESA Cloud CCI project and its goals and approaches and then continue with results from the Round Robin algorithm

  16. Cloud-based Architecture Capabilities Summary Report

    SciTech Connect

    Vang, Leng; Prescott, Steven R; Smith, Curtis

    2014-09-01

    In collaborating scientific research arena it is important to have an environment where analysts have access to a shared of information documents, software tools and be able to accurately maintain and track historical changes in models. A new cloud-based environment would be accessible remotely from anywhere regardless of computing platforms given that the platform has available of Internet access and proper browser capabilities. Information stored at this environment would be restricted based on user assigned credentials. This report reviews development of a Cloud-based Architecture Capabilities (CAC) as a web portal for PRA tools.

  17. A study of the morphology of winter sprites in the Hokuriku area of Japan in relation to cloud charge height

    NASA Astrophysics Data System (ADS)

    Myokei, K.; Matsudo, Y.; Asano, T.; Suzuki, T.; Hobara, Y.; Michimoto, K.; Hayakawa, M.

    2009-04-01

    Continuous observations of sprites in the Hokuriku area of Japan were performed from two optical sites during the three winter periods. The purpose of this observation is to study the major effect in the appearance of sprites and in determining the morphology of sprites (columns or carrots). Detailed analysis is performed based on the estimation of the height of -10 °C at the time of sprite occurrence. When the height of -10 °C is lower than 1800 m, the occurrence of sprites is infrequent, and the dominant shape is column. Then when it is increased (1800-3000 m), a new situation takes place, namely the occurrence of sprites is very enhanced and more spectacular shapes like carrots tend to be frequently observed in addition to column sprites. These sprite characteristics are first compared with those of parent lightning in the Hokuriku area and with our latest computer simulations on sprite initiation.

  18. A Physically Based Algorithm for Non-Blackbody Correction of Cloud-Top Temperature and Application to Convection Study

    NASA Technical Reports Server (NTRS)

    Wang, Chunpeng; Lou, Zhengzhao Johnny; Chen, Xiuhong; Zeng, Xiping; Tao, Wei-Kuo; Huang, Xianglei

    2014-01-01

    Cloud-top temperature (CTT) is an important parameter for convective clouds and is usually different from the 11-micrometers brightness temperature due to non-blackbody effects. This paper presents an algorithm for estimating convective CTT by using simultaneous passive [Moderate Resolution Imaging Spectroradiometer (MODIS)] and active [CloudSat 1 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] measurements of clouds to correct for the non-blackbody effect. To do this, a weighting function of the MODIS 11-micrometers band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat and CALIPSO retrievals and temperature and humidity profiles based on ECMWF analyses into a radiation transfer model.Among 16 837 tropical deep convective clouds observed by CloudSat in 2008, the averaged effective emission level (EEL) of the 11-mm channel is located at optical depth; approximately 0.72, with a standard deviation of 0.3. The distance between the EEL and cloud-top height determined by CloudSat is shown to be related to a parameter called cloud-top fuzziness (CTF), defined as the vertical separation between 230 and 10 dBZ of CloudSat radar reflectivity. On the basis of these findings a relationship is then developed between the CTF and the difference between MODIS 11-micrometers brightness temperature and physical CTT, the latter being the non-blackbody correction of CTT. Correction of the non-blackbody effect of CTT is applied to analyze convective cloud-top buoyancy. With this correction, about 70% of the convective cores observed by CloudSat in the height range of 6-10 km have positive buoyancy near cloud top, meaning clouds are still growing vertically, although their final fate cannot be determined by snapshot observations.

  19. Comparison of MODIS and VIIRS cloud properties with ARM ground-based observations over Finland

    NASA Astrophysics Data System (ADS)

    Sporre, Moa K.; O'Connor, Ewan J.; Håkansson, Nina; Thoss, Anke; Swietlicki, Erik; Petäjä, Tuukka

    2016-07-01

    Cloud retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the satellites Terra and Aqua and the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard the Suomi-NPP satellite are evaluated using a combination of ground-based instruments providing vertical profiles of clouds. The ground-based measurements are obtained from the Atmospheric Radiation Measurement (ARM) programme mobile facility, which was deployed in Hyytiälä, Finland, between February and September 2014 for the Biogenic Aerosols - Effects on Clouds and Climate (BAECC) campaign. The satellite cloud parameters cloud top height (CTH) and liquid water path (LWP) are compared with ground-based CTH obtained from a cloud mask created using lidar and radar data and LWP acquired from a multi-channel microwave radiometer. Clouds from all altitudes in the atmosphere are investigated. The clouds are diagnosed as single or multiple layer using the ground-based cloud mask. For single-layer clouds, satellites overestimated CTH by 326 m (14 %) on average. When including multilayer clouds, satellites underestimated CTH by on average 169 m (5.8 %). MODIS collection 6 overestimated LWP by on average 13 g m-2 (11 %). Interestingly, LWP for MODIS collection 5.1 is slightly overestimated by Aqua (4.56 %) but is underestimated by Terra (14.3 %). This underestimation may be attributed to a known issue with a drift in the reflectance bands of the MODIS instrument on Terra. This evaluation indicates that the satellite cloud parameters selected show reasonable agreement with their ground-based counterparts over Finland, with minimal influence from the large solar zenith angle experienced by the satellites in this high-latitude location.

  20. Height-resolved Scaling Properties of Tropospheric Water Vapour based on Airborne Lidar Observations

    NASA Astrophysics Data System (ADS)

    Kiemle, Christoph; Fischer, Lucas; Craig, George C.

    2013-04-01

    Two-dimensional vertical water vapour cross sections of the free troposphere between altitudes of 2 and 10 km, measured by nadir-viewing airborne differential-absorption lidar with high spatial resolution, were analyzed using structure functions up to the fifth order. We found scale invariance, i.e. a power-law dependency of structure function on length scale, for scales between 5 and 100 km, for the horizontal time series of water vapour mixing ratio. In contrast to one-dimensional in situ measurements, the two-dimensional water vapor lidar observations allow height-resolved analyses of power-law scaling exponents at a vertical resolution of 200 m. The data reveal significantly different scaling properties above and below an air-mass boundary. They stem from three very dissimilar aircraft campaigns: COPS/ETReC over middle and southern Europe in summer 2007, T-PARC around Japan mostly over sea in late summer 2008, and T-IPY around Spitsbergen over sea in winter 2008. After discarding flight segments with low lidar signals or large data gaps, and after averaging horizontally to a resolution of between 1 and 5 km to obtain a high signal to noise ratio, structure functions were computed for 20 flights at various heights, adding up to a length of more than 300,000 km. The power-law scaling exponents of the structure functions do not show significant latitudinal, seasonal or land/sea dependency, but they do differ between air masses influenced by moist convection and air masses aloft, not influenced. A classification of the horizontal water vapour time series into two groups according to whether the series occurred above or below the level of nearby convective cloud tops could be performed by detecting the cloud top height from the lidar backscatter signal in the corresponding flight segment. We found that the scaling exponents can be divided into two groups depending on the respective air mass: The smoothness of the time series, expressed by the first-order scaling

  1. Development of lidar sensor for cloud-based measurements during convective conditions

    NASA Astrophysics Data System (ADS)

    Vishnu, R.; Bhavani Kumar, Y.; Rao, T. Narayana; Nair, Anish Kumar M.; Jayaraman, A.

    2016-05-01

    Atmospheric convection is a natural phenomena associated with heat transport. Convection is strong during daylight periods and rigorous in summer months. Severe ground heating associated with strong winds experienced during these periods. Tropics are considered as the source regions for strong convection. Formation of thunder storm clouds is common during this period. Location of cloud base and its associated dynamics is important to understand the influence of convection on the atmosphere. Lidars are sensitive to Mie scattering and are the suitable instruments for locating clouds in the atmosphere than instruments utilizing the radio frequency spectrum. Thunder storm clouds are composed of hydrometers and strongly scatter the laser light. Recently, a lidar technique was developed at National Atmospheric Research Laboratory (NARL), a Department of Space (DOS) unit, located at Gadanki near Tirupati. The lidar technique employs slant path operation and provides high resolution measurements on cloud base location in real-time. The laser based remote sensing technique allows measurement of atmosphere for every second at 7.5 m range resolution. The high resolution data permits assessment of updrafts at the cloud base. The lidar also provides real-time convective boundary layer height using aerosols as the tracers of atmospheric dynamics. The developed lidar sensor is planned for up-gradation with scanning facility to understand the cloud dynamics in the spatial direction. In this presentation, we present the lidar sensor technology and utilization of its technology for high resolution cloud base measurements during convective conditions over lidar site, Gadanki.

  2. Exploring the Effects of Cloud Vertical Structure on Cloud Microphysical Retrievals based on Polarized Reflectances

    NASA Astrophysics Data System (ADS)

    Miller, D. J.; Zhang, Z.; Platnick, S. E.; Ackerman, A. S.; Cornet, C.; Baum, B. A.

    2013-12-01

    A polarized cloud reflectance simulator was developed by coupling an LES cloud model with a polarized radiative transfer model to assess the capabilities of polarimetric cloud retrievals. With future remote sensing campaigns like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important for the cloud remote sensing community to understand the retrievable information available and the related systematic/methodical limitations. The cloud retrieval simulator we have developed allows us to probe these important questions in a realistically relevant test bed. Our simulator utilizes a polarized adding-doubling radiative transfer model and an LES cloud field from a DHARMA simulation (Ackerman et al. 2004) with cloud properties based on the stratocumulus clouds observed during the DYCOMS-II field campaign. In this study we will focus on how the vertical structure of cloud microphysics can influence polarized cloud effective radius retrievals. Numerous previous studies have explored how retrievals based on total reflectance are affected by cloud vertical structure (Platnick 2000, Chang and Li 2002) but no such studies about the effects of vertical structure on polarized retrievals exist. Unlike the total cloud reflectance, which is predominantly multiply scattered light, the polarized reflectance is primarily the result of singly scattered photons. Thus the polarized reflectance is sensitive to only the uppermost region of the cloud (tau~<1) where photons can scatter once and still escape before being scattered again. This means that retrievals based on polarized reflectance have the potential to reveal behaviors specific to the cloud top. For example cloud top entrainment of dry air, a major influencer on the microphysical development of cloud droplets, can be potentially studied with polarimetric retrievals.

  3. Statistical analysis of an LES shallow cumulus cloud ensemble using a cloud tracking algorithm

    NASA Astrophysics Data System (ADS)

    Dawe, J. T.; Austin, P. H.

    2012-01-01

    A technique for the tracking of individual clouds in a Large Eddy Simulation (LES) is presented. We use this technique on an LES of a shallow cumulus cloud field based upon the Barbados Oceanographic and Meteorological Experiment (BOMEX) to calculate statistics of cloud height, lifetime, and other physical properties for individual clouds in the model. We also examine the question of nature versus nurture in shallow cumulus clouds: do properties at cloud base determine the upper-level properties of the clouds (nature), or are cloud properties determined by the environmental conditions they encounter (nurture). We find that clouds which ascend through an environment that has been pre-moistened by previous cloud activity are no more likely to reach the inversion than clouds that ascend through a drier environment. Cloud base thermodynamic properties are uncorrelated with upper-level cloud properties, while mean fractional entrainment and detrainment rates display moderate correlations with cloud properties up to the inversion. Conversely, cloud base area correlates well with upper-level cloud area and maximum cloud height. We conclude that cloud thermodynamic properties are primarily influenced by entrainment and detrainment processes, cloud area and height are primarily influenced by cloud base area, and thus nature and nurture both play roles in the dynamics of BOMEX shallow cumulus clouds.

  4. Statistical analysis of a LES shallow cumulus cloud ensemble using a cloud tracking algorithm

    NASA Astrophysics Data System (ADS)

    Dawe, J. T.; Austin, P. H.

    2011-08-01

    A technique for the tracking of individual clouds in a Large Eddy Simulation (LES) is presented. We use this technique on a LES of a shallow cumulus cloud field based upon the Barbados Oceanographic and Meteorological Experiment (BOMEX) to calculate statistics of cloud height, lifetime, and other physical properties for individual clouds in the model. We also examine the question of nature versus nurture in shallow cumulus clouds: do properties at cloud base determine the upper-level properties of the clouds (nature), or are cloud properties determined by the environmental conditions they encounter (nurture). We find that clouds which ascend through an environment that has been pre-moistened by previous cloud activity are no more likely to reach the inversion than clouds that ascend through a drier environment. Cloud base thermodynamic properties are uncorrelated with upper-level cloud properties, while mean fractional entrainment and detrainment rate displays moderate correlations with cloud properties up to the inversion. Conversely, cloud base area correlates well with upper-level cloud area and maximum cloud height. We conclude that cloud thermodynamic properties are primarily influenced by entrainment and detrainment processes, cloud area and height are primarily influenced by cloud base area, and thus nature and nurture both play roles in the dynamics of BOMEX shallow cumulus clouds.

  5. Subtropical and Polar Cirrus Clouds Characterized by Ground-Based Lidars and CALIPSO/CALIOP Observations

    NASA Astrophysics Data System (ADS)

    Córdoba-Jabonero, Carmen; Lopes, Fabio J. S.; Landulfo, Eduardo; Ochoa, Héctor; Gil-Ojeda, Manuel

    2016-06-01

    Cirrus clouds are product of weather processes, and then their occurrence and macrophysical/optical properties can vary significantly over different regions of the world. Lidars can provide height-resolved measurements with a relatively good both vertical and temporal resolutions, making them the most suitable instrumentation for high-cloud observations. The aim of this work is to show the potential of lidar observations on Cirrus clouds detection in combination with a recently proposed methodology to retrieve the Cirrus clouds macrophysical and optical features. In this sense, a few case studies of cirrus clouds observed at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements are carried out in two stations: the Metropolitan city of Sao Paulo (MSP, Brazil, 23.3°S 46.4°W), located at subtropical latitudes, and the Belgrano II base (BEL, Argentina, 78ºS 35ºW) in the Antarctic continent. Optical (COD-cloud optical depth and LR-Lidar Ratio) and macrophysical (top/base heights and thickness) properties of both the subtropical and polar cirrus clouds are reported. In general, subtropical Cirrus clouds present lower LR values and are found at higher altitudes than those detected at polar latitudes. In general, Cirrus clouds are detected at similar altitudes by CALIOP. However, a poor agreement is achieved in the LR retrieved between ground-based lidars and space-borne CALIOP measurements, likely due to the use of a fixed (or low-variable) LR value in CALIOP inversion procedures.

  6. Interoperating Cloud-based Virtual Farms

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Colamaria, F.; Colella, D.; Casula, E.; Elia, D.; Franco, A.; Lusso, S.; Luparello, G.; Masera, M.; Miniello, G.; Mura, D.; Piano, S.; Vallero, S.; Venaruzzo, M.; Vino, G.

    2015-12-01

    The present work aims at optimizing the use of computing resources available at the grid Italian Tier-2 sites of the ALICE experiment at CERN LHC by making them accessible to interactive distributed analysis, thanks to modern solutions based on cloud computing. The scalability and elasticity of the computing resources via dynamic (“on-demand”) provisioning is essentially limited by the size of the computing site, reaching the theoretical optimum only in the asymptotic case of infinite resources. The main challenge of the project is to overcome this limitation by federating different sites through a distributed cloud facility. Storage capacities of the participating sites are seen as a single federated storage area, preventing the need of mirroring data across them: high data access efficiency is guaranteed by location-aware analysis software and storage interfaces, in a transparent way from an end-user perspective. Moreover, the interactive analysis on the federated cloud reduces the execution time with respect to grid batch jobs. The tests of the investigated solutions for both cloud computing and distributed storage on wide area network will be presented.

  7. Cloudy Sounding and Cloud-Top Height Retrieval From AIRS Alone Single Field-of-View Radiance Measurements

    NASA Technical Reports Server (NTRS)

    Weisz, Elisabeth; Li, Jun; Li, Jinlong; Zhou, Daniel K.; Huang, Hung-Lung; Goldberg, Mitchell D.; Yang, Ping

    2007-01-01

    High-spectral resolution measurements from the Atmospheric Infrared Sounder (AIRS) onboard the EOS (Earth Observing System) Aqua satellite provide unique information about atmospheric state, surface and cloud properties. This paper presents an AIRS alone single field-of-view (SFOV) retrieval algorithm to simultaneously retrieve temperature, humidity and ozone profiles under all weather conditions, as well as cloud top pressure (CTP) and cloud optical thickness (COT) under cloudy skies. For optically thick cloud conditions the above-cloud soundings are derived, whereas for clear skies and optically thin cloud conditions the profiles are retrieved from 0.005 hPa down to the earth's surface. Initial validation has been conducted by using the operational MODIS (Moderate Resolution Imaging Spectroradiometer) product, ECMWF (European Center of Medium range Weather Forecasts) analysis fields and radiosonde observations (RAOBs). These inter-comparisons clearly demonstrate the potential of this algorithm to process data from 38 high-spectral infrared (IR) sounder instruments.

  8. Comparing the Cloud Vertical Structure Derived from Several Methods Based on Radiosonde Profiles and Ground-based Remote Sensing Measurements

    SciTech Connect

    Costa-Suros, M.; Calbo, J.; Gonzalez, J. A.; Long, Charles N.

    2014-08-27

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds in a changing climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 125 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The overall agreement for the methods ranges between 44-88%; four methods produce total agreements around 85%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, which could be useful in atmospheric modeling. The total agreement, even when using low resolution profiles, can be improved up to 91% if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  9. NASA Cloud-Based Climate Data Services

    NASA Astrophysics Data System (ADS)

    McInerney, M. A.; Schnase, J. L.; Duffy, D. Q.; Tamkin, G. S.; Strong, S.; Ripley, W. D., III; Thompson, J. H.; Gill, R.; Jasen, J. E.; Samowich, B.; Pobre, Z.; Salmon, E. M.; Rumney, G.; Schardt, T. D.

    2012-12-01

    Cloud-based scientific data services are becoming an important part of NASA's mission. Our technological response is built around the concept of specialized virtual climate data servers, repetitive cloud provisioning, image-based deployment and distribution, and virtualization-as-a-service (VaaS). A virtual climate data server (vCDS) is an Open Archive Information System (OAIS) compliant, iRODS-based data server designed to support a particular type of scientific data collection. iRODS is data grid middleware that provides policy-based control over collection-building, managing, querying, accessing, and preserving large scientific data sets. We have deployed vCDS Version 1.0 in the Amazon EC2 cloud using S3 object storage and are using the system to deliver a subset of NASA's Intergovernmental Panel on Climate Change (IPCC) data products to the latest CentOS federated version of Earth System Grid Federation (ESGF), which is also running in the Amazon cloud. vCDS-managed objects are exposed to ESGF through FUSE (Filesystem in User Space), which presents a POSIX-compliant filesystem abstraction to applications such as the ESGF server that require such an interface. A vCDS manages data as a distinguished collection for a person, project, lab, or other logical unit. A vCDS can manage a collection across multiple storage resources using rules and microservices to enforce collection policies. And a vCDS can federate with other vCDSs to manage multiple collections over multiple resources, thereby creating what can be thought of as an ecosystem of managed collections. With the vCDS approach, we are trying to enable the full information lifecycle management of scientific data collections and make tractable the task of providing diverse climate data services. In this presentation, we describe our approach, experiences, lessons learned, and plans for the future.; (A) vCDS/ESG system stack. (B) Conceptual architecture for NASA cloud-based data services.

  10. Investigation of tropical cirrus cloud properties using ground based lidar measurements

    NASA Astrophysics Data System (ADS)

    Dhaman, Reji K.; Satyanarayana, Malladi; Krishnakumar, V.; Mahadevan Pillai, V. P.; Jayeshlal, G. S.; Raghunath, K.; Venkat Ratnam, M.

    2016-05-01

    Cirrus clouds play a significant role in the Earths radiation budget. Therefore, knowledge of geometrical and optical properties of cirrus cloud is essential for the climate modeling. In this paper, the cirrus clouds microphysical and optical properties are made by using a ground based lidar measurements over an inland tropical station Gadanki (13.5°N, 79.2°E), Andhra Pradesh, India. The variation of cirrus microphysical and optical properties with mid cloud temperature is also studied. The cirrus clouds mean height is generally observed in the range of 9-17km with a peak occurrence at 13- 14km. The cirrus mid cloud temperature ranges from -81°C to -46°C. The cirrus geometrical thickness ranges from 0.9- 4.5km. During the cirrus occurrence days sub-visual, thin and dense cirrus were at 37.5%, 50% and 12.5% respectively. The monthly cirrus optical depth ranges from 0.01-0.47, but most (<80%) of the cirrus have values less than 0.1. Optical depth shows a strong dependence with cirrus geometrical thickness and mid-cloud height. The monthly mean cirrus extinction ranges from 2.8E-06 to 8E-05 and depolarization ratio and lidar ratio varies from 0.13 to 0.77 and 2 to 52 sr respectively. A positive correlation exists for both optical depth and extinction with the mid-cloud temperature. The lidar ratio shows a scattered behavior with mid-cloud temperature.

  11. Macrophysical and optical properties of midlatitude cirrus clouds from four ground-based lidars and collocated CALIOP observations

    SciTech Connect

    Dupont, Jean-Charles; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Winker, D.; Comstock, Jennifer M.; Chervet, P.; Roblin, A.

    2010-05-27

    Ground-based lidar and CALIOP datasets gathered over four mid-latitude sites, two US and two French sites, are used to evaluate the consistency of cloud macrophysical and optical property climatologies that can be derived by such datasets. The consistency in average cloud height (both base and top height) between the CALIOP and ground datasets ranges from -0.4km to +0.5km. The cloud geometrical thickness distributions vary significantly between the different datasets, due in part to the original vertical resolutions of the lidar profiles. Average cloud geometrical thicknesses vary from 1.2 to 1.9km, i.e. by more than 50%. Cloud optical thickness distributions in subvisible, semi-transparent and moderate intervals differ by more than 50% between ground and space-based datasets. The cirrus clouds with 2 optical thickness below 0.1 (not included in historical cloud climatologies) represent 30-50% of the non-opaque cirrus class. The differences in average cloud base altitude between ground and CALIOP datasets of 0.0-0.1 km, 0.0-0.2 km and 0.0-0.2 km can be attributed to irregular sampling of seasonal variations in the ground-based data, to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without low-level clouds in ground-based data, respectively. The cloud geometrical thicknesses are not affected by irregular sampling of seasonal variations in the ground-based data, while up to 0.0-0.2 km and 0.1-0.3 km differences can be attributed to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without lowlevel clouds in ground-based data, respectively.

  12. An improved algorithm for cloud base detection by ceilometer over the ice sheets

    NASA Astrophysics Data System (ADS)

    Van Tricht, K.; Gorodetskaya, I. V.; Lhermitte, S.; Turner, D. D.; Schween, J. H.; Van Lipzig, N. P. M.

    2013-11-01

    Optically thin ice clouds play an important role in polar regions due to their effect on cloud radiative impact and precipitation on the surface. Cloud bases can be detected by lidar-based ceilometers that run continuously and therefore have the potential to provide basic cloud statistics including cloud frequency, base height and vertical structure. Despite their importance, thin clouds are however not well detected by the standard cloud base detection algorithm of most ceilometers operational at Arctic and Antarctic stations. This paper presents the Polar Threshold (PT) algorithm that was developed to detect optically thin hydrometeor layers (optical depth τ ≥ 0.01). The PT algorithm detects the first hydrometeor layer in a vertical attenuated backscatter profile exceeding a predefined threshold in combination with noise reduction and averaging procedures. The optimal backscatter threshold of 3 × 10-4 km-1 sr-1 for cloud base detection was objectively derived based on a sensitivity analysis using data from Princess Elisabeth, Antarctica and Summit, Greenland. The algorithm defines cloudy conditions as any atmospheric profile containing a hydrometeor layer at least 50 m thick. A comparison with relative humidity measurements from radiosondes at Summit illustrates the algorithm's ability to significantly differentiate between clear sky and cloudy conditions. Analysis of the cloud statistics derived from the PT algorithm indicates a year-round monthly mean cloud cover fraction of 72% at Summit without a seasonal cycle. The occurrence of optically thick layers, indicating the presence of supercooled liquid, shows a seasonal cycle at Summit with a monthly mean summer peak of 40%. The monthly mean cloud occurrence frequency in summer at Princess Elisabeth is 47%, which reduces to 14% for supercooled liquid cloud layers. Our analyses furthermore illustrate the importance of optically thin hydrometeor layers located near the surface for both sites, with 87% of all

  13. Is School-Based Height and Weight Screening of Elementary Students Private and Reliable?

    ERIC Educational Resources Information Center

    Stoddard, Sarah A.; Kubik, Martha Y.; Skay, Carol

    2008-01-01

    The Institute of Medicine recommends school-based body mass index (BMI) screening as an obesity prevention strategy. While school nurses have provided height/weight screening for years, little has been published describing measurement reliability or process. This study evaluated the reliability of height/weight measures collected by school nurses…

  14. Evaluation of quantitative satellite-based retrievals of volcanic ash clouds

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Pavolonis, M. J.; Bojinski, S.; Siddans, R.; Thomas, G.

    2015-12-01

    Volcanic ash clouds are a serious hazard to aviation, and mitigation requires a robust system of volcano monitoring, eruption detection, characterization of cloud properties, forecast of cloud movement, and communication of warnings. Several research groups have developed quantitative satellite-based volcanic ash products and some of these are in operational use by Volcanic Ash Advisory Centers around the world to aid in characterizing cloud properties and forecasting regions of ash hazard. The algorithms applied to the satellite data utilize a variety of techniques, and thus produce results that differ. The World Meteorological Organization has recently sponsored an intercomparison study of satellite-based retrievals with four goals: 1) to establish a validation protocol for satellite-based volcanic ash products, 2) to quantify and understand differences in products, 3) to develop best practices, and 4) to standardize volcanic cloud geophysical parameters. Six volcanic eruption cases were considered in the intercomparison: Eyjafallajökull, Grimsvötn, Kelut, Kirishimayama, Puyehue-Cordón Caulle, and Sarychev Peak. Twenty-four algorithms were utilized, which retrieved parameters including: ash cloud top height, ash column mass loading, ash effective radius, and ash optical depth at visible and thermal-infrared wavelengths. Results were compared to space-based, airborne, and ground-based lidars; complementary satellite retrievals; and manual "expert evaluation" of ash extent. The intercomparison results will feed into the International Civil Aviation Organization "Roadmap for International Airways Volcano Watch", which integrates volcanic meteorological information into decision support systems for aircraft operations.

  15. Teaching Thousands with Cloud-based GIS

    NASA Astrophysics Data System (ADS)

    Gould, Michael; DiBiase, David; Beale, Linda

    2016-04-01

    Teaching Thousands with Cloud-based GIS Educators often draw a distinction between "teaching about GIS" and "teaching with GIS." Teaching about GIS involves helping students learn what GIS is, what it does, and how it works. On the other hand, teaching with GIS involves using the technology as a means to achieve education objectives in the sciences, social sciences, professional disciplines like engineering and planning, and even the humanities. The same distinction applies to CyberGIS. Understandably, early efforts to develop CyberGIS curricula and educational resources tend to be concerned primarily with CyberGIS itself. However, if CyberGIS becomes as functional, usable and scalable as it aspires to be, teaching with CyberGIS has the potential to enable large and diverse global audiences to perform spatial analysis using hosted data, mapping and analysis services all running in the cloud. Early examples of teaching tens of thousands of students across the globe with cloud-based GIS include the massive open online courses (MOOCs) offered by Penn State University and others, as well as the series of MOOCs more recently developed and offered by Esri. In each case, ArcGIS Online was used to help students achieve educational objectives in subjects like business, geodesign, geospatial intelligence, and spatial analysis, as well as mapping. Feedback from the more than 100,000 total student participants to date, as well as from the educators and staff who supported these offerings, suggest that online education with cloud-based GIS is scalable to very large audiences. Lessons learned from the course design, development, and delivery of these early examples may be useful in informing the continuing development of CyberGIS education. While MOOCs may have passed the peak of their "hype cycle" in higher education, the phenomenon they revealed persists: namely, a global mass market of educated young adults who turn to free online education to expand their horizons. The

  16. Ground-Based Cloud and Atmospheric Boundary Layer Observations for the Project: High Definition Clouds and Precipitation for Advancing Climate Prediction, HD(CP)2

    NASA Astrophysics Data System (ADS)

    Hirsikko, A.; Ebell, K.; Ulrich, U.; Schween, J. H.; Bohn, B.; Görsdorf, U.; Leinweber, R.; Päschke, E.; Baars, H.; Seifert, P.; Klein Baltink, H.

    2014-12-01

    The German research initiative ''High Definition Clouds and Precipitation for advancing Climate Prediction, HD(CP)2'' aims for an improved representation of clouds and precipitation in climate models. Model development and its evaluation require comprehensive observational datasets. A specific work package was established to create uniform and documented observational datasets for the HD(CP)2 data base. Datasets included ground-based remote-sensing (Doppler lidars, ceilometers, microwave radiometers, and cloud radars) and in-situ (meteorological and radiation sensors) measurements. Four supersites (Jülich ObservatorY for Cloud Evolution (JOYCE), Lindenberg Meteorological Observatory - Richard Assmann Observatory (RAO), and Leipzig Aerosol and Cloud Remote Observations System (LACROS) in Germany, and Cabauw experimental site for atmospheric research (Cesar) in the Netherlands) are finalizing the operational procedures to provide quality controlled (and calibrated if possible) remote-sensing and in-situ observations, retrievals on atmospheric boundary layer state (e.g. winds, mixing layer height, humidity and temperature), and cloud macro and micro physical properties with uncertainty estimations or at least quality flags. During the project new processing and retrieval methods were developed if no commonly agreed or satisfying methods were available. Especially, large progress was made concerning uncertainty estimation and automated quality control. Additionally, the data from JOYCE are used in a radiative closure studies under cloudy conditions to evaluate retrievals of cloud properties. The current status of work progress will be presented.

  17. Comparison of the CALIPSO satellite and ground-based observations of cirrus clouds at the ARM TWP sites

    SciTech Connect

    Thorsen, Tyler J.; Fu, Q.; Comstock, Jennifer M.

    2011-11-10

    Statistics of ice cloud macrophysical and optical properties from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) instrument on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite are compared with those from ground-based lidar observations over a 31 month period. Ground-based lidar observations are taken from the micropulse lidars (MPL) at the three Department of Energy Atmospheric Radiation Measurement (ARM) tropical western pacific (TWP) sites: Manus, Nauru and Darwin. CALIPSO observations show a larger cloud fraction at high altitudes while the ground-based MPLs show a larger cloud fraction at low altitudes. The difference in mean ice cloud top and base heights at the Manus and Nauru sites are all within 0.51 km, although differences are statistically significant. Mean ice cloud geometrical thickness agree to within 0.05 km at the Manus and Nauru sites. Larger differences exist at Darwin due to excessive degradation of the MPL output power during our sampling period. Both sets of observations show thicker clouds during the nighttime which may be real but could also be partially an artifact of the decreased signal-to-noise ratio during the daytime. The number of ice cloud layers per profile are also shown to be consistent after accounting for the difference in spatial resolution. For cloud optical depths, four different retrieval methods are compared, two for each set of observations. All products show that the majority of ice cloud optical depths ({approx}60%) fall below an optical depth of 0.2. For most comparisons all four retrievals agree to within the uncertainty intervals. We find that both CALIPSO retrievals agree best to ground-based optical depths when the lidar ratio in the latter is retrieved instead of set to a fixed value. Also thoroughly compared is the cloud properties for the subset of ice clouds which reside in the tropical tropopause layer (TTL).

  18. GNSS-SNR-derived water surface heights based on Newton Interval Analysis

    NASA Astrophysics Data System (ADS)

    Reinking, Jörg

    2016-04-01

    The power of Global navigation satellite system (GNSS) signals is commonly recorded as signal-to-noise ratio (SNR) by GNSS receivers. SNR mainly depends on the direct signal but also on the reflected signal. Hence the analysis of SNR data allows the computation of heights of the reflecting surfaces by means of interference pattern technique (IPT). In classical IPT the distance between the antenna and the reflector is derived from the multipath pattern using a Lomb-Scargle Periodogram (LSP) analysis which is calculated separately for every satellite involved. The final reflector height is later estimated combining all those results A more sophisticated approach uses a consistent computation of the reflector height from all observations of all satellites in a single estimation step. This is achieved by replacing LSP analysis by an appropriate common least squares adjustment for all satellites. The sum of squares of residuals from such an adjustment depends on the reflector height and is used as an objective function. The reflector height is than derived in a global optimization process based on interval analysis. This approach additionally reduces the computational efforts compared to LSP. For a constant or only slowly changing reflector height, the height could be treated at least as a quasi-static non-time-depending function for a particular time window. In this one-dimensional case the global optimization can be carried out based on the Interval Newton Method. The method is demonstrated using a data set obtain from a measurement on the Weser river, Germany.

  19. Efficient modeling of height datum based on GIS

    NASA Astrophysics Data System (ADS)

    Qiao, Q.

    2014-04-01

    Since the proposal of Digital Earth, its research and applications are continuing to be deepened, and now Smart City is more indepth implementation of the Digital Earth. The unification of global or regional vertical datums has always been one of the main geodesy studies to achieve Smart City, as Smart City must first realize the seamless integration of multi-source geo-dataset. This paper introduces spatio-temporal data management and interactive visualization into the entire process of vertical datum modelling. We demonstrate that the efficiency of modelling is greatly improved. In this paper GIS database is used to manage all dataset such as tidal station data, gravity field model data, GPS leveling data, and vertical datum data for evaluation and analysis. We use geographic information visualization technique to graphically display the results, together with the interactive browsing, to convert tedious digital information to easy-to-understand images. Consequently, researchers can quickly and comprehensively grasp the macro and micro information. Finally, an efficient and interactive prototype operating platforms for vertical datum modeling is constructed based on GIS.

  20. Height Compensation Using Ground Inclination Estimation in Inertial Sensor-Based Pedestrian Navigation

    PubMed Central

    Park, Sang Kyeong; Suh, Young Soo

    2011-01-01

    In an inertial sensor-based pedestrian navigation system, the position is estimated by double integrating external acceleration. A new algorithm is proposed to reduce z axis position (height) error. When a foot is on the ground, a foot angle is estimated using accelerometer output. Using a foot angle, the inclination angle of a road is estimated. Using this road inclination angle, height difference of one walking step is estimated and this estimation is used to reduce height error. Through walking experiments on roads with different inclination angles, the usefulness of the proposed algorithm is verified. PMID:22164061

  1. A depolarisation lidar-based method for the determination of liquid-cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S. R.; Siebesma, A. P.

    2015-01-01

    The fact that polarisation lidars measure a depolarisation signal in liquid clouds due to the occurrence of multiple scattering is well known. The degree of measured depolarisation depends on the lidar characteristics (e.g. wavelength and receiver field of view) as well as the cloud macrophysical (e.g. cloud-base altitude) and microphysical (e.g. effective radius, liquid water content) properties. Efforts seeking to use depolarisation information in a quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a retrieval procedure applicable to clouds with (quasi-)linear liquid water content (LWC) profiles and (quasi-)constant cloud-droplet number density in the cloud-base region. Thus limiting the applicability of the procedure allows us to reduce the cloud variables to two parameters (namely the derivative of the liquid water content with height and the extinction at a fixed distance above cloud base). This simplification, in turn, allows us to employ a fast and robust optimal-estimation inversion using pre-computed look-up tables produced using extensive lidar Monte Carlo (MC) multiple-scattering simulations. In this paper, we describe the theory behind the inversion procedure and successfully apply it to simulated observations based on large-eddy simulation (LES) model output. The inversion procedure is then applied to actual depolarisation lidar data corresponding to a range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2-3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a comparison between ground-based aerosol number

  2. A Depolarisation lidar based method for the determination of liquid-cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Donovan, David; Klein Baltink, Henk; Henzing, Bas; de Roode, Stephen; Siebesma, Pier

    2015-04-01

    The fact that polarisation lidars measure a~depolarisation signal in liquid clouds due to the occurrence of multiple-scattering is well-known. The degree of measured depolarisation depends on the lidar characteristics (e.g. wavelength and receiver field-of-view) as well as the cloud macrophysical (e.g. cloud base altitude) and microphysical (e.g. effective radius, liquid water content) properties. Efforts seeking to use depolarisation information in a~quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a~retrieval procedure applicable to clouds with (quasi-)linear liquid water content (LWC) profiles and (quasi-)constant cloud droplet number density in the cloud base region. Thus limiting the applicability of the procedure allows us to reduce the cloud variables to two parameters (namely the derivative of the liquid water content with height and the extinction at a~fixed distance above cloud-base). This simplification, in turn, allows us to employ a~fast and robust optimal-estimation inversion using pre-computed look-up-tables produced using extensive lidar Monte-Carlo multiple-scattering simulations. In this paper, we describe the theory behind the inversion procedure and successfully apply it to simulated observations based on large-eddy simulation model output. The inversion procedure is then applied to actual depolarisation lidar data corresponding to a~range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2--3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a~comparison between ground-based aerosol number concentration

  3. Comparing the cloud vertical structure derived from several methods based on radiosonde profiles and ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2014-08-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, are important characteristics in order to describe the impact of clouds on climate. In this work, several methods for estimating the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering the number and position of cloud layers, with a ground-based system that is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ in the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study, these methods are applied to 193 radiosonde profiles acquired at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site during all seasons of the year 2009 and endorsed by Geostationary Operational Environmental Satellite (GOES) images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e., when the whole CVS is estimated correctly) for the methods ranges between 26 and 64%; the methods show additional approximate agreement (i.e., when at least one cloud layer is assessed correctly) from 15 to 41%. Further tests and improvements are applied to one of these methods. In addition, we attempt to make this method suitable for low-resolution vertical profiles, like those from the outputs of reanalysis methods or from the World Meteorological Organization's (WMO) Global Telecommunication System. The perfect agreement, even when using low-resolution profiles, can be improved by up to 67% (plus 25% of the approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  4. Research on cloud-based remote measurement and analysis system

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; He, Lingsong; Su, Wei; Wang, Can; Zhang, Changfan

    2015-02-01

    The promising potential of cloud computing and its convergence with technologies such as cloud storage, cloud push, mobile computing allows for creation and delivery of newer type of cloud service. Combined with the thought of cloud computing, this paper presents a cloud-based remote measurement and analysis system. This system mainly consists of three parts: signal acquisition client, web server deployed on the cloud service, and remote client. This system is a special website developed using asp.net and Flex RIA technology, which solves the selective contradiction between two monitoring modes, B/S and C/S. This platform supplies customer condition monitoring and data analysis service by Internet, which was deployed on the cloud server. Signal acquisition device is responsible for data (sensor data, audio, video, etc.) collection and pushes the monitoring data to the cloud storage database regularly. Data acquisition equipment in this system is only conditioned with the function of data collection and network function such as smartphone and smart sensor. This system's scale can adjust dynamically according to the amount of applications and users, so it won't cause waste of resources. As a representative case study, we developed a prototype system based on Ali cloud service using the rotor test rig as the research object. Experimental results demonstrate that the proposed system architecture is feasible.

  5. Chemical and physical characterisation of low clouds: results from the FEBUKO ground-based cloud experiment.

    PubMed

    Acker, Karin; Wieprecht, Wolfgang; Möller, Detlev

    2003-12-01

    Clouds play an immense role in transport and transformation of atmospheric trace species. In the joint project FEBUKO (Field investigations of budgets and conversions of particle phase organics in tropospheric cloud processes) the microphysics and chemistry of different types of aerosols, the role of aerosol chemical composition for cloud formation as well as the chemical transformation in cloud processes have been investigated by means of ground-based cloud experiments at Mt. Schmücke in the Thuringian Forest (Germany). The groups involved used a wide range of measurements of trace gases, aerosol particles and cloud droplets at three sites to study their sources and sinks, especially those in cloud. Although kind and behaviour of organic substances were of special interest (e.g., organic acids, peroxides, organic carbon, soot) attention was paid to the role of inorganic soluble material being the main part of the cloud condensation nuclei. In this paper we present selected results from the first experiment in autumn 2001.

  6. 16 year climatology of cirrus clouds over a tropical station in southern India using ground and space-based lidar observations

    NASA Astrophysics Data System (ADS)

    Pandit, A. K.; Gadhavi, H. S.; Venkat Ratnam, M.; Raghunath, K.; Rao, S. V. B.; Jayaraman, A.

    2015-06-01

    16 year (1998-2013) climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness) and optical properties (cloud optical thickness) observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E), India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from seven and half years (June 2006-December 2013) of Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and difference in sampling frequencies. Nearly 50-55% of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect more number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between -50 to -70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. Also, the fraction of sub-visible cirrus cloud is found to be increasing during the last sixteen years (1998 to 2013) which has implications to the temperature and water vapour budget in the tropical tropopause layer.

  7. Retrievals of Cloud Fraction and Cloud Albedo from Surface-based Shortwave Radiation Measurements: A Comparison of 16 Year Measurements

    SciTech Connect

    Xie, Yu; Liu, Yangang; Long, Charles N.; Min, Qilong

    2014-07-27

    Ground-based radiation measurements have been widely conducted to gain information on clouds and the surface radiation budget; here several different techniques for retrieving cloud fraction (Long2006, Min2008 and XL2013) and cloud albedo (Min2008, Liu2011 and XL2013) from ground-based shortwave broadband and spectral radiation measurements are examined, and sixteen years of retrievals collected at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared. The comparison shows overall good agreement between the retrievals of both cloud fraction and cloud albedo, with noted differences however. The Long2006 and Min2008 cloud fractions are greater on average than the XL2013 values. Compared to Min2008 and Liu2011, the XL2013 retrieval of cloud albedo tends to be greater for thin clouds but smaller for thick clouds, with the differences decreasing with increasing cloud fraction. Further analysis reveals that the approaches that retrieve cloud fraction and cloud albedo separately may suffer from mutual contamination of errors in retrieved cloud fraction and cloud albedo. Potential influences of cloud absorption, land-surface albedo, cloud structure, and measurement instruments are explored.

  8. Describing the NPOESS Preparatory Project Visible/Infrared Imaging Radiometer Suite (VIIRS) Cloud Environmental Data Records

    NASA Astrophysics Data System (ADS)

    Hoffman, C.; Guenther, B.; Kilcoyne, H.; Mineart, G.; St. Germain, K.; Reed, B.

    2008-12-01

    The Visible/Infrared Imaging Radiometer Suite (VIIRS) is one of the instruments that make up the suite of sensors on the NPOESS Preparatory Project (NPP) scheduled to launch in 2010. VIIRS will produce seven Environmental Data Records (EDRs) describing cloud properties. The VIIRS Cloud EDRs include the Cloud Optical Thickness (COT), Cloud Effective Particle Size Parameter (CEPS), Cloud Top Pressure (CTP), Cloud Top Height (CTH), Cloud Top Temperature (CTT), Cloud Cover/Layers (CCL), and Cloud Base Height (CBH). This paper will describe the VIIRS algorithms used to generate these EDRs and provide a current estimate of performance based on pre-Launch test data.

  9. Do parental heights influence pregnancy length?: a population-based prospective study, HUNT 2

    PubMed Central

    2013-01-01

    Background The objective of this study was to examine the association of maternal and paternal height with pregnancy length, and with the risk of pre- and post-term birth. In addition we aimed to study whether cardiovascular risk factors could explain possible associations. Methods Parents who participated in the Nord-Trøndelag Health Study (HUNT 2; 1995–1997) were linked to offspring data from the Medical Birth Registry of Norway (1997–2005). The main analyses included 3497 women who had delivered 5010 children, and 2005 men who had fathered 2798 pregnancies. All births took place after parental participation in HUNT 2. Linear regression was used to estimate crude and adjusted differences in pregnancy length according to parental heights. Logistic regression was used to estimate crude and adjusted associations of parental heights with the risk of pre- and post-term births. Results We found a gradual increase in pregnancy length by increasing maternal height, and the association was essentially unchanged after adjustment for maternal cardiovascular risk factors, parental age, offspring sex, parity, and socioeconomic measures. When estimated date of delivery was based on ultrasound, the difference between mothers in the lower height quintile (<163 cm cm) and mothers in the upper height quintile (≥ 173 cm) was 4.3 days, and when estimated date of delivery was based on last menstrual period (LMP), the difference was 2.8 days. Shorter women (< 163 cm) had lower risk of post-term births, and when estimated date of delivery was based on ultrasound they also had higher risk of pre-term births. Paternal height was not associated with pregnancy length, or with the risks of pre- and post-term births. Conclusions Women with shorter stature had shorter pregnancy length and lower risk of post-term births than taller women, and when EDD was based on ultrasound, they also had higher risk of preterm births. The effect of maternal height was generally stronger when

  10. Stereoscopic Retrieval of Smoke Plume Heights and Motion from Space-Based Multi-Angle Imaging, Using the MISR INteractive eXplorer(MINX)

    NASA Technical Reports Server (NTRS)

    Nelson, David L.; Kahn, Ralph A.

    2014-01-01

    Airborne particles desert dust, wildfire smoke, volcanic effluent, urban pollution affect Earth's climate as well as air quality and health. They are found in the atmosphere all over the planet, but vary immensely in amount and properties with season and location. Most aerosol particles are injected into the near-surface boundary layer, but some, especially wildfire smoke, desert dust and volcanic ash, can be injected higher into the atmosphere, where they can stay aloft longer, travel farther, produce larger climate effects, and possibly affect human and ecosystem health far downwind. So monitoring aerosol injection height globally can make important contributions to climate science and air quality studies. The Multi-angle Imaging Spectro-Radiometer (MISR) is a space borne instrument designed to study Earths clouds, aerosols, and surface. Since late February 2000 it has been retrieving aerosol particle amount and properties, as well as cloud height and wind data, globally, about once per week. The MINX visualization and analysis tool complements the operational MISR data products, enabling users to retrieve heights and winds locally for detailed studies of smoke plumes, at higher spatial resolution and with greater precision than the operational product and other space-based, passive remote sensing techniques. MINX software is being used to provide plume height statistics for climatological studies as well as to investigate the dynamics of individual plumes, and to provide parameterizations for climate modeling.

  11. RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations

    DOE PAGES

    Endo, Satoshi; Fridlind, Ann M.; Lin, Wuyin; Vogelmann, Andrew M.; Toto, Tami; Ackerman, Andrew S.; McFarquhar, Greg M.; Jackson, Robert C.; Jonsson, Haflidi H.; Liu, Yangang

    2015-06-19

    A 60-hour case study of continental boundary layer cumulus clouds is examined using two large-eddy simulation (LES) models. The case is based on observations obtained during the RACORO Campaign (Routine Atmospheric Radiation Measurement [ARM] Aerial Facility [AAF] Clouds with Low Optical Water Depths [CLOWD] Optical Radiative Observations) at the ARM Climate Research Facility's Southern Great Plains site. The LES models are driven by continuous large-scale and surface forcings, and are constrained by multi-modal and temporally varying aerosol number size distribution profiles derived from aircraft observations. We compare simulated cloud macrophysical and microphysical properties with ground-based remote sensing and aircraft observations.more » The LES simulations capture the observed transitions of the evolving cumulus-topped boundary layers during the three daytime periods, and generally reproduce variations of droplet number concentration with liquid water content (LWC), corresponding to the gradient between the cloud centers and cloud edges at given heights. The observed LWC values fall within the range of simulated values; the observed droplet number concentrations are commonly higher than simulated, but differences remain on par with potential estimation errors in the aircraft measurements. Sensitivity studies examine the influences of bin microphysics versus bulk microphysics, aerosol advection, supersaturation treatment, and aerosol hygroscopicity. Simulated macrophysical cloud properties are found to be insensitive in this non-precipitating case, but microphysical properties are especially sensitive to bulk microphysics supersaturation treatment and aerosol hygroscopicity.« less

  12. RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations

    SciTech Connect

    Endo, Satoshi; Fridlind, Ann M.; Lin, Wuyin; Vogelmann, Andrew M.; Toto, Tami; Ackerman, Andrew S.; McFarquhar, Greg M.; Jackson, Robert C.; Jonsson, Haflidi H.; Liu, Yangang

    2015-06-19

    A 60-hour case study of continental boundary layer cumulus clouds is examined using two large-eddy simulation (LES) models. The case is based on observations obtained during the RACORO Campaign (Routine Atmospheric Radiation Measurement [ARM] Aerial Facility [AAF] Clouds with Low Optical Water Depths [CLOWD] Optical Radiative Observations) at the ARM Climate Research Facility's Southern Great Plains site. The LES models are driven by continuous large-scale and surface forcings, and are constrained by multi-modal and temporally varying aerosol number size distribution profiles derived from aircraft observations. We compare simulated cloud macrophysical and microphysical properties with ground-based remote sensing and aircraft observations. The LES simulations capture the observed transitions of the evolving cumulus-topped boundary layers during the three daytime periods, and generally reproduce variations of droplet number concentration with liquid water content (LWC), corresponding to the gradient between the cloud centers and cloud edges at given heights. The observed LWC values fall within the range of simulated values; the observed droplet number concentrations are commonly higher than simulated, but differences remain on par with potential estimation errors in the aircraft measurements. Sensitivity studies examine the influences of bin microphysics versus bulk microphysics, aerosol advection, supersaturation treatment, and aerosol hygroscopicity. Simulated macrophysical cloud properties are found to be insensitive in this non-precipitating case, but microphysical properties are especially sensitive to bulk microphysics supersaturation treatment and aerosol hygroscopicity.

  13. Point Cloud Server (pcs) : Point Clouds In-Base Management and Processing

    NASA Astrophysics Data System (ADS)

    Cura, R.; Perret, J.; Paparoditis, N.

    2015-08-01

    In addition to the traditional Geographic Information System (GIS) data such as images and vectors, point cloud data has become more available. It is appreciated for its precision and true three-Dimensional (3D) nature. However, managing the point cloud can be difficult due to scaling problems and specificities of this data type. Several methods exist but are usually fairly specialised and solve only one aspect of the management problem. In this work, we propose a complete and efficient point cloud management system based on a database server that works on groups of points rather than individual points. This system is specifically designed to solve all the needs of point cloud users: fast loading, compressed storage, powerful filtering, easy data access and exporting, and integrated processing. Moreover, the system fully integrates metadata (like sensor position) and can conjointly use point clouds with images, vectors, and other point clouds. The system also offers in-base processing for easy prototyping and parallel processing and can scale well. Lastly, the system is built on open source technologies; therefore it can be easily extended and customised. We test the system will several billion points of point clouds from Lidar (aerial and terrestrial ) and stereo-vision. We demonstrate ~ 400 million pts/h loading speed, user-transparent greater than 2 to 4:1 compression ratio, filtering in the approximately 50 ms range, and output of about a million pts/s, along with classical processing, such as object detection.

  14. Impacts of Tree Height-Dbh Allometry on Lidar-Based Tree Aboveground Biomass Modeling

    NASA Astrophysics Data System (ADS)

    Fang, R.

    2016-06-01

    Lidar has been widely used in tree aboveground biomass (AGB) estimation at plot or stand levels. Lidar-based AGB models are usually constructed with the ground AGB reference as the response variable and lidar canopy indices as predictor variables. Tree diameter at breast height (dbh) is the major variable of most allometric models for estimating reference AGB. However, lidar measurements are mainly related to tree vertical structure. Therefore, tree height-dbh allometric model residuals are expected to have a large impact on lidar-based AGB model performance. This study attempts to investigate sensitivity of lidar-based AGB model to the decreasing strength of height-dbh relationship using a Monte Carlo simulation approach. Striking decrease in R2 and increase in relative RMSE were found in lidar-based AGB model, as the variance of height-dbh model residuals grew. I, therefore, concluded that individual tree height-dbh model residuals fundamentally introduce errors to lidar-AGB models.

  15. CLOUD BASE SIGNATURE IN TRANSMISSION SPECTRA OF EXOPLANET ATMOSPHERES

    SciTech Connect

    Vahidinia, Sanaz; Cuzzi, Jeffrey N.; Marley, Mark; Fortney, Jonathan

    2014-07-01

    We present an analytical model for the transmission spectrum of a transiting exoplanet, showing that a cloud base can produce an observable inflection point in the spectrum. The wavelength and magnitude of the inflection can be used to break the degeneracy between the atmospheric pressure and the abundance of the main cloud material, however, the abundance still depends on cloud particle size. An observed inflection also provides a specific point on the atmospheric P-T profile, giving us a ''thermometer'' to directly validate or rule out postulated cloud species. We apply the model to the transit spectrum of HD 189733b.

  16. The Role of Cloud Contamination, Aerosol Layer Height and Aerosol Model in the Assessment of the OMI Near-UV Retrievals Over the Ocean

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Torres, Omar

    2016-01-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD less than 0.3, 30% for AOD greater than 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm approximately less than 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (less than 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by

  17. The role of cloud contamination, aerosol layer height and aerosol model in the assessment of the OMI near-UV retrievals over the ocean

    NASA Astrophysics Data System (ADS)

    Gassó, Santiago; Torres, Omar

    2016-07-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD < 0.3, 30 % for AOD > 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm ˜ < 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (< 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by varying the different assumed parameters in the

  18. A depolarisation lidar based method for the determination of liquid-cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S. R.; Siebesma, A. P.

    2014-09-01

    The fact that polarisation lidars measure a depolarisation signal in liquid clouds due to the occurrence of multiple-scattering is well-known. The degree of measured depolarisation depends on the lidar characteristics (e.g. wavelength and receiver field-of-view) as well as the cloud macrophysical (e.g. liquid water content) and microphysical (e.g. effective radius) properties. Efforts seeking to use depolarisation information in a quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a retrieval procedure applicable to clouds with (quasi-)linear liquid water content (LWC) profiles and (quasi-)constant cloud droplet number density in the cloud base region. Thus limiting the applicability of the procedure allows us to reduce the cloud variables to two parameters (namely the derivative of the liquid water content with height and the extinction at a fixed distance above cloud-base). This simplification, in turn, allows us to employ a fast and robust optimal-estimation inversion using pre-computed look-up-tables produced using extensive lidar Monte-Carlo multiple-scattering simulations. In this paper, we describe the theory behind the inversion procedure and successfully apply it to simulated observations based on large-eddy simulation model output. The inversion procedure is then applied to actual depolarisation lidar data corresponding to a range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2-3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud

  19. Development of Satellite-based Climatology of Low-level Cloud and Fog in Mountain Terrain

    NASA Astrophysics Data System (ADS)

    Duan, Y.; Barros, A. P.

    2014-12-01

    The presence of orographic clouds and fog has major environmental and economic implications that the potential shift in the space-time distribution can effectively redistribute freshwater resources and threaten the sustainability of the ecology, geomorphology and hydrology of mountainous regions and adjacent basins. This includes the Southern Appalachian Mountains, which rely closely on the moisture input from fog, cap clouds and light rainfall, as well as cloud forests in the Andes with frequent occurrence of dense fog. However, the applicability of fog forecasting models becomes limited in regions of complex terrain. The motivation of this project is to develop a satellite-based hydroclimatology and physical parameterization of orographic low-level clouds and fog regimes in the Southern Appalachians using a general methodology that can be applied to mountainous regions elsewhere. An algorithm for the detection and extraction of stratus clouds and fog was developed using changes in vertical gradients of CPR reflectivity and liquid water products from almost 5-years of CLOUDSAT and SRTM terrain data. This population of low-level clouds and fog will be analyzed with GOES infrared and visible imagery, MODIS and CALIPSO products, and with airport cloud height and visibility records to expand the spatial coverage beyond narrow satellite sensor swaths. The climatology will be further developed through integration with results from WRF simulations for selected periods since the bulk of the PMM network has been in place (2008-present) to aid in defining meteorological and time-of-day constraints in the interpretation of simulated satellite radar reflectivity profiles. The overarching goal is to infer a representation of the diurnal cycle, seasonal and inter-annual variations of the vertical distribution of LWC and hydrometeors in orographic clouds and fog that vary spatially with landform toward developing a more general parameterization of seeder-feeder interactions in

  20. Cloud radiative forcing on surface shortwave fluxes: A case study based on Cloud Lidar and Radar Exploratory Test

    NASA Astrophysics Data System (ADS)

    Shi, Lei

    1994-12-01

    Shortwave downward fluxes for selected stratus, cirrus, and mixed phase cloud cases are analyzed based on cloud and surface radiation measurements from the Cloud Lidar and Radar Exploratory Test conducted in the Denver-Boulder area of Colorado during September-October, 1989. A medium resolution, discrete-ordinate shortwave radiative transfer model is used to provide clear-sky conditions and to examine the cloud shortwave radiative forcing. The model simulation indicates that for stratus clouds the effective radius increases with increasing liquid water path. For cirrus cloud simulation, the model results are within 10% agreement with the surface flux measurements. However, using the one-dimensional plane-parallel model, the model results are in poor agreement for the inhomogeneous mixed phase cloud case. Over the elevated observation site, the reduction in shortwave downward flux by clouds can be as large as 40% for a small cloud water path value of 20 g m-2. The variation in observed cloud shortwave forcing is highly correlated with the integrated cloud water path. The normalized (by the clear-sky value) cloud shortwave forcing increases rapidly when the cloud water path is small. The rate of increase decreases, and the normalized cloud forcing approaches saturation when cloud water path becomes large. The magnitude of the saturation value depends on cloud optical properties. The variation in observed cloud forcing is consistent with the theoretical curve for cloudy atmospheric albedo variation. At a constant value of cloud water path, the normalized cloud forcing increases with solar zenith angle. The solar zenith angle effect is less significant for larger value of cloud water path.

  1. Injury Severity Score based estimation of height of fall in bus rolling down the cliff.

    PubMed

    Radojevic, Nemanja; Curovic, Ivana; Atanasijevic, Tatjana; Lazovic, Ranko

    2015-08-01

    A case of bus rollover into the canyon, 40 m down the road, with 47 occupants out of which 18 were fatally injured, was used to compute the Injury Severity Score (ISS) for each passengers as well as the equivalent free fall for this particular accident, to be compared to the height of fall as estimated by the Lau's model based on ISS, resulting the conclusion whether Lau's model and the computation of ISS can be considered reliable to estimate the height of fall in any other case. Dealing with this, we would be also able to assess a protective potential of the bus on occupants while it falls from the height. By using classic energy-related mechanical formulas the presented rollover down the cliff has been transferred into a corresponding free fall from the height (10 m). ISS for each passenger has been used to establish height bands of the corresponding free fall. The analysis of the presented case showed that only 30% of bus passengers sustained injuries similar to the injuries expected in the fall from height in the range of 10-20 m. The chances to be non-severely injured as a consequence of the fall in a bus is 43%, but still remains a very high chance (27%) to sustain injures more severe than expected for the equivalent free fall from height out of a vehicle. Moreover, eight passengers sustained pulmonary detraction which is characteristic of the fall above 40 m. The conclusion is that this mathematical computing for transferring one way of motion into another one may be useful for any other event similar to the fall from height and further usage of Lau's modules. Also, estimated severity of the injuries expressed through ISS can be merely an approximating indicator of the height of the fall of the bus, so ISS is not able to estimate the exact height. Finally, in majority of cases the protective potential of the bus may preserve from severe body damage, but the mortality rate still stands on a very high level.

  2. Registration algorithm of point clouds based on multiscale normal features

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Peng, Zhongtao; Su, Hang; Xia, GuiHua

    2015-01-01

    The point cloud registration technology for obtaining a three-dimensional digital model is widely applied in many areas. To improve the accuracy and speed of point cloud registration, a registration method based on multiscale normal vectors is proposed. The proposed registration method mainly includes three parts: the selection of key points, the calculation of feature descriptors, and the determining and optimization of correspondences. First, key points are selected from the point cloud based on the changes of magnitude of multiscale curvatures obtained by using principal components analysis. Then the feature descriptor of each key point is proposed, which consists of 21 elements based on multiscale normal vectors and curvatures. The correspondences in a pair of two point clouds are determined according to the descriptor's similarity of key points in the source point cloud and target point cloud. Correspondences are optimized by using a random sampling consistency algorithm and clustering technology. Finally, singular value decomposition is applied to optimized correspondences so that the rigid transformation matrix between two point clouds is obtained. Experimental results show that the proposed point cloud registration algorithm has a faster calculation speed, higher registration accuracy, and better antinoise performance.

  3. Uav-Based Photogrammetric Point Clouds - Tree STEM Mapping in Open Stands in Comparison to Terrestrial Laser Scanner Point Clouds

    NASA Astrophysics Data System (ADS)

    Fritz, A.; Kattenborn, T.; Koch, B.

    2013-08-01

    in the TLS-point cloud. Only few stems were considered to be fully reconstructed. From the comparison of reconstruction achievement with respect to height above ground, we can state that reconstruction accuracy decreased in the crown layer of the stand. In addition we were cutting 50 [cm] slices in z-direction and applied a robust cylinder fit to the stem slices. Radii of the TLS-cloud and the SFM-cloud surprisingly correlated well with a Pearson's correlation coefficient of r = 0.696. This first study showed promising results for UAV-based forest structure modelling. Yet, there is a demand for additional research with regard to vegetation stages, flight pattern, processing setup and the utilisation of spectral information.

  4. pCloud: A Cloud-based Power Market Simulation Environment

    SciTech Connect

    Rudkevich, Aleksandr; Goldis, Evgeniy

    2012-12-02

    This research conducted by the Newton Energy Group, LLC (NEG) is dedicated to the development of pCloud: a Cloud-based Power Market Simulation Environment. pCloud is offering power industry stakeholders the capability to model electricity markets and is organized around the Software as a Service (SaaS) concept -- a software application delivery model in which software is centrally hosted and provided to many users via the internet. During the Phase I of this project NEG developed a prototype design for pCloud as a SaaS-based commercial service offering, system architecture supporting that design, ensured feasibility of key architecture's elements, formed technological partnerships and negotiated commercial agreements with partners, conducted market research and other related activities and secured funding for continue development of pCloud between the end of Phase I and beginning of Phase II, if awarded. Based on the results of Phase I activities, NEG has established that the development of a cloud-based power market simulation environment within the Windows Azure platform is technologically feasible, can be accomplished within the budget and timeframe available through the Phase II SBIR award with additional external funding. NEG believes that pCloud has the potential to become a game-changing technology for the modeling and analysis of electricity markets. This potential is due to the following critical advantages of pCloud over its competition: - Standardized access to advanced and proven power market simulators offered by third parties. - Automated parallelization of simulations and dynamic provisioning of computing resources on the cloud. This combination of automation and scalability dramatically reduces turn-around time while offering the capability to increase the number of analyzed scenarios by a factor of 10, 100 or even 1000. - Access to ready-to-use data and to cloud-based resources leading to a reduction in software, hardware, and IT costs

  5. Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia

    SciTech Connect

    Protat, Alain; Young, Stuart; McFarlane, Sally A.; L'Ecuyer, Tristan; Mace, Gerald G.; Comstock, Jennifer M.; Long, Charles N.; Berry, Elizabeth; Delanoe, Julien

    2014-02-01

    The objective of this paper is to investigate whether estimates of the cloud frequency of occurrence and associated cloud radiative forcing as derived from ground-based and satellite active remote sensing and radiative transfer calculations can be reconciled over a well instrumented active remote sensing site located in Darwin, Australia, despite the very different viewing geometry and instrument characteristics. It is found that the ground-based radar-lidar combination at Darwin does not detect most of the cirrus clouds above 10 km (due to limited lidar detection capability and signal obscuration by low-level clouds) and that the CloudSat radar - Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) combination underreports the hydrometeor frequency of occurrence below 2 km height, due to instrument limitations at these heights. The radiative impact associated with these differences in cloud frequency of occurrence is large on the surface downwelling shortwave fluxes (ground and satellite) and the top-of atmosphere upwelling shortwave and longwave fluxes (ground). Good agreement is found for other radiative fluxes. Large differences in radiative heating rate as derived from ground and satellite radar-lidar instruments and RT calculations are also found above 10 km (up to 0.35 Kday-1 for the shortwave and 0.8 Kday-1 for the longwave). Given that the ground-based and satellite estimates of cloud frequency of occurrence and radiative impact cannot be fully reconciled over Darwin, caution should be exercised when evaluating the representation of clouds and cloud-radiation interactions in large-scale models and limitations of each set of instrumentation should be considered when interpreting model-observations differences.

  6. Stellar Encounters with the Oort Cloud Based on Hipparcos Data

    NASA Technical Reports Server (NTRS)

    Garcia-Sanchez, J.; Preston, R. A.; Jones, D. L.; Weissman, P. R.; Lestrade, J. F.; Latham, D. W.; Stefanik, R. P.

    1998-01-01

    We have combined Hipparcos proper motion and parallax data for nearby stars with ground-based radial velocity measurements to find stars which may have passed (or will pass) close enough to the Sun to perturb the Oort cloud.

  7. Object-Based Coregistration of Terrestrial Photogrammetric and ALS Point Clouds in Forested Areas

    NASA Astrophysics Data System (ADS)

    Polewski, P.; Erickson, A.; Yao, W.; Coops, N.; Krzystek, P.; Stilla, U.

    2016-06-01

    Airborne Laser Scanning (ALS) and terrestrial photogrammetry are methods applicable for mapping forested environments. While ground-based techniques provide valuable information about the forest understory, the measured point clouds are normally expressed in a local coordinate system, whose transformation into a georeferenced system requires additional effort. In contrast, ALS point clouds are usually georeferenced, yet the point density near the ground may be poor under dense overstory conditions. In this work, we propose to combine the strengths of the two data sources by co-registering the respective point clouds, thus enriching the georeferenced ALS point cloud with detailed understory information in a fully automatic manner. Due to markedly different sensor characteristics, coregistration methods which expect a high geometric similarity between keypoints are not suitable in this setting. Instead, our method focuses on the object (tree stem) level. We first calculate approximate stem positions in the terrestrial and ALS point clouds and construct, for each stem, a descriptor which quantifies the 2D and vertical distances to other stem centers (at ground height). Then, the similarities between all descriptor pairs from the two point clouds are calculated, and standard graph maximum matching techniques are employed to compute corresponding stem pairs (tiepoints). Finally, the tiepoint subset yielding the optimal rigid transformation between the terrestrial and ALS coordinate systems is determined. We test our method on simulated tree positions and a plot situated in the northern interior of the Coast Range in western Oregon, USA, using ALS data (76 x 121 m2) and a photogrammetric point cloud (33 x 35 m2) derived from terrestrial photographs taken with a handheld camera. Results on both simulated and real data show that the proposed stem descriptors are discriminative enough to derive good correspondences. Specifically

  8. Verification of sectoral cloud motion based direct normal irradiance nowcasting from satellite imagery

    NASA Astrophysics Data System (ADS)

    Schroedter-Homscheidt, Marion; Gesell, Gerhard

    2016-05-01

    The successful integration of solar electricity from photovoltaics or concentrating solar power plants into the existing electricity supply requires an electricity production forecast for 48 hours, while any improved surface irradiance forecast over the next upcoming hours is relevant for an optimized operation of the power plant. While numerical weather prediction has been widely assessed and is in commercial use, the short-term nowcasting is still a major field of development. European Commission's FP7 DNICast project is especially focusing on this task and this paper reports about parts of DNICast results. A nowcasting scheme based on Meteosat Second Generation cloud imagery and cloud movement tracking has been developed for Southern Spain as part of a solar production forecasting tool (CSP-FoSyS). It avoids the well-known, but not really satisfying standard cloud motion vector approach by using a sectoral approach and asking the question at which time any cloud structure will affect the power plant. It distinguishes between thin cirrus clouds and other clouds, which typically occur in different heights in the atmosphere and move in different directions. Also, their optical properties are very different - especially for the calculation of direct normal irradiances as required by concentrating solar power plants. Results for Southern Spain show a positive impact of up to 8 hours depending of the time of the day and a RMSD reduction of up to 10% in hourly DNI irradiation compared to day ahead forecasts. This paper presents the verification of this scheme at other locations in Europe and Northern Africa (BSRN and EnerMENA stations) with different cloud conditions. Especially for Jordan and Tunisia as the most relevant countries for CSP in this station list, we also find a positive impact of up to 8 hours.

  9. The concept of direct orthometric height determination based on frequency shift equation

    NASA Astrophysics Data System (ADS)

    Shen, WenBin; Ning, Jinsheng; Li, Jiancheng; Liu, Jingnan; Chao, Dingbo

    2008-12-01

    The orthometric height system plays a key role in geodesy, and it has broad applications in various fields and activities. On an arbitrary equigeopotential surface, there does not exist the frequency shift of an electromagnetic wave signal. However, between arbitrary two different equigeopotential surfaces, there exists the frequency shift of the signal. Just due to this principle of nature, one can determine the geopotential difference as well as the orthometric height difference between two separated points P and Q using electromagnetic wave signals, especially the GPS signals. GPS signals with a definite frequency f are emitted and two receivers at P and Q on ground receive the signals coming from the emitter simultaneously. The frequencies of the signals are recorded by receivers at P and Q, and consequently the frequency difference (shift) between the received frequencies of the signals at P and Q is determined. Then, the geopotential difference between these two points is determined based on the geopotential frequency shift equation, and the corresponding orthometric height difference is further determined based on the Bruns' formula. Further, using this approach a unified world height datum could be realized, because P and Q could be chosen quite arbitrarily, e.g., they are located on two separated continents or islands.

  10. Ground Based Lidar Characterization of Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Eloranta, Edwin W.

    1996-01-01

    This paper presents cirrus cloud observations made with the High Spectral Resolution Lidar (HSRL) and the Volume Imaging Lidar (VIL). The HSRL was redesigned to use an iodine absorption filter in place of the Fabry-Perot etalon that was used for spectral separation of the aerosol and molecular lidar returns. These modifications, which improve both sensitivity and calibration stability, are described.

  11. Cloud Computing Based E-Learning System

    ERIC Educational Resources Information Center

    Al-Zoube, Mohammed; El-Seoud, Samir Abou; Wyne, Mudasser F.

    2010-01-01

    Cloud computing technologies although in their early stages, have managed to change the way applications are going to be developed and accessed. These technologies are aimed at running applications as services over the internet on a flexible infrastructure. Microsoft office applications, such as word processing, excel spreadsheet, access database…

  12. Hierarchical control of ride height system for electronically controlled air suspension based on variable structure and fuzzy control theory

    NASA Astrophysics Data System (ADS)

    Xu, Xing; Zhou, Kongkang; Zou, Nannan; Jiang, Hong; Cui, Xiaoli

    2015-09-01

    The current research of air suspension mainly focuses on the characteristics and design of the air spring. In fact, electronically controlled air suspension (ECAS) has excellent performance in flexible height adjustment during different driving conditions. However, the nonlinearity of the ride height adjusting system and the uneven distribution of payload affect the control accuracy of ride height and the body attitude. Firstly, the three-point measurement system of three height sensors is used to establish the mathematical model of the ride height adjusting system. The decentralized control of ride height and the centralized control of body attitude are presented to design the ride height control system for ECAS. The exact feedback linearization method is adopted for the nonlinear mathematical model of the ride height system. Secondly, according to the hierarchical control theory, the variable structure control (VSC) technique is used to design a controller that is able to adjust the ride height for the quarter-vehicle anywhere, and each quarter-vehicle height control system is independent. Meanwhile, the three-point height signals obtained by three height sensors are tracked to calculate the body pitch and roll attitude over time, and then by calculating the deviation of pitch and roll and its rates, the height control correction is reassigned based on the fuzzy algorithm. Finally, to verify the effectiveness and performance of the proposed combined control strategy, a validating test of ride height control system with and without road disturbance is carried out. Testing results show that the height adjusting time of both lifting and lowering is over 5 s, and the pitch angle and the roll angle of body attitude are less than 0.15°. This research proposes a hierarchical control method that can guarantee the attitude stability, as well as satisfy the ride height tracking system.

  13. Cloud Radiative Effect by Cloud Types Based on Radiative Transfer Model Calculations and Collocated A-Train Data

    NASA Astrophysics Data System (ADS)

    Yue, Q.; Fetzer, E. J.; Schreier, M. M.; Kahn, B. H.; Huang, X.

    2014-12-01

    Cloud radiative effect is sensitive to both cloud types and the atmospheric conditions that are correspondent with the clouds. It is important to separate the radiative effects due to the microphysical and radiative properties of clouds and the impact of clouds on clear atmosphere radiation. To better quantify these components of cloud radiative effects, we construct a data record of water vapor, temperature, TOA shortwave and long-wave radiations, and cloud properties from collocated A-Train satellite observations and NASA MERRA reanalysis, stratified according to cloud types determined by MODIS observations. The sensitivity of cloud radiative effects on the properties of cloud is investigated in this study using the observation data. The cloud masking effect is quantified for different cloud types using the Fu and Liou radiative transfer model and the observed cloudy and clear atmospheric conditions. The sampling biases of the satellite observed temperature and water vapor vertical distributions are quantified based on comparisons between satellite observations and reanalysis, and then incorporated into the radiative transfer calculations to study the impact of these observational biases on cloud radiative effect estimation from the temperature and water vapor profiles obtained from satellite.

  14. Spatial clustering method based on three-dimensional cloud model

    NASA Astrophysics Data System (ADS)

    Wang, Haijun; Wang, Li; Deng, Yu; Liu, Jia

    2008-12-01

    Spatial clustering is one of those major methods applying to spatial data mining and knowledge discovery. The purpose of this paper is to set forth Spatial Clustering Method Based on Multidimensional Cloud Model, which can be widely applied to the research on classification and hierarchy in realm of spatial data mining and knowledge discovery. This paper summarizes all kinds of cloud model and analyzes the optimalizing form of spatial data-three-dimensional cloud model. The limitation which sets the weighing value subjectively in traditional way and propagation of error can be avoided. The implementation procedure of this method is advanced, and the feasibility of this method is proven through experiments effectively.

  15. Height Change Detection in Antarctica Using ICESat Data Based on Kriging/Kalman Filtering Technique

    NASA Astrophysics Data System (ADS)

    Huang, H.

    2009-04-01

    Studies of the response of ice sheets to climate change require data sets with high accuracy and uniform ice sheet coverage. Measurements from the Geoscience Laser Altimeter System(GLAS) aboard NASA's ICESat satellite are used to estimate changes in the ice sheet surface heights and the secular change in Antarctic ice mass. Usually, the most common technique used in analyzing satellite altimetry data to study height change in the ice sheets is the dh/dt technique based on the cross-over geometry. However, this approach only uses less ten percent of the available data. So in this paper, Kriging is introduced as an alternative method, which will enable us to use all of the data and the data statistics to estimate height changes and other surface characteristics. Results of height change rate dh/dt in Antarctica for the years 2003-2005 produced using Kriging and cross-over analysis are compared. In the Amery Ice Shelf and in the West Antarctic coastal area and near latitude-81∘N , the difference in dh/dt between the two methods is statistically significant. Specifically, Kriging gives higher positive dh/dt at the Amery Ice Shelf, and does not show the pervasive negative dh/dt in the Pine Island/Thwaites Glaciers area. In addition, Kriging results also show a systematic positive difference of approximately 0.03

  16. A Hybrid GWR-Based Height Estimation Method for Building Detection in Urban Environments

    NASA Astrophysics Data System (ADS)

    Wei, X.; Yao, X.

    2014-11-01

    LiDAR has become important data sources in urban modelling. Traditional methods of LiDAR data processing for building detection require high spatial resolution data and sophisticated methods. The aerial photos, on the other hand, provide continuous spectral information of buildings. But the segmentation of the aerial photos cannot distinguish between the road surfaces and the building roof. This paper develops a geographically weighted regression (GWR)-based method to identify buildings. The method integrates characteristics derived from the sparse LiDAR data and from aerial photos. In the GWR model, LiDAR data provide the height information of spatial objects which is the dependent variable, while the brightness values from multiple bands of the aerial photo serve as the independent variables. The proposed method can thus estimate the height at each pixel from values of its surrounding pixels with consideration of the distances between the pixels and similarities between their brightness values. Clusters of contiguous pixels with higher estimated height values distinguish themselves from surrounding roads or other surfaces. A case study is conducted to evaluate the performance of the proposed method. It is found that the accuracy of the proposed hybrid method is better than those by image classification of aerial photos along or by height extraction of LiDAR data alone. We argue that this simple and effective method can be very useful for automatic detection of buildings in urban areas.

  17. Aerosol/cloud Base Droplet Size Distribution Characteristics and the Onset of Coalescence in Shallow and Deep Convective Clouds

    NASA Astrophysics Data System (ADS)

    Bruintjes, R. T.; Lawson, P.; Lance, S.; Axisa, D.; Woods, S.

    2014-12-01

    It is clear that aerosols contribute to the observed differences in cloud droplet size distributions between maritime and continental and between non-polluted and polluted convection. In addition, other factors such as cloud base temperature, boundary layer depth, thermodynamic profile (updraft speeds) that vary between land and ocean regions, could also be contributing to the observed differences or acting in concert with aerosol effects. In addition, the initial cloud droplet spectra at cloud base to a large extent determines the microphysical processes of precipitation formation (water and ice) at higher levels in the clouds and thus the vertical transport of aerosols and gases in deep convective clouds. During the 2013 NASA SEAC4RS field campaign we have collected a large amount of microphysical data in both shallow and deep convective clouds. This data will be compared to data from other field campaigns to detect specific characteristics of the cloud base droplet size distribution and relate it to onset and evolution of the coalescence process in clouds. The presentation will provide a survey of the cloud droplet size distributions at cloud base in both shallow and deep convective clouds and will relate them to environmental parameters to better understand aerosol-cloud interactions and the other parameters that play a role in the onset of coalescence in convective clouds. We will relate the airborne aerosol variations (size and concentration in different environments) to the cloud droplet size distribution. Model simulations using a detailed coalescence model will be used to obtain a better understanding of the onset of the coalescence process.

  18. Robust Analysis of Network-Based Real-Time Kinematic for GNSS-Derived Heights.

    PubMed

    Bae, Tae-Suk; Grejner-Brzezinska, Dorota; Mader, Gerald; Dennis, Michael

    2015-10-26

    New guidelines and procedures for real-time (RT) network-based solutions are required in order to support Global Navigation Satellite System (GNSS) derived heights. Two kinds of experiments were carried out to analyze the performance of the network-based real-time kinematic (RTK) solutions. New test marks were installed in different surrounding environments, and the existing GPS benchmarks were used for analyzing the effect of different factors, such as baseline lengths, antenna types, on the final accuracy and reliability of the height estimation. The RT solutions are categorized into three groups: single-base RTK, multiple-epoch network RTK (mRTN), and single-epoch network RTK (sRTN). The RTK solution can be biased up to 9 mm depending on the surrounding environment, but there was no notable bias for a longer reference base station (about 30 km) In addition, the occupation time for the network RTK was investigated in various cases. There is no explicit bias in the solution for different durations, but smoother results were obtained for longer durations. Further investigation is needed into the effect of changing the occupation time between solutions and into the possibility of using single-epoch solutions in precise determination of heights by GNSS.

  19. Gas cloud infrared image enhancement based on anisotropic diffusion

    NASA Astrophysics Data System (ADS)

    Li, Jiakun; Wang, Lingxue; Zhang, Changxing; Long, Yunting; Zhang, Bei

    2011-05-01

    Leakage of dangerous gases will not only pollute the environment, but also seriously threat public safety. Thermal infrared imaging has been proved to be an efficient method to qualitatively detect the gas leakage. But some problems are remained, especially when monitoring the leakage in a passive way. For example, the signal is weak and the edge of gas cloud in the infrared image is not obvious enough. However, we notice some important characteristics of the gas plume and therefore propose a gas cloud infrared image enhancement method based on anisotropic diffusion. As the gas plume presents a large gas cloud in the image and the gray value is even inside the cloud, strong forward diffusion will be used to reduce the noise and to expand the range of the gas cloud. Frames subtraction and K-means cluttering pop out the gas cloud area. Forward-and-Backward diffusion is to protect background details. Additionally, the best iteration times and the time step parameters are researched. Results show that the gas cloud can be marked correctly and enhanced by black or false color, and so potentially increase the possibility of gas leakage detection.

  20. Volcanic plume height measured by seismic waves based on a mechanical model

    USGS Publications Warehouse

    Prejean, Stephanie G.; Brodsky, Emily E.

    2011-01-01

    In August 2008 an unmonitored, largely unstudied Aleutian volcano, Kasatochi, erupted catastrophically. Here we use seismic data to infer the height of large eruptive columns such as those of Kasatochi based on a combination of existing fluid and solid mechanical models. In so doing, we propose a connection between a common, observable, short-period seismic wave amplitude to the physics of an eruptive column. To construct a combined model, we estimate the mass ejection rate of material from the vent on the basis of the plume height, assuming that the height is controlled by thermal buoyancy for a continuous plume. Using the estimated mass ejection rate, we then derive the equivalent vertical force on the Earth through a momentum balance. Finally, we calculate the far-field surface waves resulting from the vertical force. The model performs well for recent eruptions of Kasatochi and Augustine volcanoes if v, the velocity of material exiting the vent, is 120-230 m s-1. The consistency between the seismically inferred and measured plume heights indicates that in these cases the far-field ~1 s seismic energy radiated by fluctuating flow in the volcanic jet during the eruption is a useful indicator of overall mass ejection rates. Thus, use of the model holds promise for characterizing eruptions and evaluating ash hazards to aircraft in real time on the basis of far-field short-period seismic data. This study emphasizes the need for better measurements of eruptive plume heights and a more detailed understanding of the full spectrum of seismic energy radiated coeruptively.

  1. Volcanic plume height measured by seismic waves based on a mechanical model

    NASA Astrophysics Data System (ADS)

    Prejean, Stephanie G.; Brodsky, Emily E.

    2011-01-01

    In August 2008 an unmonitored, largely unstudied Aleutian volcano, Kasatochi, erupted catastrophically. Here we use seismic data to infer the height of large eruptive columns such as those of Kasatochi based on a combination of existing fluid and solid mechanical models. In so doing, we propose a connection between a common, observable, short-period seismic wave amplitude to the physics of an eruptive column. To construct a combined model, we estimate the mass ejection rate of material from the vent on the basis of the plume height, assuming that the height is controlled by thermal buoyancy for a continuous plume. Using the estimated mass ejection rate, we then derive the equivalent vertical force on the Earth through a momentum balance. Finally, we calculate the far-field surface waves resulting from the vertical force. The model performs well for recent eruptions of Kasatochi and Augustine volcanoes if v, the velocity of material exiting the vent, is 120-230 m s-1. The consistency between the seismically inferred and measured plume heights indicates that in these cases the far-field ˜1 s seismic energy radiated by fluctuating flow in the volcanic jet during the eruption is a useful indicator of overall mass ejection rates. Thus, use of the model holds promise for characterizing eruptions and evaluating ash hazards to aircraft in real time on the basis of far-field short-period seismic data. This study emphasizes the need for better measurements of eruptive plume heights and a more detailed understanding of the full spectrum of seismic energy radiated coeruptively.

  2. Barrier height enhancement of Ni/GaN Schottky diode using Ru based passivation scheme

    SciTech Connect

    Kumar, Ashish Kumar, Mukesh; Singh, R.; Kaur, Riajeet; Joshi, Amish G.; Vinayak, Seema

    2014-03-31

    Wet chemical passivation of n-GaN surface using Ru based solution has been reported. X-ray photoelectron spectroscopy characterization of the GaN surface revealed removal of surface oxides by the introduction of Ru complex species. Ni/n-GaN Schottky barrier diodes were fabricated on passivated GaN and a remarkable improvement in Schottky barrier height from 0.76 eV to 0.92 eV was observed.

  3. Retrieving the Convective Thermals and Updraft Speeds at Cloud Base from VIIRS

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Rosenfeld, D.; Li, Z.

    2015-12-01

    Updraft speeds of thermals have always been difficult to measure, despite significant roles they play in transporting pollutants and in cloud formation and precipitation. To our knowledge, no attempt to date has been made to estimate updraft speed from satellite information in the boundary layer and at the cloud base. In this study, we introduce two methods of retrieving the maximum updraft (Wmax) and updraft at cloud base (Wb) in the planetary boundary layer topped by convective clouds. The first method uses ground-air temperature difference to characterize the surface sensible heat flux, which is found to be correlated with updraft speeds measured by the Doppler lidar over the Southern Great Plains (SGP). Based on the relationship, we use the satellite-retrieved surface skin temperature and reanalysis surface air temperature to estimate the updrafts. The second method is based on a good linear correlation between cloud base height and updrafts, which was found over the SGP, the central Amazon, and on board a ship sailing between Honolulu and Los Angeles. We found a universal relationship for both land and ocean. The performance of these two methods of retrieving updrafts was tested against the lidar and Radar measurements with good agreements found for both methods. Compared with the first method that only works over land, the second method expands its applicability to ocean and is more accurate in retrieving Wmax the with RMSE (root-mean-square error) = 0.38 m/s and MAPE (mean-absolute-percentage-error) = 19%, and Wb with RMSE = 0.34 m/s and MAPE = 21%.

  4. Cloud-based space situational awareness: initial design and evaluation

    NASA Astrophysics Data System (ADS)

    Liu, Bingwei; Chen, Yu; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2013-05-01

    The need for a global collaborating space situational awareness (SSA) network, including radars, optical and other sensors for communication and surveillance, has become a top priority for most countries who own or operate man-made space-crafts. Such a SSA system requires vast storage, powerful computing capacity and the ability to serve hundreds of thousands of users to access the same database. These requirements make traditional distributed networking system insufficient. Cloud computing, which features scalable and elastic storage and computing services, has been recognized as an ideal candidate that can meet the challenges of SSA systems' requirements. In this paper, we propose a Cloud-based information fusion system for SSA and examine a prototype that serves space tracking algorithms. We discuss the benefits of using Cloud Computing as an alternative for data processing and storage and explore details of Cloud implementation for a representative SSA system environment.

  5. Practising cloud-based telemedicine in developing countries.

    PubMed

    Puustjärvi, Juha; Puustjärvi, Leena

    2013-01-01

    In industrialised countries, telemedicine has proven to be a valuable tool for enabling access to knowledge and allowing information exchange, and showing that it is possible to provide good quality of healthcare to isolated communities. However, there are many barriers to the widespread implementation of telemedicine in rural areas of developing countries. These include deficient internet connectivity and sophisticated peripheral medical devices. Furthermore, developing countries have very high patients-per-doctor ratios. In this paper, we report our work on developing a cloud-based health information system, which promotes telemedicine and patient-centred healthcare by exploiting modern information and communication technologies such as OWL-ontologies and SQL-triggers. The reason for using cloud technology is twofold. First, cloud service models are easily adaptable for sharing patients health information, which is of prime importance in patient-centred healthcare as well as in telemedicine. Second, the cloud and the consulting physicians may locate anywhere in the internet. PMID:24191340

  6. Ground-based remote sensing of methane height profiles with a tunable diode laser heterodyne spectrometer

    SciTech Connect

    Koide, M.; Taguchi, M.; Fukunsishi, H.; Okano, S.

    1995-02-01

    Height distributions of methane in the troposphere and stratosphere were derived from high resolution absorption spectra observed with a ground-based tunable diode laser heterodyne spectrometer. The center wavenumber of the measured methane absorption line is 1223.1561/cm. In the retrieval of methane height profiles, a volume mixing ratio of methane was assumed to have a constant value in the troposphere and to decrease with a constant rate in the stratosphere. The tropospheric mixing ratio and the decreasing rate in stratosphere were derived to be 1.7 +/- 0.1 ppmv and -0.06 ppmv/km, respectively, for measurements at Tsukuba (36.0 deg N, 140.1 deg E) on December 17 and 20, 1991.

  7. Global surface-based cloud observation for ISCCP

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Visual observations of cloud cover are hindered at night due to inadequate illumination of the clouds. This usually leads to an underestimation of the average cloud cover at night, especially for the amounts of middle and high clouds, in climatologies on surface observations. The diurnal cycles of cloud amounts, if based on all the surface observations, are therefore in error, but they can be obtained more accurately if the nighttime observations are screened to select those made under sufficient moonlight. Ten years of nighttime weather observations from the northern hemisphere in December were classified according to the illuminance of moonlight or twilight on the cloud tops, and a threshold level of illuminance was determined, above which the clouds are apparently detected adequately. This threshold corresponds to light from a full moon at an elevation angle of 6 degrees or from a partial moon at higher elevation, or twilight from the sun less than 9 degrees below the horizon. It permits the use of about 38% of the observations made with the sun below the horizon. The computed diurnal cycles of total cloud cover are altered considerably when this moonlight criterion is imposed. Maximum cloud cover over much of the ocean is now found to be at night or in the morning, whereas computations obtained without benefit of the moonlight criterion, as in our published atlases, showed the time of maximum to be noon or early afternoon in many regions. Cloud cover is greater at night than during the day over the open oceans far from the continents, particularly in summer. However, near noon maxima are still evident in the coastal regions, so that the global annual average oceanic cloud cover is still slightly greater during the day than at night, by 0.3%. Over land, where daytime maxima are still obtained but with reduced amplitude, average cloud cover is 3.3% greater during the daytime. The diurnal cycles of total cloud cover we obtain are compared with those of ISCCP for a

  8. A cloud-based simulation architecture for pandemic influenza simulation.

    PubMed

    Eriksson, Henrik; Raciti, Massimiliano; Basile, Maurizio; Cunsolo, Alessandro; Fröberg, Anders; Leifler, Ola; Ekberg, Joakim; Timpka, Toomas

    2011-01-01

    High-fidelity simulations of pandemic outbreaks are resource consuming. Cluster-based solutions have been suggested for executing such complex computations. We present a cloud-based simulation architecture that utilizes computing resources both locally available and dynamically rented online. The approach uses the Condor framework for job distribution and management of the Amazon Elastic Computing Cloud (EC2) as well as local resources. The architecture has a web-based user interface that allows users to monitor and control simulation execution. In a benchmark test, the best cost-adjusted performance was recorded for the EC2 H-CPU Medium instance, while a field trial showed that the job configuration had significant influence on the execution time and that the network capacity of the master node could become a bottleneck. We conclude that it is possible to develop a scalable simulation environment that uses cloud-based solutions, while providing an easy-to-use graphical user interface. PMID:22195089

  9. Climatology of clouds and precipitation over East Antarctica using ground-based remote sensing at the Princess Elizabeth station

    NASA Astrophysics Data System (ADS)

    Souverijns, Niels; Gossart, Alexandra; Gorodetskaya, Irina; Lhermitte, Stef; Van Tricht, Kristof; Mangold, Alexander; Laffineur, Quentin; Van Lipzig, Nicole

    2016-04-01

    The surface mass balance of the Antarctic ice sheet is highly dependent on the interaction between clouds and precipitation. Our understanding of these processes is challenged by the limited availability of observations over the area and problems in Antarctic climate simulations by state-of-the-art climate models. Improvements are needed in this field, as the Antarctic ice sheet is expected to become a dominant contributor to sea level rise in the 21st century. In 2010, an observational site was established at the Princess Elisabeth (PE) Antarctic station. PE is located in the escarpment area of Dronning Maud Land, East Antarctica (72°S, 23°E). The instruments consist of several ground-based remote sensing instruments: a ceilometer (measuring cloud-base height and vertical structure), a 24-GHz Micro Rain Radar (MRR; providing vertical profiles of radar effective reflectivity and Doppler velocity), and a pyrometer (measuring effective cloud base temperature). An automatic weather station provides info on boundary-layer meteorology (temperature, wind speed and direction, humidity, pressure), as well as broadband radiative fluxes and snow height changes. This set of instruments can be used to infer the role of clouds in the Antarctic climate system, their interaction with radiation and their impact on precipitation. Cloud and precipitation characteristics are derived from 5-year-long measurement series, which is unprecedented for the Antarctic region. Here, we present an overview of the cloud and precipitation climatology. Statistics on cloud occurrence are calculated on annual / seasonal basis and a distinction between liquid / mixed phase and ice clouds is made. One can discriminate between liquid-bearing and ice-only clouds by investigating the ceilometer attenuated backscatter, since liquid phase clouds have a much higher signal. Furthermore, by using pyrometer measurements, we are able to identify the range of temperatures at which liquid / ice clouds are

  10. Comparison of cloud boundaries measured with 8.6 mm radar and 10.6 micrometer lidar

    NASA Technical Reports Server (NTRS)

    Uttal, Taneil; Intrieri, Janet M.

    1993-01-01

    One of the most basic cloud properties is location; the height of cloud base and the height of cloud top. The glossary of meteorology defines cloud base (top) as follows: 'For a given cloud or cloud layer, that lowest (highest) level in the atmosphere at which the air contains a perceptible quantity of cloud particles.' Our studies show that for a 8.66 mm radar, and a 10.6 micrometer lidar, the level at which cloud hydrometers become 'perceptible' can vary significantly as a function of the different wavelengths, powers, beamwidths and sampling rates of the two remote sensors.

  11. A cloud model-based approach for water quality assessment.

    PubMed

    Wang, Dong; Liu, Dengfeng; Ding, Hao; Singh, Vijay P; Wang, Yuankun; Zeng, Xiankui; Wu, Jichun; Wang, Lachun

    2016-07-01

    Water quality assessment entails essentially a multi-criteria decision-making process accounting for qualitative and quantitative uncertainties and their transformation. Considering uncertainties of randomness and fuzziness in water quality evaluation, a cloud model-based assessment approach is proposed. The cognitive cloud model, derived from information science, can realize the transformation between qualitative concept and quantitative data, based on probability and statistics and fuzzy set theory. When applying the cloud model to practical assessment, three technical issues are considered before the development of a complete cloud model-based approach: (1) bilateral boundary formula with nonlinear boundary regression for parameter estimation, (2) hybrid entropy-analytic hierarchy process technique for calculation of weights, and (3) mean of repeated simulations for determining the degree of final certainty. The cloud model-based approach is tested by evaluating the eutrophication status of 12 typical lakes and reservoirs in China and comparing with other four methods, which are Scoring Index method, Variable Fuzzy Sets method, Hybrid Fuzzy and Optimal model, and Neural Networks method. The proposed approach yields information concerning membership for each water quality status which leads to the final status. The approach is found to be representative of other alternative methods and accurate. PMID:26995351

  12. A cloud model-based approach for water quality assessment.

    PubMed

    Wang, Dong; Liu, Dengfeng; Ding, Hao; Singh, Vijay P; Wang, Yuankun; Zeng, Xiankui; Wu, Jichun; Wang, Lachun

    2016-07-01

    Water quality assessment entails essentially a multi-criteria decision-making process accounting for qualitative and quantitative uncertainties and their transformation. Considering uncertainties of randomness and fuzziness in water quality evaluation, a cloud model-based assessment approach is proposed. The cognitive cloud model, derived from information science, can realize the transformation between qualitative concept and quantitative data, based on probability and statistics and fuzzy set theory. When applying the cloud model to practical assessment, three technical issues are considered before the development of a complete cloud model-based approach: (1) bilateral boundary formula with nonlinear boundary regression for parameter estimation, (2) hybrid entropy-analytic hierarchy process technique for calculation of weights, and (3) mean of repeated simulations for determining the degree of final certainty. The cloud model-based approach is tested by evaluating the eutrophication status of 12 typical lakes and reservoirs in China and comparing with other four methods, which are Scoring Index method, Variable Fuzzy Sets method, Hybrid Fuzzy and Optimal model, and Neural Networks method. The proposed approach yields information concerning membership for each water quality status which leads to the final status. The approach is found to be representative of other alternative methods and accurate.

  13. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    PubMed

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  14. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    PubMed Central

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  15. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    PubMed

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-12-12

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  16. Cloud-Based Collaborative Writing and the Common Core Standards

    ERIC Educational Resources Information Center

    Yim, Soobin; Warschauer, Mark; Zheng, Binbin; Lawrence, Joshua F.

    2014-01-01

    The Common Core State Standards emphasize the integration of technology skills into English Language Arts (ELA) instruction, recognizing the demand for technology-based literacy skills to be college- and career- ready. This study aims to examine how collaborative cloud-based writing is used in in a Colorado school district, where one-to-one…

  17. An overview of platforms for cloud based development.

    PubMed

    Fylaktopoulos, G; Goumas, G; Skolarikis, M; Sotiropoulos, A; Maglogiannis, I

    2016-01-01

    This paper provides an overview of the state of the art technologies for software development in cloud environments. The surveyed systems cover the whole spectrum of cloud-based development including integrated programming environments, code repositories, software modeling, composition and documentation tools, and application management and orchestration. In this work we evaluate the existing cloud development ecosystem based on a wide number of characteristics like applicability (e.g. programming and database technologies supported), productivity enhancement (e.g. editor capabilities, debugging tools), support for collaboration (e.g. repository functionality, version control) and post-development application hosting and we compare the surveyed systems. The conducted survey proves that software engineering in the cloud era has made its initial steps showing potential to provide concrete implementation and execution environments for cloud-based applications. However, a number of important challenges need to be addressed for this approach to be viable. These challenges are discussed in the article, while a conclusion is drawn that although several steps have been made, a compact and reliable solution does not yet exist. PMID:26835220

  18. A cloud-based system for automatic glaucoma screening.

    PubMed

    Fengshou Yin; Damon Wing Kee Wong; Ying Quan; Ai Ping Yow; Ngan Meng Tan; Gopalakrishnan, Kavitha; Beng Hai Lee; Yanwu Xu; Zhuo Zhang; Jun Cheng; Jiang Liu

    2015-08-01

    In recent years, there has been increasing interest in the use of automatic computer-based systems for the detection of eye diseases including glaucoma. However, these systems are usually standalone software with basic functions only, limiting their usage in a large scale. In this paper, we introduce an online cloud-based system for automatic glaucoma screening through the use of medical image-based pattern classification technologies. It is designed in a hybrid cloud pattern to offer both accessibility and enhanced security. Raw data including patient's medical condition and fundus image, and resultant medical reports are collected and distributed through the public cloud tier. In the private cloud tier, automatic analysis and assessment of colour retinal fundus images are performed. The ubiquitous anywhere access nature of the system through the cloud platform facilitates a more efficient and cost-effective means of glaucoma screening, allowing the disease to be detected earlier and enabling early intervention for more efficient intervention and disease management. PMID:26736579

  19. An overview of platforms for cloud based development.

    PubMed

    Fylaktopoulos, G; Goumas, G; Skolarikis, M; Sotiropoulos, A; Maglogiannis, I

    2016-01-01

    This paper provides an overview of the state of the art technologies for software development in cloud environments. The surveyed systems cover the whole spectrum of cloud-based development including integrated programming environments, code repositories, software modeling, composition and documentation tools, and application management and orchestration. In this work we evaluate the existing cloud development ecosystem based on a wide number of characteristics like applicability (e.g. programming and database technologies supported), productivity enhancement (e.g. editor capabilities, debugging tools), support for collaboration (e.g. repository functionality, version control) and post-development application hosting and we compare the surveyed systems. The conducted survey proves that software engineering in the cloud era has made its initial steps showing potential to provide concrete implementation and execution environments for cloud-based applications. However, a number of important challenges need to be addressed for this approach to be viable. These challenges are discussed in the article, while a conclusion is drawn that although several steps have been made, a compact and reliable solution does not yet exist.

  20. Automatic Single Tree Detection in Plantations using UAV-based Photogrammetric Point clouds

    NASA Astrophysics Data System (ADS)

    Kattenborn, T.; Sperlich, M.; Bataua, K.; Koch, B.

    2014-08-01

    For reasons of documentation, management and certification there is a high interest in efficient inventories of palm plantations on the single plant level. Recent developments in unmanned aerial vehicle (UAV) technology facilitate spatial and temporal flexible acquisition of high resolution 3D data. Common single tree detection approaches are based on Very High Resolution (VHR) satellite or Airborne Laser Scanning (ALS) data. However, VHR data is often limited to clouds and does commonly not allow for height measurements. VHR and in particualar ALS data are characterized by high relatively high acquisition costs. Sperlich et al. (2013) already demonstrated the high potential of UAV-based photogrammetric point clouds for single tree detection using pouring algorithms. This approach was adjusted and improved for an application on palm plantation. The 9.4ha test site on Tarawa, Kiribati, comprised densely scattered growing palms, as well as abundant undergrowth and trees. Using a standard consumer grade camera mounted on an octocopter two flight campaigns at 70m and 100m altitude were performed to evaluate the effect Ground Sampling Distance (GSD) and image overlap. To avoid comission errors and improve the terrain interpolation the point clouds were classified based on the geometric characteristics of the classes, i.e. (1) palm, (2) other vegetation (3) and ground. The mapping accuracy amounts for 86.1 % for the entire study area and 98.2 % for dense growing palm stands. We conclude that this flexible and automatic approach has high capabilities for operational use.

  1. Tsunami Lead Wave Reconstruction Based on Noisy Sea Surface Height Measurements

    NASA Astrophysics Data System (ADS)

    Yu, Kegen

    2016-06-01

    This paper presents a Tsunami lead wave reconstruction method using noisy sea surface height (SSH) measurements such as observed by a satellite-carried GNSS reflectometry (GNSS-R) sensor. It is proposed to utilize wavelet theory to mitigate the strong noise in the GNSS-R based SSH measurements. Through extracting the noise components by high-pass filters at decomposition stage and shrinking the noise by thresholding prior to reconstruction, the noise is greatly reduced. Real Tsunami data based simulation results demonstrate that in presence of SSH measurement error of standard deviation 50 cm the accuracy in terms of root mean square error (RMSE) of the lead wave height (true value 145.5 cm) and wavelength (true value 592.0 km) estimation is 21.5 cm and 56.2 km, respectively. The results also show that the proposed wavelet based method considerably outperforms the Kalman filter based method on average. The results demonstrate that the proposed wave reconstruction approach has the potential for Tsunami detection and parameter estimation to assist in achieving reliable Tsunami warning.

  2. Determination of the smoke-plume heights and their dynamics with ground-based scanning lidar.

    PubMed

    Kovalev, V; Petkov, A; Wold, C; Urbanski, S; Hao, W M

    2015-03-10

    Lidar-data processing techniques are analyzed, which allow determining smoke-plume heights and their dynamics and can be helpful for the improvement of smoke dispersion and air quality models. The data processing algorithms considered in the paper are based on the analysis of two alternative characteristics related to the smoke dispersion process: the regularized intercept function, extracted directly from the recorded lidar signal, and the square-range corrected backscatter signal, obtained after determining and subtracting the constant offset in the recorded signal. The analysis is performed using experimental data of the scanning lidar obtained in the area of prescribed fires. PMID:25968377

  3. Image-Based Airborne LiDAR Point Cloud Encoding for 3d Building Model Retrieval

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chen; Lin, Chao-Hung

    2016-06-01

    With the development of Web 2.0 and cyber city modeling, an increasing number of 3D models have been available on web-based model-sharing platforms with many applications such as navigation, urban planning, and virtual reality. Based on the concept of data reuse, a 3D model retrieval system is proposed to retrieve building models similar to a user-specified query. The basic idea behind this system is to reuse these existing 3D building models instead of reconstruction from point clouds. To efficiently retrieve models, the models in databases are compactly encoded by using a shape descriptor generally. However, most of the geometric descriptors in related works are applied to polygonal models. In this study, the input query of the model retrieval system is a point cloud acquired by Light Detection and Ranging (LiDAR) systems because of the efficient scene scanning and spatial information collection. Using Point clouds with sparse, noisy, and incomplete sampling as input queries is more difficult than that by using 3D models. Because that the building roof is more informative than other parts in the airborne LiDAR point cloud, an image-based approach is proposed to encode both point clouds from input queries and 3D models in databases. The main goal of data encoding is that the models in the database and input point clouds can be consistently encoded. Firstly, top-view depth images of buildings are generated to represent the geometry surface of a building roof. Secondly, geometric features are extracted from depth images based on height, edge and plane of building. Finally, descriptors can be extracted by spatial histograms and used in 3D model retrieval system. For data retrieval, the models are retrieved by matching the encoding coefficients of point clouds and building models. In experiments, a database including about 900,000 3D models collected from the Internet is used for evaluation of data retrieval. The results of the proposed method show a clear superiority

  4. Arctic Cloud Fraction and Microphysical Characteristics from 8-year Space-based Lidar and Radar Measurements

    NASA Astrophysics Data System (ADS)

    Kim, S. W.; Yeo, H.; Jeong, J. H.; Kim, M. H.; Son, S. W.; Kim, B. M.; Kim, S. J.

    2015-12-01

    Arctic clouds are a key factor in determining the energy budget both at the top of the atmosphere and at the suface by modulating the long-wave and short-wave radiative fluxes, which affect the surface temperature and may effect on the growth or retreat of sea ice extent and thickness. In this work, we exmine three-dimensional geometric and microphysical properties of Arctic clouds mainly from 8-year space-borne lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). Cloud Frations (CFs) from CALIOP-CPR and MODIS show similar seasonal and inter-annual variations, but shows significant different in CF over the opened sea area (i.e., Barents and Kara Sea) and over the sea ice. High occurrences of cloud top height are found below 2 km. But comparably high presences of mid- and high-level clouds are also found, especially in winter-time. This suggests that both low- and high-level clouds over the Arctic may influence on the long-wave radiation budget both at the surface and top of the atmosphere. On the other hand, the top height of winter-time clouds looks consistent with tropopause height. Cloud Optical Depth (COD) over the Arctic shows high in summer and low in winter, which would be contrary to the seasonal/monthly variations of CF. High COD during summer can be explained by enhanced level of liquid cloud droplet number concentrations. The number concentration and effective radius (in parenthesis) of liquid cloud droplet during summner was in the range of about 30 to 80 cm-3 (about 6 ~ 16 mm).

  5. Evaluation of Tropical Cirrus Cloud Properties Derived from ECMWF Model Output and Ground Based Measurements over Nauru Island

    SciTech Connect

    Comstock, Jennifer M.; Jakob, Christian

    2004-05-26

    Cirrus clouds play an important role both radiatively and dynamically in the tropics. Understanding the mechanisms responsible for the formation and persistence of tropical cirrus is an important step in accurately predicting cirrus in forecast models. In this study, we compare ground-based measurements of cloud properties with those predicted by the ECMWF model at a location in the tropical western Pacific. Our comparisons of cloud height and optical depth over an 8 month time period indicate that the model and measurements agree relatively well. The ECMWF model predicts cirrus anvils associated with deep convection during convectively active periods, and also isolated cirrus events that are influenced by large-scale vertical ascent. We also show through examination of an upper tropospheric cirrus case that the model produces tropospheric waves that appear to influence the morphology and maintenance of the cirrus layer.

  6. Contextual cloud-based service oriented architecture for clinical workflow.

    PubMed

    Moreno-Conde, Jesús; Moreno-Conde, Alberto; Núñez-Benjumea, Francisco J; Parra-Calderón, Carlos

    2015-01-01

    Given that acceptance of systems within the healthcare domain multiple papers highlighted the importance of integrating tools with the clinical workflow. This paper analyse how clinical context management could be deployed in order to promote the adoption of cloud advanced services and within the clinical workflow. This deployment will be able to be integrated with the eHealth European Interoperability Framework promoted specifications. Throughout this paper, it is proposed a cloud-based service-oriented architecture. This architecture will implement a context management system aligned with the HL7 standard known as CCOW.

  7. A cloud-based approach to medical NLP.

    PubMed

    Chard, Kyle; Russell, Michael; Lussier, Yves A; Mendonça, Eneida A; Silverstein, Jonathan C

    2011-01-01

    Natural Language Processing (NLP) enables access to deep content embedded in medical texts. To date, NLP has not fulfilled its promise of enabling robust clinical encoding, clinical use, quality improvement, and research. We submit that this is in part due to poor accessibility, scalability, and flexibility of NLP systems. We describe here an approach and system which leverages cloud-based approaches such as virtual machines and Representational State Transfer (REST) to extract, process, synthesize, mine, compare/contrast, explore, and manage medical text data in a flexibly secure and scalable architecture. Available architectures in which our Smntx (pronounced as semantics) system can be deployed include: virtual machines in a HIPAA-protected hospital environment, brought up to run analysis over bulk data and destroyed in a local cloud; a commercial cloud for a large complex multi-institutional trial; and within other architectures such as caGrid, i2b2, or NHIN.

  8. A Cloud-based Approach to Medical NLP

    PubMed Central

    Chard, Kyle; Russell, Michael; Lussier, Yves A.; Mendonça, Eneida A; Silverstein, Jonathan C.

    2011-01-01

    Natural Language Processing (NLP) enables access to deep content embedded in medical texts. To date, NLP has not fulfilled its promise of enabling robust clinical encoding, clinical use, quality improvement, and research. We submit that this is in part due to poor accessibility, scalability, and flexibility of NLP systems. We describe here an approach and system which leverages cloud-based approaches such as virtual machines and Representational State Transfer (REST) to extract, process, synthesize, mine, compare/contrast, explore, and manage medical text data in a flexibly secure and scalable architecture. Available architectures in which our Smntx (pronounced as semantics) system can be deployed include: virtual machines in a HIPAA-protected hospital environment, brought up to run analysis over bulk data and destroyed in a local cloud; a commercial cloud for a large complex multi-institutional trial; and within other architectures such as caGrid, i2b2, or NHIN. PMID:22195072

  9. Game Theory Based Trust Model for Cloud Environment

    PubMed Central

    Gokulnath, K.; Uthariaraj, Rhymend

    2015-01-01

    The aim of this work is to propose a method to establish trust at bootload level in cloud computing environment. This work proposes a game theoretic based approach for achieving trust at bootload level of both resources and users perception. Nash equilibrium (NE) enhances the trust evaluation of the first-time users and providers. It also restricts the service providers and the users to violate service level agreement (SLA). Significantly, the problem of cold start and whitewashing issues are addressed by the proposed method. In addition appropriate mapping of cloud user's application to cloud service provider for segregating trust level is achieved as a part of mapping. Thus, time complexity and space complexity are handled efficiently. Experiments were carried out to compare and contrast the performance of the conventional methods and the proposed method. Several metrics like execution time, accuracy, error identification, and undecidability of the resources were considered. PMID:26380365

  10. Game Theory Based Trust Model for Cloud Environment.

    PubMed

    Gokulnath, K; Uthariaraj, Rhymend

    2015-01-01

    The aim of this work is to propose a method to establish trust at bootload level in cloud computing environment. This work proposes a game theoretic based approach for achieving trust at bootload level of both resources and users perception. Nash equilibrium (NE) enhances the trust evaluation of the first-time users and providers. It also restricts the service providers and the users to violate service level agreement (SLA). Significantly, the problem of cold start and whitewashing issues are addressed by the proposed method. In addition appropriate mapping of cloud user's application to cloud service provider for segregating trust level is achieved as a part of mapping. Thus, time complexity and space complexity are handled efficiently. Experiments were carried out to compare and contrast the performance of the conventional methods and the proposed method. Several metrics like execution time, accuracy, error identification, and undecidability of the resources were considered.

  11. Perceptions of Peer Review Using Cloud-Based Software

    ERIC Educational Resources Information Center

    Andrichuk, Gjoa

    2016-01-01

    This study looks at the change in perception regarding the effect of peer feedback on writing skills using cloud-based software. Pre- and post-surveys were given. The students peer reviewed drafts of five sections of scientific reports using Google Docs. While students reported that they did not perceive their writing ability improved by being…

  12. Cloud-Based Technologies: Faculty Development, Support, and Implementation

    ERIC Educational Resources Information Center

    Diaz, Veronica

    2011-01-01

    The number of instructional offerings in higher education that are online, blended, or web-enhanced, including courses and programs, continues to grow exponentially. Alongside the growth of e-learning, higher education has witnessed the explosion of cloud-based or Web 2.0 technologies, a term that refers to the vast array of socially oriented,…

  13. A cloud-based medical image repository

    NASA Astrophysics Data System (ADS)

    Maeder, Anthony J.; Planitz, Birgit M.; El Rifai, Diaa

    2012-02-01

    Many widely used digital medical image collections have been established but these are generally used as raw data sources without related image analysis toolsets. Providing associated functionality to allow specific types of operations to be performed on these images has proved beneficial in some cases (e.g. brain image registration and atlases). However, toolset development to provide generic image analysis functions on medical images has tended to be ad hoc, with Open Source options proliferating (e.g. ITK). Our Automated Medical Image Collection Annotation (AMICA) system is both an image repository, to which the research community can contribute image datasets, and a search/retrieval system that uses automated image annotation. AMICA was designed for the Windows Azure platform to leverage the flexibility and scalability of the cloud. It is intended that AMICA will expand beyond its initial pilot implementation (for brain CT, MR images) to accommodate a wide range of modalities and anatomical regions. This initiative aims to contribute to advances in clinical research by permitting a broader use and reuse of medical image data than is currently attainable. For example, cohort studies for cases with particular physiological or phenotypical profiles will be able to source and include enough cases to provide high statistical power, allowing more individualised risk factors to be assessed and thus allowing screening and staging processes to be optimised. Also, education, training and credentialing of clinicians in image interpretation, will be more effective because it will be possible to select instances of images with specific visual aspects, or correspond to types of cases where reading performance improvement is desirable.

  14. Cloud based emergency health care information service in India.

    PubMed

    Karthikeyan, N; Sukanesh, R

    2012-12-01

    A hospital is a health care organization providing patient treatment by expert physicians, surgeons and equipments. A report from a health care accreditation group says that miscommunication between patients and health care providers is the reason for the gap in providing emergency medical care to people in need. In developing countries, illiteracy is the major key root for deaths resulting from uncertain diseases constituting a serious public health problem. Mentally affected, differently abled and unconscious patients can't communicate about their medical history to the medical practitioners. Also, Medical practitioners can't edit or view DICOM images instantly. Our aim is to provide palm vein pattern recognition based medical record retrieval system, using cloud computing for the above mentioned people. Distributed computing technology is coming in the new forms as Grid computing and Cloud computing. These new forms are assured to bring Information Technology (IT) as a service. In this paper, we have described how these new forms of distributed computing will be helpful for modern health care industries. Cloud Computing is germinating its benefit to industrial sectors especially in medical scenarios. In Cloud Computing, IT-related capabilities and resources are provided as services, via the distributed computing on-demand. This paper is concerned with sprouting software as a service (SaaS) by means of Cloud computing with an aim to bring emergency health care sector in an umbrella with physical secured patient records. In framing the emergency healthcare treatment, the crucial thing considered necessary to decide about patients is their previous health conduct records. Thus a ubiquitous access to appropriate records is essential. Palm vein pattern recognition promises a secured patient record access. Likewise our paper reveals an efficient means to view, edit or transfer the DICOM images instantly which was a challenging task for medical practitioners in the

  15. Cloud based emergency health care information service in India.

    PubMed

    Karthikeyan, N; Sukanesh, R

    2012-12-01

    A hospital is a health care organization providing patient treatment by expert physicians, surgeons and equipments. A report from a health care accreditation group says that miscommunication between patients and health care providers is the reason for the gap in providing emergency medical care to people in need. In developing countries, illiteracy is the major key root for deaths resulting from uncertain diseases constituting a serious public health problem. Mentally affected, differently abled and unconscious patients can't communicate about their medical history to the medical practitioners. Also, Medical practitioners can't edit or view DICOM images instantly. Our aim is to provide palm vein pattern recognition based medical record retrieval system, using cloud computing for the above mentioned people. Distributed computing technology is coming in the new forms as Grid computing and Cloud computing. These new forms are assured to bring Information Technology (IT) as a service. In this paper, we have described how these new forms of distributed computing will be helpful for modern health care industries. Cloud Computing is germinating its benefit to industrial sectors especially in medical scenarios. In Cloud Computing, IT-related capabilities and resources are provided as services, via the distributed computing on-demand. This paper is concerned with sprouting software as a service (SaaS) by means of Cloud computing with an aim to bring emergency health care sector in an umbrella with physical secured patient records. In framing the emergency healthcare treatment, the crucial thing considered necessary to decide about patients is their previous health conduct records. Thus a ubiquitous access to appropriate records is essential. Palm vein pattern recognition promises a secured patient record access. Likewise our paper reveals an efficient means to view, edit or transfer the DICOM images instantly which was a challenging task for medical practitioners in the

  16. Ground point filtering of UAV-based photogrammetric point clouds

    NASA Astrophysics Data System (ADS)

    Anders, Niels; Seijmonsbergen, Arie; Masselink, Rens; Keesstra, Saskia

    2016-04-01

    Unmanned Aerial Vehicles (UAVs) have proved invaluable for generating high-resolution and multi-temporal imagery. Based on photographic surveys, 3D surface reconstructions can be derived photogrammetrically so producing point clouds, orthophotos and surface models. For geomorphological or ecological applications it may be necessary to separate ground points from vegetation points. Existing filtering methods are designed for point clouds derived using other methods, e.g. laser scanning. The purpose of this paper is to test three filtering algorithms for the extraction of ground points from point clouds derived from low-altitude aerial photography. Three subareas were selected from a single flight which represent different scenarios: 1) low relief, sparsely vegetated area, 2) low relief, moderately vegetated area, 3) medium relief and moderately vegetated area. The three filtering methods are used to classify ground points in different ways, based on 1) RGB color values from training samples, 2) TIN densification as implemented in LAStools, and 3) an iterative surface lowering algorithm. Ground points are then interpolated into a digital terrain model using inverse distance weighting. The results suggest that different landscapes require different filtering methods for optimal ground point extraction. While iterative surface lowering and TIN densification are fully automated, color-based classification require fine-tuning in order to optimize the filtering results. Finally, we conclude that filtering photogrammetric point clouds could provide a cheap alternative to laser scan surveys for creating digital terrain models in sparsely vegetated areas.

  17. The Impacts of an Observationally-Based Cloud Fraction and Condensate Overlap Parameterization on a GCM's Cloud Radiative Effect

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Lee, Dongmin; Norris, Peter; Yuan, Tianle

    2011-01-01

    It has been shown that the details of how cloud fraction overlap is treated in GCMs has substantial impact on shortwave and longwave fluxes. Because cloud condensate is also horizontally heterogeneous at GCM grid scales, another aspect of cloud overlap should in principle also be assessed, namely the vertical overlap of hydrometeor distributions. This type of overlap is usually examined in terms of rank correlations, i.e., linear correlations between hydrometeor amount ranks of the overlapping parts of cloud layers at specific separation distances. The cloud fraction overlap parameter and the rank correlation of hydrometeor amounts can be both expressed as inverse exponential functions of separation distance characterized by their respective decorrelation lengths (e-folding distances). Larger decorrelation lengths mean that hydrometeor fractions and probability distribution functions have high levels of vertical alignment. An analysis of CloudSat and CALIPSO data reveals that the two aspects of cloud overlap are related and their respective decorrelation lengths have a distinct dependence on latitude that can be parameterized and included in a GCM. In our presentation we will contrast the Cloud Radiative Effect (CRE) of the GEOS-5 atmospheric GCM (AGCM) when the observationally-based parameterization of decorrelation lengths is used to represent overlap versus the simpler cases of maximum-random overlap and globally constant decorrelation lengths. The effects of specific overlap representations will be examined for both diagnostic and interactive radiation runs in GEOS-5 and comparisons will be made with observed CREs from CERES and CloudSat (2B-FLXHR product). Since the radiative effects of overlap depend on the cloud property distributions of the AGCM, the availability of two different cloud schemes in GEOS-5 will give us the opportunity to assess a wide range of potential cloud overlap consequences on the model's climate.

  18. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE PAGES

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-02-16

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore » under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.« less

  19. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE PAGES

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-07-02

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore » using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m-2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m-2.« less

  20. Streaming Support for Data Intensive Cloud-Based Sequence Analysis

    PubMed Central

    Issa, Shadi A.; Kienzler, Romeo; El-Kalioby, Mohamed; Tonellato, Peter J.; Wall, Dennis; Bruggmann, Rémy; Abouelhoda, Mohamed

    2013-01-01

    Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client's site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation. PMID:23710461

  1. Tunnel Point Cloud Filtering Method Based on Elliptic Cylindrical Model

    NASA Astrophysics Data System (ADS)

    Zhua, Ningning; Jiaa, Yonghong; Luo, Lun

    2016-06-01

    The large number of bolts and screws that attached to the subway shield ring plates, along with the great amount of accessories of metal stents and electrical equipments mounted on the tunnel walls, make the laser point cloud data include lots of non-tunnel section points (hereinafter referred to as non-points), therefore affecting the accuracy for modeling and deformation monitoring. This paper proposed a filtering method for the point cloud based on the elliptic cylindrical model. The original laser point cloud data was firstly projected onto a horizontal plane, and a searching algorithm was given to extract the edging points of both sides, which were used further to fit the tunnel central axis. Along the axis the point cloud was segmented regionally, and then fitted as smooth elliptic cylindrical surface by means of iteration. This processing enabled the automatic filtering of those inner wall non-points. Experiments of two groups showed coincident results, that the elliptic cylindrical model based method could effectively filter out the non-points, and meet the accuracy requirements for subway deformation monitoring. The method provides a new mode for the periodic monitoring of tunnel sections all-around deformation in subways routine operation and maintenance.

  2. TRIDEC Cloud - a Web-based Platform for Tsunami Early Warning tested with NEAMWave14 Scenarios

    NASA Astrophysics Data System (ADS)

    Hammitzsch, Martin; Spazier, Johannes; Reißland, Sven; Necmioglu, Ocal; Comoglu, Mustafa; Ozer Sozdinler, Ceren; Carrilho, Fernando; Wächter, Joachim

    2015-04-01

    the European scale. The TRIDEC Cloud has not been involved officially in Part B of the NEAMWave14 scenarios. However, the scenarios have been used by GFZ, KOERI, and IPMA for testing in exercise runs on October 27-28, 2014. Additionally, the Greek NEAMWave14 scenario has been tested in an exercise run by GFZ only on October 29, 2014 (see ICG/NEAMTWS-XI/13). The exercise runs demonstrated that operators in warning centres and stakeholders of other involved parties just need a standard web browser to access a full-fledged TEWS. The integration of GPU accelerated tsunami simulation computations have been an integral part to foster early warning with on-demand tsunami predictions based on actual source parameters. Thus tsunami travel times, estimated times of arrival and estimated wave heights are available immediately for visualization and for further analysis and processing. The generation of warning messages is based on internationally agreed message structures and includes static and dynamic information based on earthquake information, instant computations of tsunami simulations, and actual measurements. Generated messages are served for review, modification, and addressing in one simple form for dissemination via Cloud Messages, Shared Maps, e-mail, FTP/GTS, SMS, and FAX. Cloud Messages and Shared Maps are complementary channels and integrate interactive event and simulation data. Thus recipients are enabled to interact dynamically with a map and diagrams beyond traditional text information.

  3. Influence of Subpixel Scale Cloud Top Structure on Reflectances from Overcast Stratiform Cloud Layers

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Varnai, Tamas; Winker, David M.

    1998-01-01

    Recent observational studies have shown that satellite retrievals of cloud optical depth based on plane-parallel model theory suffer from systematic biases that depend on viewing geometry, even when observations are restricted to overcast marine stratus layers, arguably the closest to plane parallel in nature. At moderate to low sun elevations, the plane-parallel model significantly overestimates the reflectance dependence on view angle in the forward-scattering direction but shows a similar dependence in the backscattering direction. Theoretical simulations are performed that show that the likely cause for this discrepancy is because the plane-parallel model assumption does not account for subpixel, scale variations in cloud-top height (i.e., "cloud bumps"). Monte Carlo simulation, comparing ID model radiances to radiances from overcast cloud field with 1) cloud-top height variation, but constant cloud volume extinction; 2) flat tops but horizontal variations in cloud volume extinction; and 3) variations in both cloud top height and cloud extinction are performed over a approximately equal to 4 km x 4 km domain (roughly the size of an individual GAC AVHRR pixel). The comparisons show that when cloud-top height variations are included, departures from 1D theory are remarkably similar (qualitatively) to those obtained observationally. In contrast, when clouds are assumed flat and only cloud extinction is variable, reflectance differences are much smaller and do not show any view-angle dependence. When both cloud-top height and cloud extinction variations are included, however, large increases in cloud extinction variability can enhance reflectance difference. The reason 3D-1D reflectance differences are more sensitive to cloud-top height variations in the forward-scattering direction (at moderate to low, sun elevations) is because photons leaving the cloud field in that direction experience fewer scattering events (low-order scattering) and are restricted to the

  4. A cloud-based multimodality case file for mobile devices.

    PubMed

    Balkman, Jason D; Loehfelm, Thomas W

    2014-01-01

    Recent improvements in Web and mobile technology, along with the widespread use of handheld devices in radiology education, provide unique opportunities for creating scalable, universally accessible, portable image-rich radiology case files. A cloud database and a Web-based application for radiologic images were developed to create a mobile case file with reasonable usability, download performance, and image quality for teaching purposes. A total of 75 radiology cases related to breast, thoracic, gastrointestinal, musculoskeletal, and neuroimaging subspecialties were included in the database. Breast imaging cases are the focus of this article, as they best demonstrate handheld display capabilities across a wide variety of modalities. This case subset also illustrates methods for adapting radiologic content to cloud platforms and mobile devices. Readers will gain practical knowledge about storage and retrieval of cloud-based imaging data, an awareness of techniques used to adapt scrollable and high-resolution imaging content for the Web, and an appreciation for optimizing images for handheld devices. The evaluation of this software demonstrates the feasibility of adapting images from most imaging modalities to mobile devices, even in cases of full-field digital mammograms, where high resolution is required to represent subtle pathologic features. The cloud platform allows cases to be added and modified in real time by using only a standard Web browser with no application-specific software. Challenges remain in developing efficient ways to generate, modify, and upload radiologic and supplementary teaching content to this cloud-based platform. Online supplemental material is available for this article. PMID:24819664

  5. [Analysis of cloud spectral structure characteristics based on cloud profile radar data].

    PubMed

    Han, Yong; Lü, Da-Ren

    2013-04-01

    Cloud plays a very important role in the earth-atmosphere system. However, the current climate models are still lacking data about internal fine structure of cloud. And when the traditional passive satellite radiometer is used for remote sense, a plentiful information of the vertical distribution of cloud layer will be lost. For these reasons, NASA proposed the launch project of CloudSat, Whose purpose is to provide the necessary observation, and then allow us to understand better the internal structure of the cloud. CloudSat was successfully launched on April 28, 2006. It carried the first cloud profile radar (CPR) with W band (94 GHz), which can provide continuous and global time sequence vertical structure and characteristics of cloud. In the present paper, using CloudSat satellite data, we analyzed the 8th "Morakot" and 15th " Koppu" typhoon cloud systems. According to the "typhoon" cloud detection results, the radar reflectivity, cloud types and optical thickness successive variation of cloud layer were gotten, which will provide a reference for studying optical properties of typhoon cloud system.

  6. Height of skull base as an indicator of living conditions in historical native populations from Europe, Australia and Africa.

    PubMed

    Senator, Małgorzata; Kwiatkowska, Barbara; Gronkiewicz, Stanisław

    2009-01-01

    Flattening and lowering of the skull base in response to improper bone growth is called platybasis, and is considered a sensitive and reliable indicator of adverse living conditions such as malnutrition and disease during the prenatal period and early childhood. The degree of platybasis was assessed in three series of skulls representing geographically distinct historical native populations from Europe, Australia and Africa. Platybasis was determined by measuring the height of the base of the skull. The degree of platybasis varied among the populations examined, and was the lowest in the Australian group, and the highest in the African group. This may be due to either variability of living conditions or genetic factors, which have an influence on robusticity and cranial architecture. There were also differences among the groups in terms of the other skull measurements and indices examined. The height of the base of the skull was generally greater in males than in females, which indicates sexual dimorphism or fact that females had worse living conditions. Correlation coefficients between the height of the base of the skull and other measurements including skull length and skull width were also calculated indicating significant relationships. The differences between the height of the base of the skull and height/length index and height/width index, were statistically significant.

  7. Classification of Coronal Mass Ejections Based on the Analysis of Height-Time Plots

    NASA Astrophysics Data System (ADS)

    Andrews, M. D.

    2001-05-01

    The "Sheeley Diagram" has been used to argue in favor of two distinct types of Coronal Mass Ejections (CMEs) based on distinguishable structure in a plot of height versus projected velocity. A large number of manually tracked CME features were analyzed and used to create a new velocity versus altitude plot. This plot does show a distinct class of CMEs. All of the events with low initial velocity show significant acceleration. The hypothesis that these events are usually associated with the eruption of pre-existing streamer structures will be discussed. A "Sheeley Diagram" will also be presented for CME features measured in events associated with large X-ray flares. This work was preformed under contract at NRL and was supported by NASA. The LASCO telescopes are part of the SOHO mission which is a result of international cooperation between NASA and ESA.

  8. Chemical and physical influences on aerosol activation in liquid clouds: an empirical study based on observations from the Jungfraujoch, Switzerland

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Webster, C. S.; Rieder, H. E.; Hammer, E.; Gysel, M.; Bukowiecki, N.; Weingartner, E.; Steinbacher, M.; Baltensperger, U.

    2015-06-01

    A simple empirical model to predict the number of aerosols which activate to form cloud droplets in a warm, free tropospheric cloud has been established, based on data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) campaigns at the Jungfraujoch (JFJ). It is shown that 76% of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential CCN (defined as number of particles larger than 90 nm in diameter), while the mean errors in the model representation may be reduced by the addition of further explanatory variables, such as the mixing ratios of O3, CO and the height of the measurements above cloud base. The model has similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (north west and south east). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this model is applicable to warm, free tropospheric clouds over the European continent.

  9. Octree-based region growing for point cloud segmentation

    NASA Astrophysics Data System (ADS)

    Vo, Anh-Vu; Truong-Hong, Linh; Laefer, Debra F.; Bertolotto, Michela

    2015-06-01

    This paper introduces a novel, region-growing algorithm for the fast surface patch segmentation of three-dimensional point clouds of urban environments. The proposed algorithm is composed of two stages based on a coarse-to-fine concept. First, a region-growing step is performed on an octree-based voxelized representation of the input point cloud to extract major (coarse) segments. The output is then passed through a refinement process. As part of this, there are two competing factors related to voxel size selection. To balance the constraints, an adaptive octree is created in two stages. Empirical studies on real terrestrial and airborne laser scanning data for complex buildings and an urban setting show the proposed approach to be at least an order of magnitude faster when compared to a conventional region growing method and able to incorporate semantic-based feature criteria, while achieving precision, recall, and fitness scores of at least 75% and as much as 95%.

  10. D Land Cover Classification Based on Multispectral LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.

  11. Voronoi-Based Curvature and Feature Estimation from Point Clouds.

    PubMed

    Mérigot, Quentin; Ovsjanikov, Maks; Guibas, Leonidas

    2011-06-01

    We present an efficient and robust method for extracting curvature information, sharp features, and normal directions of a piecewise smooth surface from its point cloud sampling in a unified framework. Our method is integral in nature and uses convolved covariance matrices of Voronoi cells of the point cloud which makes it provably robust in the presence of noise. We show that these matrices contain information related to curvature in the smooth parts of the surface, and information about the directions and angles of sharp edges around the features of a piecewise-smooth surface. Our method is applicable in both two and three dimensions, and can be easily parallelized, making it possible to process arbitrarily large point clouds, which was a challenge for Voronoi-based methods. In addition, we describe a Monte-Carlo version of our method, which is applicable in any dimension. We illustrate the correctness of both principal curvature information and feature extraction in the presence of varying levels of noise and sampling density on a variety of models. As a sample application, we use our feature detection method to segment point cloud samplings of piecewise-smooth surfaces.

  12. Smart learning services based on smart cloud computing.

    PubMed

    Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik

    2011-01-01

    Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user's behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)--smart pull, smart prospect, smart content, and smart push--concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users' needs by collecting and analyzing users' behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users' behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users.

  13. Smart Learning Services Based on Smart Cloud Computing

    PubMed Central

    Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik

    2011-01-01

    Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user’s behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)—smart pull, smart prospect, smart content, and smart push—concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users’ needs by collecting and analyzing users’ behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users’ behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users. PMID:22164048

  14. [MODEL FOR ESTIMATING STANDING HEIGHT IN MEXICAN ADULTS FOR 20-59 YEARS, BASED ON KNEE LENGTH].

    PubMed

    Mendivil Alvarado, Herminia; Villegas Valle, Rosa Consuelo; Díaz Zavala, Rolando Giovanni; Antunez Roman, Lesley E; Valencia Juillerat, Mauro E

    2015-12-01

    Currently, bone distances are used to predict standing height in adults that might not be able to achieve a correct standing position. Knee length based algorithms for estimating standing height have been proposed and designed for specific populations. However, equations for other populations may not necessarily reflect environmental and genetic factors for the group of interest. The aim of this study was to develop and validate predictive models for standing height in Mexican adults. For this purpose, 240 male and female adults aged 20 to 59 years, with no apparent spine problems were measured. We measured weight, height and knee length, using an anthropometer of our own design and a glass fiber metric measuring tape. A predictive model for each measuring instrument was developed. Model selection and development of equations were carried out by "all possible regressions and multiple regression" procedures. The predictive models for standing height by the anthropometer and by the measuring tape did not show significant differences between measured and estimated height. The R2 for the two models were 0.93 and 0.92, with a standard error of the estimator (EE) of 2.30 and 2.40 cm, for the anthropometer and the measuring tape, respectively. Both methods were acceptable in terms of concordance, accuracy and precision; however, at very high and low predicted height values, both models showed significant bias, which should be considered when applying these algorithms in different populations.

  15. Risk of Esophageal Adenocarcinoma Decreases With Height, Based on Consortium Analysis and Confirmed by Mendelian Randomization

    PubMed Central

    Thrift, Aaron P.; Risch, Harvey A.; Onstad, Lynn; Shaheen, Nicholas J.; Casson, Alan G.; Bernstein, Leslie; Corley, Douglas A.; Levine, David M.; Chow, Wong–Ho; Reid, Brian J.; Romero, Yvonne; Hardie, Laura J.; Liu, Geoffrey; Wu, Anna H.; Bird, Nigel C.; Gammon, Marilie D.; Ye, Weimin; Whiteman, David C.; Vaughan, Thomas L.

    2014-01-01

    BACKGROUND & AIMS Risks for some cancers increase with height. We investigated the relationship between height and risk of esophageal adenocarcinoma (EAC) and its precursor, Barrett’s esophagus (BE). METHODS We analyzed epidemiologic and genome-wide genomic data from individuals of European ancestry in the Barrett’s and Esophageal Adenocarcinoma Consortium, from 999 cases of EAC, 2061 cases of BE, and 2168 population controls. Multivariable logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for associations between height and risks of EAC and BE. We performed a Mendelian randomization analysis to estimate an unconfounded effect of height on EAC and BE using a genetic risk score derived from 243 genetic variants associated with height as an instrumental variable. RESULTS Height was associated inversely with EAC (per 10-cm increase in height: OR, 0.70; 95% CI, 0.62–0.79 for men and OR, 0.57; 95% CI 0.40–0.80 for women) and BE (per 10-cm increase in height: OR, 0.69; 95% CI, 0.62–0.77 for men and OR, 0.61; 95% CI, 0.48–0.77 for women). The risk estimates were consistent across strata of age, education level, smoking, gastroesophageal reflux symptoms, body mass index, and weight. Mendelian randomization analysis yielded results quantitatively similar to those from the conventional epidemiologic analysis. CONCLUSIONS Height is associated inversely with risks of EAC and BE. Results from the Mendelian randomization study showed that the inverse association observed did not result from confounding factors. Mechanistic studies of the effect of height on EAC and BE are warranted; height could have utility in clinical risk stratification. PMID:24530603

  16. Designing the Cloud-based DOE Systems Biology Knowledgebase

    SciTech Connect

    Lansing, Carina S.; Liu, Yan; Yin, Jian; Corrigan, Abigail L.; Guillen, Zoe C.; Kleese van Dam, Kerstin; Gorton, Ian

    2011-09-01

    Systems Biology research, even more than many other scientific domains, is becoming increasingly data-intensive. Not only have advances in experimental and computational technologies lead to an exponential increase in scientific data volumes and their complexity, but increasingly such databases themselves are providing the basis for new scientific discoveries. To engage effectively with these community resources, integrated analyses, synthesis and simulation software is needed, regularly supported by scientific workflows. In order to provide a more collaborative, community driven research environment for this heterogeneous setting, the Department of Energy (DOE) has decided to develop a federated, cloud based cyber infrastructure - the Systems Biology Knowledgebase (Kbase). Pacific Northwest National Laboratory (PNNL) with its long tradition in data intensive science lead two of the five initial pilot projects, these two focusing on defining and testing the basic federated cloud-based system architecture and develop a prototype implementation. Hereby the community wide accessibility of biological data and the capability to integrate and analyze this data within its changing research context were seen as key technical functionalities the Kbase needed to enable. In this paper we describe the results of our investigations into the design of a cloud based federated infrastructure for: (1) Semantics driven data discovery, access and integration; (2) Data annotation, publication and sharing; (3) Workflow enabled data analysis; and (4) Project based collaborative working. We describe our approach, exemplary use cases and our prototype implementation that demonstrates the feasibility of this approach.

  17. Efficient resources provisioning based on load forecasting in cloud.

    PubMed

    Hu, Rongdong; Jiang, Jingfei; Liu, Guangming; Wang, Lixin

    2014-01-01

    Cloud providers should ensure QoS while maximizing resources utilization. One optimal strategy is to timely allocate resources in a fine-grained mode according to application's actual resources demand. The necessary precondition of this strategy is obtaining future load information in advance. We propose a multi-step-ahead load forecasting method, KSwSVR, based on statistical learning theory which is suitable for the complex and dynamic characteristics of the cloud computing environment. It integrates an improved support vector regression algorithm and Kalman smoother. Public trace data taken from multitypes of resources were used to verify its prediction accuracy, stability, and adaptability, comparing with AR, BPNN, and standard SVR. Subsequently, based on the predicted results, a simple and efficient strategy is proposed for resource provisioning. CPU allocation experiment indicated it can effectively reduce resources consumption while meeting service level agreements requirements.

  18. Efficient Resources Provisioning Based on Load Forecasting in Cloud

    PubMed Central

    Hu, Rongdong; Jiang, Jingfei; Liu, Guangming; Wang, Lixin

    2014-01-01

    Cloud providers should ensure QoS while maximizing resources utilization. One optimal strategy is to timely allocate resources in a fine-grained mode according to application's actual resources demand. The necessary precondition of this strategy is obtaining future load information in advance. We propose a multi-step-ahead load forecasting method, KSwSVR, based on statistical learning theory which is suitable for the complex and dynamic characteristics of the cloud computing environment. It integrates an improved support vector regression algorithm and Kalman smoother. Public trace data taken from multitypes of resources were used to verify its prediction accuracy, stability, and adaptability, comparing with AR, BPNN, and standard SVR. Subsequently, based on the predicted results, a simple and efficient strategy is proposed for resource provisioning. CPU allocation experiment indicated it can effectively reduce resources consumption while meeting service level agreements requirements. PMID:24701160

  19. A global survey of aerosol-liquid water cloud overlap based on four years of CALIPSO-CALIOP data

    NASA Astrophysics Data System (ADS)

    Devasthale, A.; Thomas, M. A.

    2010-09-01

    The presence of aerosols over highly reflective liquid water cloud tops poses a big challenge in simulating their radiative impacts. Particularly, absorbing aerosols, such as smoke, may have significant impact in such situations and even change the sign of net radiative forcing. Until now, it was not possible to obtain information on such overlap events realistically from the existing passive satellite sensors. However, the CALIOP instrument onboard NASA's CALIPSO satellite allows us to examine these events with an unprecedented accuracy. Using four years of collocated CALIPSO 5 km Aerosol and Cloud Layer Version 3 Products (June 2006-May 2010), we quantify, for the first time, the macrophysical characteristics of overlapping aerosol and water cloud layers globally. We investigate seasonal variability in these characteristics over six latitude bands to understand the hemispheric differences. We compute a) the percentage cases when such overlap is seen globally and seasonally when all aerosol types are included (AAO case) in the analysis, b) the joint histograms of aerosol layer base height and cloud layer top height, and c) the joint histograms of aerosol and cloud geometrical thicknesses in such overlap cases. We also investigate frequency of smoke aerosol-cloud overlap (SAO case). The results show a distinct seasonality in overlap frequency in both AAO and SAO cases. Globally, the frequency is highest during JJA months in AAO case, while for the SAO case, it is highest in SON months. The seasonal mean overlap frequency can regionally exceed 20% in AAO case and 10% in SAO case. There is a tendency that the vertical separation between aerosol and cloud layers increases from high to low latitude regions in the both hemispheres. In about 5-10% cases the vertical distance between aerosol and cloud layers is less than 100 m, while about in 45-60% cases it less than a kilometer in the annual means for different latitudinal bands. The frequency of occurrence of thicker

  20. Chemical and physical influences on aerosol activation in liquid clouds: a study based on observations from the Jungfraujoch, Switzerland

    NASA Astrophysics Data System (ADS)

    Hoyle, Christopher R.; Webster, Clare S.; Rieder, Harald E.; Nenes, Athanasios; Hammer, Emanuel; Herrmann, Erik; Gysel, Martin; Bukowiecki, Nicolas; Weingartner, Ernest; Steinbacher, Martin; Baltensperger, Urs

    2016-03-01

    A simple statistical model to predict the number of aerosols which activate to form cloud droplets in warm clouds has been established, based on regression analysis of data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) at the high-altitude site Jungfraujoch (JFJ). It is shown that 79 % of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential cloud condensation nuclei (defined as number of particles larger than 80 nm in diameter), while the mean errors in the model representation may be reduced by the addition of further explanatory variables, such as the mixing ratios of O3, CO, and the height of the measurements above cloud base. The statistical model has a similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (northwest and southeast). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this statistical model is generally applicable to warm clouds under conditions where droplet formation is aerosol limited (i.e. at relatively high updraught velocities and/or relatively low aerosol number concentrations). A comparison between the statistical model and an established microphysical parametrization shows good agreement between the two and supports the conclusion that cloud droplet formation at the JFJ is predominantly controlled by the number concentration of aerosol particles.

  1. Cloud cover estimation: Use of GOES imagery in development of cloud cover data base for insolation assessment

    NASA Technical Reports Server (NTRS)

    Huning, J. R.; Logan, T. L.; Smith, J. H.

    1982-01-01

    The potential of using digital satellite data to establish a cloud cover data base for the United States, one that would provide detailed information on the temporal and spatial variability of cloud development are studied. Key elements include: (1) interfacing GOES data from the University of Wisconsin Meteorological Data Facility with the Jet Propulsion Laboratory's VICAR image processing system and IBIS geographic information system; (2) creation of a registered multitemporal GOES data base; (3) development of a simple normalization model to compensate for sun angle; (4) creation of a variable size georeference grid that provides detailed cloud information in selected areas and summarized information in other areas; and (5) development of a cloud/shadow model which details the percentage of each grid cell that is cloud and shadow covered, and the percentage of cloud or shadow opacity. In addition, comparison of model calculations of insolation with measured values at selected test sites was accomplished, as well as development of preliminary requirements for a large scale data base of cloud cover statistics.

  2. Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming

    Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and

  3. Cloud Based Metalearning System for Predictive Modeling of Biomedical Data

    PubMed Central

    Vukićević, Milan

    2014-01-01

    Rapid growth and storage of biomedical data enabled many opportunities for predictive modeling and improvement of healthcare processes. On the other side analysis of such large amounts of data is a difficult and computationally intensive task for most existing data mining algorithms. This problem is addressed by proposing a cloud based system that integrates metalearning framework for ranking and selection of best predictive algorithms for data at hand and open source big data technologies for analysis of biomedical data. PMID:24892101

  4. Observations of the Interaction and/or Transport of Aerosols with Cloud or Fog during DRAGON Campaigns from AERONET Ground-Based Remote Sensing

    NASA Astrophysics Data System (ADS)

    Eck, Thomas; Holben, Brent; Schafer, Joel; Giles, David; Kim, Jhoon; Kim, Young; Sano, Itaru; Reid, Jeffrey; Pickering, Kenneth; Crawford, James; Sinyuk, Alexander; Trevino, Nathan

    2014-05-01

    Ground-based remote sensing observations from Aerosol Robotic Network (AERONET) sun-sky radiometers have recently shown several instances where cloud-aerosol interaction had resulted in modification of aerosol properties and/or in difficulty identifying some major pollution transport events due to aerosols being imbedded in cloud systems. AERONET has established Distributed Regional Aerosol Gridded Observation Networks (DRAGON) during field campaigns that are short-term (~2-3 months) relatively dense spatial networks of ~15 to 45 sun and sky scanning photometers. Recent major DRAGON field campaigns in Japan and South Korea (Spring 2012) and California (Winter 2013) have yielded observations of aerosol transport associated with clouds and/or aerosol properties modification as a result of fog interaction. Analysis of data from the Korean and Japan DRAGON campaigns shows that major fine-mode aerosol transport events are sometimes associated with extensive cloud cover and that cloud-screening of observations often filter out significant pollution aerosol transport events. The Spectral De-convolution Algorithm (SDA) algorithm was utilized to isolate and analyze the fine-mode aerosol optical depth signal for these cases of persistent and extensive cloud cover. Additionally, extensive fog that was coincident with aerosol layer height on some days in both Korea and California resulted in large increases in fine mode aerosol radius, with a mode of cloud-processed or residual aerosol of radius ~0.4-0.5 micron sometimes observed. Cloud processed aerosol may occur much more frequently than AERONET data suggest due to inherent difficulty in observing aerosol properties near clouds from remote sensing observations. These biases of aerosols associated with clouds would likely be even greater for satellite remote sensing retrievals of aerosol properties near clouds due to 3-D effects and sub-pixel cloud contamination issues.

  5. Evaluating the Usage of Cloud-Based Collaboration Services through Teamwork

    ERIC Educational Resources Information Center

    Qin, Li; Hsu, Jeffrey; Stern, Mel

    2016-01-01

    With the proliferation of cloud computing for both organizational and educational use, cloud-based collaboration services are transforming how people work in teams. The authors investigated the determinants of the usage of cloud-based collaboration services including teamwork quality, computer self-efficacy, and prior experience, as well as its…

  6. MISR Level 3 Albedo and Cloud Versioning

    Atmospheric Science Data Center

    2016-09-07

    ... MIL3YALN MISR_AM1_CGAL Stage 2:  CLOUD - Wind Vectors, Height Histogram Stage 1:  ALBEDO - Expansive, ... Stage 2 CLOUD - Height Histogram Stage 1 CLOUD - Wind Vectors Stage 1 ALBEDO - Expansive and Restrictive Albedos ...

  7. Use of active and passive ground based remote sensors to explore cloud droplet modifications in aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Han, Zaw Thet

    We explore the potential aerosol impact on cloud optical properties which is a strong modifier of climate forcing. Previous studies have shown that increased aerosol loading can affect the cloud optical properties such as cloud optical depth and cloud droplet effective radius in rural areas, particularly at the Atmospheric Radiation Measurement, Southern Great Plain site. In this study, we attempt to observe and quantify aerosol-cloud interaction over New York City, using a combination of passive and active radiometric sensors. In particular, we look for signatures of the Twomey indirect effect which states that the droplet size of water phase clouds will decrease with increasing aerosols. We find that under certain conditions, a strong signature is found between the cloud drop effective radius and extinction and this effect is in part due to vertical wind uptake. In demonstrating the Aerosol Cloud Interaction, we use multiple approaches. For example, we derive the integrated liquid water path using both a multiband neural network and dual channel approach and show general agreement between two methods while the DC approach seems more robust. We also find that these measurements are difficult and sensitive to the position of the aerosols relative to the cloud base. As a corollary, we explore whether near surface aerosol loading can effecting the cloud by using particulate matter (PM2.5) and find that the effects are too variable to be given any statistical weight. Finally, we explore the potential of modifying our approach to remove the noisy and difficult measurement of Raman LIDAR derived extinction with calibrated LIDAR backscatter. The results seem to show a general improvement in correlation and offer the possibility of increasing the number of cases observed.

  8. Learning-based computing techniques in geoid modeling for precise height transformation

    NASA Astrophysics Data System (ADS)

    Erol, B.; Erol, S.

    2013-03-01

    Precise determination of local geoid is of particular importance for establishing height control in geodetic GNSS applications, since the classical leveling technique is too laborious. A geoid model can be accurately obtained employing properly distributed benchmarks having GNSS and leveling observations using an appropriate computing algorithm. Besides the classical multivariable polynomial regression equations (MPRE), this study attempts an evaluation of learning based computing algorithms: artificial neural networks (ANNs), adaptive network-based fuzzy inference system (ANFIS) and especially the wavelet neural networks (WNNs) approach in geoid surface approximation. These algorithms were developed parallel to advances in computer technologies and recently have been used for solving complex nonlinear problems of many applications. However, they are rather new in dealing with precise modeling problem of the Earth gravity field. In the scope of the study, these methods were applied to Istanbul GPS Triangulation Network data. The performances of the methods were assessed considering the validation results of the geoid models at the observation points. In conclusion the ANFIS and WNN revealed higher prediction accuracies compared to ANN and MPRE methods. Beside the prediction capabilities, these methods were also compared and discussed from the practical point of view in conclusions.

  9. Global aerosol effects on convective clouds

    NASA Astrophysics Data System (ADS)

    Wagner, Till; Stier, Philip

    2013-04-01

    Atmospheric aerosols affect cloud properties, and thereby the radiation balance of the planet and the water cycle. The influence of aerosols on clouds is dominated by increase of cloud droplet and ice crystal numbers (CDNC/ICNC) due to enhanced aerosols acting as cloud condensation and ice nuclei. In deep convective clouds this increase in CDNC/ICNC is hypothesised to increase precipitation because of cloud invigoration through enhanced freezing and associated increased latent heat release caused by delayed warm rain formation. Satellite studies robustly show an increase of cloud top height (CTH) and precipitation with increasing aerosol optical depth (AOD, as proxy for aerosol amount). To represent aerosol effects and study their influence on convective clouds in the global climate aerosol model ECHAM-HAM, we substitute the standard convection parameterisation, which uses one mean convective cloud for each grid column, with the convective cloud field model (CCFM), which simulates a spectrum of convective clouds, each with distinct values of radius, mixing ratios, vertical velocity, height and en/detrainment. Aerosol activation and droplet nucleation in convective updrafts at cloud base is the primary driver for microphysical aerosol effects. To produce realistic estimates for vertical velocity at cloud base we use an entraining dry parcel sub cloud model which is triggered by perturbations of sensible and latent heat at the surface. Aerosol activation at cloud base is modelled with a mechanistic, Köhler theory based, scheme, which couples the aerosols to the convective microphysics. Comparison of relationships between CTH and AOD, and precipitation and AOD produced by this novel model and satellite based estimates show general agreement. Through model experiments and analysis of the model cloud processes we are able to investigate the main drivers for the relationship between CTH / precipitation and AOD.

  10. Cloud-Based Model Calibration Using OpenStudio: Preprint

    SciTech Connect

    Hale, E.; Lisell, L.; Goldwasser, D.; Macumber, D.; Dean, J.; Metzger, I.; Parker, A.; Long, N.; Ball, B.; Schott, M.; Weaver, E.; Brackney, L.

    2014-03-01

    OpenStudio is a free, open source Software Development Kit (SDK) and application suite for performing building energy modeling and analysis. The OpenStudio Parametric Analysis Tool has been extended to allow cloud-based simulation of multiple OpenStudio models parametrically related to a baseline model. This paper describes the new cloud-based simulation functionality and presents a model cali-bration case study. Calibration is initiated by entering actual monthly utility bill data into the baseline model. Multiple parameters are then varied over multiple iterations to reduce the difference between actual energy consumption and model simulation results, as calculated and visualized by billing period and by fuel type. Simulations are per-formed in parallel using the Amazon Elastic Cloud service. This paper highlights model parameterizations (measures) used for calibration, but the same multi-nodal computing architecture is available for other purposes, for example, recommending combinations of retrofit energy saving measures using the calibrated model as the new baseline.

  11. Web-based CERES Clouds QC Property Viewing Tool

    NASA Astrophysics Data System (ADS)

    Smith, R. A.

    2015-12-01

    Churngwei Chu1, Rita Smith1, Sunny Sun-Mack1, Yan Chen1, Elizabeth Heckert1, Patrick Minnis21 Science Systems and Applications, Inc., Hampton, Virginia2 NASA Langley Research Center, Hampton, Virginia This presentation will display the capabilities of a web-based CERES cloud property viewer. Aqua/Terra/NPP data will be chosen for examples. It will demonstrate viewing of cloud properties in gridded global maps, histograms, time series displays, latitudinal zonal images, binned data charts, data frequency graphs, and ISCCP plots. Images can be manipulated by the user to narrow boundaries of the map as well as color bars and value ranges, compare datasets, view data values, and more. Other atmospheric studies groups will be encouraged to put their data into the underlying NetCDF data format and view their data with the tool.

  12. Measuring the accuracy of self-reported height and weight in a community-based sample of young people

    PubMed Central

    2012-01-01

    Background Self-reported anthropometric data are commonly used to estimate prevalence of obesity in population and community-based studies. We aim to: 1) Determine whether survey participants are able and willing to self-report height and weight; 2) Assess the accuracy of self-reported compared to measured anthropometric data in a community-based sample of young people. Methods Participants (16–29 years) of a behaviour survey, recruited at a Melbourne music festival (January 2011), were asked to self-report height and weight; researchers independently weighed and measured a sub-sample. Body Mass Index was calculated and overweight/obesity classified as ≥25kg/m2. Differences between measured and self-reported values were assessed using paired t-test/Wilcoxon signed ranks test. Accurate report of height and weight were defined as <2cm and <2kg difference between self-report and measured values, respectively. Agreement between classification of overweight/obesity by self-report and measured values was assessed using McNemar’s test. Results Of 1405 survey participants, 82% of males and 72% of females self-reported their height and weight. Among 67 participants who were also independently measured, self-reported height and weight were significantly less than measured height (p=0.01) and weight (p<0.01) among females, but no differences were detected among males. Overall, 52% accurately self-reported height, 30% under-reported, and 18% over-reported; 34% accurately self-reported weight, 52% under-reported and 13% over-reported. More females (70%) than males (35%) under-reported weight (p=0.01). Prevalence of overweight/obesity was 33% based on self-report data and 39% based on measured data (p=0.16). Conclusions Self-reported measurements may underestimate weight but accurately identified overweight/obesity in the majority of this sample of young people. PMID:23170838

  13. Remote Sensing of Aerosol and Cloud Properties from Ground Based and Satellite Remote Sensors to Explore Aerosol-Cloud Interaction

    NASA Astrophysics Data System (ADS)

    He, Yuzhe

    The measurements of both aerosol and cloud properties are critical for climate studies since these mechanisms have the largest uncertainty in energy balance calculations. In addition, aerosols and clouds do not act independently but can significantly couple to each other. It is clear that being able to quantify these interactions is crucial to climate models. While there are many possible aerosol-cloud interactions, we limit our investigation to the Twomey indirect effect which relates how aerosols can modify the physical properties of clouds thereby changing the radiative properties. Verifying and quantifying such mechanisms on a global scale requires accurate measurements of both aerosols and clouds from satellites. Unfortunately, assessing this mechanism has been very difficult from satellites since both aerosols and cloud properties would have to be simultaneously measured. Therefore, only statistical approaches have been tried but it is easy to see that such approaches will tend to obscure the interpretation of local interaction mechanisms. In this thesis, we investigate the potential of both satellites and ground based approaches to measure Aerosol Cloud Interaction parameters. After assessing the limitations of satellite based approaches, we focus on the use of ground based remote sensing using a combination of Lidar, Microwave radiometry, Doppler Lidar and sky radiometry. This instrumentation suite offers a more direct approach that can probe the properties of both aerosols and clouds simultaneously allowing us to investigate real time aerosol-cloud processes which occur on time scale < 1 minute. To this end, we first provide a thorough description of the multi-sensor approach and how it can be implemented including a sensitivity analysis taking into account both atmospheric and surface variability as well as uncertainty in both the Liquid Water Path (LWP) and diffuse transmittance measurements. In addition, we use the Southern Great Plain (SGP) data to

  14. Scattering height estimation using scintillating Wide Area Augmentation System/Satellite Based Augmentation System and GPS satellite signals

    NASA Astrophysics Data System (ADS)

    Cerruti, A. P.; Ledvina, B. M.; Kintner, P. M.

    2006-12-01

    An experiment to measure equatorial amplitude scintillations on the geostationary Wide Area Augmentation System (WAAS) Satellite Based Augmentation System (SBAS) signal was conducted in Cachoeira Paulista (22.70°S, 45.01°W geographic coordinates; -17.74°N, 21.74°E geomagnetic coordinates), Brazil from December 2003 through February 2004. The purpose of this paper is to estimate the scattering height of the irregularities using the WAAS signal scintillations as compared to nearby Global Positioning System (GPS) signal scintillations. Estimating the scattering height is important because the calculated zonal drift velocity of the irregularities using the measured scintillation pattern velocity on the ground is height dependent. Accurate height estimation is also required if one wishes to develop phase screen scintillation models. The difference in the pattern velocities is due to the different signal puncture point velocities with respect to the ionospheric drift. Two east-west receivers are used to measure the scintillation pattern drift velocity and to compare the results of the geostationary WAAS satellite signal to that of a GPS satellite signal, which has a nonzero ionospheric signal puncture point velocity. By varying the assumed scattering height for the measurements from the nearby GPS signal, the zonal velocity measurements from the GPS scintillations can be matched to those of the WAAS scintillations, and a scattering height estimate can be made. When the puncture points have minimal separation, the inferred ionospheric irregularity zonal velocities should be equal. On the two nights for which data are available, scattering height estimates of 669 ± 209 km for the first night and 388 ± 139 km for the second night were obtained. On the second night, the reported mean hmF2 as calculated using a collocated Digisonde was 385 ± 17 km over the same period as the GPS/WAAS scattering height estimate. The geometry of this experiment was not optimal, but

  15. Earthquake Scenario-Based Tsunami Wave Heights in the Eastern Mediterranean and Connected Seas

    NASA Astrophysics Data System (ADS)

    Necmioglu, Ocal; Özel, Nurcan Meral

    2015-12-01

    We identified a set of tsunami scenario input parameters in a 0.5° × 0.5° uniformly gridded area in the Eastern Mediterranean, Aegean (both for shallow- and intermediate-depth earthquakes) and Black Seas (only shallow earthquakes) and calculated tsunami scenarios using the SWAN-Joint Research Centre (SWAN-JRC) code ( Mader 2004; Annunziato 2007) with 2-arcmin resolution bathymetry data for the range of 6.5—Mwmax with an Mw increment of 0.1 at each grid in order to realize a comprehensive analysis of tsunami wave heights from earthquakes originating in the region. We defined characteristic earthquake source parameters from a compiled set of sources such as existing moment tensor catalogues and various reference studies, together with the Mwmax assigned in the literature, where possible. Results from 2,415 scenarios show that in the Eastern Mediterranean and its connected seas (Aegean and Black Sea), shallow earthquakes with Mw ≥ 6.5 may result in coastal wave heights of 0.5 m, whereas the same wave height would be expected only from intermediate-depth earthquakes with Mw ≥ 7.0 . The distribution of maximum wave heights calculated indicate that tsunami wave heights up to 1 m could be expected in the northern Aegean, whereas in the Black Sea, Cyprus, Levantine coasts, northern Libya, eastern Sicily, southern Italy, and western Greece, up to 3-m wave height could be possible. Crete, the southern Aegean, and the area between northeast Libya and Alexandria (Egypt) is prone to maximum tsunami wave heights of >3 m. Considering that calculations are performed at a minimum bathymetry depth of 20 m, these wave heights may, according to Green's Law, be amplified by a factor of 2 at the coastline. The study can provide a basis for detailed tsunami hazard studies in the region.

  16. Cloud-based distributed control of unmanned systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Kim B.; Powell, Darren N.; Yetman, Charles; August, Michael; Alderson, Susan L.; Raney, Christopher J.

    2015-05-01

    Enabling warfighters to efficiently and safely execute dangerous missions, unmanned systems have been an increasingly valuable component in modern warfare. The evolving use of unmanned systems leads to vast amounts of data collected from sensors placed on the remote vehicles. As a result, many command and control (C2) systems have been developed to provide the necessary tools to perform one of the following functions: controlling the unmanned vehicle or analyzing and processing the sensory data from unmanned vehicles. These C2 systems are often disparate from one another, limiting the ability to optimally distribute data among different users. The Space and Naval Warfare Systems Center Pacific (SSC Pacific) seeks to address this technology gap through the UxV to the Cloud via Widgets project. The overarching intent of this three year effort is to provide three major capabilities: 1) unmanned vehicle control using an open service oriented architecture; 2) data distribution utilizing cloud technologies; 3) a collection of web-based tools enabling analysts to better view and process data. This paper focuses on how the UxV to the Cloud via Widgets system is designed and implemented by leveraging the following technologies: Data Distribution Service (DDS), Accumulo, Hadoop, and Ozone Widget Framework (OWF).

  17. Testing a polarimetric cloud imager aboard research vessel Polarstern: comparison of color-based and polarimetric cloud detection algorithms.

    PubMed

    Barta, András; Horváth, Gábor; Horváth, Ákos; Egri, Ádám; Blahó, Miklós; Barta, Pál; Bumke, Karl; Macke, Andreas

    2015-02-10

    Cloud cover estimation is an important part of routine meteorological observations. Cloudiness measurements are used in climate model evaluation, nowcasting solar radiation, parameterizing the fluctuations of sea surface insolation, and building energy transfer models of the atmosphere. Currently, the most widespread ground-based method to measure cloudiness is based on analyzing the unpolarized intensity and color distribution of the sky obtained by digital cameras. As a new approach, we propose that cloud detection can be aided by the additional use of skylight polarization measured by 180° field-of-view imaging polarimetry. In the fall of 2010, we tested such a novel polarimetric cloud detector aboard the research vessel Polarstern during expedition ANT-XXVII/1. One of our goals was to test the durability of the measurement hardware under the extreme conditions of a trans-Atlantic cruise. Here, we describe the instrument and compare the results of several different cloud detection algorithms, some conventional and some newly developed. We also discuss the weaknesses of our design and its possible improvements. The comparison with cloud detection algorithms developed for traditional nonpolarimetric full-sky imagers allowed us to evaluate the added value of polarimetric quantities. We found that (1) neural-network-based algorithms perform the best among the investigated schemes and (2) global information (the mean and variance of intensity), nonoptical information (e.g., sun-view geometry), and polarimetric information (e.g., the degree of polarization) improve the accuracy of cloud detection, albeit slightly.

  18. Cloud Study Investigators: Using NASA's CERES S'COOL in Problem-Based Learning

    ERIC Educational Resources Information Center

    Moore, Susan; Popiolkowski, Gary

    2011-01-01

    1This article describes how, by incorporating NASA's Students' Cloud Observations On-Line (S'COOL) project into a problem-based learning (PBL) activity, middle school students are engaged in authentic scientific research where they observe and record information about clouds and contribute ground truth data to NASA's Clouds and the Earth's…

  19. CloudSat Preps for Launch at Vandenberg Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The CloudSat spacecraft sits encapsulated within its Boeing Delta launch vehicle dual payload attach fitting at Vandenberg Air Force Base, Calif. CloudSat will share its ride to orbit late next month with NASA's CALIPSO spacecraft. The two spacecraft are designed to reveal the secrets of clouds and aerosols.

  20. An efficient framework for modeling clouds from Landsat8 images

    NASA Astrophysics Data System (ADS)

    Yuan, Chunqiang; Guo, Jing

    2015-03-01

    Cloud plays an important role in creating realistic outdoor scenes for video game and flight simulation applications. Classic methods have been proposed for cumulus cloud modeling. However, these methods are not flexible for modeling large cloud scenes with hundreds of clouds in that the user must repeatedly model each cloud and adjust its various properties. This paper presents a meteorologically based method to reconstruct cumulus clouds from high resolution Landsat8 satellite images. From these input satellite images, the clouds are first segmented from the background. Then, the cloud top surface is estimated from the temperature of the infrared image. After that, under a mild assumption of flat base for cumulus cloud, the base height of each cloud is computed by averaging the top height for pixels on the cloud edge. Then, the extinction is generated from the visible image. Finally, we enrich the initial shapes of clouds using a fractal method and represent the recovered clouds as a particle system. The experimental results demonstrate our method can yield realistic cloud scenes resembling those in the satellite images.

  1. Importance of aggregation and small ice crystals in cirrus clouds, based on observations and an ice particle growth model

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Chai, Steven K.; Dong, Yayi; Arnott, W. Patrick; Hallett, John

    1993-01-01

    The 1 November 1986 FIRE I case study was used to test an ice particle growth model which predicts bimodal size spectra in cirrus clouds. The model was developed from an analytically based model which predicts the height evolution of monomodal ice particle size spectra from the measured ice water content (IWC). Size spectra from the monomodal model are represented by a gamma distribution, N(D) = N(sub o)D(exp nu)exp(-lambda D), where D = ice particle maximum dimension. The slope parameter, lambda, and the parameter N(sub o) are predicted from the IWC through the growth processes of vapor diffusion and aggregation. The model formulation is analytical, computationally efficient, and well suited for incorporation into larger models. The monomodal model has been validated against two other cirrus cloud case studies. From the monomodal size spectra, the size distributions which determine concentrations of ice particles less than about 150 mu m are predicted.

  2. Climate change signal and uncertainty in CMIP5-based projections of global ocean surface wave heights

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolan L.; Feng, Yang; Swail, Val R.

    2015-05-01

    This study uses the analysis of variance approaches to quantify the climate change signal and uncertainty in multimodel ensembles of statistical simulations of significant wave height (Hs), which are based on the CMIP5 historical, RCP4.5 and RCP8.5 forcing scenario simulations of sea level pressure. Here the signal of climate change refers to the temporal variations caused by the prescribed forcing. "Significant" means "significantly different from zero at 5% level." In a four-model ensemble of Hs simulations, the common signal—the signal that is simulated in all the four models—is found to strengthen over time. For the historical followed by RCP8.5 scenario, the common signal in annual mean Hs is found to be significant in 16.6% and 82.2% of the area by year 2005 and 2099, respectively. The global average of the variance proportion of the common signal increases from 0.75% in year 2005 to 12.0% by year 2099. The signal is strongest in the eastern tropical Pacific (ETP), featuring significant increases in both the annual mean and maximum of Hs in this region. The climate model uncertainty (i.e., intermodel variability) is significant nearly globally; its magnitude is comparable to or greater than that of the common signal in most areas, except in the ETP where the signal is much larger. In a 20-model ensemble of Hs simulations for the period 2006-2099, the model uncertainty is found to be significant globally; it is about 10 times as large as the variability between the RCP4.5 and RCP8.5 scenarios. The copyright line for this article was changed on 10 JUNE 2015 after original online publication.

  3. Exploring the relationship between a ground-based network and airborne CCN spectra observed at the cloud level

    NASA Astrophysics Data System (ADS)

    Corrigan, C.; Roberts, G. C.; Ritchie, J.; Creamean, J.; White, A. B.

    2011-12-01

    Cloud condensation nuclei (CCN) are aerosol particles that participate in the formation of clouds, and consequently, play a significant role in the influence of anthropogenic aerosols on atmospheric processes and climate change. Ultimately, the CCN of the most interest occupy the part of the atmosphere where cloud processes are occurring. A question arises as to whether in-cloud CCN are properly represented by the measurements of CCN at the ground level. While different locations may result in different answers depending upon local meteorology, the data set collected during CalWater 2011 may allow us to answer to what degree the ground-based observations of CCN are sufficient for evaluating cloud micro-physics over California's Central Valley and the lower slopes of the Sierra Nevada Mountains. During CalWater 2011, ground observations were performed at three different altitudes to assess the evolution of cloud-active aerosols as they were transported from sources in California's Central Valley to the lower slopes of the Sierra Nevada Mountains. CCN spectra were collected over a supersaturation range of 0.08 to 0.80%. Results from these data sets show a diurnal cycle with aerosol concentrations increasing during the afternoon and retreating during the night. In addition, a CCN instrument was placed aboard aircraft for several flights and was able to collect vertical profiles that encompassed the altitudes of the ground sites. The flight data shows a large drop in CCN concentration above the boundary layer and suggests the highest altitude ground site at China Wall ( 1540 masl)was sometimes above the Central Valley boundary layer. By using estimates of boundary layer heights over the mid-altitude site at Sugar Pine Dam (1060 masl), the events when the China Wall site is near or above the boundary layer are identified. During these events, the CCN measurements at China Wall best represent in-cloud CCN behavior. The results of this analysis may be applied towards a

  4. Entrainment and mixing mechanism in monsoon clouds

    NASA Astrophysics Data System (ADS)

    Bera, Sudarsan; Prabhakaran, Thara; Pandithurai, Govindan; Brenguier, Jean-Louis

    2015-04-01

    Entrainment and consequent mixing impacts the cloud microphysical parameters and droplet size distribution (DSD) significantly which are very important for cloud radiative properties and the mechanism for first rain drop formation. The entrainment and mixing mechanisms are investigated in this study using in situ observations in warm cumulus clouds over monsoon region. Entrainment is discussed in the framework of the homogeneous and inhomogeneous mixing concepts and their effects on cloud droplet size distribution, number concentration, liquid water content and mean radius are described. The degree of homogeneity increases with droplet number concentration and adiabatic fraction, indicating homogeneous type mixing in the cloud core where dilution is less. Inhomogeneous mixing is found to be a dominating process at cloud edges where dilution is significant. Cloud droplet size distribution (DSD) is found to shift towards lower sizes during a homogeneous mixing event in the cloud core whereas spectral width of DSD decreases due to inhomogeneous mixing at cloud edges. Droplet size spectra suggests that largest droplets are mainly formed in the less diluted cloud core while diluted cloud edges have relatively smaller droplets, so that raindrop formation occurs mainly in the core of the cloud. The origin of the entrained parcels in deep cumulus clouds is investigated using conservative thermodynamical parameters. The entrained parcels originate from a level close to the observation level or slightly below through lateral edges. Cloud edges are significantly diluted due to entrainment of sub-saturated environmental air which can penetrate several hundred meters inside the cloud before it gets mixed completely with the cloud mass. Less diluted parcels inside the cloud core originates from a level much below the cloud base height. Penetrating downdraft from cloud top is seldom observed at the observation level and strong downdrafts may be attributed to in-cloud oscillation

  5. Marine Boundary Layer Heights over the Eastern North Pacific Based on Measurements from the MAGIC Field Campaign

    NASA Astrophysics Data System (ADS)

    Lewis, E. R.

    2014-12-01

    The MAGIC field campaign, funded and operated by the ARM (Atmospheric Radiation Measurement) Climate Research Facility of the US Department of Energy, occurred between September 2012 and October, 2013 aboard the Horizon Lines cargo container ship Spirit making regular trips between Los Angeles, CA and Honolulu, HI. Along this route, which lies very near the GPCI (GCSS Pacific Cross-section Intercomparison) transect, the predominant cloud regime changes from stratocumulus near the California coast to trade-wind cumulus near Hawaii. The transition between these two regimes is poorly understood and not accurately represented in models. The goal of MAGIC was to acquire statistic of this transition and thus improve its representation in models by making repeated transects through this region and measuring properties of clouds and precipitation, aerosols, radiation, and atmospheric structure. To achieve these goals, the Second ARM Mobile Facility (AMF2) was deployed on the Horizon Spiritas it ran its regular route between Los Angeles and Honolulu. AMF2 consists of three 20-foot SeaTainers and includes three radars, lidars, a ceilometer, microwave radiometers, a total sky imager, disdrometers, and other instruments to measure properties of clouds and precipitation; and other instruments to measure properties of aerosols, radiation, meteorological quantities, and sea surface temperature. Two technicians accompanied the AMF2, and scientists rode the ship as observers. Radiosondes were routinely launched four times daily, and during one round trip in July, 2013, eight radiosondes were launched each day. In total, more than 550 soundings were made. MAGIC made nearly 20 round trips between Los Angeles and Honolulu (and thus nearly 40 excursions through the stratocumulus-to-cumulus transition) and spent 200 days at sea, collecting an unprecedented data set. Boundary layer heights calculated from the radiosonde data using several different algorithms, and those from other

  6. Comparison of CERES-MODIS Stratus Cloud Properties with Ground-Based Measurements at the DOE ARM Southern Great Plains Site

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Minnis Patrick; Xi, Baike; Sun-Mack, Sunny; Chen, Yan

    2008-01-01

    Overcast stratus cloud properties derived for the Clouds and the Earth's Radiant Energy system (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS cloud properties were averaged within a 30-km x 30 km box centered on the ARM SGP site. Two datasets were analyzed: all of the data (ALL) which include multilayered, single-layered, and slightly broken stratus decks and a subset, single-layered unbroken decks (SL). The CERES-MODIS effective cloud heights were determined from effective cloud temperature using a lapse rate method with the surface temperature specified as the 24-h mean surface air temperature. For SL stratus, they are, on average, within the ARM radar-lidar estimated cloud boundaries and are 0.534 +/- 0.542 km and 0.108 +/- 0.480 km lower than the cloud physical tops and centers, respectively, and are comparable for day and night observations. The mean differences and standard deviations are slightly larger for ALL data, but not statistically different to those of SL data. The MODIS-derived effective cloud temperatures are 2.7 +/- 2.4 K less than the surface-observed SL cloud center temperatures with very high correlations (0.86-0.97). Variations in the height differences are mainly caused by uncertainties in the surface air temperatures, lapse rates, and cloud-top height variability. The biases are mainly the result of the differences between effective and physical cloud top, which are governed by cloud liquid water content and viewing zenith angle, and the selected lapse rate, -7.1 K km(exp -1). Based on a total of 43 samples, the means and standard deviations of the differences between the daytime Terra and surface

  7. Cloud based, Open Source Software Application for Mitigating Herbicide Drift

    NASA Astrophysics Data System (ADS)

    Saraswat, D.; Scott, B.

    2014-12-01

    The spread of herbicide resistant weeds has resulted in the need for clearly marked fields. In response to this need, the University of Arkansas Cooperative Extension Service launched a program named Flag the Technology in 2011. This program uses color-coded flags as a visual alert of the herbicide trait technology within a farm field. The flag based program also serves to help avoid herbicide misapplication and prevent herbicide drift damage between fields with differing crop technologies. This program has been endorsed by Southern Weed Science Society of America and is attracting interest from across the USA, Canada, and Australia. However, flags have risk of misplacement or disappearance due to mischief or severe windstorms/thunderstorms, respectively. This presentation will discuss the design and development of a cloud-based, free application utilizing open-source technologies, called Flag the Technology Cloud (FTTCloud), for allowing agricultural stakeholders to color code their farm fields for indicating herbicide resistant technologies. The developed software utilizes modern web development practices, widely used design technologies, and basic geographic information system (GIS) based interactive interfaces for representing, color-coding, searching, and visualizing fields. This program has also been made compatible for a wider usability on different size devices- smartphones, tablets, desktops and laptops.

  8. Three-dimensional geospatial information service based on cloud computing

    NASA Astrophysics Data System (ADS)

    Zhai, Xi; Yue, Peng; Jiang, Liangcun; Wang, Linnan

    2014-01-01

    Cloud computing technologies can support high-performance geospatial services in various domains, such as smart city and agriculture. Apache Hadoop, an open-source software framework, can be used to build a cloud environment on commodity clusters for storage and large-scale processing of data sets. The Open Geospatial Consortium (OGC) Web 3-D Service (W3DS) is a portrayal service for three-dimensional (3-D) geospatial data. Its performance could be improved by cloud computing technologies. This paper investigates how OGC W3DS could be developed in a cloud computing environment. It adopts the Apache Hadoop as the framework to provide a cloud implementation. The design and implementation of the 3-D geospatial information cloud service is presented. The performance evaluation is performed over data retrieval tests running in a cloud platform built by Hadoop clusters. The evaluation results provide a valuable reference on providing high-performance 3-D geospatial information cloud services.

  9. An Aircraft And Radar Based Analysis Of Cloud And Precipitation Microphysics In Mid-Latitude Continental Clouds

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Kumjian, M.; Bansemer, A.; Giangrande, S. E.; Ryzhkov, A.; Toto, T.

    2014-12-01

    An observational analysis of precipitation microphysics was conducted using data obtained during the Midlatitude Continental Convective Clouds Experiment (MC3E) that took place around the Atmospheric Radiation Measurement (ARM) site in Lamont, Oklahoma from April 22- June 6, 2011. MC3E was a collaborative campaign led by the National Aeronautic and Space Administration's (NASA's) Global Precipitation Measurement (GPM) mission and the U.S. Department of Energy ARM program. MC3E provided a unique opportunity to compare in-situ data from aircraft based microphysical probes with data from polarimetric radars in the radar bright band region or melting layer. One of the primary objectives of this study was to understand how riming and aggregation affect polarimetric signatures. In depth case study analysis of cloud and precipitation microphysics was performed for two specific cases, April 27th, 2011 (A27) and May 20th, 2011 (M20). Both these cases provided coincident aircraft and radar data in extensive stratiform cloud regions. Measurements from the University of North Dakota (UND) Citation aircraft and polarimetric data from the ARM CSAPR data reveal interesting details of cloud scale processes. Observations based on data from cloud probes (2DC, CIP and HVPS) along with in-situ observations of environmental variables provide remarkable details of particle growth and cloud dynamics for both case studies. For the A27 case study, UND aircraft measurements from two successive spiral profiles through the stratiform cloud region showed a transition from a riming dominated region to an aggregation dominated region. This is supported by polarimetric data from the C-Band ARM Precipitation Radar (CSAPR ). An extensive region of trailing stratiform precipitation was sampled in the M20 case study, where the aggregation, melting, and evaporation processes were measured in detail with the in-situ microphysical instruments. Latest findings from MC3E based on this combined aircraft

  10. Scan Line Based Road Marking Extraction from Mobile LiDAR Point Clouds.

    PubMed

    Yan, Li; Liu, Hua; Tan, Junxiang; Li, Zan; Xie, Hong; Chen, Changjun

    2016-06-17

    Mobile Mapping Technology (MMT) is one of the most important 3D spatial data acquisition technologies. The state-of-the-art mobile mapping systems, equipped with laser scanners and named Mobile LiDAR Scanning (MLS) systems, have been widely used in a variety of areas, especially in road mapping and road inventory. With the commercialization of Advanced Driving Assistance Systems (ADASs) and self-driving technology, there will be a great demand for lane-level detailed 3D maps, and MLS is the most promising technology to generate such lane-level detailed 3D maps. Road markings and road edges are necessary information in creating such lane-level detailed 3D maps. This paper proposes a scan line based method to extract road markings from mobile LiDAR point clouds in three steps: (1) preprocessing; (2) road points extraction; (3) road markings extraction and refinement. In preprocessing step, the isolated LiDAR points in the air are removed from the LiDAR point clouds and the point clouds are organized into scan lines. In the road points extraction step, seed road points are first extracted by Height Difference (HD) between trajectory data and road surface, then full road points are extracted from the point clouds by moving least squares line fitting. In the road markings extraction and refinement step, the intensity values of road points in a scan line are first smoothed by a dynamic window median filter to suppress intensity noises, then road markings are extracted by Edge Detection and Edge Constraint (EDEC) method, and the Fake Road Marking Points (FRMPs) are eliminated from the detected road markings by segment and dimensionality feature-based refinement. The performance of the proposed method is evaluated by three data samples and the experiment results indicate that road points are well extracted from MLS data and road markings are well extracted from road points by the applied method. A quantitative study shows that the proposed method achieves an average

  11. Scan Line Based Road Marking Extraction from Mobile LiDAR Point Clouds.

    PubMed

    Yan, Li; Liu, Hua; Tan, Junxiang; Li, Zan; Xie, Hong; Chen, Changjun

    2016-01-01

    Mobile Mapping Technology (MMT) is one of the most important 3D spatial data acquisition technologies. The state-of-the-art mobile mapping systems, equipped with laser scanners and named Mobile LiDAR Scanning (MLS) systems, have been widely used in a variety of areas, especially in road mapping and road inventory. With the commercialization of Advanced Driving Assistance Systems (ADASs) and self-driving technology, there will be a great demand for lane-level detailed 3D maps, and MLS is the most promising technology to generate such lane-level detailed 3D maps. Road markings and road edges are necessary information in creating such lane-level detailed 3D maps. This paper proposes a scan line based method to extract road markings from mobile LiDAR point clouds in three steps: (1) preprocessing; (2) road points extraction; (3) road markings extraction and refinement. In preprocessing step, the isolated LiDAR points in the air are removed from the LiDAR point clouds and the point clouds are organized into scan lines. In the road points extraction step, seed road points are first extracted by Height Difference (HD) between trajectory data and road surface, then full road points are extracted from the point clouds by moving least squares line fitting. In the road markings extraction and refinement step, the intensity values of road points in a scan line are first smoothed by a dynamic window median filter to suppress intensity noises, then road markings are extracted by Edge Detection and Edge Constraint (EDEC) method, and the Fake Road Marking Points (FRMPs) are eliminated from the detected road markings by segment and dimensionality feature-based refinement. The performance of the proposed method is evaluated by three data samples and the experiment results indicate that road points are well extracted from MLS data and road markings are well extracted from road points by the applied method. A quantitative study shows that the proposed method achieves an average

  12. A cloud computing based 12-lead ECG telemedicine service

    PubMed Central

    2012-01-01

    Background Due to the great variability of 12-lead ECG instruments and medical specialists’ interpretation skills, it remains a challenge to deliver rapid and accurate 12-lead ECG reports with senior cardiologists’ decision making support in emergency telecardiology. Methods We create a new cloud and pervasive computing based 12-lead Electrocardiography (ECG) service to realize ubiquitous 12-lead ECG tele-diagnosis. Results This developed service enables ECG to be transmitted and interpreted via mobile phones. That is, tele-consultation can take place while the patient is on the ambulance, between the onsite clinicians and the off-site senior cardiologists, or among hospitals. Most importantly, this developed service is convenient, efficient, and inexpensive. Conclusions This cloud computing based ECG tele-consultation service expands the traditional 12-lead ECG applications onto the collaboration of clinicians at different locations or among hospitals. In short, this service can greatly improve medical service quality and efficiency, especially for patients in rural areas. This service has been evaluated and proved to be useful by cardiologists in Taiwan. PMID:22838382

  13. An expert fitness diagnosis system based on elastic cloud computing.

    PubMed

    Tseng, Kevin C; Wu, Chia-Chuan

    2014-01-01

    This paper presents an expert diagnosis system based on cloud computing. It classifies a user's fitness level based on supervised machine learning techniques. This system is able to learn and make customized diagnoses according to the user's physiological data, such as age, gender, and body mass index (BMI). In addition, an elastic algorithm based on Poisson distribution is presented to allocate computation resources dynamically. It predicts the required resources in the future according to the exponential moving average of past observations. The experimental results show that Naïve Bayes is the best classifier with the highest accuracy (90.8%) and that the elastic algorithm is able to capture tightly the trend of requests generated from the Internet and thus assign corresponding computation resources to ensure the quality of service.

  14. An Expert Fitness Diagnosis System Based on Elastic Cloud Computing

    PubMed Central

    Tseng, Kevin C.; Wu, Chia-Chuan

    2014-01-01

    This paper presents an expert diagnosis system based on cloud computing. It classifies a user's fitness level based on supervised machine learning techniques. This system is able to learn and make customized diagnoses according to the user's physiological data, such as age, gender, and body mass index (BMI). In addition, an elastic algorithm based on Poisson distribution is presented to allocate computation resources dynamically. It predicts the required resources in the future according to the exponential moving average of past observations. The experimental results show that Naïve Bayes is the best classifier with the highest accuracy (90.8%) and that the elastic algorithm is able to capture tightly the trend of requests generated from the Internet and thus assign corresponding computation resources to ensure the quality of service. PMID:24723842

  15. Cloud optical thickness retrievals from ground-based pyranometer measurements

    NASA Astrophysics Data System (ADS)

    Qiu, Jinhuan

    2006-11-01

    A method is developed to retrieve total cloud optical thickness (COT) from global solar radiation (GSR) detected by ground-based pyranometer, and approaches to input aerosol/molecular/gas parameters for COT retrievals are presented. On the basis of numerical simulations and comparative tests, main error factors of COT retrievals are analyzed, which include radiation data error, cloud inhomogeneity, uncertainties of aerosol optical parameters, and surface albedo. The retrieved COT error, caused by a -5% or 5% systematic error of the GSR measurement, is within ±0.6 and ±5.0 for COT ranges of 0-5.0 and 5-100, respectively. The AOT, the aerosol single scatter albedo (SSA), and the surface albedo are three significant parameters affecting COT retrieval accuracy. The mean SSA in the pyranometer spectral response range and the broadband surface albedo are suitably used in the retrievals. If uncertainties of AOT, SSA, and surface albedo are within ±0.1, ±0.05, and ±0.05, respectively, the retrieval accuracy is accepted for most applications. Furthermore, COTs (τPyr) from pyranometer data at two meteorological observatories are compared with COTs (τISCCP) from ISCCP and COTs (τMODIS) from MODIS. The relative standard deviations between monthly mean τPyr and τMODIS, or τPyr and τISCCP, are all less than 45.4% for both sites. The agreement among the yearly mean τPyr,τMODIS, and τISCCP is satisfactory. The absolute (relative) deviations between the yearly mean τPyr and τMODIS are within ±1.55 (8%) for both sites, and the deviations between the τPyr and τISCCP are within ±1.94 (25%). The yearly mean τPyr also agrees considerably well with τISCCP in the broken cloud case.

  16. Towards Cloud-based Asynchronous Elasticity for Iterative HPC Applications

    NASA Astrophysics Data System (ADS)

    da Rosa Righi, Rodrigo; Facco Rodrigues, Vinicius; André da Costa, Cristiano; Kreutz, Diego; Heiss, Hans-Ulrich

    2015-10-01

    Elasticity is one of the key features of cloud computing. It allows applications to dynamically scale computing and storage resources, avoiding over- and under-provisioning. In high performance computing (HPC), initiatives are normally modeled to handle bag-of-tasks or key-value applications through a load balancer and a loosely-coupled set of virtual machine (VM) instances. In the joint-field of Message Passing Interface (MPI) and tightly-coupled HPC applications, we observe the need of rewriting source codes, previous knowledge of the application and/or stop-reconfigure-and-go approaches to address cloud elasticity. Besides, there are problems related to how profit this new feature in the HPC scope, since in MPI 2.0 applications the programmers need to handle communicators by themselves, and a sudden consolidation of a VM, together with a process, can compromise the entire execution. To address these issues, we propose a PaaS-based elasticity model, named AutoElastic. It acts as a middleware that allows iterative HPC applications to take advantage of dynamic resource provisioning of cloud infrastructures without any major modification. AutoElastic provides a new concept denoted here as asynchronous elasticity, i.e., it provides a framework to allow applications to either increase or decrease their computing resources without blocking the current execution. The feasibility of AutoElastic is demonstrated through a prototype that runs a CPU-bound numerical integration application on top of the OpenNebula middleware. The results showed the saving of about 3 min at each scaling out operations, emphasizing the contribution of the new concept on contexts where seconds are precious.

  17. Ice clouds over Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Kayetha, Vinay Kumar

    Arctic clouds have been recognized long ago as one of the key elements modulating the global climate system. They have gained much interest in recent years because the availability of new continuous datasets is opening doors to explore cloud and aerosol properties as never before. This is particularly important in the light of current climate change studies that predict changing weather scenarios around the world. This research investigates the occurrence and properties of a few types of ice clouds over the Arctic region with datasets available through the Arctic Facility for Atmospheric Remote Sensing (AFARS; 64.86° N, 147.84° W). This study exclusively focuses on ice clouds that form in the upper (cirrus clouds) and midlevels of the troposphere, and that are transparent to laser pulses (visible optical depth, tau < 3.0 -- 4.0). Cirrus clouds are ice-dominated clouds that are formed in the upper levels of the troposphere and are relatively thin such that their visual appearances range from bluish to gray in color. Mid-level ice clouds are those clouds primarily composed of ice crystals forming in the midlevels of the troposphere. It is hypothesized that unlike the basic midlevel cloud type (altostratus), other varieties of midlevel ice clouds exist at times over the Arctic region. The midlevel ice clouds studied here are also transparent to laser pulses and sometimes appear as a family of cirrus clouds to a surface observer. Because of their intermediate heights of occurrence in the troposphere, these could have microphysical properties and radiative effects that are distinct from those associated with upper level ice clouds in the troposphere. A ground-based lidar dataset with visual observations for identifying cloud types collected at AFARS over eight years is used to investigate this hypothesis. Cloud types over AFARS have been identified by a surface observer (Professor Kenneth Sassen) using established characteristics traits. Essential macrophysical

  18. Distributed Dimensonality-Based Rendering of LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Brédif, M.; Vallet, B.; Ferrand, B.

    2015-08-01

    Mobile Mapping Systems (MMS) are now commonly acquiring lidar scans of urban environments for an increasing number of applications such as 3D reconstruction and mapping, urban planning, urban furniture monitoring, practicability assessment for persons with reduced mobility (PRM)... MMS acquisitions are usually huge enough to incur a usability bottleneck for the increasing number of non-expert user that are not trained to process and visualize these huge datasets through specific softwares. A vast majority of their current need is for a simple 2D visualization that is both legible on screen and printable on a static 2D medium, while still conveying the understanding of the 3D scene and minimizing the disturbance of the lidar acquisition geometry (such as lidar shadows). The users that motivated this research are, by law, bound to precisely georeference underground networks for which they currently have schematics with no or poor absolute georeferencing. A solution that may fit their needs is thus a 2D visualization of the MMS dataset that they could easily interpret and on which they could accurately match features with their user datasets they would like to georeference. Our main contribution is two-fold. First, we propose a 3D point cloud stylization for 2D static visualization that leverages a Principal Component Analysis (PCA)-like local geometry analysis. By skipping the usual and error-prone estimation of a ground elevation, this rendering is thus robust to non-flat areas and has no hard-to-tune parameters such as height thresholds. Second, we implemented the corresponding rendering pipeline so that it can scale up to arbitrary large datasets by leveraging the Spark framework and its Resilient Distributed Dataset (RDD) and Dataframe abstractions.

  19. Cloud droplet size distributions in low-level stratiform clouds

    SciTech Connect

    Miles, N.L.; Verlinde, J.; Clothiaux, E.E.

    2000-01-15

    A database of stratus cloud droplet size distribution parameters, derived from in situ data reported in the existing literature, was created, facilitating intercomparison among datasets and quantifying typical values and their variability. From the datasets, which were divided into marine and continental groups, several parameters are presented, including the total number concentration, effective diameter, mean diameter, standard deviation of the droplet diameters about the mean diameter, and liquid water content, as well as the parameters of modified gamma and lognormal distributions. In light of these results, the appropriateness of common assumptions used in remote sensing of cloud droplet size distributions is discussed. For example, vertical profiles of mean diameter, effective diameter, and liquid water content agreed qualitatively with expectations based on the current paradigm of cloud formation. Whereas parcel theory predicts that the standard deviation about the mean diameter should decrease with height, the results illustrated that the standard deviation generally increases with height. A feature common to all marine clouds was their approximately constant total number concentration profiles; however, the total number concentration profiles of continental clouds were highly variable. Without cloud condensation nuclei spectra, classification of clouds into marine and continental groups is based on indirect methods. After reclassification of four sets of measurements in the database, there was a fairly clear dichotomy between marine and continental clouds, but a great deal of variability within each classification. The relevant applications of this study lie in radiative transfer and climate issues, rather than in cloud formation and dynamics. Techniques that invert remotely sensed measurements into cloud droplet size distributions frequently rely on a priori assumptions, such as constant number concentration profiles and constant spectral width. The

  20. Using SEVIRI radiances to retrieve cloud optical properties of convective cloud systems

    NASA Astrophysics Data System (ADS)

    Müller, Jennifer; Fischer, Jürgen; Hünerbein, Anja; Deneke, Hartwig; Macke, Andreas

    2013-05-01

    In this case study the development of cloud properties (cloud optical depth, effective radius and cloud top height) during the life-cycle of a convective cloud system over Europe was analyzed. To retrieve the properties we developed a retrieval scheme based on the radiative transfer code MOMO and an optimal estimation procedure. Input data are the visible to short-wavelength infrared channels from SEVIRI. In contrast to many other retrieval schemes we used 4 channels simultaneously. Especially the 3,9μm channel provides additional information due to the fact that it measures solar reflectance and thermal emission and allows the inclusion of cloud top height into the retrieval. By using a time series of SEVIRI measurements we want to provide and examine the microphysical development of the cloud over life-time. We monitored the growth of the system and found the most active parts of the convection with the highest water content and optical depth in those regions where the cloud top height is largest, too. The effective radius of the cloud particles is largest in older regions of the cloud system, where the cloud is already decaying.

  1. Cloud-base water content measurement using single wavelength laser-radar data.

    PubMed

    Cohen, A

    1975-12-01

    Monochromatic backscattering laser-radar data are used for the determination on the number density of cloud droplets within a cumulus cloud base. The method is based upon general properties of a cloud base as derived from in situ measurements in a large variety of continental cumulus clouds. The backscatter laser profile from the cloud base is analyzed, and points with equal optical-depth values are detected in each profile. The method of detection requires no knowledge of the multiple scattering contribution, even though its effect is not neglected and is allowed to vary as a function of the optical depth. Corrections for general clouds are suggested based upon lidar measurements and analysis of the backscattering profile characteristics.

  2. Aerosol/Cloud Measurements Using Coherent Wind Doppler Lidars

    NASA Astrophysics Data System (ADS)

    Royer, Philippe; Boquet, Matthieu; Cariou, Jean-Pierre; Sauvage, Laurent; Parmentier, Rémy

    2016-06-01

    The accurate localization and characterization of aerosol and cloud layers is crucial for climate studies (aerosol indirect effect), meteorology (Planetary Boundary Layer PBL height), site monitoring (industrial emissions, mining,…) and natural hazards (thunderstorms, volcanic eruptions). LEOSPHERE has recently developed aerosol/cloud detection and characterization on WINDCUBE long range Coherent Wind Doppler Lidars (CWDL). These new features combine wind and backscatter intensity informations (Carrier-to-Noise Ratio CNR) in order to detect (aerosol/cloud base and top, PBL height) and to characterize atmospheric structures (attenuated backscatter, depolarization ratio). For each aerosol/cloud functionality the method is described, limitations are discussed and examples are given to illustrate the performances.

  3. A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra.

    SciTech Connect

    Luke,E.; Kollias, P.

    2007-08-06

    The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of clouds, or else, large errors can be introduced in the calculation of the cloud radiative fluxes. Current parameterizations of cloud water partition in liquid and ice based on temperature are characterized by large uncertainty (Curry et al., 1996; Hobbs and Rangno, 1998; Intriery et al., 2002). This is particularly important in high geographical latitudes and temperature ranges where both liquid droplets and ice crystal phases can exist (mixed-phase cloud). The mixture of phases has a large effect on cloud radiative properties, and the parameterization of mixed-phase clouds has a large impact on climate simulations (e.g., Gregory and Morris, 1996). Furthermore, the presence of both ice and liquid affects the macroscopic properties of clouds, including their propensity to precipitate. Despite their importance, mixed-phase clouds are severely understudied compared to the arguably simpler single-phase clouds. In-situ measurements in mixed-phase clouds are hindered due to aircraft icing, difficulties distinguishing hydrometeor phase, and discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson et al. 2001). Satellite-based retrievals of cloud phase in high latitudes are often hindered by the highly reflecting ice-covered ground and persistent temperature inversions. From the ground, the retrieval of mixed-phase cloud properties has been the subject of extensive research over the past 20 years using polarization lidars (e.g., Sassen et al. 1990), dual radar wavelengths (e.g., Gosset and Sauvageot 1992; Sekelsky and McIntosh, 1996), and recently radar Doppler spectra (Shupe et al. 2004). Millimeter-wavelength radars have substantially improved our ability to observe non-precipitating clouds (Kollias et al., 2007) due to their excellent

  4. Instantaneous cloud overlap statistics in the tropical area revealed by ICESat/GLAS data

    NASA Astrophysics Data System (ADS)

    Wang, Likun; Dessler, Andrew E.

    2006-08-01

    This study uses ICESat/GLAS instantaneous observations from 29 September to 18 November 2003 to investigate cloud overlap statistics between 10°S-20°N. The results show that 75.1% of profiles detect clouds: 46.5% are single layer and 28.6% multilayer clouds (cloud layers are separated by 0.5km). Using a definition of cloud type based on cloud heights and laser attenuation information, cloud overlap statistics are derived by analyzing 96.4% of the cloudy profiles. The most frequent overlap occurs between cirrus clouds and boundary layer clouds, which accounts for 31.88% of boundary clouds. 23.8% of deep convection has overlying cirrus clouds. We find that differences exist between the cloud overlap fraction from the GLAS observations and one calculated from the random overlap assumption commonly used by climate models.

  5. Aerosol-cloud interactions (ACI) viewed by satellite and ground-based remote sensing

    NASA Astrophysics Data System (ADS)

    Kim, Yoo-Jun; Kim, Byung-Gon

    2013-05-01

    Various aerosol and cloud microphysical properties have been compared and examined for several years using ground-based remote sensing data from Atmospheric Radiation Measurement (ARM), which showed that the clouds with strong above-cloud inversions are more immune to variations in the meteorological environment and the associated aerosol-cloud interactions appear to be more dominant in nearly adiabatic clouds by comparing different environmental conditions. Meanwhile, MODIS (Moderate-Resolution Imaging Spectroradiometer) and NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data from 2001 to 2008 have been analysed to understand long-term aerosol and cloud optical properties, and their relationships in East Asia. Specifically only relationships between aerosol optical depth (AOD) and cloud fraction (CF) for the low-level liquid-phase clouds exhibit the overall positive correlation, being consistent with cloud lifetime effect. The results imply that ground-based remote sensing is probably better for the study of aerosol-cloud microphysical interactions, whereas satellite remote sensing is more appropriate for the study of aerosol and cloud macroscopic interactions.

  6. The Atmospheric Infrared Sounder version 6 cloud products

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M.; Yue, Q.; Bowman, K. W.; Fetzer, E. J.; Hulley, G. C.; Liou, K. N.; Lubin, D.; Ou, S. C.; Susskind, J.; Takano, Y.; Tian, B.; Worden, J. R.

    2014-01-01

    The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter (De), and ice cloud optical thickness (τ) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of τ are found in the storm tracks and near convection in the tropics, while De is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of τ is significantly larger than for the total cloud fraction, ice cloud frequency, and De, and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.

  7. The Atmospheric Infrared Sounder Version 6 cloud products

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M.; Yue, Q.; Bowman, K. W.; Fetzer, E. J.; Hulley, G. C.; Liou, K. N.; Lubin, D.; Ou, S. C.; Susskind, J.; Takano, Y.; Tian, B.; Worden, J. R.

    2013-06-01

    The Version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field of view (FOV) resolution. Significant improvements in cloud height assignment over Version 5 are shown with pixel-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter (De), and ice cloud optical thickness (τ) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for January 2007 are presented. The largest values of τ are found in the storm tracks and near convection in the Tropics, while De is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal cycle of τ is significantly larger than for the total cloud fraction, ice cloud frequency, and De, and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over the diurnal and annual cycles, and captures variability within the mesoscale and synoptic scales at all latitudes.

  8. The Atmospheric Infrared Sounder Version 6 Cloud Products

    NASA Technical Reports Server (NTRS)

    Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M..; Yue, Q.; Bowman, K. W.; Fetzer, E. J.; Hulley, G. C.; Liou, K. N.; Lubin, D.; Ou, S. C.; Susskind, J.; Takano, Y.; Tian, B.; Worden, J. R.

    2014-01-01

    The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter D(sub e), and ice cloud optical thickness (t) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of tau are found in the storm tracks and near convection in the tropics, while D(sub e) is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of tau is significantly larger than for the total cloud fraction, ice cloud frequency, and D(sub e), and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.

  9. The retrieval of cloud-top pressure of multilayer clouds using combined measurements of MERIS and AATSR onboard ENVISAT

    NASA Astrophysics Data System (ADS)

    Lindstrot, R.; Preusker, R.; Fischer, J.

    2009-04-01

    Measurements of the Medium Resolution Imaging Spectrometer (MERIS) within the oxygen A band at 762nm are operationally used for the retrieval of cloud-top pressure. A validation with airborne LIDAR measurements revealed a high accuracy (~25hPa) of the cloud-top pressure product in case of low, single-layer clouds. However, problems arise in presence of multilayered clouds, as the single channel within the oxygen A band does not allow the identification of multiple cloud layers. The retrieved cloud height thus represents the effective single layer height, located in-between the true cloud layers. This problem can be resolved by combining MERIS observations with measurements in the thermal infrared spectral range. Since clouds are strongly absorbing at infrared wavelengths, the cloud-top temperature of even optically thin clouds can be determined and related to cloud-top pressure using the respective temperature profile. The Advanced Along Track Scanning Radiometer (AATSR) onboard ENVISAT provides radiance measurements in the thermal infrared region that can easily be combined with MERIS observations, as both are nadir viewing, imaging instruments with a similar spatial resolution of ~1km. The synergetic measurements can be used for the retrieval of the height of two cloud layers in case the upper layer is optically thin (? ? 5). The retrieval algorithm is based on the Optimal Estimation technique using radiative transfer simulations of the Matrix Operator Model (MOMO).

  10. Simulation Platform: a cloud-based online simulation environment.

    PubMed

    Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro

    2011-09-01

    For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software.

  11. A cloud-based information repository for bridge monitoring applications

    NASA Astrophysics Data System (ADS)

    Jeong, Seongwoon; Zhang, Yilan; Hou, Rui; Lynch, Jerome P.; Sohn, Hoon; Law, Kincho H.

    2016-04-01

    This paper describes an information repository to support bridge monitoring applications on a cloud computing platform. Bridge monitoring, with instrumentation of sensors in particular, collects significant amount of data. In addition to sensor data, a wide variety of information such as bridge geometry, analysis model and sensor description need to be stored. Data management plays an important role to facilitate data utilization and data sharing. While bridge information modeling (BrIM) technologies and standards have been proposed and they provide a means to enable integration and facilitate interoperability, current BrIM standards support mostly the information about bridge geometry. In this study, we extend the BrIM schema to include analysis models and sensor information. Specifically, using the OpenBrIM standards as the base, we draw on CSI Bridge, a commercial software widely used for bridge analysis and design, and SensorML, a standard schema for sensor definition, to define the data entities necessary for bridge monitoring applications. NoSQL database systems are employed for data repository. Cloud service infrastructure is deployed to enhance scalability, flexibility and accessibility of the data management system. The data model and systems are tested using the bridge model and the sensor data collected at the Telegraph Road Bridge, Monroe, Michigan.

  12. Simulation Platform: a cloud-based online simulation environment.

    PubMed

    Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro

    2011-09-01

    For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software. PMID:21741207

  13. The impact of frenulum height on strains in maxillary denture bases

    PubMed Central

    Bilhan, Hakan; Baysal, Gokhan; Sunbuloglu, Emin; Bozdag, Ergun

    2013-01-01

    PURPOSE The midline fracture of maxillary complete dentures is a frequently encountered complication. The purpose of this study was to assess the effect of frenulum height on midline strains of maxillary complete dentures. MATERIALS AND METHODS A removable maxillary complete denture was fabricated and duplicated seven times. Four different labial frenulum heights were tested for stresses occurring on the palatal cameo surface. The strains were measured with strain gauges placed on 5 different locations and the stresses were calculated. To mimic occlusal forces bilaterally 100 N of load was applied from the premolar and molar region. RESULTS A statistically significant association between the height of the labial frenulum and the calculated stresses and strains was shown (P<.05) predominantly on the midline and especially on the incisive papilla. The results showed that stress on the anterior midline of the maxillary complete denture increases with a higher labial frenulum. CONCLUSION Within the limitations of this in vitro study, it can be concluded that the stress on the anterior midline of the maxillary complete denture increases with a higher labial frenulum. Surgical or mechanical precautions should be taken to prevent short-term failure of maxillary complete dentures due to stress concentration and low cycle fatigue tendency at the labial frenulum region. PMID:24353878

  14. UAV based tree height estimation in apple orchards: potential of multiple approaches

    NASA Astrophysics Data System (ADS)

    Mejia-Aguilar, Abraham; Tomelleri, Enrico; Vilardi, Andrea; Zebisch, Marc

    2015-04-01

    Canopy height, as part of vegetation structure, is ecologically important for ecological studies on biomass, matter flows or meteorology. Measuring the growth of canopy can be undertaken by the use multiple remote sensing techniques. In this study, we firstly use data generated from an Unmanned Aerial Vehicles (UAV) with a simultaneous consumer-grade RGB and modified IR cameras, configured in nadir and multi-angle views to generate 3D models for Digital Surface Model (DSM) and Digital Terrain Models (DTM) in order to estimate tree height in apple orchards in South Tyrol, Italy. We evaluate the use of Ground Control Points (GCP) to minimize the error in scale and orientation. Then, we validate and compare the results of our primary data collection with data generated by geolocated field measurements over several selected tree species. Additionally, we compare DSM and DTM obtained from a recent 1-meter resolution LIDAR campaign (Light Detection and Ranging). The main purpose of this study is to contrast multiple estimation approaches and evaluate their utility for the estimation of canopy height, highlighting the use of UAV systems as a fast, reliable and non-expensive technique especially for small scale applications. The study is conducted in a homogenous tree canopy consisting of apple orchards located in Caldaro -South Tyrol, Italy. We end with proposing a potential low-cost and inexpensive application combining models for DSM from the UAV with DTM obtained from LIDAR for applications that should be updated frequently.

  15. Geometric Data Perturbation-Based Personal Health Record Transactions in Cloud Computing

    PubMed Central

    Balasubramaniam, S.; Kavitha, V.

    2015-01-01

    Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud. PMID:25767826

  16. Geometric data perturbation-based personal health record transactions in cloud computing.

    PubMed

    Balasubramaniam, S; Kavitha, V

    2015-01-01

    Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud. PMID:25767826

  17. Geometric data perturbation-based personal health record transactions in cloud computing.

    PubMed

    Balasubramaniam, S; Kavitha, V

    2015-01-01

    Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud.

  18. Evaluating coastal sea surface heights based on a novel sub-waveform approach using sparse representation and conditional random fields

    NASA Astrophysics Data System (ADS)

    Uebbing, Bernd; Roscher, Ribana; Kusche, Jürgen

    2016-04-01

    Satellite radar altimeters allow global monitoring of mean sea level changes over the last two decades. However, coastal regions are less well observed due to influences on the returned signal energy by land located inside the altimeter footprint. The altimeter emits a radar pulse, which is reflected at the nadir-surface and measures the two-way travel time, as well as the returned energy as a function of time, resulting in a return waveform. Over the open ocean the waveform shape corresponds to a theoretical model which can be used to infer information on range corrections, significant wave height or wind speed. However, in coastal areas the shape of the waveform is significantly influenced by return signals from land, located in the altimeter footprint, leading to peaks which tend to bias the estimated parameters. Recently, several approaches dealing with this problem have been published, including utilizing only parts of the waveform (sub-waveforms), estimating the parameters in two steps or estimating additional peak parameters. We present a new approach in estimating sub-waveforms using conditional random fields (CRF) based on spatio-temporal waveform information. The CRF piece-wise approximates the measured waveforms based on a pre-derived dictionary of theoretical waveforms for various combinations of the geophysical parameters; neighboring range gates are likely to be assigned to the same underlying sub-waveform model. Depending on the choice of hyperparameters in the CRF estimation, the classification into sub-waveforms can either be more fine or coarse resulting in multiple sub-waveform hypotheses. After the sub-waveforms have been detected, existing retracking algorithms can be applied to derive water heights or other desired geophysical parameters from particular sub-waveforms. To identify the optimal heights from the multiple hypotheses, instead of utilizing a known reference height, we apply a Dijkstra-algorithm to find the "shortest path" of all

  19. Analysis of the Security and Privacy Requirements of Cloud-Based Electronic Health Records Systems

    PubMed Central

    Fernández, Gonzalo; López-Coronado, Miguel

    2013-01-01

    Background The Cloud Computing paradigm offers eHealth systems the opportunity to enhance the features and functionality that they offer. However, moving patients’ medical information to the Cloud implies several risks in terms of the security and privacy of sensitive health records. In this paper, the risks of hosting Electronic Health Records (EHRs) on the servers of third-party Cloud service providers are reviewed. To protect the confidentiality of patient information and facilitate the process, some suggestions for health care providers are made. Moreover, security issues that Cloud service providers should address in their platforms are considered. Objective To show that, before moving patient health records to the Cloud, security and privacy concerns must be considered by both health care providers and Cloud service providers. Security requirements of a generic Cloud service provider are analyzed. Methods To study the latest in Cloud-based computing solutions, bibliographic material was obtained mainly from Medline sources. Furthermore, direct contact was made with several Cloud service providers. Results Some of the security issues that should be considered by both Cloud service providers and their health care customers are role-based access, network security mechanisms, data encryption, digital signatures, and access monitoring. Furthermore, to guarantee the safety of the information and comply with privacy policies, the Cloud service provider must be compliant with various certifications and third-party requirements, such as SAS70 Type II, PCI DSS Level 1, ISO 27001, and the US Federal Information Security Management Act (FISMA). Conclusions Storing sensitive information such as EHRs in the Cloud means that precautions must be taken to ensure the safety and confidentiality of the data. A relationship built on trust with the Cloud service provider is essential to ensure a transparent process. Cloud service providers must make certain that all security

  20. Heavy rainfall prediction applying satellite-based cloud data assimilation over land

    NASA Astrophysics Data System (ADS)

    Seto, Rie; Koike, Toshio; Rasmy, Mohamed

    2016-08-01

    To optimize flood management, it is crucial to determine whether rain will fall within a river basin. This requires very fine precision in prediction of rainfall areas. Cloud data assimilation has great potential to improve the prediction of precipitation area because it can directly obtain information on locations of rain systems. Clouds can be observed globally by satellite-based microwave remote sensing. Microwave observation also includes information of latent heat and water vapor associated with cloud amount, which enables the assimilation of not only cloud itself but also the cloud-affected atmosphere. However, it is difficult to observe clouds over land using satellite microwave remote sensing, because their emissivity is much lower than that of the land surface. To overcome this challenge, we need appropriate representation of heterogeneous land emissivity. We developed a coupled atmosphere and land data assimilation system with the Weather Research and Forecasting Model (CALDAS-WRF), which can assimilate soil moisture, vertically integrated cloud water content over land, and heat and moisture within clouds simultaneously. We applied this system to heavy rain events in Japan. Results show that the system effectively assimilated cloud signals and produced very accurate cloud and precipitation distributions. The system also accurately formed a consistent atmospheric field around the cloud. Precipitation intensity was also substantially improved by appropriately representing the local atmospheric field. Furthermore, combination of the method and operationally analyzed dynamical and moisture fields improved prediction of precipitation duration. The results demonstrate the method's promise in dramatically improving predictions of heavy rain and consequent flooding.

  1. Remote Sensing of Cloud Properties using Ground-based Measurements of Zenith Radiance

    NASA Technical Reports Server (NTRS)

    Chiu, J. Christine; Marshak, Alexander; Knyazikhin, Yuri; Wiscombe, Warren J.; Barker, Howard W.; Barnard, James C.; Luo, Yi

    2006-01-01

    An extensive verification of cloud property retrievals has been conducted for two algorithms using zenith radiances measured by the Atmospheric Radiation Measurement (ARM) Program ground-based passive two-channel (673 and 870 nm) Narrow Field-Of-View Radiometer. The underlying principle of these algorithms is that clouds have nearly identical optical properties at these wavelengths, but corresponding spectral surface reflectances (for vegetated surfaces) differ significantly. The first algorithm, the RED vs. NIR, works for a fully three-dimensional cloud situation. It retrieves not only cloud optical depth, but also an effective radiative cloud fraction. Importantly, due to one-second time resolution of radiance measurements, we are able, for the first time, to capture detailed changes in cloud structure at the natural time scale of cloud evolution. The cloud optical depths tau retrieved by this algorithm are comparable to those inferred from both downward fluxes in overcast situations and microwave brightness temperatures for broken clouds. Moreover, it can retrieve tau for thin patchy clouds, where flux and microwave observations fail to detect them. The second algorithm, referred to as COUPLED, couples zenith radiances with simultaneous fluxes to infer 2. In general, the COUPLED and RED vs. NIR algorithms retrieve consistent values of tau. However, the COUPLED algorithm is more sensitive to the accuracies of measured radiance, flux, and surface reflectance than the RED vs. NIR algorithm. This is especially true for thick overcast clouds where it may substantially overestimate z.

  2. Cloud based intelligent system for delivering health care as a service.

    PubMed

    Kaur, Pankaj Deep; Chana, Inderveer

    2014-01-01

    The promising potential of cloud computing and its convergence with technologies such as mobile computing, wireless networks, sensor technologies allows for creation and delivery of newer type of cloud services. In this paper, we advocate the use of cloud computing for the creation and management of cloud based health care services. As a representative case study, we design a Cloud Based Intelligent Health Care Service (CBIHCS) that performs real time monitoring of user health data for diagnosis of chronic illness such as diabetes. Advance body sensor components are utilized to gather user specific health data and store in cloud based storage repositories for subsequent analysis and classification. In addition, infrastructure level mechanisms are proposed to provide dynamic resource elasticity for CBIHCS. Experimental results demonstrate that classification accuracy of 92.59% is achieved with our prototype system and the predicted patterns of CPU usage offer better opportunities for adaptive resource elasticity. PMID:24139021

  3. Cloud based intelligent system for delivering health care as a service.

    PubMed

    Kaur, Pankaj Deep; Chana, Inderveer

    2014-01-01

    The promising potential of cloud computing and its convergence with technologies such as mobile computing, wireless networks, sensor technologies allows for creation and delivery of newer type of cloud services. In this paper, we advocate the use of cloud computing for the creation and management of cloud based health care services. As a representative case study, we design a Cloud Based Intelligent Health Care Service (CBIHCS) that performs real time monitoring of user health data for diagnosis of chronic illness such as diabetes. Advance body sensor components are utilized to gather user specific health data and store in cloud based storage repositories for subsequent analysis and classification. In addition, infrastructure level mechanisms are proposed to provide dynamic resource elasticity for CBIHCS. Experimental results demonstrate that classification accuracy of 92.59% is achieved with our prototype system and the predicted patterns of CPU usage offer better opportunities for adaptive resource elasticity.

  4. A Cloud Computing Based Patient Centric Medical Information System

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Henehan, Nathan; Somashekarappa, Vivek; Pandya, A. S.; Kalva, Hari; Furht, Borko

    This chapter discusses an emerging concept of a cloud computing based Patient Centric Medical Information System framework that will allow various authorized users to securely access patient records from various Care Delivery Organizations (CDOs) such as hospitals, urgent care centers, doctors, laboratories, imaging centers among others, from any location. Such a system must seamlessly integrate all patient records including images such as CT-SCANS and MRI'S which can easily be accessed from any location and reviewed by any authorized user. In such a scenario the storage and transmission of medical records will have be conducted in a totally secure and safe environment with a very high standard of data integrity, protecting patient privacy and complying with all Health Insurance Portability and Accountability Act (HIPAA) regulations.

  5. The diurnal variability of marine stratocumulus clouds

    NASA Technical Reports Server (NTRS)

    Rogers, David P.; Olsen, Lola M.

    1990-01-01

    Observations of the diurnal variation of marine stratocumulus clouds obtained during July 1987 as part of the First ISCCP Regional Experiment are described. The observations show a clear diurnal signature in the structure of the cloud-topped marine boundary layer, with a large variation in the height of the cloud base, with lower heights observed at night. The observational results are numerically simulated using a 1D second-moment turbulence-closure model of Koracin and Rogers (1990) for a hydrostatically incompressible fluid. The model results indicate that the differential heating of the cloud layer promotes mixing in the upper part of the cloud and stabilizes the lower part of the layer.

  6. An improved approach for flow-based cloud point extraction.

    PubMed

    Frizzarin, Rejane M; Rocha, Fábio R P

    2014-04-11

    Novel strategies are proposed to circumvent the main drawbacks of flow-based cloud point extraction (CPE). The surfactant-rich phase (SRP) was directly retained into the optical path of the spectrophotometric cell, thus avoiding its dilution previously to the measurement and yielding higher sensitivity. Solenoid micro-pumps were exploited to improve mixing by the pulsed flow and also to modulate the flow-rate for retention and removal of the SRP, thus avoiding the elution step, often carried out with organic solvents. The heat released and the increase of the salt concentration provided by an on-line neutralization reaction were exploited to induce the cloud point without an external heating device. These innovations were demonstrated by the spectrophotometric determination of iron, yielding a linear response from 10 to 200 μg L(-1) with a coefficient of variation of 2.3% (n=7). Detection limit and sampling rate were estimated at 5 μg L(-1) (95% confidence level) and 26 samples per hour, respectively. The enrichment factor was 8.9 and the procedure consumed only 6 μg of TAN and 390 μg of Triton X-114 per determination. At the 95% confidence level, the results obtained for freshwater samples agreed with the reference procedure and those obtained for digests of bovine muscle, rice flour, brown bread and tort lobster agreed with the certified reference values. The proposed procedure thus shows advantages in relation to previously proposed approaches for flow-based CPE, being a fast and environmental friendly alternative for on-line separation and pre-concentration.

  7. A cloud cover model based on satellite data

    NASA Technical Reports Server (NTRS)

    Somerville, P. N.; Bean, S. J.

    1980-01-01

    A model for worldwide cloud cover using a satellite data set containing infrared radiation measurements is proposed. The satellite data set containing day IR, night IR and incoming and absorbed solar radiation measurements on a 2.5 degree latitude-longitude grid covering a 45 month period was converted to estimates of cloud cover. The global area was then classified into homogeneous cloud cover regions for each of the four seasons. It is noted that the developed maps can be of use to the practicing climatologist who can obtain a considerable amount of cloud cover information without recourse to large volumes of data.

  8. Dealing with clouds from space-based ultraspectral IR observations

    NASA Astrophysics Data System (ADS)

    Zhou, D.; Smith, W.; Liu, X.; Larar, A.; Mango, S.; Huang, H.-L.

    Hyperspectral infrared sounders with nadir observations are limited by the cloud cover It is critical to detect the clouds in satellite measurements and to accurately retrieve the atmospheric and surface parameters with cloud contamination measurements An inversion scheme has been developed dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders to simultaneously retrieve surface atmospheric thermodynamic and cloud microphysical parameters A fast radiative transfer model which applies to the clouded atmosphere is used for atmospheric profile and cloud parameter retrieval A one-dimensional 1-d variational multi-variable inversion solution is used to iteratively improve the background state defined by an eigenvector-regression-retrieval The solution is iterated in order to account for non-linearity in the 1-d variational solution NPOESS Airborne Sounder Testbed -- Interferometer NAST-I retrievals are compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar CPL This work was motivated by the need to obtain solutions for atmospheric soundings from infrared radiances observed for every individual field of view regardless of cloud cover from future ultraspectral geostationary satellite sounding instruments such as the Geosynchronous Imaging Fourier Transform Spectrometer GIFTS and the Hyperspectral Environmental Suite HES However this retrieval approach can also be applied to the ultraspectral sounding instruments to fly on polar satellites such

  9. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.

    PubMed

    Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki

    2014-11-01

    Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.

  10. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.

    PubMed

    Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki

    2014-11-01

    Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask. PMID:25402920

  11. Cloud Service Solving N-Body Problem Based on Windows Azure Platform

    NASA Astrophysics Data System (ADS)

    Augustyn, Dariusz Rafał; Warchał, Łukasz

    This paper shows how to use cloud computing to solve N-body problem. It presents an idea and implementation of cloud service based on Windows Azure Platform. Clients can access cloud service via Internet over HTTP protocol. They create computation tasks supplying simulation parameters such as number of steps, time step and XML file with body definitions (initial position, mass and velocity). Presented solution uses Barnes-Hut Algorithm (based on adaptive oct tree) to reduce computation complexity form N ×N to N logN. All body interactions are computed in parallel, on worker nodes in cloud.

  12. Cloud-based large-scale air traffic flow optimization

    NASA Astrophysics Data System (ADS)

    Cao, Yi

    The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model

  13. Cloud Privacy Audit Framework: A Value-Based Design

    ERIC Educational Resources Information Center

    Coss, David Lewis

    2013-01-01

    The rapid expansion of cloud technology provides enormous capacity, which allows for the collection, dissemination and re-identification of personal information. It is the cloud's resource capabilities such as these that fuel the concern for privacy. The impetus of these concerns are not to far removed from those expressed by Mason in 1986…

  14. A Semantic Based Policy Management Framework for Cloud Computing Environments

    ERIC Educational Resources Information Center

    Takabi, Hassan

    2013-01-01

    Cloud computing paradigm has gained tremendous momentum and generated intensive interest. Although security issues are delaying its fast adoption, cloud computing is an unstoppable force and we need to provide security mechanisms to ensure its secure adoption. In this dissertation, we mainly focus on issues related to policy management and access…

  15. Coarse-fine vertical scanning based optical profiler for structured surface measurement with large step height

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Liu, Xiaojun; Lei, Zili; Li, Qian; Yang, Xiao; Chen, Liangzhou; Lu, Wenlong

    2015-02-01

    White light interference (WLI) optical profiler had been used widely for structured surface measurement. To achieve high measuring accuracy, piezoelectric ceramic (PZT) was usually used as the vertical scanning unit, which was normally less than 100um and only for small range structured surface measurement. With the development of advanced manufacturing technology, precision structured surfaces with large step height were appearing. To satisfy the measurement requirements of this kind of precision structured surfaces, WLI optical profiler with large range had to be developed. In this paper, an optical profiler was proposed, in which a coarse-fine vertical scanning system was adopted to expand its measurement range to 10mm while its resolution still at nanometer level.

  16. OpenID connect as a security service in Cloud-based diagnostic imaging systems

    NASA Astrophysics Data System (ADS)

    Ma, Weina; Sartipi, Kamran; Sharghi, Hassan; Koff, David; Bak, Peter

    2015-03-01

    The evolution of cloud computing is driving the next generation of diagnostic imaging (DI) systems. Cloud-based DI systems are able to deliver better services to patients without constraining to their own physical facilities. However, privacy and security concerns have been consistently regarded as the major obstacle for adoption of cloud computing by healthcare domains. Furthermore, traditional computing models and interfaces employed by DI systems are not ready for accessing diagnostic images through mobile devices. RESTful is an ideal technology for provisioning both mobile services and cloud computing. OpenID Connect, combining OpenID and OAuth together, is an emerging REST-based federated identity solution. It is one of the most perspective open standards to potentially become the de-facto standard for securing cloud computing and mobile applications, which has ever been regarded as "Kerberos of Cloud". We introduce OpenID Connect as an identity and authentication service in cloud-based DI systems and propose enhancements that allow for incorporating this technology within distributed enterprise environment. The objective of this study is to offer solutions for secure radiology image sharing among DI-r (Diagnostic Imaging Repository) and heterogeneous PACS (Picture Archiving and Communication Systems) as well as mobile clients in the cloud ecosystem. Through using OpenID Connect as an open-source identity and authentication service, deploying DI-r and PACS to private or community clouds should obtain equivalent security level to traditional computing model.

  17. Analysis of cloud-based solutions on EHRs systems in different scenarios.

    PubMed

    Fernández-Cardeñosa, Gonzalo; de la Torre-Díez, Isabel; López-Coronado, Miguel; Rodrigues, Joel J P C

    2012-12-01

    Nowadays with the growing of the wireless connections people can access all the resources hosted in the Cloud almost everywhere. In this context, organisms can take advantage of this fact, in terms of e-Health, deploying Cloud-based solutions on e-Health services. In this paper two Cloud-based solutions for different scenarios of Electronic Health Records (EHRs) management system are proposed. We have researched articles published between the years 2005 and 2011 about the implementation of e-Health services based on the Cloud in Medline. In order to analyze the best scenario for the deployment of Cloud Computing two solutions for a large Hospital and a network of Primary Care Health centers have been studied. Economic estimation of the cost of the implementation for both scenarios has been done via the Amazon calculator tool. As a result of this analysis two solutions are suggested depending on the scenario: To deploy a Cloud solution for a large Hospital a typical Cloud solution in which are hired just the needed services has been assumed. On the other hand to work with several Primary Care Centers it's suggested the implementation of a network, which interconnects these centers with just one Cloud environment. Finally it's considered the fact of deploying a hybrid solution: in which EHRs with images will be hosted in the Hospital or Primary Care Centers and the rest of them will be migrated to the Cloud. PMID:22492177

  18. Analysis of cloud-based solutions on EHRs systems in different scenarios.

    PubMed

    Fernández-Cardeñosa, Gonzalo; de la Torre-Díez, Isabel; López-Coronado, Miguel; Rodrigues, Joel J P C

    2012-12-01

    Nowadays with the growing of the wireless connections people can access all the resources hosted in the Cloud almost everywhere. In this context, organisms can take advantage of this fact, in terms of e-Health, deploying Cloud-based solutions on e-Health services. In this paper two Cloud-based solutions for different scenarios of Electronic Health Records (EHRs) management system are proposed. We have researched articles published between the years 2005 and 2011 about the implementation of e-Health services based on the Cloud in Medline. In order to analyze the best scenario for the deployment of Cloud Computing two solutions for a large Hospital and a network of Primary Care Health centers have been studied. Economic estimation of the cost of the implementation for both scenarios has been done via the Amazon calculator tool. As a result of this analysis two solutions are suggested depending on the scenario: To deploy a Cloud solution for a large Hospital a typical Cloud solution in which are hired just the needed services has been assumed. On the other hand to work with several Primary Care Centers it's suggested the implementation of a network, which interconnects these centers with just one Cloud environment. Finally it's considered the fact of deploying a hybrid solution: in which EHRs with images will be hosted in the Hospital or Primary Care Centers and the rest of them will be migrated to the Cloud.

  19. Extended field observations of cirrus clouds using a ground-based cloud observing system

    NASA Technical Reports Server (NTRS)

    Ackerman, Thomas P.

    1994-01-01

    The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.

  20. A Fractal Dimensional Analysis on the Cloud Shape Parameters of Cumulus over Land.

    NASA Astrophysics Data System (ADS)

    Gotoh, Kazuo; Fujii, Yasuhiko

    1998-10-01

    High-resolution Landsat thematic mapper image data were employed in the present study to estimate the influence of regional wind systems on the macrophysical properties of cumulus clouds, such as perimeter fractal dimension, orientation angle, and cloud-base height. As a case study, an image of cumulus clouds was chosen in which small- and large-sized clouds prevail over the land in the presence of local winds. Cloud extraction from backgrounds becomes difficult when the background comprises various brightnesses. Furthermore, the surface brightness of a cloud is not uniform when shadows appear on the surface. These effects contribute to errors in cloud extraction only using a simple threshold. To address these problems, technical improvements in processing, including the combination of clustering, dynamic threshold, and edge detection, are presented and shown to produce more accurate cloud outlines seen from the zenith direction.The clouds' statistical area-perimeter relation was shown to confirm that the fractal dimension of the cumuli follows the double power law: two different perimeter fractal dimensions exist for larger clouds and for smaller clouds. Correspondence of the bending point (around 0.7 km2) in the area-perimeter relation with the bending point in the area-major axis relation was also demonstrated. Analysis of cloud orientation showed that larger clouds (>0.7 km2) indicate the approximate direction of the local wind, whereas smaller clouds do not show clear tendencies in their directions, suggesting that there is a difference in formation between larger and smaller clouds. These findings suggest that in the presence of horizontal local wind, larger clouds are likely to be formed by aggregation of smaller cloud cells (unicellular clouds) during the process of alignment to become long- and roll-shaped clouds (multicellular clouds).Uneven distribution of cloud-base height was also demonstrated in this study. Clouds with higher base levels are found to

  1. Extraction of Profile Information from Cloud Contaminated Radiances. Appendixes 2

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Zhou, D. K.; Huang, H.-L.; Li, Jun; Liu, X.; Larar, A. M.

    2003-01-01

    Clouds act to reduce the signal level and may produce noise dependence on the complexity of the cloud properties and the manner in which they are treated in the profile retrieval process. There are essentially three ways to extract profile information from cloud contaminated radiances: (1) cloud-clearing using spatially adjacent cloud contaminated radiance measurements, (2) retrieval based upon the assumption of opaque cloud conditions, and (3) retrieval or radiance assimilation using a physically correct cloud radiative transfer model which accounts for the absorption and scattering of the radiance observed. Cloud clearing extracts the radiance arising from the clear air portion of partly clouded fields of view permitting soundings to the surface or the assimilation of radiances as in the clear field of view case. However, the accuracy of the clear air radiance signal depends upon the cloud height and optical property uniformity across the two fields of view used in the cloud clearing process. The assumption of opaque clouds within the field of view permits relatively accurate profiles to be retrieved down to near cloud top levels, the accuracy near the cloud top level being dependent upon the actual microphysical properties of the cloud. The use of a physically correct cloud radiative transfer model enables accurate retrievals down to cloud top levels and below semi-transparent cloud layers (e.g., cirrus). It should also be possible to assimilate cloudy radiances directly into the model given a physically correct cloud radiative transfer model using geometric and microphysical cloud parameters retrieved from the radiance spectra as initial cloud variables in the radiance assimilation process. This presentation reviews the above three ways to extract profile information from cloud contaminated radiances. NPOESS Airborne Sounder Testbed-Interferometer radiance spectra and Aqua satellite AIRS radiance spectra are used to illustrate how cloudy radiances can be used

  2. Study and Application on Cloud Covered Rate for Agroclimatical Distribution Using In Guangxi Based on Modis Data

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Zhong, Shiquan; Sun, Han; Tan, Zongkun; Li, Zheng; Ding, Meihua

    Based on analyzing of the physical characteristics of cloud and importance of cloud in agricultural production and national economy, cloud is a very important climatic resources such as temperature, precipitation and solar radiation. Cloud plays a very important role in agricultural climate division .This paper analyzes methods of cloud detection based on MODIS data in China and Abroad . The results suggest that Quanjun He method is suitable to detect cloud in Guangxi. State chart of cloud cover in Guangxi is imaged by using Quanjun He method .We find out the approach of calculating cloud covered rate by using the frequency spectrum analysis. At last, the Guangxi is obtained. Taking Rongxian County Guangxi as an example, this article analyze the preliminary application of cloud covered rate in distribution of Rong Shaddock pomelo . Analysis results indicate that cloud covered rate is closely related to quality of Rong Shaddock pomelo.

  3. 4-D display of satellite cloud images

    NASA Technical Reports Server (NTRS)

    Hibbard, William L.

    1987-01-01

    A technique has been developed to display GOES satellite cloud images in perspective over a topographical map. Cloud heights are estimated using temperatures from an infrared (IR) satellite image, surface temperature observations, and a climatological model of vertical temperature profiles. Cloud levels are discriminated from each other and from the ground using a pattern recognition algorithm based on the brightness variance technique of Coakley and Bretherton. The cloud regions found by the pattern recognizer are rendered in three-dimensional perspective over a topographical map by an efficient remap of the visible image. The visible shades are mixed with an artificial shade based on the geometry of the cloud-top surface, in order to enhance the texture of the cloud top.

  4. Measuring Ice Sheet Height with ICESat-2

    NASA Astrophysics Data System (ADS)

    Walsh, K.; Smith, B.; Neumann, T.; Hancock, D.

    2015-12-01

    ICESat-2 is NASA's next-generation laser altimeter, designed to measure changes in ice sheet height and sea ice freeboard. Over the ice sheets, it will use a continuous repeat-track pointing strategy to ensure that it accurately measures elevation changes along a set of reference tracks. Over most of the area of Earth's ice sheets, ICESat-2 will provide coverage with a track-to-track spacing better than ~3 km. The onboard ATLAS instrument will use a photon-counting approach to provide a global geolocated photon point cloud, which is then converted into surface-specific elevation data sets. In this presentation, we will outline our strategy for taking the low-level photon point cloud and turning it into measurements posted at 20 m along-track for a set of pre-defined reference points by (1) selecting groups of photon events (PEs) around each along-track point, (2) refining the initial PE selection by fitting selected PEs with an along-track segment model and eliminating outliers to the model, (3) applying histogram-based corrections to the surface height based on the residuals to the along-track segment model, (4) calculate error estimates based on estimates of relative contributions of signal and noise PEs to the observed PE count, and (5) determining the final location and surface height of the along-track segment. These measurements are then corrected for short-scale (100-200 m) across-track surface topography around the reference points to develop a time series of land ice heights. The resulting data products will allow us to measure ice sheet elevation change with a point-for-point accuracy of a few centimeters over Earth's ice sheets.

  5. Precipitable water as a predictor of LCL height

    NASA Astrophysics Data System (ADS)

    Murugavel, P.; Malap, N.; Balaji, B.; Mehajan, R. K.; Prabha, T. V.

    2016-08-01

    Based on the precipitable water observations easily available from in situ and remote sensing sensors, a simple approach to define the lifting condensation level (LCL) is proposed in this study. High-resolution radiosonde and microwave radiometer observations over peninsular Indian region during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment Integrated Ground Observational Campaign (CAIPEEX-IGOC) during the monsoon season of 2011 are used to illustrate the unique relationship. The inferences illustrate a linear relationship between the precipitable water (PW) and the LCL temperature. This relationship is especially valuable because PW is easily available as a derived parameter from various remote sensing and ground-based observations. Thus, it could be used to estimate the LCL height and perhaps also the boundary layer height. LCL height and PW correlations are established from historical radiosonde data (1984-2012). This finding could be used to illustrate the boundary layer-cloud interactions during the monsoon and is important for parameterization of boundary layer clouds in numerical models. The relationships are illustrated to be robust and seem promising to get reasonable estimates of the LCL height over other locations as well using satellite observations of PW.

  6. Cloud layer thicknesses from a combination of surface and upper-air observations

    NASA Technical Reports Server (NTRS)

    Poore, Kirk D.; Wang, Junhong; Rossow, William B.

    1995-01-01

    Cloud layer thicknesses are derived from base and top altitudes by combining 14 years (1975-1988) of surface and upper-air observations at 63 sites in the Northern Hemisphere. Rawinsonde observations are employed to determine the locations of cloud-layer top and base by testing for dewpoint temperature depressions below some threshold value. Surface observations serve as quality checks on the rawinsonde-determined cloud properties and provide cloud amount and cloud-type information. The dataset provides layer-cloud amount, cloud type, high, middle, or low height classes, cloud-top heights, base heights and layer thicknesses, covering a range of latitudes from 0 deg to 80 deg N. All data comes from land sites: 34 are located in continental interiors, 14 are near coasts, and 15 are on islands. The uncertainties in the derived cloud properties are discussed. For clouds classified by low-, mid-, and high-top altitudes, there are strong latitudinal and seasonal variations in the layer thickness only for high clouds. High-cloud layer thickness increases with latitude and exhibits different seasonal variations in different latitude zones: in summer, high-cloud layer thickness is a maximum in the Tropics but a minimum at high latitudes. For clouds classified into three types by base altitude or into six standard morphological types, latitudinal and seasonal variations in layer thickness are very small. The thickness of the clear surface layer decreases with latitude and reaches a summer minimum in the Tropics and summer maximum at higher latitudes over land, but does not vary much over the ocean. Tropical clouds occur in three base-altitude groups and the layer thickness of each group increases linearly with top altitude. Extratropical clouds exhibit two groups, one with layer thickness proportional to their cloud-top altitude and one with small (less than or equal to 1000 m) layer thickness independent of cloud-top altitude.

  7. Forecasting maximum wave height at selected sites based on high resolution hindcast modeling and local adaptation techniques

    NASA Astrophysics Data System (ADS)

    Kalogeri, Christina; Galanis, George; Kallos, George

    2014-05-01

    Extreme wave heights play a major role in many deep offshore and coastal activities today. As a result, it is of significant importance to understand and accurately simulate their behavior. The lack of a dense in-situ and remote sensing observational network implies non trivial difficulties in this framework. A way out can be given by the utilization of high resolution third generation spectral wave models that incorporate advanced formulations for the estimation of maximum wave height conditions along with local adaptation techniques which can simulate in a credible way the non-frequent values for a specific area. For this study, a 10-year (2001-2010) hourly high resolution dataset of the main metocean parameters that covers the entire European coastline with a resolution of 5km, developed by the Atmospheric Modeling and Weather Forecasting Group of the National and Kapodistrian University of Athens in the framework of the FP7 project MARINA Platform (http://www.marina-platform.info/index.aspx) was utilized. The hindcast wave data, based on the latest version of the wave model WAM, in conjunction with non-conventional statistical methods and available buoy measurements for selected locations in the Spanish coastline formed an integrated system able to provide accurate maximum wave height estimations taking into consideration the climatological characteristics of the area.

  8. A cloud based architecture to support Electronic Health Record.

    PubMed

    Zangara, Gianluca; Corso, Pietro Paolo; Cangemi, Francesco; Millonzi, Filippo; Collova, Francesco; Scarlatella, Antonio

    2014-01-01

    We introduce a novel framework of electronic healthcare enabled by a Cloud platform able to host both Hospital Information Systems (HIS) and Electronic Medical Record (EMR) systems and implement an innovative model of Electronic Health Record (EHR) that is not only patient-oriented but also supports a better governance of the whole healthcare system. The proposed EHR model adopts the state of the art of the Cloud technologies, being able to join the different clinical data of the patient stored within the HISs and EMRs either placed into a local Data Center or hosted into a Cloud Platform enabling new directions of data analysis. PMID:25488244

  9. Trust-Enhanced Cloud Service Selection Model Based on QoS Analysis.

    PubMed

    Pan, Yuchen; Ding, Shuai; Fan, Wenjuan; Li, Jing; Yang, Shanlin

    2015-01-01

    Cloud computing technology plays a very important role in many areas, such as in the construction and development of the smart city. Meanwhile, numerous cloud services appear on the cloud-based platform. Therefore how to how to select trustworthy cloud services remains a significant problem in such platforms, and extensively investigated owing to the ever-growing needs of users. However, trust relationship in social network has not been taken into account in existing methods of cloud service selection and recommendation. In this paper, we propose a cloud service selection model based on the trust-enhanced similarity. Firstly, the direct, indirect, and hybrid trust degrees are measured based on the interaction frequencies among users. Secondly, we estimate the overall similarity by combining the experience usability measured based on Jaccard's Coefficient and the numerical distance computed by Pearson Correlation Coefficient. Then through using the trust degree to modify the basic similarity, we obtain a trust-enhanced similarity. Finally, we utilize the trust-enhanced similarity to find similar trusted neighbors and predict the missing QoS values as the basis of cloud service selection and recommendation. The experimental results show that our approach is able to obtain optimal results via adjusting parameters and exhibits high effectiveness. The cloud services ranking by our model also have better QoS properties than other methods in the comparison experiments.

  10. Trust-Enhanced Cloud Service Selection Model Based on QoS Analysis

    PubMed Central

    Pan, Yuchen; Ding, Shuai; Fan, Wenjuan; Li, Jing; Yang, Shanlin

    2015-01-01

    Cloud computing technology plays a very important role in many areas, such as in the construction and development of the smart city. Meanwhile, numerous cloud services appear on the cloud-based platform. Therefore how to how to select trustworthy cloud services remains a significant problem in such platforms, and extensively investigated owing to the ever-growing needs of users. However, trust relationship in social network has not been taken into account in existing methods of cloud service selection and recommendation. In this paper, we propose a cloud service selection model based on the trust-enhanced similarity. Firstly, the direct, indirect, and hybrid trust degrees are measured based on the interaction frequencies among users. Secondly, we estimate the overall similarity by combining the experience usability measured based on Jaccard’s Coefficient and the numerical distance computed by Pearson Correlation Coefficient. Then through using the trust degree to modify the basic similarity, we obtain a trust-enhanced similarity. Finally, we utilize the trust-enhanced similarity to find similar trusted neighbors and predict the missing QoS values as the basis of cloud service selection and recommendation. The experimental results show that our approach is able to obtain optimal results via adjusting parameters and exhibits high effectiveness. The cloud services ranking by our model also have better QoS properties than other methods in the comparison experiments. PMID:26606388

  11. Trust-Enhanced Cloud Service Selection Model Based on QoS Analysis.

    PubMed

    Pan, Yuchen; Ding, Shuai; Fan, Wenjuan; Li, Jing; Yang, Shanlin

    2015-01-01

    Cloud computing technology plays a very important role in many areas, such as in the construction and development of the smart city. Meanwhile, numerous cloud services appear on the cloud-based platform. Therefore how to how to select trustworthy cloud services remains a significant problem in such platforms, and extensively investigated owing to the ever-growing needs of users. However, trust relationship in social network has not been taken into account in existing methods of cloud service selection and recommendation. In this paper, we propose a cloud service selection model based on the trust-enhanced similarity. Firstly, the direct, indirect, and hybrid trust degrees are measured based on the interaction frequencies among users. Secondly, we estimate the overall similarity by combining the experience usability measured based on Jaccard's Coefficient and the numerical distance computed by Pearson Correlation Coefficient. Then through using the trust degree to modify the basic similarity, we obtain a trust-enhanced similarity. Finally, we utilize the trust-enhanced similarity to find similar trusted neighbors and predict the missing QoS values as the basis of cloud service selection and recommendation. The experimental results show that our approach is able to obtain optimal results via adjusting parameters and exhibits high effectiveness. The cloud services ranking by our model also have better QoS properties than other methods in the comparison experiments. PMID:26606388

  12. Post-Adoption Issues Related to Cloud-Based IT Solutions: A Multi-Method Investigation

    ERIC Educational Resources Information Center

    Xiao, Xiao

    2013-01-01

    Due to their low cost of implementation and considerable elasticity, cloud-based IT solutions are being widely adopted or considered in organizations across various industries. However, such IT solutions bring forth several unique challenges--challenges that make it difficult for organizations to achieve successful utilization of cloud-based…

  13. A tree canopy height delineation method based on Morphological Reconstruction—Open Crown Decomposition

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Jing, L.; Li, Y.; Tang, Y.; Li, H.; Lin, Q.

    2016-04-01

    For the purpose of forest management, high resolution LIDAR and optical remote sensing imageries are used for treetop detection, tree crown delineation, and classification. The purpose of this study is to develop a self-adjusted dominant scales calculation method and a new crown horizontal cutting method of tree canopy height model (CHM) to detect and delineate tree crowns from LIDAR, under the hypothesis that a treetop is radiometric or altitudinal maximum and tree crowns consist of multi-scale branches. The major concept of the method is to develop an automatic selecting strategy of feature scale on CHM, and a multi-scale morphological reconstruction-open crown decomposition (MRCD) to get morphological multi-scale features of CHM by: cutting CHM from treetop to the ground; analysing and refining the dominant multiple scales with differential horizontal profiles to get treetops; segmenting LiDAR CHM using watershed a segmentation approach marked with MRCD treetops. This method has solved the problems of false detection of CHM side-surface extracted by the traditional morphological opening canopy segment (MOCS) method. The novel MRCD delineates more accurate and quantitative multi-scale features of CHM, and enables more accurate detection and segmentation of treetops and crown. Besides, the MRCD method can also be extended to high optical remote sensing tree crown extraction. In an experiment on aerial LiDAR CHM of a forest of multi-scale tree crowns, the proposed method yielded high-quality tree crown maps.

  14. Correlating Ground-Based Lightning Measurements with Ash Cloud Satellite Data from the 2010 Eruption of Eyjafjallajökull Volcano, Iceland

    NASA Astrophysics Data System (ADS)

    McMahon, N. D.; Thomas, R. J.; Pavolonis, M. J.; Sieglaff, J.; Aster, R. C.

    2012-12-01

    Airborne volcanic ash is a major aviation hazard. For example, the 2010 eruption of Eyjafjallajökull volcano in Iceland resulted in the largest air-traffic shutdown since World War II. More than 100,000 flights were grounded, stranding passengers in Europe and across the globe, and producing a multi-billion dollar economic impact. Because of the high impact on aviation, sophisticated tools are needed to provide real-time alerts, tracking, and forecasting of volcanic clouds. In an attempt address the 5-minute volcanic cloud warning criteria established by the international aviation community, an automated volcanic cloud alert system for the Geostationary Operational Environmental Satellite - R Series (GOES-R) built upon the automated ash cloud alert system for the Advanced Very High Resolution Radiometer (AVHRR) is in development. The new system will be capable of identifying ash and SO2 clouds with greater accuracy. One component of GOES-R will be a lightning mapper. To study the temporal, spatial, and physical relationships between ash clouds and lightning, and the utility of lightning detection in a real-time alert system, we analyze data collected by the Lightning Mapping Array, a ground-based lightning detection network, in conjunction with satellite data gathered by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument aboard Meteosat-9 during in the 2010 eruption of Eyjafjallajökull volcano. We correlate lightning characteristics, intensity, and distribution with plume location, height, mass loading, and effective particle radius. Lightning mapping in volcanic ash clouds potentially will allow for better characterization of the ash cloud and aid in forecasting the distribution of ash and its effects on aviation.

  15. Diagnosing causes of cloud parameterization deficiencies using ARM measurements over SGP site

    SciTech Connect

    Wu, W.; Liu, Y.; Betts, A. K.

    2010-03-15

    Decade-long continuous surface-based measurements at Great Southern Plains (SGP) collected by the US Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility are first used to evaluate the three major reanalyses (i.e., ERA-Interim, NCEP/NCAR Reanalysis I and NCEP/DOE Reanalysis II) to identify model biases in simulating surface shortwave cloud forcing and total cloud fraction. The results show large systematic lower biases in the modeled surface shortwave cloud forcing and cloud fraction from all the three reanalysis datasets. Then we focus on diagnosing the causes of these model biases using the Active Remote Sensing of Clouds (ARSCL) products (e.g., vertical distribution of cloud fraction, cloud-base and cloud-top heights, and cloud optical depth) and meteorological measurements (temperature, humidity and stability). Efforts are made to couple cloud properties with boundary processes in the diagnosis.

  16. Cloud and aerosol optics by polarized micro pulse Lidar and ground based measurements of zenith radiance

    NASA Astrophysics Data System (ADS)

    Delgadillo, Rodrigo

    Clouds impact Earth's climate through cloud transmission and reflection properties. Clouds reflect approximately 15 percent of the incoming solar radiation at the top of the atmosphere. A key cloud radiative variable is cloud optical depth, which gives information about how much light is transmitted through a cloud. Historically, remote measurements of cloud optical depth have been limited to uniform overcast conditions and had low temporal and spatial resolution. We present a novel method to measure cloud optical depth for coastal regions from spectral zenith radiance measurements for optically thin clouds, which removes some of these limitations. Our measurement site is part of South Florida's Cloud-Aerosol-Rain Observatory (CAROb), located on Virginia Key, FL (6 km from Miami). This work is based on Marshak et al.'s method for finding cloud optical depth from vegetative sites that provide a strong spectral contrast between red and near infrared surface albedo. However, given the unique nature of our site, which contains water, vegetation, beach, and urban surface types, we found no such spectral contrast at those wavelength pairs. We measured albedo, with hyperspectral resolution, for different surface types around our measurement site to estimate the effective spectral albedo for the area centered on the site with a 5km radius. From this analysis, we found the best possible albedo contrast (573.9 and 673.1 nm) for our site. We tested the derived cloud optical depth from zenith radiance at these two wavelengths against a concurrently running polarized micro pulse LIDAR (MPL) and found good agreement.

  17. Satellite-based retrieval of ice cloud properties using a semianalytical algorithm

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, A. A.; Nauss, T.

    2005-10-01

    A semianalytical algorithm for the retrieval of ice cloud properties from satellite data is presented. The new method is based on the semianalytical cloud retrieval algorithm and uses solutions of the asymptotic radiative transfer theory applicable for optically thick media. Therefore the new method is much less computer time expensive than the commonly used lookup table approaches. Usually, the cloud optical thickness and cloud effective droplet radius are reported for water and ice clouds even though both parameters are dependent on the actual crystal shape assumed in the retrieval procedures. Thus the authors propose to use the reduced optical thickness (ROT) and the particle absorption length (PAL) for the characterization of ice clouds. This implies that no a priori or climatological estimates of the particle shape/size distribution are necessary and increases the comparability of different cloud retrieval algorithms, which are built on many different distribution functions. If still necessary, the retrieved ROT and PAL can easily be transferred to values of the optical thickness and the cloud effective droplet radius by assuming any of those size distribution functions. The developed technique has been applied to data from the NASA EOS Terra Moderate Resolution Imaging Spectroradiometer sensor. The scene shows Hurricane Jeanne just before its landfall near the coast of Florida in September 2004. Both the reduced cloud optical thickness and the particle absorption length have been derived for the eye wall region.

  18. Cloud parallel processing of tandem mass spectrometry based proteomics data.

    PubMed

    Mohammed, Yassene; Mostovenko, Ekaterina; Henneman, Alex A; Marissen, Rob J; Deelder, André M; Palmblad, Magnus

    2012-10-01

    Data analysis in mass spectrometry based proteomics struggles to keep pace with the advances in instrumentation and the increasing rate of data acquisition. Analyzing this data involves multiple steps requiring diverse software, using different algorithms and data formats. Speed and performance of the mass spectral search engines are continuously improving, although not necessarily as needed to face the challenges of acquired big data. Improving and parallelizing the search algorithms is one possibility; data decomposition presents another, simpler strategy for introducing parallelism. We describe a general method for parallelizing identification of tandem mass spectra using data decomposition that keeps the search engine intact and wraps the parallelization around it. We introduce two algorithms for decomposing mzXML files and recomposing resulting pepXML files. This makes the approach applicable to different search engines, including those relying on sequence databases and those searching spectral libraries. We use cloud computing to deliver the computational power and scientific workflow engines to interface and automate the different processing steps. We show how to leverage these technologies to achieve faster data analysis in proteomics and present three scientific workflows for parallel database as well as spectral library search using our data decomposition programs, X!Tandem and SpectraST.

  19. New MISR Cloud Data

    Atmospheric Science Data Center

    2013-08-06

    ... are provided for 70% of clouds observed by MISR with vector RMS difference from atmospheric motion vectors from other sources ranging from ... m/s. Cloud top heights are provided for 80% of clouds with RMS differences of less than 1 km (the same as for the existing Level 2 Stereo ...

  20. Time development of the upper cloud edge in one-dimensional approximation based on moist thermodynamics

    NASA Astrophysics Data System (ADS)

    Rutkevich, P. B.; Rutkevych, B. P.; Golitsyn, G. S.

    2009-03-01

    It is commonly accepted, that cloud formation is caused by the humidity flux directed from the warm bottom atmospheric layers towards the cold dry heights, and the transportation mechanism in stable stratification is due to development of so-called turbulent boundary layer. The transportation of vapor can be described by buoyancy profile, and requires two significant characteristics of the atmosphere. The first is the heat and water vapor fluxes from the underlying surface which has been investigated by Smith (1988). The second is the temperature profile in the atmosphere, which is usually approximated and parameterized in various ways, because the exact solution is complicated and difficult to use. In this paper we construct a theory of three-component gas mixture, containing air, vapor, and water droplets. This model can be applied for the internal cloud region. Later we use buoyancy to investigate the dynamics of cloud formation, taking into account condensation of the water vapor inside the cloud. The obtained results suggest a typical time of 10 h required for development of intense cloud layer over a sea surface.

  1. A novel cost based model for energy consumption in cloud computing.

    PubMed

    Horri, A; Dastghaibyfard, Gh

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment.

  2. Facial plastic surgery area acquisition method based on point cloud mathematical model solution.

    PubMed

    Li, Xuwu; Liu, Fei

    2013-09-01

    It is one of the hot research problems nowadays to find a quick and accurate method of acquiring the facial plastic surgery area to provide sufficient but irredundant autologous or in vitro skin source for covering extensive wound, trauma, and burnt area. At present, the acquisition of facial plastic surgery area mainly includes model laser scanning, point cloud data acquisition, pretreatment of point cloud data, three-dimensional model reconstruction, and computation of area. By using this method, the area can be computed accurately, but it is hard to control the random error, and it requires a comparatively longer computation period. In this article, a facial plastic surgery area acquisition method based on point cloud mathematical model solution is proposed. This method applies symmetric treatment to the point cloud based on the pretreatment of point cloud data, through which the comparison diagram color difference map of point cloud error before and after symmetry is obtained. The slicing mathematical model of facial plastic area is got through color difference map diagram. By solving the point cloud data in this area directly, the facial plastic area is acquired. The point cloud data are directly operated in this method, which can accurately and efficiently complete the surgery area computation. The result of the comparative analysis shows the method is effective in facial plastic surgery area.

  3. A novel cost based model for energy consumption in cloud computing.

    PubMed

    Horri, A; Dastghaibyfard, Gh

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. PMID:25705716

  4. A shape-based segmentation method for mobile laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Dong, Zhen

    2013-07-01

    Segmentation of mobile laser point clouds of urban scenes into objects is an important step for post-processing (e.g., interpretation) of point clouds. Point clouds of urban scenes contain numerous objects with significant size variability, complex and incomplete structures, and holes or variable point densities, raising great challenges for the segmentation of mobile laser point clouds. This paper addresses these challenges by proposing a shape-based segmentation method. The proposed method first calculates the optimal neighborhood size of each point to derive the geometric features associated with it, and then classifies the point clouds according to geometric features using support vector machines (SVMs). Second, a set of rules are defined to segment the classified point clouds, and a similarity criterion for segments is proposed to overcome over-segmentation. Finally, the segmentation output is merged based on topological connectivity into a meaningful geometrical abstraction. The proposed method has been tested on point clouds of two urban scenes obtained by different mobile laser scanners. The results show that the proposed method segments large-scale mobile laser point clouds with good accuracy and computationally effective time cost, and that it segments pole-like objects particularly well.

  5. A Novel Cost Based Model for Energy Consumption in Cloud Computing

    PubMed Central

    Horri, A.; Dastghaibyfard, Gh.

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. PMID:25705716

  6. Effect of Clouds on Apertures of Space-based Air Fluorescence Detectors

    NASA Technical Reports Server (NTRS)

    Sokolsky, P.; Krizmanic, J.

    2003-01-01

    Space-based ultra-high-energy cosmic ray detectors observe fluorescence light from extensive air showers produced by these particles in the troposphere. Clouds can scatter and absorb this light and produce systematic errors in energy determination and spectrum normalization. We study the possibility of using IR remote sensing data from MODIS and GOES satellites to delimit clear areas of the atmosphere. The efficiency for detecting ultra-high-energy cosmic rays whose showers do not intersect clouds is determined for real, night-time cloud scenes. We use the MODIS SST cloud mask product to define clear pixels for cloud scenes along the equator and use the OWL Monte Carlo to generate showers in the cloud scenes. We find the efficiency for cloud-free showers with closest approach of three pixels to a cloudy pixel is 6.5% exclusive of other factors. We conclude that defining a totally cloud-free aperture reduces the sensitivity of space-based fluorescence detectors to unacceptably small levels.

  7. CALIOP-derived Smoke Plume Injection Height

    NASA Astrophysics Data System (ADS)

    Soja, A. J.; Winker, D. M.; Choi, H. D.; Fairlie, T. D.; Westberg, D. J.; Roller, C. M.; Pouliot, G.; Vaughan, M.; Pierce, T. E.; Trepte, C. R.; Rao, V.

    2014-12-01

    Biomass burning is a dominant natural and anthropogenic disturbance that feeds back to the climate system. Fire regimes, ecosystem fuels, fire severity and intensity vary widely, even within the same system, largely under the control of weather and climate. These strongly influence fire plume injection height and thus the transport of related biomass burning emissions, affecting air quality, human health and the climate system. If our knowledge of plume injection height is incorrect, transport models of those emissions will likewise be incorrect, adversely affecting our ability to analyze and predict climate feedbacks (i.e. black carbon to the Arctic, precipitation, cloud-radiation relationships) and public health (air quality forecast). Historically, plume height was based on the pioneering work of G.A. Briggs [1969; 1971] and verified with limited field campaigns. However, we currently have two satellite instruments, Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) onboard CALIPSO (afternoon overpass) and Multi-angle Imaging SpectroRadiometer (MISR) onboard TERRA (morning overpass), that can provide the statistics necessary to verify our assumptions and improve fire plume injection height estimates for use in both small- and large-scale models. We have developed a methodology to assess fire plume injection height using the Langley Trajectory Model (LaTM), CALIOP, Hazard Mapping System (HMS) smoke plume, and MODerate Resolution Imaging Spectrometer (MODIS) thermal anomaly data that is capable of generating two distinct types of verification data. A single CALIOP smoke-filled aerosol envelop can be traced back to numerous fire events, and using multiple CALIOP transects from numerous days, a daily smoke plume injection height evolution from a single fire can be defined. Additionally, we have linked the smoke plumes to ecosystems and the meteorological variables that define fire weather. In concert, CALIOP and MISR data can produce the statistical knowledge

  8. Improved maximum average correlation height filter with adaptive log base selection for object recognition

    NASA Astrophysics Data System (ADS)

    Tehsin, Sara; Rehman, Saad; Awan, Ahmad B.; Chaudry, Qaiser; Abbas, Muhammad; Young, Rupert; Asif, Afia

    2016-04-01

    Sensitivity to the variations in the reference image is a major concern when recognizing target objects. A combinational framework of correlation filters and logarithmic transformation has been previously reported to resolve this issue alongside catering for scale and rotation changes of the object in the presence of distortion and noise. In this paper, we have extended the work to include the influence of different logarithmic bases on the resultant correlation plane. The meaningful changes in correlation parameters along with contraction/expansion in the correlation plane peak have been identified under different scenarios. Based on our research, we propose some specific log bases to be used in logarithmically transformed correlation filters for achieving suitable tolerance to different variations. The study is based upon testing a range of logarithmic bases for different situations and finding an optimal logarithmic base for each particular set of distortions. Our results show improved correlation and target detection accuracies.

  9. A characterization of cloud base aerosol and associated microphysics in southeast Queensland

    NASA Astrophysics Data System (ADS)

    Tessendorf, S. A.; Arnold, C.; Bruintjes, R. T.; Axisa, D.; Peter, J.; Wilson, L.; Siems, S.; Manton, M.; May, P. T.; Stone, R.

    2009-12-01

    In response to a severe drought experienced over the past few years, the Queensland government subsequently sponsored a Cloud Seeding Research Program (CSRP) in southeast Queensland. The Queensland CSRP is a cloud seeding feasibility study conducted in the Brisbane, Australia region of southeast Queensland for the past two austral summers. In the CSRP, two Doppler radars (one with dual-polarization capabilities) and an aircraft with microphysical instrumentation and seeding capabilities were employed. The overall goal of the Queensland CSRP is to assess the impact of hygroscopic seeding on convective clouds in the region. Assessing the variety of aerosol regimes, as well as the frequency of occurrence for each regime in the CSRP domain, and studying the effectiveness of warm rain processes under each aerosol regime is crucial to assess the effectiveness of hygroscopic seeding, as well as to gain a better understanding of the nature of precipitation processes across the varying aerosol conditions in the region. The aircraft observations collected included fine through coarse mode aerosol measurements (utilizing DMA, PCASP, and FSSP instrumentation) and aerosol filter sampling to assess the composition and deliquescence of the measured aerosol. Cloud microphysical measurements included a cloud condensation nuclei (CCN) counter, and cloud droplet spectrometers and imaging probes. On each flight in the field program, the aircraft took standard measurements of cloud base aerosol and CCN, as well as the initial drop size distribution (DSD) in the cloud above cloud base. These basic measurements allowed us to build a climatology of cloud base aerosol conditions and relate them to the initial DSDs in the clouds. Our observations indicate that the domain of the southeast Queensland CSRP experienced great variations in sub-cloud aerosol conditions, even over the course of a few days, from more continental to more maritime in nature. We have run HYSPLIT back trajectories for

  10. Prediction Based Proactive Thermal Virtual Machine Scheduling in Green Clouds

    PubMed Central

    Kinger, Supriya; Kumar, Rajesh; Sharma, Anju

    2014-01-01

    Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated. PMID:24737962

  11. Ground-based Remote Sensing of Cloud Liquid Water Path

    NASA Astrophysics Data System (ADS)

    Crewell, S.; Loehnert, U.

    Within the BALTEX Cloud LIquid WAter NETwork (CLIWA-NET) measurements of cloud parameters were performed to improve/evaluate cloud parameterizations in numerical weather prediction and climate models. The key variable is the cloud liq- uid water path (LWP) which is measured by passive microwave radiometry from the ground during three two-month CLIWA-NET observational periods. Additionally to the high temporal resolution time series from the ground, LWP fields are derived from satellite measurements. During the first two campaigns a continental scale network consisting of 12 stations was established. Most stations included further cloud sen- sitive instruments like infrared radiometer and lidar ceilometer. The third campaign started with a two-week long microwave intercomparison campaign (MICAM) in Cabauw, The Netherlands, and proceeded with a regional network within a 100 by 100 km area. The presentation will focus on the accuracy of LWP derived from the ground by in- vestigating the accuracy of the microwave brightness temperature measurement and examining the LWP retrieval uncertainty. Up to now microwave radiometer are no standard instruments and the seven radiometer involved in MICAM differ in frequen- cies, bandwidths, angular resolution, integration time etc. The influence of this instru- ment specifications on the LWP retrieval will be discussed.

  12. Prediction based proactive thermal virtual machine scheduling in green clouds.

    PubMed

    Kinger, Supriya; Kumar, Rajesh; Sharma, Anju

    2014-01-01

    Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated.

  13. Prediction based proactive thermal virtual machine scheduling in green clouds.

    PubMed

    Kinger, Supriya; Kumar, Rajesh; Sharma, Anju

    2014-01-01

    Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated. PMID:24737962

  14. Global distribution of total cloud cover and cloud type amounts over the ocean

    SciTech Connect

    Warren, S.G.; Hahn, C.J.; London, J.; Chervin, R.M.; Jenne, R.L. . Dept. of Atmospheric Sciences; Colorado Univ., Boulder, CO . Cooperative Inst. for Research in Environmental Sciences; Colorado Univ., Boulder, CO . Dept. of Astrophysical, Planetary, and Atmospheric Sciences; National Center for Atmospheric Research, Boulder, CO )

    1988-12-01

    This is the fourth of a series of atlases to result from a study of the global cloud distribution from ground-based observations. The first two atlases (NCAR/TN-201+STR and NCAR/TN-241+STR) described the frequency of occurrence of each cloud type and the co-occurrence of different types, but included no information about cloud amounts. The third atlas (NCAR/TN-273+STR) described, for the land areas of the earth, the average total cloud cover and the amounts of each cloud type, and their geographical, diurnal, seasonal, and interannual variations, as well as the average base heights of the low clouds. The present atlas does the same for the ocean areas of the earth.

  15. Lidar ratio and depolarization ratio for cirrus clouds.

    PubMed

    Chen, Wei-Nai; Chiang, Chih-Wei; Nee, Jan-Bai

    2002-10-20

    We report on studies of the lidar and the depolarization ratios for cirrus clouds. The optical depth and effective lidar ratio are derived from the transmission of clouds, which is determined by comparing the backscattering signals at the cloud base and cloud top. The lidar signals were fitted to a background atmospheric density profile outside the cloud region to warrant the linear response of the return signals with the scattering media. An average lidar ratio, 29 +/- 12 sr, has been found for all clouds measured in 1999 and 2000. The height and temperature dependences ofthe lidar ratio, the optical depth, and the depolarization ratio were investigated and compared with results of LITE and PROBE. Cirrus clouds detected near the tropopause are usually optically thin and mostly subvisual. Clouds with the largest optical depths were found near 12 km with a temperature of approximately -55 degrees C. The multiple-scattering effect is considered for clouds with high optical depths, and this effect lowers the lidar ratios compared with a single-scattering condition. Lidar ratios are in the 20-40 range for clouds at heights of 12.5-15 km and are smaller than approximately 30 in height above 15 km. Clouds are usually optically thin for temperatures below approximately -65 degrees C, and in this region the optical depth tends to decrease with height. The depolarization ratio is found to increase with a height at 11-15 km and smaller than 0.3 above 16 km. The variation in the depolarization ratio with the lidar ratio was also reported. The lidar and depolarization ratios were discussed in terms of the types of hexagonal ice crystals.

  16. A Comparison of Satellite-Based Multilayered Cloud Detection Methods

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Chang, Fu-Lung; Khaiyer, Mandana M.; Ayers, Jeffrey K.; Palikonda, Rabindra; Nordeen, Michele L.; Spangenberg, Douglas A.

    2007-01-01

    Both techniques show skill in detecting multilayered clouds, but they disagree more than 50% of the time. BTD method tends to detect more ML clouds than CO2 method and has slightly higher detection accuracy. CO2 method might be better for minimizing false positives, but further study is needed. Neither method as been optimized for GOES data. BTD technique developed on AVHRR, better BTD signals & resolution. CO2 developed on MODIS, better resolution & 4 CO2 channels. Many additional comparisons with ARSCL data will be used to optimize both techniques. A combined technique will be examined using MODIS & Meteosat-8 data. After optimization, the techniques will be implemented in the ARM operational satellite cloud processing.

  17. A cloud computing based platform for sleep behavior and chronic diseases collaborative research.

    PubMed

    Kuo, Mu-Hsing; Borycki, Elizabeth; Kushniruk, Andre; Huang, Yueh-Min; Hung, Shu-Hui

    2014-01-01

    The objective of this study is to propose a Cloud Computing based platform for sleep behavior and chronic disease collaborative research. The platform consists of two main components: (1) a sensing bed sheet with textile sensors to automatically record patient's sleep behaviors and vital signs, and (2) a service-oriented cloud computing architecture (SOCCA) that provides a data repository and allows for sharing and analysis of collected data. Also, we describe our systematic approach to implementing the SOCCA. We believe that the new cloud-based platform can provide nurse and other health professional researchers located in differing geographic locations with a cost effective, flexible, secure and privacy-preserved research environment.

  18. Uncertain induction of knowledge based on cloud model in complex system simulation

    NASA Astrophysics Data System (ADS)

    Wang, Hongli

    2011-10-01

    On the key problem of ineffective representation of uncertain variables in complex system simulation, the semi-quantitative method of uncertain variable based on group decision and cloud model is proposed to process the uncertain data. Then the uncertain knowledge induction based on cloud model is proposed. The induction process and method is given in the paper. This method is combined with the merit of conversion and fusion quantitative and qualitative of cloud model in induction. Lastly the summary and future research is given at the end of study.

  19. Attribute-based point cloud visualization in support of 3-D classification

    NASA Astrophysics Data System (ADS)

    Zlinszky, András; Otepka, Johannes; Kania, Adam

    2016-04-01

    Despite the rich information available in LIDAR point attributes through full waveform recording, radiometric calibration and advanced texture metrics, LIDAR-based classification is mostly done in the raster domain. Point-based analyses such as noise removal or terrain filtering are often carried out without visual investigation of the point cloud attributes used. This is because point cloud visualization software usually handle only a limited number of pre-defined point attributes and only allow colorizing the point cloud with one of these at a time. Meanwhile, point cloud classification is rapidly evolving, and uses not only the individual attributes but combinations of these. In order to understand input data and output results better, more advanced methods for visualization are needed. Here we propose an algorithm of the OPALS software package that handles visualization of the point cloud together with its attributes. The algorithm is based on the .odm (OPALS data manager) file format that efficiently handles a large number of pre-defined point attributes and also allows the user to generate new ones. Attributes of interest can be visualized individually, by applying predefined or user-generated palettes in a simple .xml format. The colours of the palette are assigned to the points by setting the respective Red, Green and Blue attributes of the point to result in the colour pre-defined by the palette for the corresponding attribute value. The algorithm handles scaling and histogram equalization based on the distribution of the point attribute to be considered. Additionally, combinations of attributes can be visualized based on RBG colour mixing. The output dataset can be in any standard format where RGB attributes are supported and visualized with conventional point cloud viewing software. Viewing the point cloud together with its attributes allows efficient selection of filter settings and classification parameters. For already classified point clouds, a large

  20. A Principal Component-Based Radiative Transfer Forward Model (PCRTM) for Vertically in Homogeneous Cloud

    NASA Technical Reports Server (NTRS)

    Li, Hui; Liu, Xu; Yang, Ping; Kratz, David P.

    2010-01-01

    A principal-component based radiative transfer model (PCRTM) is developed for simulating the infrared spectral radiance at the top of the atmosphere (TOA). The PCRTM approach removes the redundancy in radiative transfer calculation in high resolution infrared spectra, and saves significant amount of computational time with great accuracy. In PCRTM, both ice and water clouds are treated as effective transmissivity and reflectivity stored in a pre-calculated lookup tables. These quantities are calculated using cloud single scattering properties such as cloud optical depth, cloud particle size, cloud phase, etc. The cloud can be inserted into any pressure layer in the PCRTM model (up to 100 layers). The effective temperature of each cloud layer is treated as a function of its optical depth. To test the accuracy of this approximation, the results are compared with the more rigorous DISORT model, which treats cloud as a plane parallel layer. The root-mean-square error of PCRTM, with respect to DISORT results, is generally less than 0.5 K in brightness temperature. However, the CPU time required by PCRTM was approximately two orders of magnitude less than that required by DISORT.

  1. Ground-based remote sensing of thin clouds in the Arctic

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.; Zhao, C.

    2012-11-01

    This paper describes a method for using interferometer measurements of downwelling thermal radiation to retrieve the properties of single-layer clouds. Cloud phase is determined from ratios of thermal emission in three "micro-windows" where absorption by water vapor is particularly small. Cloud microphysical and optical properties are retrieved from thermal emission in two micro-windows, constrained by the transmission through clouds of stratospheric ozone emission. Assuming a cloud does not approximate a blackbody, the estimated 95% confidence retrieval errors in effective radius, visible optical depth, number concentration, and water path are, respectively, 10%, 20%, 38% (55% for ice crystals), and 16%. Applied to data from the Atmospheric Radiation Measurement program (ARM) North Slope of Alaska - Adjacent Arctic Ocean (NSA-AAO) site near Barrow, Alaska, retrievals show general agreement with ground-based microwave radiometer measurements of liquid water path. Compared to other retrieval methods, advantages of this technique include its ability to characterize thin clouds year round, that water vapor is not a primary source of retrieval error, and that the retrievals of microphysical properties are only weakly sensitive to retrieved cloud phase. The primary limitation is the inapplicability to thicker clouds that radiate as blackbodies.

  2. Buildings and Terrain of Urban Area Point Cloud Segmentation based on PCL

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Zhong, Ruofei

    2014-03-01

    One current problem with laser radar point data classification is building and urban terrain segmentation, this paper proposes a point cloud segmentation method base on PCL libraries. PCL is a large cross-platform open source C++ programming library, which implements a large number of point cloud related efficient data structures and generic algorithms involving point cloud retrieval, filtering, segmentation, registration, feature extraction and curved surface reconstruction, visualization, etc. Due to laser radar point cloud characteristics with large amount of data, unsymmetrical distribution, this paper proposes using the data structure of kd-tree to organize data; then using Voxel Grid filter for point cloud resampling, namely to reduce the amount of point cloud data, and at the same time keep the point cloud shape characteristic; use PCL Segmentation Module, we use a Euclidean Cluster Extraction class with Europe clustering for buildings and ground three-dimensional point cloud segmentation. The experimental results show that this method avoids the multiple copy system existing data needs, saves the program storage space through the call of PCL library method and class, shortens the program compiled time and improves the running speed of the program.

  3. Sensitivity of a physically-based cloud package in the NCAR/CCM2

    SciTech Connect

    Kao, Chih-Yue Jim; Smith, W.S.

    1997-02-01

    Based on our earlier investigation on the performance of the National Center for Atmospheric Research Community Climate Model Version 2 (CCM2), we have incorporated into this model a physically-based cloud package. This package allows for the prognostic computation of cloud liquid water which is advected using the semi-Lagrangrian transport scheme of CCM2 the formation of anvil clouds from deep convective systems, and the coupling of physically based cloud optical properties to the CCM2`s shortwave and longwave radiation treatment. In this paper, the effect of the cloud package is assessed by comparing the January results of the simulation to model output from a control run over the same period using the original version of CCM2. The model results are also compared to data from the global reanalysis for the same period conducted by the National Center for Experimental Prediction (NCEP) and NCAR. In this paper, we place particular emphasis on the cloud package`s effect on the climate patterns in the Pacific North American Region. The sensitivity of the model performance to the threshold relative humidity for cloud formation in the scheme is also assessed.

  4. OpenID Connect as a security service in cloud-based medical imaging systems.

    PubMed

    Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter

    2016-04-01

    The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as "Kerberos of cloud." We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model. PMID:27340682

  5. OpenID Connect as a security service in cloud-based medical imaging systems.

    PubMed

    Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter

    2016-04-01

    The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as "Kerberos of cloud." We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model.

  6. Development of a Methodology for Mapping Forest Height and Biomass Using Satellite Based SAR and Lidar Data

    NASA Astrophysics Data System (ADS)

    Hilbert, Claudia; Schmullius, Christiane

    2010-12-01

    This paper presents first results of a study investigating satellite, multifrequent radar and lidar data for characterising the three-dimensional forest structure. Biomass is an important structural parameter to asses the carbon pool of forests. The synergy of lidar and SAR data for forest biomass mapping is promising. The study introduced here aims to combine TerraSAR-X, ALOS PALSAR and ICESat/GLAS data. Some preliminary results for the test site in Thuringian Forest, a low mountain range in eastern Germany, with a focus on the GLAS data will be described. Two methods for filtering invalid GLAS shots are investigated. Moreover, different ICESat/GLAS waveforms parameters were calculated and compared to an airborne lidar based Digital Height Model (DHM) and a forest inventory data base.

  7. Macroscopic cloud properties in the WRF NWP model: An assessment using sky camera and ceilometer data

    NASA Astrophysics Data System (ADS)

    Arbizu-Barrena, Clara; Pozo-Vázquez, David; Ruiz-Arias, José A.; Tovar-Pescador, Joaquín.

    2015-10-01

    The ability of six microphysical parameterizations included in the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model to represent various macroscopic cloud characteristics at multiple spatial and temporal resolutions is investigated. In particular, the model prediction skills of cloud occurrence, cloud base height, and cloud cover are assessed. When it is possible, the results are provided separately for low-, middle-, and high-level clouds. The microphysical parameterizations assessed are WRF single-moment six-class, Thompson, Milbrandt-Yau, Morrison, Stony Brook University, and National Severe Storms Laboratory double moment. The evaluated macroscopic cloud properties are determined based on the model cloud fractions. Two cloud fraction approaches, namely, a binary cloud fraction and a continuous cloud fraction, are investigated. Model cloud cover is determined by overlapping the vertically distributed cloud fractions following three different strategies. The evaluation is conducted based on observations gathered with a ceilometer and a sky camera located in Jaén (southern Spain). The results prove that the reliability of the WRF model mostly depends on the considered cloud parameter, cloud level, and spatiotemporal resolution. In our test bed, it is found that WRF model tends to (i) overpredict the occurrence of high-level clouds irrespectively of the spatial resolution, (ii) underestimate the cloud base height, and (iii) overestimate the cloud cover. Overall, the best cloud estimates are found for finer spatial resolutions (1.3 and 4 km with slight differences between them) and coarser temporal resolutions. The roles of the parameterization choice of the microphysics scheme and the cloud overlapping strategy are, in general, less relevant.

  8. Effects of heel height and shoe shape on the compressive load between foot and base: a graphic analysis of principle.

    PubMed

    Broch, Nana Lise; Wyller, Thomas; Steen, Harald

    2004-01-01

    Even in the ever-changing and increasingly technical realm of medicine, common sense approaches are needed. We can still learn from our predecessors by using their practical and simple methods. In this article a graphic approach in the sagittal plane is used to explain the relationship between the heel height of a shoe and load under the foot. By using an elementary theoretical model based on schematic sketches, an analysis of principle can be performed to calculate the change in the distribution of mechanical stress in the planta with change in foot orientation. The model shows that when standing posture remains unaltered, load under the forefoot increases and load under the heel decreases with elevated heel height and the corresponding changes in shoe shape. These results can be confirmed by pedobarographic and gait-analysis measurements, but the graphic method can be used without application of advanced instrumentation. The rationale behind the model is to use common terms and simple means to facilitate a more fundamental understanding of complex mechanical orthopedic problems. The method is meant to be a helpful supplement to clinical judgment in the many situations in which advanced instrumentation is not available.

  9. Improvement in cloud predictions using satellite data assimilation for real-time forecasting

    NASA Astrophysics Data System (ADS)

    Vellore, R.; Koracin, D.; Wetzel, M.

    2006-12-01

    The accuracy of quantitative forecasting of low-level operational cloud products such as the cloud top height, cloud top pressure and cloud thickness is rather low. Reliable forecasting of the low-level clouds (cloud top altitudes below 2-3 km) such as fog, stratus or stratocumulus is essential for aviation safety purposes. With the advent of an increased number of spectral channels and high-resolution imagers on the Geostationary Operational Environmental Satellite, cloud products can be diagnostically extracted and, furthermore, these cloud products can be used to modify the initial conditions for numerical weather prediction. Although operational methods are relatively successful in determining the cloud top altitudes for deep clouds and high clouds (usually above 5 km), there is no unique way of inferring the cloud top heights for low-level clouds due to their optical properties and low-level inversions. An algorithm has been developed in this study to classify the low-level cloud types using the brightness temperatures extracted from the GOES satellite visible and infrared channels. Cloud top temperatures above 8° C characterize low-level clouds. The brightness temperature differences between the window channel (11 ìm) and the shortwave infrared channel (4 ìm) are used to segregate the optically thin and thick clouds, and the relative humidity obtained from the surface stations is used to distinguish the fog or clouds formed by fog lifting. The infrared satellite imagery on 29 June 2006 is considered for this study with domain coverage of 400 x 400 km2 . The ground-truth observations were obtained from the surface weather station located at the Naval Air Station, Fallon (NASF), Nevada. Upon classification of low-level clouds in the satellite imagery, (a) the first step is to compute the cloud base temperature in the low-level cloudy pixels using the surface temperature and cloud base height obtained from the ceilometer measurements (at NASF) following a dry

  10. Clouds and snowmelt on the north slope of Alaska

    SciTech Connect

    Zhang, T.; Stamnes, K.; Bowling, S.A.

    1996-04-01

    Clouds have a large effect on the radiation field. Consequently, possible changes in cloud properties may have a very substantial impact on climate. Of all natural surfaces, seasonal snow cover has the highest surface albedo, which is one of the most important components of the climatic system. Interactions between clouds and seasonal snow cover are expected to have a significant effect on climate and its change at high latitudes. The purpose of this paper is to investigate the sensitivity of the surface cloud-radiative forcing during the period of snowmelt at high latitudes. The primary variables investigated are cloud liquid path (LWP) and droplet equivalent radius (r{sub e}). We will also examine the sensitivity of the surface radiative fluxes to cloud base height and cloud base temperature.

  11. An Elliptic Curve Based Schnorr Cloud Security Model in Distributed Environment

    PubMed Central

    Muthurajan, Vinothkumar; Narayanasamy, Balaji

    2016-01-01

    Cloud computing requires the security upgrade in data transmission approaches. In general, key-based encryption/decryption (symmetric and asymmetric) mechanisms ensure the secure data transfer between the devices. The symmetric key mechanisms (pseudorandom function) provide minimum protection level compared to asymmetric key (RSA, AES, and ECC) schemes. The presence of expired content and the irrelevant resources cause unauthorized data access adversely. This paper investigates how the integrity and secure data transfer are improved based on the Elliptic Curve based Schnorr scheme. This paper proposes a virtual machine based cloud model with Hybrid Cloud Security Algorithm (HCSA) to remove the expired content. The HCSA-based auditing improves the malicious activity prediction during the data transfer. The duplication in the cloud server degrades the performance of EC-Schnorr based encryption schemes. This paper utilizes the blooming filter concept to avoid the cloud server duplication. The combination of EC-Schnorr and blooming filter efficiently improves the security performance. The comparative analysis between proposed HCSA and the existing Distributed Hash Table (DHT) regarding execution time, computational overhead, and auditing time with auditing requests and servers confirms the effectiveness of HCSA in the cloud security model creation. PMID:26981584

  12. An Elliptic Curve Based Schnorr Cloud Security Model in Distributed Environment.

    PubMed

    Muthurajan, Vinothkumar; Narayanasamy, Balaji

    2016-01-01

    Cloud computing requires the security upgrade in data transmission approaches. In general, key-based encryption/decryption (symmetric and asymmetric) mechanisms ensure the secure data transfer between the devices. The symmetric key mechanisms (pseudorandom function) provide minimum protection level compared to asymmetric key (RSA, AES, and ECC) schemes. The presence of expired content and the irrelevant resources cause unauthorized data access adversely. This paper investigates how the integrity and secure data transfer are improved based on the Elliptic Curve based Schnorr scheme. This paper proposes a virtual machine based cloud model with Hybrid Cloud Security Algorithm (HCSA) to remove the expired content. The HCSA-based auditing improves the malicious activity prediction during the data transfer. The duplication in the cloud server degrades the performance of EC-Schnorr based encryption schemes. This paper utilizes the blooming filter concept to avoid the cloud server duplication. The combination of EC-Schnorr and blooming filter efficiently improves the security performance. The comparative analysis between proposed HCSA and the existing Distributed Hash Table (DHT) regarding execution time, computational overhead, and auditing time with auditing requests and servers confirms the effectiveness of HCSA in the cloud security model creation. PMID:26981584

  13. An Elliptic Curve Based Schnorr Cloud Security Model in Distributed Environment.

    PubMed

    Muthurajan, Vinothkumar; Narayanasamy, Balaji

    2016-01-01

    Cloud computing requires the security upgrade in data transmission approaches. In general, key-based encryption/decryption (symmetric and asymmetric) mechanisms ensure the secure data transfer between the devices. The symmetric key mechanisms (pseudorandom function) provide minimum protection level compared to asymmetric key (RSA, AES, and ECC) schemes. The presence of expired content and the irrelevant resources cause unauthorized data access adversely. This paper investigates how the integrity and secure data transfer are improved based on the Elliptic Curve based Schnorr scheme. This paper proposes a virtual machine based cloud model with Hybrid Cloud Security Algorithm (HCSA) to remove the expired content. The HCSA-based auditing improves the malicious activity prediction during the data transfer. The duplication in the cloud server degrades the performance of EC-Schnorr based encryption schemes. This paper utilizes the blooming filter concept to avoid the cloud server duplication. The combination of EC-Schnorr and blooming filter efficiently improves the security performance. The comparative analysis between proposed HCSA and the existing Distributed Hash Table (DHT) regarding execution time, computational overhead, and auditing time with auditing requests and servers confirms the effectiveness of HCSA in the cloud security model creation.

  14. Island based radar and microwave radiometer measurements of stratus cloud parameters during the Atlantic Stratocumulus Transition Experiment (ASTEX)

    SciTech Connect

    Frisch, A.S.; Fairall, C.W.; Snider, J.B.; Lenshow, D.H.; Mayer, S.D.

    1996-04-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, simultaneous measurements were made with a vertically pointing cloud sensing radar and a microwave radiometer. The radar measurements are used to estimate stratus cloud drizzle and turbulence parameters. In addition, with the microwave radiometer measurements of reflectivity, we estimated the profiles of cloud liquid water and effective radius. We used radar data for computation of vertical profiles of various drizzle parameters such as droplet concentration, modal radius, and spread. A sample of these results is shown in Figure 1. In addition, in non-drizzle clouds, with the radar and radiometer we can estimate the verticle profiles of stratus cloud parameters such as liquid water concentration and effective radius. This is accomplished by assuming a droplet distribution with droplet number concentration and width constant with height.

  15. Move It or Lose It: Cloud-Based Data Storage

    ERIC Educational Resources Information Center

    Waters, John K.

    2010-01-01

    There was a time when school districts showed little interest in storing or backing up their data to remote servers. Nothing seemed less secure than handing off data to someone else. But in the last few years the buzz around cloud storage has grown louder, and the idea that data backup could be provided as a service has begun to gain traction in…

  16. Polar Stratospheric Clouds from ground-based lidar and CALIPSO observations and Chemistry Climate Models evaluation

    NASA Astrophysics Data System (ADS)

    Fierli, Federico; Di Liberto, Luca; Cairo, Francesco; Cagnazzo, Chiara; Snels, Marcel; Keckhut, Philippe; Jumelet, Julien; Pitts, Michael C.

    2014-05-01

    CALIPSO (i.e. frequency of PSC occurrence function of lon-lat, height and temperature) showing large differences that may be explained by the interplay of model temperatures that may show a large bias (negative for 3 models over 5) and the microphysical scheme itself. Two models in fact show an excess of NAT formation relative to ice clouds while two others have an unrealistic dominance of ice. Most of them show a somewhat too efficient PSC production with temperature decrease below NAT formation temperature. Evaluation CCMs with ground-based instruments databases should be done with great care due to the large spatial differences inside the polar vortex that are not fully reproduced by the models. In turn, longer series as provided by NDACC should be used to evaluate interannual variability and trends that is difficult to identify in the shorter CALIPSO database.

  17. Study of Droplet Activation in Thin Clouds Using Ground-Based Raman Lidar and Ancillary Remote Sensors

    NASA Astrophysics Data System (ADS)

    Rosoldi, Marco; Madonna, Fabio; Gumà Claramunt, Pilar; Pappalardo, Gelsomina

    2016-06-01

    A methodology for the study of cloud droplet activation based on the measurements performed with ground-based multi-wavelength Raman lidars and ancillary remote sensors collected at CNR-IMAA observatory, Potenza, South Italy, is presented. The study is focused on the observation of thin warm clouds. Thin clouds are often also optically thin: this allows the cloud top detection and the full profiling of cloud layers using ground-based Raman lidar. Moreover, broken clouds are inspected to take advantage of their discontinuous structure in order to study the variability of optical properties and water vapor content in the transition from cloudy regions to cloudless regions close to the cloud boundaries. A statistical study of this variability leads to identify threshold values for the optical properties, enabling the discrimination between clouds and cloudless regions. These values can be used to evaluate and improve parameterizations of droplet activation within numerical models. A statistical study of the co-located Doppler radar moments allows to retrieve droplet size and vertical velocities close to the cloud base. First evidences of a correlation between droplet vertical velocities measured at the cloud base and the aerosol effective radius observed in the cloud-free regions of the broken clouds are found.

  18. Combined Geometric/radiometric Point Cloud Matching for Shear Analysis

    NASA Astrophysics Data System (ADS)

    Gehrke, S.

    2012-07-01

    In the recent past, dense image matching methods such as Semi-Global Matching (SGM) became popular for many applications. The SGM approach has been adapted to and implemented for Leica ADS line-scanner data by North West Geomatics (North West) in co-operation with Leica Geosystems; it is used in North West's production workflow. One of the advantages of ADS imagery is the calibrated color information (RGB and near infrared), extending SGM-derived point clouds to dense "image point clouds" or, more general, information clouds (info clouds). With the goal of automating the quality control of ADS data, info clouds are utilized for Shear Analysis: Three-dimensional offsets of adjacent ADS image strips are determined from a pattern of info cloud pairs in strip overlaps by point cloud matching. The presented approach integrates geometry (height) and radiometry (intensity) information; matching is based on local point-to-plane distances for all points in a given cloud. The offset is derived in a least squares adjustment by applying it to each individual distance computation equation. Using intensities in addition to heights greatly benefits the offset computation, because intensity gradients tend to occur more frequently than height gradients. They can provide or complement the required information for the derivation of planimetric offset components. The paper details the combined geometric/radiometric point cloud matching approach and verifies the results against manual measurements.

  19. Noctilucent clouds

    NASA Astrophysics Data System (ADS)

    Gadsden, M.

    An assessment of spacecraft, sounding rocket and ground level observational data on the noctilucent clouds which appear during summertime, at high latitudes, near the top of the mesosphere shows that these data are not sufficiently unambiguous and clear to permit conclusions as to the nature of the clouds. Although they seem to be ice particles nucleated at very low temperatures and pressures by either meteoric smoke or atmospheric ions, the very existence of the clouds poses the problem of how so much water vapor could be present at such a great height. An attempt is made to predict the microscopic behavior of the cloud particles through consideration of the relative importance of radiometer effects, radiation balance, Brownian movement, electric polarization, and the influence of Coulomb attraction on the growth of large clustered ions.

  20. Foraminal height measurement techniques

    PubMed Central

    Phan, Kevin; Rao, Prashanth J.

    2015-01-01

    Background One of the proposed advantages of anterior lumbar interbody fusion (ALIF) is restoration of disc height and hence an indirect foraminal height restoration. While this proposed advantage is often quoted in the literature, there are few robust studies demonstrating restoration of foraminal volume. Thus, this study aimed to review the literature and discuss the progression and development of foramen measurement techniques. Methods A review of the literature was performed to identify studies which reported foraminal height and dimensions following fusion surgery in cadaveric models or patients. Results Techniques in prior studies used to quantify foraminal dimensions before and after fusion operations include analysis from plain radiographs, computed tomography (CT) scans and magnetic resonance imaging (MRI) scans. Recent studies have attempted to standardize foraminal dimension measurements with the use of orthogonal software, accelerator-based measurements and the use of multiple images for three-dimensional reconstruction of the foramen volume. Conclusions Consistent results have demonstrated significant increases in foraminal area and height following anterior lumbar interbody distraction, providing evidence that ALIF can indirectly increase foraminal height. Future studies should use standardized measurement approaches such as the Pedicle-to-Pedicle technique with CT or MRI images to determine changes in foraminal dimensions.

  1. Foraminal height measurement techniques

    PubMed Central

    Phan, Kevin; Rao, Prashanth J.

    2015-01-01

    Background One of the proposed advantages of anterior lumbar interbody fusion (ALIF) is restoration of disc height and hence an indirect foraminal height restoration. While this proposed advantage is often quoted in the literature, there are few robust studies demonstrating restoration of foraminal volume. Thus, this study aimed to review the literature and discuss the progression and development of foramen measurement techniques. Methods A review of the literature was performed to identify studies which reported foraminal height and dimensions following fusion surgery in cadaveric models or patients. Results Techniques in prior studies used to quantify foraminal dimensions before and after fusion operations include analysis from plain radiographs, computed tomography (CT) scans and magnetic resonance imaging (MRI) scans. Recent studies have attempted to standardize foraminal dimension measurements with the use of orthogonal software, accelerator-based measurements and the use of multiple images for three-dimensional reconstruction of the foramen volume. Conclusions Consistent results have demonstrated significant increases in foraminal area and height following anterior lumbar interbody distraction, providing evidence that ALIF can indirectly increase foraminal height. Future studies should use standardized measurement approaches such as the Pedicle-to-Pedicle technique with CT or MRI images to determine changes in foraminal dimensions. PMID:27683677

  2. Feeder-Cell Ingestion of Seeding Aerosol from Cloud Base Determined by Tracking Radar Chaff.

    NASA Astrophysics Data System (ADS)

    Reinking, Roger F.; Martner, Brooks E.

    1996-09-01

    Questions of delivery, transport, and dispersion of cloud seeding aerosol in a convective feeder cloud are addressed by using radar chaff as a surrogate for aerosol and tracking it with circular-polarization radar. In a case study, a line source of chaff was released by an aircraft at the roots of a growing cloud flanking and feeding into a thunderstorm line. The chaff was tracked as it dispersed in the boundary layer and rose more than 3 km from the cloud base at +14°C to levels cold enough to nucleate ice-forming seeding aerosols. Quantitative measures of the rates of loft and dispersion, and the volume filling and dilution were obtained. The measurements permit examination of the hypotheses and potential efficacy of cloud-base seeding to increase rain and suppress hail. Notably, the problem of delivery, transport, and dispersion of cloud seeding aerosol is much the same as the air quality question of the nature and effect of cloud venting of the boundary layer, and the findings here apply in that context as well.

  3. Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio.

    PubMed

    Noel, Vincent; Chepfer, Helene; Ledanois, Guy; Delaval, Arnaud; Flamant, Pierre H

    2002-07-20

    A shape classification technique for cirrus clouds that could be applied to future spaceborne lidars is presented. A ray-tracing code has been developed to simulate backscattered and depolarized lidar signals from cirrus clouds made of hexagonal-based crystals with various compositions and optical depth, taking into account multiple scattering. This code was used first to study the sensitivity of the linear depolarization rate to cloud optical and microphysical properties, then to classify particle shapes in cirrus clouds based on depolarization ratio measurements. As an example this technique has been applied to lidar measurements from 15 mid-latitude cirrus cloud cases taken in Palaiseau, France. Results show a majority of near-unity shape ratios as well as a strong correlation between shape ratios and temperature: The lowest temperatures lead to high shape ratios. The application of this technique to space-borne measurements would allow a large-scale classification of shape ratios in cirrus clouds, leading to better knowledge of the vertical variability of shapes, their dependence on temperature, and the formation processes of clouds.

  4. A Depolarisation Lidar Based Method for the Determination of Liquid-Cloud Microphysical Properties.

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; De Roode, S. R.; Siebesma, P.

    2014-12-01

    The fact that polarisation lidars measure a multiple-scattering induced depolarisation signal in liquid clouds is well-known. The depolarisation signal depends on the lidar characteristics (e.g. wavelength and field-of-view) as well as the cloud properties (e.g. liquid water content (LWC) and cloud droplet number concentration (CDNC)). Previous efforts seeking to use depolarisation information in a quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a retrieval procedure applicable to clouds with (quasi-)linear LWC profiles and (quasi-)constant CDNC in the cloud base region. Limiting the applicability of the procedure in this manner allows us to reduce the cloud variables to two parameters (namely liquid water content lapse-rate and the CDNC). This simplification, in turn, allows us to employ a robust optimal-estimation inversion using pre-computed look-up-tables produced using lidar Monte-Carlo multiple-scattering simulations. Here, we describe the theory behind the inversion procedure and apply it to simulated observations based on large-eddy simulation model output. The inversion procedure is then applied to actual depolarisation lidar data covering to a range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2-3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a comparison between ground-based aerosol number concentration and lidar-derived CDNC are also presented. The results are seen to be consistent with previous studies based on aircraft-based in situ measurements.

  5. Comparison Between Two Generic 3d Building Reconstruction Approaches - Point Cloud Based VS. Image Processing Based

    NASA Astrophysics Data System (ADS)

    Dahlke, D.; Linkiewicz, M.

    2016-06-01

    This paper compares two generic approaches for the reconstruction of buildings. Synthesized and real oblique and vertical aerial imagery is transformed on the one hand into a dense photogrammetric 3D point cloud and on the other hand into photogrammetric 2.5D surface models depicting a scene from different cardinal directions. One approach evaluates the 3D point cloud statistically in order to extract the hull of structures, while the other approach makes use of salient line segments in 2.5D surface models, so that the hull of 3D structures can be recovered. With orders of magnitudes more analyzed 3D points, the point cloud based approach is an order of magnitude more accurate for the synthetic dataset compared to the lower dimensioned, but therefor orders of magnitude faster, image processing based approach. For real world data the difference in accuracy between both approaches is not significant anymore. In both cases the reconstructed polyhedra supply information about their inherent semantic and can be used for subsequent and more differentiated semantic annotations through exploitation of texture information.

  6. Improved cloud parameterization for Arctic climate simulations based on satellite data

    NASA Astrophysics Data System (ADS)

    Klaus, Daniel; Dethloff, Klaus; Dorn, Wolfgang; Rinke, Annette

    2015-04-01

    The defective representation of Arctic cloud processes and properties remains a crucial problem in climate modelling and in reanalysis products. Satellite-based cloud observations (MODIS and CPR/CALIOP) and single-column model simulations (HIRHAM5-SCM) were exploited to evaluate and improve the simulated Arctic cloud cover of the atmospheric regional climate model HIRHAM5. The ECMWF reanalysis dataset 'ERA-Interim' (ERAint) was used for the model initialization, the lateral boundary forcing as well as the dynamical relaxation inside the pan-Arctic domain. HIRHAM5 has a horizontal resolution of 0.25° and uses 40 pressure-based and terrain-following vertical levels. In comparison with the satellite observations, the HIRHAM5 control run (HH5ctrl) systematically overestimates total cloud cover, but to a lesser extent than ERAint. The underestimation of high- and mid-level clouds is strongly outweighed by the overestimation of low-level clouds. Numerous sensitivity studies with HIRHAM5-SCM suggest (1) the parameter tuning, enabling a more efficient Bergeron-Findeisen process, combined with (2) an extension of the prognostic-statistical (PS) cloud scheme, enabling the use of negatively skewed beta distributions. This improved model setup was then used in a corresponding HIRHAM5 sensitivity run (HH5sens). While the simulated high- and mid-level cloud cover is improved only to a limited extent, the large overestimation of low-level clouds can be systematically and significantly reduced, especially over sea ice. Consequently, the multi-year annual mean area average of total cloud cover with respect to sea ice is almost 14% lower than in HH5ctrl. Overall, HH5sens slightly underestimates the observed total cloud cover but shows a halved multi-year annual mean bias of 2.2% relative to CPR/CALIOP at all latitudes north of 60° N. Importantly, HH5sens produces a more realistic ratio between the cloud water and ice content. The considerably improved cloud simulation manifests in

  7. Cirrus cloud retrieval using infrared sounding data: Multilevel cloud errors

    NASA Technical Reports Server (NTRS)

    Baum, Bryan A.; Wielicki, Bruce A.

    1994-01-01

    In this study we perform an error analysis for cloud-top pressure retrieval using the High-Resolution Infrared Radiometric Sounder (HIRS/2) 15-microns CO2 channels for the two-layer case of transmissive cirrus overlying an overcast, opaque stratiform cloud. This analysis includes standard deviation and bias error due to instrument noise and the presence of two cloud layers, the lower of which is opaque. Instantaneous cloud pressure retrieval errors are determined for a range of cloud amounts (0.1-1.0) and cloud-top pressures (850-250 mb). Large cloud-top pressure retrieval errors are found to occur when a lower opaque layer is present underneath an upper transmissive cloud layer in the satellite field of view (FOV). Errors tend to increase with decreasing upper-cloud effective cloud amount and with decreasing cloud height (increasing pressure). Errors in retrieved upper-cloud pressure result in corresponding errors in derived effective cloud amount. For the case in which a HIRS FOV has two distinct cloud layers, the difference between the retrieved and actual cloud-top pressure is positive in all cases, meaning that the retrieved upper-cloud height is lower than the actual upper-cloud height. In addition, errors in retrieved cloud pressure are found to depend upon the lapse rate between the low-level cloud top and the surface. We examined which sounder channel combinations would minimize the total errors in derived cirrus cloud height caused by instrument noise and by the presence of a lower-level cloud. We find that while the sounding channels that peak between 700 and 1000 mb minimize random errors, the sounding channels that peak at 300-500 mb minimize bias errors. For a cloud climatology, the bias errors are most critical.

  8. COMBAT: mobile-Cloud-based cOmpute/coMmunications infrastructure for BATtlefield applications

    NASA Astrophysics Data System (ADS)

    Soyata, Tolga; Muraleedharan, Rajani; Langdon, Jonathan; Funai, Colin; Ames, Scott; Kwon, Minseok; Heinzelman, Wendi

    2012-05-01

    The amount of data processed annually over the Internet has crossed the zetabyte boundary, yet this Big Data cannot be efficiently processed or stored using today's mobile devices. Parallel to this explosive growth in data, a substantial increase in mobile compute-capability and the advances in cloud computing have brought the state-of-the- art in mobile-cloud computing to an inflection point, where the right architecture may allow mobile devices to run applications utilizing Big Data and intensive computing. In this paper, we propose the MObile Cloud-based Hybrid Architecture (MOCHA), which formulates a solution to permit mobile-cloud computing applications such as object recognition in the battlefield by introducing a mid-stage compute- and storage-layer, called the cloudlet. MOCHA is built on the key observation that many mobile-cloud applications have the following characteristics: 1) they are compute-intensive, requiring the compute-power of a supercomputer, and 2) they use Big Data, requiring a communications link to cloud-based database sources in near-real-time. In this paper, we describe the operation of MOCHA in battlefield applications, by formulating the aforementioned mobile and cloudlet to be housed within a soldier's vest and inside a military vehicle, respectively, and enabling access to the cloud through high latency satellite links. We provide simulations using the traditional mobile-cloud approach as well as utilizing MOCHA with a mid-stage cloudlet to quantify the utility of this architecture. We show that the MOCHA platform for mobile-cloud computing promises a future for critical battlefield applications that access Big Data, which is currently not possible using existing technology.

  9. Development and clinical study of mobile 12-lead electrocardiography based on cloud computing for cardiac emergency.

    PubMed

    Fujita, Hideo; Uchimura, Yuji; Waki, Kayo; Omae, Koji; Takeuchi, Ichiro; Ohe, Kazuhiko

    2013-01-01

    To improve emergency services for accurate diagnosis of cardiac emergency, we developed a low-cost new mobile electrocardiography system "Cloud Cardiology®" based upon cloud computing for prehospital diagnosis. This comprises a compact 12-lead ECG unit equipped with Bluetooth and Android Smartphone with an application for transmission. Cloud server enables us to share ECG simultaneously inside and outside the hospital. We evaluated the clinical effectiveness by conducting a clinical trial with historical comparison to evaluate this system in a rapid response car in the real emergency service settings. We found that this system has an ability to shorten the onset to balloon time of patients with acute myocardial infarction, resulting in better clinical outcome. Here we propose that cloud-computing based simultaneous data sharing could be powerful solution for emergency service for cardiology, along with its significant clinical outcome. PMID:23920851

  10. Development and clinical study of mobile 12-lead electrocardiography based on cloud computing for cardiac emergency.

    PubMed

    Fujita, Hideo; Uchimura, Yuji; Waki, Kayo; Omae, Koji; Takeuchi, Ichiro; Ohe, Kazuhiko

    2013-01-01

    To improve emergency services for accurate diagnosis of cardiac emergency, we developed a low-cost new mobile electrocardiography system "Cloud Cardiology®" based upon cloud computing for prehospital diagnosis. This comprises a compact 12-lead ECG unit equipped with Bluetooth and Android Smartphone with an application for transmission. Cloud server enables us to share ECG simultaneously inside and outside the hospital. We evaluated the clinical effectiveness by conducting a clinical trial with historical comparison to evaluate this system in a rapid response car in the real emergency service settings. We found that this system has an ability to shorten the onset to balloon time of patients with acute myocardial infarction, resulting in better clinical outcome. Here we propose that cloud-computing based simultaneous data sharing could be powerful solution for emergency service for cardiology, along with its significant clinical outcome.

  11. Point clouds segmentation as base for as-built BIM creation

    NASA Astrophysics Data System (ADS)

    Macher, H.; Landes, T.; Grussenmeyer, P.

    2015-08-01

    In this paper, a three steps segmentation approach is proposed in order to create 3D models from point clouds acquired by TLS inside buildings. The three scales of segmentation are floors, rooms and planes composing the rooms. First, floor segmentation is performed based on analysis of point distribution along Z axis. Then, for each floor, room segmentation is achieved considering a slice of point cloud at ceiling level. Finally, planes are segmented for each room, and planes corresponding to ceilings and floors are identified. Results of each step are analysed and potential improvements are proposed. Based on segmented point clouds, the creation of as-built BIM is considered in a future work section. Not only the classification of planes into several categories is proposed, but the potential use of point clouds acquired outside buildings is also considered.

  12. Convective cloud fields in the Atlantic sector of the Arctic: Satellite and ground-based observations

    NASA Astrophysics Data System (ADS)

    Esau, I. N.; Chernokulsky, A. V.

    2015-12-01

    Convective cloudiness in the Atlantic sector of the Arctic is considered as an atmospheric spatially self-organized convective field. Convective cloud development is usually studied as a local process reflecting the convective instability of the turbulent planetary boundary layer over a heated surface. The convective cloudiness has a different dynamical structure in high latitudes. Cloud development follows cold-air outbreaks into the areas with a relatively warm surface. As a result, the physical and morphological characteristics of clouds, such as the type of convective cloud, and their geographical localization are interrelated. It has been shown that marginal sea ice and coastal zones are the most frequently occupied by Cu hum, Cu med convective clouds, which are organized in convective rolls. Simultaneously, the open water marine areas are occupied by Cu cong, Cb, which are organized in convective cells. An intercomparison of cloud statistics using satellite data ISCCP and ground-based observations has revealed an inconsistency in the cloudiness trends in these data sources: convective cloudiness decreases in ISCCP data and increases in the groundbased observation data. In general, according to the stated hypothesis, the retreat of the sea-ice boundary may lead to an increase in the amount of convective clouds.

  13. A secure EHR system based on hybrid clouds.

    PubMed

    Chen, Yu-Yi; Lu, Jun-Chao; Jan, Jinn-Ke

    2012-10-01

    Consequently, application services rendering remote medical services and electronic health record (EHR) have become a hot topic and stimulating increased interest in studying this subject in recent years. Information and communication technologies have been applied to the medical services and healthcare area for a number of years to resolve problems in medical management. Sharing EHR information can provide professional medical programs with consultancy, evaluation, and tracing services can certainly improve accessibility to the public receiving medical services or medical information at remote sites. With the widespread use of EHR, building a secure EHR sharing environment has attracted a lot of attention in both healthcare industry and academic community. Cloud computing paradigm is one of the popular healthIT infrastructures for facilitating EHR sharing and EHR integration. In this paper, we propose an EHR sharing and integration system in healthcare clouds and analyze the arising security and privacy issues in access and management of EHRs. PMID:22351166

  14. A secure EHR system based on hybrid clouds.

    PubMed

    Chen, Yu-Yi; Lu, Jun-Chao; Jan, Jinn-Ke

    2012-10-01

    Consequently, application services rendering remote medical services and electronic health record (EHR) have become a hot topic and stimulating increased interest in studying this subject in recent years. Information and communication technologies have been applied to the medical services and healthcare area for a number of years to resolve problems in medical management. Sharing EHR information can provide professional medical programs with consultancy, evaluation, and tracing services can certainly improve accessibility to the public receiving medical services or medical information at remote sites. With the widespread use of EHR, building a secure EHR sharing environment has attracted a lot of attention in both healthcare industry and academic community. Cloud computing paradigm is one of the popular healthIT infrastructures for facilitating EHR sharing and EHR integration. In this paper, we propose an EHR sharing and integration system in healthcare clouds and analyze the arising security and privacy issues in access and management of EHRs.

  15. Global Distribution of Planetary Boundary Layer Height Derived from CALIPSO

    NASA Astrophysics Data System (ADS)

    Huang, J.

    2015-12-01

    The global distribution of planetary boundary layer (PBL) height, which was estimated from the attenuated back-scatter observations of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), is presented. In general, the PBL is capped by a temperature inversion that tends to trap moisture and aerosols. The gradient of back-scatter observed by lidar is almost always associated with this temperature inversion and the simultaneous decrease of moisture content. Thus, the PBL top is defined as the location of the maximum aerosol scattering gradient, which is analogous to the more conventional thermodynamic definition. The maximum standard deviation method, developed by Jordan et al. (2010), is modified and used to derive the global PBL heights. The derived PBL heights are not only consistent with the results of McGrath-Spangler and Denning (2012) but also agree well with the ground-based lidar measurements. It is found that the correlation between CALIPSO and the ground-based lidar was 0.73. The seasonal mean patterns from 4-year mid-day PBL heights over global are demonstrated. Also it is found that the largest PBL heights occur over the Tibetan Plateau and the coastal areas. The smallest PBL heights appear in the Tarim Basin and the northeast of China during the local winter. The comparison of PBL heights from CALIPSO and ECMWF under different land-cover conditions showed that, over ocean and forest surface, the PBL height estimated from the CALIPSO back-scatter climatology is larger than the ones estimated from ECMWF data. However, the PBL heights from ECMWF, over grass land and bare land surface in spring and summer are larger than the ones from CALIPSO.

  16. Estimating Aircraft Heading Based on Laserscanner Derived Point Clouds

    NASA Astrophysics Data System (ADS)

    Koppanyi, Z.; Toth, C., K.

    2015-03-01

    Using LiDAR sensors for tracking and monitoring an operating aircraft is a new application. In this paper, we present data processing methods to estimate the heading of a taxiing aircraft using laser point clouds. During the data acquisition, a Velodyne HDL-32E laser scanner tracked a moving Cessna 172 airplane. The point clouds captured at different times were used for heading estimation. After addressing the problem and specifying the equation of motion to reconstruct the aircraft point cloud from the consecutive scans, three methods are investigated here. The first requires a reference model to estimate the relative angle from the captured data by fitting different cross-sections (horizontal profiles). In the second approach, iterative closest point (ICP) method is used between the consecutive point clouds to determine the horizontal translation of the captured aircraft body. Regarding the ICP, three different versions were compared, namely, the ordinary 3D, 3-DoF 3D and 2-DoF 3D ICP. It was found that 2-DoF 3D ICP provides the best performance. Finally, the last algorithm searches for the unknown heading and velocity parameters by minimizing the volume of the reconstructed plane. The three methods were compared using three test datatypes which are distinguished by object-sensor distance, heading and velocity. We found that the ICP algorithm fails at long distances and when the aircraft motion direction perpendicular to the scan plane, but the first and the third methods give robust and accurate results at 40m object distance and at ~12 knots for a small Cessna airplane.

  17. Analysis of interstellar cloud structure based on IRAS images

    NASA Technical Reports Server (NTRS)

    Scalo, John M.

    1992-01-01

    The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct densely sampled column density maps of star-forming clouds, column density images of four nearby cloud complexes were constructed from IRAS data. The regions have various degrees of star formation activity, and most of them have probably not been affected much by the disruptive effects of young massive stars. The largest region, the Scorpius-Ophiuchus cloud complex, covers about 1000 square degrees (it was subdivided into a few smaller regions for analysis). Much of the work during the early part of the project focused on an 80 square degree region in the core of the Taurus complex, a well-studied region of low-mass star formation.

  18. Long-term impacts of aerosols on vertical development of cloud and precipitation

    SciTech Connect

    Li Z.; Liu Y.; Niu, F.; Fan, J.; Rosenfeld, D.; Ding, Y.

    2011-11-13

    Aerosols alter cloud density and the radiative balance of the atmosphere. This leads to changes in cloud microphysics and atmospheric stability, which can either suppress or foster the development of clouds and precipitation. The net effect is largely unknown, but depends on meteorological conditions and aerosol properties. Here, we examine the long-term impact of aerosols on the vertical development of clouds and rainfall frequencies, using a 10-year dataset of aerosol, cloud and meteorological variables collected in the Southern Great Plains in the United States. We show that cloud-top height and thickness increase with aerosol concentration measured near the ground in mixed-phase clouds-which contain both liquid water and ice-that have a warm, low base. We attribute the effect, which is most significant in summer, to an aerosol-induced invigoration of upward winds. In contrast, we find no change in cloud-top height and precipitation with aerosol concentration in clouds with no ice or cool bases. We further show that precipitation frequency and rain rate are altered by aerosols. Rain increases with aerosol concentration in deep clouds that have a high liquid-water content, but declines in clouds that have a low liquid-water content. Simulations using a cloud-resolving model confirm these observations. Our findings provide unprecedented insights of the long-term net impacts of aerosols on clouds and precipitation.

  19. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley

    NASA Astrophysics Data System (ADS)

    Bendig, Juliane; Yu, Kang; Aasen, Helge; Bolten, Andreas; Bennertz, Simon; Broscheit, Janis; Gnyp, Martin L.; Bareth, Georg

    2015-07-01

    In this study we combined selected vegetation indices (VIs) and plant height information to estimate biomass in a summer barley experiment. The VIs were calculated from ground-based hyperspectral data and unmanned aerial vehicle (UAV)-based red green blue (RGB) imaging. In addition, the plant height information was obtained from UAV-based multi-temporal crop surface models (CSMs). The test site is a summer barley experiment comprising 18 cultivars and two nitrogen treatments located in Western Germany. We calculated five VIs from hyperspectral data. The normalised ratio index (NRI)-based index GnyLi (Gnyp et al., 2014) showed the highest correlation (R2 = 0.83) with dry biomass. In addition, we calculated three visible band VIs: the green red vegetation index (GRVI), the modified GRVI (MGRVI) and the red green blue VI (RGBVI), where the MGRVI and the RGBVI are newly developed VI. We found that the visible band VIs have potential for biomass prediction prior to heading stage. A robust estimate for biomass was obtained from the plant height models (R2 = 0.80-0.82). In a cross validation test, we compared plant height, selected VIs and their combination with plant height information. Combining VIs and plant height information by using multiple linear regression or multiple non-linear regression models performed better than the VIs alone. The visible band GRVI and the newly developed RGBVI are promising but need further investigation. However, the relationship between plant height and biomass produced the most robust results. In summary, the results indicate that plant height is competitive with VIs for biomass estimation in summer barley. Moreover, visible band VIs might be a useful addition to biomass estimation. The main limitation is that the visible band VIs work for early growing stages only.

  20. Education on the Cloud: Researching Student-Centered, Cloud-Based Learning Prospects in the Context of a European Network

    ERIC Educational Resources Information Center

    Panoutsopoulos, Hercules; Donert, Karl; Papoutsis, Panos; Kotsanis, Ioannis

    2015-01-01

    During the last few years, ongoing developments in the technological field of Cloud computing have initiated discourse on the potential of the Cloud to be systematically exploited in educational contexts. Research interest has been stimulated by a range of advantages of Cloud technologies (e.g. adaptability, flexibility, scalability,…

  1. Feasibility and demonstration of a cloud-based RIID analysis system

    NASA Astrophysics Data System (ADS)

    Wright, Michael C.; Hertz, Kristin L.; Johnson, William C.; Sword, Eric D.; Younkin, James R.; Sadler, Lorraine E.

    2015-06-01

    A significant limitation in the operational utility of handheld and backpack radioisotope identifiers (RIIDs) is the inability of their onboard algorithms to accurately and reliably identify the isotopic sources of the measured gamma-ray energy spectrum. A possible solution is to move the spectral analysis computations to an external device, the cloud, where significantly greater capabilities are available. The implementation and demonstration of a prototype cloud-based RIID analysis system have shown this type of system to be feasible with currently available communication and computational technology. A system study has shown that the potential user community could derive significant benefits from an appropriately implemented cloud-based analysis system and has identified the design and operational characteristics required by the users and stakeholders for such a system. A general description of the hardware and software necessary to implement reliable cloud-based analysis, the value of the cloud expressed by the user community, and the aspects of the cloud implemented in the demonstrations are discussed.

  2. Feasibility and Demonstration of a Cloud-Based RIID Analysis System

    SciTech Connect

    Wright, Michael C; Hertz, Kristin; Johnson, Will; Sword, Eric D; Younkin, James R; Sadler, L.E.

    2014-01-01

    A significant limitation in the operational utility of handheld and backpack radioisotope identifiers (RIIDs) is the inability of their onboard algorithms to accurately and reliably identify the isotopic sources of the measured gamma-ray energy spectrum. A possible solution is to move the spectral analysis computations to an external device, the cloud, where significantly greater capabilities are available. The implementation and demonstration of a prototype cloud-based RIID analysis system have shown this type of system to be feasible with currently available communication and computational technology. A system study has shown that the potential user community could derive significant benefits from an appropriately implemented cloud-based analysis system and has identified the design and operational characteristics required by the users and stakeholders for such a system. A general description of the hardware and software necessary to implement reliable cloud-based analysis, the value of the cloud expressed by the user community, and the aspects of the cloud implemented in the demonstrations are discussed.

  3. Model-Based Estimation of Forest Canopy Height in Red and Austrian Pine Stands Using Shuttle Radar Topography Mission and Ancillary Data: a Proof-of-Concept Study

    SciTech Connect

    Brown Jr., C G; Sarabandi, K; Pierce, L E

    2007-04-06

    In this paper, accurate tree stand height retrieval is demonstrated using C-band Shuttle Radar Topography Mission (SRTM) height and ancillary data. The tree height retrieval algorithm is based on modeling uniform tree stands with a single layer of randomly oriented vegetation particles. For such scattering media, the scattering phase center height, as measured by SRTM, is a function of tree height, incidence angle, and the extinction coefficient of the medium. The extinction coefficient for uniform tree stands is calculated as a function of tree height and density using allometric equations and a fractal tree model. The accuracy of the proposed algorithm is demonstrated using SRTM and TOPSAR data for 15 red pine and Austrian pine stands (TOPSAR is an airborne interferometric synthetic aperture radar). The algorithm yields root-mean-square (rms) errors of 2.5-3.6 m, which is a substantial improvement over the 6.8-8.3-m rms errors from the raw SRTM minus National Elevation Dataset Heights.

  4. An intercomparison of radar-based liquid cloud microphysics retrievals and implication for model evaluation studies

    NASA Astrophysics Data System (ADS)

    Huang, D.; Zhao, C.; Dunn, M.; Dong, X.; Mace, G. G.; Jensen, M. P.; Xie, S.; Liu, Y.

    2011-12-01

    To assess if current radar-based liquid cloud microphysical retrievals of the Atmospheric Radiation Measurement (ARM) program can provide useful constraints for modeling studies, this paper presents intercomparison results of three cloud products at the Southern Great Plains (SGP) site: the ARM MICROBASE, University of Utah (UU), and University of North Dakota (UND) products over the nine-year period from 1998 to 2006. The probability density and spatial autocorrelation functions of the three cloud Liquid Water Content (LWC) retrievals appear to be consistent with each other, while large differences are found in the droplet effective radius retrievals. The differences in the vertical distribution of both cloud LWC and droplet effective radius retrievals are found to be alarmingly large, with the relative difference between nine-year mean cloud LWC retrievals ranging from 20% at low altitudes to 100% at high altitudes. Nevertheless, the spread in LWC retrievals is much smaller than that in cloud simulations by climate and cloud resolving models. The MICROBASE effective radius ranges from 2.0 at high altitudes to 6.0 μm at low altitudes and the UU and UND droplet effective radius is 6 μm larger. Further analysis through a suite of retrieval experiments shows that the difference between MICROBASE and UU LWC retrievals stems primarily from the partition total Liquid Water path (LWP) into supercooled and warm liquid, and from the input cloud boundaries and LWP. The large differences between MICROBASE and UU droplet effective radius retrievals are mainly due to rain/drizzle contamination and the assumptions of cloud droplet concentration used in the retrieval algorithms. The large discrepancy between different products suggests caution in model evaluation with these observational products, and calls for improved retrievals in general.

  5. Cloud vertical structures detected by lidar and its statistical results at HeRO site in Hefei, China

    NASA Astrophysics Data System (ADS)

    Sun, Lu; Liu, Dong; Wang, Zhien; Wang, Zhenzhu; Wu, Decheng; Bo, Guangyu; Wang, Yingjian

    2014-11-01

    Extensive studies have illustrated the importance of obtaining exact vertical structures of clouds and aerosols for satellite and relevant climate simulations. However, challenging exists, for example, in distinguishing clouds from aerosols at times. Accurate cloud vertical profiles are mainly determined by cloud bases and heights. Based on the ground-based lidar observations in Hefei Radiation Observatory (HeRO), the vertical structures of clouds and aerosols in Hefei area(31.89°N 117.17°E) during May 2012-May 2014 have been investigated. The results show that the cloud fraction in the autumn and winter is less than that in the summer and spring, and is largest in the spring followed by the summer. The cloud fractions in the autumn and winter are comparable. The low cloud accounts for the most portion of the total. Compared with the cloud of the other heights, the high cloud is the least in the winter. Nearly 50% of the total vertical profiles can be detected by lidar as clouds and the proportion of the cloud of different heights seems to be stable annually. The fraction of low cloud is nearly 45%, medium cloud is nearly 35%, and high cloud is nearly 20%. In comparison with the results derived from CALIPSO, it is found that high cloud is usually missed for the ground-based lidar, while low cloud is usually omitted for the satellite observations. A combination of ground-based and space-borne lidar could lead to more reliable results. Further analysis will be performed in future studies.

  6. Scale-Dependence of the Response of Tropopause Height to Deep Cumulus Convection

    NASA Astrophysics Data System (ADS)

    Fishbein, E.; Wong, S.

    2014-12-01

    Deep cumulus convection can influence the height of the tropopause either through plumes which penetration into the tropical tropopause layer (TTL) or by forcing broad-scale vertical motion. This study uses the unique capabilities of satellite-based cross-track sounders to provide three-dimensional images of temperature in the TTL. These are used to derive thermal tropopause height and to study the scale-dependence of tropopause height variability and its relation to distance and intensity of deep convection. The data used in this study are 10 years of tropical Atmospheric Infrared Sounder (AIRS) swath (level 2) temperature profile data. Localized spatial power spectra are derived from swaths of tropopause height, which are ordered relative to the timing of deep convective clouds. The relative contributions of small-scale and large-scale power are use to characterize the influence of the scale of the vertical motion in the TTL. The highest spatial scales sampled by the AIRS temperature field are mesoscale systems of deep cumulus convection approximately 200 to 400 km across because the horizontal spatial resolution of the AIRS temperature profile product is approximately 50 km. AIRS temperature profiles have state-dependent errors correlated with cloud amount, but are more useful than temperature profiles from microwave sounders because of their higher vertical resolution. TTL temperature has less sampling error then mid and lower troposphere temperature, and the time binning is used to characterize and reduce these errors. The intensity of cumulus convection is inferred from the derived cloud properties, specifically cloud-top height, cloud-ice effective diameter and their power. The height difference between tropopause and cloud-top is used to characterize the likelihood that vertical motions extend to the tropopause, while the cloud-ice effective diameter provides a measure of the intensity of the convective vertical velocity and its ability to lift larger ice

  7. Towards Composing Data Aware Systems Biology Workflows on Cloud Platforms: A MeDICi-based Approach

    SciTech Connect

    Gorton, Ian; Liu, Yan; Yin, Jian; Kulkarni, Anand V.; Wynne, Adam S.

    2011-09-08

    Cloud computing is being increasingly adopted for deploying systems biology scientific workflows. Scientists developing these workflows use a wide variety of fragmented and competing data sets and computational tools of all scales to support their research. To this end, the synergy of client side workflow tools with cloud platforms is a promising approach to share and reuse data and workflows. In such systems, the location of data and computation is essential consideration in terms of quality of service for composing a scientific workflow across remote cloud platforms. In this paper, we describe a cloud-based workflow for genome annotation processing that is underpinned by MeDICi - a middleware designed for data intensive scientific applications. The workflow implementation incorporates an execution layer for exploiting data locality that routes the workflow requests to the processing steps that are colocated with the data. We demonstrate our approach by composing two workflowswith the MeDICi pipelines.

  8. A cloud-based approach for interoperable electronic health records (EHRs).

    PubMed

    Bahga, Arshdeep; Madisetti, Vijay K

    2013-09-01

    We present a cloud-based approach for the design of interoperable electronic health record (EHR) systems. Cloud computing environments provide several benefits to all the stakeholders in the healthcare ecosystem (patients, providers, payers, etc.). Lack of data interoperability standards and solutions has been a major obstacle in the exchange of healthcare data between different stakeholders. We propose an EHR system - cloud health information systems technology architecture (CHISTAR) that achieves semantic interoperability through the use of a generic design methodology which uses a reference model that defines a general purpose set of data structures and an archetype model that defines the clinical data attributes. CHISTAR application components are designed using the cloud component model approach that comprises of loosely coupled components that communicate asynchronously. In this paper, we describe the high-level design of CHISTAR and the approaches for semantic interoperability, data integration, and security. PMID:25055368

  9. Recent Findings Based on Airborne Measurements at the Interface of Coastal California Clouds and Clear Air

    NASA Astrophysics Data System (ADS)

    Sorooshian, A.; Crosbie, E.; Wang, Z.; Chuang, P. Y.; Craven, J. S.; Coggon, M. M.; Brunke, M.; Zeng, X.; Jonsson, H.; Woods, R. K.; Flagan, R. C.; Seinfeld, J.

    2015-12-01

    Recent aircraft field experiments with the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter have targeted interfaces between clear and cloudy areas along the California coast. These campaigns, based out of Marina, California in the July-August time frame, include the Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE, 2011), Nucleation in California Experiment (NiCE, 2013), and the Biological Ocean Atmospheric Study (BOAS, 2015). Results will be presented related to (i) aqueous processing of natural and anthropogenic emissions, (ii) vertical re-distribution of ocean micronutrients, and (iii) stratocumulus cloud clearings and notable thermodynamic and aerosol contrasts across the clear-cloudy interface. The results have implications for modeling and observational studies of marine boundary layer clouds, especially in relation to aerosol-cloud interactions.

  10. Remote sensing monitoring of volcanic ash clouds based on PCA method

    NASA Astrophysics Data System (ADS)

    Li, Chengfan; Dai, Yangyang; Zhao, Junjuan; Zhou, Shiqiang; Yin, Jingyuan; Xue, Dan

    2014-12-01

    Volcanic ash clouds threaten the aviation safety and cause global environmental effects. It is possible to effectively monitor the volcanic ash cloud with the aid of thermal infrared remote sensing technology. Principal component analysis (PCA) is able to remove the inter-band correlation and eliminate the data redundancy of remote sensing data. Taking the Eyjafjallajokull volcanic ash clouds formed on 15 and 19 April 2010 as an example, in this paper, the PCA method is used to monitor the volcanic ash cloud based on MODIS bands selection; the USGS standard spectral database and the volcanic absorbing aerosol index (AAI) are applied as contrasts to the monitoring result. The results indicate that: the PCA method is much simpler; its spectral matching rates reach 74.65 and 76.35%, respectively; and the PCA method has higher consistency with volcanic AAI distribution.

  11. Remote Sensing Monitoring of Volcanic Ash Clouds Based on PCA Method

    NASA Astrophysics Data System (ADS)

    Li, Chengfan; Dai, Yangyang; Zhao, Junjuan; Yin, Jingyuan; Xue, Dan

    2015-04-01

    Volcanic ash clouds threaten the aviation safety and cause global environmental effects. It is possible to effectively monitor the volcanic ash cloud with the aid of thermal infrared remote sensing technology. Principal component analysis (PCA) is able to remove the inter-band correlation and eliminate the data redundancy of remote sensing data. Taking the Eyjafjallajokull volcanic ash clouds formed on 15 and 19 April 2010 as an example, in this paper, the PCA method is used to monitor the volcanic ash cloud based on MODIS bands selection; the USGS standard spectral database and the volcanic absorbing aerosol index (AAI) are applied as contrasts to the monitoring result. The results indicate that: the PCA method is much simpler; its spectral matching rates reach 74.65 and 76.35%, respectively; and the PCA method has higher consistency with volcanic AAI distribution.

  12. A cloud-based approach for interoperable electronic health records (EHRs).

    PubMed

    Bahga, Arshdeep; Madisetti, Vijay K

    2013-09-01

    We present a cloud-based approach for the design of interoperable electronic health record (EHR) systems. Cloud computing environments provide several benefits to all the stakeholders in the healthcare ecosystem (patients, providers, payers, etc.). Lack of data interoperability standards and solutions has been a major obstacle in the exchange of healthcare data between different stakeholders. We propose an EHR system - cloud health information systems technology architecture (CHISTAR) that achieves semantic interoperability through the use of a generic design methodology which uses a reference model that defines a general purpose set of data structures and an archetype model that defines the clinical data attributes. CHISTAR application components are designed using the cloud component model approach that comprises of loosely coupled components that communicate asynchronously. In this paper, we describe the high-level design of CHISTAR and the approaches for semantic interoperability, data integration, and security.

  13. What is the Planetary Boundary Layer Height in a Global Perspective?

    NASA Astrophysics Data System (ADS)

    Xie, F.; Syndergaard, S.; von Engeln, A.

    2014-12-01

    The planetary boundary layer (PBL) height is a fundamental parameter characterizing the vertical extent of atmospheric mixing near the surface. It is critical for understanding the PBL process and low cloud evolution and its feedback on the climate system, which remains a key uncertainty in climate modeling. The PBL height is generally defined as the altitude of a transition layer where air temperature or humidity gradient are significant within the lowest 1-5 kilometers above the surface. Numerous thermodynamic parameters, including temperature, humidity (specific/relative humidity) and their derivatives (e.g., potential/virtual potential temperature etc.) have been widely used to define the PBL height. Advances in satellite remote sensing technique allow novel ways to detect the PBL heights from space. Many new parameters are proposed for PBL height detection including GPS radio occultation (RO) measurements (e.g., refractivity, bending angle and dry-temperature) and CALIPSO lidar backscattering measurements (e.g., cloud-top-height). Large discrepancy among various PBL height definitions was revealed from radiosonde analyses, which however are restricted over lands and represent limited horizontal scales of atmospheric conditions. In this talk, we investigate the definition difference in a global perspective by using multi-year high-resolution ERA-interim (1 degree grid with 60 vertical layers) global analysis. Automatic algorithms are applied to compute the PBL heights with various physical parameters (both conventional and GPS RO) at each model grid. The global PBL height seasonal climatology and the difference among the climatologies are derived. Large discrepancy between the thermal-based and humidity-based PBL height definitions is most prominent over tropical and polar regions. Humidity-based PBL heights become problematic over dry regions, especially over high-latitude in winter season. The cloud-top height from CALIPSO is consistent with most physical

  14. Aerosol-cloud-drizzle interactions in warm boundary layer clouds using ground-based measurements from Atlantic and continental European sites

    NASA Astrophysics Data System (ADS)

    Mann, Julian; Chiu, Christine; Hogan, Robin; O'Connor, Ewan

    2013-04-01

    Aerosol impacts the climate directly through scattering and absorbing radiation, and indirectly through altering properties of clouds and precipitation. With increasing ambient aerosol concentration, it is agreed that the redistribution of cloud water to more numerous, but smaller cloud droplets suppresses precipitation. However, the magnitude of precipitation suppression is uncertain, and the response of total cloud water to aerosol concentration remains poorly observed and understood. To better understand how aerosols regulate macro- and microphysical properties of boundary-layer clouds, and to establish statistical relationships of aerosol-cloud-precipitation interactions, we analyze high-temporal resolution observations from the Atmospheric Radiation Measurement (ARM) Mobile Facility deployments in Germany in 2007 and in the Azores during 2009-2010. Through synergy between ground-based aerosol observing systems, active and passive remote sensing instruments, we will show how the drizzle rate at cloud base varies with aerosol concentration. We will also demonstrate how the probability of precipitation and the precipitation susceptibility respond to ambient aerosol concentration, and whether these responses agree with results from state-of-the-art satellite observations and climate models.

  15. Validation of CERES-MODIS Arctic cloud properties using CloudSat/CALIPSO and ARM NSA observations

    NASA Astrophysics Data System (ADS)

    Giannecchini, K.; Dong, X.; Xi, B.; Minnis, P.; Kato, S.

    2011-12-01

    The traditional passive satellite studies of cloud properties in the Arctic are often affected by the complex surface features present across the region. Nominal visual and thermal contrast exists between Arctic clouds and the snow- and ice-covered surfaces beneath them, which can lead to difficulties in satellite retrievals of cloud properties. However, the addition of active sensors to the A-Train constellation of satellites has increased the availability of validation sources for cloud properties derived from passive sensors in the data-sparse high-latitude regions. In this study, Arctic cloud fraction and cloud heights derived from the NASA CERES team (CERES-MODIS) have been compared with CloudSat/CALIPSO and DOE ARM NSA radar-lidar observations over Barrow, AK, for the two-year period from 2007 to 2008. An Arctic-wide comparison of cloud fraction and height between CERES-MODIS and CloudSat/CALIPSO was then conducted for the same time period. The CERES-MODIS cloud properties, which include cloud fraction and cloud effective heights, were retrieved using the 4-channel VISST (Visible Infrared Solar-Infrared Split-window Technique) [Minnis et al.,1995]. CloudSat/CALIPSO cloud fraction and cloud-base and -top heights were from version RelB1 data products determined by both the 94 GHz radar onboard CloudSat and the lidar on CALIPSO with a vertical resolution of 30 m below 8.2 km and 60 m above. To match the surface and satellite observations/retrievals, the ARM surface observations were averaged into 3-hour intervals centered at the time of the satellite overpass, while satellite observations were averaged within a 3°x3° grid box centered on the Barrow site. The preliminary results have shown that all observed CFs have peaks during April-May and September-October, and dips during winter months (January-February) and summer months (June-July) during the study period of 2007-2008. ARM radar-lidar and CloudSat/CALIPSO show generally good agreement in CF (0.79 vs. 0

  16. A multi-sensor plume height analysis of the 2009 Redoubt eruption

    NASA Astrophysics Data System (ADS)

    Ekstrand, Angela L.; Webley, Peter W.; Garay, Michael J.; Dehn, Jonathan; Prakash, Anupma; Nelson, David L.; Dean, Kenneson G.; Steensen, Torge

    2013-06-01

    During an explosive volcanic eruption, accurately determining the height of a volcanic plume or cloud is essential to accurately forecast its motion because volcanic ash transport and dispersion models require the initial plume height as an input parameter. The direct use of satellite infrared temperatures for height determination, one of the most commonly employed methods at the Alaska Volcano Observatory, often does not yield unique solutions for height. This result is documented here for the 2009 eruption of Redoubt Volcano. Satellite temperature heights consistently underestimated the height of ash plumes in comparison to other methods such as ground-based radar and Multi-angle Imaging SpectroRadiometer (MISR) stereo heights. For ash plumes below the tropopause, increasing transparency of a plume begins to affect the accuracy of simple temperature height retrievals soon after eruption. With decreasing opacity, plume temperature heights become increasingly inaccurate. Comparison with dispersion models and aircraft gas flight data confirms that radar and MISR stereo heights are more accurate than basic satellite temperature heights. Even in the cases in which satellite temperature results appeared to be relatively accurate (e.g., for plumes below the tropopause), a mixed signal of plume and ground radiation still presented an issue for almost every event studied. This was true regardless of the fact that a band differencing method was used to remove presumably translucent pixels. The data presented here make a strong case for the use of data fusion in volcano monitoring, as there is a need to confirm satellite temperature heights with other height data. If only basic satellite temperature heights are available for a given eruption, then these heights must be considered with a significant margin of error.

  17. A Novel Approach to Generate Essential New CALIPSO-based Products: Biomass Burning Plume Injection Height Using CALIOP, MODIS and the NASA Langley Trajectory Model

    NASA Astrophysics Data System (ADS)

    Vaughan, M.; Soja, A. J.; Fairlie, T. D.; Westberg, D. J.; Pouliot, G.

    2012-12-01

    There is a significant connection between biomass burning (BB) emissions, the terrestrial environment and the atmosphere, which has strong implications for feedbacks to Air Quality and to the climate system. BB has the potential to alter numerous land and atmospheric processes and their full influence to feedback to interactive systems is currently being exposed (i.e. black carbon on spring Arctic ice). The heights to which BB emissions are injected influence their transport, their interaction with clouds, which alters albedo, and their ability to modify patterns of precipitation. We are working with our applications partners, primarily the Environmental Protection Agency and regional partners, to generate BB plume injection height products using multiple platforms, sensors and models (CALIOP, MODIS, NOAA HMS, Langley Trajectory Model) that will provide value to national and international scientific and air quality communities, the CALIPSO science and algorithm teams, and to public land, fire, and air quality management and regulations communities. Specifically, we are: (1) developing mean statistics that link CALIOP air parcels and BB injection height to the variables that control these dynamics, which include ecosystems, fire-specific and meteorological variables; and (2) defining the daily evolution of smoke plumes for specific fires. Statistics that link fire behavior and weather to plume rise are crucial for verifying and enhancing plume rise parameterization in regional- and global-scale models used for air quality, chemical transport and climate.

  18. Analysis of global cloudiness. 2: Comparison of ground-based and satellite-based cloud climatologies

    SciTech Connect

    Mokhov, I.I.; Schlesinger, M.E. |

    1994-08-01

    Cloud climatologies are developed and intercompared for International Satellite Cloud Climatology Project (ISCCO) (1983-1988), Meteor I (1971-1980), Meteor II (1979-1988), and Nimbus 7 (1979-1985) satellite observations, and for Berlyand and Strokina (1975, 1980) and Warren et al. (1986, 1988) ground-based observations. The satellite annual-mean, global- mean cloudiness, 0.57 +/- 0.05, is less than the ground-based value, 0.61 +/- 0.01, predominantly because of the low value for Nimbus 7. There is agreement between the satellite means of ISCCP, 0.62, and Meteor II, 0.61, and the ground-based means of Warren et al., 0.62, and Berlyand and Strokina, 0.60. Each satellite- and ground-based climatology shows that the hemispheric- mean cloudiness is larger in summer than that in winter in both the northern and southern hemispheres. Excluding Nimbus 7 observations, the zonal- mean cloudiness distributions for January, July, and July minus January display reasonably good agreement between 60 deg S and 60 deg N. In polar latitudes there is significant disagreement among the different climatologies, even in the sign of cloudiness changes from winter to summer. This evinces the need for special cloudiness experiments in polar regions, particularly in winter and summer.

  19. Ground-based remote sensing of thin clouds in the Arctic

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.; Zhao, C.

    2013-05-01

    This paper describes a method for using interferometer measurements of downwelling thermal radiation to retrieve the properties of single-layer clouds. Cloud phase is determined from ratios of thermal emission in three "micro-windows" at 862.5 cm-1, 935.8 cm-1, and 988.4 cm-1 where absorption by water vapour is particularly small. Cloud microphysical and optical properties are retrieved from thermal emission in the first two of these micro-windows, constrained by the transmission through clouds of primarily stratospheric ozone emission at 1040 cm-1. Assuming a cloud does not approximate a blackbody, the estimated 95% confidence retrieval errors in effective radius re, visible optical depth τ, number concentration N, and water path WP are, respectively, 10%, 20%, 38% (55% for ice crystals), and 16%. Applied to data from the Atmospheric Radiation Measurement programme (ARM) North Slope of Alaska - Adjacent Arctic Ocean (NSA-AAO) site near Barrow, Alaska, retrievals show general agreement with both ground-based microwave radiometer measurements of liquid water path and a method that uses combined shortwave and microwave measurements to retrieve re, τ and N. Compared to other retrieval methods, advantages of this technique include its ability to characterise thin clouds year round, that water vapour is not a primary source of retrieval error, and that the retrievals of microphysical properties are only weakly sensitive to retrieved cloud phase. The primary limitation is the inapplicability to thicker clouds that radiate as blackbodies and that it relies on a fairly comprehensive suite of ground based measurements.

  20. An Interactive Web-Based Analysis Framework for Remote Sensing Cloud Computing

    NASA Astrophysics Data System (ADS)

    Wang, X. Z.; Zhang, H. M.; Zhao, J. H.; Lin, Q. H.; Zhou, Y. C.; Li, J. H.

    2015-07-01

    Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users' private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook. Users can write

  1. Comparing satellite- to ground-based automated and manual cloud coverage observations - a case study

    NASA Astrophysics Data System (ADS)

    Werkmeister, A.; Lockhoff, M.; Schrempf, M.; Tohsing, K.; Liley, B.; Seckmeyer, G.

    2015-05-01

    In this case study we compare cloud fractional cover measured by radiometers on polar satellites (AVHRR) and on one geostationary satellite (SEVIRI) to ground-based manual (SYNOP) and automated observations by a cloud camera (Hemispherical Sky Imager, HSI). These observations took place in Hannover, Germany, and in Lauder, New Zealand, over time frames of 3 and 2 months, respectively. Daily mean comparisons between satellite derivations and the ground-based HSI found the deviation to be 6 ± 14% for AVHRR and 8 ± 16% for SEVIRI, which can be considered satisfactory. AVHRR's instantaneous differences are smaller (2 ± 22%) than instantaneous SEVIRI cloud fraction estimates (8 ± 29%) when compared to HSI due to resolution and scenery effect issues. All spaceborne observations show a very good skill in detecting completely overcast skies (cloud cover ≥ 6 oktas) with probabilities between 92 and 94% and false alarm rates between 21 and 29% for AVHRR and SEVIRI in Hannover, Germany. In the case of a clear sky (cloud cover lower than 3 oktas) we find good skill with detection probabilities between 72 and 76%. We find poor skill, however, whenever broken clouds occur (probability of detection is 32% for AVHRR and 12% for SEVIRI in Hannover, Germany). In order to better understand these discrepancies we analyze the influence of algorithm features on the satellite-based data. We find that the differences between SEVIRI and HSI cloud fractional cover (CFC) decrease (from a bias of 8 to almost 0%) with decreasing number of spatially averaged pixels and decreasing index which determines the cloud coverage in each "cloud-contaminated" pixel of the binary map. We conclude that window size and index need to be adjusted in order to improve instantaneous SEVIRI and AVHRR estimates. Due to its automated operation and its spatial, temporal and spectral resolution, we recommend as well that more automated ground-based instruments in the form of cloud cameras should be installed

  2. Dynamic resource allocation engine for cloud-based real-time video transcoding in mobile cloud computing environments

    NASA Astrophysics Data System (ADS)

    Adedayo, Bada; Wang, Qi; Alcaraz Calero, Jose M.; Grecos, Christos

    2015-02-01

    The recent explosion in video-related Internet traffic has been driven by the widespread use of smart mobile devices, particularly smartphones with advanced cameras that are able to record high-quality videos. Although many of these devices offer the facility to record videos at different spatial and temporal resolutions, primarily with local storage considerations in mind, most users only ever use the highest quality settings. The vast majority of these devices are optimised for compressing the acquired video using a single built-in codec and have neither the computational resources nor battery reserves to transcode the video to alternative formats. This paper proposes a new low-complexity dynamic resource allocation engine for cloud-based video transcoding services that are both scalable and capable of being delivered in real-time. Firstly, through extensive experimentation, we establish resource requirement benchmarks for a wide range of transcoding tasks. The set of tasks investigated covers the most widely used input formats (encoder type, resolution, amount of motion and frame rate) associated with mobile devices and the most popular output formats derived from a comprehensive set of use cases, e.g. a mobile news reporter directly transmitting videos to the TV audience of various video format requirements, with minimal usage of resources both at the reporter's end and at the cloud infrastructure end for transcoding services.

  3. Dissection of genetic architecture of rice plant height and heading date by multiple-strategy-based association studies

    PubMed Central

    Zhou, Liyuan; Liu, Shouye; Wu, Weixun; Chen, Daibo; Zhan, Xiaodeng; Zhu, Aike; Zhang, Yingxin; Cheng, Shihua; Cao, Liyong; Lou, Xiangyang; Xu, Haiming

    2016-01-01

    Xieyou9308 is a certified super hybrid rice cultivar with a high grain yield. To investigate its underlying genetic basis of high yield potential, a recombinant inbred line (RIL) population derived from the cross between the maintainer line XieqingzaoB (XQZB) and the restorer line Zhonghui9308 (ZH9308) was constructed for identification of quantitative trait SNPs (QTSs) associated with two important agronomic traits, plant height (PH) and heading date (HD). By re-sequencing of 138 recombinant inbred lines (RILs), a total of ~0.7 million SNPs were identified for the association studies on the PH and HD. Three association mapping strategies (including hypothesis-free genome-wide association and its two complementary hypothesis-engaged ones, QTL-based association and gene-based association) were adopted for data analysis. Using a saturated mixed linear model including epistasis and environmental interaction, we identified a total of 31 QTSs associated with either the PH or the HD. The total estimated heritability across three analyses ranged from 37.22% to 45.63% and from 37.53% to 55.96% for the PH and HD, respectively. In this study we examined the feasibility of association studies in an experimental population (RIL) and identified several common loci through multiple strategies which could be preferred candidates for further research. PMID:27406081

  4. Dissection of genetic architecture of rice plant height and heading date by multiple-strategy-based association studies.

    PubMed

    Zhou, Liyuan; Liu, Shouye; Wu, Weixun; Chen, Daibo; Zhan, Xiaodeng; Zhu, Aike; Zhang, Yingxin; Cheng, Shihua; Cao, Liyong; Lou, Xiangyang; Xu, Haiming

    2016-01-01

    Xieyou9308 is a certified super hybrid rice cultivar with a high grain yield. To investigate its underlying genetic basis of high yield potential, a recombinant inbred line (RIL) population derived from the cross between the maintainer line XieqingzaoB (XQZB) and the restorer line Zhonghui9308 (ZH9308) was constructed for identification of quantitative trait SNPs (QTSs) associated with two important agronomic traits, plant height (PH) and heading date (HD). By re-sequencing of 138 recombinant inbred lines (RILs), a total of ~0.7 million SNPs were identified for the association studies on the PH and HD. Three association mapping strategies (including hypothesis-free genome-wide association and its two complementary hypothesis-engaged ones, QTL-based association and gene-based association) were adopted for data analysis. Using a saturated mixed linear model including epistasis and environmental interaction, we identified a total of 31 QTSs associated with either the PH or the HD. The total estimated heritability across three analyses ranged from 37.22% to 45.63% and from 37.53% to 55.96% for the PH and HD, respectively. In this study we examined the feasibility of association studies in an experimental population (RIL) and identified several common loci through multiple strategies which could be preferred candidates for further research. PMID:27406081

  5. Ship-Track Clouds, Aerosol, and Ship Dynamic Effects; A Climate Perspective from Ship-Based Measurements

    SciTech Connect

    Porch, W.M.

    1998-10-13

    Ship-track clouds are marine boundary layer clouds that form behind ocean ships and are observed from satellites in the visible and near infrared. Ship-track clouds provide a rare opportunity to connect aerosol cloud condensation nuclei (CCN) emissions and observable changes in marine stratiform clouds. A very small change in the reflectivity of these eastern Pacific and Atlantic clouds (about 4%) provides a climate feedback of similar magnitude to doubling CO{sub 2} (increasing cloud reflectivity corresponds to global cooling). The Department of Energy sponsored research from 1991 to 1995 to study ship-track clouds including two ocean-based experiments in the summers of 1991 and 1994. These experiments showed that ship-track cloud properties were often more complex those related to a reduction of droplet size with an increase in number associated with increasing CCN from the ship's plume. The clouds showed evidence of morphological changes more likely to be associated with cloud dynamic effects either initiated by the increased CCN or directly by the ship's heat output or turbulent air wake. The fact that marine stratiform clouds, that are susceptible to ship track formation, are starved for both CCN and convective turbulence complicates the separation of the two effects.

  6. Accelerating and democratizing science through cloud-based services.

    SciTech Connect

    Foster, I.

    2011-05-01

    Many businesses today save time and money, and increase their agility, by outsourcing mundane IT tasks to cloud providers. The author argues that similar methods can be used to overcome the complexities inherent in increasingly data-intensive, computational, and collaborative scientific research. He describes Globus Online, a system that he and his colleagues are developing to realize this vision. he scientific community today has unprecedented opportunities to effect transformational change in how individuals and teams engage in discovery. The driving force is a set of interrelated new capabilities that, when harnessed, can enable dramatic acceleration in the discovery process: greater availability of massive data, exponentially faster computers, ultra-high-speed networks, and deep interdisciplinary collaboration. The opportunity - and challenge - is to make these capabilities accessible not just to a few 'big science' projects but to every researcher at every level. Here, I argue that the key to seizing this opportunity is embracing software delivery methods that haven't been widely adopted in research, notably software as a service (SaaS) - a technology that forms an important part of what people refer to as the cloud. I also describe projects in the Computation Institute at the University of Chicago and Argonne National Laboratory that aim to realize this vision, focusing initially on data movement and management.

  7. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles

    NASA Astrophysics Data System (ADS)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2010-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.

  8. Increases of Chamber Height and Base Diameter Have Contrasting Effects on Grazing Rate of Two Cladoceran Species: Implications for Microcosm Studies

    PubMed Central

    Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun

    2015-01-01

    Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as “scale” effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments. PMID:26273836

  9. Increases of Chamber Height and Base Diameter Have Contrasting Effects on Grazing Rate of Two Cladoceran Species: Implications for Microcosm Studies.

    PubMed

    Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun

    2015-01-01

    Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as "scale" effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments. PMID:26273836

  10. Quality Assessment and Comparison of Smartphone and Leica C10 Laser Scanner Based Point Clouds

    NASA Astrophysics Data System (ADS)

    Sirmacek, Beril; Lindenbergh, Roderik; Wang, Jinhu

    2016-06-01

    3D urban models are valuable for urban map generation, environment monitoring, safety planning and educational purposes. For 3D measurement of urban structures, generally airborne laser scanning sensors or multi-view satellite images are used as a data source. However, close-range sensors (such as terrestrial laser scanners) and low cost cameras (which can generate point clouds based on photogrammetry) can provide denser sampling of 3D surface geometry. Unfortunately, terrestrial laser scanning sensors are expensive and trained persons are needed to use them for point cloud acquisition. A potential effective 3D modelling can be generated based on a low cost smartphone sensor. Herein, we show examples of using smartphone camera images to generate 3D models of urban structures. We compare a smartphone based 3D model of an example structure with a terrestrial laser scanning point cloud of the structure. This comparison gives us opportunity to discuss the differences in terms of geometrical correctness, as well as the advantages, disadvantages and limitations in data acquisition and processing. We also discuss how smartphone based point clouds can help to solve further problems with 3D urban model generation in a practical way. We show that terrestrial laser scanning point clouds which do not have color information can be colored using smartphones. The experiments, discussions and scientific findings might be insightful for the future studies in fast, easy and low-cost 3D urban model generation field.

  11. An intercomparison of radar-based liquid cloud microphysics retrievals and implications for model evaluation studies

    NASA Astrophysics Data System (ADS)

    Huang, D.; Zhao, C.; Dunn, M.; Dong, X.; Mace, G. G.; Jensen, M. P.; Xie, S.; Liu, Y.

    2012-06-01

    This paper presents a statistical comparison of three cloud retrieval products of the Atmospheric Radiation Measurement (ARM) program at the Southern Great Plains (SGP) site from 1998 to 2006: MICROBASE, University of Utah (UU), and University of North Dakota (UND) products. The probability density functions of the various cloud liquid water content (LWC) retrievals appear to be consistent with each other. While the mean MICROBASE and UU cloud LWC retrievals agree well in the middle of cloud, the discrepancy increases to about 0.03 gm-3 at cloud top and cloud base. Alarmingly large differences are found in the droplet effective radius (re) retrievals. The mean MICROBASE re is more than 6 μm lower than the UU re, whereas the discrepancy is reduced to within 1 μm if columns containing raining and/or mixed-phase layers are excluded from the comparison. A suite of stratified comparisons and retrieval experiments reveal that the LWC difference stems primarily from rain contamination, partitioning of total liquid later path (LWP) into warm and supercooled liquid, and the input cloud mask and LWP. The large discrepancy among the re retrievals is mainly due to rain contamination and the presence of mixed-phase layers. Since rain or ice particles are likely to dominate radar backscattering over cloud droplets, the large discrepancy found in this paper can be thought of as a physical limitation of single-frequency radar approaches. It is therefore suggested that data users should use the retrievals with caution when rain and/or mixed-phase layers are present in the column.

  12. Best practices for implementing, testing and using a cloud-based communication system in a disaster situation.

    PubMed

    Makowski, Dale

    2016-01-01

    This paper sets out the basics for approaching the selection and implementation of a cloud-based communication system to support a business continuity programme, including: • consideration for how a cloud-based communication system can enhance a business continuity programme; • descriptions of some of the more popular features of a cloud-based communication system; • options to evaluate when selecting a cloud-based communication system; • considerations for how to design a system to be most effective for an organisation; • best practices for how to conduct the initial load of data to a cloud-based communication system; • best practices for how to conduct an initial validation of the data loaded to a cloud-based communication system; • considerations for how to keep contact information in the cloud-based communication system current and accurate; • best practices for conducting ongoing system testing; • considerations for how to conduct user training; • review of other potential uses of a cloud-based communication system; and • review of other tools and features many cloud-based communication systems may offer.

  13. Best practices for implementing, testing and using a cloud-based communication system in a disaster situation.

    PubMed

    Makowski, Dale

    2016-01-01

    This paper sets out the basics for approaching the selection and implementation of a cloud-based communication system to support a business continuity programme, including: • consideration for how a cloud-based communication system can enhance a business continuity programme; • descriptions of some of the more popular features of a cloud-based communication system; • options to evaluate when selecting a cloud-based communication system; • considerations for how to design a system to be most effective for an organisation; • best practices for how to conduct the initial load of data to a cloud-based communication system; • best practices for how to conduct an initial validation of the data loaded to a cloud-based communication system; • considerations for how to keep contact information in the cloud-based communication system current and accurate; • best practices for conducting ongoing system testing; • considerations for how to conduct user training; • review of other potential uses of a cloud-based communication system; and • review of other tools and features many cloud-based communication systems may offer. PMID:27318288

  14. Automatic Atlas Based Electron Density and Structure Contouring for MRI-based Prostate Radiation Therapy on the Cloud

    NASA Astrophysics Data System (ADS)

    Dowling, J. A.; Burdett, N.; Greer, P. B.; Sun, J.; Parker, J.; Pichler, P.; Stanwell, P.; Chandra, S.; Rivest-Hénault, D.; Ghose, S.; Salvado, O.; Fripp, J.

    2014-03-01

    Our group have been developing methods for MRI-alone prostate cancer radiation therapy treatment planning. To assist with clinical validation of the workflow we are investigating a cloud platform solution for research purposes. Benefits of cloud computing can include increased scalability, performance and extensibility while reducing total cost of ownership. In this paper we demonstrate the generation of DICOM-RT directories containing an automatic average atlas based electron density image and fast pelvic organ contouring from whole pelvis MR scans.

  15. Ground-based imaging remote sensing of ice clouds: uncertainties caused by sensor, method and atmosphere

    NASA Astrophysics Data System (ADS)

    Zinner, Tobias; Hausmann, Petra; Ewald, Florian; Bugliaro, Luca; Emde, Claudia; Mayer, Bernhard

    2016-09-01

    In this study a method is introduced for the retrieval of optical thickness and effective particle size of ice clouds over a wide range of optical thickness from ground-based transmitted radiance measurements. Low optical thickness of cirrus clouds and their complex microphysics present a challenge for cloud remote sensing. In transmittance, the relationship between optical depth and radiance is ambiguous. To resolve this ambiguity the retrieval utilizes the spectral slope of radiance between 485 and 560 nm in addition to the commonly employed combination of a visible and a short-wave infrared wavelength.An extensive test of retrieval sensitivity was conducted using synthetic test spectra in which all parameters introducing uncertainty into the retrieval were varied systematically: ice crystal habit and aerosol properties, instrument noise, calibration uncertainty and the interpolation in the lookup table required by the retrieval process. The most important source of errors identified are uncertainties due to habit assumption: Averaged over all test spectra, systematic biases in the effective radius retrieval of several micrometre can arise. The statistical uncertainties of any individual retrieval can easily exceed 10 µm. Optical thickness biases are mostly below 1, while statistical uncertainties are in the range of 1 to 2.5.For demonstration and comparison to satellite data the retrieval is applied to observations by the Munich hyperspectral imager specMACS (spectrometer of the Munich Aerosol and Cloud Scanner) at the Schneefernerhaus observatory (2650 m a.s.l.) during the ACRIDICON-Zugspitze campaign in September and October 2012. Results are compared to MODIS and SEVIRI satellite-based cirrus retrievals (ACRIDICON - Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems; MODIS - Moderate Resolution Imaging Spectroradiometer; SEVIRI - Spinning Enhanced Visible and Infrared Imager). Considering the identified

  16. Cloud-based systems for monitoring earthquakes and other environmental quantities

    NASA Astrophysics Data System (ADS)

    Clayton, R. W.; Olson, M.; Liu, A.; Chandy, M.; Bunn, J.; Guy, R.

    2013-12-01

    There are many advantages to using a cloud-based system to record and analyze environmental quantities such as earthquakes, radiation, various gases, dust and meteorological parameters. These advantages include robustness and dynamic scalability, and also reduced costs. In this paper, we present our experiences over the last three years in developing a cloud-based earthquake monitoring system (the Community Seismic Network). This network consists of over 600 sensors (accelerometers) in the S. California region that send data directly to the Google App Engine where they are analyzed. The system is capable of handing many other types of sensor data and generating a situation-awareness analysis as a product. Other advantages to the cloud-based system are integration with other peer networks, and being able to deploy anywhere in the world without have to build addition computing infrastructure.

  17. Cloud microphysical background for the Israel-4 cloud seeding experiment

    NASA Astrophysics Data System (ADS)

    Freud, Eyal; Koussevitzky, Hagai; Goren, Tom; Rosenfeld, Daniel

    2015-05-01

    The modest amount of rainfall in Israel occurs in winter storms that bring convective clouds from the Mediterranean Sea when the cold post frontal air interacts with its relatively warm surface. These clouds were seeded in the Israel-1 and Israel-2 cloud glaciogenic seeding experiments, which have shown statistically significant positive effect of added rainfall of at least 13% in northern Israel, whereas the Israel-3 experiment showed no added rainfall in the south. This was followed by operational seeding in the north since 1975. The lack of physical evidence for the causes of the positive effects in the north caused a lack of confidence in the statistical results and led to the Israel-4 randomized seeding experiment in northern Israel. This experiment started in the winter of 2013/14. The main difference from the previous experiments is the focus on the orographic clouds in the catchment of the Sea of Galilee. The decision to commence the experiment was partially based on evidence supporting the existence of seeding potential, which is reported here. Aircraft and satellite microphysical and dynamic measurements of the clouds document the critical roles of aerosols, especially sea spray, on cloud microstructure and precipitation forming processes. It was found that the convective clouds over sea and coastal areas are naturally seeded hygroscopically by sea spray and develop precipitation efficiently. The diminution of the large sea spray aerosols farther inland along with the increase in aerosol concentrations causes the clouds to develop precipitation more slowly. The short time available for the precipitation forming processes in super-cooled orographic clouds over the Golan Heights farthest inland represents the best glaciogenic seeding potential.

  18. Unified height systems after GOCE

    NASA Astrophysics Data System (ADS)

    Rummel, Reiner; Gruber, Thomas; Sideris, Michael; Rangelova, Elena; Woodworth, Phil; Hughes, Chris; Ihde, Johannes; Liebsch, Gunter; Rülke, Axel; Gerlach, Christian; Haagmans, Roger

    2015-04-01

    The objectives of global height unification are twofold, (1) the realization of accurate geopotential numbers C together with their standard deviation σ(C) at a selected set of stations (datum points of national height systems, geodetic fundamental stations (IERS), primary tide gauges (PSMSL) and primary reference clocks (IERS)) and (2) the determination of height off-sets between all existing regional/national height systems and one global height reference. In the future the primary method of height determination will be GPS-levelling with very stringent requirements concerning the consistency of the positioning and the gravity potential difference part. Consistency is required in terms of the applied standards (ITRF, zero tide system, geodetic reference system). Geopotential differences will be based on a next generation geopotential model combining GOCE and GRACE and a best possible collection of global terrestrial and altimetric gravity and topographic data. Ultimately, the envisaged accuracy of height unification is about 10 cm2/s2 (or 1cm). At the moment, in well surveyed regions, an accuracy of about 40 to 60 cm2/s2 (or 4 to 6cm) is attainable. Objective One can be realized by straight forward computation of geopotential numbers C, i.e. geopotential differences relative to an adopted height reference. No adjustment is required for this. Objective Two, the unification of existing height systems is achieved by employing a least-squares adjustment based on the GBVP-approach. In order to attain a non-singular solution, this requires for each included datum zone at least one geo-referenced station per zone, i.e. its ellipsoidal height h and, in addition, the corresponding physical height H (geopotential number, normal height, orthometric height, etc.). Changes in geopotential numbers of consecutive realizations reflect (1) temporal changes of station heights, (2) improvements or changes of the applied geopotential (or geoid) model and (3) improvements of the

  19. A solution to the global height datum problem based on satellite derived global models and the corresponding error budget

    NASA Astrophysics Data System (ADS)

    Barzaghi, R.; Gatti, A.; Reguzzoni, M.; Venuti, G.

    2012-04-01

    The global height datum problem, that is the determination of biases of different height systems at global scale, is revised and two solutions are proposed. As it is well known, biased heights enter into the computation of terrestrial gravity anomalies, which in turn are used for geoid determination. Hence, these biases enter as secondary or indirect effect also in such a geoid model. In contrast to terrestrial gravity anomalies, gravity and geoid models derived from satellite gravity missions, and in particular GRACE and GOCE, do not suffer from those inconsistencies. Thus, these models can be profitably used in estimating the existing height system biases. Two approaches have been studied. The first one compares the gravity potential coefficients in the range of degrees from 100 to 200 of an unbiased gravity field from GOCE with those of the combined model EGM2008 that in this range are affected by the height biases. The second approach compares height anomalies derived from GNSS ellipsoidal heights and biased normal heights, with anomalies derived from an anomalous potential which combines a satellite-only model up to degree 200 and a high-resolution global model above 200. Numerical tests have been devised to prove the effectiveness of the two methods, in terms of variances of the biases to be estimated. This error budget analysis depends on the observation accuracies as well as of their number and spatial distribution. The impact of the error covariance structure of the GOCE and EGM2008 models has been evaluated together with the impact of the observation network design.

  20. Cloud Property Retrieval Products for Graciosa Island, Azores

    DOE Data Explorer

    Dong, Xiquan

    2014-05-05

    The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files.

  1. GOCE-based height system unification between Greece and Turkey. First considerations over marine and land areas

    NASA Astrophysics Data System (ADS)

    Vergos, Georgios S.; Erol, Bihter; Natsiopoulos, Dimitrios A.; Grigoriadis, Vassilios N.; Serkan Işık, Mustafa; Tziavos, Ilias N.

    2016-04-01

    The unification of local vertical Datums (LVDs) at a country-wide scale has gained significant attention lately, due to the availability of GOCE-based Global Geopotential Models (GGMs). The latter, offer unprecedented geoid height accuracies at the 1-1.5 cm level for spherical harmonic expansions to d/o 225-230. Within a single country, several LVDs may be used, especially in the event of islandic nations, therefore the unification of all of them to a single nation-wide LVD is of utmost importance. The same holds for neighboring countries, where the unification of their vertical datums is necessary as a tool of engineering, cross-border collaboration and environmental and risk management projects. The aforementioned set the main scope of the work carried out in the frame of the present study, which referred to the use of GOCE and GOCE/GRACE GGMs in order to unify the LVDs of Greece and Turkey. It is well-known that the two countries share common borders and are a path for large-scale engineering projects in the energy sector. Therefore, the availability of a common reference for orthometric heights in both countries and/or the determination of the relative offset of their individual zero-level geopotential value poses an emerging issue. The determination of the geopotential value Wo(LVD) for the Greek and Turkish LVDs was first carried out separately for each region performing as well different estimates for the marine area of the Aegean Sea and the terrestrial border-region along eastern Thrace. From that, possible biases of the Hellenic and Turkish LVDs themselves have been drawn and analyzed to determine spatial correlations. Then, the relative offset between the two LVDs was determined employing GPS/Levelling data for both areas and the latest GO-DIR-R5, GO-TIM-R5 and GOCO05s models as well as EGM2008. The estimation of the mean offset was used to provide as well a direct link between the Greek and Turkish LVDs with the IAG conventional value recently proposed

  2. Projected changes, climate change signal, and uncertainties in the CMIP5-based projections of ocean surface wave heights

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolan; Feng, Yang; Swail, Val R.

    2016-04-01

    Ocean surface waves can be major hazards in coastal and offshore activities. However, wave observations are available only at limited locations and cover only the recent few decades. Also, there exists very limited information on ocean wave behavior in response to climate change, because such information is not simulated in current global climate models. In a recent study, we used a multivariate regression model with lagged dependent variable to make statistical global projections of changes in significant wave heights (Hs) using mean sea level pressure (SLP) information from 20 CMIP5 climate models for the twenty-first century. The statistical model was calibrated and validated using the ERA-Interim reanalysis of Hs and SLP for the period 1981-2010. The results show Hs increases in the tropics (especially in the eastern tropical Pacific) and in southern hemisphere high-latitudes. Under the projected 2070-2099 climate condition of the RCP8.5 scenario, the occurrence frequency of the present-day one-in-10-year extreme wave heights is likely to double or triple in several coastal regions around the world (e.g., the Chilean coast, Gulf of Oman, Gulf of Bengal, Gulf of Mexico). More recently, we used the analysis of variance approaches to quantify the climate change signal and uncertainty in multi-model ensembles of statistical Hs simulations globally, which are based on the CMIP5 historical, RCP4.5 and RCP8.5 forcing scenario simulations of SLP. In a 4-model 3-run ensemble, the 4-model common signal of climate change is found to strengthen over time, as would be expected. For the historical followed by RCP8.5 scenario, the common signal in annual mean Hs is found to be significant over 16.6%, 55.0% and 82.2% of the area by year 2005, 2050 and 2099, respectively. For the annual maximum, the signal is much weaker. The signal is strongest in the eastern tropical Pacific, featuring significant increases in both the annual mean and maximum of Hs in this region. The climate

  3. An adaptive process-based cloud infrastructure for space situational awareness applications

    NASA Astrophysics Data System (ADS)

    Liu, Bingwei; Chen, Yu; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik; Rubin, Bruce

    2014-06-01

    Space situational awareness (SSA) and defense space control capabilities are top priorities for groups that own or operate man-made spacecraft. Also, with the growing amount of space debris, there is an increase in demand for contextual understanding that necessitates the capability of collecting and processing a vast amount sensor data. Cloud computing, which features scalable and flexible storage and computing services, has been recognized as an ideal candidate that can meet the large data contextual challenges as needed by SSA. Cloud computing consists of physical service providers and middleware virtual machines together with infrastructure, platform, and software as service (IaaS, PaaS, SaaS) models. However, the typical Virtual Machine (VM) abstraction is on a per operating systems basis, which is at too low-level and limits the flexibility of a mission application architecture. In responding to this technical challenge, a novel adaptive process based cloud infrastructure for SSA applications is proposed in this paper. In addition, the details for the design rationale and a prototype is further examined. The SSA Cloud (SSAC) conceptual capability will potentially support space situation monitoring and tracking, object identification, and threat assessment. Lastly, the benefits of a more granular and flexible cloud computing resources allocation are illustrated for data processing and implementation considerations within a representative SSA system environment. We show that the container-based virtualization performs better than hypervisor-based virtualization technology in an SSA scenario.

  4. Global model of the F2 layer peak height for low solar activity based on GPS radio-occultation data

    NASA Astrophysics Data System (ADS)

    Shubin, V. N.; Karpachev, A. T.; Tsybulya, K. G.

    2013-11-01

    We propose a global median model SMF2 (Satellite Model of the F2 layer) of the ionospheric F2-layer height maximum (hmF2), based on GPS radio-occultation data for low solar activity periods (F10.7A<80). The model utilizes data provided by GPS receivers onboard satellites CHAMP (~100,000 hmF2 values), GRACE (~70,000) and COSMIC (~2,000,000). The data were preprocessed to remove cases where the absolute maximum of the electron density lies outside the F2 region. Ground-based ionospheric sounding data were used for comparison and validation. Spatial dependence of hmF2 is modeled by a Legendre-function expansion. Temporal dependence, as a function of Universal Time (UT), is described by a Fourier expansion. Inputs of the model are: geographical coordinates, month and F10.7A solar activity index. The model is designed for quiet geomagnetic conditions (Kр=1-2), typical for low solar activity. SMF2 agrees well with the International Reference Ionosphere model (IRI) in those regions, where the ground-based ionosonde network is dense. Maximal difference between the models is found in the equatorial belt, over the oceans and the polar caps. Standard deviations of the radio-occultation and Digisonde data from the predicted SMF2 median are 10-16 km for all seasons, against 13-29 km for IRI-2012. Average relative deviations are 3-4 times less than for IRI, 3-4% against 9-12%. Therefore, the proposed hmF2 model is more accurate than IRI-2012.

  5. Separating aerosol microphysical effects and satellite measurement artifacts of the relationships between warm rain onset height and aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Zhu, Yannian; Rosenfeld, Daniel; Yu, Xing; Li, Zhanqing

    2015-08-01

    The high resolution (375 m) of the Visible Infrared Imaging Radiometer Suite on board the Suomi National Polar-Orbiting Partnership satellite allows retrieving relatively accurately the vertical evolution of convective cloud drop effective radius (re) with height or temperature. A tight relationship is found over SE Asia and the adjacent seas during summer between the cloud-free aerosol optical depth (AOD) and the cloud thickness required for the initiation of warm rain, as represented by the satellite-retrieved cloud droplet re of 14 µm, for a subset of conditions that minimize measurement artifacts. This cloud depth (ΔT14) is parameterized as the difference between the cloud base temperature and the temperature at the height where re exceeds 14 µm (T14). For a unit increase of AOD, the height of rain initiation is increased by about 5.5 km. The concern of data artifacts due to the increase in AOD near clouds was mitigated by selecting only scenes with cloud fraction (CF) < 0.1. For CF > 0.1 and ΔT14 > ~20°C, the increase of ΔT14 gradually levels off with further increase of AOD, possibly because the AOD is enhanced by aerosol upward transport and detrainment through the clouds below the T14 isotherm. The bias in the retrieved re due to the different geometries of solar illumination was also quantified. It was shown that the retrievals are valid only for backscatter views or when avoiding scenes with significant amount of cloud self-shadowing. These artifacts might have contributed to past reported relationships between cloud properties and AOD.

  6. Web-based Tsunami Early Warning System with instant Tsunami Propagation Calculations in the GPU Cloud

    NASA Astrophysics Data System (ADS)

    Hammitzsch, M.; Spazier, J.; Reißland, S.

    2014-12-01

    Usually, tsunami early warning and mitigation systems (TWS or TEWS) are based on several software components deployed in a client-server based infrastructure. The vast majority of systems importantly include desktop-based clients with a graphical user interface (GUI) for the operators in early warning centers. However, in times of cloud computing and ubiquitous computing the use of concepts and paradigms, introduced by continuously evolving approaches in information and communications technology (ICT), have to be considered even for early warning systems (EWS). Based on the experiences and the knowledge gained in three research projects - 'German Indonesian Tsunami Early Warning System' (GITEWS), 'Distant Early Warning System' (DEWS), and 'Collaborative, Complex, and Critical Decision-Support in Evolving Crises' (TRIDEC) - new technologies are exploited to implement a cloud-based and web-based prototype to open up new prospects for EWS. This prototype, named 'TRIDEC Cloud', merges several complementary external and in-house cloud-based services into one platform for automated background computation with graphics processing units (GPU), for web-mapping of hazard specific geospatial data, and for serving relevant functionality to handle, share, and communicate threat specific information in a collaborative and distributed environment. The prototype in its current version addresses tsunami early warning and mitigation. The integration of GPU accelerated tsunami simulation computations have been an integral part of this prototype to foster early warning with on-demand tsunami predictions based on actual source parameters. However, the platform is meant for researchers around the world to make use of the cloud-based GPU computation to analyze other types of geohazards and natural hazards and react upon the computed situation picture with a web-based GUI in a web browser at remote sites. The current website is an early alpha version for demonstration purposes to give the

  7. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    NASA Astrophysics Data System (ADS)

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    One of the attractive features of a millimeter wave radar system is its ability to detect micron-sized particles that constitute clouds with lower than 0.1 g m-3 liquid or ice water content. Scanning or vertically-pointing ground-based millimeter wavelength radars are used to study stratocumulus (Vali et al. 1998; Kollias and Albrecht 2000) and fair-weather cumulus (Kollias et al. 2001). Airborne millimeter wavelength radars have been used for atmospheric remote sensing since the early 1990s (Pazmany et al. 1995). Airborne millimeter wavelength radar systems, such as the University of Wyoming King Air Cloud Radar (WCR) and the NASA ER-2 Cloud Radar System (CRS), have added mobility to observe clouds in remote regions and over oceans. Scientific requirements of millimeter wavelength radar are mainly driven by climate and cloud initiation studies. Survey results from the cloud radar user community indicated a common preference for a narrow beam W-band radar with polarimetric and Doppler capabilities for airborne remote sensing of clouds. For detecting small amounts of liquid and ice, it is desired to have -30 dBZ sensitivity at a 10 km range. Additional desired capabilities included a second wavelength and/or dual-Doppler winds. Modern radar technology offers various options (e.g., dual-polarization and dual-wavelength). Even though a basic fixed beam Doppler radar system with a sensitivity of -30 dBZ at 10 km is capable of satisfying cloud detection requirements, the above-mentioned additional options, namely dual-wavelength, and dual-polarization, significantly extend the measurement capabilities to further reduce any uncertainty in radar-based retrievals of cloud properties. This paper describes a novel, airborne pod-based millimeter wave radar, preliminary radar measurements and corresponding derived scientific products. Since some of the primary engineering requirements of this millimeter wave radar are that it should be deployable on an airborne platform

  8. Aerosol-Cloud Interactions in Deep Convective Clouds Over Equatorial East Africa

    NASA Astrophysics Data System (ADS)

    Ngaina, J. N.; Opere, A.; Ininda, J. M.; Muthama, N.

    2015-12-01

    Deep convective clouds (DCCs) associated with tropical convection, are significant sources of precipitation in Equatorial East Africa. The DCCs play a fundamental role in hydrological and energy cycle. Weather Research and Forecasting (WRF) model with detailed bin-resolved microphysics are used to explore the diurnal variation of DCCs under maritime/clean and continental/polluted conditions. The sign and magnitude of the Twomey effect, droplet dispersion effect, cloud thickness effect, Cloud Optical Depth (COD) susceptibility to aerosol perturbations, and aerosol effects on clouds and precipitation is evaluated. Twomey effect emerges as dominant in total COD susceptibility to aerosol perturbations. The dispersion effect is positive and accounts for 3-10% of the total COD susceptibility at nighttime, with greater influence on heavier drizzling clouds. The cloud thickness effect is positive (negative) for a moderate/heavy drizzling (light thickness) clouds. The cloud thickness effect results in 5-22% of the nighttime total cloud susceptibility. Cloud microphysical properties and accumulated total precipitation show a complex relationship under varied aerosol conditions. The mean of core updraft and maximal vertical velocity increased (decreased) under low (high) CCN scenarios. Overall, the total COD susceptibility ranges from 0.28-0.53 at night; an increase in aerosol concentration enhances COD, especially with heavier precipitation and in a clean environment. During the daytime, the range of magnitude of each effect is more variable owing to cloud thinning and decoupling. The ratio of the magnitude of cloud thickness effect to that of the Twomey effect depends on cloud thickness and base height in unperturbed clouds while the response of precipitation to increase in aerosol concentration was non-monotonic

  9. A cloud-based X73 ubiquitous mobile healthcare system: design and implementation.

    PubMed

    Ji, Zhanlin; Ganchev, Ivan; O'Droma, Máirtín; Zhang, Xin; Zhang, Xueji

    2014-01-01

    Based on the user-centric paradigm for next generation networks, this paper describes a ubiquitous mobile healthcare (uHealth) system based on the ISO/IEEE 11073 personal health data (PHD) standards (X73) and cloud computing techniques. A number of design issues associated with the system implementation are outlined. The system includes a middleware on the user side, providing a plug-and-play environment for heterogeneous wireless sensors and mobile terminals utilizing different communication protocols and a distributed "big data" processing subsystem in the cloud. The design and implementation of this system are envisaged as an efficient solution for the next generation of uHealth systems.

  10. TPM: cloud-based tele-PTSD monitor using multi-dimensional information.

    PubMed

    Xu, Roger; Mei, Gang; Zhang, Guangfan; Gao, Pan; Pepe, Aaron; Li, Jiang

    2013-01-01

    An automated system that can remotely and non-intrusively screen individuals at high risk for Post-Traumatic Stress Disorder (PTSD) and monitor their progress during treatment would be desired by many Veterans Affairs (VAs) as well as other PTSD treatment and research organizations. In this paper, we present an automated, cloud-based Tele-PTSD Monitor (TPM) system based on the fusion of multiple sources of information. The TPM system can be hosted in a cloud environment and accessed through landline or cell phones, or on the Internet through a web portal or mobile application (app).

  11. A cloud-based X73 ubiquitous mobile healthcare system: design and implementation.

    PubMed

    Ji, Zhanlin; Ganchev, Ivan; O'Droma, Máirtín; Zhang, Xin; Zhang, Xueji

    2014-01-01

    Based on the user-centric paradigm for next generation networks, this paper describes a ubiquitous mobile healthcare (uHealth) system based on the ISO/IEEE 11073 personal health data (PHD) standards (X73) and cloud computing techniques. A number of design issues associated with the system implementation are outlined. The system includes a middleware on the user side, providing a plug-and-play environment for heterogeneous wireless sensors and mobile terminals utilizing different communication protocols and a distributed "big data" processing subsystem in the cloud. The design and implementation of this system are envisaged as an efficient solution for the next generation of uHealth systems. PMID:24737958

  12. Physics-based visualization of dense natural clouds. I. Three-dimensional discrete ordinates radiative transfer.

    PubMed

    Tofsted, D H; O'Brien, S G

    1998-11-20

    A technique is developed to model radiative transfer in three-dimensional natural clouds with a standard discrete ordinates finite-element method modified to evaluate cell-surface-averaged radiances. A log-least-squares-based scale transformation is used to improve the discrete phase-function model. We handle dense media by assuming constant diffuse radiances over input faces to cubic cells, allowing analytical forms for transmittance factors. Transmission equations are combined with diffuse volumetric single-scattering calculations to support evaluations of cell energy balance. Energy not accounted for volumetrically is treated with surface-based effects. Results produced show accurate flux computations at over 30 optical depths per modeled cell. Comparisons with nonuniform cloud Monte Carlo calculations show less than 1% rms error and correlations greater than 0.999 for cases in which cloud-density fluctuations are resolved.

  13. Criteria for the evaluation of a cloud-based hospital information system outsourcing provider.

    PubMed

    Low, Chinyao; Hsueh Chen, Ya

    2012-12-01

    As cloud computing technology has proliferated rapidly worldwide, there has been a trend toward adopting cloud-based hospital information systems (CHISs). This study examines the critical criteria for selecting the CHISs outsourcing provider. The fuzzy Delphi method (FDM) is used to evaluate the primary indicator collected from 188 useable responses at a working hospital in Taiwan. Moreover, the fuzzy analytic hierarchy process (FAHP) is employed to calculate the weights of these criteria and establish a fuzzy multi-criteria model of CHISs outsourcing provider selection from 42 experts. The results indicate that the five most critical criteria related to CHISs outsourcing provider selection are (1) system function, (2) service quality, (3) integration, (4) professionalism, and (5) economics. This study may contribute to understanding how cloud-based hospital systems can reinforce content design and offer a way to compete in the field by developing more appropriate systems.

  14. Study on the data matching of ground-based radar and laser point cloud

    NASA Astrophysics Data System (ADS)

    Qiu, Zhiwei; Wang, Chenxi; Yue, Jianping

    2016-07-01

    Due to the unique imaging approach for ground-based radar, identification and classification in observation area is very difficult. In order to improve the accuracy of the calculation and application combine with other data resource. it is necessary to implement data matching of radar images and 3D laser point cloud. First, the 3D cloud should to be transformed to orthographic maps, and then the horizontal rotation and orbit attitude angle parameters would be estimated for similarity transformation according to the characteristics such as common points and lines. Finally, the same reference point of the ground-based SAR data and cloud data is employed to accomplished in a two-dimensional coordinate system (called local common coordinate system).

  15. Physics-Based Visualization of Dense Natural Clouds. II. Cloud-Rendering Algorithm.

    PubMed

    O'Brien, S G; Tofsted, D H

    1998-11-20

    We discuss the representation of aerosol-scattering properties, boundary information, and the use of these results in line-of-sight rendering applications for visualization of a modeled atmosphere based on a discrete ordinates three-dimensional radiative-transport method. The outputs of the radiative-transfer model provide spatial and angular distributions of limiting path radiance, given an input density distribution and external illumination conditions. We discuss the determination of the direct attenuated radiance, integrated path radiance, and background radiance for each pixel in the rendered scene. Orthographic and perspective projection approaches for displaying these results are described, and sample images are shown.

  16. mPano: cloud-based mobile panorama view from single picture

    NASA Astrophysics Data System (ADS)

    Li, Hongzhi; Zhu, Wenwu

    2013-09-01

    Panorama view provides people an informative and natural user experience to represent the whole scene. The advances on mobile augmented reality, mobile-cloud computing, and mobile internet can enable panorama view on mobile phone with new functionalities, such as anytime anywhere query where a landmark picture is and what the whole scene looks like. To generate and explore panorama view on mobile devices faces significant challenges due to the limitations of computing capacity, battery life, and memory size of mobile phones, as well as the bandwidth of mobile Internet connection. To address the challenges, this paper presents a novel cloud-based mobile panorama view system that can generate and view panorama-view on mobile devices from a single picture, namely "Pano". In our system, first, we propose a novel iterative multi-modal image retrieval (IMIR) approach to get spatially adjacent images using both tag and content information from the single picture. Second, we propose a cloud-based parallel server synthing approach to generate panorama view in cloud, against today's local-client synthing approach that is almost impossible for mobile phones. Third, we propose predictive-cache solution to reduce latency of image delivery from cloud server to the mobile client. We have built a real mobile panorama view system and perform experiments. The experimental results demonstrated the effectiveness of our system and the proposed key component technologies, especially for landmark images.

  17. From pixels to patches: a cloud classification method based on a bag of micro-structures

    NASA Astrophysics Data System (ADS)

    Li, Qingyong; Zhang, Zhen; Lu, Weitao; Yang, Jun; Ma, Ying; Yao, Wen

    2016-03-01

    Automatic cloud classification has attracted more and more attention with the increasing development of whole sky imagers, but it is still in progress for ground-based cloud observation. This paper proposes a new cloud classification method, named bag of micro-structures (BoMS). This method treats an all-sky image as a collection of micro-structures mapped from image patches, rather than a collection of pixels. It represents the image with a weighted histogram of micro-structures. Based on this representation, BoMS recognizes the cloud class of the image by a support vector machine (SVM) classifier. Five classes of sky condition are identified: cirriform, cumuliform, stratiform, clear sky, and mixed cloudiness. BoMS is evaluated on a large data set, which contains 5000 all-sky images captured by a total-sky cloud imager located in Tibet (29.25° N, 88.88° E). BoMS achieves an accuracy of 90.9 % for 10-fold cross-validation, and it outperforms state-of-the-art methods with an increase of 19 %. Furthermore, influence of key parameters in BoMS is investigated to verify their robustness.

  18. Cloud Control

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2012-01-01

    Your learning curriculum needs a new technological platform, but you don't have the expertise or IT equipment to pull it off in-house. The answer is a learning system that exists online, "in the cloud," where learners can access it anywhere, anytime. For trainers, cloud-based coursework often means greater ease of instruction resulting in greater…

  19. A sensitivity study of atmospheric reflectance to aerosol layer height based on multi-angular polarimetric measurements

    NASA Astrophysics Data System (ADS)

    Qie, Lili; Li, Donghui; Li, Zhengqiang; Zhang, Ying; Hou, Weizhen; Chen, Xingfeng

    2015-10-01

    The reflected Solar radiance at top of atmosphere (TOA) are, to some degree, sensitive to the vertical distribution of absorbing aerosols, especially at short wavelengths (i.e. blue and UV bands). If properly exploited, it may enable the extraction of basic information on aerosol vertical distribution. In recent years, rapid development of the advanced spectral multi-angle polarimetric satellite observation technology and aerosol inversion algorithm makes the extraction of more aerosol information possible. In this study, we perform a sensitivity analysis of the reflection function at TOA to the aerosol layer height, to explore the potential for aerosol height retrievals by using multi-angle total and polarized reflectance passive observations at short wavelength. Employing a vector doubling-adding method radiative transfer code RT3, a series of numerical experiments were conducted considering different aerosol model, optical depth (AOD), single-scattering albedo (SSA), and scale height (H), also the wavelength, solar-viewing geometry, etc. The sensitivity of both intensity and polarization signals to the aerosol layer height as well as the interacted impactions with SSA and AOD are analyzed. It's found that the sensitivity of the atmospheric reflection function to aerosol scale height increase with aerosol loading (i.e. AOD) and aerosol absorption (i.e. SSA), and decrease with wavelength. The scalar reflectance is sensitive to aerosol absorption while the polarized reflectance is more influenced by the altitude. Then the aerosol H and SSA may be derived simultaneously assuming that the total and polarized radiances in UV bands deconvolve the relative influences of height and absorption. Aerosol layer height, Atmospheric reflection function, Sensitivity, Ultraviolet (UV) band.

  20. Occurrence of lower cloud albedo in ship tracks

    NASA Astrophysics Data System (ADS)

    Chen, Y.-C.; Christensen, M. W.; Xue, L.; Sorooshian, A.; Stephens, G. L.; Rasmussen, R. M.; Seinfeld, J. H.

    2012-05-01

    The concept of geoengineering by marine cloud brightening is based on seeding marine stratocumulus clouds with sub-micrometer sea-salt particles to enhance the cloud droplet number concentration and cloud albedo, thereby producing a climate cooling effect. The efficacy of this as a strategy for global cooling rests on the extent to which aerosol-perturbed marine clouds will respond with increased albedo. Ship tracks, cloud regions impacted by ship exhaust, are a well-known manifestation of the effect of aerosol injection on marine clouds. We present here an analysis of the albedo responses in ship tracks, based on in situ aircraft measurements and three years of satellite observations of 589 individual ship tracks. It is found that the sign (increase or decrease) and magnitude of the albedo response in ship tracks depends on the mesoscale cloud struct