Sample records for base metal

  1. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    DOEpatents

    Ray, Siba P.; Liu, Xinghua

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  2. Silver-hafnium braze alloy

    DOEpatents

    Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.

    2003-12-16

    A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.

  3. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that is...

  4. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that is...

  5. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that is...

  6. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that is...

  7. Articles including thin film monolayers and multilayers

    DOEpatents

    Li, DeQuan; Swanson, Basil I.

    1995-01-01

    Articles of manufacture including: (a) a base substrate having an oxide surface layer, and a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, (b) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, and a metal species attached to the multidentate ligand, (c) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, and a multifunctional organic ligand attached to the metal species, and (d) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, a multifunctional organic ligand attached to the metal species, and a second metal species attached to the multifunctional organic ligand, are provided, such articles useful in detecting the presence of a selected target species, as nonliear optical materials, or as scavengers for selected target species.

  8. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOEpatents

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  9. Microstructure of a base metal thick film system. [Glass frit with base metal oxide addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mentley, D.E.

    1976-06-01

    A base metal thick film conductor system using glass frits with base metal oxide additions was investigated as metallization for hybrid microcircuits. Application of previous work on wetting and chemical bonding was made to this system. The observation of changes in the properties of the thick film was made by photomicrographs of screened samples and sheet resistivity measurements. In addition to the chemical and wetting properties, the effect of glass frit particle size on conductivity was also analyzed. The base metal oxide addition was found to produce a more consistent thick film conductor at low volume percentages of metal bymore » inhibiting the formation of low melting redox reaction products.« less

  10. Recovering heavy rare earth metals from magnet scrap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  11. Solar cells having integral collector grids

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1978-01-01

    A heterojunction or Schottky barrier photovoltaic device is described, comprising a conductive base metal layer. A back surface field region was formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device. A metal alloy grid network was included. An insulating layer prevented electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer.

  12. Metallic glass coating on metals plate by adjusted explosive welding technique

    NASA Astrophysics Data System (ADS)

    Liu, W. D.; Liu, K. X.; Chen, Q. Y.; Wang, J. T.; Yan, H. H.; Li, X. J.

    2009-09-01

    Using an adjusted explosive welding technique, an aluminum plate has been coated by a Fe-based metallic glass foil in this work. Scanning electronic micrographs reveal a defect-free metallurgical bonding between the Fe-based metallic glass foil and the aluminum plate. Experimental evidence indicates that the Fe-based metallic glass foil almost retains its amorphous state and mechanical properties after the explosive welding process. Additionally, the detailed explosive welding process has been simulated by a self-developed hydro-code and the bonding mechanism has been investigated by numerical analysis. The successful welding between the Fe-based metallic glass foil and the aluminum plate provides a new way to obtain amorphous coating on general metal substrates.

  13. The corrosion behavior of Fe-Mn-Al weld metals

    NASA Astrophysics Data System (ADS)

    Aidun, Daryush K.

    2001-02-01

    The corrosion resistance of a newly developed iron-base, Fe-Mn-Al austenitic, and duplex weld metal has been examined in the NACE solution consisting of 5 wt.% NaCl, 0.5 wt.% acetic acid, and the balance distilled water. The electrochemical techniques such as potentiodynamic polarization, Tafel plots, linear polarization, cyclic polarization, and open-circuit potential versus time were employed. The Fe-Mn-Al weld metals did not passivate and exhibited high corrosion rates. Fe-Cr-Ni (310 and 316) weld and base metals were also examined in the NACE solution at room temperature. The 310 and 316 base metals were more resistant to corrosion than the as-welded 310 and 316 weld metals. Postweld heat treatment (PWHT) improved the corrosion performance of the Fe-Mn-Al weld metals. The corrosion resistance of Fe-Mn-Al weld metals after PWHT was still inferior to that of the 310 and 316 weld and base metals.

  14. Method of making metal matrix composites reinforced with ceramic particulates

    DOEpatents

    Cornie, James A.; Kattamis, Theodoulos; Chambers, Brent V.; Bond, Bruce E.; Varela, Raul H.

    1989-01-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys.

  15. Method of making metal matrix composites reinforced with ceramic particulates

    DOEpatents

    Cornie, J.A.; Kattamis, T.; Chambers, B.V.; Bond, B.E.; Varela, R.H.

    1989-08-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys. 2 figs.

  16. Method for fabricating solar cells having integrated collector grids

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1979-01-01

    A heterojunction or Schottky barrier photovoltaic device comprising a conductive base metal layer compatible with and coating predominately the exposed surface of the p-type substrate of the device such that a back surface field region is formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device having a metal alloy grid network of the same metal elements of the oxide constituents of the mixed metal oxide layer embedded in the mixed metal oxide layer, an insulating layer which prevents electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer, and a metal contact means covering the insulating layer and in intimate contact with the metal grid network embedded in the transparent, conductive oxide layer for conducting electrons generated by the photovoltaic process from the device.

  17. Systems and Methods for Implementing Bulk Metallic Glass-Based Macroscale Compliant Mechanisms

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Agnes, Gregory (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention implement bulk metallic glass-based macroscale compliant mechanisms. In one embodiment, a bulk metallic glass-based macroscale compliant mechanism includes: a flexible member that is strained during the normal operation of the compliant mechanism; where the flexible member has a thickness of 0.5 mm; where the flexible member comprises a bulk metallic glass-based material; and where the bulk metallic glass-based material can survive a fatigue test that includes 1000 cycles under a bending loading mode at an applied stress to ultimate strength ratio of 0.25.

  18. Microfluidic platforms for gallium-based liquid metal alloy

    NASA Astrophysics Data System (ADS)

    Kim, Daeyoung

    As an alternative to toxic mercury, non-toxic gallium-based liquid metal alloy has been gaining popularity due to its higher thermal and electrical conductivities, and low toxicity along with liquid property. However, it is difficult to handle as the alloy becomes readily oxidized in atmospheric air environment. This instant oxidation causes the gallium-based liquid metal alloy to wet almost any solid surface. Therefore, it has been primarily limited to applications which rely only on its deformability, not on its mobility. In this research, various approaches to mobilize gallium-based liquid metal alloy were investigated. Multi-scale surface patterned with polydimethylsiloxane (PDMS) micro pillar array showed super-lyophobic property against gallium-based liquid metal alloy by minimizing the contact area between the solid surface and the liquid metal, and it was expanded to a three-dimensional tunnel shaped microfluidic channel. Vertically-aligned carbon nanotube forest leads to another promising super-lyophobic surface due to its hierarchical micro/nano scale combined structures and chemical inertness. When the carbon nanotubes were transferred onto flexible PDMS by imprinting, the super-lyophobic property was still maintained even under the mechanical deformation such as stretching and bending. Alternatively, the gallium-based liquid metal can be manipulated by modifying the surface of liquid metal itself. With chemical reaction with HCl 'vapor', the oxidized surface (mainly Ga2O3/Ga2O) of gallium-based liquid metal was converted to GaCl3/InCl 3 resulting in the recovery of non-wetting characteristics. Paper which is intrinsically porous is attractive as a super-lyophobic surface and it was found that hydrochloric acid (HCl) impregnation enhanced the anti-wetting property by the chemical reaction. As another alternative method, by coating the viscoelastic oxidized surface of liquid metal with ferromagnetic materials (CoNiMnP or Fe), it showed non-wetting property and became moveable by applying a magnetic field. Finally, using its metallic and liquid properties, microfluidic-based applications of gallium-based liquid metal alloy such as inkjet printing and reconfigurable photomask were investigated. A clog-free and oxide-free inkjet printing technique was developed by incorporating HCl-impregnated paper as orifice. Inkjet-printed liquid metal line can be used as a metallic interconnect even with significant deformation of the flexible substrate. Additionally, based on its ultraviolet light blocking property, a reconfigurable photolithography using gallium-based liquid metal alloy was demonstrated in a PDMS-based 7-segments microfluidic channel by showing single digit numbers ('0'˜'9') with attainable minimum feature size of 10 microm.

  19. Schiff bases in medicinal chemistry: a patent review (2010-2015).

    PubMed

    Hameed, Abdul; Al-Rashida, Mariya; Uroos, Maliha; Abid Ali, Syed; Khan, Khalid Mohammed

    2017-01-01

    Schiff bases are synthetically accessible and structurally diverse compounds, typically obtained by facile condensation between an aldehyde, or a ketone with primary amines. Schiff bases contain an azomethine (-C = N-) linkage that stitches together two or more biologically active aromatic/heterocyclic scaffolds to form various molecular hybrids with interesting biological properties. Schiff bases are versatile metal complexing agents and have been known to coordinate all metals to form stable metal complexes with vast therapeutic applications. Areas covered: This review aims to provide a comprehensive overview of the various patented therapeutic applications of Schiff bases and their metal complexes from 2010 to 2015. Expert opinion: Schiff bases are a popular class of compounds with interesting biological properties. Schiff bases are also versatile metal complexing ligands and have been used to coordinate almost all d-block metals as well as lanthanides. Therapeutically, Schiff bases and their metal complexes have been reported to exhibit a wide range of biological activities such as antibacterial including antimycobacterial, antifungal, antiviral, antimalarial, antiinflammatory, antioxidant, pesticidal, cytotoxic, enzyme inhibitory, and anticancer including DNA damage.

  20. Performance evaluation of a biodiesel fuelled transportation engine retrofitted with a non-noble metal catalysed diesel oxidation catalyst for controlling unregulated emissions.

    PubMed

    Shukla, Pravesh Chandra; Gupta, Tarun; Agarwal, Avinash Kumar

    2018-02-15

    In present study, engine exhaust was sampled for measurement and analysis of unregulated emissions from a four cylinder transportation diesel engine using a state-of-the-art FTIR (Fourier transform infrared spectroscopy) emission analyzer. Test fuels used were Karanja biodiesel blend (B20) and baseline mineral diesel. Real-time emission measurements were performed for raw exhaust as well as exhaust sampled downstream of the two in-house prepared non-noble metal based diesel oxidation catalysts (DOCs) and a baseline commercial DOC based on noble metals. Two prepared non-noble metal based DOCs were based on Co-Ce mixed oxide and Lanthanum based perovskite catalysts. Perovskite based DOC performed superior compared to Co-Ce mixed oxide catalyst based DOC. Commercial noble metal based DOC was found to be the most effective in reducing unregulated hydrocarbon emissions in the engine exhaust, followed by the two in-house prepared non-noble metal based DOCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Photo-oxidation catalysts

    DOEpatents

    Pitts, J Roland [Lakewood, CO; Liu, Ping [Irvine, CA; Smith, R Davis [Golden, CO

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  2. Nucleic acid-functionalized transition metal nanosheets for biosensing applications

    PubMed Central

    Mo, Liuting; Li, Juan; Liu, Qiaoling; Qiu, Liping; Tan, Weihong

    2017-01-01

    In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field. PMID:27020066

  3. Nucleic acid-functionalized transition metal nanosheets for biosensing applications.

    PubMed

    Mo, Liuting; Li, Juan; Liu, Qiaoling; Qiu, Liping; Tan, Weihong

    2017-03-15

    In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Metal-based nanoparticle interactions with the nervous system: The challenge of brain entry and the risk of retention in the organism

    EPA Science Inventory

    This review of metal and metal-oxide based nanoparticles focuses on factors that influence their distribution into the nervous system, evidence that they enter brain parenchyma, and nervous system responses. Emphasis is placed on gold as a model metal-based nanoparticle and for r...

  5. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs.

    PubMed

    Takezawa, Yusuke; Shionoya, Mitsuhiko

    2012-12-18

    With its capacity to store and transfer the genetic information within a sequence of monomers, DNA forms its central role in chemical evolution through replication and amplification. This elegant behavior is largely based on highly specific molecular recognition between nucleobases through the specific hydrogen bonds in the Watson-Crick base pairing system. While the native base pairs have been amazingly sophisticated through the long history of evolution, synthetic chemists have devoted considerable efforts to create alternative base pairing systems in recent decades. Most of these new systems were designed based on the shape complementarity of the pairs or the rearrangement of hydrogen-bonding patterns. We wondered whether metal coordination could serve as an alternative driving force for DNA base pairing and why hydrogen bonding was selected on Earth in the course of molecular evolution. Therefore, we envisioned an alternative design strategy: we replaced hydrogen bonding with another important scheme in biological systems, metal-coordination bonding. In this Account, we provide an overview of the chemistry of metal-mediated base pairing including basic concepts, molecular design, characteristic structures and properties, and possible applications of DNA-based molecular systems. We describe several examples of artificial metal-mediated base pairs, such as Cu(2+)-mediated hydroxypyridone base pair, H-Cu(2+)-H (where H denotes a hydroxypyridone-bearing nucleoside), developed by us and other researchers. To design the metallo-base pairs we carefully chose appropriate combinations of ligand-bearing nucleosides and metal ions. As expected from their stronger bonding through metal coordination, DNA duplexes possessing metallo-base pairs exhibited higher thermal stability than natural hydrogen-bonded DNAs. Furthermore, we could also use metal-mediated base pairs to construct or induce other high-order structures. These features could lead to metal-responsive functional DNA molecules such as artificial DNAzymes and DNA machines. In addition, the metallo-base pairing system is a powerful tool for the construction of homogeneous and heterogeneous metal arrays, which can lead to DNA-based nanomaterials such as electronic wires and magnetic devices. Recently researchers have investigated these systems as enzyme replacements, which may offer an additional contribution to chemical biology and synthetic biology through the expansion of the genetic alphabet.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Ines; Schillig, Cora

    A double-sided adhesive metal-based tape for use as contacting aid for SOFC fuel cells is provided. The double-sided metal-based adhesive tape is suitable for simplifying the construction of cell bundles. The double-sided metal-based adhesive tape is used for electrical contacting of the cell connector with the anode and for electrical contacting of the interconnector of the fuel cells with the cell connector. A method for producing the double-sided adhesive metal-base tape is also provided.

  7. Adsorption of metal ions by pecan shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-09-01

    The present investigation was undertaken to evaluate the adsorption effectiveness of pecan shell-based granular activated carbons (GACs) in removing metal ions (Cu(2+), Pb(2+), Zn(2+)) commonly found in municipal and industrial wastewater. Pecan shells were activated by phosphoric acid, steam or carbon dioxide activation methods. Metal ion adsorption of shell-based GACs was compared to the metal ion adsorption of a commercial carbon, namely, Calgon's Filtrasorb 200. Adsorption experiments were conducted using solutions containing all three metal ions in order to investigate the competitive effects of the metal ions as would occur in contaminated wastewater. The results obtained from this study showed that acid-activated pecan shell carbon adsorbed more lead ion and zinc ion than any of the other carbons, especially at carbon doses of 0.2-1.0%. However, steam-activated pecan shell carbon adsorbed more copper ion than the other carbons, particularly using carbon doses above 0.2%. In general, Filtrasorb 200 and carbon dioxide-activated pecan shell carbons were poor metal ion adsorbents. The results indicate that acid- and steam-activated pecan shell-based GACs are effective metal ion adsorbents and can potentially replace typical coal-based GACs in treatment of metal contaminated wastewater.

  8. Metallic Nanostructures Based on DNA Nanoshapes

    PubMed Central

    Shen, Boxuan; Tapio, Kosti; Linko, Veikko; Kostiainen, Mauri A.; Toppari, Jari Jussi

    2016-01-01

    Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbitrarily-shaped structures with a 10-nm feature size, thus bringing novel applications into view. In this review, we cover the evolution of DNA-based metallic nanostructures, starting from the metallized double-stranded DNA for electronics and progress to sophisticated plasmonic structures based on DNA origami objects. PMID:28335274

  9. Effect of laser power on clad metal in laser-TIG combined metal cladding

    NASA Astrophysics Data System (ADS)

    Utsumi, Akihiro; Hino, Takanori; Matsuda, Jun; Tasoda, Takashi; Yoneda, Masafumi; Katsumura, Munehide; Yano, Tetsuo; Araki, Takao

    2003-03-01

    TIG arc welding has been used to date as a method for clad welding of white metal as bearing material. We propose a new clad welding process that combines a CO2 laser and a TIG arc, as a method for cladding at high speed. We hypothesized that this method would permit appropriate control of the melted quantity of base metal by varying the laser power. We carried out cladding while varying the laser power, and investigated the structure near the boundary between the clad layer and the base metal. Using the laser-TIG combined cladding, we found we were able to control appropriately the degree of dilution with the base metal. By applying this result to subsequent cladding, we were able to obtain a clad layer of high quality, which was slightly diluted with the base metal.

  10. Promising Ta-Ti-Zr-Si metallic glass coating without cytotoxic elements for bio-implant applications

    NASA Astrophysics Data System (ADS)

    Lai, J. J.; Lin, Y. S.; Chang, C. H.; Wei, T. Y.; Huang, J. C.; Liao, Z. X.; Lin, C. H.; Chen, C. H.

    2018-01-01

    Tantalum (Ta) is considered as one of the most promising metal due to its high corrosion resistance, excellent biocompatibility and cell adhesion/in-growth capabilities. Although there are some researches exploring the biomedical aspects of Ta and Ta based alloys, systematic characterizations of newly developed Ta-based metallic glasses in bio-implant applications is still lacking. This study employs sputtering approach to produced thin-film Ti-based metallic glasses due to the high melting temperature of Ta (3020 °C). Two fully amorphous Ta-based metallic glasses composed of Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 are produced and experimentally characterized in terms of their mechanical properties, bio-corrosion properties, surface hydrophilic characteristics, and in-vitro cell viability and cells attachment tests. Compare to conventional pure Ti and Ta metals, the developed Ta-based metallic glasses exhibit higher hardness and lower modulus which are better match to the mechanical properties of bone. MTS assay results show that Ta-based metallic glasses show comparable cell viability and cell attachment rate compared to that of pure Ti and Ta surface in a 72 h in-vitro test.

  11. Metal-Free Cataluminescence Gas Sensor for Hydrogen Sulfide Based on Its Catalytic Oxidation on Silicon Carbide Nanocages.

    PubMed

    Wu, Liqian; Zhang, Lichun; Sun, Mingxia; Liu, Rui; Yu, Lingzhu; Lv, Yi

    2017-12-19

    Cataluminescence- (CTL-) based sensors are among the most attractive and effective tools for gas sensing, owing to their efficient selectivity, high sensitivity, and rapidity. As the sensing materials of CTL-based sensors, metal-based catalysts easily bring about high costs and environmental pollution of heavy metals. More importantly, the long-term stability of metal-based catalysts is usually rather poor. Metal-free catalysts have unique advantages such as environmental friendliness, low costs, and long-term stability, making them promising materials for CTL-based sensors. Herein, we report the fabrication of a CTL sensor based on a metal-free catalyst. F-doped cage-like SiC was synthesized by wet chemical etching. The as-prepared products showed a rapid, stable, highly selective, and sensitive cataluminescent response to H 2 S. The stability of the sensor was demonstrated to be fairly good for at least 15 days. After CTL tests, F-doped cage-like SiC retained its original morphology, structure, and chemical composition. In addition, to the best of our knowledge, this is the first report of a metal-free CTL sensor. Metal-free catalysts are environmentally friendly and low in cost and exhibit long-term stability, which could open a new avenue of CTL sensing.

  12. The Process of Nanostructuring of Metal (Iron) Matrix in Composite Materials for Directional Control of the Mechanical Properties

    PubMed Central

    Zemtsova, Elena

    2014-01-01

    We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology. PMID:24695459

  13. The process of nanostructuring of metal (iron) matrix in composite materials for directional control of the mechanical properties.

    PubMed

    Zemtsova, Elena; Yurchuk, Denis; Smirnov, Vladimir

    2014-01-01

    We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1-50 nm. This material can be represented as the material type "frame in the frame" that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology.

  14. Fuel cell electrodes

    DOEpatents

    Strmcnik, Dusan; Cuesta, Angel; Stamenkovic, Vojislav; Markovic, Nenad

    2015-06-23

    A process includes patterning a surface of a platinum group metal-based electrode by contacting the electrode with an adsorbate to form a patterned platinum group metal-based electrode including platinum group metal sites blocked with adsorbate molecules and platinum group metal sites which are not blocked.

  15. Dual-energy-based metal segmentation for metal artifact reduction in dental computed tomography.

    PubMed

    Hegazy, Mohamed A A; Eldib, Mohamed Elsayed; Hernandez, Daniel; Cho, Myung Hye; Cho, Min Hyoung; Lee, Soo Yeol

    2018-02-01

    In a dental CT scan, the presence of dental fillings or dental implants generates severe metal artifacts that often compromise readability of the CT images. Many metal artifact reduction (MAR) techniques have been introduced, but dental CT scans still suffer from severe metal artifacts particularly when multiple dental fillings or implants exist around the region of interest. The high attenuation coefficient of teeth often causes erroneous metal segmentation, compromising the MAR performance. We propose a metal segmentation method for a dental CT that is based on dual-energy imaging with a narrow energy gap. Unlike a conventional dual-energy CT, we acquire two projection data sets at two close tube voltages (80 and 90 kV p ), and then, we compute the difference image between the two projection images with an optimized weighting factor so as to maximize the contrast of the metal regions. We reconstruct CT images from the weighted difference image to identify the metal region with global thresholding. We forward project the identified metal region to designate metal trace on the projection image. We substitute the pixel values on the metal trace with the ones computed by the region filling method. The region filling in the metal trace removes high-intensity data made by the metallic objects from the projection image. We reconstruct final CT images from the region-filled projection image with the fusion-based approach. We have done imaging experiments on a dental phantom and a human skull phantom using a lab-built micro-CT and a commercial dental CT system. We have corrected the projection images of a dental phantom and a human skull phantom using the single-energy and dual-energy-based metal segmentation methods. The single-energy-based method often failed in correcting the metal artifacts on the slices on which tooth enamel exists. The dual-energy-based method showed better MAR performances in all cases regardless of the presence of tooth enamel on the slice of interest. We have compared the MAR performances between both methods in terms of the relative error (REL), the sum of squared difference (SSD) and the normalized absolute difference (NAD). For the dental phantom images corrected by the single-energy-based method, the metric values were 95.3%, 94.5%, and 90.6%, respectively, while they were 90.1%, 90.05%, and 86.4%, respectively, for the images corrected by the dual-energy-based method. For the human skull phantom images, the metric values were improved from 95.6%, 91.5%, and 89.6%, respectively, to 88.2%, 82.5%, and 81.3%, respectively. The proposed dual-energy-based method has shown better performance in metal segmentation leading to better MAR performance in dental imaging. We expect the proposed metal segmentation method can be used to improve the MAR performance of existing MAR techniques that have metal segmentation steps in their correction procedures. © 2017 American Association of Physicists in Medicine.

  16. Recent advances in bulk metallic glasses for biomedical applications.

    PubMed

    Li, H F; Zheng, Y F

    2016-05-01

    With a continuously increasing aging population and the improvement of living standards, large demands of biomaterials are expected for a long time to come. Further development of novel biomaterials, that are much safer and of much higher quality, in terms of both biomedical and mechanical properties, are therefore of great interest for both the research scientists and clinical surgeons. Compared with the conventional crystalline metallic counterparts, bulk metallic glasses have unique amorphous structures, and thus exhibit higher strength, lower Young's modulus, improved wear resistance, good fatigue endurance, and excellent corrosion resistance. For this purpose, bulk metallic glasses (BMGs) have recently attracted much attention for biomedical applications. This review discusses and summarizes the recent developments and advances of bulk metallic glasses, including Ti-based, Zr-based, Fe-based, Mg-based, Zn-based, Ca-based and Sr-based alloying systems for biomedical applications. Future research directions will move towards overcoming the brittleness, increasing the glass forming ability (GFA) thus obtaining corresponding bulk metallic glasses with larger sizes, removing/reducing toxic elements, and surface modifications. Bulk metallic glasses (BMGs), also known as amorphous alloys or liquid metals, are relative newcomers in the field of biomaterials. They have gained increasing attention during the past decades, as they exhibit an excellent combination of properties and processing capabilities desired for versatile biomedical implant applications. The present work reviewed the recent developments and advances of biomedical BMGs, including Ti-based, Zr-based, Fe-based, Mg-based, Zn-based, Ca-based and Sr-based BMG alloying systems. Besides, the critical analysis and in-depth discussion on the current status, challenge and future development of biomedical BMGs are included. The possible solution to the BMG size limitation, the brittleness of BMGs has been proposed. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Effect of metal conditioner on bonding of porcelain to cobalt-chromium alloy

    PubMed Central

    Kajihara, Yutaro; Takenouchi, Yoshihisa; Tanaka, Takuo; Suzuki, Shiro; Minami, Hiroyuki

    2016-01-01

    PURPOSE The purpose of this study was to evaluate the efficacy of two different metal conditioners for non-precious metal alloys for the bonding of porcelain to a cobalt-chromium (Co-Cr) alloy. MATERIALS AND METHODS Disk-shaped specimens (2.5×10.0 mm) were cast with Co-Cr alloy and used as adherend materials. The bonding surfaces were polished with a 600-grid silicon carbide paper and airborne-particle abraded using 110 µm alumina particles. Bonding specimens were fabricated by applying and firing either of the metal conditioners on the airborne-particle abraded surface, followed by firing porcelain into 5 mm in diameter and 3 mm in height. Specimens without metal conditioner were also fabricated. Shear bond strength for each group (n=8) were measured and compared (α=.05). Sectional view of bonding interface was observed by SEM. EDS analysis was performed to determine the chemical elements of metal conditioners and to determine the failure modes after shear test. RESULTS There were significant differences among three groups, and two metal conditioner-applied groups showed significantly higher values compared to the non-metal conditioner group. The SEM observation of the sectional view at bonding interface revealed loose contact at porcelain-alloy surface for non-metal conditioner group, however, close contact at both alloy-metal conditioner and metal conditioner-porcelain interfaces for both metal conditioner-applied groups. All the specimens showed mixed failures. EDS analysis showed that one metal conditioner was Si-based material, and another was Ti-based material. Si-based metal conditioner showed higher bond strengths compared to the Ti-based metal conditioner, but exhibited more porous failure surface failure. CONCLUSION Based on the results of this study, it can be stated that the application of metal conditioner is recommended for the bonding of porcelain to cobalt-chromium alloys. PMID:26949481

  18. METHOD OF JOINING CARBIDES TO BASE METALS

    DOEpatents

    Krikorian, N.H.; Farr, J.D.; Witteman, W.G.

    1962-02-13

    A method is described for joining a refractory metal carbide such as UC or ZrC to a refractory metal base such as Ta or Nb. The method comprises carburizing the surface of the metal base and then sintering the base and carbide at temperatures of about 2000 deg C in a non-oxidizing atmosphere, the base and carbide being held in contact during the sintering step. To reduce the sintering temperature and time, a sintering aid such as iron, nickel, or cobait is added to the carbide, not to exceed 5 wt%. (AEC)

  19. Multiple internal seal right micro-electro-mechanical system vacuum package

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Wiberg, Dean V. (Inventor); Hayworth, Ken J. (Inventor); Yee, Karl Y. (Inventor); Bae, Youngsam (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)

    2007-01-01

    A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum package that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace.

  20. Multiple internal seal ring micro-electro-mechanical system vacuum packaging method

    NASA Technical Reports Server (NTRS)

    Hayworth, Ken J. (Inventor); Yee, Karl Y. (Inventor); Shcheglov, Kirill V. (Inventor); Bae, Youngsam (Inventor); Wiberg, Dean V. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)

    2008-01-01

    A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum packaging method that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace.

  1. Ni-BaTiO3-Based Base-Metal Electrode (BME) Ceramic Capacitors for Space Applications

    NASA Technical Reports Server (NTRS)

    Liu, Donhang; Fetter, Lula; Meinhold, Bruce

    2015-01-01

    A multi-layer ceramic capacitor (MLCC) is a high-temperature (1350C typical) co-fired ceramic monolithic that is composed of many layers of alternately stacked oxide-based dielectric and internal metal electrodes. To make the dielectric layers insulating and the metal electrode layers conducting, only highly oxidation-resistant precious metals, such as platinum, palladium, and silver, can be used for the co-firing of insulating MLCCs in a regular air atmosphere. MLCCs made with precious metals as internal electrodes and terminations are called precious-metal electrode (PME) capacitors. Currently, all military and space-level applications only address the use of PME capacitors.

  2. Bivalent metal-based MIL-53 analogues: Synthesis, properties and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yongxin; University of the Chinese Academy of Science, Beijing 100049; Liu, Dan, E-mail: liudan2007@ciac.ac.cn

    Trivalent metal-based MIL-53 (Al{sup 3+}, Cr{sup 3+}, Fe{sup 3+}, In{sup 3+}) compounds are interesting metal–organic frameworks (MOFs) with breathing effect and are promising gas sorption materials. Replacing bridging μ{sub 2}-OH group by neutral ligands such as pyridine N-oxide and its derivatives (PNOs), the trivalent metal-based MIL-53 analogous structures could be extended to bivalent metal systems. The introduction of PNOs and bivalent metal elements endows the frameworks with new structural features and physical and chemical properties. This minireview summarizes the recent development of bivalent metal-based MIL-53 analogues (Mn{sup 2+}, Co{sup 2+}, Ni{sup 2+}), typically, focusing on the synthetic strategies and potentialmore » applications based on our own works and literatures. We present the synthetic strategy to achieve structures evolution from single-ligand-walled to double-ligand-walled channel. Properties and application of these new materials in a wide range of potential areas are discussed including thermal stability, gas adsorption, magnetism and liquid-phase separation. Promising directions of this research field are also highlighted. - Graphical abstract: The recent development of bivalent metal-based MIL-53 analogues (Mn{sup 2+}, Co{sup 2+}, Ni{sup 2+}) on their synthetic strategies, properties and potential applications was reviewed. - Highlights: • Structure features of bivalent metal-based MIL-53 analogues are illustrated. • Important properties and application are presented. • Host–guest interactions are main impetus for liquid-phase separation. • Promising directions of bivalent metal-based MIL-53 analogues are highlighted.« less

  3. Use of metal conditioner on reinforcement wires to improve denture repair strengths.

    PubMed

    Shimizu, Hiroshi; Mori, Nobuaki; Takahashi, Yutaka

    2008-03-01

    The purpose of this study was to evaluate the transverse strength of denture base resin repaired with autopolymerizing resin and metal wire using a metal conditioner, along with the synergistic effect of a surface preparation for denture base resin. It was found that the use of Co-Cr-Ni wires air abraded with 50 microm alumina, followed by treatment with a metal conditioner and dichloromethane for denture base resin, was the most effective method for repairing fractured denture base resin.

  4. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    DOEpatents

    Wang, Yifeng; Miller, Andy; Bryan, Charles R.; Kruichak, Jessica Nicole

    2015-11-17

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  5. Understanding photoluminescence of metal nanostructures based on an oscillator model.

    PubMed

    Cheng, Yuqing; Zhang, Weidong; Zhao, Jingyi; Wen, Te; Hu, Aiqin; Gong, Qihuang; Lu, Guowei

    2018-08-03

    Scattering and absorption properties of metal nanostructures have been well understood based on the classic oscillator theory. Here, we demonstrate that photoluminescence of metal nanostructures can also be explained based on a classic model. The model shows that inelastic radiation of an oscillator resembles its resonance band after external excitation, and is related to the photoluminescence from metallic nanostructures. The understanding based on the classic oscillator model is in agreement with that predicted by a quantum electromagnetic cavity model. Moreover, by correlating a two-temperature model and the electron distributions, we demonstrate that both one-photon and two-photon luminescence of the metal nanostructures undergo the same mechanism. Furthermore, the model explains most of the emission characteristics of the metallic nanostructures, such as quantum yield, spectral shape, excitation polarization and power dependence. The model based on an oscillator provides an intuitive description of the photoluminescence process and may enable rapid optimization and exploration of the plasmonic properties.

  6. A hydrometallurgical process for recovering total metal values from waste monolithic ceramic capacitors.

    PubMed

    Prabaharan, G; Barik, S P; Kumar, B

    2016-06-01

    A hydrometallurgical process for recovering the total metal values from waste monolithic ceramic capacitors was investigated. The process parameters such as time, temperature, acid concentration, hydrogen peroxide concentration and other reagents (amount of zinc dust and sodium formate) were optimized. Base metals such as Ba, Ti, Sn, Cu and Ni are leached out in two stages using HCl in stage 1 and HCl with H2O2 in stage 2. More than 99% of leaching efficiency for base metals (Cu, Ni, Ba, Ti and Sn) was achieved. Precious metals such as Au and Pd are leached out using aquaregia and nitric acid was used for the leaching of Ag. Base metals (Ba, Ti, Sn, Cu and Ni) are recovered by selective precipitation using H2SO4 and NaOH solution. In case of precious metals, Au and Pd from the leach solution were precipitated out using sodium metabisulphite and sodium formate, respectively. Sodium chloride was used for the precipitation of Ag from leach solution. Overall recovery for base metals and precious metals are 95% and 92%, respectively. Based on the results of the present study, a process flow diagram was proposed for commercial application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Study of all-angle negative refraction of light in metal-dielectric-metal multilayered structures based on generalized formulas of reflection and refraction

    NASA Astrophysics Data System (ADS)

    Chen, Jiangwei; Liu, Jun; Xu, Weidong

    2017-09-01

    In this paper, refraction behaviors of light in both metal single-layered film and metal-dielectric-metal multilayered films are investigated based on the generalized formulas of reflection and refraction. The obtained results, especially, dependence of power refractive index on incident angles for a light beam traveling through a metal-dielectric-metal multilayered structure, are well consistent with the experimental observations. Our work may offer a new angle of view to understand the all-angle negative refraction of light in metal-dielectric-metal multilayered structures, and provide a convenient approach to optimize the devised design and address the issue on making the perfect lens.

  8. Production of small diameter high-temperature-strength refractory metal wires

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.; King, G. W.

    1973-01-01

    Special thermomechanical techniques (schedules) have been developed to produce small diameter wire from three refractory metal alloys: colombian base alloy, tantalum base alloy, and tungsten base alloy. High strengths of these wires indicate their potential for contributing increased strength to metallic composites.

  9. Fatigue crack propagation behavior of stainless steel welds

    NASA Astrophysics Data System (ADS)

    Kusko, Chad S.

    The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.

  10. Methods of Fabricating a Layer of Metallic Glass-Based Material Using Immersion and Pouring Techniques

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention implement layers of metallic glass-based materials. In one embodiment, a method of fabricating a layer of metallic glass includes: applying a coating layer of liquid phase metallic glass to an object, the coating layer being applied in a sufficient quantity such that the surface tension of the liquid phase metallic glass causes the coating layer to have a smooth surface; where the metallic glass has a critical cooling rate less than 1000 K/s; and cooling the coating layer of liquid phase metallic glass to form a layer of solid phase metallic glass.

  11. Preparation of non-metals properties for data base

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The development of non-metallic material properties data bases is discussed. The data bases consist of the non-metallic material classes of adhesives, adhesive/sealants, plastics, and elastomers. A specifications data base was also developed to incorporate material specifications data as a supplement to the Elastomers Data Base. Examples of the forms used are provided to show the properties of the materials which appear in the data base.

  12. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd.

    PubMed

    Duguid, J; Bloomfield, V A; Benevides, J; Thomas, G J

    1993-11-01

    Interactions of divalent metal cations (Mg2+, Ca2+, Ba2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) with DNA have been investigated by laser Raman spectroscopy. Both genomic calf-thymus DNA (> 23 kilobase pairs) and mononucleosomal fragments (160 base pairs) were employed as targets of metal interaction in solutions containing 5 weight-% DNA and metal:phosphate molar ratios of 0.6:1. Raman difference spectra reveal that transition metal cations (Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) induce the greatest structural changes in B-DNA. The Raman (vibrational) band differences are extensive and indicate partial disordering of the B-form backbone, reduction in base stacking, reduction in base pairing, and specific metal interaction with acceptor sites on the purine (N7) and pyrimidine (N3) rings. Many of the observed spectral changes parallel those accompanying thermal denaturation of B-DNA and suggest that the metals link the bases of denatured DNA. While exocyclic carbonyls of dT, dG, and dC may stabilize metal ligation, correlation plots show that perturbations of the carbonyls are mainly a consequence of metal-induced denaturation of the double helix. Transition metal interactions with the DNA phosphates are weak in comparison to interactions with the bases, except in the case of Cu2+, which strongly perturbs both base and phosphate group vibrations. On the other hand, the Raman signature of B-DNA is largely unperturbed by Mg2+, Ca2+, Sr2+, and Ba2+, suggesting much weaker interactions of the alkaline earth metals with both base and phosphate sites. A notable exception is a moderate perturbation by alkaline earths of purine N7 sites in 160-base pair DNA, with Ca2+ causing the greatest effect. Correlation plots demonstrate a strong interrelationship between perturbations of Raman bands assigned to ring vibrations of the bases and those of bands assigned to exocyclic carbonyls and backbone phosphodiester groups. However, strong correlations do not occur between the Raman phosphodioxy band (centered near 1092 cm-1) and other Raman bands, suggesting that the former is not highly sensitive to the structural changes induced by divalent metal cations. The structural perturbations induced by divalent cations are much greater for > 23-kilobase pair DNA than for 160-base pair DNA, as evidenced by both the Raman difference spectra and the tendency toward the formation of insoluble aggregates. In the presence of transition metals, aggregation of high-molecular-weight DNA is evident at temperatures as low as 11 degrees C. A relationship between DNA melting and aggregation is proposed in which initial metal binding at major groove sites locally destabilizes the B-DNA double helix, causing displacement of the bases away from one another and exposing additional metal binding sites. Metal cation linkage of two displaced bases would allow separate DNA strands to crosslink. Aggregation is proposed to result from the formation of an extended network of these crosslinks.

  13. Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullock, R. Morris; Chambers, Geoffrey M.

    2017-07-24

    This Perspective examines the field of Frustrated Lewis Pairs (FLPs) in the context of transition metal mediated heterolytic cleavage of H2, with a particular emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with group compounds, yet many transition metal reactions support a broader classification of FLPs to include certain types of transition metal complexes with reactivity resembling main group based FLPs. This article surveys transition metal complexes that heterolytically cleave H2, which vary in the degree that the Lewis pairs within these systems interact. Particular attention is focused on complexes bearing a pendant aminemore » function as the base. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.« less

  14. Heavy Metal Pollution Delineation Based on Uncertainty in a Coastal Industrial City in the Yangtze River Delta, China

    PubMed Central

    Zhao, Ruiying; Chen, Songchao; Zhou, Yue; Jin, Bin; Li, Yan

    2018-01-01

    Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn) were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI) and Nemerow integrated pollution index (NIPI) were calculated for every surface sample (0–20 cm) to assess the degree of heavy metal pollution. Ordinary kriging (OK) was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK). The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution. PMID:29642623

  15. Heavy Metal Pollution Delineation Based on Uncertainty in a Coastal Industrial City in the Yangtze River Delta, China.

    PubMed

    Hu, Bifeng; Zhao, Ruiying; Chen, Songchao; Zhou, Yue; Jin, Bin; Li, Yan; Shi, Zhou

    2018-04-10

    Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn) were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI) and Nemerow integrated pollution index (NIPI) were calculated for every surface sample (0-20 cm) to assess the degree of heavy metal pollution. Ordinary kriging (OK) was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK). The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution.

  16. Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes.

    PubMed

    Bullock, R Morris; Chambers, Geoffrey M

    2017-08-28

    This perspective examines frustrated Lewis pairs (FLPs) in the context of heterolytic cleavage of H 2 by transition metal complexes, with an emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with main group compounds, yet many reactions of transition metal complexes support a broader classification of FLPs that includes certain types of transition metal complexes with reactivity resembling main group-based FLPs. This article surveys transition metal complexes that heterolytically cleave H 2 , which vary in the degree that the Lewis pairs within these systems interact. Many of the examples include complexes bearing a pendant amine functioning as the base with the metal functioning as the hydride acceptor. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.This article is part of the themed issue 'Frustrated Lewis pair chemistry'. © 2017 The Author(s).

  17. Buffer layers for coated conductors

    DOEpatents

    Stan, Liliana [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2011-08-23

    A composite structure is provided including a base substrate, an IBAD oriented material upon the base substrate, and a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material. Additionally, an article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and a thick film upon the cubic metal oxide material. Finally, a superconducting article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and an yttrium barium copper oxide material upon the cubic metal oxide material.

  18. Wide gap active brazing of ceramic-to-metal-joints for high temperature applications

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Zhao, L.; Kopp, N.; Samadian Anavar, S.

    2014-03-01

    Applications like solid oxide fuel cells and sensors increasingly demand the possibility to braze ceramics to metals with a good resistance to high temperatures and oxidative atmospheres. Commonly used silver based active filler metals cannot fulfill these requirements, if application temperatures higher than 600°C occur. Au and Pd based active fillers are too expensive for many fields of use. As one possible solution nickel based active fillers were developed. Due to the high brazing temperatures and the low ductility of nickel based filler metals, the modification of standard nickel based filler metals were necessary to meet the requirements of above mentioned applications. To reduce thermally induced stresses wide brazing gaps and the addition of Al2O3 and WC particles to the filler metal were applied. In this study, the microstructure of the brazed joints and the thermo-chemical reactions between filler metal, active elements and WC particles were analyzed to understand the mechanism of the so called wide gap active brazing process. With regard to the behavior in typical application oxidation and thermal cycle tests were conducted as well as tensile tests.

  19. 77 FR 32942 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    .... Intended Use: The instrument will be used to fabricate bulk nanostructured metals and metallic glasses, in particular Mg based alloys, CuNb, NiAl, Nb based alloys and metal matrix composites with oxide nanoparticles... oxide nanoparticles during the melting of metals. Suction casting is required to achieve nanocrystalline...

  20. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Low Pressure Casting

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)

    2018-01-01

    Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.

  1. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Ultrasonic Welding

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Roberts, Scott N. (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention fabricate objects including metallic glass-based materials using ultrasonic welding. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: ultrasonically welding at least one ribbon to a surface; where at least one ribbon that is ultrasonically welded to a surface has a thickness of less than approximately 150.mu.m; and where at least one ribbon that is ultrasonically welded to a surface includes a metallic glass-based material.

  2. Metallurgy and deformation of electron beam welded similar titanium alloys

    NASA Astrophysics Data System (ADS)

    Pasang, T.; Sabol, J. C.; Misiolek, W. Z.; Mitchell, R.; Short, A. B.; Littlefair, G.

    2012-04-01

    Butt welded joins were produced between commercially pure titanium and various titanium alloys using an electron beam welding technique. The materials used represent commercially pure grade, α-β alloy and β alloy. They were CP Ti, Ti-6Al-4V (Ti64) and Ti-5Al-5V-5Mo-3Cr (Ti5553), respectively. Grains were largest in the FZs of the different weldments, decreasing in size towards the heat affected zones (HAZs) and base metals. Hardness measurements taken across the traverse cross-sections of the weldments were constant from base metal-to-weld-to-base metal for CP Ti/CP Ti and Ti64/Ti64 welds, while the FZ of Ti5553/Ti5553 had a lower hardness compared with the base metal. During tensile testing the CP Ti/CP Ti weldments fractured at the base metal, whereas both the Ti64/Ti64 and Ti5553/Ti5553 broke at the weld zones. Fracture surface analysis suggested microvoid coalescence as the failure mechanism. The compositional analysis showed a relatively uniform distribution of solute elements from base metal-to-weld-to-base metal. CP Ti has always been known for its excellent weldability, Ti64 has good weldability and, preliminary results indicated that Ti5553 alloy is also weldable.

  3. Foamed-metal-based catalytic afterburners in automotive exhaust systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pestryakov, A.N.; Ametov, V.A.

    1994-08-10

    Properties of exhaust afterburning catalysts based on porous cellular materials (foamed metals) have been investigated. Catalysts containing oxides of base metals provide a two-to-threefold reduction of CO emission. Platinum-containing foamed catalysts lower the toxicity of exhaust by 85-90%. A favorable effect is demonstrated by the combined use of afterburners and a motor oil additive based on ultradispersed copper.

  4. Differentiation of nonferrous metal particles in lubrication oil using an electrical conductivity measurement-based inductive sensor

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Zhang, Hongpeng; Wang, Man; Chen, Haiquan

    2018-02-01

    A method that measures the electrical conductivity of metal based on monitoring the inductance changes of coils via an inductive sensor is introduced in this work to differentiate metal particles in lubrication oil. Theoretical analysis coupled with experimentation is employed to differentiate varieties of nonferrous metal particles, including copper and aluminum particles, ranging from 860 μm to 880 μm in diameter. The results show that the inductive sensor is capable of the identification and differentiation of nonferrous metal particles in lubrication oil based on the electrical conductivity measurement. The concept demonstrated in this paper can be extended to inductive sensors in metal particle detection and other scientific and industrial applications.

  5. Textural, mineralogical and stable isotope studies of hydrothermal alteration in the main sulfide zone of the Great Dyke, Zimbabwe and the precious metals zone of the Sonju Lake Intrusion, Minnesota, USA

    USGS Publications Warehouse

    Li, C.; Ripley, E.M.; Oberthur, T.; Miller, J.D.; Joslin, G.D.

    2008-01-01

    Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between magmatic PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable isotopic data suggest that the fluids involved in the alteration were of magmatic origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both magmatic crystallization and subsolidus hydrothermal alteration. Experimental studies of magmatic crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of magmatic and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type. ?? Springer-Verlag 2007.

  6. A Fundamental Approach to Developing Aluminium based Bulk Amorphous Alloys based on Stable Liquid Metal Structures and Electronic Equilibrium - 154041

    DTIC Science & Technology

    2017-03-28

    AFRL-AFOSR-JP-TR-2017-0027 A Fundamental Approach to Developing Aluminium-based Bulk Amorphous Alloys based on Stable Liquid -Metal Structures and...to 16 Dec 2016 4.  TITLE AND SUBTITLE A Fundamental Approach to Developing Aluminium-based Bulk Amorphous Alloys based on Stable Liquid -Metal...including Al, Cu, Ni, Zr, Mg, Pd, Ga , Ca. Many new Al-based amorphous alloys were found within the numerous alloy systems studied in this project, and

  7. Morphology and Performance of 5Cr5MoV Casting Die Steel in the Process of Surfacing

    NASA Astrophysics Data System (ADS)

    Song, Yulai; Kong, Xiangrui; Yang, Pengcong; Fu, Hongde; Wang, Xuezhu

    2017-12-01

    To investigate the microstructures and mechanical properties of the deposited metal on surface of die steel, two layer of weld-seam were prepared on the surface of 5Cr5MoV die steel by arc surfacing. The surface microstructures and microhardness were characterized by scanning electron microscopy, energy dispersive spectrometer and Vickers microhardness tester, respectively. The effect of load on the abrasion resistance and wear mechanism of the base metal and surfacing metal was studied by pin-on-disk tribometer. The results showed that martensite and retained austenite exist in weld-seam, both of them grow up in the form of dendrites and equiaxed grains and microhardness reach 774.2HV. The microstructures of the quenching zone mainly consist of martensite and retained austenite, while tempered martensite is the dominant phase in partial quenching zone. The abrasion resistance of the surfacing metal is superior to the base metal based on the results of wear test. The wear rates of surfacing metal and base metal raise with the increase of load. The wear rates of base metal raise extremely when the load reach 210N. Both of two kinds of materials have the similar wear mechanism, namely, abrasive wear at low load, oxidative wear and adhesive wear at high load.

  8. Understanding metallic bonding: Structure, process and interaction by Rasch analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Maurice M. W.; Oon, Pey-Tee

    2016-08-01

    This paper reports the results of a survey of 3006 Year 10-12 students on their understandings of metallic bonding. The instrument was developed based on Chi's ontological categories of scientific concepts and students' understanding of metallic bonding as reported in the literature. The instrument has two parts. Part one probed into students' understanding of metallic bonding as (a) a submicro structure of metals, (b) a process in which individual metal atoms lose their outermost shell electrons to form a 'sea of electrons' and octet metal cations or (c) an all-directional electrostatic force between delocalized electrons and metal cations, that is, an interaction. Part two assessed students' explanation of malleability of metals, for example (a) as a submicro structural rearrangement of metal atoms/cations or (b) based on all-directional electrostatic force. The instrument was validated by the Rasch Model. Psychometric assessment showed that the instrument possessed reasonably good properties of measurement. Results revealed that it was reliable and valid for measuring students' understanding of metallic bonding. Analysis revealed that the structure, process and interaction understandings were unidimensional and in an increasing order of difficulty. Implications for the teaching of metallic bonding, particular through the use of diagrams, critiques and model-based learning, are discussed.

  9. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  10. Refractometers for different refractive index range by surface plasmon resonance sensors in multimode optical fibers with different metals

    NASA Astrophysics Data System (ADS)

    Zuppella, P.; Corso, Alain J.; Pelizzo, Maria G.; Cennamo, N.; Zeni, L.

    2016-09-01

    We have realized a plasmonic sensor based on Au/Pd metal bilayer in a multimode plastic optical fiber. This metal bilayer, based on a metal with high imaginary part of the refractive index and gold, shows interesting properties in terms of sensitivity and performances, in different refractive index ranges. The development of highly sensitive platforms for high refractive index detection (higher than 1.38) is interesting for chemical applications based on molecularly imprinted polymer as receptors, while the aqueous medium is the refractive index range of biosensors based on bio-receptors. In this work we have presented an Au/Pd metal bilayer optimized for 1.38-1.42 refractive index range.

  11. Influence of S. mutans on base-metal dental casting alloy toxicity.

    PubMed

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p < 0.0001) and cell metabolic activity (p < 0.0001), and significantly increased cell toxicity (p < 0.0001) and inflammatory cytokine expression (p < 0.0001). S. mutans-treated Ni-based dental casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Franklin

    Two main categories of heterogeneous catalysts are metal and metal oxide which catalyze 80% chemical reactions at solid-gas and solid-liquid interfaces. Metal oxide catalysts are much more complicated than metal catalysts. The reason is that the cations of the metal atoms could exhibit a few different oxidation states on surface of the same catalyst particle such as Co 3O 4 or change of their oxidation states under different reactive environments. For a metal catalyst, there is only one oxidation state typically. In addition, surface of a metal oxide can be terminated with multiple surface functionalities including O atoms with differentmore » binding configurations and OH group. For metal, only metal atoms are exposed typically. Obviously, the complication of surface chemistry and structure of a metal oxide makes studies of surface of an oxide catalyst very challenging. Due to the complication of surface of a meal oxide, the electronic and geometric structures of surface of a metal oxide and the exposed species have received enormous attention since oxide catalysts catalyze at least 1/3 chemical reactions in chemical and energy industries. Understanding of catalytic reactions on early transition metal oxide-based catalysts is fundamentally intriguing and of great practical interest in energy- and environment-related catalysis. Exploration of surface chemistry of oxide-based catalysts at molecular level during catalysis has remained challenging though it is critical in deeply understanding catalysis on oxide-based catalysts and developing oxide-based catalysts with high activity and selectivity. Thus, the overall objective of this project is to explore surface chemistry and structure of early transition metal oxide-based catalysts through in-situ characterization of surface of catalysts, measurements of catalytic performances, and then build an intrinsic correlation of surface chemistry and structure with their catalytic performances in a few important catalytic reactions, and essentially fundamentally understand catalytic mechanism. Furthermore, this correlation will guide the design of catalysts with high activity and selectivity.« less

  13. Phase I. Lanthanum-based Start Materials for Hydride Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gschneidner, K. A.; Schmidt, F. A.; Frerichs, A. E.

    The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La 1-xR x)(Ni 1-yM y)(Si z), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

  14. Poultry litter-based activated carbon for removing heavy metal ions in water.

    PubMed

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  15. Th-Based Endohedral Metallofullerenes: Anomalous Metal Position and Significant Metal-Cage Covalent Interactions with the Involvement of Th 5f Orbitals.

    PubMed

    Li, Ying; Yang, Le; Liu, Chang; Hou, Qinghua; Jin, Peng; Lu, Xing

    2018-05-29

    Endohedral metallofullerenes (EMFs) containing actinides are rather intriguing due to potential 5f-orbital participation in the metal-metal or metal-cage bonding. In this work, density functional theory calculations first characterized the structure of recently synthesized ThC 74 as Th@ D 3 h (14246)-C 74 . We found that the thorium atom adopts an unusual off-axis position inside cage due to small metal ion size and the requirement of large coordination number, which phenomenon was further extended to other Th-based EMFs. Significantly, besides the strong metal-cage electrostatic attractions, topological and orbital analysis revealed that all the investigated Th-based EMFs exhibit obvious covalent interactions between metal and cage with substantial contribution from the Th 5f orbitals. The encapsulation by fullerenes is thus proposed as a practical pathway toward the f-orbital covalency for thorium. Interestingly, the anomalous internal position of Th led to a novel three-dimensional metal trajectory at elevated temperatures in the D 3 h -C 74 cavity, as elucidated by the static computations and molecular dynamic simulations.

  16. Ultra-stiff metallic glasses through bond energy density design.

    PubMed

    Schnabel, Volker; Köhler, Mathias; Music, Denis; Bednarcik, Jozef; Clegg, William J; Raabe, Dierk; Schneider, Jochen M

    2017-07-05

    The elastic properties of crystalline metals scale with their valence electron density. Similar observations have been made for metallic glasses. However, for metallic glasses where covalent bonding predominates, such as metalloid metallic glasses, this relationship appears to break down. At present, the reasons for this are not understood. Using high energy x-ray diffraction analysis of melt spun and thin film metallic glasses combined with density functional theory based molecular dynamics simulations, we show that the physical origin of the ultrahigh stiffness in both metalloid and non-metalloid metallic glasses is best understood in terms of the bond energy density. Using the bond energy density as novel materials design criterion for ultra-stiff metallic glasses, we are able to predict a Co 33.0 Ta 3.5 B 63.5 short range ordered material by density functional theory based molecular dynamics simulations with a high bond energy density of 0.94 eV Å -3 and a bulk modulus of 263 GPa, which is 17% greater than the stiffest Co-B based metallic glasses reported in literature.

  17. Investigation on localized corrosion of 304 stainless steel joints brazed using Sn-plated Ag alloy filler in NaCl aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Li, Shuai; Peng, Jin

    2018-03-01

    Novel AgCuZnSn filler metal with high Sn contents was prepared from BAg50CuZn filler metal by a process of electroplating and thermal diffusion, and the prepared filler metal was applied to induction brazing of 304 stainless steel. The corrosion behavior of the brazed joints was evaluated based on localized corrosion analysis, the morphology of the joints were analyzed by SEM after immersion in a 3.5 vol% NaCl aqueous solution. The results indicated that corrosion groove occurred near the interface between the stainless steel base metal and the brazing seam. A wide range of defects such as holes and cracks appeared on the surface of the base metal, while the brazing seam zone almost no corrosion defects occur. With the increase of corrosion time, the corrosion rates of both the brazing seam and the base metal first exhibited an increasing trend, followed by a decreasing trend, and the corrosion rate of the base metal was slightly greater than that of the brazing seam. The corrosion potential of the brazing seam and 304 stainless steel were -0.7758 V and -0.7863 V, respectively.

  18. Synthesis of 2D Metal Chalcogenide Thin Films through the Process Involving Solution-Phase Deposition.

    PubMed

    Giri, Anupam; Park, Gyeongbae; Yang, Heeseung; Pal, Monalisa; Kwak, Junghyeok; Jeong, Unyong

    2018-04-24

    2D metal chalcogenide thin films have recently attracted considerable attention owing to their unique physicochemical properties and great potential in a variety of applications. Synthesis of large-area 2D metal chalcogenide thin films in controllable ways remains a key challenge in this research field. Recently, the solution-based synthesis of 2D metal chalcogenide thin films has emerged as an alternative approach to vacuum-based synthesis because it is relatively simple and easy to scale up for high-throughput production. In addition, solution-based thin films open new opportunities that cannot be achieved from vacuum-based thin films. Here, a comprehensive summary regarding the basic structures and properties of different types of 2D metal chalcogenides, the mechanistic details of the chemical reactions in the synthesis of the metal chalcogenide thin films, recent successes in the synthesis by different reaction approaches, and the applications and potential uses is provided. In the last perspective section, the technical challenges to be overcome and the future research directions in the solution-based synthesis of 2D metal chalcogenides are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Catalysts Based on Earth-Abundant Metals for Visible Light-Driven Water Oxidation Reaction.

    PubMed

    Lin, Junqi; Han, Qing; Ding, Yong

    2018-06-04

    Exploration of water oxidation catalyst (WOC) with excellent performance is the key for the overall water splitting reaction, which is a feasible strategy to convert solar energy to chemical energy. Although some compounds composed of noble metals, mainly Ru and Ir, have been reported to catalyze water oxidation with high efficiency, catalysts based on low-cost and earth-abundant transition metals are essential for realizing economical and large-scale light-driven water splitting. Various WOCs containing earth-abundant metals (mainly Mn, Fe, Co, Ni, Cu) have been utilized for visible light-driven water oxidation in recent years. In this Personal Account, we summarize our recent developments in WOCs based on earth-abundant transition metals including polyoxometalates (POMs), metal oxides or bimetal oxides, and metal complexes containing multidentate ligand scaffolds for visible light-driven water oxidation reaction. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Development of Replacements for Phoscoating Used in Forging, Extrusion and Metal Forming Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerry Barnett

    2003-03-01

    Many forging, extrusion, heading and other metal forming processes use graphite-based lubricants, phosphate coatings, and other potentially hazardous or harmful substances to improve the tribology of the metal forming process. The application of phosphate-based coatings has long been studied to determine if other synthetic ''clean'' lubricants could provide the same degree of protection afforded by phoscoatings and its formulations. So far, none meets the cost and performance objectives provided by phoscoatings as a general aid to the metal forming industry. In as much as phoscoatings and graphite have replaced lead-based lubricants, the metal forming industry has had previous experience withmore » a legislated requirement to change processes. However, without a proactive approach to phoscoating replacement, many metal forming processes could find themselves without a cost effective tribology material necessary for the metal forming process« less

  1. Bifacial Base-Pairing Behaviors of 5-Hydroxyuracil DNA Bases through Hydrogen Bonding and Metal Coordination.

    PubMed

    Takezawa, Yusuke; Nishiyama, Kotaro; Mashima, Tsukasa; Katahira, Masato; Shionoya, Mitsuhiko

    2015-10-12

    A novel bifacial ligand-bearing nucleobase, 5-hydroxyuracil (U(OH) ), which forms both a hydrogen-bonded base pair (U(OH) -A) and a metal-mediated base pair (U(OH) -M-U(OH) ) has been developed. The U(OH) -M-U(OH) base pairs were quantitatively formed in the presence of lanthanide ions such as Gd(III) when U(OH) -U(OH) pairs were consecutively incorporated into DNA duplexes. This result established metal-assisted duplex stabilization as well as DNA-templated assembly of lanthanide ions. Notably, a duplex possessing U(OH) -A base pairs was destabilized by addition of Gd(III) ions. This observation suggests that the hybridization behaviors of the U(OH) -containing DNA strands are altered by metal complexation. Thus, the U(OH) nucleobase with a bifacial base-pairing property holds great promise as a component for metal-responsive DNA materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 77 FR 64437 - Airworthiness Directives; Burkhart GROB Luft-und Raumfahrt GmbH Sailplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... can remove with metal wool and that has no visible pitting in the base metal. If you cannot remove the corrosion with metal wool or if there is visible pitting in the base metal, we define it as heavy corrosion. (3) If any cracks or heavy corrosion are found during any of the inspections required in paragraph (f...

  3. 78 FR 1726 - Airworthiness Directives; Burkhart GROB Luft- und Raumfahrt GmbH Sailplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... purposes of this AD, we define slight corrosion as corrosion you can remove with metal wool and that has no visible pitting in the base metal. If you cannot remove the corrosion with metal wool or if there is visible pitting in the base metal, we define it as heavy corrosion. (3) If any cracks or heavy corrosion...

  4. Evaluation of the impact of metal artifacts in CT-based attenuation correction of positron emission tomography scans

    NASA Astrophysics Data System (ADS)

    Wu, Jay; Shih, Cheng-Ting; Chang, Shu-Jun; Huang, Tzung-Chi; Chen, Chuan-Lin; Wu, Tung Hsin

    2011-08-01

    The quantitative ability of PET/CT allows the widespread use in clinical research and cancer staging. However, metal artifacts induced by high-density metal objects degrade the quality of CT images. These artifacts also propagate to the corresponding PET image and cause a false increase of 18F-FDG uptake near the metal implants when the CT-based attenuation correction (AC) is performed. In this study, we applied a model-based metal artifact reduction (MAR) algorithm to reduce the dark and bright streaks in the CT image and compared the differences between PET images with the general CT-based AC (G-AC) and the MAR-corrected-CT AC (MAR-AC). Results showed that the MAR algorithm effectively reduced the metal artifacts in the CT images of the ACR flangeless phantom and two clinical cases. The MAR-AC also removed the false-positive hot spot near the metal implants of the PET images. We conclude that the MAR-AC could be applied in clinical practice to improve the quantitative accuracy of PET images. Additionally, further use of PET/CT fusion images with metal artifact correction could be more valuable for diagnosis.

  5. Blending Non-Group-3 Transition Metal and Rare-Earth Metal into a C80 Fullerene Cage with D5h Symmetry.

    PubMed

    Wei, Tao; Jin, Fei; Guan, Runnan; Huang, Jing; Chen, Muqing; Li, Qunxiang; Yang, Shangfeng

    2018-02-11

    Rare-earth metals have been mostly entrapped into fullerene cages to form endohedral clusterfullerenes, whereas non-Group-3 transition metals that can form clusterfullerenes are limited to titanium (Ti) and vanadium (V), and both are exclusively entrapped within an I h -C 80 cage. Non-Group-3 transition-metal-containing endohedral fullerenes based on a C 80 cage with D 5h symmetry, V x Sc 3-x N@D 5h -C 80 (x=1, 2), have now been synthesized, which exhibit two variable cluster compositions. The molecular structure of VSc 2 N@D 5h -C 80 was unambiguously determined by X-ray crystallography. According to a comparative study with the reported Ti- and V-containing clusterfullerenes based on a I h -C 80 cage and the analogous D 5h -C 80 -based metal nitride clusterfullerenes containing rare-earth metals only, the decisive role of the non-Group-3 transition metal on the formation of the corresponding D 5h -C 80 -based clusterfullerenes is unraveled. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development of a polymer based fiberoptic magnetostrictive metal detector system.

    PubMed

    Hua, Wei Shu; Hooks, Joshua Rosenberg; Wu, Wen Jong; Wang, Wei Chih

    2010-10-01

    This paper presents a new metal detector using a fiberoptic magnetostriction sensor. The metal sensor uses a fiber-optic Mach-Zehnder interferometer with a newly developed ferromagnetic polymer as the magnetostrictive sensing material. This polymeric magnetostrictive fiberoptic metal sensor is simple to fabricate, small in size, and resistant to RF interference (which is common in typical electromagnetic type metal detectors). Metal detection is based on disruption of the magnetic flux density across the magnetostriction sensor. In this paper, characteristics of the material being sensed and magnetic properties of the ferromagnetic polymers will be discussed.

  7. Fabrication of thick multilayered steel structure using A516 Grade 70 by multipass friction stir welding †

    DOE PAGES

    Lim, Y. C.; Sanderson, S.; Mahoney, M.; ...

    2016-04-06

    Here, we fabricated a thick-sectioned multilayered steel structure by multipass friction stir welding on A516 Grade 70 steel. Tensile strength of the multilayered samples was comparable to that of the base metal. Failure was located in the base metal when a defect-free sample was tested. Charpy impact toughness was higher in the stir zone and heat affected zone than in the base metal. For higher microhardness values were found in the stir zone and heat affected zone than the base metal due to grain refinement and modification of the microstructures. As a result, improved mechanical properties compared to the basemore » metal were found in the weld zones of friction stir welded A516 Grade 70 steel.« less

  8. Decomposition of Imidazolium-Based Ionic Liquids in Contact with Lithium Metal.

    PubMed

    Schmitz, Paulo; Jakelski, Rene; Pyschik, Marcelina; Jalkanen, Kirsi; Nowak, Sascha; Winter, Martin; Bieker, Peter

    2017-03-09

    Ionic liquids (ILs) are considered to be suitable electrolyte components for lithium-metal batteries. Imidazolium cation based ILs were previously found to be applicable for battery systems with a lithium-metal negative electrode. However, herein it is shown that, in contrast to the well-known IL N-butyl-N-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide ([Pyr 14 ][TFSI]), 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C2MIm][TFSI]) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C4MIm][TFSI]) are chemically unstable versus metallic lithium. A lithium-metal sheet was immersed in pure imidazolium-based IL samples and aged at 60 °C for 28 days. Afterwards, the aged IL samples were investigated to deduce possible decomposition products of the imidazolium cation. The chemical instability of the ILs in contact with lithium metal and a possible decomposition starting point are shown for the first time. Furthermore, the investigated imidazolium-based ILs can be utilized for lithium-metal batteries through the addition of the solid-electrolyte interphase (SEI) film-forming additive fluoroethylene carbonate. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. FINDSITE-metal: Integrating evolutionary information and machine learning for structure-based metal binding site prediction at the proteome level

    PubMed Central

    Brylinski, Michal; Skolnick, Jeffrey

    2010-01-01

    The rapid accumulation of gene sequences, many of which are hypothetical proteins with unknown function, has stimulated the development of accurate computational tools for protein function prediction with evolution/structure-based approaches showing considerable promise. In this paper, we present FINDSITE-metal, a new threading-based method designed specifically to detect metal binding sites in modeled protein structures. Comprehensive benchmarks using different quality protein structures show that weakly homologous protein models provide sufficient structural information for quite accurate annotation by FINDSITE-metal. Combining structure/evolutionary information with machine learning results in highly accurate metal binding annotations; for protein models constructed by TASSER, whose average Cα RMSD from the native structure is 8.9 Å, 59.5% (71.9%) of the best of top five predicted metal locations are within 4 Å (8 Å) from a bound metal in the crystal structure. For most of the targets, multiple metal binding sites are detected with the best predicted binding site at rank 1 and within the top 2 ranks in 65.6% and 83.1% of the cases, respectively. Furthermore, for iron, copper, zinc, calcium and magnesium ions, the binding metal can be predicted with high, typically 70-90%, accuracy. FINDSITE-metal also provides a set of confidence indexes that help assess the reliability of predictions. Finally, we describe the proteome-wide application of FINDSITE-metal that quantifies the metal binding complement of the human proteome. FINDSITE-metal is freely available to the academic community at http://cssb.biology.gatech.edu/findsite-metal/. PMID:21287609

  10. Metal-ceramic joint assembly

    DOEpatents

    Li, Jian

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  11. REDUCTION OF COAL-BASED METAL EMISSIONS BY FURNACE SORBENT INJECTION

    EPA Science Inventory

    The ability of sorbent injection technology to reduce the potential for trace metal emissions from coal combustion was researched. Pilot scale tests of high-temperature furnace sorbent injection were accompanied by stack sampling for coal-based, metallic air toxics. Tested sorben...

  12. Evaluation of weldments in type 21-6-9 stainless steel for compact ignition tokamak structural applications, phase 1

    NASA Astrophysics Data System (ADS)

    Alexander, D. J.; Goodwin, G. M.; Bloom, E. E.

    1991-06-01

    Primary design considerations for the Compact Ignition Tokamak toroidal field-coil cases are yield strength and toughness in the temperature range from 77 to 300 K. Type 21-6-9 stainless steel, also still known by its original Armco Steel Company trade name Nitronic 40, is the proposed alloy for this application. It has high yield strength and usually adequate base metal toughness, but weldments in thick sections have not been adequately characterized in terms of mechanical properties or hot-cracking propensity. In this study, weldability of the alloy in heavy sections and the mechanical properties of the resultant welds were investigated including tensile yield strength and Charpy V-notch toughness at 77 K and room temperature. Weldments were made in four different base metals using seven different filler metals. None of the weldments showed any indication of hot-cracking problems. All base metals, including weldment heat-affected zones, were found to have adequate strength and impact toughness at both test temperatures. Weld metals, on the other hand, except ERNiCr-3 and ENiCrFe-3, had impact toughnesses of less than 67 J at 77 K. Inconel 82 had an average weld metal impact toughness of over 135 J at 77 K, and although its strength at 77 K is less than that of type 21-6-9 base metal, at this point it is considered to be the first-choice filler metal. Phase 2 of this program will concentrate on composition refinement and process/procedure optimization for the generic ERNiCr-3 composition and will generate a design data base for base and weld metal, including tensile, fracture toughness, and crack growth rate data.

  13. Accumulation and health risk of heavy metals in vegetables from harmless and organic vegetable production systems of China.

    PubMed

    Chen, Yong; Hu, Wenyou; Huang, Biao; Weindorf, David C; Rajan, Nithya; Liu, Xiaoxiao; Niedermann, Silvana

    2013-12-01

    Heavy metal accumulation in vegetables is a growing concern for public health. Limited studies have elucidated the heavy metal accumulation characteristics and health risk of different vegetables produced in different facilities such as greenhouses and open-air fields and under different management modes such as harmless and organic. Given the concern over the aforementioned factors related to heavy metal accumulation, this study selected four typical greenhouse vegetable production bases, short-term harmless greenhouse vegetable base (SHGVB), middle-term harmless greenhouse vegetable base (MHGVB), long-term harmless greenhouse vegetable base (LHGVB), and organic greenhouse vegetable base (OGVB), in Nanjing City, China to study heavy metal accumulation in different vegetables and their associated health risks. Results showed that soils and vegetables from SHGVB and OGVB apparently accumulated fewer certain heavy metals than those from other bases, probably due to fewer planting years and special management, respectively. Greenhouse conditions significantly increased certain soil heavy metal concentrations relative to open-air conditions. However, greenhouse conditions did not significantly increase concentrations of As, Cd, Cu, Hg, and Zn in leaf vegetables. In fact, under greenhouse conditions, Pb accumulation was effectively reduced. The main source of soil heavy metals was the application of large amounts of low-grade fertilizer. There was larger health risk for producers' children to consume vegetables from the three harmless vegetable bases than those of residents' children. The hazard index (HI) over a large area exceeded 1 for these two kinds of children in the MHGVB and LHGVB. There was also a slight risk in the SHGVB for producers' children solely. However, the HI of the whole area of the OGVB for two kinds of children was below 1, suggesting low risk of heavy metal exposure through the food chain. Notably, the contribution rate of Cu and Zn to the HI were high in the four bases, yet current Chinese standards provide no limit for the concentrations of Cu and Zn; thus a potential health risk concerning these metals exists. © 2013 Elsevier Inc. All rights reserved.

  14. Comparative assessment of marginal accuracy of grade II titanium and Ni–Cr alloy before and after ceramic firing: An in vitro study

    PubMed Central

    Patil, Abhijit; Singh, Kishan; Sahoo, Sukant; Suvarna, Suraj; Kumar, Prince; Singh, Anupam

    2013-01-01

    Objective: The aims of the study are to assess the marginal accuracy of base metal and titanium alloy casting and to evaluate the effect of repeated ceramic firing on the marginal accuracy of base metal and titanium alloy castings. Materials and Methods: Twenty metal copings were fabricated with each casting material. Specimens were divided into 4 groups of 10 each representing base metal alloys castings without (Group A) and with metal shoulder margin (Group B), titanium castings without (Group C) and with metal shoulder margin (Group D). The measurement of fit of the metal copings was carried out before the ceramic firing at four different points and the same was followed after porcelain build-up. Results: Significant difference was found when Ni–Cr alloy samples were compared with Grade II titanium samples both before and after ceramic firings. The titanium castings with metal shoulder margin showed highest microgap among all the materials tested. Conclusions: Based on the results that were found and within the limitations of the study design, it can be concluded that there is marginal discrepancy in the copings made from Ni–Cr and Grade II titanium. This marginal discrepancy increased after ceramic firing cycles for both Ni–Cr and Grade II titanium. The comparative statistical analysis for copings with metal-collar showed maximum discrepancy for Group D. The comparative statistical analysis for copings without metal-collar showed maximum discrepancy for Group C. PMID:24926205

  15. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications.

    PubMed

    Young, Kwo-Hsiung; Nei, Jean

    2013-10-17

    In this review article, the fundamentals of electrochemical reactions involving metal hydrides are explained, followed by a report of recent progress in hydrogen storage alloys for electrochemical applications. The status of various alloy systems, including AB₅, AB₂, A₂B₇-type, Ti-Ni-based, Mg-Ni-based, BCC, and Zr-Ni-based metal hydride alloys, for their most important electrochemical application, the nickel metal hydride battery, is summarized. Other electrochemical applications, such as Ni-hydrogen, fuel cell, Li-ion battery, air-metal hydride, and hybrid battery systems, also have been mentioned.

  16. Metallic glass composition

    DOEpatents

    Kroeger, Donald M.; Koch, Carl C.

    1986-01-01

    A metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon carbon and phosphorous to which is added an amount of a ductility enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

  17. Acoustic wave-driven oxidized liquid metal-based energy harvester

    NASA Astrophysics Data System (ADS)

    Jeon, Jinpyo; Chung, Sang Kug; Lee, Jeong-Bong; Doo, Seok Joo; Kim, Daeyoung

    2018-06-01

    We report an oxidized liquid metal droplet-based energy harvester that converts acoustic energy into electrical energy by modulating an electrical double layer that originates from the deformation of the oxidized liquid metal droplet. Gallium-based liquid metal alloy has been developed for various applications owing to the outstanding material properties, such as its high electrical conductivity (metallic property) and unlimited deformability (liquid property). In this study, we demonstrated energy harvesting using an electrical double layer between the acoustic wave-modulated liquid metal droplet and two electrodes. The proposed energy harvester consisted of top and bottom electrodes covered with the dielectric layer and a Gallium-based liquid metal droplet placed between the electrodes. When we applied an external bias voltage and acoustic wave to the proposed device, the contact area between the liquid metal droplet and the electrodes changed, leading to the variation of the capacitance in the electrical double layer and the generation of electrical output current. Using the proposed energy harvester, the maximum output current of 41.2 nA was generated with an applied acoustic wave of 30 Hz. In addition, we studied the relationships between the maximum output current and a variety of factors, such as the size of the liquid metal droplet, the thickness of the hydrophobic layer, and the distance between the top and bottom electrode plates.

  18. "Periodic-table-style" paper device for monitoring heavy metals in water.

    PubMed

    Li, Miaosi; Cao, Rong; Nilghaz, Azadeh; Guan, Liyun; Zhang, Xiwang; Shen, Wei

    2015-03-03

    If a paper-based analytical device (μ-PAD) could be made by printing indicators for detection of heavy metals in chemical symbols of the metals in a style of the periodic table of elements, it could be possible for such μ-PAD to report the presence and the safety level of heavy metal ions in water simultaneously and by text message. This device would be able to provide easy solutions to field-based monitoring of heavy metals in industrial wastewater discharges and in irrigating and drinking water. Text-reporting could promptly inform even nonprofessional users of the water quality. This work presents a proof of concept study of this idea. Cu(II), Ni(II), and Cr(VI) were chosen to demonstrate the feasibility, specificity, and reliability of paper-based text-reporting devices for monitoring heavy metals in water.

  19. Biosorption of precious metals.

    PubMed

    Mack, C; Wilhelmi, B; Duncan, J R; Burgess, J E

    2007-01-01

    Biosorption has emerged as a low-cost and often low-tech option for removal or recovery of base metals from aqueous wastes. The conditions under which precious metals such as gold, platinum and palladium are sorbed by biomass are often very different to those under which base metals are sorbed. This, coupled with the increasingly high demand for precious metals, drives the increase in research into efficient recovery of precious metal ions from all waste material, especially refining wastewaters. Common biosorbents for precious metal ions include various derivatives of chitosan, as well as other compounds with relatively high surface amine functional group content. This is generally due to the ability of the positively charged amine groups to attract anionic precious metal ions at low pH. Recent research regarding the biosorption of some precious metals is reviewed here, with emphasis on the effects of the biosorption environment and the biosorption mechanisms identified.

  20. Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review.

    PubMed

    Zou, Yidong; Wang, Xiangxue; Khan, Ayub; Wang, Pengyi; Liu, Yunhai; Alsaedi, Ahmed; Hayat, Tasawar; Wang, Xiangke

    2016-07-19

    The presence of heavy metals in the industrial effluents has recently been a challenging issue for human health. Efficient removal of heavy metal ions from environment is one of the most important issues from biological and environmental point of view, and many studies have been devoted to investigate the environmental behavior of nanoscale zerovalent iron (NZVI) for the removal of toxic heavy metal ions, present both in the surface and underground wastewater. The aim of this review is to show the excellent removal capacity and environmental remediation of NZVI-based materials for various heavy metal ions. A new look on NZVI-based materials (e.g., modified or matrix-supported NZVI materials) and possible interaction mechanism (e.g., adsorption, reduction and oxidation) and the latest environmental application. The effects of various environmental conditions (e.g., pH, temperature, coexisting oxy-anions and cations) and potential problems for the removal of heavy metal ions on NZVI-based materials with the DFT theoretical calculations and EXAFS technology are discussed. Research shows that NZVI-based materials have satisfactory removal capacities for heavy metal ions and play an important role in the environmental pollution cleanup. Possible improvement of NZVI-based materials and potential areas for future applications in environment remediation are also proposed.

  1. Through-Metal-Wall Power Delivery and Data Transmission for Enclosed Sensors: A Review

    PubMed Central

    Yang, Ding-Xin; Hu, Zheng; Zhao, Hong; Hu, Hai-Feng; Sun, Yun-Zhe; Hou, Bao-Jian

    2015-01-01

    The aim of this review was to assess the current viable technologies for wireless power delivery and data transmission through metal barriers. Using such technologies sensors enclosed in hermetical metal containers can be powered and communicate through exterior power sources without penetration of the metal wall for wire feed-throughs. In this review, we first discuss the significant and essential requirements for through-metal-wall power delivery and data transmission and then we: (1) describe three electromagnetic coupling based techniques reported in the literature, which include inductive coupling, capacitive coupling, and magnetic resonance coupling; (2) present a detailed review of wireless ultrasonic through-metal-wall power delivery and/or data transmission methods; (3) compare various ultrasonic through-metal-wall systems in modeling, transducer configuration and communication mode with sensors; (4) summarize the characteristics of electromagnetic-based and ultrasound-based systems, evaluate the challenges and development trends. We conclude that electromagnetic coupling methods are suitable for through thin non-ferromagnetic metal wall power delivery and data transmission at a relatively low data rate; piezoelectric transducer-based ultrasonic systems are particularly advantageous in achieving high power transfer efficiency and high data rates; the combination of more than one single technique may provide a more practical and reliable solution for long term operation. PMID:26694392

  2. Terahertz artificial material based on integrated metal-rod-array for phase sensitive fluid detection.

    PubMed

    You, Borwen; Chen, Ching-Yu; Yu, Chin-Ping; Liu, Tze-An; Hattori, Toshiaki; Lu, Ja-Yu

    2017-04-17

    A terahertz artificial material composed of metal rod array is experimentally investigated on its transmission spectral property and successfully incorporated into microfluidics as a miniaturized terahertz waveguide with an extended optical-path-length for label-free fluidic sensing. Theoretical and experimental characterizations of terahertz transmission spectra show that the wave guidance along the metal rod array originates from the resonance of transverse-electric-polarized waves within the metal rod slits. The extended optical path length along three layers of metal-rod-array enables terahertz waves sufficiently overlapping the fluid molecules embedded among the rods, leading to strongly enhanced phase change by approximately one order of magnitude compared with the blank metal-parallel-plate waveguide. Based on the enhanced phase sensitivity, three kinds of colorless liquid analytes, namely, acetone, methanol, and ethanol, with different dipole moments are identified in situ using the metal-rod-array-based microfluidic sensor. The detection limit in molecular amounts of a liquid analyte is experimentally demonstrated to be less than 0.1 mmol, corresponding to 2.7 μmol/mm2. The phase sensitive terahertz metal-rod-array-based sensor potentially has good adaptability in lab-chip technology for various practical applications, such as industrial toxic fluid detection and medical breath inspection.

  3. Subtask 12B1: Welding development for V-Cr-Ti alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.F.; Goodwin, G.M.; Grossbeck, M.L.

    1995-03-01

    Development of the metallurgical and technological basis for the welding of thick sections of V-Cr-Ti alloys. The weldability and weldment properties of the V-5Cr-5Ti alloy have been evaluated. Results for the Sigmajig test of the vanadium alloy were similar to the cracking resistance of stainless steels, and indicates hot-cracking is unlikely to be a problem. Subsize Charpy test results for GTA weld metal in the as-welded condition have shown a significant reduction in toughness compared to the base metal. The weld metal toughness properties were restored to approximately that of the base metal after exposure to a PWHT 950{degrees}C. Themore » subsize Charpy toughness results for the EB weld metal from this same heat of vanadium alloy has shown significant improvement in properties compared to the GTA weld metal and the base metal. Further testing and analysis will be conducted to more fully characterize the properties of weld metal for each welding process and develop a basic understanding of the cause of the toughness decrease in the GTA welds. 5 figs., 1 tab.« less

  4. Transition metal complexes supported on metal-organic frameworks for heterogeneous catalysts

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.; Delferro, Massimiliano; Klet, Rachel C.

    2017-02-07

    A robust mesoporous metal-organic framework comprising a hafnium-based metal-organic framework and a single-site zirconium-benzyl species is provided. The hafnium, zirconium-benzyl metal-organic framework is useful as a catalyst for the polymerization of an alkene.

  5. Flexible supercapacitor electrodes based on real metal-like cellulose papers.

    PubMed

    Ko, Yongmin; Kwon, Minseong; Bae, Wan Ki; Lee, Byeongyong; Lee, Seung Woo; Cho, Jinhan

    2017-09-14

    The effective implantation of conductive and charge storage materials into flexible frames has been strongly demanded for the development of flexible supercapacitors. Here, we introduce metallic cellulose paper-based supercapacitor electrodes with excellent energy storage performance by minimizing the contact resistance between neighboring metal and/or metal oxide nanoparticles using an assembly approach, called ligand-mediated layer-by-layer assembly. This approach can convert the insulating paper to the highly porous metallic paper with large surface areas that can function as current collectors and nanoparticle reservoirs for supercapacitor electrodes. Moreover, we demonstrate that the alternating structure design of the metal and pseudocapacitive nanoparticles on the metallic papers can remarkably increase the areal capacitance and rate capability with a notable decrease in the internal resistance. The maximum power and energy density of the metallic paper-based supercapacitors are estimated to be 15.1 mW cm -2 and 267.3 μWh cm -2 , respectively, substantially outperforming the performance of conventional paper or textile-type supercapacitors.With ligand-mediated layer-by-layer assembly between metal nanoparticles and small organic molecules, the authors prepare metallic paper electrodes for supercapacitors with high power and energy densities. This approach could be extended to various electrodes for portable/wearable electronics.

  6. Processing of monolayer materials via interfacial reactions

    DOEpatents

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2014-05-20

    A method of forming and processing of graphene is disclosed based on exposure and selective intercalation of the partially graphene-covered metal substrate with atomic or molecular intercalation species such as oxygen (O.sub.2) and nitrogen oxide (NO.sub.2). The process of intercalation lifts the strong metal-carbon coupling and restores the characteristic Dirac behavior of isolated monolayer graphene. The interface of graphene with metals or metal-decorated substrates also provides for controlled chemical reactions based on novel functionality of the confined space between a metal surface and a graphene sheet.

  7. SINGLE-PARTICLE ICPMS FOR CHARACTERIZING METAL-BASED NANOPARTICLES IN THE ENVIRONMENT - ADVANCES AND CHALLENGES

    EPA Science Inventory

    As engineered metal-based nanomaterials become widely used in consumer and industrial products, the amount of these materials introduced into the environment by a variety of paths will increase. The concentration of metal associated with these engineered nanoparticles will be s...

  8. Framework for Metals Risk Assessment

    EPA Pesticide Factsheets

    The Framework for Metals Risk Assessment is a science-based document that addresses the special attributes and behaviors of metals and metal compounds to be considered when assessing their human health and ecological risks.

  9. Heavy metals contamination and their risk assessment around the abandoned base metals and Au-Ag mines in Korea

    NASA Astrophysics Data System (ADS)

    Chon, Hyo-Taek

    2017-04-01

    Heavy metals contamination in the areas of abandoned Au-Ag and base metal mines in Korea was investigated in order to assess the level of metal pollution, and to draw general summaries about the fate of toxic heavy metals in different environments. Efforts have been made to compare the level of heavy metals, chemical forms, and plant uptake of heavy metals in each mine site. In the base-metals mine areas, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials and tailings. Leafy vegetables tend to accumulate heavy metals(in particular, Cd and Zn) higher than other crop plants, and high metal concentrations in rice crops may affect the local residents' health. In the Au-Ag mining areas, arsenic would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and the mobility of these metals would be enhanced by the effect of continuing weathering and oxidation. According to the sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. The concept of pollution index(PI) of soils gives important information on the extent and degree of multi-element contamination, and can be applied to the evaluation of mine soils before their agricultural use and remediation. The risk assessment process comprising exposure assessment, dose-response assessment, and risk characterization was discussed, and the results of non-cancer risk of As, Cd, and Zn, and those of cancer risk of As were suggested.

  10. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications.

    PubMed

    Zhao, Qingxia; Mao, Qiming; Zhou, Yaoyu; Wei, Jianhong; Liu, Xiaocheng; Yang, Junying; Luo, Lin; Zhang, Jiachao; Chen, Hong; Chen, Hongbo; Tang, Lin

    2017-12-01

    In recent years, advanced oxidation processes (AOPs), especially sulfate radical based AOPs have been widely used in various fields of wastewater treatment due to their capability and adaptability in decontamination. Recently, metal-free carbon materials catalysts in sulfate radical production has been more and more concerned because these materials have been demonstrated to be promising alternatives to conventional metal-based catalysts, but the review of metal-free catalysts is rare. The present review outlines the current state of knowledge on the generation of sulfate radical using metal-free catalysts including carbon nanotubes, graphene, mesoporous carbon, activated carbon, activated carbon fiber, nanodiamond. The mechanism such as the radical pathway and non-radical pathway, and factors influencing of the activation of sulfate radical was also be revealed. Knowledge gaps and research needs have been identified, which include the perspectives on challenges related to metal-free catalyst, heterogeneous metal-free catalyst/persulfate systems and their potential in practical environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Metal-centred azaphosphatriptycene gear with a photo- and thermally driven mechanical switching function based on coordination isomerism.

    PubMed

    Ube, Hitoshi; Yasuda, Yoshihiro; Sato, Hiroyasu; Shionoya, Mitsuhiko

    2017-02-08

    Metal ions can serve as a centre of molecular motions due to their coordination geometry, reversible bonding nature and external stimuli responsiveness. Such essential features of metal ions have been utilized for metal-mediated molecular machines with the ability to motion switch via metallation/demetallation or coordination number variation at the metal centre; however, motion switching based on the change in coordination geometry remain largely unexplored. Herein, we report a Pt II -centred molecular gear that demonstrates control of rotor engagement and disengagement based on photo- and thermally driven cis-trans isomerization at the Pt II centre. This molecular rotary motion transmitter has been constructed from two coordinating azaphosphatriptycene rotators and one Pt II ion as a stator. Isomerization between an engaged cis-form and a disengaged trans-form is reversibly driven by ultraviolet irradiation and heating. Such a photo- and thermally triggered motional interconversion between engaged/disengaged states on a metal ion would provide a selector switch for more complex interlocking systems.

  12. Concentrations and human health implications of heavy metals in market foods from a Chinese coal-mining city.

    PubMed

    Cheng, Jiali; Zhang, Xianhui; Tang, Zhenwu; Yang, Yufei; Nie, Zhiqiang; Huang, Qifei

    2017-03-01

    Concentrations of heavy metals (As, Cd, Co, Cr, Cu, Hg, Pb and Sb) in vegetables, meat and fish purchased from traditional agri-product markets in Huainan, China, were measured. Concentrations of the eight metals in most of the measured samples were lower than their respective maximum allowable concentrations (MACs), except for Pb, Cd, Cr and Cu in some of the samples exceeded safe limits. Based on local food consumption, the intake of individual metals was estimated to be less than their respective recommended limits. However, the overall target hazard quotient (THQ) for the eight metals was 1.07 based on the digestion of leafy vegetables and 2.12 based on the consumption of all of the investigated foods. The results of this study suggest that the overall risk from exposure to multiple metals in foods should be of concern, even though low-to-moderate heavy metal pollution is present in foods from Huainan markets. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Metal hydride-based thermal energy storage systems

    DOEpatents

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  14. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion.

    PubMed

    Liang, Zibin; Qu, Chong; Xia, Dingguo; Zou, Ruqiang; Xu, Qiang

    2018-02-19

    Metal sites play an essential role for both electrocatalytic and photocatalytic energy conversion applications. The highly ordered arrangements of the organic linkers and metal nodes and the well-defined pore structures of metal-organic frameworks (MOFs) make them ideal substrates to support atomically dispersed metal sites (ADMSs) located in their metal nodes, linkers, and pores. Besides, porous carbon materials doped with ADMSs can be derived from these ADMS-incorporated MOF precursors through controlled treatments. These ADMSs incorporated in pristine MOFs and MOF-derived carbon materials possess unique merits over the molecular or the bulk metal-based catalysts, bridging the gap between homogeneous and heterogeneous catalysts for energy conversion applications. In this review, recent progress and perspective of design and incorporation of ADMSs in pristine MOFs and MOF-derived materials for energy conversion applications are highlighted, which will hopefully promote further developments of advanced MOF-based catalysts in foreseeable future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Large H2 storage capacity of a new polyhedron-based metal-organic framework with high thermal and hygroscopic stability.

    PubMed

    Hong, Seunghee; Oh, Minhak; Park, Mira; Yoon, Ji Woong; Chang, Jong-San; Lah, Myoung Soo

    2009-09-28

    Two metal-organic frameworks (MOFs) based on metal-organic cuboctahedra were prepared using a rigid C3 symmetric ligand, where Zn polyhedron-based MOF (PMOF-2(Zn)) did not show any significant gas sorption behavior, whereas the isostructural Cu polyhedron-based MOF (PMOF-2(Cu)) showed a large surface area of approximately 4180 m2 g(-1), high hydrothermal stability, and very promising H2 sorption properties.

  16. Surface plasmon dispersion engineering via double-metallic AU/AG layers for nitride light-emitting diodes

    DOEpatents

    Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu

    2014-04-01

    A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.

  17. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+.

    PubMed

    Duguid, J G; Bloomfield, V A; Benevides, J M; Thomas, G J

    1995-12-01

    Differential scanning calorimetry, laser Raman spectroscopy, optical densitometry, and pH potentiometry have been used to investigate DNA melting profiles in the presence of the chloride salts of Ba2+, Sr2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+. Metal-DNA interactions have been observed for the molar ratio [M2+]/[PO2-] = 0.6 in aqueous solutions containing 5% by weight of 160 bp mononucleosomal calf thymus DNA. All of the alkaline earth metals, plus Mn2+, elevate the melting temperature of DNA (Tm > 75.5 degrees C), whereas the transition metals Co2+, Ni2+, and Cd2+ lower Tm. Calorimetric (delta Hcal) and van't Hoff (delta HVH) enthalpies of melting range from 6.2-8.7 kcal/mol bp and 75.6-188.6 kcal/mol cooperative unit, respectively, and entropies from 17.5 to 24.7 cal/K mol bp. The average number of base pairs in a cooperative melting unit () varied from 11.3 to 28.1. No dichotomy was observed between alkaline earth and transition DNA-metal complexes for any of the thermodynamic parameters other than their effects on Tm. These results complement Raman difference spectra, which reveal decreases in backbone order, base unstacking, distortion of glycosyl torsion angles, and rupture of hydrogen bonds, which occur after thermal denaturation. Raman difference spectroscopy shows that transition metals interact with the N7 atom of guanine in duplex DNA. A broader range of interaction sites with single-stranded DNA includes ionic phosphates, the N1 and N7 atoms of purines, and the N3 atom of pyrimidines. For alkaline earth metals, very little interaction was observed with duplex DNA, whereas spectra of single-stranded complexes are very similar to those of melted DNA without metal. However, difference spectra reveal some metal-specific perturbations at 1092 cm-1 (nPO2-), 1258 cm-1 (dC, dA), and 1668 cm-1 (nC==O, dNH2 dT, dG, dC). Increased spectral intensity could also be observed near 1335 cm-1 (dA, dG) for CaDNA. Optical densitometry, employed to detect DNA aggregation, reveals increased turbidity during the melting transition for all divalent DNA-metal complexes, except SrDNA and BaDNA. Turbidity was not observed for DNA in the absence of metal. A correlation was made between DNA melting, aggregation, and the ratio of Raman intensities I1335/I1374. At room temperature, DNA-metal interactions result in a pH drop of 1.2-2.2 units for alkaline earths and more than 2.5 units for transition metals. Sr2+, Ba2+, and Mg2+ cause protonated sites on the DNA to become thermally labile. These results lead to a model that describes DNA aggregation and denaturation during heating in the presence of divalent metal cations; 1) The cations initially interact with the DNA at phosphate and/or base sites, resulting in proton displacement. 2) A combination of metal-base interactions and heating disrupts the base pairing within the DNA duplex. This allows divalent metals and protons to bind to additional sites on the DNA bases during the aggregation/melting process. 3) Strands whose bases have swung open upon disruption are linked to neighboring strands by metal ion bridges. 4) Near the midpoint of the melting transition, thermal energy breaks up the aggregate. We have no evidence to indicate whether metal ion cross-bridges or direct base-base interactions rupture first. 5) Finally, all cross-links break, resulting in single-stranded DNA complexed with metal ions.

  18. Studies on DNA binding behaviour of biologically active transition metal complexes of new tetradentate N2O2 donor Schiff bases: inhibitory activity against bacteria.

    PubMed

    Sobha, S; Mahalakshmi, R; Raman, N

    2012-06-15

    A series of Cu(II), Ni(II) and Zn(II) complexes of the type ML have been synthesized with Schiff bases derived from o-acetoacetotoluidide, 2-hydroxybenzaldehyde and o-phenylenediamine/1,4-diaminobutane. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the six metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff bases are found to act as tetradentate ligands using N(2)O(2) donor set of atoms leading to a square-planar geometry for the complexes around all the metal ions. The binding properties of metal complexes with DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. Detailed analysis reveals that the metal complexes intercalate into the DNA base stack as intercalators. All the metal complexes cleave the pUC19 DNA in presence of H(2)O(2.) The Schiff bases and their complexes have been screened for their antibacterial activity against five bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae) by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligands. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching.

    PubMed

    Li, Yunjiao; Perederiy, Ilya; Papangelakis, Vladimiros G

    2008-04-01

    Huge quantities of slag, a waste solid product of pyrometallurgical operations by the metals industry are dumped continuously around the world, posing a potential environmental threat due to entrained values of base metals and sulfur. High temperature pressure oxidative acid leaching of nickel smelter slags was investigated as a process to facilitate slag cleaning and selective dissolution of base metals for economic recovery. Five key parameters, namely temperature, acid addition, oxygen overpressure, solids loading and particle size, were examined on the process performance. Base metal recoveries, acid and oxygen consumptions were accurately measured, and ferrous/ferric iron concentrations were also determined. A highly selective leaching of valuable metals with extractions of >99% for nickel and cobalt, >97% for copper, >91% for zinc and <2.2% for iron was successfully achieved for 20 wt.% acid addition and 25% solids loading at 200-300 kPa O(2) overpressure at 250 degrees C in 2h. The acid consumption was measured to be 38.5 kg H(2)SO(4)/t slag and the oxygen consumption was determined as 84 kg O(2)/t slag which is consistent with the estimated theoretical oxygen consumption. The as-produced residue containing less than 0.01% of base metals, hematite and virtually zero sulfidic sulfur seems to be suitable for safe disposal. The process seems to be able to claim economic recovery of base metals from slags and is reliable and feasible.

  20. Study on Mg/Al Weld Seam Based on Zn–Mg–Al Ternary Alloy

    PubMed Central

    Liu, Liming; Liu, Fei; Zhu, Meili

    2014-01-01

    Based on the idea of alloying welding seams, a series of Zn–xAl filler metals was calculated and designed for joining Mg/Al dissimilar metals by gas tungsten arc (GTA) welding. An infrared thermography system was used to measure the temperature of the welding pool during the welding process to investigate the solidification process. It was found that the mechanical properties of the welded joints were improved with the increasing of the Al content in the Zn–xAl filler metals, and when Zn–30Al was used as the filler metal, the ultimate tensile strength could reach a maximum of 120 MPa. The reason for the average tensile strength of the joint increasing was that the weak zone of the joint using Zn–30Al filler metal was generated primarily by α-Al instead of MgZn2. When Zn–40Al was used as the filler metal, a new transition zone, about 20 μm-wide, appeared in the edge of the fusion zone near the Mg base metal. Due to the transition zones consisting of MgZn2- and Al-based solid solution, the mechanical property of the joints was deteriorated. PMID:28788508

  1. Fluorescent Binary Ensemble Based on Pyrene Derivative and Sodium Dodecyl Sulfate Assemblies as a Chemical Tongue for Discriminating Metal Ions and Brand Water.

    PubMed

    Zhang, Lijun; Huang, Xinyan; Cao, Yuan; Xin, Yunhong; Ding, Liping

    2017-12-22

    Enormous effort has been put to the detection and recognition of various heavy metal ions due to their involvement in serious environmental pollution and many major diseases. The present work has developed a single fluorescent sensor ensemble that can distinguish and identify a variety of heavy metal ions. A pyrene-based fluorophore (PB) containing a metal ion receptor group was specially designed and synthesized. Anionic surfactant sodium dodecyl sulfate (SDS) assemblies can effectively adjust its fluorescence behavior. The selected binary ensemble based on PB/SDS assemblies can exhibit multiple emission bands and provide wavelength-based cross-reactive responses to a series of metal ions to realize pattern recognition ability. The combination of surfactant assembly modulation and the receptor for metal ions empowers the present sensor ensemble with strong discrimination power, which could well differentiate 13 metal ions, including Cu 2+ , Co 2+ , Ni 2+ , Cr 3+ , Hg 2+ , Fe 3+ , Zn 2+ , Cd 2+ , Al 3+ , Pb 2+ , Ca 2+ , Mg 2+ , and Ba 2+ . Moreover, this single sensing ensemble could be further applied for identifying different brands of drinking water.

  2. A fluorometric paper-based sensor array for the discrimination of heavy-metal ions.

    PubMed

    Feng, Liang; Li, Hui; Niu, Li-Ya; Guan, Ying-Shi; Duan, Chun-Feng; Guan, Ya-Feng; Tung, Chen-Ho; Yang, Qing-Zheng

    2013-04-15

    A fluorometric paper-based sensor array has been developed for the sensitive and convenient determination of seven heavy-metal ions at their wastewater discharge standard concentrations. Combining with nine cross-reactive BODIPY fluorescent indicators and array technologies-based pattern-recognition, we have obtained the discrimination capability of seven different heavy-metal ions at their wastewater discharge standard concentrations. After the immobilization of indicators and the enrichment of analytes, identification of the heavy-metal ions was readily acquired using a standard chemometric approach. Clear differentiation among heavy-metal ions as a function of concentration was also achieved, even down to 10(-7)M. A semi-quantitative estimation of the heavy-metal ion concentration was obtained by comparing color changes with a set of known concentrations. The sensor array was tentatively investigated in spiked tap water and sea water, and showed possible feasibility for real sample testing. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Unified computational model of transport in metal-insulating oxide-metal systems

    NASA Astrophysics Data System (ADS)

    Tierney, B. D.; Hjalmarson, H. P.; Jacobs-Gedrim, R. B.; Agarwal, Sapan; James, C. D.; Marinella, M. J.

    2018-04-01

    A unified physics-based model of electron transport in metal-insulator-metal (MIM) systems is presented. In this model, transport through metal-oxide interfaces occurs by electron tunneling between the metal electrodes and oxide defect states. Transport in the oxide bulk is dominated by hopping, modeled as a series of tunneling events that alter the electron occupancy of defect states. Electron transport in the oxide conduction band is treated by the drift-diffusion formalism and defect chemistry reactions link all the various transport mechanisms. It is shown that the current-limiting effect of the interface band offsets is a function of the defect vacancy concentration. These results provide insight into the underlying physical mechanisms of leakage currents in oxide-based capacitors and steady-state electron transport in resistive random access memory (ReRAM) MIM devices. Finally, an explanation of ReRAM bipolar switching behavior based on these results is proposed.

  4. Tensile bond strength of an adhesive resin cement to different alloys having various surface treatments.

    PubMed

    Abreu, Amara; Loza, Maria A; Elias, Augusto; Mukhopadhyay, Siuli; Looney, Stephen; Rueggeberg, Frederick A

    2009-02-01

    The ability of a resin cement to bond to a restorative alloy is critical for maximal crown retention to nonideal preparations. Surface treatment and metal type may have an important role in optimizing resin-to-metal strength. The purpose of this study was to examine the effect of surface pretreatment on the tensile strength of base and noble metals bonded using a conventional resin cement. Cylindrical plastic rods (9.5 mm in diameter), cast in base (Rexillium NBF) or noble metal (IPS d.SIGN 53), were divided into rods 10 mm in length (n=10-12). Specimens were heated in a porcelain furnace to create an oxide layer. Test specimens were further subjected to airborne-particle abrasion (50-microm Al(2)O(3) particles) alone or with the application of a metal primer (Alloy Primer). Similarly treated rod ends were joined using resin cement (RelyX ARC), thermocycled (x500, 5 degrees -55 degrees C) and stored (24 hours, 37 degrees C) before debonding using a universal testing machine. Debond strength and failure site were recorded. Rank-based ANOVA for unbalanced designs was used to test for significant interaction (alpha=.050). Each pair of treatments was compared separately for each metal (Bonferroni-adjusted significance level of .0083, overall error rate for comparisons, .05). The 2 metals were compared separately for each of the 3 treatments using an adjusted significance level of .017, maintaining an overall error rate of .05. A multinomial logit model was used to describe the effect of metal type and surface pretreatment on failure site location (alpha=.05). Interaction between metal type and surface pretreatment was significant for stress values (P=.019). Metal type did not significantly affect tensile bond strength for any of the compared surface pretreatments. Metal primer significantly improved tensile bond strength for each metal type. Most failures tended to occur as either adhesive or mixed in nature. Metal primer application significantly enhanced tensile bond strength to base and noble metal. No significant differences in tensile strength were found between alloys. Differences in failure site incidence were found to be related to metal type and surface pretreatment.

  5. Large structural, thin-wall castings made of metals subject to hot tearing, and their fabrication

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor)

    2001-01-01

    An article, such as a gas turbine engine mixer, is made by providing a mold structure defining a thin-walled, hollow article, and a base metal that is subject to hot tear cracking when cast in a generally equiaxed polycrystalline form, such as Rene' 108 and Mar-M247. The article is fabricated by introducing the molten base metal into the mold structure, and directionally solidifying the base metal in the mold structure to form a directionally oriented structure. The directionally oriented structure may be formed of a single grain or oriented multiple grains.

  6. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications

    PubMed Central

    Young, Kwo-hsiung; Nei, Jean

    2013-01-01

    In this review article, the fundamentals of electrochemical reactions involving metal hydrides are explained, followed by a report of recent progress in hydrogen storage alloys for electrochemical applications. The status of various alloy systems, including AB5, AB2, A2B7-type, Ti-Ni-based, Mg-Ni-based, BCC, and Zr-Ni-based metal hydride alloys, for their most important electrochemical application, the nickel metal hydride battery, is summarized. Other electrochemical applications, such as Ni-hydrogen, fuel cell, Li-ion battery, air-metal hydride, and hybrid battery systems, also have been mentioned. PMID:28788349

  7. Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells

    PubMed Central

    Liu, Yan; Zhang, Pengcheng; Li, Feifei; Jin, Xiaodong; Li, Jin; Chen, Weiqiang; Li, Qiang

    2018-01-01

    Radiotherapy is one of the major therapeutic strategies for cancer treatment. In the past decade, there has been growing interest in using high Z (atomic number) elements (materials) as radiosensitizers. New strategies in nanomedicine could help to improve cancer diagnosis and therapy at cellular and molecular levels. Metal-based nanoparticles usually exhibit chemical inertness in cellular and subcellular systems and may play a role in radiosensitization and synergistic cell-killing effects for radiation therapy. This review summarizes the efficacy of metal-based NanoEnhancers against cancers in both in vitro and in vivo systems for a range of ionizing radiations including gamma-rays, X-rays, and charged particles. The potential of translating preclinical studies on metal-based nanoparticles-enhanced radiation therapy into clinical practice is also discussed using examples of several metal-based NanoEnhancers (such as CYT-6091, AGuIX, and NBTXR3). Also, a few general examples of theranostic multimetallic nanocomposites are presented, and the related biological mechanisms are discussed. PMID:29556359

  8. Nanofluid based on self-nanoencapsulated metal/metal alloys phase change materials with tuneable crystallisation temperature.

    PubMed

    Navarrete, Nuria; Gimeno-Furio, Alexandra; Mondragon, Rosa; Hernandez, Leonor; Cabedo, Luis; Cordoncillo, Eloisa; Julia, J Enrique

    2017-12-14

    Nanofluids using nanoencapsulated Phase Change Materials (nePCM) allow increments in both the thermal conductivity and heat capacity of the base fluid. Incremented heat capacity is produced by the melting enthalpy of the nanoparticles core. In this work two important advances in this nanofluid type are proposed and experimentally tested. It is firstly shown that metal and metal alloy nanoparticles can be used as self-encapsulated nePCM using the metal oxide layer that forms naturally in most commercial synthesis processes as encapsulation. In line with this, Sn/SnOx nanoparticles morphology, size and thermal properties were studied by testing the suitability and performance of encapsulation at high temperatures and thermal cycling using a commercial thermal oil (Therminol 66) as the base fluid. Secondly, a mechanism to control the supercooling effect of this nePCM type based on non-eutectic alloys was developed.

  9. Detection of heavy metal by paper-based microfluidics.

    PubMed

    Lin, Yang; Gritsenko, Dmitry; Feng, Shaolong; Teh, Yi Chen; Lu, Xiaonan; Xu, Jie

    2016-09-15

    Heavy metal pollution has shown great threat to the environment and public health worldwide. Current methods for the detection of heavy metals require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Various microfluidic paper-based analytical devices have been developed recently as simple, cheap and disposable alternatives to conventional ones for on-site detection of heavy metals. In this review, we first summarize current development of paper-based analytical devices and discuss the selection of paper substrates, methods of device fabrication, and relevant theories in these devices. We then compare and categorize recent reports on detection of heavy metals using paper-based microfluidic devices on the basis of various detection mechanisms, such as colorimetric, fluorescent, and electrochemical methods. To finalize, the future development and trend in this field are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Performance of chromia- and alumina-forming Fe- and Ni-base alloys exposed to metal dusting environments: The effect of water vapor and temperature

    DOE PAGES

    Rouaix-Vande Put, Aurelie; Unocic, Kinga A.; Brady, Michael P.; ...

    2015-11-18

    Fe- and Ni-base alloys including an alumina-forming austenitic alloy were exposed for 500 h under metal dusting environments with varying temperature, gas composition and total pressure. For one H 2–CO–CO 2–H 2O environment, the increase in temperature from 550 to 750 °C generally decreased metal dusting. When H 2O was added to a H 2–CO–CO 2 environment at 650 °C, the metal dusting attack was reduced. Even after 5000 h at a total pressure of 9.1 atm with 20%H 2O, the higher alloyed specimens retained a thin protective oxide. Lastly, for gas mixtures containing little or no H 2O, themore » Fe-base alloys were less resistant to metal dusting than Ni-base alloys.« less

  11. Electronically conductive perovskite-based oxide nanoparticles and films for optical sensing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohodnicki, Jr., Paul R; Schultz, Andrew M

    2015-04-28

    The disclosure relates to a method of detecting a change in a chemical composition by contacting a electronically conducting perovskite-based metal oxide material with a monitored stream, illuminating the electronically conducting perovskite-based metal oxide with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The electronically conducting perovskite-based metal oxide has a perovskite-based crystal structure and an electronic conductivity of at least 10.sup.-1 S/cm, where parameters are specified at the gas stream temperature. The electronically conducting perovskite-based metal oxide hasmore » an empirical formula A.sub.xB.sub.yO.sub.3-.delta., where A is at least a first element at the A-site, B is at least a second element at the B-site, and where 0.8« less

  12. The Gellyfish: An In-Situ Equilibrium-Based Sampler for Determining Multiple Free Metal Ion Concentrations in Marine Ecosystems

    PubMed Central

    Dong, Zhao; Lewis, Christopher G.; Burgess, Robert M.; Shine, James P.

    2016-01-01

    Free metal ions are usually the most bioavailable and toxic metal species to aquatic organisms, but they are difficult to measure due to their extremely low concentrations in the marine environment. Many of the current methods for determining free metal ions are complicated, time-consuming, and can only measure one metal at a time. We developed a new version of the ‘Gellyfish’, an in-situ equilibrium-based sampler, with significantly reduced equilibration time and the capability of measuring multiple free metal ions simultaneously. By calibrating the Gellyfish to account for its uptake of cationic metal complexes and validating them in multi-metal competition experiments, we were able to determine free metal ion concentrations previously collected over ten months at five locations in Boston Harbor for Cu, Zn, Pb, Ni, and Cd. This work generated one of the largest free metal ion datasets and demonstrated the applicability of the Gellyfish as an easy-to-use and inexpensive tool for monitoring free ion concentrations of metal mixtures in marine ecosystems. PMID:25598362

  13. Metal exposure influences the melanin and carotenoid-based colorations in great tits.

    PubMed

    Giraudeau, M; Mateos-Gonzalez, F; Cotín, J; Pagani-Nuñez, E; Torné-Noguera, A; Senar, J C

    2015-11-01

    Metals are naturally found in the environment but are also emitted through anthropogenic activities, raising some concerns about the potential deleterious effects of these elements on wildlife. The potential effects of metals on bird coloration have been the focus of several recent studies since animal colored-signals often reflect the physiology of their bearers and are thus used by animals to assess the quality of another individual as a mate or competitor. These studies have shown that the melanin pigmentation seems to be positively associated and the carotenoid-based coloration negatively associated with metal exposure in wild birds. Although these studies have been very useful to show the associations between metal exposure and coloration, only few of them have actually quantified the levels of metal exposure at the individual level; always focusing on one or two of them. Here, we measured the concentrations of eight metals in great tits' feathers and then assessed how these levels of metals were associated with the carotenoid and melanin-based colorations. We found that the melanin pigmentation was positively associated with the copper concentration and negatively correlated with the chromium concentration in feathers. In addition, we have shown that the carotenoid-based coloration was negatively associated with the feather's mercury concentration. This study is the first one to identify some metals that might affect positively and negatively the deposition of melanin and carotenoid into the plumage of wild birds. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Metallic glass composition. [That does not embrittle upon annealing

    DOEpatents

    Kroeger, D.M.; Koch, C.C.

    1984-09-14

    This patent pertains to a metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon, carbon and phosphorous to which is added an amount of a ductility-enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

  15. Solvent properties of hydrazine in the preparation of metal chalcogenide bulk materials and films.

    PubMed

    Yuan, Min; Mitzi, David B

    2009-08-21

    A combination of unique solvent properties of hydrazine enables the direct dissolution of a range of metal chalcogenides at ambient temperature, rendering this an extraordinarily simple and soft synthetic approach to prepare new metal chalcogenide-based materials. The extended metal chalcogenide parent framework is broken up during this process, and the resulting metal chalcogenide building units are re-organized into network structures (from 0D to 3D) based upon their interactions with the hydrazine/hydrazinium moieties. This Perspective will review recent crystal and materials chemistry developments within this family of compounds and will briefly discuss the utility of this approach in metal chalcogenide thin-film deposition.

  16. Development of economical improved thick film solar cell contact

    NASA Technical Reports Server (NTRS)

    Ross, B.

    1979-01-01

    Metal screened electrodes were investigated with base metal pastes and silver systems being focused upon. Contact resistance measurements were refined. A facility allowing fixing in hydrogen and other atmospheres was acquired. Several experiments were made applying screenable pastes to solar cells. Doping investigations emphasized eutectic alloys reduced to powders. Metal systems were reviewed and base metal experiments were done with nickel and copper using lead and tin as the frit metals. Severe adhesion problems were experienced with hydrogen atmospheres in all metal systems. A two step firing schedule was devised. Aluminum-silicon and aluminum-germanium eutectic doping additions to copper pastes were tried on 2 1/4 in diameter solar cell back contacts, both with good results.

  17. Cermet anode with continuously dispersed alloy phase and process for making

    DOEpatents

    Marschman, Steven C.; Davis, Norman C.

    1989-01-01

    Cermet electrode compositions and methods for making are disclosed which comprise NiO--NiFe.sub.2 O.sub.4 --Cu--Ni. Addition of an effective amount of a metallic catalyst/reactant to a composition of a nickel/iron/oxide, NiO, copper, and nickel produces a stable electrode having significantly increased electrical conductivity. The metallic catalyst functions to disperse the copper and nickel as an alloy continuously throughout the oxide phase of the cermet to render the electrode compositon more highly electrically conductive than were the third metal not present in the base composition. The third metal is preferably added to the base composition as elemental metal and includes aluminum, magnesium, sodium and gallium. The elemental metal is converted to a metal oxide during the sintering process.

  18. Transient Liquid Phase Bonding of Cu-Cr-Zr-Ti Alloy Using Ni and Mn Coatings: Microstructural Evolution and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Venkateswaran, T.; Ravi, K. R.; Sivakumar, D.; Pant, Bhanu; Janaki Ram, G. D.

    2017-08-01

    High-strength copper alloys are used extensively in the regenerative cooling parts of aerospace structures. Transient liquid phase (TLP) bonding of a Cu-Cr-Zr-Ti alloy was attempted in the present study using thin layers of elemental Ni and Mn coatings applied by electroplating. One of the base metals was given a Ni coating of 4 µm followed by a Mn coating of 15 µm, while the other base metal was given only the Ni coating (4 µm). The bonding cycle consisted of the following: TLP stage—heating to 1030 °C and holding for 15 min; homogenization stage—furnace cooling to 880 °C and holding for 2 h followed by argon quenching to room temperature. Detailed microscopy and electron probe microanalysis analysis of the brazed joints were carried out. The braze metal was found to undergo isothermal solidification within the 15 min of holding time at 1030 °C. At the end of TLP stage, the braze metal showed a composition of Cu-17Ni-9Mn (wt.%) at the center of the joint with a steep gradient in Ni and Mn concentrations from the center of the braze metal to the base metal interfaces. After holding for 2 h at 880 °C (homogenization stage), the compositional gradients were found to flatten significantly and the braze metal was found to develop a homogeneous composition of Cu-11Ni-7Mn (wt.%) at the center of the joint. In lap-shear tests, failures were always found to occur in the base metal away from the brazed region. The copper alloy base metal was found to undergo significant grain coarsening due to high-temperature exposure during brazing and, consequently, suffer considerable reduction in yield strength.

  19. Application of sintered titanium alloys to metal denture bases: a study of titanium powder sheets for complete denture base.

    PubMed

    Doi, H; Harrori, M; Hasegawa, K; Yoshinari, M; Kawada, E; Oda, Y

    2001-02-01

    The purpose of this study was the fabrication of titanium powder sheets to enable the application of sintered titanium alloys as metal denture bases. The effects of titanium particle shape and size, binder content, and plasticizer content on the surface smoothness, tensile strength and elongation of titanium powder sheets was investigated. To select a suitable ratio of powdered metal contents for application as a metal denture base, the effects of aluminum content in Ti sheets and various other powder metal contents in Ti-Al sheets on the density, sintering shrinkage, and bending strength were evaluated. Based on the results of the above experiments, we developed a mixed powder sheet composed of 83Ti-7Al-10Cr with TA45 titanium powder (atomized, -45 microm), and 8 mass% binder content. This titanium alloy sheet had good formability and ductility. Its sintered titanium alloy had a density of 3.2 g/cm3, sintering shrinkage of 3.8%, and bending strength of 403 MPa. The titanium alloy sheet is clinically acceptable for fabricating denture bases.

  20. Peroxotitanates for Biodelivery of Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, David; Elvington, M.

    2009-02-11

    Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion exchange materials with high affinity for several heavy metal ions, and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APT are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 hmore » in vitro, then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials vs. metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THP1 monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that 'biodelivery' by metal-APT materials may be cell type-specific. Therefore, it appears that APT are plausible solid phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect.« less

  1. Ceramic TBS/porous metal compliant layer

    NASA Technical Reports Server (NTRS)

    Tolokan, Robert P.; Jarrabet, G. P.

    1992-01-01

    Technetics Corporation manufactures metal fiber materials and components used in aerospace applications. Our technology base is fiber metal porous sheet material made from sinter bonded metal fibers. Fiber metals have percent densities (metal content by volume) from 10 to 65 percent. Various topics are covered and include the following: fiber metal materials, compliant layer thermal bayer coatings (TBC's), pad properties, ceramic/pad TBC design, thermal shock rig, fabrication, and applications.

  2. Flexible transparent conductors based on metal nanowire networks

    DOE PAGES

    Guo, Chuan Fei; Ren, Zhifeng

    2015-04-01

    Few conductors are transparent and flexible. Metals have the best electrical conductivity, but they are opaque and stiff in bulk form. However, metals can be transparent and flexible when they are very thin or properly arranged on the nanoscale. This review focuses on the flexible transparent conductors based on percolating networks of metal. Specifically, we discuss the fabrication, the means to improve the electrical conductivity, the large stretchability and its mechanism, and the applications of these metal networks. We also suggest some criteria for evaluating flexible transparent conductors and propose some new research directions in this emerging field.

  3. Preparation of magnesium metal matrix composites by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Satish, J.; Satish, K. G., Dr.

    2018-02-01

    Magnesium is the lightest metal used as the source for constructional alloys. Today Magnesium based metal matrix composites are widely used in aerospace, structural, oceanic and automobile applications for its light weight, low density(two thirds that of aluminium), good high temperature mechanical properties and good to excellent corrosion resistance. The reason of designing metal matrix composite is to put in the attractive attributes of metals and ceramics to the base metal. In this study magnesium metal matrix hybrid composite are developed by reinforcing pure magnesium with silicon carbide (SiC) and aluminium oxide by method of powder metallurgy. This method is less expensive and very efficient. The Hardness test was performed on the specimens prepared by powder metallurgy method. The results revealed that the micro hardness of composites was increased with the addition of silicon carbide and alumina particles in magnesium metal matrix composites.

  4. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    DOEpatents

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  5. Ductile metal alloys, method for making ductile metal alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cockeram, Brian V.

    A ductile alloy is provided comprising molybdenum, chromium and aluminum, wherein the alloy has a ductile to brittle transition temperature of about 300 C after radiation exposure. The invention also provides a method for producing a ductile alloy, the method comprising purifying a base metal defining a lattice; and combining the base metal with chromium and aluminum, whereas the weight percent of chromium is sufficient to provide solute sites within the lattice for point defect annihilation.

  6. Enhanced photoelectrochemical activity in all-oxide heterojunction devices based on correlated "metallic" oxides.

    PubMed

    Apgar, Brent A; Lee, Sungki; Schroeder, Lauren E; Martin, Lane W

    2013-11-20

    n-n Schottky, n-n ohmic, and p-n Schottky heterojunctions based on TiO2 /correlated "metallic" oxide couples exhibit strong solar-light absorption driven by the unique electronic structure of the "metallic" oxides. Photovoltaic and photocatalytic responses are driven by hot electron injection from the "metallic" oxide into the TiO2 , enabling new modalities of operation for energy systems. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Environmentally-assisted technique for transferring devices onto non-conventional substrates

    DOEpatents

    Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2014-08-26

    A device fabrication method includes: (1) providing a growth substrate including a base and an oxide layer disposed over the base; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.

  8. Effect of welding structure and δ-ferrite on fatigue properties for TIG welded austenitic stainless steels at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Yuri, Tetsumi; Ogata, Toshio; Saito, Masahiro; Hirayama, Yoshiaki

    2000-04-01

    High-cycle and low-cycle fatigue properties of base and weld metals for SUS304L and SUS316L and the effects of welding structure and δ-ferrite on fatigue properties were investigated at cryogenic temperatures in order to evaluate the long-life reliability of the structural materials to be used in liquid hydrogen supertankers and storage tanks and to develop a welding process for these applications. The S-N curves of the base and weld metals shifted towards higher levels, i.e., the longer life side, with decreasing test temperatures. High-cycle fatigue tests demonstrated the ratios of fatigue strength at 10 6 cycles to tensile strength of the weld metals to be 0.35-0.7, falling below those of base metals with decreasing test temperatures. Fatigue crack initiation sites in SUS304L weld metals were mostly at blowholes with diameters of 200-700 μm, and those of SUS316L weld metals were at weld pass interface boundaries. Low-cycle fatigue tests revealed the fatigue lives of the weld metals to be somewhat lower than those of the base metals. Although δ-ferrite reduces the toughness of austenitic stainless steels at cryogenic temperatures, the effects of δ-ferrite on high-cycle and low-cycle fatigue properties are not clear or significant.

  9. 76 FR 7558 - GBC Metals LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2825-000] GBC Metals LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of GBC Metals LLC's...

  10. Mississippi Curriculum Framework for Metal Trades (Program CIP: 48.0590--Metal Trades). Secondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for metal trades I, IIA (advanced welding), and IIB (advanced machine shop).…

  11. Transparent, conducting films based on metal/dielectric photonic band gaps

    NASA Astrophysics Data System (ADS)

    Bloemer, Mark J.; Scalora, Michael; D'Aguanno, G.; Bowden, Charles M.; Baglio, Salvatore; Sibilia, Concita; Centini, Marco; Bertolotti, Mario

    1999-07-01

    A transparent conductor has been developed based on 1D metal/dielectric photonic band gap structures. Laminated metal/dielectric filters containing 100 nm of silver have been fabricated with > 50% transmittance. Applications for transparent, conducting films include antennas embedded in windshields, electrodes on flat panel displays, electromagnetic shielding, and solar window panes.

  12. Hydrophobic Materials Based on Salts of Di(2-ethylhexyl)phosphoric Acid

    NASA Astrophysics Data System (ADS)

    Kizim, N. F.; Golubina, E. N.

    2018-03-01

    Interfacial formations of material based on metals di(2-ethylhexyl)phosphates of various metals exhibit hydrophobic properties. The contact angle of the surface, modified by the interfacial formations materials, could reach up to 140° depending on the nature of the solvent, the metal salt, the number of applications.

  13. Base-treated juniper fiber media for removing heavy metals in stormwater runoff

    Treesearch

    S.-H. Min; Thomas Eberhardt; Jang Min

    2007-01-01

    The viability of base-treated juniper fiber (BTJF) media for removing toxic heavy metals (Cd2+, Cu2+, Pb2+, Zn2+) in stormwater runoff was investigated. The sorption ability ofthe BTJF for all metals was much higher than that of untreated juniper. The affinity sequence of both...

  14. Combined effects of metal complexation and size expansion in the electronic structure of DNA base pairs

    NASA Astrophysics Data System (ADS)

    Brancolini, Giorgia; Di Felice, Rosa

    2011-05-01

    Novel DNA derivatives have been recently investigated in the pursuit of modified DNA duplexes to tune the electronic structure of DNA-based assemblies for nanotechnology applications. Size-expanded DNAs (e.g., xDNA) and metalated DNAs (M-DNA) may enhance stacking interactions and induce metallic conductivity, respectively. Here we explore possible ways of tailoring the DNA electronic structure by combining the aromatic size expansion with the metal-doping. We select the salient structures from our recent study on natural DNA pairs complexed with transition metal ions and consider the equivalent model configurations for xDNA pairs. We present the results of density functional theory electronic structure calculations of the metalated expanded base-pairs with various localized basis sets and exchange-correlation functionals. Implicit solvent and coordination water molecules are also included. Our results indicate that the effect of base expansion is largest in Ag-xGC complexes, while Cu-xGC complexes are the most promising candidates for nanowires with enhanced electron transfer and also for on-purpose modification of the DNA double-helix for signal detection.

  15. Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities

    PubMed Central

    Moravej, Maryam; Mantovani, Diego

    2011-01-01

    During the last decade, biodegradable metallic stents have been developed and investigated as alternatives for the currently-used permanent cardiovascular stents. Degradable metallic materials could potentially replace corrosion-resistant metals currently used for stent application as it has been shown that the role of stenting is temporary and limited to a period of 6–12 months after implantation during which arterial remodeling and healing occur. Although corrosion is generally considered as a failure in metallurgy, the corrodibility of certain metals can be an advantage for their application as degradable implants. The candidate materials for such application should have mechanical properties ideally close to those of 316L stainless steel which is the gold standard material for stent application in order to provide mechanical support to diseased arteries. Non-toxicity of the metal itself and its degradation products is another requirement as the material is absorbed by blood and cells. Based on the mentioned requirements, iron-based and magnesium-based alloys have been the investigated candidates for biodegradable stents. This article reviews the recent developments in the design and evaluation of metallic materials for biodegradable stents. It also introduces the new metallurgical processes which could be applied for the production of metallic biodegradable stents and their effect on the properties of the produced metals. PMID:21845076

  16. Influences of Cr/Ni equivalent ratios of filler wires on pitting corrosion and ductility-dip cracking of AISI 316L weld metals

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Kim, D. G.; Sung, J. H.; Kim, I. S.; Ko, D. E.; Kang, N. H.; Hong, H. U.; Park, J. H.; Lee, H. W.

    2011-02-01

    To study the pitting corrosion of AISI 316L weld metals according to the chromium/nickel equivalent ratio (Creq/Nieq ratio), three filler wires were newly designed for the flux-cored arc welding process. The weld metal with delta-ferrite at less than 3 vol.%, was observed for ductility-dip cracking (DDC) in the reheated region after multi-pass welding. The tensile strength and yield strength increased with increasing Creq/Nieq ratio. The result of anodic polarization tests in a 0.1 M NaCl solution at the room temperature (25) for 45 min, revealed that the base metal and weld metals have a similar corrosion potential of -0.34 VSCE. The weld metal with the highest content of Cr had the highest pitting potential (0.39 VSCE) and the passivation range (0.64 VSCE) was higher than the base metal (0.21 VSCE and 0.46 VSCE, respectively). Adding 0.001 M Na2S to the 0.1M NaCl solution, the corrosion occurred more severely by H2S. The corrosion potentials of the base metal and three weld metals decreased to -1.0 VSCE. DDC caused the decrease of the pitting potential by inducing a locally intense corrosion attack around the crack openings.

  17. Effect of embedded metal nanocrystals on the resistive switching characteristics in NiN-based resistive random access memory cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Min Ju; Kim, Hee-Dong; Man Hong, Seok

    2014-03-07

    The metal nanocrystals (NCs) embedded-NiN-based resistive random access memory cells are demonstrated using several metal NCs (i.e., Pt, Ni, and Ti) with different physical parameters in order to investigate the metal NC's dependence on resistive switching (RS) characteristics. First, depending on the electronegativity of metal, the size of metal NCs is determined and this affects the operating current of memory cells. If metal NCs with high electronegativity are incorporated, the size of the NCs is reduced; hence, the operating current is reduced owing to the reduced density of the electric field around the metal NCs. Second, the potential wells aremore » formed by the difference of work function between the metal NCs and active layer, and the barrier height of the potential wells affects the level of operating voltage as well as the conduction mechanism of metal NCs embedded memory cells. Therefore, by understanding these correlations between the active layer and embedded metal NCs, we can optimize the RS properties of metal NCs embedded memory cells as well as predict their conduction mechanisms.« less

  18. High thermal conductivity liquid metal pad for heat dissipation in electronic devices

    NASA Astrophysics Data System (ADS)

    Lin, Zuoye; Liu, Huiqiang; Li, Qiuguo; Liu, Han; Chu, Sheng; Yang, Yuhua; Chu, Guang

    2018-05-01

    Novel thermal interface materials using Ag-doped Ga-based liquid metal were proposed for heat dissipation of electronic packaging and precision equipment. On one hand, the viscosity and fluidity of liquid metal was controlled to prevent leakage; on the other hand, the thermal conductivity of the Ga-based liquid metal was increased up to 46 W/mK by incorporating Ag nanoparticles. A series of experiments were performed to evaluate the heat dissipation performance on a CPU of smart-phone. The results demonstrated that the Ag-doped Ga-based liquid metal pad can effectively decrease the CPU temperature and change the heat flow path inside the smart-phone. To understand the heat flow path from CPU to screen through the interface material, heat dissipation mechanism was simulated and discussed.

  19. A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides

    PubMed Central

    Rahman, Md. Mahbubur; Saleh Ahammad, A. J.; Jin, Joon-Hyung; Ahn, Sang Jung; Lee, Jae-Joon

    2010-01-01

    Nanotechnology has opened new and exhilarating opportunities for exploring glucose biosensing applications of the newly prepared nanostructured materials. Nanostructured metal-oxides have been extensively explored to develop biosensors with high sensitivity, fast response times, and stability for the determination of glucose by electrochemical oxidation. This article concentrates mainly on the development of different nanostructured metal-oxide [such as ZnO, Cu(I)/(II) oxides, MnO2, TiO2, CeO2, SiO2, ZrO2, and other metal-oxides] based glucose biosensors. Additionally, we devote our attention to the operating principles (i.e., potentiometric, amperometric, impedimetric and conductometric) of these nanostructured metal-oxide based glucose sensors. Finally, this review concludes with a personal prospective and some challenges of these nanoscaled sensors. PMID:22399911

  20. Heavy metal toxicity to bacteria - are the existing growth media accurate enough to determine heavy metal toxicity?

    PubMed

    Rathnayake, I V N; Megharaj, Mallavarapu; Krishnamurti, G S R; Bolan, Nanthi S; Naidu, Ravi

    2013-01-01

    A new minimal medium was formulated considering the limitations of the existing media for testing heavy metal sensitivity to bacteria. Toxicity of cadmium and copper to three bacteria was investigated in the new medium and compared with three other media commonly used to study the effect of the toxic metals. Based on speciation data arrived at using ion-selective electrodes, the available free-metal concentration in solution was highest in the MES-buffered medium. This finding was strongly supported by the estimated EC(50) values for the metals tested based on the toxicity bioassays. The free-ionic cadmium and copper concentrations in the medium provide more accurate determination of metal concentrations that affects the bacteria, than with most of other existing media. This will avoid doubts on other media and misleading conclusions relevant to the toxicity of heavy metals to bacteria and provides a better option for the study of metal-bacteria interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Polymer-assisted metal deposition (PAMD): a full-solution strategy for flexible, stretchable, compressible, and wearable metal conductors.

    PubMed

    Yu, You; Yan, Casey; Zheng, Zijian

    2014-08-20

    Metal interconnects, contacts, and electrodes are indispensable elements for most applications of flexible, stretchable, and wearable electronics. Current fabrication methods for these metal conductors are mainly based on conventional microfabrication procedures that have been migrated from Si semiconductor industries, which face significant challenges for organic-based compliant substrates. This Research News highlights a recently developed full-solution processing strategy, polymer-assisted metal deposition (PAMD), which is particularly suitable for the roll-to-roll, low-cost fabrication of high-performance compliant metal conductors (Cu, Ni, Ag, and Au) on a wide variety of organic substrates including plastics, elastomers, papers, and textiles. This paper presents i) the principles of PAMD, and how to use it for making ii) flexible, stretchable, and wearable conductive metal electrodes, iii) patterned metal interconnects, and d) 3D stretchable and compressible metal sponges. A critical perspective on this emerging strategy is also provided. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Metal-oxide-based energetic materials and synthesis thereof

    DOEpatents

    Tillotson, Thomas M. , Simpson; Randall, L [Livermore, CA; Hrubesh, Lawrence W [Pleasanton, CA

    2006-01-17

    A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.

  3. U-based metallic glasses with superior glass forming ability

    NASA Astrophysics Data System (ADS)

    Xu, Hongyang; Ke, Haibo; Huang, Huogen; Zhang, Pengguo; Pu, Zhen; Zhang, Pei; Liu, Tianwei

    2018-02-01

    By using Al as the third and B as the fourth but minor alloying elements for the U66.7Co33.3 basic metallic glass, a series of U-Co-Al(-B) alloys were designed. The quaternary U-Co-Al-B alloys exhibit significantly improved glass-forming ability (GFA) than previously reported U-based metallic glasses. Low fragility (∼24) is found for these new U-based metallic glasses. The improvement in GFA would result from denser atomic packing in the undercooled liquids due to the presence of small B atoms. Some U-Co-Al(-B) glasses showed corrosion resistance comparable to that of U64Co34Al2 glass, known for premium anti-corrosive performance among the unveiled U-based glasses.

  4. Catalyst for hydrotreating carbonaceous liquids

    DOEpatents

    Berg, Lloyd; McCandless, Frank P.; Ramer, Ronald J.

    1982-01-01

    A catalyst for denitrogenating and desulfurating carbonaceous liquid such as solvent refined coal includes catalytic metal oxides impregnated within a porous base of mostly alumina with relatively large pore diameters, surface area and pore volume. The base material includes pore volumes of 0.7-0.85 ml/g, surface areas of 200-350 m.sup.2 /g and pore diameters of 85-200 Angstroms. The catalytic metals impregnated into these base materials include the oxides of Group VI metals, molybdenum and tungsten, and the oxides of Group VIII metals, nickel and cobalt, in various combinations. These catalysts and bases in combination have effectively promoted the removal of chemically combined sulfur and nitrogen within a continuous flowing mixture of carbonaceous liquid and hydrogen gas.

  5. Relations between benthic community structure and metals concentrations in aquatic macroinvertebrates: Clark Fork River, Montana

    USGS Publications Warehouse

    1995-01-01

    We sampled macroinvertebrate communities at six sites on the upper Clark Fork River, Montana, to determine relations between macroinvertebrate community structure and metals in invertebrates and the best benthic community metrics to use for ranking sites based on the relative severity of the effects of metals. Concentrations (μg/g) of six metals in invertebrates were determined: Al (range = 591–4193), As (2.7–34.1), Cd (0.13–8.38), Cu (26–1382), Pb (0.54–67.1), and Zn (212–1665). Concentrations of As, Cd, Cu, Pb, and total metals were significantly correlated with at least one benthic metric. Copper (r = 0.88–0.94) and total metals (r = 0.90–0.97) provided the most highly significant correlations. Based on longitudinal site comparisons of metals in invertebrates, benthic community structure, and differences between proportionally scaled ranks, five benthic metrics provided the best indicators of relative impact: taxa richness, Ephemeroptera-Plecoptera-Trichoptera (EPT) richness, chironomid richness, percentage of the most dominant taxon, and density. The two sites with the highest accumulations of invertebrate metals also demonstrated the greatest relative degree of impact based on these parameters. The most meaningful combinations of metrics indicate that the benthic community at the most upstream site is being severely impacted by metals. Two sites demonstrated little or no negative impact, and three sites demonstrated low or moderate levels of negative impacts, which may be due to a combination of metals and other factors such as organic enrichment. We recommend that benthic community structure and metals in invertebrates collected from riffle habitats be used to determine relative impacts in metals-contaminated river systems, owing to their close relation to metal availability and transfer to higher trophic levels.

  6. Ab initio investigation on hydrogen adsorption capability in Zn and Cu-based metal organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanuwijaya, V. V., E-mail: viny.veronika@gmail.com; Hidayat, N. N., E-mail: avantgarde.vee@gmail.com; Agusta, M. K., E-mail: kemal@fti.itb.ac.id

    2015-09-30

    One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) andmore » LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO{sub 3} sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.« less

  7. Sodium-based hydrides for thermal energy applications

    NASA Astrophysics Data System (ADS)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  8. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon

    PubMed Central

    Girel, Kseniya V.; Panarin, Andrei; Terekhov, Sergei N.

    2018-01-01

    The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS) with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs), and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy. PMID:29883382

  9. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon.

    PubMed

    Bandarenka, Hanna V; Girel, Kseniya V; Zavatski, Sergey A; Panarin, Andrei; Terekhov, Sergei N

    2018-05-21

    The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS) with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs), and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy.

  10. Deformation behavior of a 16-8-2 GTA weld as influenced by its solidification substructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foulds, J.R.; Moteff, J.; Sikka, V.K.

    1983-07-01

    Weldment sections from formed and welded type 316 stainless steel pipe are characterized with respect to some time-independent (tensile) and time-dependent (creep) mechanical properties at temperatures between 25/sup 0/C and 649/sup 0/C. The GTA weldment, welded with 16-8-2 filler metal, is sectioned from pipe in the formed + welded + solution annealed + straightened condition, as well as in the same condition with an additional re-solution treatment. Detailed room temperature microhardness measurements on these sections before and after reannealing enable a determination of the different recovery characteristics of weld and base metal. The observed stable weld metal solidification dislocation substructuremore » in comparison with the base metal random dislocation structure, in fact, adequately explains weld/base metal elevated temperature mechanical behavior differences from this recovery characteristic standpoint. The weld metal substructure is the only parameter common to the variety of austenitic stainless steel welds exhibiting the consistent parent/weld metal deformation behavior differences described. As such, it must be considered the key to understanding weldment mechanical behavior.« less

  11. Microstructural Evolution of the Interface Between Pure Titanium and Low Melting Point Zr-Ti-Ni(Cu) Filler Metals

    NASA Astrophysics Data System (ADS)

    Lee, Dongmyoung; Sun, Juhyun; Kang, Donghan; Shin, Seungyoung; Hong, Juhwa

    2014-12-01

    Low melting point Zr-based filler metals with melting point depressants (MPDs) such as Cu and Ni elements are used for titanium brazing. However, the phase transition of the filler metals in the titanium joint needs to be explained, since the main element of Zr in the filler metals differs from that of the parent titanium alloys. In addition, since the MPDs easily form brittle intermetallics, that deteriorate joint properties, the phase evolution they cause needs to be studied. Zr-based filler metals having Cu content from 0 to 12 at. pct and Ni content from 12 to 24 at. pct with a melting temperature range of 1062 K to 1082 K (789 °C to 809 °C) were wetting-tested on a titanium plate to investigate the phase transformation and evolution at the interface between the titanium plate and the filler metals. In the interface, the alloys system with Zr, Zr2Ni, and (Ti,Zr)2Ni phases was easily changed to a Ti-based alloy system with Ti, Ti2Ni, and (Ti,Zr)2Ni phases, by the local melting of parent titanium. The dissolution depths of the parent metal were increased with increasing Ni content in the filler metals because Ni has a faster diffusion rate than Cu. Instead, slow diffusion of Cu into titanium substrate leads to the accumulation of Cu at the molten zone of the interface, which could form undesirable Ti x Cu y intermetallics. This study confirmed that Zr-based filler metals are compatible with the parent titanium metal with the minimum content of MPDs.

  12. Theoretical study of surface plasmon resonance sensors based on 2D bimetallic alloy grating

    NASA Astrophysics Data System (ADS)

    Dhibi, Abdelhak; Khemiri, Mehdi; Oumezzine, Mohamed

    2016-11-01

    A surface plasmon resonance (SPR) sensor based on 2D alloy grating with a high performance is proposed. The grating consists of homogeneous alloys of formula MxAg1-x, where M is gold, copper, platinum and palladium. Compared to the SPR sensors based a pure metal, the sensor based on angular interrogation with silver exhibits a sharper (i.e. larger depth-to-width ratio) reflectivity dip, which provides a big detection accuracy, whereas the sensor based on gold exhibits the broadest dips and the highest sensitivity. The detection accuracy of SPR sensor based a metal alloy is enhanced by the increase of silver composition. In addition, the composition of silver which is around 0.8 improves the sensitivity and the quality of SPR sensor of pure metal. Numerical simulations based on rigorous coupled wave analysis (RCWA) show that the sensor based on a metal alloy not only has a high sensitivity and a high detection accuracy, but also exhibits a good linearity and a good quality.

  13. [Analysis of heavy-metal-mediated disease and development of a novel remediation system based on fieldwork and experimental research].

    PubMed

    Yajima, Ichiro; Zou, Cunchao; Li, Xiang; Nakano, Chizuru; Omata, Yasuhiro; Kumasaka, Mayuko Y

    2015-01-01

    Heavy-metal pollution occurs in various environments, including water, air and soil, and has serious effects on human health. Since heavy-metal pollution in drinking water causes various diseases including skin cancer, it has become a global problem worldwide. However, there is limited information on the mechanism of development of heavy-metal-mediated disease. We performed both fieldwork and experimental studies to elucidate the levels of heavy-metal pollution and mechanisms of development of heavy-metal-related disease and to develop a novel remediation system. Our fieldwork in Bangladesh, Vietnam and Malaysia demonstrated that drinking well water in these countries was polluted with high concentrations of several heavy metals including arsenic, barium, iron and manganese. Our experimental studies based on the data from our fieldwork demonstrated that these heavy metals caused skin cancer and hearing loss. Further experimental studies resulted in the development of a novel remediation system with which toxic heavy metals were absorbed from polluted drinking water. Implementation of both fieldwork and experimental studies is important for prediction, prevention and therapy of heavy-metal-mediated diseases.

  14. Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems

    PubMed Central

    2015-01-01

    Conspectus Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed “recognition” and “reactivity”. Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent examples from our laboratory and collaborations in which applications of chemical probes reveal that labile copper contributes to various physiologies. The first example shows that copper is an endogenous regulator of neuronal activity, the second illustrates cellular prioritization of mitochondrial copper homeostasis, and the third identifies the “cuprosome” as a new copper storage compartment in Chlamydomonas reinhardtii green algae. Indeed, recognition- and reactivity-based fluorescent probes have helped to uncover new biological roles for labile transition metals, and the further development of fluorescent probes, including ones with varied Kd values and new reaction triggers and recognition receptors, will continue to reveal exciting and new biological roles for labile transition metals. PMID:26215055

  15. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.

    PubMed

    Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J

    2015-08-18

    Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent examples from our laboratory and collaborations in which applications of chemical probes reveal that labile copper contributes to various physiologies. The first example shows that copper is an endogenous regulator of neuronal activity, the second illustrates cellular prioritization of mitochondrial copper homeostasis, and the third identifies the "cuprosome" as a new copper storage compartment in Chlamydomonas reinhardtii green algae. Indeed, recognition- and reactivity-based fluorescent probes have helped to uncover new biological roles for labile transition metals, and the further development of fluorescent probes, including ones with varied Kd values and new reaction triggers and recognition receptors, will continue to reveal exciting and new biological roles for labile transition metals.

  16. Ancient Heavy Metal Contamination in Soils as a Driver of Tolerant Anthyllis vulneraria Rhizobial Communities

    PubMed Central

    Mohamad, Roba; Maynaud, Geraldine; Le Quéré, Antoine; Vidal, Céline; Klonowska, Agnieszka; Yashiro, Erika; Cleyet-Marel, Jean-Claude

    2016-01-01

    ABSTRACT Anthyllis vulneraria is a legume associated with nitrogen-fixing rhizobia that together offer an adapted biological material for mine-soil phytostabilization by limiting metal pollution. To find rhizobia associated with Anthyllis at a given site, we evaluated the genetic and phenotypic properties of a collection of 137 rhizobia recovered from soils presenting contrasting metal levels. Zn-Pb mine soils largely contained metal-tolerant rhizobia belonging to Mesorhizobium metallidurans or to another sister metal-tolerant species. All of the metal-tolerant isolates harbored the cadA marker gene (encoding a metal-efflux PIB-type ATPase transporter). In contrast, metal-sensitive strains were taxonomically distinct from metal-tolerant populations and consisted of new Mesorhizobium genospecies. Based on the symbiotic nodA marker, the populations comprise two symbiovar assemblages (potentially related to Anthyllis or Lotus host preferences) according to soil geographic locations but independently of metal content. Multivariate analysis showed that soil Pb and Cd concentrations differentially impacted the rhizobial communities and that a rhizobial community found in one geographically distant site was highly divergent from the others. In conclusion, heavy metal levels in soils drive the taxonomic composition of Anthyllis-associated rhizobial populations according to their metal-tolerance phenotype but not their symbiotic nodA diversity. In addition to heavy metals, local soil physicochemical and topoclimatic conditions also impact the rhizobial beta diversity. Mesorhizobium communities were locally adapted and site specific, and their use is recommended for the success of phytostabilization strategies based on Mesorhizobium-legume vegetation. IMPORTANCE Phytostabilization of toxic mine spoils limits heavy metal dispersion and environmental pollution by establishing a sustainable plant cover. This eco-friendly method is facilitated by the use of selected and adapted cover crop legumes living in symbiosis with rhizobia that can stimulate plant growth naturally through biological nitrogen fixation. We studied microsymbiont partners of a metal-tolerant legume, Anthyllis vulneraria, which is tolerant to very highly metal-polluted soils in mining and nonmining sites. Site-specific rhizobial communities were linked to taxonomic composition and metal tolerance capacity. The rhizobial species Mesorhizobium metallidurans was dominant in all Zn-Pb mines but one. It was not detected in unpolluted sites where other distinct Mesorhizobium species occur. Given the different soil conditions at the respective mining sites, including their heavy-metal contamination, revegetation strategies based on rhizobia adapting to local conditions are more likely to succeed over the long term compared to strategies based on introducing less-well-adapted strains. PMID:27793823

  17. Comprehensive process for the recovery of value and critical materials from electronic waste

    DOE PAGES

    Diaz, Luis A.; Lister, Tedd E.; Parkman, Jacob A.; ...

    2016-04-08

    The development of technologies that contribute to the proper disposal and treatment of electronic waste is not just an environmental need, but an opportunity for the recovery and recycle of valuable metals and critical materials. Value elements in electronic waste include gold, palladium, silver, copper, nickel, and rare earth elements (RE). Here, we present the development of a process that enables efficient recycling of metals from scrap mobile electronics. An electro recycling (ER) process, based on the regeneration of Fe 3+ as a weak oxidizer, is studied for the selective recovery of base metals while leaving precious metals for separatemore » extraction at reduced chemical demand. A separate process recovers rare earth oxides from magnets in electronics. Furthermore, recovery and extraction efficiencies ca. 90 % were obtained for the extraction of base metals from the non-ferromagnetic fraction in the two different solution matrices tested (H 2SO 4, and HCl). The effect of the pre-extraction of base metals in the increase of precious metals extraction efficiency was verified. On the other hand, the extraction of rare earths from the ferromagnetic fraction, performed by means of anaerobic extraction in acid media, was assessed for the selective recovery of rare earths. We developed a comprehensive flow sheet to process electronic waste to value products.« less

  18. Preparation and magnetic properties of phthalocyanine-based carbon materials containing transition metals

    NASA Astrophysics Data System (ADS)

    Honda, Z.; Sato, S.; Hagiwara, M.; Kida, T.; Sakai, M.; Fukuda, T.; Kamata, N.

    2016-07-01

    A simple method for the preparation of bulk quantities of magnetic carbon materials, which contain uniformly dispersed transition metals (M = Fe, Co, Ni, and Cu) as the magnetic components, is presented. By using highly chlorinated metal phthalocyanine as the building block and potassium as the coupling reagent, phthalocyanine-based carbon materials (PBCMs) containing transition metals were obtained. Our experiments demonstrate the structure of these PBCMs consists of transition metals embedded in graphitic carbon that includes a square planar MN4 magnetic core and the Fe and Co-PBCM possess spontaneous magnetization at room temperature. In addition, carbon-coated transition metal particles were obtained by the Wurtz-type reaction with excess amount of potassium coupling agent. The large transition metal surface area and magnetization of these M-PBCMs are useful for spintronic and catalytic applications.

  19. Formation of metal clusters in halloysite clay nanotubes

    NASA Astrophysics Data System (ADS)

    Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; Ivanov, Evgenii V.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A.; Lvov, Yuri M.

    2017-12-01

    We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length 1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube's central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube's wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.

  20. Formation of metal clusters in halloysite clay nanotubes.

    PubMed

    Vinokurov, Vladimir A; Stavitskaya, Anna V; Chudakov, Yaroslav A; Ivanov, Evgenii V; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A; Lvov, Yuri M

    2017-01-01

    We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c .50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube's central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube's wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.

  1. Microgravity metal processing: from undercooled liquids to bulk metallic glasses

    PubMed Central

    Hofmann, Douglas C; Roberts, Scott N

    2015-01-01

    Bulk metallic glasses (BMGs) are a novel class of metal alloys that are poised for widespread commercialization. Over 30 years of NASA and ESA (as well as other space agency) funding for both ground-based and microgravity experiments has resulted in fundamental science data that have enabled commercial production. This review focuses on the history of microgravity BMG research, which includes experiments on the space shuttle, the ISS, ground-based experiments, commercial fabrication and currently funded efforts. PMID:28725709

  2. Copper-phthalocyanine based metal-organic interfaces: the effect of fluorination, the substrate, and its symmetry.

    PubMed

    de Oteyza, D G; El-Sayed, A; Garcia-Lastra, J M; Goiri, E; Krauss, T N; Turak, A; Barrena, E; Dosch, H; Zegenhagen, J; Rubio, A; Wakayama, Y; Ortega, J E

    2010-12-07

    Metal-organic interfaces based on copper-phthalocyanine monolayers are studied in dependence of the metal substrate (Au versus Cu), of its symmetry [hexagonal (111) surfaces versus fourfold (100) surfaces], as well as of the donor or acceptor semiconducting character associated with the nonfluorinated or perfluorinated molecules, respectively. Comparison of the properties of these systematically varied metal-organic interfaces provides new insight into the effect of each of the previously mentioned parameters on the molecule-substrate interactions.

  3. A comparison of the marginal adaptation of cathode-arc vapor-deposited titanium and cast base metal copings

    PubMed Central

    Wu, JC; Lai, LC; Sheets, CG; Earthman, J; Newcomb, R

    2011-01-01

    Statement of problem A new fabrication process has been developed where a titanium coping, which has a gold colored titanium nitride outer layer can be reliably fused to porcelain, but the marginal adaptation characteristics are still undetermined. Purpose The primary purpose of this study is to compare the rate of Clinically Acceptable Marginal Adaptation (CAMA-defined as a marginal gap mean ≤60 μm) of cathode-arc vapor-deposited titanium with the CAMA rate for the cast base metal copings. In addition, the study will evaluate the marginal gap scores themselves to assess their mean difference between the two study groups. Finally, the study will present two analyses of group differences in variability to support the contention that the titanium copings perform more consistently than their base metal counterparts. Material and methods Thirty-seven cathode-arc vapor-deposited titanium copings and 40 cast base metal copings were evaluated by computer-based image analysis using an optical microscope. The conventional lost wax technique was used to fabricate the 40 cast base metal copings that were 0.3 mm thick. The titanium copings were 0.3 mm thick and were formed by a collection of atomic titanium vapor onto a refractory die duplicate in a high vacuum chamber. Fifty vertical marginal gap measurements were collected from each of the 77 copings and the mean of these measurements was computed to form a gap score for each coping. Next, the gap score was compared to the 60 μm criterion to classify each coping as to whether it did or did not achieve Clinically Acceptable Marginal Adaption (CAMA). A comparison of the CAMA rates for each type of coping was used to address the primary purpose of this study. In addition, the gap scores themselves were used to test the (one-sided) hypothesis that the mean of the titanium gap scores is smaller than the mean of the base metal gap scores. Finally, the assertion that the titanium copings provide more consistency in their marginal gap performance was tested in two ways. First, the means of the titanium gap scores were compared to the means of the marginal gap scores for the base metal copings. Second, the standard deviations of the marginal gap scores for the titanium copings were compared with those for the base metal copings. Results Statistical comparison of the CAMA rates for each type of coping showed that the CAMA criterion was achieved by 24 of the 37 (64.86%) titanium copings, while 19 of the 40 (47.50%) base metal copings met this same standard. Noninferiority of the titanium copings was established by the 2-sided 90% Confidence Interval for the 17.36% difference in these rates (−0.95%, 35.68%) and noninferiority of titanium coping adaption was also demonstrated by the Wald Test rejection of the tentative hypothesis of inferiority (Z-score=1.9191, one-sided p=0.0275). The mean of the vertical marginal gap scores for the titanium copings (56.9025) was significantly less than the mean of the marginal gap scores for the base metal copings (71.9041) as shown by the Satterthwaite t-score=−2.29 (one-sided p=0.0126). To compare the adaption consistency of the titanium copings to the base metal counterparts the difference between the variance of the marginal gap scores for the titanium copings (594.843) and the variance of the marginal gap scores for the base metal copings (1510.901) was found to be statistically significant (Folded-F test score=2.63, p=0.0042). Our second method for showing that the titanium copings performed more consistently than the base metal comparisons was to use a one-sided test to show that the mean of the standard deviations of the vertical gap measurements for each titanium coping (29.9835) was significantly lower than the mean of the standard deviations of the vertical gap measurements for each base metal coping (36.1332). This test produced a Satterthwaite’s t-score of −2.24 (one-sided p=0.0141), indicating the titanium adaption was significantly more consistent. Conclusions Cathode-arc vapor deposited titanium copings exhibited a higher rate of Clinically Acceptable Marginal Adaption (CAMA) than the comparison base metal copings. Comparison of the coping marginal adaption score variances and direct assessment of the coping marginal adaption scores provided additional evidence that the titanium copings performed better and with more consistency than their base metal counterparts. PMID:21640242

  4. Suppression of dendritic lithium growth in lithium metal-based batteries.

    PubMed

    Li, Linlin; Li, Siyuan; Lu, Yingying

    2018-06-19

    Lithium metal-based batteries offer promising prospects as alternatives to today's lithium-ion batteries, due to their ultra-high energy density. Unfortunately, the application of lithium metal is full of challenges and has puzzled researchers for more than 40 years. In this feature article, we describe the history of the development of lithium metal batteries and their existing key challenges, which include non-uniform electrodeposition, volume expansion, high reactivity of the lithium metal/unstable solid electrolyte interphase (SEI), and the shuttling of active cathode materials. Then, we focus on the growth mechanisms of uneven lithium electrodeposition and extend the discussion to the approaches to inhibit lithium dendrites. Finally, we discuss future directions that are expected to drive progress in the development of lithium metal batteries.

  5. Occurrence of cohesion of metals during combined plastic deformation

    NASA Technical Reports Server (NTRS)

    Aynbinder, S. G.; Klokova, E. F.

    1980-01-01

    Experiments were conducted to study the cohesion of metals with surface films of varying thickness and hardness. It was established that the deformation necessary for the occurrence of cohesion is determined by the correlation of mechanical properties of the films and the base metal. The greater the relative hardness of the film the lower the deformation necessary for the occurrence of cohesion. The films are as plastic as the base metal prevent cohesion, since in this case it is impossible for sections of metal to appear that are free of contaminants. The physical perculiarities of metals that determine their capability for coalescence under conditions of dry friction are the relative hardness and plasticity of the oxide films formed on their surface under atmospheric conditions.

  6. Theoretical and experimental research on laser-beam homogenization based on metal gauze

    NASA Astrophysics Data System (ADS)

    Liu, Libao; Zhang, Shanshan; Wang, Ling; Zhang, Yanchao; Tian, Zhaoshuo

    2018-03-01

    Method of homogenization of CO2 laser heating by means of metal gauze is researched theoretically and experimentally. Distribution of light-field of expanded beam passing through metal gauze was numerically calculated with diffractive optical theory and the conclusion is that method is effective, with comparing the results to the situation without metal gauze. Experimentally, using the 30W DC discharge laser as source and enlarging beam by concave lens, with and without metal gauze, beam intensity distributions in thermal paper were compared, meanwhile the experiments based on thermal imager were performed. The experimental result was compatible with theoretical calculation, and all these show that the homogeneity of CO2 laser heating could be enhanced by metal gauze.

  7. Structural parameter study on polymer-based ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Mizuno, Yosuke; Nakamura, Kentaro

    2017-11-01

    Our previous study has shown that traveling-wave rotary ultrasonic motors using polymer-based vibrators can work in the same way as conventional motors with metal-based vibrators. It is feasible to enhance the performance, particularly output torques, of polymer-based motors by adjusting several key dimensions of their vibrators. In this study, poly phenylene sulfide, a functional polymer exhibiting low attenuation at ultrasonic frequency, is selected as the vibrating body, which is activated with a piezoelectric ceramic element bonded on its back surface. The optimal thicknesses of the polymer-based motors are higher than those of metal-based motors. When the same voltages were applied, the maximum torques and output powers available with the polymer-based motors were lower than the values of the metal-based motors with the same structures. The reasons for the lower torque were explained on the basis of vibration modes. First, the force factors of the polymer-based vibrators are lower than those of metal-based vibrators owing to the great difference in the mechanical constants between polymers and piezoelectric ceramics. Subsequently, though the force factors of polymer-based vibrators can be slightly enhanced by increasing their thicknesses, the unavoidable radial vibrations become higher and cause undesirable friction loss, which reduces the output torques. Though the polymer-based motors have rotation speeds comparable to those of metal-based motors, their output power are lower due to the low electromechanical coupling factors of the polymer-based vibrators.

  8. Progress of Chiral Schiff Bases with C1 Symmetry in Metal-Catalyzed Asymmetric Reactions.

    PubMed

    Hayashi, Masahiko

    2016-12-01

    In this Personal Account, various chiral Schiff base-metal-catalyzed enantioselective organic reactions are reported; the Schiff bases used were O,N,O- as well as N,N,P-tridentate ligands and N,N-bidentate ligands having C 1 symmetry. In particular, the enantioselective addition of trimethylsilyl cyanide, dialkylzinc, and organozinc halides to aldehydes, enantioselective 1,4-addition of dialkylzinc to cyclic and acyclic enones, and asymmetric allylic oxidation are reported. Typically, ketimine-type Schiff base-metal complexes exhibited higher reactivity and enantioselectivity compared with the corresponding aldimine-type Schiff base-metal complexes. Notably, remarkable ligand acceleration was observed for all reactions. The obtained products can be used as key intermediates for optically active natural products and pharmaceuticals. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is... covered with a base metal (such as nickel), which is covered with a thin wash of gold, unless there is a disclosure that the primary gold coating is covered with a base metal, which is gold washed. (7) Use of the...

  10. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is... covered with a base metal (such as nickel), which is covered with a thin wash of gold, unless there is a disclosure that the primary gold coating is covered with a base metal, which is gold washed. (7) Use of the...

  11. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is... covered with a base metal (such as nickel), which is covered with a thin wash of gold, unless there is a disclosure that the primary gold coating is covered with a base metal, which is gold washed. (7) Use of the...

  12. Systematic Identification of Promoters for Methane Oxidation Catalysts Using Size- and Composition-Controlled Pd-Based Bimetallic Nanocrystals.

    PubMed

    Willis, Joshua J; Goodman, Emmett D; Wu, Liheng; Riscoe, Andrew R; Martins, Pedro; Tassone, Christopher J; Cargnello, Matteo

    2017-08-30

    Promoters enhance the performance of catalytic active phases by increasing rates, stability, and/or selectivity. The process of identifying promoters is in most cases empirical and relies on testing a broad range of catalysts prepared with the random deposition of active and promoter phases, typically with no fine control over their localization. This issue is particularly relevant in supported bimetallic systems, where two metals are codeposited onto high-surface area materials. We here report the use of colloidal bimetallic nanocrystals to produce catalysts where the active and promoter phases are colocalized to a fine extent. This strategy enables a systematic approach to study the promotional effects of several transition metals on palladium catalysts for methane oxidation. In order to achieve these goals, we demonstrate a single synthetic protocol to obtain uniform palladium-based bimetallic nanocrystals (PdM, M = V, Mn, Fe, Co, Ni, Zn, Sn, and potentially extendable to other metal combinations) with a wide variety of compositions and sizes based on high-temperature thermal decomposition of readily available precursors. Once the nanocrystals are supported onto oxide materials, thermal treatments in air cause segregation of the base metal oxide phase in close proximity to the Pd phase. We demonstrate that some metals (Fe, Co, and Sn) inhibit the sintering of the active Pd metal phase, while others (Ni and Zn) increase its intrinsic activity compared to a monometallic Pd catalyst. This procedure can be generalized to systematically investigate the promotional effects of metal and metal oxide phases for a variety of active metal-promoter combinations and catalytic reactions.

  13. Metal-based nanoparticle interactions with the nervous system: the challenge of brain entry and the risk of retention in the organism.

    PubMed

    Yokel, Robert; Grulke, Eric; MacPhail, Robert

    2013-01-01

    This review of metal-based nanoparticles focuses on factors influencing their distribution into the nervous system, evidence they enter brain parenchyma, and nervous system responses. Gold is emphasized as a model metal-based nanoparticle and for risk assessment in the companion review. The anatomy and physiology of the nervous system, basics of colloid chemistry, and environmental factors that influence what cells see are reviewed to provide background on the biological, physical-chemical, and internal milieu factors that influence nervous system nanoparticle uptake. The results of literature searches reveal little nanoparticle research included the nervous system, which about equally involved in vitro and in vivo methods, and very few human studies. The routes of uptake into the nervous system and mechanisms of nanoparticle uptake by cells are presented with examples. Brain nanoparticle uptake inversely correlates with size. The influence of shape has not been reported. Surface charge has not been clearly shown to affect flux across the blood-brain barrier. There is very little evidence for metal-based nanoparticle distribution into brain parenchyma. Metal-based nanoparticle disruption of the blood-brain barrier and adverse brain changes have been shown, and are more pronounced for spheres than rods. Study concentrations need to be put in exposure contexts. Work with dorsal root ganglion cells and brain cells in vitro show the potential for metal-based nanoparticles to produce toxicity. Interpretation of these results must consider the ability of nanoparticles to distribute across the barriers protecting the nervous system. Effects of the persistence of poorly soluble metal-based nanoparticles are of particular concern. Copyright © 2013 Wiley Periodicals, Inc.

  14. The Microstructural Evolution of Vacuum Brazed 1Cr18Ni9Ti Using Various Filler Metals

    PubMed Central

    Chen, Yunxia; Cui, Haichao; Lu, Binfeng; Lu, Fenggui

    2017-01-01

    The microstructures and weldability of a brazed joint of 1Cr18Ni9Ti austenitic stainless steel with BNi-2, BNi82CrSiBFe and BMn50NiCuCrCo filler metals in vacuum were investigated. It can be observed that an interdiffusion region existed between the filler metal and the base metal for the brazed joint of Ni-based filler metals. The width of the interdiffusion region was about 10 μm, and the microstructure of the brazed joint of BNi-2 filler metal was dense and free of obvious defects. In the case of the brazed joint of BMn50NiCuCrCo filler metal, there were pits, pores and crack defects in the brazing joint due to insufficient wettability of the filler metal. Crack defects can also be observed in the brazed joint of BNi82CrSiBFe filler metal. Compared with BMn50NiCuCrCo and BNi82CrSiBFe filler metals, BNi-2 filler metal is the best material for 1Cr18Ni9Ti austenitic stainless steel vacuum brazing because of its distinct weldability. PMID:28772745

  15. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    NASA Astrophysics Data System (ADS)

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-06-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products.

  16. Does the linear conversion between calcium infrared triplet and metallicity of globular clusters in early-type galaxies hold in the whole range of metallicity?

    NASA Astrophysics Data System (ADS)

    Chung, Chul; Yoon, Suk-Jin; Lee, Young-Wook; Lee, Sang-Yoon

    2015-01-01

    The calcium infrared triplet (CaT) is one of the prominent absorption features in the infrared wavelength regime. Recently, these absorption features have been getting attention in the prediction of metallicity of globular clusters (GCs) in early-type galaxies (ETGs) because of its strong sensitivity to the metallicity and calcium abundance of a star. However, based on our population synthesis model for CaT, we find that measuring metallicity directly from CaT is inaccurate because the formation mechanism of Ca II ionised line is very inefficient in the cool stars which are abundant in metal-rich stellar populations. This characteristics of Ca II ionised line make the CaT-metallicity relation to converge around 8 angstrom in the metal-rich regime. This is why the metallicity of simple stellar populations, such as GCs, greater than [Fe/H]~-0.5 is unreliable when the linear conversion between CaT and metallicity is applied to derive metallicity. In addition, we have successfully simulated the metal-rich CaT peaks found in GCs in ETGs by using the nonlinear CaT-metallicity relation in the metal-rich regime. This can also explain the difference between color and CaT distributions of GCs in various ETGs. Based on these results, we suggest that CaT is not a good metallicity indicator for the metal-rich stellar populations.

  17. Transition-Metal-Free Alkynylation of Aryl Chlorides

    PubMed Central

    Truong, Thanh; Daugulis, Olafs

    2011-01-01

    Two sets of conditions have been developed for a base-mediated, transition-metal-free alkynylation of aryl chlorides that proceeds via benzyne intermediates. The first set of conditions involves the use of TMPLi base in a pentane/THF mixture at 25 °C. The second set involves use of a metal alkoxide base in dioxane at elevated temperature. Reasonable functional group tolerance has been observed. Fluoro, trifluoromethyl, silyl, cyano, and alcohol functionalities are compatible with the reaction conditions. PMID:21786825

  18. Systems and Methods for Implementing Bulk Metallic Glass-Based Strain Wave Gears and Strain Wave Gear Components

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Wilcox, Brian (Inventor)

    2016-01-01

    Bulk metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a strain wave gear includes: a wave generator; a flexspline that itself includes a first set of gear teeth; and a circular spline that itself includes a second set of gear teeth; where at least one of the wave generator, the flexspline, and the circular spline, includes a bulk metallic glass-based material.

  19. Metal hydrides as electrode/catalyst materials for oxygen evolution/reduction in electrochemical devices

    DOEpatents

    Bugga, Ratnakumar V.; Halpert, Gerald; Fultz, Brent; Witham, Charles K.; Bowman, Robert C.; Hightower, Adrian

    1997-01-01

    An at least ternary metal alloy of the formula, AB.sub.(5-Y)X(.sub.y), is claimed. In this formula, A is selected from the rare earth elements, B is selected from the elements of groups 8, 9, and 10 of the periodic table of the elements, and X includes at least one of the following: antimony, arsenic, and bismuth. Ternary or higher-order substitutions, to the base AB.sub.5 alloys, that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  20. Characterization and Strain-Hardening Behavior of Friction Stir-Welded Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sharma, Gaurav; Dwivedi, Dheerendra Kumar; Jain, Pramod Kumar

    2017-12-01

    In this study, friction stir-welded joint of 3-mm-thick plates of 409 ferritic stainless steel (FSS) was characterized in light of microstructure, x-ray diffraction analysis, hardness, tensile strength, ductility, corrosion and work hardening properties. The FSW joint made of ferritic stainless steel comprises of three distinct regions including the base metal. In stir zone highly refined ferrite grains with martensite and some carbide precipitates at the grain boundaries were observed. X-ray diffraction analysis also revealed precipitation of Cr23C6 and martensite formation in heat-affected zone and stir zone. In tensile testing of the transverse weld samples, the failure eventuated within the gauge length of the specimen from the base metal region having tensile properties overmatched to the as-received base metal. The tensile strength and elongation of the longitudinal (all weld) sample were found to be 1014 MPa and 9.47%, respectively. However, in potentiodynamic polarization test, the corrosion current density of the stir zone was highest among all the three zones. The strain-hardening exponent for base metal, transverse and longitudinal (all weld) weld samples was calculated using various equations. Both the transverse and longitudinal weld samples exhibited higher strain-hardening exponents as compared to the as-received base metal. In Kocks-Mecking plots for the base metal and weld samples at least two stages of strain hardening were observed.

  1. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikel, J.M.; Parker, D.M.

    1998-06-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility wasmore » compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC.« less

  2. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites.

    PubMed

    Dusoe, Keith J; Vijayan, Sriram; Bissell, Thomas R; Chen, Jie; Morley, Jack E; Valencia, Leopolodo; Dongare, Avinash M; Aindow, Mark; Lee, Seok-Woo

    2017-01-09

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu 5 Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.

  3. Core-protective half-metallicity in trilayer graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Jeon, Gi Wan; Lee, Kyu Won; Lee, Cheol Eui

    2017-07-01

    Half-metals, playing an important role in spintronics, can be described as materials that enable fully spin-polarized electrical current. Taking place in graphene-based materials, half-metallicity has been shown in zigzag-edged graphene nanoribbons (ZGNRs) under an electric field. Localized electron states on the edge carbons are a key to enabling half-metallicity in ZGNRs. Thus, modification of the localized electron states is instrumental to the carbon-based spintronics. Our simple model shows that in a trilayer ZGNRs (triZGNRs) only the middle layer may become half-metallic leaving the outer layers insulating in an electric field, as confirmed by our density functional theory (DFT) calculations. Due to the different circumstances of the edge carbons, the electron energies at the edge carbons are different near the Fermi level, leading to a layer-selective half-metallicity. We believe that triZGNRs can be the tiniest electric cable (nanocable) form and can open a route to graphene-based spintronics applications.

  4. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VIImore » of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.« less

  5. Synthesis, crystal structure, fluorescence and electrochemical studies of a new tridentate Schiff base ligand and its nickel(II) and palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad

    2014-07-01

    A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1 M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1 M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s-1 scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, 1H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction.

  6. Polyamorphism in Yb-based metallic glass induced by pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Liangliang; Luo, Qiang; Li, Renfeng

    2017-04-25

    The Yb 62.5Zn 15Mg 17.5Cu 5 metallic glass is investigated using synchrotron x-ray total scattering method up to 38.4 GPa. The polyamorphic transformation from low density to high density with a transition region between 14.1 and 25.2 GPa is observed, accompanying with a volume collapse reflected by a discontinuousness of isothermal bulk modulus. This collapse is caused by that distortional icosahedron short range order precedes to perfect icosahedron, which might link to Yb 4f electron delocalization upon compression, and match the result of in situ electrical resistance measurement under high pressure conditions. Furthermore, this discovery in Yb-based metallic glass, combinedmore » with the previous reports on other metallic glass systems, demonstrates that pressure induced polyamorphism is the general behavior for typical lanthanide based metallic glasses.« less

  7. Recovery of Precious and Base Metals from Waste Printed Circuit Boards Using a Sequential Leaching Procedure

    NASA Astrophysics Data System (ADS)

    Batnasan, Altansukh; Haga, Kazutoshi; Shibayama, Atsushi

    2018-02-01

    This paper considers the issue of recycling of waste printed circuit boards (WPCBs) containing precious and base metals in appreciable amounts. High-pressure oxidative leaching (HPOL) with dilute sulfuric acid resulted in removal of a significant amount of base metals from a WPCB ash sample obtained by incineration at 800°C. The parameters investigated in the precious metal leaching from WPCB residue after HPOL included the sulfuric acid concentration, thiourea concentration, oxidant concentration, leaching temperature, and leaching time. Recovery of gold, silver, and palladium of 100%, 81%, and 13% from the WPCB residue sample was achieved by thiourea leaching under optimized conditions. The results show that the efficiency of precious metal dissolution from the WPCB sample using thiourea solution depended strongly on the concentration of both thiourea and oxidant.

  8. Recovery of Precious and Base Metals from Waste Printed Circuit Boards Using a Sequential Leaching Procedure

    NASA Astrophysics Data System (ADS)

    Batnasan, Altansukh; Haga, Kazutoshi; Shibayama, Atsushi

    2017-12-01

    This paper considers the issue of recycling of waste printed circuit boards (WPCBs) containing precious and base metals in appreciable amounts. High-pressure oxidative leaching (HPOL) with dilute sulfuric acid resulted in removal of a significant amount of base metals from a WPCB ash sample obtained by incineration at 800°C. The parameters investigated in the precious metal leaching from WPCB residue after HPOL included the sulfuric acid concentration, thiourea concentration, oxidant concentration, leaching temperature, and leaching time. Recovery of gold, silver, and palladium of 100%, 81%, and 13% from the WPCB residue sample was achieved by thiourea leaching under optimized conditions. The results show that the efficiency of precious metal dissolution from the WPCB sample using thiourea solution depended strongly on the concentration of both thiourea and oxidant.

  9. LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bugga, R.V.; Fultz, B.; Bowman, R.

    1999-03-30

    An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with themore » predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Ruiguo; Mishra, Kuber; Li, Xiaolin

    Rechargeable batteries based upon sodium (Na+) cations are at the core of many new battery chemistries beyond Li-ion batteries. Rather than using carbon or alloy-based anodes, the direct utilization of solid sodium metal as an anode would be highly advantageous, but its use has been highly problematic due to its high reactivity. In this work, however, it is demonstrated that, by tailoring the electrolyte formulation, solid Na metal can be electrochemically plated/stripped at ambient temperature with high efficiency (> 99%) on both copper and inexpensive aluminum current collectors thereby enabling a shift in focus to new battery chemical couples basedmore » upon Na metal operating at ambient temperature. These highly concentrated electrolytes has enabled stable cycling of Na metal batteries based on a Na metal anode and Na3V2(PO4)3 cathode at high rates with very high efficiency.« less

  11. LaNi.sub.5 is-based metal hydride electrode in Ni-MH rechargeable cells

    DOEpatents

    Bugga, Ratnakumar V.; Fultz, Brent; Bowman, Robert; Surampudi, Subra Rao; Witham, Charles K.; Hightower, Adrian

    1999-01-01

    An at least ternary metal alloy of the formula AB.sub.(Z-Y) X.sub.(Y) is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB.sub.5 alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  12. LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells

    DOEpatents

    Bugga, R.V.; Fultz, B.; Bowman, R.; Surampudi, S.R.; Witham, C.K.; Hightower, A.

    1999-03-30

    An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.

  13. METAL SPECIATION IN SOIL, SEDIMENT, AND WATER SYSTEMS VIA SYNCHROTRON RADIATION RESEARCH

    EPA Science Inventory

    Metal contaminated environmental systems (soils, sediments, and water) have challenged researchers for many years. Traditional methods of analysis have employed extraction methods to determine total metal content and define risk based on the premise that as metal concentration in...

  14. Hydrogen-permeable composite metal membrane and uses thereof

    DOEpatents

    Edlund, D.J.; Friesen, D.T.

    1993-06-08

    Various hydrogen production and hydrogen sulfide decomposition processes are disclosed that utilize composite metal membranes that contain an intermetallic diffusion barrier separating a hydrogen-permeable base metal and a hydrogen-permeable coating metal. The barrier is a thermally stable inorganic proton conductor.

  15. Process for casting hard-faced, lightweight camshafts and other cylindrical products

    DOEpatents

    Hansen, Jeffrey S.; Turner, Paul C.; Argetsinger, Edward R.; Wilson, Rick D.

    1996-01-01

    A process for casting a hard-faced cylindrical product such as an automobile camshaft includes the steps of: (a) preparing a composition formed from a molten base metal and an additive in particle form and having a hardness value greater than the hardness value of the base metal; (b) introducing the composition into a flask containing a meltable pattern of a cylindrical product such as an automobile camshaft to be manufactured and encased in sand to allow the composition to melt the pattern and assume the shape of the pattern within the sand; and (c) rotating the flask containing the pattern about the longitudinal axes of both the flask and the pattern as the molten base metal containing the additive in particle form is introduced into the flask to cause particles of the additive entrained in the molten base metal to migrate by centrifugal action to the radial extremities of the pattern and thereby provide a cylindrical product having a hardness value greater at it's radial extremities than at its center when the molten base metal solidifies.

  16. Transition Metal Intercalators as Anticancer Agents—Recent Advances

    PubMed Central

    Deo, Krishant M.; Pages, Benjamin J.; Ang, Dale L.; Gordon, Christopher P.; Aldrich-Wright, Janice R.

    2016-01-01

    The diverse anticancer utility of cisplatin has stimulated significant interest in the development of additional platinum-based therapies, resulting in several analogues receiving clinical approval worldwide. However, due to structural and mechanistic similarities, the effectiveness of platinum-based therapies is countered by severe side-effects, narrow spectrum of activity and the development of resistance. Nonetheless, metal complexes offer unique characteristics and exceptional versatility, with the ability to alter their pharmacology through facile modifications of geometry and coordination number. This has prompted the search for metal-based complexes with distinctly different structural motifs and non-covalent modes of binding with a primary aim of circumventing current clinical limitations. This review discusses recent advances in platinum and other transition metal-based complexes with mechanisms of action involving intercalation. This mode of DNA binding is distinct from cisplatin and its derivatives. The metals focused on in this review include Pt, Ru and Cu along with examples of Au, Ni, Zn and Fe complexes; these complexes are capable of DNA intercalation and are highly biologically active. PMID:27809241

  17. Directionally solidified article with weld repair

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Snyder, John H. (Inventor); Borne, Bruce L. (Inventor)

    2003-01-01

    A directionally solidified nickel-base superalloy article has a defect therein extending parallel to the solidification direction. The article is repaired by removing any foreign matter present in the defect, and then heating the article to a repair temperature of from about 60 to about 98 percent of the solidus temperature of the base material in a chamber containing a protective gas that inhibits oxidation of the base material. The defect is filled with a filler metal while maintaining the article at the repair temperature. The filling is accomplished by providing a source of the filler metal of substantially the same composition as the base material of the directionally solidified article, and melting the filler metal into the defect progressively while moving the source of the filler metal relative to the article in a direction parallel to the solidification direction. Optionally, additional artificial heat extraction is accomplished in a heat-flow direction that is within about 45 degrees of the solidification direction, as the filler metal solidifies within the defect. The article may thereafter be heat treated.

  18. Weld repair of directionally solidified articles

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Snyder, John H. (Inventor); Borne, Bruce L. (Inventor)

    2002-01-01

    A directionally solidified nickel-base superalloy article has a defect therein extending parallel to the solidification direction. The article is repaired by removing any foreign matter present in the defect, and then heating the article to a repair temperature of from about 60 to about 98 percent of the solidus temperature of the base material in a chamber containing a protective gas that inhibits oxidation of the base material. The defect is filled with a filler metal while maintaining the article at the repair temperature. The filling is accomplished by providing a source of the filler metal of substantially the same composition as the base material of the directionally solidified article, and melting the filler metal into the defect progressively while moving the source of the filler metal relative to the article in a direction parallel to the solidification direction. Optionally, additional artificial heat extraction is accomplished in a heat-flow direction that is within about 45 degrees of the solidification direction, as the filler metal solidifies within the defect. The article may thereafter be heat treated.

  19. Redox activation of metal-based prodrugs as a strategy for drug delivery

    PubMed Central

    Graf, Nora

    2012-01-01

    This review provides an overview of metal-based anticancer drugs and drug candidates. In particular, we focus on metal complexes that can be activated in the reducing environment of cancer cells, thus serving as prodrugs. There are many reports of Pt and Ru complexes as redox-activatable drug candidates, but other d-block elements with variable oxidation states have a similar potential to serve as prodrugs in this manner. In this context are compounds based on Fe, Co, or Cu chemistry, which are also covered. A trend in the field of medicinal inorganic chemistry has been toward molecularly targeted, metal-based drugs obtained by functionalizing complexes with biologically active ligands. Another recent activity is the use of nanomaterials for drug delivery, exploiting passive targeting of tumors with nanosized constructs made from Au, Fe, carbon, or organic polymers. Although complexes of all of the above mentioned metals will be described, this review focuses primarily on Pt compounds, including constructs containing nanomaterials. PMID:22289471

  20. An Examination of Strong-line Metallicity Diagnostics with Direct Gas-Phase Metallicities at Higher Redshifts

    NASA Astrophysics Data System (ADS)

    Ly, Chun; Rigby, Jane R.; Malkan, Matthew Arnold; Malhotra, Sangeeta

    2016-01-01

    The [OIII]λ4363 nebular emission line, which provides the most reliable determination of the gas metallicity by measuring the electron temperature of the gas, is intrinsically weak. As such, most metallicity studies at both low and high redshifts have utilized "strong-line" metallicity calibrations, such as [NII]λ6583/Hα or R23 = ([OII]+[OIII])/Hβ. However, there are growing concerns that these diagnostics may not be used for evolutionary studies due to differences in the physical conditions (e.g., density, ionization, abundance ratios) of the interstellar gas in galaxies. A clear demonstration for this concern is the offset on the Baldwin-Phillips-Terlevich diagnostic diagram ([OIII]λ5007/Hβ vs. [NII]λ6583/Hα) for high-z star-forming galaxies from local star-forming galaxies.To examine this issue, we investigate the accuracy that commonly-used strong-line diagnostics can explain the direct oxygen abundances. Here, we use a sample of ~100 low-mass galaxies at z=0.07 to 1.0 with detections of the [OIII]λ4363 emission line from Keck and MMT optical spectroscopy. These galaxies are pre-selected for their strong nebular emission lines from the Subaru Deep Field and the DEEP2 Survey. Utilizing the optical emission lines, we argue that "R23" is not a reliable diagnostic and that discrepancies from [OIII]λ4363-based metallicity cannot be explained simply by higher gas densities or higher ionization parameter. We do find that the [NII]-based metallicity diagnostics of Pettini & Pagel (2004) are in agreement with [OIII]λ4363-based metallicity at z~0.5. There is, however, a sub-population (25%) where [NII]-based estimates are overestimating the oxygen metallicities. We argue that enhanced nitrogen abundances, relative to oxygen, is responsible for this significant (~0.5 dex) offset in metallicity. We present preliminary results for a revised metallicity calibration that considers the N/O abundance ratio.

  1. Enhanced vasculotoxic metal excretion in post-myocardial infarction patients following a single edetate disodium-based infusion.

    PubMed

    Arenas, Ivan A; Navas-Acien, Ana; Ergui, Ian; Lamas, Gervasio A

    2017-10-01

    Toxic metals have been associated with cardiovascular mortality and morbidity. We have hypothesized that enhanced excretion of vasculotoxic metals might explain the positive results of the Trial to Assess Chelation Therapy (TACT). The purpose of this study was to determine whether a single infusion of the edetate disodium- based infusion used in TACT led to enhanced excretion of toxic metals known to be associated with cardiovascular events. Twenty six patients (post-MI, age > 50 years, serum creatinine ≤ 2.0mg/dL) were enrolled in this open-label study. Urinary levels of 20 toxic metals normalized to urinary creatinine concentrations were measured at baseline in overnight urine collections, for 6h following a placebo infusion of 500mL normal saline and 1.2% dextrose, and for 6h following a 3g edetate disodium-based infusion. Self-reported metal exposure, smoking status, food frequency, occupational history, drinking water source, housing and hobbies were collected at baseline by a metal exposure questionnaire. The mean age was 65 years (range 51-81 years). All patients were male. 50% had diabetes mellitus and 58% were former smokers. Mean (SD) serum creatinine was 0.95 (0.31) mg/dL. Toxic metals were detected in the baseline urine of >80% of patients. After placebo infusion there were no significant changes in total urinary metal levels. After edetate infusion, total urinary metal level increased by 71% compared to baseline (1500 vs. 2580µg/g creatinine; P<0.0001). The effect of edetate was particularly large for lead (3835% increase) and cadmium (633% increase). Edetate disodium-based infusions markedly enhanced the urinary excretion of lead and cadmium, toxic metals with established epidemiologic evidence and mechanisms linking them to coronary and vascular events. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Predicting As, Cd, Cu, Pb and Zn levels in grasses (Agrostis sp. and Poa sp.) and stinging nettle (Urtica dioica) applying soil-plant transfer models.

    PubMed

    Boshoff, Magdalena; De Jonge, Maarten; Scheifler, Renaud; Bervoets, Lieven

    2014-09-15

    The aim of this study was to derive regression-based soil-plant models to predict and compare metal(loid) (i.e. As, Cd, Cu, Pb and Zn) concentrations in plants (grass Agrostis sp./Poa sp. and nettle Urtica dioica L.) among sites with a wide range of metal pollution and a wide variation in soil properties. Regression models were based on the pseudo total (aqua-regia) and exchangeable (0.01 M CaCl2) soil metal concentrations. Plant metal concentrations were best explained by the pseudo total soil metal concentrations in combination with soil properties. The most important soil property that influenced U. dioica metal concentrations was the clay content, while for grass organic matter (OM) and pH affected the As (OM) and Cu and Zn (pH). In this study multiple linear regression models proved functional in predicting metal accumulation in plants on a regional scale. With the proposed models based on the pseudo total metal concentration, the percentage of variation explained for the metals As, Cd, Cu, Pb and Zn were 0.56%, 0.47%, 0.59%, 0.61%, 0.30% in nettle and 0.46%, 0.38%, 0.27%, 0.50%, 0.28% in grass. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Rational design of mesoporous metals and related nanomaterials by a soft-template approach.

    PubMed

    Yamauchi, Yusuke; Kuroda, Kazuyuki

    2008-04-07

    We review recent developments in the preparation of mesoporous metals and related metal-based nanomaterials. Among the many types of mesoporous materials, mesoporous metals hold promise for a wide range of potential applications, such as in electronic devices, magnetic recording media, and metal catalysts, owing to their metallic frameworks. Mesoporous metals with highly ordered networks and narrow pore-size distributions have traditionally been produced by using mesoporous silica as a hard template. This method involves the formation of an original template followed by deposition of metals within the mesopores and subsequent removal of the template. Another synthetic method is the direct-template approach from lyotropic liquid crystals (LLCs) made of nonionic surfactants at high concentrations. Direct-template synthesis creates a novel avenue for the production of mesoporous metals as well as related metal-based nanomaterials. Many mesoporous metals have been prepared by the chemical or electrochemical reduction of metal salts dissolved in aqueous LLC domains. As a soft template, LLCs are more versatile and therefore more advantageous than hard templates. It is possible to produce various nanostructures (e.g., lamellar, 2D hexagonal (p6mm), and 3D cubic (Ia\\3d)), nanoparticles, and nanotubes simply by controlling the composition of the reaction bath.

  4. Formation of metal clusters in halloysite clay nanotubes

    DOE PAGES

    Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; ...

    2017-02-16

    We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9more » wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.« less

  5. 3D Architectured Graphene/Metal Oxide Hybrids for Gas Sensors: A Review

    PubMed Central

    Xia, Yi; Li, Ran; Chen, Ruosong; Wang, Jing; Xiang, Lan

    2018-01-01

    Graphene/metal oxide-based materials have been demonstrated as promising candidates for gas sensing applications due to the enhanced sensing performance and synergetic effects of the two components. Plenty of metal oxides such as SnO2, ZnO, WO3, etc. have been hybridized with graphene to improve the gas sensing properties. However, graphene/metal oxide nanohybrid- based gas sensors still have several limitations in practical application such as the insufficient sensitivity and response rate, and long recovery time in some cases. To achieve higher sensing performances of graphene/metal oxides nanocomposites, many recent efforts have been devoted to the controllable synthesis of 3D graphene/metal oxides architectures owing to their large surface area and well-organized structure for the enhanced gas adsorption/diffusion on sensing films. This review summarizes recent advances in the synthesis, assembly, and applications of 3D architectured graphene/metal oxide hybrids for gas sensing. PMID:29735951

  6. Formation of metal clusters in halloysite clay nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.

    We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9more » wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.« less

  7. Feasibility Study on 3-D Printing of Metallic Structural Materials with Robotized Laser-Based Metal Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Ding, Yaoyu; Kovacevic, Radovan

    2016-07-01

    Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.

  8. Formation of metal clusters in halloysite clay nanotubes

    PubMed Central

    Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; Ivanov, Evgenii V.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A.; Lvov, Yuri M.

    2017-01-01

    Abstract We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3–5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10–12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions. PMID:28458738

  9. Heterogeneous base catalysts for edible palm and non-edible Jatropha-based biodiesel production

    PubMed Central

    2014-01-01

    Background Transesterification catalyzed by solid base catalyst is a brilliant technology for the noble process featuring the fast reaction under mild reacting condition in biodiesel production. Heterogeneous base catalysts are generally more reactive than solid acid catalysts which require extreme operating condition for high conversion and biodiesel yield. In the present study, synthesis of biodiesel was studied by using edible (palm) or non-edible (Jatropha) feedstock catalyzed by heterogeneous base catalysts such as supported alkali metal (NaOH/Al2O3), alkaline-earth metal oxide (MgO, CaO and SrO) and mixed metal oxides catalysts (CaMgO and CaZnO). Results The chemical characteristic, textural properties, basicity profile and leaching test of synthesized catalysts were studied by using X-ray diffraction, BET measurement, TPD-CO2 and ICP-AES analysis, respectively. Transesterification activity of solid base catalysts showed that > 90% of palm biodiesel and > 80% of Jatropha biodiesel yield under 3 wt.% of catalyst, 3 h reaction time, methanol to oil ratio of 15:1 under 65°C. This indicated that other than physicochemical characteristic of catalysts; different types of natural oil greatly influence the catalytic reaction due to the presence of free fatty acids (FFAs). Conclusions Among the solid base catalysts, calcium based mixed metal oxides catalysts with binary metal system (CaMgO and CaZnO) showed capability to maintain the transesterification activity for 3 continuous runs at ~ 80% yield. These catalysts render high durability characteristic in transesterification with low active metal leaching for several cycles. PMID:24812574

  10. Dipole moments and solvatochromism of metal complexes: principle photophysical and theoretical approach.

    PubMed

    Loukova, Galina V; Milov, Alexey A; Vasiliev, Vladimir P; Minkin, Vladimir I

    2016-07-21

    For metal-based compounds, the ground- and excited-state dipole moments and the difference thereof are, for the first time, obtained both experimentally and theoretically using solvatochromic equations and DFT/B3LYP/QZVP calculations. The approach is suggested to be promising and easily accessible, and can be universal to elucidate the electronic properties of metal-based compounds.

  11. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  12. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules.

    PubMed

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola

    2017-02-01

    Antimicrobial resistance threatens the achievements of science and medicine, as it deactivates conventional antimicrobial therapeutics. Scientists respond to the threat by developing new antimicrobial platforms to prevent and treat infections from these resistant strains. Metal-based antimicrobial macromolecules are emerging as an alternative to conventional platforms because they combine multiple mechanisms of action into one platform due to the distinctive properties of metals. For example, metals interact with intracellular proteins and enzymes, and catalyse various intracellular processes. The macromolecular architecture offers a means to enhance antimicrobial activity since several antimicrobial moieties can be conjugated to the scaffold. Further, these macromolecules can be fabricated into antimicrobial materials for contact-killing medical implants, fabrics, and devices. As volatilization or leaching out of the antimicrobial moieties from the macromolecular scaffold is reduced, these medical implants, fabrics, and devices can retain their antimicrobial activity over an extended period. Recent advances demonstrate the potential of metal-based antimicrobial macromolecules as effective platforms that prevent and treat infections from resistant strains. In this review these advances are thoroughly discussed within the context of examples of metal-based antimicrobial macromolecules, their mechanisms of action and biocompatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Field-assisted nanopatterning of metals, metal oxides and metal salts

    NASA Astrophysics Data System (ADS)

    Liu, Jun-Fu; Miller, Glen P.

    2009-02-01

    The tip-based nanofabrication method called field-assisted nanopatterning or FAN has now been extended to the transfer of metals, metal oxides and metal salts onto various receiving substrates including highly ordered pyrolytic graphite, passivated gold and indium-tin oxide. Standard atomic force microscope tips were first dip-coated using suspensions of inorganic compounds in solvent. The films prepared in this manner were non-uniform and contained inorganic nanoparticles. Tip-based nanopatterning on chosen substrates was conducted under high electric field conditions. The same tip was used for both nanofabrication and imaging. Arbitrary patterns were formed with dimensions that ranged from tens of microns to sub-20 nm and were controlled by tuning the tip bias during fabrication. Most tip-based nanopatterning techniques are limited in terms of the type of species that can be deposited and the type of substrates onto which the deposition occurs. With the successful deposition of inorganic species reported here, FAN is demonstrated to be a truly versatile tip-based nanofabrication technique that is useful for the deposition of a wide variety of both organic and inorganic species including small molecules, large molecules and polymers.

  14. Trace-metal and organic constituent concentrations in bed sediment at Big Base and Little Base Lakes, Little Rock Air Force Base, Arkansas—Comparisons to sediment-quality guidelines and indications for timing of exposure

    USGS Publications Warehouse

    Justus, B.G.; Hays, Phillip D.; Hart, Rheannon M.

    2015-09-16

    Regarding highest concentrations and associated timing of exposure, trace metals analyzed in the sediment core seem to indicate three fairly distinct exposure patterns. For 11 trace metals that had the highest concentration measured in the shallowest and most recently deposited sediment, the most likely explanation is recent exposure by anthropogenic activities. Most of the 11 trace metals with highest concentrations in shallow sediment are relatively innocuous; however, arsenic, copper, selenium, and zinc are among the U.S. Environmental Protection Agency’s 126 priority pollutants. For three trace metals (cadmium, lead, and mercury), for which concentrations were highest in sediments that were 16–20 centimeters down the core, it is likely that a source associated with those contaminants during the period when those sediments were deposited, was reduced or eliminated. The eight remaining trace metals, for which concentrations were highest in sediments that were just below the prereservoir surface, likely had sources that were eliminated soon after lake construction or occurred at relatively high background concentrations in soils in the area around Little Rock Air Force Base.

  15. Characterization of land-based sources of pollution in Jobos Bay, Puerto Rico: status of heavy metal concentration in bed sediment.

    PubMed

    Apeti, Dennis A; Whitall, David R; Pait, Anthony S; Dieppa, Angel; Zitello, Adam G; Lauenstein, Gunnar G

    2012-01-01

    As part of an assessment of land-based sources of pollution in Jobos Bay, Puerto Rico, sediment samples were collected at 43 sites to characterize concentrations of a suite of pollutants, including metals. Fifteen major and trace metals (Ag, Al, As, Cd, Cr, Cu, Fe, Hg, Mn Ni, Pb, Sb, Se, Sn, and Zn) were measured along with total organic carbon and grain size in surficial sediments. For most metals, maximum concentrations were seen in the eastern bay; however, values were still within concentration ranges found in other estuarine systems. In contrast, silver was higher in the western region. In general, metal distribution in the bay was positively correlated with grain size. Additionally, correlations between Al and other metals suggest natural sources for metals. The data presented here suggest that, although the Jobos Bay watershed contains both urban centers along with industrial and agricultural developments, anthropogenic inputs of metals may be negligible.

  16. Evaluating nanoscale ultra-thin metal films by means of lateral photovoltaic effect in metal-semiconductor structure.

    PubMed

    Zheng, Diyuan; Yu, Chongqi; Zhang, Qian; Wang, Hui

    2017-12-15

    Nanoscale metal-semiconductor (MS) structure materials occupy an important position in semiconductor and microelectronic field due to their abundant physical phenomena and effects. The thickness of metal films is a critical factor in determining characteristics of MS devices. How to detect or evaluate the metal thickness is always a key issue for realizing high performance MS devices. In this work, we propose a direct surface detection by use of the lateral photovoltaic effect (LPE) in MS structure, which can not only measure nanoscale thickness, but also detect the fluctuation of metal films. This method is based on the fact that the output of lateral photovoltaic voltage (LPV) is closely linked with the metal thickness at the laser spot. We believe this laser-based contact-free detection is a useful supplement to the traditional methods, such as AFM, SEM, TEM or step profiler. This is because these traditional methods are always incapable of directly detecting ultra-thin metal films in MS structure materials.

  17. Strain-engineering stabilization of BaTi O3 -based polar metals

    NASA Astrophysics Data System (ADS)

    Ma, Chao; Jin, Kui-juan; Ge, Chen; Yang, Guo-zhen

    2018-03-01

    Polar metals, which possess ferroelectriclike polar structure and conductivity simultaneously, have attracted wide interest since the first solid example, LiOs O3 (below 140 K), was discovered. However, the lack of room-temperature polar metals hinders further research and applications. Thus abundant properties of polar metals are unexplored. Here, with first-principles calculations, we report that the polar metal phase can be stabilized in the strain-engineered BaTi O3 with electron doping. The mechanism relates to the competition between the shifting of the t2 g energy levels and the narrowing of their bandwidth. Surprisingly, it is predicted that the ferroelectric-to-paraelectric transition temperature can be increased by electron doping when the strain is large enough, which holds potential for room-temperature polar metals. Our results indicate that strain engineering is a promising way to achieve BaTi O3 -based polar metals, and they should have practical significance for obtaining easily accessible, ecofriendly, and potential room-temperature polar metals.

  18. Evaluating nanoscale ultra-thin metal films by means of lateral photovoltaic effect in metal-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Zheng, Diyuan; Yu, Chongqi; Zhang, Qian; Wang, Hui

    2017-12-01

    Nanoscale metal-semiconductor (MS) structure materials occupy an important position in semiconductor and microelectronic field due to their abundant physical phenomena and effects. The thickness of metal films is a critical factor in determining characteristics of MS devices. How to detect or evaluate the metal thickness is always a key issue for realizing high performance MS devices. In this work, we propose a direct surface detection by use of the lateral photovoltaic effect (LPE) in MS structure, which can not only measure nanoscale thickness, but also detect the fluctuation of metal films. This method is based on the fact that the output of lateral photovoltaic voltage (LPV) is closely linked with the metal thickness at the laser spot. We believe this laser-based contact-free detection is a useful supplement to the traditional methods, such as AFM, SEM, TEM or step profiler. This is because these traditional methods are always incapable of directly detecting ultra-thin metal films in MS structure materials.

  19. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  20. An advanced selective liquid-metal plating technique for stretchable biosensor applications.

    PubMed

    Li, Guangyong; Lee, Dong-Weon

    2017-10-11

    This paper presents a novel stretchable pulse sensor fabricated by a selective liquid-metal plating process (SLMP), which can conveniently attach to the human skin and monitor the patient's heartbeat. The liquid metal-based stretchable pulse sensor consists of polydimethylsiloxane (PDMS) thin films and liquid metal functional circuits with electronic elements that are embedded into the PDMS substrate. In order to verify the utility of the fabrication process, various complex liquid-metal patterns are achieved by using the selective wetting behavior of the reduced liquid metal on the Cu patterns of the PDMS substrate. The smallest liquid-metal pattern is approximately 2 μm in width with a uniform surface. After verification, a transparent flowing LED light with programmed circuits is realized and exhibits stable mechanical and electrical properties under various deformations (bending, twisting and stretching). Finally, based on SLMP, a wireless pulse measurement system is developed which is composed of the liquid metal-based stretchable pulse sensor, a Bluetooth module, an Arduino development board, a laptop computer and a self-programmed visualized software program. The experimental results reveal that the portable non-invasive pulse sensor has the potential to reduce costs, simplify biomedical diagnostic procedures and help patients to improve their life in the future.

  1. Performance of Raphidocelis subcapitata exposed to heavy metal mixtures.

    PubMed

    Expósito, Nora; Kumar, Vikas; Sierra, Jordi; Schuhmacher, Marta; Giménez Papiol, Gemma

    2017-12-01

    Microalgae growth inhibition assays are candidates for referent ecotoxicological assays, and are a fundamental part in the strategy to reduce the use of fish and other animal models in aquatic toxicology. In the present work, the performance of Raphidocelis subcapitata exposed to heavy metals following standardized growth inhibition assays has been assessed in three different scenarios: 1) dilutions of single heavy metals, 2) artificial mixture of heavy metals at similar levels than those found in natural rivers and, 3) natural samples containing known mixtures of contaminants (heavy metals). Chemical speciation of heavy metals has been estimated with Eh-pH diagram and Visual MINTEQ software; heavy metal and free heavy metal ion concentrations were used as input data, together with microalgae growth inhibition, for Dr. Fit software. The final goal was to assess the suitability of the ecotoxicological test based on the growth inhibition of microalgae cultures, and the mathematic models based on these results, for regulatory and decision-making purposes. The toxicity of a given heavy metal is not only determined by its chemical speciation; other chemical and biological interaction play an important role in the final toxicity. Raphidocelis subcapitata 48h-h-EC50 for tested heavy metals (especially Cu and Zn) were in agreement with previous studies, when ion metal bioavailability was assumed to be 100%. Nevertheless, the calculated growth inhibition was not in agreement with the obtained inhibition when exposed to the artificial mixture of heavy metals or the natural sample. Interactions between heavy metal ions and the compounds of the culture media and/or the natural sample determine heavy metal bioavailability, and eventually their toxicity. More research is needed for facing the challenge posed by pollutant mixtures as they are present in natural environments, and make microalgae-based assays suitable for pollution management and regulatory purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Noninvasive Evaluation of Heavy Metal Uptake and Storage in Micoralgae Using a Fluorescence Resonance Energy Transfer-Based Heavy Metal Biosensor1[C][W][OPEN

    PubMed Central

    Rajamani, Sathish; Torres, Moacir; Falcao, Vanessa; Ewalt Gray, Jaime; Coury, Daniel A.; Colepicolo, Pio; Sayre, Richard

    2014-01-01

    We have developed a fluorescence resonance energy transfer (FRET)-based heavy metal biosensor for the quantification of bioavailable free heavy metals in the cytoplasm of the microalga Chlamydomonas reinhardtii. The biosensor is composed of an end-to-end fusion of cyan fluorescent protein (CFP), chicken metallothionein II (MT-II), and yellow fluorescent protein (YFP). In vitro measurements of YFP/CFP fluorescence emission ratios indicated that the addition of metals to the purified biosensor enhanced FRET between CFP and YFP, consistent with heavy metal-induced folding of MT-II. A maximum YFP/CFP FRET ratio of 2.8 was observed in the presence of saturating concentrations of heavy metals. The sensitivity of the biosensor was greatest for Hg2+ followed by Cd2+ ≈ Pb2+ > Zn2+ > Cu2+. The heavy metal biosensor was unresponsive to metals that do not bind to MT-II (Na+ and Mg2+). When expressed in C. reinhardtii, we observed a differential metal-dependent response to saturating external concentrations (1.6 mm) of heavy metals (Pb2+ > Cd2+) that was unlike that observed for the isolated biosensor (in vitro). Significantly, analysis of metal uptake kinetics indicated that equilibration of the cytoplasm with externally applied heavy metals occurred within seconds. Our results also indicated that algae have substantial buffering capacity for free heavy metals in their cytosol, even at high external metal concentrations. PMID:24368336

  3. Noninvasive evaluation of heavy metal uptake and storage in micoralgae using a fluorescence resonance energy transfer-based heavy metal biosensor.

    PubMed

    Rajamani, Sathish; Torres, Moacir; Falcao, Vanessa; Ewalt Gray, Jaime; Coury, Daniel A; Colepicolo, Pio; Sayre, Richard

    2014-02-01

    We have developed a fluorescence resonance energy transfer (FRET)-based heavy metal biosensor for the quantification of bioavailable free heavy metals in the cytoplasm of the microalga Chlamydomonas reinhardtii. The biosensor is composed of an end-to-end fusion of cyan fluorescent protein (CFP), chicken metallothionein II (MT-II), and yellow fluorescent protein (YFP). In vitro measurements of YFP/CFP fluorescence emission ratios indicated that the addition of metals to the purified biosensor enhanced FRET between CFP and YFP, consistent with heavy metal-induced folding of MT-II. A maximum YFP/CFP FRET ratio of 2.8 was observed in the presence of saturating concentrations of heavy metals. The sensitivity of the biosensor was greatest for Hg2+ followed by Cd2+≈Pb2+>Zn2+>Cu2+. The heavy metal biosensor was unresponsive to metals that do not bind to MT-II (Na+ and Mg2+). When expressed in C. reinhardtii, we observed a differential metal-dependent response to saturating external concentrations (1.6 mm) of heavy metals (Pb2+>Cd2+) that was unlike that observed for the isolated biosensor (in vitro). Significantly, analysis of metal uptake kinetics indicated that equilibration of the cytoplasm with externally applied heavy metals occurred within seconds. Our results also indicated that algae have substantial buffering capacity for free heavy metals in their cytosol, even at high external metal concentrations.

  4. Technological applications arising from the interactions of DNA bases with metal ions.

    PubMed

    Park, Ki Soo; Park, Hyun Gyu

    2014-08-01

    An intense interest has grown in the unique interactions of nucleic acids with metal ions, which lead to the formation of metal-base pairs and the generation of fluorescent nanomaterials. In this review, different types of metal-base pairs, especially those formed from naturally occurring nucleosides, are described with emphasis also being given to recent advances made in employing these complexes to govern enzymatic reactions. The review also contains a comprehensive description of DNA-templated inorganic nanomaterials such as silver nanoclusters which possess excellent fluorescence properties. Finally, a summary is given about how these materials have led to recent advances in the field of nanobiotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Synthesis and characterization of Fe-based metal and oxide based nanoparticles: discoveries and research highlights of potential applications in biology and medicine.

    PubMed

    Long, Nguyen Viet; Thi, Cao Minh; Yong, Yang; Cao, Yanqin; Wu, Haibo; Nogami, Masayuki

    2014-01-01

    In this review, we have presented the controlled synthesis of Fe-based metal and oxide nanoparticles with large size by chemical methods. The issues of the size, shape and morphology of Fe nanoparticles are discussed in the certain ranges of practical applications in biology and medicine. The homogeneous nanosystems of Fe-based metal and oxide nanoparticles with various sizes and shapes from the nano-to-micro ranges can be used in order to meet the demands of the treatments of dangerous tumors and cancers through magnetic hyperthermia and magnetic resonance imaging (MRI). In this context, the polyhedral Fe-based metal and oxide nanoparticles having large size in the ranges from 1000 nm to 5000 nm can be potentially used in magnetic hyperthermia and MRI in the innovative drug delivery, diagnosis, treatment, and therapy of tumor and cancer diseases because of their very high bio-adaptability. We have suggested that high stability and durability of Fe-based metal and oxide nanoparticles are very crucial to recent magnetic hyperthermia and MRI technology. The roles of various Fe-based nanostructures are focused in biomedical applications of tumors and cancers diagnostics, targeted drug delivery, and magnetic hyperthermia. Finally, Fe-based, α-, β- and γ-Fe2O3, and Fe3O4-based nanoparticles are shortly discussed in various potential applications in catalysis, biology, and medicine.

  6. Energy industry

    NASA Astrophysics Data System (ADS)

    Staszak, Katarzyna; Wieszczycka, Karolina

    2018-04-01

    The potential sources of metals from energy industries are discussed. The discussion is organized based on two main metal-contains wastes from power plants: ashes, slags from combustion process and spent catalysts from selective catalytic NOx reduction process with ammonia, known as SCR. The compositions, methods of metals recovery, based mainly on leaching process, and their further application are presented. Solid coal combustion wastes are sources of various compounds such as silica, alumina, iron oxide, and calcium. In the case of the spent SCR catalysts mainly two metals are considered: vanadium and tungsten - basic components of industrial ones.

  7. A Versatile Method for Nanostructuring Metals, Alloys and Metal Based Composites

    NASA Astrophysics Data System (ADS)

    Gurau, G.; Gurau, C.; Bujoreanu, L. G.; Sampath, V.

    2017-06-01

    A new severe plastic deformation method based on High Pressure Torsion is described. The method patented as High Speed High Pressure Torsion (HSHPT) shows a wide scope and excellent adaptability assuring large plastic deformation degree on metals, alloys even on hard to deform or brittle alloys. The paper present results obtained on aluminium, magnesium, titan, iron and coper alloys. In addition capability of HSHPT to process metallic composites is described. OM SEM, TEM, DSC, RDX and HV investigation methods were employed to confirm fine and ultrafine structure.

  8. Tunable all-optical plasmonic rectifier in nanoscale metal-insulator-metal waveguides.

    PubMed

    Xu, Yi; Wang, Xiaomeng; Deng, Haidong; Guo, Kangxian

    2014-10-15

    We propose a tunable all-optical plasmonic rectifier based on the nonlinear Fano resonance in a metal-insulator-metal plasmonic waveguide and cavities coupling system. We develop a theoretical model based on the temporal coupled-mode theory to study the device physics of the nanoscale rectifier. We further demonstrate via the finite difference time domain numerical experiment that our idea can be realized in a plasmonic system with an ultracompact size of ~120×800  nm². The tunable plasmonic rectifier could facilitate the all-optical signal processing in nanoscale.

  9. IMPROVED RISK ASSESSMENT AND REMEDIATION OF SOIL METALS BASED ON BIOAVAILABILITY MEASUREMENTS

    EPA Science Inventory

    Heavy metals in soils can comprise risk through plant uptake or soil ingestion. Recent research results and progress in understandings of risks and methods for soil metal remediation will be presented. Beneficial use of composts/bosolids plus limestone to remediate metal killed e...

  10. Mechanistic Enzyme Models: Pyridoxal and Metal Ions.

    ERIC Educational Resources Information Center

    Hamilton, S. E.; And Others

    1984-01-01

    Background information, procedures, and results are presented for experiments on the pyridoxal/metal ion model system. These experiments illustrate catalysis through Schiff's base formation between aldehydes/ketones and primary amines, catalysis by metal ions, and the predictable manner in which metal ions inhibit or catalyze reactions. (JN)

  11. The correlation between acoustic and magnetic properties in the long working metal boiler drum with the parameters of the electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ababkov, Nikolai, E-mail: n.ababkov@rambler.ru; Smirnov, Alexander, E-mail: galvas.kem@gmail.com

    The present paper presents comparative analysis of measurement results of acoustic and magnetic properties in long working metal of boiler drums and the results obtained by methods of electronic microscopy. The structure of the metal sample from the fracture zone to the base metal (metal working sample long) and the center of the base metal before welding (weld metal sample) was investigated by electron microscopy. Studies performed by spectral acoustic, magnetic noise and electron microscopic methods were conducted on the same plots and the same samples of long working and weld metal of high-pressure boiler drums. The analysis of researchmore » results showed high sensitivity of spectral-acoustic and magnetic-noise methods to definition changes of microstructure parameters. Practical application of spectral-acoustic and magnetic noise NDT method is possible for the detection of irregularities and changes in structural and phase state of the long working and weld metal of boiler drums, made of a special molybdenum steel (such as 20M). The above technique can be used to evaluate the structure and physical-mechanical properties of the long working metal of boiler drums in the energy sector.« less

  12. Evaluating Heavy Metal Stress Levels in Rice Based on Remote Sensing Phenology.

    PubMed

    Liu, Tianjiao; Liu, Xiangnan; Liu, Meiling; Wu, Ling

    2018-03-14

    Heavy metal pollution of croplands is a major environmental problem worldwide. Methods for accurately and quickly monitoring heavy metal stress have important practical significance. Many studies have explored heavy metal stress in rice in relation to physiological function or physiological factors, but few studies have considered phenology, which can be sensitive to heavy metal stress. In this study, we used an integrated Normalized Difference Vegetation Index (NDVI) time-series image set to extract remote sensing phenology. A phenological indicator relatively sensitive to heavy metal stress was chosen from the obtained phenological periods and phenological parameters. The Dry Weight of Roots (WRT), which directly affected by heavy metal stress, was simulated by the World Food Study (WOFOST) model; then, a feature space based on the phenological indicator and WRT was established for monitoring heavy metal stress. The results indicated that the feature space can distinguish the heavy metal stress levels in rice, with accuracy greater than 95% for distinguishing the severe stress level. This finding provides scientific evidence for combining rice phenology and physiological characteristics in time and space, and the method is useful to monitor heavy metal stress in rice.

  13. THE ROLES OF METAL IONS IN REGULATION BY RIBOSWITCHES

    PubMed Central

    2012-01-01

    Metal ions are required by all organisms in order to execute an array of essential molecular functions. They play a critical role in many catalytic mechanisms and structural properties. Proper homeostasis of ions is critical; levels that are aberrantly low or high are deleterious to cellular physiology. To maintain stable intracellular pools, metal ion-sensing regulatory (metalloregulatory) proteins couple metal ion concentration fluctuations with expression of genes encoding for cation transport or sequestration. However, these transcriptional-based regulatory strategies are not the only mechanisms by which organisms coordinate metal ions with gene expression. Intriguingly, a few classes of signal-responsive RNA elements have also been discovered to function as metalloregulatory agents. This suggests that RNA-based regulatory strategies can be precisely tuned to intracellular metal ion pools, functionally akin to metalloregulatory proteins. In addition to these metal-sensing regulatory RNAs, there is a yet broader role for metal ions in directly assisting the structural integrity of other signal-responsive regulatory RNA elements. In this chapter, we discuss how the intimate physicochemical relationship between metal ions and nucleic acids is important for the structure and function of metal ion- and metabolite-sensing regulatory RNAs. PMID:22010271

  14. Using metal-ligand binding characteristics to predict metal toxicity: quantitative ion character-activity relationships (QICARs).

    PubMed Central

    Newman, M C; McCloskey, J T; Tatara, C P

    1998-01-01

    Ecological risk assessment can be enhanced with predictive models for metal toxicity. Modelings of published data were done under the simplifying assumption that intermetal trends in toxicity reflect relative metal-ligand complex stabilities. This idea has been invoked successfully since 1904 but has yet to be applied widely in quantitative ecotoxicology. Intermetal trends in toxicity were successfully modeled with ion characteristics reflecting metal binding to ligands for a wide range of effects. Most models were useful for predictive purposes based on an F-ratio criterion and cross-validation, but anomalous predictions did occur if speciation was ignored. In general, models for metals with the same valence (i.e., divalent metals) were better than those combining mono-, di-, and trivalent metals. The softness parameter (sigma p) and the absolute value of the log of the first hydrolysis constant ([symbol: see text] log KOH [symbol: see text]) were especially useful in model construction. Also, delta E0 contributed substantially to several of the two-variable models. In contrast, quantitative attempts to predict metal interactions in binary mixtures based on metal-ligand complex stabilities were not successful. PMID:9860900

  15. Simultaneous Formation of Artificial SEI Film and 3D Host for Stable Metallic Sodium Anodes.

    PubMed

    Zhang, Di; Li, Bin; Wang, Shuai; Yang, Shubin

    2017-11-22

    Metallic sodium is a promising anode for sodium-based batteries, owing to its high theoretical capacity (1165 mAh g -1 ) and low potential (-2.714 V vs standard hydrogen electrode). However, the growth of sodium dendrites and the infinite volume change of metallic sodium during sodium striping/plating result in a low Coulombic efficiency and poor cycling stability, generating a safety hazard of sodium-based batteries. Here, an efficient approach was proposed to simultaneously generate an artificial SEI film and 3D host for metallic sodium based on a conversion reaction (CR) between sodium and MoS 2 (4Na + MoS 2 = 2Na 2 S + Mo) at room temperature. In the resultant sodium-MoS 2 hybrid after the conversion reaction (Na-MoS 2 (CR)), the production Na 2 S is homogeneously dispersed on the surface of metallic sodium, which can act as an artificial SEI film, efficiently preventing the growth of sodium dendrites; the residual MoS 2 nanosheets can construct a 3D host to confine metallic sodium, accommodating largely the volume change of sodium. Consequently, the Na-MoS 2 (CR) hybrid exhibits very low overpotential of 25 mV and a very long cycle stability more than 1000 cycles. This novel strategy is promising to promote the development of metal (lithium, sodium, zinc)-based electrodes.

  16. Bio-rescue of marine environments: On the track of microbially-based metal/metalloid remediation.

    PubMed

    Marques, Catarina R

    2016-09-15

    The recent awareness of the huge relevance of marine resources and ecological services is driving regulatory demands for their protection from overwhelming contaminants, such as metals/metalloids. These contaminants enter and accumulate in different marine niches, hence deeply compromising their quality and integrity. Bioremediation has been flourishing to counteract metal/metalloid impacts, since it provides cost-effective and sustainable options by relying on ecology-based technologies. The potential of marine microbes for metal/metalloid bioremediation is the core of many studies, due to their high plasticity to overcome successive environmental hurdles. However, any thorough review on the advances of metal/metalloid bioremediation in marine environments was so far unveiled. This review is designed to (i) outline the characteristics and potential of marine microbes for metal/metalloid bioremediation, (ii) describe the underlying pathways of resistance and detoxification, as well as useful methodologies for their characterization, (iii) identify major bottlenecks on metal/metalloid bioremediation with marine microbes, (iv) present alternative strategies based on microbial consortia and engineered microbes for enhanced bioremediation, and (v) propose key research avenues to keep pace with a changing society, science and economy in a sustainable manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Ionic liquid-based extraction followed by graphite-furnace atomic absorption spectrometry for the determination of trace heavy metals in high-purity iron metal.

    PubMed

    Matsumiya, Hiroaki; Kato, Tatsuya; Hiraide, Masataka

    2014-02-01

    The analysis of high-purity materials for trace impurities is an important and challenging task. The present paper describes a facile and sensitive method for the determination of trace heavy metals in high-purity iron metal. Trace heavy metals in an iron sample solution were rapidly and selectively preconcentrated by the extraction into a tiny volume of an ionic liquid [1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] for the determination by graphite-furnace atomic absorption spectrometry (GFAAS). A nitrogen-donating neutral ligand, 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ), was found to be effective in the ionic liquid-based selective extraction, allowing the nearly complete (~99.8%) elimination of the iron matrix. The combination with the optimized GFAAS was successful. The detectability reached sub-μg g(-1) levels in iron metal. The novel use of TPTZ in ionic liquid-based extraction followed by GFAAS was successfully applied to the determination of traces of Co, Ni, Cu, Cd, and Pb in certified reference materials for high-purity iron metal. © 2013 Published by Elsevier B.V.

  18. Two prospective Li-based half-Heusler alloys for spintronic applications based on structural stability and spin–orbit effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R. L.; Damewood, L.; Zeng, Y. J.

    To search for half-metallic materials for spintronic applications, instead of using an expensive trial-and-error experimental scheme, it is more efficient to use first-principles calculations to design materials first, and then grow them. In particular, using a priori information of the structural stability and the effect of the spin–orbit interaction (SOI) enables experimentalists to focus on favorable properties that make growing half-metals easier. We suggest that using acoustic phonon spectra is the best way to address the stability of promising half-metallic materials. Additionally, by carrying out accurate first-principles calculations, we propose two criteria for neglecting the SOI so the half-metallicity persists.more » As a result, based on the mechanical stability and the negligible SOI, we identified two half-metals, β-LiCrAs and β-LiMnSi, as promising half-Heusler alloys worth growing.« less

  19. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    PubMed

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  20. Highly selectively monitoring heavy and transition metal ions by a fluorescent sensor based on dipeptide.

    PubMed

    Neupane, Lok Nath; Thirupathi, Ponnaboina; Jang, Sujung; Jang, Min Jung; Kim, Jung Hwa; Lee, Keun-Hyeung

    2011-09-15

    Fluorescent sensor (DMH) based on dipeptide was efficiently synthesized in solid phase synthesis. The dipeptide sensor shows sensitive response to Ag(I), Hg(II), and Cu(II) among 14 metal ions in 100% aqueous solution. The fluorescent sensor differentiates three heavy metal ions by response type; turn on response to Ag(I), ratiometric response to Hg(II), and turn off detection of Cu(II). The detection limits of the sensor for Ag(I) and Cu(II) were much lower than the EPA's drinking water maximum contaminant levels (MCL). Specially, DMH penetrated live cells and detected intracellular Ag(+) by turn on response. We described the fluorescent change, binding affinity, detection limit for the metal ions. The study of a heavy metal-responsive sensor based on dipeptide demonstrates its potential utility in the environment field. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Effect of temperature on copper, iron and lead leaching from e-waste using citrate solutions.

    PubMed

    Torres, Robinson; Segura-Bailón, Brenda; Lapidus, Gretchen T

    2018-01-01

    E-waste is a potential source of large quantities of metals. The ability of citrate solutions to recover base metals from these materials has been demonstrated. In the present study, the effect of the temperature on base metal leaching capacity by the citrate solutions is determined. The material employed consisted of a mechanically prepared, gravity concentrated e-waste, with a metallic content greater than 90%. The leaching conditions were selected based on previous research performed by the authors (0.5 M sodium citrate, pH 4.5 and 20 g per liter e-waste concentrate). Leaching tests were performed at temperatures between 0° and 70 °C. The initial leaching rates for the three metals increased with temperature. However, these tapered off with time for temperatures above 30 °C, which can be associated to citrate destruction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Two prospective Li-based half-Heusler alloys for spintronic applications based on structural stability and spin–orbit effect

    DOE PAGES

    Zhang, R. L.; Damewood, L.; Zeng, Y. J.; ...

    2017-07-07

    To search for half-metallic materials for spintronic applications, instead of using an expensive trial-and-error experimental scheme, it is more efficient to use first-principles calculations to design materials first, and then grow them. In particular, using a priori information of the structural stability and the effect of the spin–orbit interaction (SOI) enables experimentalists to focus on favorable properties that make growing half-metals easier. We suggest that using acoustic phonon spectra is the best way to address the stability of promising half-metallic materials. Additionally, by carrying out accurate first-principles calculations, we propose two criteria for neglecting the SOI so the half-metallicity persists.more » As a result, based on the mechanical stability and the negligible SOI, we identified two half-metals, β-LiCrAs and β-LiMnSi, as promising half-Heusler alloys worth growing.« less

  3. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    NASA Astrophysics Data System (ADS)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  4. Benzidine Dyes Action Plan

    EPA Pesticide Factsheets

    This Action Plan addresses the use of benzidine-based dyes and benzidine congener-based dyes, both metalized and non-metalized, in products that would result in consumer exposure, such as for use to color textiles.

  5. Device for hydrogen separation and method

    DOEpatents

    Paglieri, Stephen N [White Rock, NM; Anderson, Iver E [Ames, IA; Terpstra, Robert L [Ames, IA

    2009-11-03

    A device for hydrogen separation has a porous support and hydrogen separation material on the support. The support is prepared by heat treatment of metal microparticles, preferably of iron-based or nickel-based alloys that also include aluminum and/or yttrium. The hydrogen separation material is then deposited on the support. Preferred hydrogen separation materials include metals such as palladium, alloys, platinum, refractory metals, and alloys.

  6. Hydrogen release reactions of Al-based complex hydrides enhanced by vibrational dynamics and valences of metal cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, T.; Ramirez-Cuesta, Anibal J.; Daemen, Luke L.

    2016-08-31

    Hydrogen release from Al-based complex hydrides composed of metal cation(s) and [AlH4] – was investigated using inelastic neutron scattering viewed from vibrational dynamics. Here, the hydrogen release followed the softening of translational and [AlH4] – librational modes, which was enhanced by vibrational dynamics and the valence(s) of the metal cation(s).

  7. Molecular and physiological mechanisms of plant tolerance to toxic metals

    USDA-ARS?s Scientific Manuscript database

    Plants have evolved a myriad of adaptive mechanisms based on a number of genes to deal with the different toxic metals they encounter in the soils worldwide. These genes encode a range of different metal and organic compound transporters and enzyme pathways for the synthesis of metal detoxifying lig...

  8. Duplex aluminized coatings

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Grisaffe, S. J. (Inventor)

    1975-01-01

    The surface of a metallic base system is initially coated with a metallic alloy layer that is ductile and oxidation resistant. An aluminide coating is then applied to the metallic alloy layer. The chemistry of the metallic alloy layer is such that the oxidation resistance of the subsequently aluminized outermost layer is not seriously degraded.

  9. 46 CFR 56.70-5 - Material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... rings are used they shall be made from material of weldable quality compatible with the base metal... which does not deleteriously affect either base or weld metal, and shall be removed after welding is...

  10. Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh.

    PubMed

    Islam, Md Atikul; Romić, Davor; Akber, Md Ali; Romić, Marija

    2018-02-01

    Trace metals accumulation in soil irrigated with polluted water and human health risk from vegetable consumption was assessed based on the data available in the literature on metals pollution of water, soil, sediment and vegetables from the cites of Bangladesh. The quantitative data on metal concentrations, their contamination levels and their pollution sources have not been systematically gathered and studied so far. The data on metal concentrations, sources, contamination levels, sample collection and analytical tools used were collected, compared and discussed. The USEPA-recommended method for health risk assessment was used to estimate human risk from vegetable consumption. Concentrations of metals in water were highly variable, and the mean concentrations of Cd, Cr, Cu and As in water were found to be higher than the FAO irrigation water quality standard. In most cases, mean concentrations of metals in soil were higher than the Bangladesh background value. Based on geoaccumulation index (I geo ) values, soils of Dhaka city are considered as highly contaminated. The I geo shows Cd, As, Cu, Ni, Pb and Cr contamination of agricultural soils and sediments of the cities all over the Bangladesh. Polluted water irrigation and agrochemicals are identified as dominant sources of metals in agricultural soils. Vegetable contamination by metals poses both non-carcinogenic and carcinogenic risks to the public. Based on the results of the pollution and health risk assessments, Cd, As, Cr, Cu, Pb and Ni are identified as the priority control metals and the Dhaka city is recommended as the priority control city. This study provides quantitative evidence demonstrating the critical need for strengthened wastewater discharge regulations in order to protect residents from heavy metal discharges into the environment.

  11. Behavior and Potential Impacts of Metal-Based Engineered Nanoparticles in Aquatic Environments

    PubMed Central

    Peng, Cheng; Zhang, Wen; Gao, Haiping; Li, Yang; Tong, Xin; Li, Kungang; Zhu, Xiaoshan; Wang, Yixiang; Chen, Yongsheng

    2017-01-01

    The specific properties of metal-based nanoparticles (NPs) have not only led to rapidly increasing applications in various industrial and commercial products, but also caused environmental concerns due to the inevitable release of NPs and their unpredictable biological/ecological impacts. This review discusses the environmental behavior of metal-based NPs with an in-depth analysis of the mechanisms and kinetics. The focus is on knowledge gaps in the interaction of NPs with aquatic organisms, which can influence the fate, transport and toxicity of NPs in the aquatic environment. Aggregation transforms NPs into micrometer-sized clusters in the aqueous environment, whereas dissolution also alters the size distribution and surface reactivity of metal-based NPs. A unique toxicity mechanism of metal-based NPs is related to the generation of reactive oxygen species (ROS) and the subsequent ROS-induced oxidative stress. Furthermore, aggregation, dissolution and ROS generation could influence each other and also be influenced by many factors, including the sizes, shapes and surface charge of NPs, as well as the pH, ionic strength, natural organic matter and experimental conditions. Bioaccumulation of NPs in single organism species, such as aquatic plants, zooplankton, fish and benthos, is summarized and compared. Moreover, the trophic transfer and/or biomagnification of metal-based NPs in an aquatic ecosystem are discussed. In addition, genetic effects could result from direct or indirect interactions between DNA and NPs. Finally, several challenges facing us are put forward in the review. PMID:28336855

  12. Leaching characteristics of rare metal elements and chlorine in fly ash from ash melting plants for metal recovery.

    PubMed

    Jung, Chang-Hwan; Osako, Masahiro

    2009-05-01

    In terms of resource recovery and environmental impact, melting furnace fly ash (MFA) is attracting much attention in Japan due to its high metal content. The study aims to obtain fundamental information on using a water extraction method not only to concentrate valuable rare metals but also to remove undesirable substances such as chlorine for their recovery from MFA. The composition and leaching characteristics of MFA was investigated. The results revealed that the metal content in MFA is nearly equal to raw ore quality. The content of Ag, In, Pd, Pb, and Zn is, in fact, higher than the content of raw ore. As for leaching behavior, Ag, Bi, In, Ga, Ge, Sb, Sn, and Te showed the lowest release at a neutral pH range. Pd was leached constantly regardless of pH, but its concentration was quite low. On the other hand, most of the Tl was easily leached, revealing that water extraction is not appropriate for Tl recovery from MFA. Major elements Cl, Ca, Na, and K, occupying about 70% of MFA, were mostly leached regardless of pH. Base metal elements Cu, Pb, and Zn showed minimum solubility at a neutral pH. The leaching ratio of target rare metal elements and base metal elements suggests that the optimal pH for water extraction is 8-10, at which the leaching concentration is minimized. The water extraction process removed most of the Cl, Ca, Na, and K, and the concentration of rare metals and base metals increased by four or five times.

  13. Metal Based Synthetic Strategies and the Examination of Structure Determining Factors in Alkaline Earth Metal Compounds

    NASA Astrophysics Data System (ADS)

    Takahashi, Yuriko

    Last decades have witnessed a large expansion of the organometallic heavier alkaline earth metal species. However, continued growth of this promising area of chemistry has been slowed by severe restrictions and limitations in viable synthetic methodologies leading to difficulties in preparing and characterizing the target compounds. There is clearly a need for the further development of synthetic methodologies and detailed structure function analysis that will promote the further advancement of organoalkaline earth metal chemistry in applications as diverse as materials chemistry and catalysis. This thesis work greatly extends the synthetic options currently available towards organoalkaline earth metal species by introducing redox transmetallation protolysis (RTP), a reaction based on the readily available Ph3Bi as a non-toxic transmetallation agent. Based on a straightforward one-pot procedure and work-up, Ph3Bi based RTP presents a powerful synthetic alternative for the facile preparation of a large variety of heavy alkaline earth metal compounds. The second part of the thesis explores the effect of secondary non covalent interactions on the coordination chemistry as well as thermal properties of a series of novel alkali, alkaline earth, rare earth as well as heterobimetallic alkali/alkaline earth fluoroalkoxides. These compounds showcase the significance of non-covalent M···F-C and agostic interactions on metal stabilization and structural features, providing critical input on ligand design for the design of advanced metal organic vapor deposition (MOCVD) precursor materials. This work also showcases the impact of M···F-C interactions over M---co-ligand coordination, a critical precursor design element as well.

  14. Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines.

    PubMed

    Zhang, Yanfeng; Han, Yuwei; Yang, Jinxi; Zhu, Lingyan; Zhong, Wenjue

    2017-12-01

    The occurrence, toxicities, and ecological risks of five heavy metals (Pb, Cu, Cd, Zn and Ni) in the sediment of Taihu Lake were investigated in this study. To evaluate the toxicities caused by the heavy metals, the toxicities induced by organic contaminants and ammonia in the sediments were screened out with activated carbon and zeolite. The toxicities of heavy metals in sediments were tested with benthic invertebrates (tubificid and chironomid). The correlations between toxicity of sediment and the sediment quality guidelines (SQGs) derived previously were evaluated. There were significant correlations (p<0.0001) between the observed toxicities and the total risk quotients of the heavy metals based on SQGs, indicating that threshold effect level (TEL) and probable effect level (PEL) were reliable to predict the toxicities of heavy metals in the sediments of Taihu Lake. By contrast, the method based on acid volatile sulfides (AVS) and simultaneously extracted metals (SEM), such as ∑SEM/AVS and ∑SEM-AVS, did not show correlations with the toxicities. Moreover, the predictive ability of SQGs was confirmed by a total predicting accuracy of 77%. Ecological risk assessment based on TELs and PELs showed that the contaminations of Pb, Cu, Cd and Zn in the sediments of Taihu Lake were at relatively low or medium levels. The risks caused by heavy metals in the sediments of northern bay of the lake, which received more wastewater discharge from upper stream, were higher than other area of the lake. Copyright © 2017. Published by Elsevier B.V.

  15. Thermally Conductive Metal-Tube/Carbon-Composite Joints

    NASA Technical Reports Server (NTRS)

    Copeland, Robert J.

    2004-01-01

    An improved method of fabricating joints between metal and carbon-fiber-based composite materials in lightweight radiators and heat sinks has been devised. Carbon-fiber-based composite materials have been used in such heat-transfer devices because they offer a combination of high thermal conductivity and low mass density. Metal tubes are typically used to carry heat-transfer fluids to and from such heat-transfer devices. The present fabrication method helps to ensure that the joints between the metal tubes and the composite-material parts in such heat-transfer devices have both (1) the relatively high thermal conductances needed for efficient transfer of heat and (2) the flexibility needed to accommodate differences among thermal expansions of dissimilar materials in operation over wide temperature ranges. Techniques used previously to join metal tubes with carbon-fiber-based composite parts have included press fitting and bonding with epoxy. Both of these prior techniques have been found to yield joints characterized by relatively high thermal resistances. The present method involves the use of a solder (63 percent Sn, 37 percent Pb) to form a highly thermally conductive joint between a metal tube and a carbon-fiber-based composite structure. Ordinarily, the large differences among the coefficients of thermal expansion of the metal tube, solder, and carbon-fiber-based composite would cause the solder to pull away from the composite upon post-fabrication cooldown from the molten state. In the present method, the structure of the solder is modified (see figure) to enable it to deform readily to accommodate the differential thermal expansion.

  16. Search for effective spin injection heterostructures based on half-metal Heusler alloys/gallium arsenide semiconductors: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Sivakumar, Chockalingam

    Efficient electrical spin injection from half-metal (HM) electrodes into semiconducting (SC) channel material is a desirable aspect in spintronics, but a challenging one. Half-metals based on the Heusler alloy family are promising candidates as spin sources due to their compatibility with compound SCs, and very high Curie temperatures. Numerous efforts were made in the past two decades to grow atomically abrupt interfaces between HM_Heusler and SC heterostructures. However, diffusion of magnetic impurities into the semiconductor, defects and disorder near the interface, and formation of reacted phases were great challenges. A number of theoretical efforts were undertaken to understand the role of such material defects in destroying the half-metallicity and also to propose promising half-metal/SC heterostructures based on first principles. This dissertation summarizes the investigations undertaken to decode the complexity of, and to understand the various physical properties of, a number of real-world Heusler/SC heterostructure samples, based on the ab initio density functional theory (DFT) approach. In addition, it summarizes various results from the first principles-based search for promising half-metal/SC heterostructures. First, I present results from DFT-based predictive models of actual Co 2MnSi (CMS)/GaAs heterostructures grown in (001) texture. I investigate the physical, chemical, electronic, and magnetic properties to understand the complexity of these structures and to pinpoint the origin of interfacial effects, when present. Based on the investigations of such models, I discuss the utility of those actual samples in spintronic applications. Next, I summarise the results from an ab initio DFT-based survey of 6 half-Heusler half-metal/GaAs heterostructure models in (110) texture, since compound semiconductors such as GaAs have very long spin lifetime in (110) layering. I show 3 half-Heusler alloys (CoVAs, NiMnAs, and RhFeGe), that when interfaced with GaAs(110), fully preserve the half-metallicity at the interface. Finally, I show the advantages of inserting half-Heusler SCs, particularly CoTiAs and CoTiSb, as spacers in between CMS/GaAs systems in (110) layering. Based on DFT calculations, I show that CoTiAs is a promising spacer that could enhance the perpendicular magnetic anisotropy in CMS, while preserving the important half-metallic character at the heterojunctions between CMS/CoTiAs/GaAs(110). This spacer could also serve to prevent in-diffusion of magnetic impurities into the channel material.

  17. Metal-organic framework materials based on icosahedral boranes and carboranes

    DOEpatents

    Mirkin, Chad A.; Hupp, Joseph T.; Farha, Omar K.; Spokoyny, Alexander M.; Mulfort, Karen L.

    2010-11-02

    Disclosed herein are metal-organic frameworks of metals and boron rich ligands, such as carboranes and icosahedral boranes. Methods of synthesizing and using these materials in gas uptake are disclosed.

  18. Economic Geology (Metals)

    ERIC Educational Resources Information Center

    Gair, Jacob E.

    1972-01-01

    Reviews metalliferous ore-deposit research reported in 1971. Research was dominated by isotopic studies, and worldwide metals exploration was marked by announcements of important new discoveries of base metals, iron ore, nickel, titanium, and uranium. (Author/PR)

  19. Framework for metals risk assessment [ Journal Article

    EPA Science Inventory

    This is a science-based document that describes basic principles that address the special attributes and behaviors of metals and metal compounds to be considered when assessing their human health and ecological risks.

  20. Method and composition for testing for the presence of an alkali metal

    DOEpatents

    Guon, Jerold

    1981-01-01

    A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques.

  1. Thermal barrier coatings

    DOEpatents

    Alvin, Mary Anne [Pittsburg, PA

    2010-06-22

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  2. Recovery of gold from computer circuit board scrap using aqua regia.

    PubMed

    Sheng, Peter P; Etsell, Thomas H

    2007-08-01

    Computer circuit board scrap was first treated with one part concentrated nitric acid and two parts water at 70 degrees C for 1 h. This step dissolved the base metals, thereby liberating the chips from the boards. After solid-liquid separation, the chips, intermixed with some metallic flakes and tin oxide precipitate, were mechanically crushed to liberate the base and precious metals contained within the protective plastic or ceramic chip cases. The base metals in this crushed product were dissolved by leaching again with the same type of nitric acid-water solution. The remaining solid constituents, crushed chips and resin, plus solid particles of gold, were leached with aqua regia at various times and temperatures. Gold was precipitated from the leachate with ferrous sulphate.

  3. Single-step fabrication of thin-film linear variable bandpass filters based on metal-insulator-metal geometry.

    PubMed

    Williams, Calum; Rughoobur, Girish; Flewitt, Andrew J; Wilkinson, Timothy D

    2016-11-10

    A single-step fabrication method is presented for ultra-thin, linearly variable optical bandpass filters (LVBFs) based on a metal-insulator-metal arrangement using modified evaporation deposition techniques. This alternate process methodology offers reduced complexity and cost in comparison to conventional techniques for fabricating LVBFs. We are able to achieve linear variation of insulator thickness across a sample, by adjusting the geometrical parameters of a typical physical vapor deposition process. We demonstrate LVBFs with spectral selectivity from 400 to 850 nm based on Ag (25 nm) and MgF2 (75-250 nm). Maximum spectral transmittance is measured at ∼70% with a Q-factor of ∼20.

  4. A Review on Platelet Activating Factor Inhibitors: Could a New Class of Potent Metal-Based Anti-Inflammatory Drugs Induce Anticancer Properties?

    PubMed Central

    Lagopati, Nefeli; Tsilibary, Effie C.

    2017-01-01

    In this minireview, we refer to recent results as far as the Platelet Activating Factor (PAF) inhibitors are concerned. At first, results of organic compounds (natural and synthetic ones and specific and nonspecific) as inhibitors of PAF are reported. Emphasis is given on recent results about a new class of the so-called metal-based inhibitors of PAF. A small library of 30 metal complexes has been thus created; their anti-inflammatory activity has been further evaluated owing to their inhibitory effect against PAF in washed rabbit platelets (WRPs). In addition, emphasis has also been placed on the identification of preliminary structure-activity relationships for the different classes of metal-based inhibitors. PMID:28458618

  5. Numerical studies on a plasmonic temperature nanosensor based on a metal-insulator-metal ring resonator structure for optical integrated circuit applications

    NASA Astrophysics Data System (ADS)

    Al-mahmod, Md. Jubayer; Hyder, Rakib; Islam, Md Zahurul

    2017-07-01

    A nanosensor, based on a metal-insulator-metal (MIM) plasmonic ring resonator, is proposed for potential on-chip temperature sensing and its performance is evaluated numerically. The sensor components can be fabricated by using planar processes on a silicon substrate, making its manufacturing compatible to planar electronic fabrication technology. The sensor, constructed using silver as the metal rings and a thermo-optic liquid ethanol film between the metal layers, is capable of sensing temperature with outstanding optical sensitivity, as high as -0.53 nm/°C. The resonance wavelength is found to be highly sensitive to the refractive index of the liquid dielectric film. The resonance peak can be tuned according to the requirement of intended application by changing the radii of the ring resonator geometries in the design phase. The compact size, planar and silicon-based design, and very high resolutions- these characteristics are expected to make this sensor technology a preferred choice for lab-on-a-chip applications, as compared to other contemporary sensors.

  6. Synthesis and Spectral Characterization of Antifungal Sensitive Schiff Base Transition Metal Complexes

    PubMed Central

    Sakthivel, A.; Rajasekaran, K.

    2007-01-01

    New N2O2 donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, fast atom bombardment (FAB) mass, IR, UV-Vis, and 1H NMR spectral studies. The data show that the complexes have the composition of ML type. The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans, Rhizoctonia bataicola and Trichoderma harizanum. All the metal complexes showed stronger antifungal activities than the free ligand. The minimum inhibitory concentrations (MIC) of the metal complexes were found in the range of 10~31 µg/ml. PMID:24015086

  7. Metal Artifact Reduction in X-ray Computed Tomography Using Computer-Aided Design Data of Implants as Prior Information.

    PubMed

    Ruth, Veikko; Kolditz, Daniel; Steiding, Christian; Kalender, Willi A

    2017-06-01

    The performance of metal artifact reduction (MAR) methods in x-ray computed tomography (CT) suffers from incorrect identification of metallic implants in the artifact-affected volumetric images. The aim of this study was to investigate potential improvements of state-of-the-art MAR methods by using prior information on geometry and material of the implant. The influence of a novel prior knowledge-based segmentation (PS) compared with threshold-based segmentation (TS) on 2 MAR methods (linear interpolation [LI] and normalized-MAR [NORMAR]) was investigated. The segmentation is the initial step of both MAR methods. Prior knowledge-based segmentation uses 3-dimensional registered computer-aided design (CAD) data as prior knowledge to estimate the correct position and orientation of the metallic objects. Threshold-based segmentation uses an adaptive threshold to identify metal. Subsequently, for LI and NORMAR, the selected voxels are projected into the raw data domain to mark metal areas. Attenuation values in these areas are replaced by different interpolation schemes followed by a second reconstruction. Finally, the previously selected metal voxels are replaced by the metal voxels determined by PS or TS in the initial reconstruction. First, we investigated in an elaborate phantom study if the knowledge of the exact implant shape extracted from the CAD data provided by the manufacturer of the implant can improve the MAR result. Second, the leg of a human cadaver was scanned using a clinical CT system before and after the implantation of an artificial knee joint. The results were compared regarding segmentation accuracy, CT number accuracy, and the restoration of distorted structures. The use of PS improved the efficacy of LI and NORMAR compared with TS. Artifacts caused by insufficient segmentation were reduced, and additional information was made available within the projection data. The estimation of the implant shape was more exact and not dependent on a threshold value. Consequently, the visibility of structures was improved when comparing the new approach to the standard method. This was further confirmed by improved CT value accuracy and reduced image noise. The PS approach based on prior implant information provides image quality which is superior to TS-based MAR, especially when the shape of the metallic implant is complex. The new approach can be useful for improving MAR methods and dose calculations within radiation therapy based on the MAR corrected CT images.

  8. Creep properties of PWC-11 base metal and weldments as affected by heat treatment

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Moore, T. J.; Grobstein, T. L.

    1986-01-01

    In a preliminary study using single specimens for each condition, PWC-11 (a niobium-base alloy with a nominal composition of Nb-1%Zr-0.1%C) was creep tested at 1350 K and 40 MPa. Base metal specimens and specimens with transverse electron beam welds were tested with and without a 1000 hr, 1350 K aging treatment prior to testing. In the annealed condition (1 hr at 1755 K + 2 hr at 1475 K), the base metal exhibited superior creep strength compared to the nonaged condition, reaching 1 percent strain in 3480 hr. A 1000 hr, 1350 K aging treatment prior to creep testing had a severe detrimental effect on creep strength of the base metal and transverse electron beam weldments, reducing the time to attain 1 percent strain by an order of magnitude. Extrapolated temperature compensated creep rates indicate that the present heat of PWC-11 may be four times as creep resistant as similarly tested Nb-1%Zr. The extrapolated stress to achieve 1 percent creep strain in 7 yr at 1350 K is 2.7 MPa for annealed Nb-1%Zr and 12 MPa for annealed and aged PWC-11 base metal with and without a transverse electron beam weld.

  9. Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yue; Zhao, Yuming; Li, Yuguang C.

    The lithium (Li) metal anode suffers severe interfacial instability from its high reactivity toward liquid electrolytes, especially carbonate-based electrolytes, resulting in poor electrochemical performance of batteries that use 4 V high-capacity cathodes. In this paper, we report a new skin-grafting strategy that stabilizes the Li metal–liquid electrolyte interface by coating the Li metal surface with poly((N-2,2-dimethyl-1,3-dioxolane-4-methyl)-5-norbornene-exo-2,3-dicarboximide), a chemically and electrochemically active polymer layer. This layer, composed of cyclic ether groups with a stiff polycyclic main chain, serves as a grafted polymer skin on the Li metal anode not only to incorporate ether-based polymeric components into the solid-electrolyte interphase (SEI) butmore » also to accommodate Li deposition/dissolution under the skin in a dendrite/moss-free manner. Consequently, a Li-metal battery employing a Li metal anode with the grafted skin paired with LiNi 0.5Co 0.2Mn 0.3O 2 cathode has a 90.0% capacity retention after 400 charge/discharge cycles and a capacity of 1.2 mAh/cm 2 in a carbonate-based electrolyte. Finally, this proof-of-concept study provides a new direction for regulating the interfacial chemistry of Li metal anodes and for enabling high-performance Li-metal batteries.« less

  10. Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries

    DOE PAGES

    Gao, Yue; Zhao, Yuming; Li, Yuguang C.; ...

    2017-10-06

    The lithium (Li) metal anode suffers severe interfacial instability from its high reactivity toward liquid electrolytes, especially carbonate-based electrolytes, resulting in poor electrochemical performance of batteries that use 4 V high-capacity cathodes. In this paper, we report a new skin-grafting strategy that stabilizes the Li metal–liquid electrolyte interface by coating the Li metal surface with poly((N-2,2-dimethyl-1,3-dioxolane-4-methyl)-5-norbornene-exo-2,3-dicarboximide), a chemically and electrochemically active polymer layer. This layer, composed of cyclic ether groups with a stiff polycyclic main chain, serves as a grafted polymer skin on the Li metal anode not only to incorporate ether-based polymeric components into the solid-electrolyte interphase (SEI) butmore » also to accommodate Li deposition/dissolution under the skin in a dendrite/moss-free manner. Consequently, a Li-metal battery employing a Li metal anode with the grafted skin paired with LiNi 0.5Co 0.2Mn 0.3O 2 cathode has a 90.0% capacity retention after 400 charge/discharge cycles and a capacity of 1.2 mAh/cm 2 in a carbonate-based electrolyte. Finally, this proof-of-concept study provides a new direction for regulating the interfacial chemistry of Li metal anodes and for enabling high-performance Li-metal batteries.« less

  11. Development of a method for detecting trace metals in aqueous solutions based on the coordination chemistry of hexahydrotriazines.

    PubMed

    Wojtecki, Rudy J; Yuen, Alexander Y; Zimmerman, Thomas G; Jones, Gavin O; Horn, Hans W; Boday, Dylan J; Hedrick, James L; García, Jeannette M

    2015-08-07

    The detection of trace amounts (<10 ppb) of heavy metals in aqueous solutions is described using 1,3,5-hexahydro-1,3,5-triazines (HTs) as chemical indicators and a low cost fluorimeter-based detection system. This method takes advantage of the inherent properties of HTs to coordinate strongly with metal ions in solution, a fundamental property that was studied using a combination of analytical tools (UV-Vis titrations, (1)H-NMR titrations and computational modeling). Based on these fundamental studies that show significant changes in the HT UV signature when a metal ion is present, HT compounds were used to prepare indicator strips that resulted in significant fluorescence changes when a metal was present. A portable and economical approach was adopted to test the concept of utilizing HTs to detect heavy metals using a fluorimeter system that consisted of a low-pressure mercury lamp, a photo-detector, a monolithic photodiode and an amplifier, which produces a voltage proportional to the magnitude of the visible fluorescence emission. Readings of the prepared HT test strips were evaluated by exposure to two different heavy metals at the safe threshold concentration described by the U.S. Environmental Protection Agency (EPA) for Cr(3+) and Ag(2+) (100 μg L(-1) and 6.25, respectively). This method of detection could be used to the presence of either metal at these threshold concentrations.

  12. A new face of phenalenyl-based radicals in the transition metal-free C-H arylation of heteroarenes at room temperature: trapping the radical initiator via C-C σ-bond formation.

    PubMed

    Ahmed, Jasimuddin; P, Sreejyothi; Vijaykumar, Gonela; Jose, Anex; Raj, Manthan; Mandal, Swadhin K

    2017-11-01

    The radical-mediated transition metal-free approach for the direct C-H bond functionalization of arenes is considered as a cost effective alternative to transition metal-based catalysis. An organic ligand-based radical plays a key role by generating an aryl radical which undergoes a subsequent functionalization process. The design principle of the present study takes advantage of a relatively stable odd alternant hydrocarbon-based phenalenyl (PLY) radical. In this study, the first transition metal-free catalyzed direct C-H arylation of a variety of heteroarenes such as azoles, furan, thiophene and pyridine at room temperature has been reported using a phenalenyl-based radical without employing any photoactivation step. This protocol has been successfully applied to the gram scale synthesis of core moieties of bioactive molecules. The phenalenyl-based radical initiator has been characterized crystallographically by trapping it via the formation of a C-C σ-bond between the phenalenyl radical and solvent-based radical species.

  13. DFT investigation of the vibrational properties of GC Watson-Crick and Hoogsteen base pairs in the presence of Mg²⁺, Ca²⁺, and Cu²⁺ ions.

    PubMed

    Morari, Cristian; Muntean, Cristina M; Tripon, Carmen; Buimaga-Iarinca, Luiza; Calborean, Adrian

    2014-04-01

    The binding effects of Mg²⁺, Ca²⁺, and Cu²⁺ ions on the vibrational properties of guanine-cytosine base pairs have been performed using density functional theory investigations. Both Watson-Crick and Hoogsteen configurations of the base pairs were investigated. In Watson-Crick configuration, the metal was coordinated at N7 atom of guanine, while in the case of Hoogsteen configuration, the coordination is at N3 atom of guanine. We have pointed out the geometric properties of the metal-GC base pairs structure, as well as the vibrational bands that can be used to detect the presence of metallic ions in the Watson-Crick and Hoogsteen GC structures. For the geometric models used by us, the vibrational amplitudes of metallic atoms were stronger for wavenumbers lower than 500 cm⁻¹. This suggests that in the experimental studies on DNA the presence of the three metallic atoms (Mg, Ca, and Cu) can be explicitly detected at low frequencies.

  14. Stable room temperature magnetocurrent in electrodeposited permeable n-type metal base transistor

    NASA Astrophysics Data System (ADS)

    Silva, G. V. O.; Teixeira, H. A.; Mello, S. L. A.; de Araujo, C. I. L.

    2018-02-01

    We investigated a permeable metal base transistor consisting of a ZnO/NiFe/Si heterostructure. Both ZnO and NiFe layers were grown by electrodeposition techniques, using only adhesive tape masks to define deposition regions. The base permeability can thus be controlled by varying the NiFe deposition time. We report here our best results obtained for the permeable NiFe base close to the electrical percolation threshold, which gives reasonable sensitivity to the device. Magnetocurrent measurements carried out at room temperature show that this permeable metal base transistor is stable and sensitive under applied magnetic fields of low intensities, ˜100 Oe, required for electronics integration.

  15. Exploration on Wire Discharge Machining Added Powder for Metal-Based Diamond Grinding Wheel on Wire EDM Dressing and Truing of Grinding Tungsten Carbide Material

    NASA Astrophysics Data System (ADS)

    Chow, H. M.; Yang, L. D.; Lin, Y. C.; Lin, C. L.

    2017-12-01

    In this paper, the effects of material removal rate and abrasive grain protrusion on the metal-based diamond grinding wheel were studied to find the optimal parameters for adding powder and wire discharge. In addition, this kind of electric discharge method to add powder on the metal-based diamond grinding wheel on line after dressing and truing will be applied on tungsten carbide to study the grinding material removal rate, grinding wheel wear, surface roughness, and surface micro-hardness.

  16. Ink-Jet Printer Forms Solar-Cell Contacts

    NASA Technical Reports Server (NTRS)

    Alexander, Paul, Jr.; Vest, R. W.; Binford, Don A.; Tweedell, Eric P.

    1988-01-01

    Contacts formed in controllable patterns with metal-based inks. System forms upper metal contact patterns on silicon photovoltaic cells. Uses metallo-organic ink, decomposes when heated, leaving behind metallic, electrically conductive residue in printed area.

  17. Refractory metals welded or brazed with tungsten inert gas equipment

    NASA Technical Reports Server (NTRS)

    Wisner, J. P.

    1965-01-01

    Appropriate brazing metals and temperatures facilitate the welding or brazing of base metals with tungsten inert gas equipment. The highest quality bond is obtained when TIG welding is performed in an inert atmosphere.

  18. Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology.

    PubMed

    Sasagawa, Kiyotaka; Shishido, Sanshiro; Ando, Keisuke; Matsuoka, Hitoshi; Noda, Toshihiko; Tokuda, Takashi; Kakiuchi, Kiyomi; Ohta, Jun

    2013-05-06

    In this study, we demonstrate a polarization sensitive pixel for a complementary metal-oxide-semiconductor (CMOS) image sensor based on 65-nm standard CMOS technology. Using such a deep-submicron CMOS technology, it is possible to design fine metal patterns smaller than the wavelengths of visible light by using a metal wire layer. We designed and fabricated a metal wire grid polarizer on a 20 × 20 μm(2) pixel for image sensor. An extinction ratio of 19.7 dB was observed at a wavelength 750 nm.

  19. Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide.

    PubMed

    Lee, Dong-Jin; Yim, Hae-Dong; Lee, Seung-Gol; O, Beom-Hoan

    2011-10-10

    We propose a tiny surface plasmon resonance (SPR) sensor integrated on a silicon waveguide based on vertical coupling into a finite thickness metal-insulator-metal (f-MIM) plasmonic waveguide structure acting as a Fabry-Perot resonator. The resonant characteristics of vertically coupled f-MIM plasmonic waveguides are theoretically investigated and optimized. Numerical results show that the SPR sensor with a footprint of ~0.0375 μm2 and a sensitivity of ~635 nm/RIU can be designed at a 1.55 μm transmission wavelength.

  20. METHOD FOR SOLDERING NORMALLY NON-SOLDERABLE ARTICLES

    DOEpatents

    McGuire, J.C.

    1959-11-24

    Methods are presented for coating and joining materials which are considered difficult to solder by utilizing an abrasive wheel and applying a bar of a suitable coating material, such as Wood's metal, to the rotating wheel to fill the cavities of the abrasive wheel and load the wheel with the coating material. The surface of the base material is then rubbed against the loaded rotating wheel, thereby coating the surface with the soft coating metal. The coating is a cohesive bonded layer and holds the base metal as tenaciously as a solder holds to easily solderable metals.

  1. Electrochemical Energy Summit An International Summit in Support of Societal Energy Needs

    DTIC Science & Technology

    2015-03-31

    40A/dm2, 80 deg.C. Raney Ni alloy coating had advantage for oxygen over- voltage. (100mV – 200mV saving against Ni metal) Thermal decomposition...100mV – 200mV saving against Ni base metal. Cathode: Thermal decomposition coating of mixed noble metal on Ni base metal showed low hydrogen over... thermal stability up to 210 ◦C, and exhibited a high proton conductivity (2.4×10−2 S cm−1 at 80 ◦C) and a low methanol permeability (3.3×10−7 cm2 s−1

  2. Bioassisted Phytomining of Gold

    NASA Astrophysics Data System (ADS)

    Maluckov, Biljana S.

    2015-05-01

    Bioassisted phytomining implies targeted use of microorganisms and plants for the selective recovery of the metal. Metals from undissolved compounds are dissolved by applying specially chosen microorganisms and therefore become available to the hyperaccumulating plants. In the article, the selective extraction method of base metals and the precious metal gold by using microorganisms and plants is discussed.

  3. Introduction to Sheet Metal. Instructor Edition. Introduction to Construction Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in sheet metal work to students who have chosen to explore careers in construction. The following topics are covered in the course's three instructional units: sheet metal materials, sheet metal tools, and applied skills. Each unit contains some…

  4. The Gellyfish: an in-situ equilibrium-based sampler for determining multiple free metal ion concentrations in marine ecosystems

    EPA Science Inventory

    Free metal ions are usually the most bioavailable and toxic metal species to aquatic organisms, but they are difficult to measure because of their extremely low concentrations in the marine environment. Many of the current methods for determining free metal ions are complicated a...

  5. MCPB.py: A Python Based Metal Center Parameter Builder.

    PubMed

    Li, Pengfei; Merz, Kenneth M

    2016-04-25

    MCPB.py, a python based metal center parameter builder, has been developed to build force fields for the simulation of metal complexes employing the bonded model approach. It has an optimized code structure, with far fewer required steps than the previous developed MCPB program. It supports various AMBER force fields and more than 80 metal ions. A series of parametrization schemes to derive force constants and charge parameters are available within the program. We give two examples (one metalloprotein example and one organometallic compound example), indicating the program's ability to build reliable force fields for different metal ion containing complexes. The original version was released with AmberTools15. It is provided via the GNU General Public License v3.0 (GNU_GPL_v3) agreement and is free to download and distribute. MCPB.py provides a bridge between quantum mechanical calculations and molecular dynamics simulation software packages thereby enabling the modeling of metal ion centers. It offers an entry into simulating metal ions in a number of situations by providing an efficient way for researchers to handle the vagaries and difficulties associated with metal ion modeling.

  6. Micromechanics Modeling of Fracture in Nanocrystalline Metals

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Piascik, R. S.; Raju, I. S.; Harris, C. E.

    2002-01-01

    Nanocrystalline metals have very high theoretical strength, but suffer from a lack of ductility and toughness. Therefore, it is critical to understand the mechanisms of deformation and fracture of these materials before their full potential can be achieved. Because classical fracture mechanics is based on the comparison of computed fracture parameters, such as stress intlmsity factors, to their empirically determined critical values, it does not adequately describe the fundamental physics of fracture required to predict the behavior of nanocrystalline metals. Thus, micromechanics-based techniques must be considered to quanti@ the physical processes of deformation and fracture within nanocrystalline metals. This paper discusses hndamental physicsbased modeling strategies that may be useful for the prediction Iof deformation, crack formation and crack growth within nanocrystalline metals.

  7. The development and mechanical characterization of aluminium copper-carbon fiber metal matrix hybrid composite

    NASA Astrophysics Data System (ADS)

    Manzoor, M. U.; Feroze, M.; Ahmad, T.; Kamran, M.; Butt, M. T. Z.

    2018-04-01

    Metal matrix composites (MMCs) come under advanced materials that can be used for a wide range of industrial applications. MMCs contain a non-metallic reinforcement incorporated into a metallic matrix which can enhance properties over base metal alloys. Copper-Carbon fiber reinforced aluminium based hybrid composites were prepared by compo casting method. 4 weight % copper was used as alloying element with Al because of its precipitation hardened properties. Different weight compositions of composites were developed and characterized by mechanical testing. A significant improvement in tensile strength and micro hardness were found, before and after heat treatment of the composite. The SEM analysis of the fractured surfaces showed dispersed and embedded Carbon fibers within the network leading to the enhanced strength.

  8. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore

    NASA Astrophysics Data System (ADS)

    Sun, Yong-sheng; Han, Yue-xin; Li, Yan-feng; Li, Yan-jun

    2017-02-01

    To reveal the formation and characteristics of metallic iron grains in coal-based reduction, oolitic iron ore was isothermally reduced in various reduction times at various reduction temperatures. The microstructure and size of the metallic iron phase were investigated by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and a Bgrimm process mineralogy analyzer. In the results, the reduced Fe separates from the ore and forms metallic iron protuberances, and then the subsequent reduced Fe diffuses to the protuberances and grows into metallic iron grains. Most of the metallic iron grains exist in the quasi-spherical shape and inlaid in the slag matrix. The cumulative frequency of metallic iron grain size is markedly influenced by both reduction time and temperature. With increasing reduction temperature and time, the grain size of metallic iron obviously increases. According to the classical grain growth equation, the growth kinetic parameters, i.e., time exponent, growth activation energy, and pre-exponential constant, are estimated to be 1.3759 ± 0.0374, 103.18 kJ·mol-1, and 922.05, respectively. Using these calculated parameters, a growth model is established to describe the growth behavior of metallic iron grains.

  9. Microstructures and Mechanical Properties of Weld Metal and Heat-Affected Zone of Electron Beam-Welded Joints of HG785D Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Han, Jianmin; Tan, Caiwang; Yang, Zhiyong; Wang, Junqiang

    2016-12-01

    Vacuum electron beam welding (EBW) process was employed to butt weld 10-mm-thick HG785D high-strength steels. The penetration into the steel was adjusted by beam current. Microstructures at weld metal and heat-affected zone (HAZ) regions were comparatively observed. Mechanical properties of the EBWed joints including Vickers hardness, tensile and Charpy impact tests were evaluated. The results indicated that microstructures at the weld metal consisted of coarse lath martensite and a small amount of acicular martensite, while that in the HAZ was tempered sorbite and martensite. The grain size in the weld metal was found to be larger than that in the HAZ, and its proportion in weld metal was higher. The hardness in the weld metal was higher than the HAZ and base metal. The tensile strength and impact toughness in the HAZ was higher than that in the weld metal. All the behaviors were related to microstructure evolution caused by higher cooling rates and state of base metal. The fracture surfaces of tensile and impact tests on the optimized joint were characterized by uniform and ductile dimples. The results differed significantly from that obtained using arc welding process.

  10. Effect of Heat-Affected Zone on Spot Weldability in Automotive Ultra High Strength Steel Sheet

    NASA Astrophysics Data System (ADS)

    Nagasaka, Akihiko; Naito, Junya; Chinzei, Shota; Hojo, Tomohiko; Horiguchi, Katsumi; Shimizu, Yuki; Furusawa, Takuro; Kitahara, Yu

    Effect of heat-affected zone (HAZ) on spot weldability in automotive hot stamping (HS) steel sheet was investigated for automotive applications. Tensile test was performed on a tensile testing machine at a crosshead speed of 3 mm/min, using spot welded test specimen (Parallel length: 60 mm, Width: 20 mm, Thickness: 1.4 mm, Tab: 20×20 mm). The spot welding test was carried out using spot welded test specimen with welding current (I) of 6.3 kA to 9.5 kA. Hardness was measured with the dynamic ultra micro Vickers hardness tester. In HS steel, has very high strength of 1 500 MPa, tensile strength (TS) and total elongation (TEl) of the spot welded test specimen of HS steel were lower than those of base metal test specimen. The spot welded test specimen broke in the weld. The Vickers hardnesses (HVs) of base metal and fusion zone of hot stamping steel were around HV500. In addition, the hardness of HAZ was under HV300. The difference of hardness between fusion zone and HAZ was around HV200. The hardness distribution acted as a notch. On the other hand, in dual phase (DP) steel, has low strength of 590 MPa, the TS of spot welded test specimen of DP steel was the same as the base metal test specimen because of the breaking of base metal. The TEl of the spot welded test specimen of DP steel was smaller than that of base metal test specimen. In the spot welded test specimen of DP steel, the hardness of base metal was around HV200 and the fusion zone was around HV500. The hardness distribution did not act as a notch. The difference in hardness between base metal and HAZ acted on a crack initiation at HAZ softening.

  11. Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/Super Duplex Stainless Steel Joint

    NASA Astrophysics Data System (ADS)

    Rahmani, Mehdi; Eghlimi, Abbas; Shamanian, Morteza

    2014-10-01

    To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.

  12. Metal Ion Modeling Using Classical Mechanics

    PubMed Central

    2017-01-01

    Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems. PMID:28045509

  13. Minor metals and renewable energy—Diversifying America’s energy sources

    USGS Publications Warehouse

    Singerling, Sheryl A.; Nassar, Nedal T.

    2017-08-16

    Solar photovoltaic (PV) and wind turbine technologies are projected to make up an increasing proportion of electricity generation capacity in the United States in the coming decades. By 2050, they will account for 36 percent (or 566 gigawatts) of capacity compared with about 11 percent (or 118 gigawatts) in 2016 (fig. 1; EIA, 2017). There are several different types of commercial solar PV and wind turbine technologies, and each type makes use of different minor metals. “Minor metal” is the term used for metals for which world production is small compared with the more widely produced base metals, and they are often produced as byproducts of the mining or processing of base metals. Minor metals used in renewable energy technologies often have complex supply chains, are often produced primarily outside of the United States, and are also used in many other applications. A larger amount of minor metals will be needed in the future to support the projected increases in solar PV and wind energy production capacity (Nassar and others, 2016).

  14. Metallic Contact between MoS2 and Ni via Au Nanoglue.

    PubMed

    Shi, Xinying; Posysaev, Sergei; Huttula, Marko; Pankratov, Vladimir; Hoszowska, Joanna; Dousse, Jean-Claude; Zeeshan, Faisal; Niu, Yuran; Zakharov, Alexei; Li, Taohai; Miroshnichenko, Olga; Zhang, Meng; Wang, Xiao; Huang, Zhongjia; Saukko, Sami; González, Diego López; van Dijken, Sebastiaan; Alatalo, Matti; Cao, Wei

    2018-05-01

    A critical factor for electronics based on inorganic layered crystals stems from the electrical contact mode between the semiconducting crystals and the metal counterparts in the electric circuit. Here, a materials tailoring strategy via nanocomposite decoration is carried out to reach metallic contact between MoS 2 matrix and transition metal nanoparticles. Nickel nanoparticles (NiNPs) are successfully joined to the sides of a layered MoS 2 crystal through gold nanobuffers, forming semiconducting and magnetic NiNPs@MoS 2 complexes. The intrinsic semiconducting property of MoS 2 remains unchanged, and it can be lowered to only few layers. Chemical bonding of the Ni to the MoS 2 host is verified by synchrotron radiation based photoemission electron microscopy, and further proved by first-principles calculations. Following the system's band alignment, new electron migration channels between metal and the semiconducting side contribute to the metallic contact mechanism, while semiconductor-metal heterojunctions enhance the photocatalytic ability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Broadband telecom transparency of semiconductor-coated metal nanowires: more transparent than glass.

    PubMed

    Paniagua-Domínguez, R; Abujetas, D R; Froufe-Pérez, L S; Sáenz, J J; Sánchez-Gil, J A

    2013-09-23

    Metallic nanowires (NW) coated with a high permittivity dielectric are proposed as means to strongly reduce the light scattering of the conducting NW, rendering them transparent at infrared wavelengths of interest in telecommunications. Based on a simple, universal law derived from electrostatics arguments, we find appropriate parameters to reduce the scattering efficiency of hybrid metal-dielectric NW by up to three orders of magnitude as compared with the scattering efficiency of the homogeneous metallic NW. We show that metal@dielectric structures are much more robust against fabrication imperfections than analogous dielectric@metal ones. The bandwidth of the transparent region entirely covers the near IR telecommunications range. Although this effect is optimum at normal incidence and for a given polarization, rigorous theoretical and numerical calculations reveal that transparency is robust against changes in polarization and angle of incidence, and also holds for relatively dense periodic or random arrangements. A wealth of applications based on metal-NWs may benefit from such invisibility.

  16. BODIPY-based fluorometric sensor array for the highly sensitive identification of heavy-metal ions.

    PubMed

    Niu, Li-Ya; Li, Hui; Feng, Liang; Guan, Ying-Shi; Chen, Yu-Zhe; Duan, Chun-Feng; Wu, Li-Zhu; Guan, Ya-Feng; Tung, Chen-Ho; Yang, Qing-Zheng

    2013-05-02

    A BODIPY(4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)-based fluorometric sensor array has been developed for the highly sensitive detection of eight heavy-metal ions at micromolar concentration. The di-2-picolyamine (DPA) derivatives combine high affinities for a variety of heavy-metal ions with the capacity to perturb the fluorescence properties of BODIPY, making them perfectly suitable for the design of fluorometric sensor arrays for heavy-metal ions. 12 cross-reactive BODIPY fluorescent indicators provide facile identification of the heavy-metal ions using a standard chemometric approach (hierarchical clustering analysis); no misclassifications were found over 45 trials. Clear differentiation among heavy-metal ions as a function of concentration was also achieved, even down to 10(-7)M. A semi-quantitative interpolation of the heavy-metal concentration is obtained by comparing the total Euclidean distance of the measurement with a set of known concentrations in the library. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Influence of Solute Content and Solidification Parameters on Grain Refinement of Aluminum Weld Metal

    NASA Astrophysics Data System (ADS)

    Schempp, Philipp; Cross, Carl Edward; Pittner, Andreas; Rethmeier, Michael

    2013-07-01

    Grain refinement provides an important possibility to enhance the mechanical properties ( e.g., strength and ductility) and the weldability (susceptibility to solidification cracking) of aluminum weld metal. In the current study, a filler metal consisting of aluminum base metal and different amounts of commercial grain refiner Al Ti5B1 was produced. The filler metal was then deposited in the base metal and fused in a GTA welding process. Additions of titanium and boron reduced the weld metal mean grain size considerably and resulted in a transition from columnar to equiaxed grain shape ( CET). In commercial pure aluminum (Alloy 1050A), the grain-refining efficiency was higher than that in the Al alloys 6082 and 5083. Different welding and solidification parameters influenced the grain size response only slightly. Furthermore, the observed grain-size reduction was analyzed by means of the undercooling parameter P and the growth restriction parameter Q, which revealed the influence of solute elements and nucleant particles on grain size.

  18. Controllable synthesis and property of graphene-based magnetic metal nanostructures

    NASA Astrophysics Data System (ADS)

    Wu, Kong-Lin; Li, Xiang-Zi; Wei, Xian-Wen; Ding, Ting-Hui; Jiang, Miao; Zhang, Wen-Juan; Ye, Yin

    2014-12-01

    A facile and effective solution phase reduction method was developed to synthesize graphene-based magnetic metal nanocomposites. Metals (Co, and Ni) or alloys (Fe51Co49, Fe48Ni52, Ni49Co51, Co51Cu49, and Ni52Cu48)/reduced graphene oxide (RGO) nanocomposites were successfully prepared by reduction of the corresponding aqueous metal ions and ethylenediamine (EDA)-graphene oxide (GO) with hydrazine hydrate at 353 K for 1 h under N2 atmosphere. The effects of synthetic parameters such as metal ions concentration, adding sequence of NaOH and N2H4·H2O, linkage agent and reaction time on the formation of nanocomposites were investigated. The experimental results showed that using ethylenediamine and adding sequence played critical roles in the formation of metals or alloys/RGO nanocomposites. Magnetic hysteresis measurements revealed that the as-synthesized metals or alloys in nanocomposites showed excellent soft magnetic behavior with enhanced saturation magnetization, and could have promising applications in biotechnology, catalysis, and magnetic storage devices.

  19. Advances in high temperature components for AMTEC (alkali metal thermal-to-electric converter)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R.M.; Jeffries-Nakamura, B.; Underwood, M.L.

    1991-12-31

    Long lifetimes are required for AMTEC (or sodium heat engine) components for aerospace and terrestrial applications, and the high heat input temperature as well as the alkali metal liquid and vapor environment places unusual demands on the materials used to construct AMTEC devices. In addition, it is important to maximize device efficiency and power density, while maintaining a long life capability. In addition to the electrode, which must provide both efficient electrode kinetics, transport of the alkali metal, and low electrical resistance, other high temperature components of the cell face equally demanding requirements. The beta{double_prime} alumina solid electrolyte (BASE), themore » seal between the BASE ceramic and its metallic transition to the hot alkali metal (liquid or vapor) source, and metallic components of the device are exposed to hot liquid alkali metal. Modification of AMTEC components may also be useful in optimizing the device for particular operating conditions. In particular, a potassium AMTEC may be expected to operate more efficiently at lower temperatures.« less

  20. Advances in high temperature components for AMTEC (alkali metal thermal-to-electric converter)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R.M.; Jeffries-Nakamura, B.; Underwood, M.L.

    1991-01-01

    Long lifetimes are required for AMTEC (or sodium heat engine) components for aerospace and terrestrial applications, and the high heat input temperature as well as the alkali metal liquid and vapor environment places unusual demands on the materials used to construct AMTEC devices. In addition, it is important to maximize device efficiency and power density, while maintaining a long life capability. In addition to the electrode, which must provide both efficient electrode kinetics, transport of the alkali metal, and low electrical resistance, other high temperature components of the cell face equally demanding requirements. The beta{double prime} alumina solid electrolyte (BASE),more » the seal between the BASE ceramic and its metallic transition to the hot alkali metal (liquid or vapor) source, and metallic components of the device are exposed to hot liquid alkali metal. Modification of AMTEC components may also be useful in optimizing the device for particular operating conditions. In particular, a potassium AMTEC may be expected to operate more efficiently at lower temperatures.« less

  1. Metal-ferroelectric-metal capacitor based persistent memory for electronic product code class-1 generation-2 uhf passive radio-frequency identification tag

    NASA Astrophysics Data System (ADS)

    Yoon, Bongno; Sung, Man Young; Yeon, Sujin; Oh, Hyun S.; Kwon, Yoonjoo; Kim, Chuljin; Kim, Kyung-Ho

    2009-03-01

    With the circuits using metal-ferroelectric-metal (MFM) capacitor, rf operational signal properties are almost the same or superior to those of polysilicon-insulator-polysilicon, metal-insulator-metal, and metal-oxide-semiconductor (MOS) capacitors. In electronic product code global class-1 generation-2 uhf radio-frequency identification (RFID) protocols, the MFM can play a crucial role in satisfying the specifications of the inventoried flag's persistence times (Tpt) for each session (S0-S3, SL). In this paper, we propose and design a new MFM capacitor based memory scheme of which persistence time for S1 flag is measured at 2.2 s as well as indefinite for S2, S3, and SL flags during the period of power-on. A ferroelectric random access memory embedded RFID tag chip is fabricated with an industry-standard complementary MOS process. The chip size is around 500×500 μm2 and the measured power consumption is about 10 μW.

  2. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  3. Niobate-based octahedral molecular sieves

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2006-10-17

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  4. Niobate-based octahedral molecular sieves

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2003-07-22

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  5. PROCESS OF COATING METALS WITH BISMUTH OR BISMUTH-BASE ALLOYS

    DOEpatents

    Beach, J.G.

    1958-01-28

    A method is described for producing coatings of bismuth or bismuth alloys on a metal base. This is accomplished by electrodepositing the bismuth from an aqueous solution of BiCl/sub 3/, and by making the metal base alternately the cathode and the anode, the cathode periods being twice as long as the anode periods. In one embodiment a nickel coating is first electrodeposited in a known way, and this nickel plated piece is tae base upon which tae bismuth is deposited by the process of this patent. The coated piece is then heat treated to produce a homogeneous Ni--Bi alloy by diffusion.

  6. The Drenchwater deposit, Alaska: An example of a natural low pH environment resulting from weathering of an undisturbed shale-hosted Zn-Pb-Ag deposit

    USGS Publications Warehouse

    Graham, G.E.; Kelley, K.D.

    2009-01-01

    The Drenchwater shale-hosted Zn-Pb-Ag deposit and the immediate vicinity, on the northern flank of the Brooks Range in north-central Alaska, is an ideal example of a naturally low pH system. The two drainages, Drenchwater and False Wager Creeks, which bound the deposit, differ in their acidity and metal contents. Moderately acidic waters with elevated concentrations of metals (pH ??? 4.3, Zn ??? 1400 ??g/L) in the Drenchwater Creek drainage basin are attributed to weathering of an exposed base-metal-rich massive sulfide occurrence. Stream sediment and water chemistry data collected from False Wager Creek suggest that an unexposed base-metal sulfide occurrence may account for the lower pH (2.7-3.1) and very metal-rich waters (up to 2600 ??g/L Zn, ??? 260 ??g/L Cu and ???89 ??g/L Tl) collected at least 2 km upstream of known mineralized exposures. These more acidic conditions produce jarosite, schwertmannite and Fe-hydroxides commonly associated with acid-mine drainage. The high metal concentrations in some water samples from both streams naturally exceed Alaska state regulatory limits for freshwater aquatic life, affirming the importance of establishing base-line conditions in the event of human land development. The studies at the Drenchwater deposit demonstrate that poor water quality can be generated through entirely natural weathering of base-metal occurrences, and, possibly unmineralized black shale.

  7. Base-metal saturation of refractory carbide coatings produced by enhanced ceramic jets in electrothermally exploded powder spray

    NASA Astrophysics Data System (ADS)

    Tamura, Hideki; Itaya, Masanobu

    2000-09-01

    Tungsten carbide and tantalum carbide were sprayed onto substrates of mild steel by the electrothermally exploded powder spray (ELTEPS) process. High-speed x-ray radiography revealed that tungsten-carbide jets of molten particles guided inside a nozzle exhibited denser flow than unguided jets at the substrate. The velocity of the jet was approximately 800 m/s at the early stage of jetting. The ceramic coatings obtained from the guided spray consisted of carbides of a few to tens of micrometers in size, which were saturated by the base metal up to the top of the coating. The coatings exhibited diffusion of the sprayed ceramics and base metal at the interface of the deposit and substrate. The enhancement of the jet flow formed a microstructure of the ceramic coating, which was saturated by the base metal even without post heat treatment.

  8. Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors.

    PubMed

    Fu, Jie; Zhao, Changpo; Luo, Yupeng; Liu, Chunsheng; Kyzas, George Z; Luo, Yin; Zhao, Dongye; An, Shuqing; Zhu, Hailiang

    2014-04-15

    This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Impact on global metal flows arising from the use of portable rechargeable batteries.

    PubMed

    Rydh, Carl Johan; Svärd, Bo

    2003-01-20

    The use of portable rechargeable battery cells and their effects on global metal flows were assessed or the following three cases: (1) the base case, which reflects the situation in 1999 of the global production of batteries; (2) the global production of portable nickel-cadmium batteries in 1999, assumed to be replaced by other battery types; and (3) assessment of the projected battery market in 2009. The study included the following battery technologies: nickel-cadmium (NiCd); nickel-metal hydride (NiMH) (AB(5), AB(2)); and lithium-based batteries (Li-ion: Co, Ni, Mn; Li-polymer: V). Based on the lithospheric extraction indicator (LEI), which is the ratio of anthropogenic to natural metal flows, and the significance of battery production related to global metal mining, the potential environmental impact of metals used in different battery types was evaluated. The LEIs and average metal demand for the battery market in 1999, expressed as a percentage of global mining output in 1999, were estimated to be as follows: Ni 5.6 (2.0%); Cd 4.4 (37%); Li 0.65 (3.8%); V 0.33 (6.5%); Co 0.18 (15%); Nd 0.18 (8.4%); La 0.10 (9.5%); Ce 0.083 (4.4%); and Pr 0.073 (9.4%). The use of Ni and Cd is of the greatest environmental interest, due to their high LEIs. In the case of complete replacement of portable NiCd batteries by NiMH or Li-based batteries, the LEI for Ni (5.6) would change by -0.1-0.5% and the LEI for Cd would decrease from 4.4 to 3.0 (-31%). Meanwhile, the mobilization of metals considered less hazardous than Cd (LEI 0 < 5) would increase less than 7%. Based on this assessment, the replacement of NiCd batteries would result in decreased environmental impact. To decrease the impact on global metal flows arising from the use of portable batteries the following points should be considered: (1) development of battery technologies should aim at high energy density and long service life; (2) metals with high natural occurrence should be used; and (3) metals from disused batteries should be recovered and regulations implemented to decrease the need for mining of virgin metals. The method used enables an assessment early in the cause-effect chain, when few data about toxic effects are available. It can also be used to assess whether environmental problems are shifted from one to another. Copyright 2002 Elsevier Science B.V.

  10. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts

    PubMed Central

    MURAHASHI, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. PMID:21558760

  11. The cosmic evolution of dust-corrected metallicity in the neutral gas

    NASA Astrophysics Data System (ADS)

    De Cia, Annalisa; Ledoux, Cédric; Petitjean, Patrick; Savaglio, Sandra

    2018-04-01

    Interpreting abundances of damped Ly-α absorbers (DLAs) from absorption-line spectroscopy has typically been a challenge because of the presence of dust. Nevertheless, because DLAs trace distant gas-rich galaxies regardless of their luminosity, they provide an attractive way of measuring the evolution of the metallicity of the neutral gas with cosmic time. This has been done extensively so far, but typically not taking proper dust corrections into account. The aims of this paper are to: (i) provide a simplified way of calculating dust corrections, based on a single observed [X/Fe], (ii) assess the importance of dust corrections for DLA metallicities and their evolution, and (iii) investigate the cosmic evolution of iron for a large DLA sample. We have derived dust corrections based on the observed [Zn/Fe], [Si/Fe], or [S/Fe], and confirmed their robustness. We present dust-corrected metallicities in a scale of [Fe/H]tot for 236 DLAs over a broad range of z, and assess the extent of dust corrections for different metals at different metallicities. Dust corrections in DLAs are important even for Zn (typically of 0.1-0.2, and up to 0.5 dex), which is often neglected. Finally, we study the evolution of the dust-corrected metallicity with z. The DLA metallicities decrease with redshift, by a factor of 50-100 from today to 12.6 billion years ago (z = 5). When including dust corrections, the average DLA metallicities are 0.4-0.5 dex higher than without corrections. The upper envelope of the relation between metallicity and z reaches solar metallicity at z ≲ 0.5, although some systems can have solar metallicity already out to z 3. Based on observations carried out at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 065.P-0038, 065.O-0063, 066.A-0624, 067.A-0078, and 068.A-0600.

  12. ETMB-RBF: discrimination of metal-binding sites in electron transporters based on RBF networks with PSSM profiles and significant amino acid pairs.

    PubMed

    Ou, Yu-Yen; Chen, Shu-An; Wu, Sheng-Cheng

    2013-01-01

    Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation-reduction reactions. In these oxidation-reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain. We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins. We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88. We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins.

  13. ETMB-RBF: Discrimination of Metal-Binding Sites in Electron Transporters Based on RBF Networks with PSSM Profiles and Significant Amino Acid Pairs

    PubMed Central

    Ou, Yu-Yen; Chen, Shu-An; Wu, Sheng-Cheng

    2013-01-01

    Background Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation–reduction reactions. In these oxidation–reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain. Methods We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins. Results We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88. Conclusions We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins. PMID:23405059

  14. Fabrication methods and applications of microstructured gallium based liquid metal alloys

    NASA Astrophysics Data System (ADS)

    Khondoker, M. A. H.; Sameoto, D.

    2016-09-01

    This review contains a comparative study of reported fabrication techniques of gallium based liquid metal alloys embedded in elastomers such as polydimethylsiloxane or other rubbers as well as the primary challenges associated with their use. The eutectic gallium-indium binary alloy (EGaIn) and gallium-indium-tin ternary alloy (galinstan) are the most common non-toxic liquid metals in use today. Due to their deformability, non-toxicity and superior electrical conductivity, these alloys have become very popular among researchers for flexible and reconfigurable electronics applications. All the available manufacturing techniques have been grouped into four major classes. Among them, casting by needle injection is the most widely used technique as it is capable of producing features as small as 150 nm width by high-pressure infiltration. One particular fabrication challenge with gallium based liquid metals is that an oxide skin is rapidly formed on the entire exposed surface. This oxide skin increases wettability on many surfaces, which is excellent for keeping patterned metal in position, but is a drawback in applications like reconfigurable circuits, where the position of liquid metal needs to be altered and controlled accurately. The major challenges involved in many applications of liquid metal alloys have also been discussed thoroughly in this article.

  15. Reducible oxide based catalysts

    DOEpatents

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  16. Ga metal nanoparticle-GaAs quantum molecule complexes for Terahertz generation.

    PubMed

    Bietti, Sergio; Basso Basset, Francesco; Scarpellini, David; Fedorov, Alexey; Ballabio, Andrea; Esposito, Luca; Elborg, Martin; Kuroda, Takashi; Nemcsics, Akos; Toth, Lajos; Manzoni, Cristian; Vozzi, Caterina; Sanguinetti, Stefano

    2018-06-18

    A hybrid metal-semiconductor nanosystem for the generation of THz radiation, based on the fabrication of GaAs quantum molecules-Ga metal nanoparticles complexes through a self assembly approach, is proposed. The role of the growth parameters, the substrate temperature, the Ga and As flux during the quantum dot molecule fabrication and the metal nanoparticle alignment is discussed. The tuning of the relative positioning of quantum dot molecules and metal nanoparticles is obtained through the careful control of Ga droplet nucleation sites via Ga surface diffusion. The electronic structure of a typical quantum dot molecule was evaluated on the base of the morphological characterizations performed by Atomic Force Microscopy and cross sectional Scanning Electron Microscopy, and the predicted results confirmed by micro-photoluminescence experiments, showing that the Ga metal nanoparticle-GaAs quantum molecule complexes are suitable for terahertz generation from intraband transition. . © 2018 IOP Publishing Ltd.

  17. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    PubMed Central

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  18. Method of producing catalytic material for fabricating nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seals, Roland D.; Menchhofer, Paul A.; Howe, Jane Y.

    Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then bemore » exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.« less

  19. A new kind of metal detector based on chaotic oscillator

    NASA Astrophysics Data System (ADS)

    Hu, Wenjing

    2017-12-01

    The sensitivity of a metal detector greatly depends on the identification ability to weak signals from the probe. In order to improve the sensitivity of metal detectors, this paper applies the Duffing chaotic oscillator to metal detectors based on its characteristic which is very sensitive to weak periodic signals. To make a suitable Duffing system for detectors, this paper computes two Lyapunov characteristics exponents of the Duffing oscillator, which help to obtain the threshold of the Duffing system in the critical state accurately and give quantitative criteria for chaos. Meanwhile, a corresponding simulation model of the chaotic oscillator is made by the Simulink tool box of Matlab. Simulation results shows that Duffing oscillator is very sensitive to sinusoidal signals in high frequency cases. And experimental results show that the measurable diameter of metal particles is about 1.5mm. It indicates that this new method can feasibly and effectively improve the metal detector sensitivity.

  20. LIFE CYCLE INVENTORY ANALYSIS IN THE PRODUCTION OF METALS USED IN PHOTOVOLTAICS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FTHENAKIS,V.M.; KIM, H.C.; WANG, W.

    2007-03-30

    Material flows and emissions in all the stages of production of zinc, copper, aluminum, cadmium, indium, germanium, gallium, selenium, tellurium, and molybdenum were investigated. These metals are used selectively in the manufacture of solar cells, and emission and energy factors in their production are used in the Life Cycle Analysis (LCA) of photovoltaics. Significant changes have occurred in the production and associated emissions for these metals over the last 10 years, which are not described in the LCA databases. Furthermore, emission and energy factors for several of the by-products of the base metal production were lacking. This report aims inmore » updating the life-cycle inventories associated with the production of the base metals (Zn, Cu, Al, Mo) and in defining the emission and energy allocations for the minor metals (Cd, In, Ge, Se, Te and Ga) used in photovoltaics.« less

  1. An Artificial Lithium Protective Layer that Enables the Use of Acetonitrile-Based Electrolytes in Lithium Metal Batteries.

    PubMed

    Trinh, Ngoc Duc; Lepage, David; Aymé-Perrot, David; Badia, Antonella; Dollé, Mickael; Rochefort, Dominic

    2018-04-23

    The resurgence of the lithium metal battery requires innovations in technology, including the use of non-conventional liquid electrolytes. The inherent electrochemical potential of lithium metal (-3.04 V vs. SHE) inevitably limits its use in many solvents, such as acetonitrile, which could provide electrolytes with increased conductivity. The aim of this work is to produce an artificial passivation layer at the lithium metal/electrolyte interface that is electrochemically stable in acetonitrile-based electrolytes. To produce such a stable interface, the lithium metal was immersed in fluoroethylene carbonate (FEC) to generate a passivation layer via the spontaneous decomposition of the solvent. With this passivation layer, the chemical stability of lithium metal is shown for the first time in 1 m LiPF 6 in acetonitrile. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Metal — Insulator Transition-like in Nano-Crystallized Ni-Fe-Zr Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Hamed, F.; Obaidat, I. M.; Benkraouda, M.

    2007-08-01

    Ni-Fe-Zr based Metallic glassy ribbons were prepared by melt spinning technique. The compositional and structural integrity of the melt spun ribbons were verified by means of X-ray diffraction, SEM, EDX and DSC. 5 to 7 cm long ribbons of Ni-Fe-Zr based metallic glasses with different compositions were sealed inside quartz ampoules under vacuum. The sealed metallic glassy ribbons were nano-crystallized at 973 K for varying periods of time. The temperature dependence of the electrical resistivity of the nano-crystallized samples had been investigated over the temperature range 25-280 K. The crystallized ribbons at 973 K for periods for less than 4 hours displayed insulating electrical behavior like at low temperatures, while those annealed for more than 4 hours showed metallic behavior like. Nonlinear I-V characteristics were also observed at low temperatures for samples annealed for less than four hours.

  3. Method and apparatus for hydrogen production from water

    NASA Technical Reports Server (NTRS)

    Muradov, Nazim Z. (Inventor)

    2012-01-01

    A method, apparatuses and chemical compositions are provided for producing high purity hydrogen from water. Metals or alloys capable of reacting with water and producing hydrogen in aqueous solutions at ambient conditions are reacted with one or more inorganic hydrides capable of releasing hydrogen in aqueous solutions at ambient conditions, one or more transition metal compounds are used to catalyze the reaction and, optionally, one or more alkali metal-based compounds. The metal or alloy is preferably aluminum. The inorganic hydride is from a family of complex inorganic hydrides; most preferably, NaBH.sub.4. The transition metal catalyst is from the groups VIII and IB; preferably, Cu and Fe. The alkali metal-based compounds are preferably NaOH, KOH, and the like. Hydrogen generated has a purity of at least 99.99 vol. % (dry basis), and is used without further purification in all types of fuel cells, including the polymer electrolyte membrane (PEM) fuel cell.

  4. Method of producing catalytic materials for fabricating nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-02-19

    Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.

  5. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.

    PubMed

    Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin

    2014-01-15

    Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated. © 2013.

  6. Physicochemical and Electrophysical Properties of Metal/Semiconductor Containing Nanostructured Composites

    NASA Astrophysics Data System (ADS)

    Gerasimov, G. N.; Gromov, V. F.; Trakhtenberg, L. I.

    2018-06-01

    The properties of nanostructured composites based on metal oxides and metal-polymer materials are analyzed, along with ways of preparing them. The effect the interaction between metal and semiconductor nanoparticles has on the conductivity, photoconductivity, catalytic activity, and magnetic, dielectric, and sensor properties of nanocomposites is discussed. It is shown that as a result of this interaction, a material can acquire properties that do not exist in systems of isolated particles. The transfer of electrons between metal particles of different sizes in polymeric matrices leads to specific dielectric losses, and to an increase in the rate and a change in the direction of chemical reactions catalyzed by these particles. The interaction between metal-oxide semiconductor particles results in the electronic and chemical sensitization of sensor effects in nanostructured composite materials. Studies on creating molecular machines (Brownian motors), devices for magnetic recording of information, and high-temperature superconductors based on nanostructured systems are reviewed.

  7. Multiheteromacrocycles that Complex Metal Ions. Sixth Progress Report, 1 May 1979-30 April 1980

    DOE R&D Accomplishments Database

    Cram, D. J.

    1980-01-15

    Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate {sup 6}Li and {sup 7}Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)

  8. Electrocatalytic N-Doped Graphitic Nanofiber - Metal/Metal Oxide Nanoparticle Composites.

    PubMed

    Tang, Hongjie; Chen, Wei; Wang, Jiangyan; Dugger, Thomas; Cruz, Luz; Kisailus, David

    2018-03-01

    Carbon-based nanocomposites have shown promising results in replacing commercial Pt/C as high-performance, low cost, nonprecious metal-based oxygen reduction reaction (ORR) catalysts. Developing unique nanostructures of active components (e.g., metal oxides) and carbon materials is essential for their application in next generation electrode materials for fuel cells and metal-air batteries. Herein, a general approach for the production of 1D porous nitrogen-doped graphitic carbon fibers embedded with active ORR components, (M/MO x , i.e., metal or metal oxide nanoparticles) using a facile two-step electrospinning and annealing process is reported. Metal nanoparticles/nanoclusters nucleate within the polymer nanofibers and subsequently catalyze graphitization of the surrounding polymer matrix and following oxidation, create an interconnected graphite-metal oxide framework with large pore channels, considerable active sites, and high specific surface area. The metal/metal oxide@N-doped graphitic carbon fibers, especially Co 3 O 4 , exhibit comparable ORR catalytic activity but superior stability and methanol tolerance versus Pt in alkaline solutions, which can be ascribed to the synergistic chemical coupling effects between Co 3 O 4 and robust 1D porous structures composed of interconnected N-doped graphitic nanocarbon rings. This finding provides a novel insight into the design of functional electrocatalysts using electrospun carbon nanomaterials for their application in energy storage and conversion fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A chemical equilibrium model for metal adsorption onto bacterial surfaces

    NASA Astrophysics Data System (ADS)

    Fein, Jeremy B.; Daughney, Christopher J.; Yee, Nathan; Davis, Thomas A.

    1997-08-01

    This study quantifies metal adsorption onto cell wall surfaces of Bacillus subtilis by applying equilibrium thermodynamics to the specific chemical reactions that occur at the water-bacteria interface. We use acid/base titrations to determine deprotonation constants for the important surface functional groups, and we perform metal-bacteria adsorption experiments, using Cd, Cu, Pb, and Al, to yield site-specific stability constants for the important metal-bacteria surface complexes. The acid/base properties of the cell wall of B. subtilis can best be characterized by invoking three distinct types of surface organic acid functional groups, with pK a values of 4.82 ± 0.14, 6.9 ± 0.5, and 9.4 ± 0.6. These functional groups likely correspond to carboxyl, phosphate, and hydroxyl sites, respectively, that are displayed on the cell wall surface. The results of the metal adsorption experiments indicate that both the carboxyl sites and the phosphate sites contribute to metal uptake. The values of the log stability constants for metal-carboxyl surface complexes range from 3.4 for Cd, 4.2 for Pb, 4.3 for Cu, to 5.0 for Al. These results suggest that the stabilities of the metal-surface complexes are high enough for metal-bacterial interactions to affect metal mobilities in many aqueous systems, and this approach enables quantitative assessment of the effects of bacteria on metal mobilities.

  10. Speciation in Metal Toxicity and Metal-Based Therapeutics

    PubMed Central

    Templeton, Douglas M.

    2015-01-01

    Metallic elements, ions and compounds produce varying degrees of toxicity in organisms with which they come into contact. Metal speciation is critical to understanding these adverse effects; the adjectives “heavy” and “toxic” are not helpful in describing the biological properties of individual elements, but detailed chemical structures are. As a broad generalization, the metallic form of an element is inert, and the ionic salts are the species that show more significant bioavailability. Yet the salts and other chelates of a metal ion can give rise to quite different toxicities, as exemplified by a range of carcinogenic potential for various nickel species. Another important distinction comes when a metallic element is organified, increasing its lipophilicity and hence its ability to penetrate the blood brain barrier, as is seen, for example, with organic mercury and tin species. Some metallic elements, such as gold and platinum, are themselves useful therapeutic agents in some forms, while other species of the same element can be toxic, thus focusing attention on species interconversions in evaluating metal-based drugs. The therapeutic use of metal-chelating agents introduces new species of the target metal in vivo, and this can affect not only its desired detoxification, but also introduce a potential for further mechanisms of toxicity. Examples of therapeutic iron chelator species are discussed in this context, as well as the more recent aspects of development of chelation therapy for uranium exposure. PMID:29056656

  11. Microfluidic paper-based analytical device for particulate metals.

    PubMed

    Mentele, Mallory M; Cunningham, Josephine; Koehler, Kirsten; Volckens, John; Henry, Charles S

    2012-05-15

    A microfluidic paper-based analytical device (μPAD) fabricated by wax printing was designed to assess occupational exposure to metal-containing aerosols. This method employs rapid digestion of particulate metals using microliters of acid added directly to a punch taken from an air sampling filter. Punches were then placed on a μPAD, and digested metals were transported to detection reservoirs upon addition of water. These reservoirs contained reagents for colorimetric detection of Fe, Cu, and Ni. Dried buffer components were used to set the optimal pH in each detection reservoir, while precomplexation agents were deposited in the channels between the sample and detection zones to minimize interferences from competing metals. Metal concentrations were quantified from color intensity images using a scanner in conjunction with image processing software. Reproducible, log-linear calibration curves were generated for each metal, with method detection limits ranging from 1.0 to 1.5 μg for each metal (i.e., total mass present on the μPAD). Finally, a standard incineration ash sample was aerosolized, collected on filters, and analyzed for the three metals of interest. Analysis of this collected aerosol sample using a μPAD showed good correlation with known amounts of the metals present in the sample. This technology can provide rapid assessment of particulate metal concentrations at or below current regulatory limits and at dramatically reduced cost.

  12. Simulation of forming a flat forging

    NASA Astrophysics Data System (ADS)

    Solomonov, K.; Tishchuk, L.; Fedorinin, N.

    2017-11-01

    The metal flow in some of the metal shaping processes (rolling, pressing, die forging) is subjected to the regularities which determine the scheme of deformation in the metal samples upsetting. The object of the study was the research of the metal flow picture including the contour of the part, the demarcation lines of the metal flow and the flow lines. We have created an algorithm for constructing the metal flow picture, which is based on the representation of the metal flow demarcation line as an equidistant. Computer and physical simulation of the metal flow picture with the help of various software systems confirms the suggested hypothesis.

  13. FUSED REACTOR FUELS

    DOEpatents

    Mayer, S.W.

    1962-11-13

    This invention relates to a nuciear reactor fuel composition comprising (1) from about 0.01 to about 50 wt.% based on the total weight of said composition of at least one element selected from the class consisting of uranium, thorium, and plutonium, wherein said eiement is present in the form of at least one component selected from the class consisting of oxides, halides, and salts of oxygenated anions, with components comprising (2) at least one member selected from the class consisting of (a) sulfur, wherein the sulfur is in the form of at least one entity selected irom the class consisting of oxides of sulfur, metal sulfates, metal sulfites, metal halosulfonates, and acids of sulfur, (b) halogen, wherein said halogen is in the form of at least one compound selected from the class of metal halides, metal halosulfonates, and metal halophosphates, (c) phosphorus, wherein said phosphorus is in the form of at least one constituent selected from the class consisting of oxides of phosphorus, metal phosphates, metal phosphites, and metal halophosphates, (d) at least one oxide of a member selected from the class consisting of a metal and a metalloid wherein said oxide is free from an oxide of said element in (1); wherein the amount of at least one member selected from the class consisting of halogen and sulfur is at least about one at.% based on the amount of the sum of said sulfur, halogen, and phosphorus atom in said composition; and wherein the amount of said 2(a), 2(b) and 2(c) components in said composition which are free from said elements of uranium, thorium, arid plutonium, is at least about 60 wt.% based on the combined weight of the components of said composition which are free from said elements of uranium, thorium, and plutonium. (AEC)

  14. Separating and recycling metals from mixed metallic particles of crushed electronic wastes by vacuum metallurgy.

    PubMed

    Zhan, Lu; Xu, Zhenming

    2009-09-15

    During the treatment of electronic wastes, a crushing process is usually used to strip metals from various base plates. Several methods have been applied to separate metals from nonmetals. However, mixed metallic particles obtained from these processes are still a mixture of various metals, including some toxic heavy metals such as lead and cadmium. With emphasis on recovering copper and other precious metals, there have hitherto been no satisfactory methods to recover these toxic metals. In this paper, the criterion of separating metals from mixed metallic particles by vacuum metallurgy is built. The results show that the metals with high vapor pressure have been almost recovered completely, leading to a considerable reduction of environmental pollution. In addition, the purity of copper in mixed particles has been improved from about 80 wt % to over 98 wt %.

  15. Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction

    PubMed Central

    Mir, Aamir; Chen, Ji; Robinson, Kyle; Lendy, Emma; Goodman, Jaclyn; Neau, David; Golden, Barbara L.

    2016-01-01

    The hammerhead ribozyme is a self-cleaving RNA broadly dispersed across all kingdoms of life. Although it was the first of the small, nucleolytic ribozymes discovered, the mechanism by which it catalyzes its reaction remains elusive. The nucleobase of G12 is well positioned to be a general base, but it is unclear if or how this guanine base becomes activated for proton transfer. Metal ions have been implicated in the chemical mechanism, but no interactions between divalent metal ions and the cleavage site have been observed crystallographically. To better understand how this ribozyme functions, we have solved crystal structures of wild-type and G12A mutant ribozymes. We observe a pH-dependent conformational change centered around G12, consistent with this nucleotide becoming deprotonated. Crystallographic and kinetic analysis of the G12A mutant reveals a Zn2+ specificity switch suggesting a direct interaction between a divalent metal ion and the purine at position 12. The metal ion specificity switch and the pH–rate profile of the G12A mutant suggest that the minor imino tautomer of A12 serves as the general base in the mutant ribozyme. We propose a model in which the hammerhead ribozyme rearranges prior to the cleavage reaction, positioning two divalent metal ions in the process. The first metal ion, positioned near G12, becomes directly coordinated to the O6 keto oxygen, to lower the pKa of the general base and organize the active site. The second metal ion, positioned near G10.1, bridges the N7 of G10.1 and the scissile phosphate and may participate directly in the cleavage reaction. PMID:26398724

  16. Recovery of Mechanical Properties of a 6061-T6 Aluminum Weld by Heat Treatment After Welding

    NASA Astrophysics Data System (ADS)

    Pérez, Javier Serrano; Ambriz, Ricardo Rafael; López, Francisco Fernando Curiel; Vigueras, David Jaramillo

    2016-07-01

    The dilution effects in welds of a 6061-T6 (Al-Si-Mg) alloy obtained by the modified indirect electric arc (MIEA), using an ER4043 filler metal (Al-Si), and postweld heat treatment (PWHT) were analyzed. The soft zone (55 to 70 HV0.1) formed by the microstructural transformation in the heat-affected zone (HAZ) was eliminated. The hardness measurements were presented on a traditional microhardness profile and mapping representation. A hardening effect of the fusion zone was observed; the hardness values were above 120 HV0.1 and tended to be uniform. This behavior could be attributed to the chemical composition of the filler metal, the Mg migration from the base to the weld metal, and the reversible process of the PWHT, which promotes precipitation hardening. Improvement for yield (260 MPa) and tensile strength (310 MPa) of the MIEA joints was observed; these values were similar to those obtained for the base metal. However, the presence of porosity in the fusion zone limits the ductility of the joints (4.3 pct). Even though the yield and tensile strengths of the base metal and welded joints were similar, the stress concentration due to porosity in the weld metal generated data dispersion in fatigue life. As a consequence, the high-cycle fatigue life decreases with respect to the base metal. In contrast, when the crack propagates under elastic conditions, the crack-tip singularity is affected by the porosity in the weld metal (stress liberator). This aspect, in conjunction with the hardening effect in joints subjected to PWHT, improves the fatigue crack growth rate when compared to the as-welded condition.

  17. Composition formulas of Fe-based transition metals-metalloid bulk metallic glasses derived from dual-cluster model of binary eutectics.

    PubMed

    Naz, Gul Jabeen; Dong, Dandan; Geng, Yaoxiang; Wang, Yingmin; Dong, Chuang

    2017-08-22

    It is known that bulk metallic glasses follow simple composition formulas [cluster](glue atom) 1 or 3 with 24 valence electrons within the framework of the cluster-plus-glue-atom model. Though the relevant nearest-neighbor cluster can be readily identified from a devitrification phase, the glue atoms remains poorly defined. The present work is devoted to understanding the composition rule of Fe-(B,P,C) based multi-component bulk metallic glasses, by introducing a cluster-based eutectic liquid model. This model regards a eutectic liquid to be composed of two stable liquids formulated respectively by cluster formulas for ideal metallic glasses from the two eutectic phases. The dual cluster formulas are first established for binary Fe-(B,C,P) eutectics: [Fe-Fe 14 ]B 2 Fe + [B-B 2 Fe 8 ]Fe ≈ Fe 83.3 B 16.7 for eutectic Fe 83 B 17 , [P-Fe 14 ]P + [P-Fe 9 ]P 2 Fe≈Fe 82.8 P 17.2 for Fe 83 P 17 , and [C-Fe 6 ]Fe 3  + [C-Fe 9 ]C 2 Fe ≈ Fe 82.6 C 17.4 for Fe 82.7 C 17.3 . The second formulas in these dual-cluster formulas, being respectively relevant to devitrification phases Fe 2 B, Fe 3 P, and Fe 3 C, well explain the compositions of existing Fe-based transition metals-metalloid bulk metallic glasses. These formulas also satisfy the 24-electron rule. The proposition of the composition formulas for good glass formers, directly from known eutectic points, constitutes a new route towards understanding and eventual designing metallic glasses of high glass forming abilities.

  18. Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction.

    PubMed

    Mir, Aamir; Chen, Ji; Robinson, Kyle; Lendy, Emma; Goodman, Jaclyn; Neau, David; Golden, Barbara L

    2015-10-20

    The hammerhead ribozyme is a self-cleaving RNA broadly dispersed across all kingdoms of life. Although it was the first of the small, nucleolytic ribozymes discovered, the mechanism by which it catalyzes its reaction remains elusive. The nucleobase of G12 is well positioned to be a general base, but it is unclear if or how this guanine base becomes activated for proton transfer. Metal ions have been implicated in the chemical mechanism, but no interactions between divalent metal ions and the cleavage site have been observed crystallographically. To better understand how this ribozyme functions, we have solved crystal structures of wild-type and G12A mutant ribozymes. We observe a pH-dependent conformational change centered around G12, consistent with this nucleotide becoming deprotonated. Crystallographic and kinetic analysis of the G12A mutant reveals a Zn(2+) specificity switch suggesting a direct interaction between a divalent metal ion and the purine at position 12. The metal ion specificity switch and the pH-rate profile of the G12A mutant suggest that the minor imino tautomer of A12 serves as the general base in the mutant ribozyme. We propose a model in which the hammerhead ribozyme rearranges prior to the cleavage reaction, positioning two divalent metal ions in the process. The first metal ion, positioned near G12, becomes directly coordinated to the O6 keto oxygen, to lower the pKa of the general base and organize the active site. The second metal ion, positioned near G10.1, bridges the N7 of G10.1 and the scissile phosphate and may participate directly in the cleavage reaction.

  19. Magnesium stearine production via direct reaction of palm stearine and magnesium hydroxide

    NASA Astrophysics Data System (ADS)

    Pratiwi, M.; Ylitervo, P.; Pettersson, A.; Prakoso, T.; Soerawidjaja, T. H.

    2017-06-01

    The fossil oil production could not compensate with the increase of its consumption, because of this reason the renewable alternative energy source is needed to meet this requirement of this fuel. One of the methods to produce hydrocarbon is by decarboxylation of fatty acids. Vegetable oil and fats are the greatest source of fatty acids, so these can be used as raw material for biohydrocarbon production. From other researchers on their past researchs, by heating base soap from divalent metal, those metal salts will decarboxylate and produce hydrocarbon. This study investigate the process and characterization of magnesium soaps from palm stearine by Blachford method. The metal soaps are synthesized by direct reaction of palm stearine and magnesium hydroxide to produce magnesium stearine and magnesium stearine base soaps at 140-180°C and 6-10 bar for 3-6 hours. The operation process which succeed to gain metal soaps is 180°C, 10 bar, for 3-6 hours. These metal soaps are then compared with commercial magnesium stearate. Based on Thermogravimetry Analysis (TGA) results, the decomposition temperature of all the metal soaps were 250°C. Scanning Electron Microscope with Energy Dispersive X-ray (SEM-EDX) analysis have shown the traces of sodium sulphate for magnesium stearate commercial and magnesium hydroxide for both type of magnesium stearine soaps. The analysis results from Microwave Plasma-Atomic Emission Spectrometry (MP-AES) have shown that the magnesium content of magnesium stearine approximate with magnesium stearate commercial and lower compare with magnesium stearine base soaps. These experiments suggest that the presented saponification process method could produced metal soaps comparable with the commercial metal soaps.

  20. Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes

    NASA Astrophysics Data System (ADS)

    Neelakantan, M. A.; Rusalraj, F.; Dharmaraja, J.; Johnsonraja, S.; Jeyakumar, T.; Sankaranarayana Pillai, M.

    2008-12-01

    Metal complexes are synthesized with Schiff bases derived from o-phthalaldehyde (opa) and amino acids viz., glycine (gly) L-alanine (ala), L-phenylalanine (pal). Metal ions coordinate in a tetradentate or hexadentate manner with these N 2O 2 donor ligands, which are characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic, 1H NMR and EPR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Based on EPR studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values calculated for copper complexes at 300 K and in frozen DMSO (77 K) indicate the presence of the unpaired electron in the d orbital. The evaluated metal-ligand bonding parameters showed strong in-plane σ- and π-bonding. X-ray diffraction (XRD) and scanning electron micrography (SEM) analysis provide the crystalline nature and the morphology of the metal complexes. The cyclic voltammograms of the Cu(II)/Mn(II)/VO(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5 V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions. The biological activity of the complexes has been tested on eight bacteria and three fungi. Cu(II) and Ni(II) complexes show an increased activity in comparison to the controls. The metal complexes of opapal Schiff base were evaluated for their DNA cleaving activities with calf-thymus DNA (CT DNA) under aerobic conditions. Cu(II) and VO(II) complexes show more pronounced activity in presence of the oxidant.

  1. Influence of metallic artifact filtering on MEG signals for source localization during interictal epileptiform activity

    NASA Astrophysics Data System (ADS)

    Migliorelli, Carolina; Alonso, Joan F.; Romero, Sergio; Mañanas, Miguel A.; Nowak, Rafał; Russi, Antonio

    2016-04-01

    Objective. Medical intractable epilepsy is a common condition that affects 40% of epileptic patients that generally have to undergo resective surgery. Magnetoencephalography (MEG) has been increasingly used to identify the epileptogenic foci through equivalent current dipole (ECD) modeling, one of the most accepted methods to obtain an accurate localization of interictal epileptiform discharges (IEDs). Modeling requires that MEG signals are adequately preprocessed to reduce interferences, a task that has been greatly improved by the use of blind source separation (BSS) methods. MEG recordings are highly sensitive to metallic interferences originated inside the head by implanted intracranial electrodes, dental prosthesis, etc and also coming from external sources such as pacemakers or vagal stimulators. To reduce these artifacts, a BSS-based fully automatic procedure was recently developed and validated, showing an effective reduction of metallic artifacts in simulated and real signals (Migliorelli et al 2015 J. Neural Eng. 12 046001). The main objective of this study was to evaluate its effects in the detection of IEDs and ECD modeling of patients with focal epilepsy and metallic interference. Approach. A comparison between the resulting positions of ECDs was performed: without removing metallic interference; rejecting only channels with large metallic artifacts; and after BSS-based reduction. Measures of dispersion and distance of ECDs were defined to analyze the results. Main results. The relationship between the artifact-to-signal ratio and ECD fitting showed that higher values of metallic interference produced highly scattered dipoles. Results revealed a significant reduction on dispersion using the BSS-based reduction procedure, yielding feasible locations of ECDs in contrast to the other two approaches. Significance. The automatic BSS-based method can be applied to MEG datasets affected by metallic artifacts as a processing step to improve the localization of epileptic foci.

  2. New approach for the quantification of metallic species in healthcare products based on optical switching of a Schiff base possessing ONO donor set.

    PubMed

    Singh, Jaswant; Parkash, Jyoti; Kaur, Varinder; Singh, Raghubir

    2017-10-05

    A new method is reported for the quantification of some metallic components of healthcare products utilizing a Schiff base chelator derived from 2-hydroxyacetophenone and ethanolamine. The Schiff base chelator recognizes some metallic species such as iron, copper and zinc (important components of some healthcare products), and cadmium (common contaminant in healthcare products) giving colorimetric/fluorimetric response. It coordinates with Fe 2+ /Fe 3+ and Cu 2+ ions via ONO donor set and switches the colour to bright red, green and orange, respectively. Similarly, it switches 'ON' a fluorometric response when coordinates with Zn 2+ and Cd 2+ ions. In the present approach, detailed studies on the colorimetric and fluorimetric response of ONO Schiff base is investigated in detail. The Job plot for the complexation of ONO switch with various metal ions suggested formation of 1:1 (metal-chelator) complex with Fe 2+ , Fe 3+ , and Cu 2+ while 1:2 (metal-chelator) for Zn 2+ and Cd 2+ ions. The limit of detection, limit of quantification are 6.73, 18.0, 25.0, 0.65, 1.10μM and 27.0, 72.0, 100.0, 2.60 and 4.40μM for Fe 2+ , Fe 3+ , Cu 2+ , Zn 2+ and Cd 2+ ions, respectively. Under the optimized conditions, chelator was used for the quantification of important metals present in healthcare products via direct dissolution and furnace treatment during sample preparation. The results were found precise and accurate for both sample preparation techniques using the developed method. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives.

    PubMed

    Lazarević, Tatjana; Rilak, Ana; Bugarčić, Živadin D

    2017-12-15

    Metallodrugs offer potential for unique mechanism of drug action based on the choice of the metal, its oxidation state, the types and number of coordinated ligands and the coordination geometry. This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry as many new approaches to the design of innovative metal-based anticancer drugs are emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy. Examples of metal compounds and chelating agents currently in clinical use, clinical trials or preclinical development are highlighted. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Research on metallic material defect detection based on bionic sensing of human visual properties

    NASA Astrophysics Data System (ADS)

    Zhang, Pei Jiang; Cheng, Tao

    2018-05-01

    Due to the fact that human visual system can quickly lock the areas of interest in complex natural environment and focus on it, this paper proposes an eye-based visual attention mechanism by simulating human visual imaging features based on human visual attention mechanism Bionic Sensing Visual Inspection Model Method to Detect Defects of Metallic Materials in the Mechanical Field. First of all, according to the biologically visually significant low-level features, the mark of defect experience marking is used as the intermediate feature of simulated visual perception. Afterwards, SVM method was used to train the advanced features of visual defects of metal material. According to the weight of each party, the biometrics detection model of metal material defect, which simulates human visual characteristics, is obtained.

  5. High resolution, low cost solar cell contact development

    NASA Technical Reports Server (NTRS)

    Mardesich, N.

    1979-01-01

    The experimental work demonstrating the feasibility of the MIDFILM process as a low cost means of applying solar cell collector metallization as reported. Cell efficiencies of above 14% (AMl, 28 C) were achieved with fritted silver metallization. Environmental tests suggest that the metallization is slightly humidity sensitive and degradation is observed on cells with high series resistance. The major yield loss in the fabrication of cells was due to discontinuous grid lines, resulting in high series resitance. Standard lead-tin solder plated interconnections do not appear compatible with the MIDFILM contact. Copper, nickel and molybdemun base powder were investigated as low cost metallization systems. The copper based powder degraded the cell response. The nickel and molybdenum base powders oxidized when sintered in the oxidizing atmosphere necessary to ash the photoresin.

  6. Organic cathode for a secondary battery

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); Distefano, Salvador (Inventor); Williams, Roger M. (Inventor); Bankston, Clyde P. (Inventor)

    1989-01-01

    A liquid catholyte for a battery based on liquid metal such as sodium anode and a solid, ceramic separator such as beta alumina (BASE) comprises a mixture of a Group I-III metal salt such as sodium tetrachloroaluminate and a minor amount of an organic carbonitrile depolarizer having at least one adjacent ethylenic band such as 1 to 40 percent by weight of tetracyanoethylene. The tetracyanoethylene forms an adduct with the molten metal salt.

  7. Reliability Modeling Development and Its Applications for Ceramic Capacitors with Base-Metal Electrodes (BMEs)

    NASA Technical Reports Server (NTRS)

    Liu, Donhang

    2014-01-01

    This presentation includes a summary of NEPP-funded deliverables for the Base-Metal Electrodes (BMEs) capacitor task, development of a general reliability model for BME capacitors, and a summary and future work.

  8. 1H NMR spectroscopic analysis detects metabolic disturbances in rat urine on acute exposure to heavy metal tungsten alloy based metals salt.

    PubMed

    Tyagi, Ritu; Rana, Poonam; Gupta, Mamta; Bhatnagar, Deepak; Srivastava, Shatakshi; Roy, Raja; Khushu, Subash

    2014-03-25

    Heavy metal tungsten alloys (HMTAs) have been found to be safer alternatives for making military munitions. Recently, some studies demonstrating the toxic potential of HMTAs have raised concern over the safety issues, and further propose that HMTAs exposure may lead to physiological disturbances as well. To look for the systemic effect of acute toxicity of HMTA based metals salt, (1)H nuclear magnetic resonance ((1)H NMR) spectroscopic profiling of rat urine was carried out. Male Sprague Dawley rats were administered (intraperitoneal) low and high dose of mixture of HMTA based metals salt and NMR spectroscopy was carried out in urine samples collected at 8, 24, 72 and 120 h post dosing (p.d.). Serum biochemical parameters and liver histopathology were also conducted. The (1)H NMR spectra were analysed using multivariate analysis techniques to show the time- and dose-dependent biochemical variations in post HMTA based metals salt exposure. Urine metabolomic analysis showed changes associated with energy metabolism, amino acids, N-methyl nicotinamide, membrane and gut flora metabolites. Multivariate analysis showed maximum variation with best classification of control and treated groups at 24h p.d. At the end of the study, for the low dose group most of the changes at metabolite level reverted to control except for the energy metabolites; whereas, in the high dose group some of the changes still persisted. The observations were well correlated with histopathological and serum biochemical parameters. Further, metabolic pathway analysis clarified that amongst all the metabolic pathways analysed, tricarboxylic acid cycle was most affected at all the time points indicating a switchover in energy metabolism from aerobic to anaerobic. These results suggest that exposure of rats to acute doses of HMTA based metals salt disrupts physiological metabolism with moderate injury to the liver, which might indirectly result from heavy metals induced oxidative stress. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Photoelectron spectroscopy of the bis(dithiolene) anions [M(mnt)2]n- (M = Fe - Zn; n = 1, 2): changes in electronic structure with variation of metal center and with oxidation.

    PubMed

    Waters, Tom; Wang, Xue-Bin; Woo, Hin-Koon; Wang, Lai-Sheng

    2006-07-24

    A detailed understanding of the electronic structures of transition metal bis(dithiolene) centers is important in the context of their interesting redox, magnetic, and optical properties. The electronic structures of the series [M(mnt)2]n- (M = Fe - Zn; mnt = 1,2-S2C2(CN)2; n = 1, 2) were examined by a combination of photodetachment photoelectron spectroscopy and density functional theory calculations, providing insights into changes in electronic structure with variation of the metal center and with oxidation. Significant changes were observed for the dianions [M(mnt)2]2- due to stabilization of the metal 3d levels from Fe to Zn and the transition from square-planar to tetrahedral coordination about the metal center (Fe-Ni, D(2h) --> Cu D2 --> Zn, D(2d). Changes with oxidation from [M(mnt)2]2- to [M(mnt)2]1- were largely dependent on the nature of the redox-active orbital in the couple [M(mnt)2](2-/1-). In particular, the first detachment feature for [Fe(mnt)2]2- originated from a metal-based orbital (Fe(II) --> Fe(III)) while that for [Fe(mnt)2]1- originated from a ligand-based orbital, a consequence of stabilization of Fe 3d levels in the latter. In contrast, the first detachment feature for both of [Ni(mnt)2]2- and [Ni(mnt)2]1- originated from the same ligand-based orbital in both cases, a result of occupied Ni 3d levels being stabilized relative those of Fe 3d and occurring below the highest energy occupied ligand-based orbital for both of [Ni(mnt)2]2- and [Ni(mnt)2]1- . The combined data illustrate the subtle interplay between metal- and ligand-based redox chemistry in these species and demonstrate changes in their electronic structures with variation of metal center, oxidation, and coordination geometry.

  10. Synthesis, characterization of 1,2,4-triazole Schiff base derived 3d-metal complexes: Induces cytotoxicity in HepG2, MCF-7 cell line, BSA binding fluorescence and DFT study

    NASA Astrophysics Data System (ADS)

    Tyagi, Prateek; Tyagi, Monika; Agrawal, Swati; Chandra, Sulekh; Ojha, Himanshu; Pathak, Mallika

    2017-01-01

    Two novel Schiff base ligands H2L1 and H2L2 have been synthesized by condensation reaction of amine derivative of 1,2,4-triazole moiety with 2-hydroxy-4-methoxybenzaldehyde. Co(II), Ni(II), Cu(II) and Zn(II) of the synthesized Schiff bases were prepared by using a molar ratio of ligand:metal as 1:1. The structure of the Schiff bases and synthesized metal complexes were established by 1H NMR, UV-Vis, IR, Mass spectrometry and molar conductivity. The thermal stability of the complexes was study by TGA. Fluorescence quenching mechanism of metal complexes 1-4 show that Zn(II) and Cu(II) complex binds more strongly to BSA. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31 + g(d,p) basis set. The spectral data shows that the ligands behaves as binegative tridentate. On the basis of the spectral studies, TGA and DFT data an octahedral geometry has been assigned for Co(II), Ni(II), square planar for Cu(II) and tetrahedral for Zn(II) complexes. The anticancer activity were screened against human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2). Result indicates that metal complexes shows increase cytotoxicity in proliferation to cell lines as compared to free ligand.

  11. Spectroscopic characterization of metal complexes of novel Schiff base. Synthesis, thermal and biological activity studies

    NASA Astrophysics Data System (ADS)

    Omar, M. M.; Mohamed, Gehad G.; Ibrahim, Amr A.

    2009-07-01

    Novel Schiff base (HL) ligand is prepared via condensation of 4-aminoantipyrine and 2-aminobenzoic acid. The ligand is characterized based on elemental analysis, mass, IR and 1H NMR spectra. Metal complexes are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analyses (TGA, DrTGA and DTA). The molar conductance data reveal that all the metal chelates are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a uninegatively tridentate manner with NNO donor sites of the azomethine N, amino N and deprotonated caroxylic-O. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia Coli, Pseudomonas aeruginosa, Staphylococcus Pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Shciff base ligand against one or more bacterial species.

  12. Method of protecting the surface of a substrate. [by applying aluminide coating

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A. (Inventor); Grisaffe, S. J.

    1974-01-01

    The surface of a metallic base system is initially coated with a metallic alloy layer that is ductile and oxidation resistant. An aluminide coating is then applied to the metallic alloy layer. The chemistry of the metallic alloy layer is such that the oxidation resistance of the subsequently aluminized outermost layer is not seriously degraded.

  13. New applications in EPA’s ECOTOX Knowledge System: Assimilating relative potencies of metals across chemical and biological species from literature-based toxicity effects data.

    EPA Science Inventory

    Toxicity of metals in field settings can vary widely among ionic chemical species and across biological receptors. Thus, a challenge often found in developing TRVs for the risk assessment of metals is identifying the most appropriate metal and biological species combinations for...

  14. A designed metal-organic framework based on a metal-organic polyhedron.

    PubMed

    Zou, Yang; Park, Mira; Hong, Seunghee; Lah, Myoung Soo

    2008-05-28

    A C(3) symmetric ligand with three 1,3-benzenedicarboxylate units has been used to construct a metal-organic framework with a (3,24)-connected network topology, where the nanometre-sized metal-organic cuboctahedra (MOCs) have been incorporated solely into a cubic close packing (CCP) arrangement, which led to superoctahedral and supertetrahedral cavities.

  15. Quantitation of proteins using a dye-metal-based colorimetric protein assay.

    PubMed

    Antharavally, Babu S; Mallia, Krishna A; Rangaraj, Priya; Haney, Paul; Bell, Peter A

    2009-02-15

    We describe a dye-metal (polyhydroxybenzenesulfonephthalein-type dye and a transition metal) complex-based total protein determination method. The binding of the complex to protein causes a shift in the absorption maximum of the dye-metal complex from 450 to 660 nm. The dye-metal complex has a reddish brown color that changes to green on binding to protein. The color produced from this reaction is stable and increases in a proportional manner over a broad range of protein concentrations. The new Pierce 660 nm Protein Assay is very reproducible, rapid, and more linear compared with the Coomassie dye-based Bradford assay. The assay reagent is room temperature stable, and the assay is a simple and convenient mix-and-read format. The assay has a moderate protein-to-protein variation and is compatible with most detergents, reducing agents, and other commonly used reagents. This is an added advantage for researchers needing to determine protein concentrations in samples containing both detergents and reducing agents.

  16. The Microstructure and Pitting Resistance of Weld Joints of 2205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Wu, Mingfang; Liu, Fei; Pu, Juan; Anderson, Neil E.; Li, Leijun; Liu, Dashuang

    2017-11-01

    2205 duplex stainless steel (DSS) was welded by submerged arc welding. The effects of both heat input and groove type on the ferrite/austenite ratio and elemental diffusion of weld joints were investigated. The relationships among welding joint preparation, ferrite/austenite ratio, elemental diffusion, and pitting corrosion resistance of weld joints were analyzed. When the Ni content of the weld wire deposit was at minimum 2-4% higher than that of 2205 DSS base metal, the desired ratio of ferrite/austenite and elemental partitioning between the austenite and ferrite phases were obtained. While the pitting sensitivity of weld metal was higher than that of base metal, the self-healing capability of the passive film of weld metal was better than that of the base metal when a single V-type groove was used. Furthermore, the heat input should be carefully controlled since pitting corrosion occurred readily in the coarse-grained heat-affected zone near the fusion line of welded joints.

  17. Surface plasmons based terahertz modulator consisting of silicon-air-metal-dielectric-metal layers

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yang, Dongxiao; Qian, Zhenhai

    2018-05-01

    An optically controlled modulator of the terahertz wave, which is composed of a metal-dielectric-metal structure etched with circular loop arrays on both the metal layers and a photoexcited silicon wafer separated by an air layer, is proposed. Simulation results based on experimentally measured complex permittivities predict that modification of complex permittivity of the silicon wafer through excitation laser leads to a significant tuning of transmission characteristics of the modulator, forming the modulation depths of 59.62% and 96.64% based on localized surface plasmon peak and propagating surface plasmon peak, respectively. The influences of the complex permittivity of the silicon wafer and the thicknesses of both the air layer and the silicon wafer are numerically studied for better understanding the modulation mechanism. This study proposes a feasible methodology to design an optically controlled terahertz modulator with large modulation depth, high speed and suitable insertion loss, which is useful for terahertz applications in the future.

  18. Large capacitance enhancement induced by metal-doping in graphene-based supercapacitors: a first-principles-based assessment.

    PubMed

    Paek, Eunsu; Pak, Alexander J; Hwang, Gyeong S

    2014-08-13

    Chemically doped graphene-based materials have recently been explored as a means to improve the performance of supercapacitors. In this work, we investigate the effects of 3d transition metals bound to vacancy sites in graphene with [BMIM][PF6] ionic liquid on the interfacial capacitance; these results are compared to the pristine graphene case with particular attention to the relative contributions of the quantum and electric double layer capacitances. Our study highlights that the presence of metal-vacancy complexes significantly increases the availability of electronic states near the charge neutrality point, thereby enhancing the quantum capacitance drastically. In addition, the use of metal-doped graphene electrodes is found to only marginally influence the microstructure and capacitance of the electric double layer. Our findings indicate that metal-doping of graphene-like electrodes can be a promising route toward increasing the interfacial capacitance of electrochemical double layer capacitors, primarily by enhancing the quantum capacitance.

  19. Transition metal ions mediated tyrosine based short peptide amphiphile nanostructures inhibit bacterial growth.

    PubMed

    Joshi, Khashti Ballabh; Singh, Ramesh; Mishra, Narendra Kumar; Kumar, Vikas; Vinayak, Vandana

    2018-05-17

    We report the design and synthesis of biocompatible small peptide based molecule for the controlled and targeted delivery of the encapsulated bioactive metal ions via transforming their internal nanostructures. Tyrosine based short peptide amphiphile (sPA) was synthesized which self-assembled into β-sheet like secondary structures. The self assembly of the designed sPA was modulated by using different bioactive transition metal ions which is confirmed by spectroscopic and microscopic techniques. These bioactive metal ions conjugated sPA hybrid structures are further used to develop antibacterial materials. It is due to the excellent antibacterial activity of zinc ions that the growth of clinically relevant bacteria such as E. Coli was inhibited in the presence of zinc-sPA conjugate. The bacterial test demonstrated that owing to high biocompatibility with bacterial cell, the designed sPA worked as metal ions delivery agent and therefore it can show great potential in locally addressing bacterial infections. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Photolithography-Based Patterning of Liquid Metal Interconnects for Monolithically Integrated Stretchable Circuits.

    PubMed

    Park, Chan Woo; Moon, Yu Gyeong; Seong, Hyejeong; Jung, Soon Won; Oh, Ji-Young; Na, Bock Soon; Park, Nae-Man; Lee, Sang Seok; Im, Sung Gap; Koo, Jae Bon

    2016-06-22

    We demonstrate a new patterning technique for gallium-based liquid metals on flat substrates, which can provide both high pattern resolution (∼20 μm) and alignment precision as required for highly integrated circuits. In a very similar manner as in the patterning of solid metal films by photolithography and lift-off processes, the liquid metal layer painted over the whole substrate area can be selectively removed by dissolving the underlying photoresist layer, leaving behind robust liquid patterns as defined by the photolithography. This quick and simple method makes it possible to integrate fine-scale interconnects with preformed devices precisely, which is indispensable for realizing monolithically integrated stretchable circuits. As a way for constructing stretchable integrated circuits, we propose a hybrid configuration composed of rigid device regions and liquid interconnects, which is constructed on a rigid substrate first but highly stretchable after being transferred onto an elastomeric substrate. This new method can be useful in various applications requiring both high-resolution and precisely aligned patterning of gallium-based liquid metals.

  1. Synthesis and characterization of boric acid mediated metal-organic frameworks based on trimesic acid and terephthalic acid

    NASA Astrophysics Data System (ADS)

    Ozer, Demet; Köse, Dursun A.; Şahin, Onur; Oztas, Nursen Altuntas

    2017-08-01

    The new metal-organic framework materials based on boric acid reported herein. Sodium and boron containing metal-organic frameworks were synthesized by one-pot self-assembly reaction in the presence of trimesic acid and terephthalic acid in water/ethanol solution. Boric acid is a relatively cheap boron source and boric acid mediated metal-organic framework prepared mild conditions compared to the other boron source based metal-organic framework. The synthesized compounds were characterized by FT-IR, p-XRD, TGA/DTA, elemental analysis, 13C-MAS NMR, 11B-NMR and single crystal measurements. The molecular formulas of compounds were estimated as C18H33B2Na5O28 and C8H24B2Na2O17 according to the structural analysis. The obtained complexes were thermally stable. Surface properties of inorganic polymer complexes were investigated by BET analyses and hydrogen storage properties of compound were also calculated.

  2. Charge transport in metal oxide nanocrystal-based materials

    NASA Astrophysics Data System (ADS)

    Runnerstrom, Evan Lars

    There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and structure. Charge transport can obviously be taken to mean the conduction of electrons, but it also refers to the motion of ions, such as lithium ions and protons. In many cases, the transport of ions is married to the motion of electrons as well, either through an external electrical circuit, or within the same material in the case of mixed ionic electronic conductors. The collective motion of electrons over short length scales, that is, within single nanocrystals, is also a subject of study as it pertains to plasmonic nanocrystals. Finally, charge transport can also be coupled to or result from the formation of defects in metal oxides. All of these modes of charge transport in metal oxides gain further complexity when considered in nanocrystalline systems, where the introduction of numerous surfaces can change the character of charge transport relative to bulk systems, providing opportunities to exploit new physical phenomena. Part I of this dissertation explores the combination of electronic and ionic transport in electrochromic devices based on nanocrystals. Colloidal chemistry and solution processing are used to fabricate nanocomposites based on electrochromic tin-doped indium oxide (ITO) nanocrystals. The nanocomposites, which are completely synthesized using solution processing, consist of ITO nanocrystals and lithium bis(trifluoromethylsulfonyl)amide (LiTFSI) salt dispersed in a lithium ion-conducting polymer matrix of either poly(ethylene oxide) (PEO) or poly(methyl methacrylate) (PMMA). ITO nanocrystals are prepared by colloidal synthetic methods and the nanocrystal surface chemistry is modified to achieve favorable nanocrystal-polymer interactions. Homogeneous solutions containing polymer, ITO nanocrystals, and lithium salt are thus prepared and deposited by spin casting. Characterization by DC electronic measurements, microscopy, and x-ray scattering techniques show that the ITO nanocrystals form a complete, connected electrode within a polymer electrolyte matrix, and that the morphology and properties of the nanocomposites can be manipulated by changing the chemical composition of the deposition solution. Careful application of AC impedance spectroscopy techniques and DC measurements are used to show that the nanocomposites exhibit mixed ionic and electronic conductivity, where electronic charge is transported through the ITO nanocrystal phase, and ionic charge is transported through the polymer matrix phase. The synthetic methods developed here and understanding of charge transport ultimately lead to the fabrication of a solid state nanocomposite electrochromic device based on nanocrystals of ITO and cerium oxide. Part II of this dissertation considers electron transport within individual metal oxide nanocrystals themselves. It primarily examines relationships between synthetic chemistry, doping mechanisms in metal oxides, and the accompanying physics of free carrier scattering within the interior of highly doped metal oxide nanocrystals, with particular mind paid to ITO nanocrystals. Additionally, synthetic methods as well as metal oxide defect chemistry influences the balance between activation and compensation of dopants, which limits the nanocrystals' free carrier concentration. Furthermore, because of ionized impurity scattering of the oscillating electrons by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. (Abstract shortened by ProQuest.).

  3. Corrosion Map for Metal Pipes in Coastal Louisiana

    DOT National Transportation Integrated Search

    2017-12-01

    Transportation agencies often allow metal pipes as an option for cross drains under/along roads and highways. Metal culverts can corrode over time at various rates based on their environmental conditions (e.g., corrosive nature of coastal soils, high...

  4. Application of Metal Catalysts for High Selectivity of Glycerol Conversion to Alcohols

    DOT National Transportation Integrated Search

    2010-11-01

    The objective of this project is to determine the applicability of metal-based catalysts and optimize the process conditions for thermochemically producing primary alcohols. Metal catalysts were evaluated for their selectivities for producing alcohol...

  5. Evaluating the Long-Term Stability of Metals Precipitated In-Situ

    EPA Science Inventory

    Because metals (including metals and metalloids) cannot be destroyed, unlike organic contaminants, in-situ approaches for their removal from groundwater necessarily involves fixation/immobilization in the solid aquifer matrix. Consequently, the success of precipitation based in...

  6. Development of a novel polymeric fiber-optic magnetostrictive metal detector.

    PubMed

    Hua, Wei-Shu; Hooks, Joshua Rosenberg; Wu, Wen-Jong; Wang, Wei-Chih

    2010-01-01

    The purpose this paper is the development a novel polymeric fiber-optic magnetostrictive metal detector, using a fiber-optic Mach-Zehnder interferometer and polymeric magnetostrictive material. Metal detection is based on the strain-induced optical path length change steming from the ferromagnetic material introduced in the magnetic field. Varied optical phase shifts resulted largely from different metal objects. In this paper, the preliminary results on the different metal material detection will be discussed.

  7. The mass-metallicity relations for gas and stars in star-forming galaxies: strong outflow versus variable IMF

    NASA Astrophysics Data System (ADS)

    Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Comparat, Johan; Gonzalez-Perez, Violeta; Ventura, Paolo

    2018-02-01

    We investigate the mass-metallicity relations for the gaseous (MZRgas) and stellar components (MZRstar) of local star-forming galaxies based on a representative sample from Sloan Digital Sky Survey Data Release 12. The mass-weighted average stellar metallicities are systematically lower than the gas metallicities. This difference in metallicity increases towards galaxies with lower masses and reaches 0.4-0.8 dex at 109 M⊙ (depending on the gas metallicity calibration). As a result, the MZRstar is much steeper than the MZRgas. The much lower metallicities in stars compared to the gas in low-mass galaxies imply dramatic metallicity evolution with suppressed metal enrichment at early times. The aim of this paper is to explain the observed large difference in gas and stellar metallicity and to infer the origin of the mass-metallicity relations. To this end we develop a galactic chemical evolution model accounting for star formation, gas inflow and outflow. By combining the observed mass-metallicity relation for both gas and stellar components to constrain the models, we find that only two scenarios are able to reproduce the observations. Either strong metal outflow or a steep initial mass function (IMF) slope at early epochs of galaxy evolution is needed. Based on these two scenarios, for the first time we successfully reproduce the observed MZRgas and MZRstar simultaneously, together with other independent observational constraints in the local Universe. Our model also naturally reproduces the flattening of the MZRgas at the high-mass end leaving the MZRstar intact, as seen in observational data.

  8. Pressure sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.

    Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the needmore » for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.« less

  9. Sensor and methods of detecting target materials and situations in closed systems

    DOEpatents

    Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.

    2018-03-13

    Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  10. Stabilized tin-oxide-based oxidation/reduction catalysts

    NASA Technical Reports Server (NTRS)

    Watkins, Anthony Neal (Inventor); Oglesby, Donald M. (Inventor); Gulati, Suresh T. (Inventor); Summers, Jerry C. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Leighty, Bradley D. (Inventor); Jordan, Jeffrey D. (Inventor); Schryer, Jacqueline L. (Inventor)

    2008-01-01

    The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.

  11. Non-noble metal based metallization systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III

    1983-01-01

    The results of efforts to produce a nonsilver metallization system for silicon photovoltaic cells are given. The system uses a metallization system based on molybdenum, tin, and titanium hydride. The initial work in this system was done using the MIDFILM process. The MIDFILM process attains a line resolution comparable to photoresist methods with a process related to screen printing. The surface to be processed is first coated with a thin layer of photopolymer material. Upon exposure to ultraviolet light through a suitable mask, the polymer in the non-pattern area crosslinks and becomes hard. The unexposed pattern areas remain tacky. The conductor material is then applied in the form of a dry mixture of metal which adheres to the tacky pattern area. The assemblage is then fired to ash the photopolymer and sinter the conductor powder.

  12. Carbon nanotubes grown on bulk materials and methods for fabrication

    DOEpatents

    Menchhofer, Paul A [Clinton, TN; Montgomery, Frederick C [Oak Ridge, TN; Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  13. Degradation mechanisms of Ti/Al/Ni/Au-based Ohmic contacts on AlGaN/GaN HEMTs

    DOE PAGES

    Hwang, Ya-Hsi; Ahn, Shihyun; Dong, Chen; ...

    2015-04-27

    We investigated the degradation mechanism of Ti/Al/Ni/Au-based Ohmic metallization on AlGaN/GaN high electron mobility transistors upon exposure to buffer oxide etchant (BOE). The major effect of BOE on the Ohmic metal was an increase of sheet resistance from 2.89 to 3.69 Ω/ₜafter 3 min BOE treatment. The alloyed Ohmic metallization consisted 3–5 μm Ni-Al alloy islands surrounded by Au-Al alloy-rings. The morphology of both the islands and ring areas became flatter after BOE etching. Lastly, we used energy dispersive x-ray analysis and Auger electron microscopy to analyze the compositions and metal distributions in the metal alloys prior to and aftermore » BOE exposure.« less

  14. Numerical assessment of residual formability in sheet metal products: towards design for sustainability

    NASA Astrophysics Data System (ADS)

    Falsafi, Javad; Demirci, Emrah; Silberschmidt, Vadim. V.

    2016-08-01

    A new computational scheme is presented to addresses cold recyclability of sheet- metal products. Cold recycling or re-manufacturing is an emerging area studied mostly empirically; in its current form, it lacks theoretical foundation especially in the area of sheet metals. In this study, a re-formability index was introduced based on post-manufacture residual formability in sheet metal products. This index accounts for possible levels of deformation along different strain paths based on Polar Effective Plastic Strain (PEPS) technique. PEPS is strain-path independent, hence provides a foundation for residual formability analysis. A user- friendly code was developed to implement this assessment in conjunction with advanced finite- element (FE) analysis. The significance of this approach is the advancement towards recycling of sheet metal products without melting them.

  15. Effect of soldering on the metal-ceramic bond strength of an Ni-Cr base alloy.

    PubMed

    Nikellis, Ioannis; Levi, Anna; Zinelis, Spiros

    2005-11-01

    Although soldering is a common laboratory procedure, the use of soldering alloys may adversely affect metal-ceramic bond strength and potentially decrease the longevity of metal-ceramic restorations. The purpose of this study was to investigate the effect of soldering on metal-ceramic bond strength of a representative Ni-Cr base metal alloy. Twenty-eight rectangular (25 x 3 x 0.5 mm) Ni-based alloy (Wiron 99) specimens were equally divided into soldering (S) and reference (R) groups. Soldering group specimens were covered with a 0.1-mm layer of the appropriate solder (Wiron-Lot) and reduced by 0.1 mm on the opposite side. Five specimens of each group were used for the measurement of surface roughness parameter (R(z)) and hardness, and 3 were used for measurement of the modulus of elasticity. Six specimens of each group were covered with porcelain (Ceramco 3) and subjected to a 3-point bending test for evaluation of the metal-ceramic bond strength according to the ISO 9693 specification. The data from surface roughness, hardness, modulus of elasticity, and metal-ceramic bond strength were analyzed statistically, using independent t tests (alpha=.05). Statistical analysis of the R(z) surface roughness parameter (S: 3.4 +/- 0.3 mum; R: 3.7 +/- 0.7 microm; P=.07) and bond strength (S: 46 +/- 3 MPa; R: 40 +/- 5 MPa; P=.057) failed to reveal any significant difference between the 2 groups. The specimens of the soldering group demonstrated significantly lower values both in hardness (S: 128 +/- 11 VHN; R: 217 +/- 4 VHN; P<.001) and in modulus of elasticity (S: 135 +/- 4 GPa; R: 183 +/- 6 GPa; P=.035) than the reference group. Under the conditions of the present study, the addition of solder to the base metal alloy did not affect the metal-ceramic bond strength.

  16. 75 FR 8682 - Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... futures and options in the precious and base metals markets, and to consider Federal position limits in... precious and base metals markets and related hedge exemptions on regulated futures exchanges, derivatives... COMMODITY FUTURES TRADING COMMISSION Sunshine Act Meetings Agency Holding the Meeting: Commodity...

  17. DEVELOPMENT OF SULFATE RADICAL-BASED CHEMICAL OXIDATION PROCESSES FOR TREATMENT OF PCBS

    EPA Science Inventory

    This study investigates transition metal based activation of peroxymonosulfate for generation of highly reactive sulfate radicals to degrade Polychlorinated Biphenyls (PCBs) in contaminated aqueous and sediment systems. Environmental friendly transition metal iron (Fe (II), Fe (I...

  18. Self-Assembled Molecular Squares Containing Metal-Based Donor: Synthesis and Application in the Sensing of Nitro-aromatics†

    PubMed Central

    Vajpayee, Vaishali; Kim, Hyunuk; Mishra, Anurag; Mukherjee, Partha Sarathi; Lee, Min Hyung; Kim, Hwan Kyu

    2012-01-01

    Self-assemblies between a linear Pt-based donor and ferrocene-chelated metallic acceptors produce novel heterometallic squares 4 and 5, which show fluorescence quenching upon addition of nitro-aromatics. PMID:21321785

  19. A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries

    PubMed Central

    Miao, Rongrong; Yang, Jun; Xu, Zhixin; Wang, Jiulin; Nuli, Yanna; Sun, Limin

    2016-01-01

    A new ether-based electrolyte to match lithium metal electrode is prepared by introducing 1, 4-dioxane as co-solvent into lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane solution. Under the synergetic effect of solvents and salt, this simple liquid electrolyte presents stable Li cycling with dendrite-free Li deposition even at relatively high current rate, high coulombic efficiency of ca. 98%, and good anodic stability up to ~4.87 V vs Li RE. Its excellent performance will open up a new possibility for high energy-density rechargeable Li metal battery system. PMID:26878890

  20. Biological and Bioelectrochemical Recovery of Critical and Scarce Metals.

    PubMed

    Nancharaiah, Y V; Mohan, S Venkata; Lens, P N L

    2016-02-01

    Metal-bearing solid and liquid wastes are increasingly considered as secondary sources of critical and scarce metals. Undoubtedly, microorganisms are a cost-effective resource for extracting and concentrating diffuse elements from secondary sources. Microbial biotechnology for extracting base metals from ores and treatment of metal-laden wastewaters has already been applied at full scale. By contrast, microbe-metal interactions in the recovery of scarce metals and a few critical metals have received attention, whereas the recovery of many others has been barely explored. Therefore, this article explores and details the potential application of microbial biotechnologies in the recovery of critical and scarce metals. In the past decade bioelectrochemical systems have emerged as a new technology platform for metal recovery coupled to the removal of organic matter. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Metallic Sn‐Based Anode Materials: Application in High‐Performance Lithium‐Ion and Sodium‐Ion Batteries

    PubMed Central

    Ying, Hangjun

    2017-01-01

    Abstract With the fast‐growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn‐based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted great attention due to the high theoretical capacities of Sn in both lithium‐ion batteries (LIBs) (994 mA h g−1) and sodium‐ion batteries (847 mA h g−1). Though Sony has used Sn–Co–C nanocomposites as its commercial LIB anodes, to develop even better batteries using metallic Sn‐based anodes there are still two main obstacles that must be overcome: poor cycling stability and low coulombic efficiency. In this review, the latest and most outstanding developments in metallic Sn‐based anodes for LIBs and SIBs are summarized. And it covers the modification strategies including size control, alloying, and structure design to effectually improve the electrochemical properties. The superiorities and limitations are analyzed and discussed, aiming to provide an in‐depth understanding of the theoretical works and practical developments of metallic Sn‐based anode materials. PMID:29201624

  2. Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries.

    PubMed

    Ying, Hangjun; Han, Wei-Qiang

    2017-11-01

    With the fast-growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn-based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted great attention due to the high theoretical capacities of Sn in both lithium-ion batteries (LIBs) (994 mA h g -1 ) and sodium-ion batteries (847 mA h g -1 ). Though Sony has used Sn-Co-C nanocomposites as its commercial LIB anodes, to develop even better batteries using metallic Sn-based anodes there are still two main obstacles that must be overcome: poor cycling stability and low coulombic efficiency. In this review, the latest and most outstanding developments in metallic Sn-based anodes for LIBs and SIBs are summarized. And it covers the modification strategies including size control, alloying, and structure design to effectually improve the electrochemical properties. The superiorities and limitations are analyzed and discussed, aiming to provide an in-depth understanding of the theoretical works and practical developments of metallic Sn-based anode materials.

  3. Minerals with metal-organic framework structures

    PubMed Central

    Huskić, Igor; Pekov, Igor V.; Krivovichev, Sergey V.; Friščić, Tomislav

    2016-01-01

    Metal-organic frameworks (MOFs) are an increasingly important family of advanced materials based on open, nanometer-scale metal-organic architectures, whose design and synthesis are based on the directed assembly of carefully designed subunits. We now demonstrate an unexpected link between mineralogy and MOF chemistry by discovering that the rare organic minerals stepanovite and zhemchuzhnikovite exhibit structures found in well-established magnetic and proton-conducting metal oxalate MOFs. Structures of stepanovite and zhemchuzhnikovite, exhibiting almost nanometer-wide and guest-filled apertures and channels, respectively, change the perspective of MOFs as exclusively artificial materials and represent, so far, unique examples of open framework architectures in organic minerals. PMID:27532051

  4. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher

    1993-01-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  5. Minerals with metal-organic framework structures.

    PubMed

    Huskić, Igor; Pekov, Igor V; Krivovichev, Sergey V; Friščić, Tomislav

    2016-08-01

    Metal-organic frameworks (MOFs) are an increasingly important family of advanced materials based on open, nanometer-scale metal-organic architectures, whose design and synthesis are based on the directed assembly of carefully designed subunits. We now demonstrate an unexpected link between mineralogy and MOF chemistry by discovering that the rare organic minerals stepanovite and zhemchuzhnikovite exhibit structures found in well-established magnetic and proton-conducting metal oxalate MOFs. Structures of stepanovite and zhemchuzhnikovite, exhibiting almost nanometer-wide and guest-filled apertures and channels, respectively, change the perspective of MOFs as exclusively artificial materials and represent, so far, unique examples of open framework architectures in organic minerals.

  6. Computed Tomography Imaging of a Hip Prosthesis Using Iterative Model-Based Reconstruction and Orthopaedic Metal Artefact Reduction: A Quantitative Analysis.

    PubMed

    Wellenberg, Ruud H H; Boomsma, Martijn F; van Osch, Jochen A C; Vlassenbroek, Alain; Milles, Julien; Edens, Mireille A; Streekstra, Geert J; Slump, Cornelis H; Maas, Mario

    To quantify the combined use of iterative model-based reconstruction (IMR) and orthopaedic metal artefact reduction (O-MAR) in reducing metal artefacts and improving image quality in a total hip arthroplasty phantom. Scans acquired at several dose levels and kVps were reconstructed with filtered back-projection (FBP), iterative reconstruction (iDose) and IMR, with and without O-MAR. Computed tomography (CT) numbers, noise levels, signal-to-noise-ratios and contrast-to-noise-ratios were analysed. Iterative model-based reconstruction results in overall improved image quality compared to iDose and FBP (P < 0.001). Orthopaedic metal artefact reduction is most effective in reducing severe metal artefacts improving CT number accuracy by 50%, 60%, and 63% (P < 0.05) and reducing noise by 1%, 62%, and 85% (P < 0.001) whereas improving signal-to-noise-ratios by 27%, 47%, and 46% (P < 0.001) and contrast-to-noise-ratios by 16%, 25%, and 19% (P < 0.001) with FBP, iDose, and IMR, respectively. The combined use of IMR and O-MAR strongly improves overall image quality and strongly reduces metal artefacts in the CT imaging of a total hip arthroplasty phantom.

  7. Co(II) and Cd(II) Complexes Derived from Heterocyclic Schiff-Bases: Synthesis, Structural Characterisation, and Biological Activity

    PubMed Central

    Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449

  8. Identification of metal ion binding sites based on amino acid sequences

    PubMed Central

    Cao, Xiaoyong; Zhang, Xiaojin; Gao, Sujuan; Ding, Changjiang; Feng, Yonge; Bao, Weihua

    2017-01-01

    The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html. PMID:28854211

  9. Identification of metal ion binding sites based on amino acid sequences.

    PubMed

    Cao, Xiaoyong; Hu, Xiuzhen; Zhang, Xiaojin; Gao, Sujuan; Ding, Changjiang; Feng, Yonge; Bao, Weihua

    2017-01-01

    The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html.

  10. Characterization of CMOS metal based dielectric loaded surface plasmon waveguides at telecom wavelengths.

    PubMed

    Weeber, J-C; Arocas, J; Heintz, O; Markey, L; Viarbitskaya, S; Colas-des-Francs, G; Hammani, K; Dereux, A; Hoessbacher, C; Koch, U; Leuthold, J; Rohracher, K; Giesecke, A L; Porschatis, C; Wahlbrink, T; Chmielak, B; Pleros, N; Tsiokos, D

    2017-01-09

    Dielectric loaded surface plasmon waveguides (DLSPPWs) comprised of polymer ridges deposited on top of CMOS compatible metal thin films are investigated at telecom wavelengths. We perform a direct comparison of the properties of copper (Cu), aluminum (Al), titanium nitride (TiN) and gold (Au) based waveguides by implementing the same plasmonic waveguiding configuration for each metal. The DLSPPWs are characterized by leakage radiation microscopy and a fiber-to-fiber configuration mimicking the cut-back method. We introduce the ohmic loss rate (OLR) to analyze quantitatively the properties of the CMOS metal based DLSPPWs relative to the corresponding Au based waveguides. We show that the Cu, Al and TiN based waveguides feature extra ohmic loss compared to Au of 0.027 dB/μm, 0.18 dB/μm and 0.52 dB/μm at 1550nm respectively. The dielectric function of each metal extracted from ellipsometric spectroscopic measurements is used to model the properties of the DLSP-PWs. We find a fairly good agreement between experimental and modeled DLSPPWs properties except for Al featuring a large surface roughness. Finally, we conclude that TiN based waveguides sustaining intermediate effective index (in the range 1.05-1.25) plasmon modes propagate over very short distances restricting the the use of those modes in practical situations.

  11. [The bonding mechanisms of base metals for metal-ceramic crown microstructure analysis of bonding agent and gold bond between porcelain and base metals].

    PubMed

    Wang, C C; Hsu, C S

    1996-06-01

    The use of base metal alloys for porcelain fused to a metal crown and bridges has increased recently because of lower price, high hardness, high tensile strength and high elastic modulus. The addition of beryllium to base metal alloys increased fluidity and improved casting fitness. Beryllium also controlled surface oxidation and bonding strength. The bonding agent and gold bonding agent also affected the bonding strength between porcelain and metal alloys. Four commercially available ceramic base alloys were studied (two alloys contained beryllium element, another two did not). The purpose of this investigation was to study the microstructure between porcelain matrix, bonding agent and alloy matrix interfaces. A scanning electron micro-probe analyzer and energy dispersive X-ray spectroscopy (EDXS) were used to study the distribution of elements (Ni, Cr, Mo, Cu, O, Si, Sn, Al) in four base alloys. The following results were obtained: 1. The thickness of the oxidized layer of Rexillium III alloy and Unitbond alloy (contained beryllium) was thinner than Unibond alloy and Wiron 88 alloy (no beryllium). 2. The thickness of the oxidized layer of alloys in air (10 minutes and 30 minutes) was thinner in Unitbond (2.45 microns and 3.80 microns) and thicker in Wiron 88 (4.39 microns and 5.96 microns). 3. The thickness of the oxidized layer occurring for a duration of ten minutes (in vaccum) showed that the Rexillium III alloy was the thinnest (1.93 microns), and Wiron 88 alloy was the thickest (2.30 microns). But in thirty minutes (vacuum), Unitbond alloy was the thinnest (3.37 microns), and Wiron 88 alloy was the thickest (5.51 microns). 4. The intensity of Cr elements was increased obviously near the interface between Unitbond alloy, Wiron 88 alloy (no beryllium) and oxidized layer, but the intensity of Ni and Mo elements was slightly increased. The intensity of Cr element was not increased markedly between Rexillium III alloy, Unitbond alloy (beryllium) and oxidized layer. 5. A white-grayish oxidized layer appeared at the metal-ceramic interfaces but the thickness of oxidized layer was not obviously different. 6. The use of bonding agent at metal-ceramic interface leads to the deposition of many Sn elements at about 40 microns range within the porcelain surface. 7. Second interaction phases at the porcelain layer appeared when gold bonding agent was used, and a 50-100 microns microleakage occurred at the metal-ceramic interface.

  12. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.

    PubMed

    Zhu, Yun Pei; Guo, Chunxian; Zheng, Yao; Qiao, Shi-Zhang

    2017-04-18

    Developing cost-effective and high-performance electrocatalysts for renewable energy conversion and storage is motivated by increasing concerns regarding global energy security and creating sustainable technologies dependent on inexpensive and abundant resources. Recent achievements in the design and synthesis of efficient non-precious-metal and even non-metal electrocatalysts make the replacement of noble metal counterparts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) with earth-abundant elements, for example, C, N, Fe, Mn, and Co, a realistic possibility. It has been found that surface atomic engineering (e.g., heteroatom-doping) and interface atomic or molecular engineering (e.g., interfacial bonding) can induce novel physicochemical properties and strong synergistic effects for electrocatalysts, providing new and efficient strategies to greatly enhance the catalytic activities. In this Account, we discuss recent progress in the design and fabrication of efficient electrocatalysts based on carbon materials, graphitic carbon nitride, and transition metal oxides or hydroxides for efficient ORR, OER, and HER through surface and interfacial atomic and molecular engineering. Atomic and molecular engineering of carbon materials through heteroatom doping with one or more elements of noticeably different electronegativities can maximally tailor their electronic structures and induce a synergistic effect to increase electrochemical activity. Nonetheless, the electrocatalytic performance of chemically modified carbonaceous materials remains inferior to that of their metallic counterparts, which is mainly due to the relatively limited amount of electrocatalytic active sites induced by heteroatom doping. Accordingly, coupling carbon substrates with other active electrocatalysts to produce composite structures can impart novel physicochemical properties, thereby boosting the electroactivity even further. Although the majority of carbon-based materials remain uncompetitive with state-of-the-art metal-based catalysts for the aforementioned catalytic processes, non-metal carbon hybrids have already shown performance that typically only conventional noble metals or transition metal materials can achieve. The idea of hybridized carbon-based catalysts possessing unique active surfaces and macro- or nanostructures is addressed herein. For metal-carbon couples, the incorporation of carbon can effectively compensate for the intrinsic deficiency in conductivity of the metallic components. Chemical modification of carbon frameworks, such as nitrogen doping, not only can change the electron-donor character, but also can introduce anchoring sites for immobilizing active metallic centers to form metal-nitrogen-carbon (M-N-C) species, which are thought to facilitate the electrocatalytic process. With thoughtful material design, control over the porosity of composites, the molecular architecture of active metal moieties and macromorphologies of the whole catalysts can be achieved, leading to a better understanding structure-activity relationships. We hope that we can offer new insight into material design, particularly the role of chemical composition and structural properties in electrochemical performance and reaction mechanisms.

  13. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission

    PubMed Central

    Lakowicz, Joseph R.

    2009-01-01

    Metallic particles and surfaces display diverse and complex optical properties. Examples include the intense colors of noble metal colloids, surface plasmon resonance absorption by thin metal films, and quenching of excited fluorophores near the metal surfaces. Recently, the interactions of fluorophores with metallic particles and surfaces (metals) have been used to obtain increased fluorescence intensities, to develop assays based on fluorescence quenching by gold colloids, and to obtain directional radiation from fluorophores near thin metal films. For metal-enhanced fluorescence it is difficult to predict whether a particular metal structure, such as a colloid, fractal, or continuous surface, will quench or enhance fluorescence. In the present report we suggest how the effects of metals on fluorescence can be explained using a simple concept, based on radiating plasmons (RPs). The underlying physics may be complex but the concept is simple to understand. According to the RP model, the emission or quenching of a fluorophore near the metal can be predicted from the optical properties of the metal structures as calculated from electrodynamics, Mie theory, and/or Maxwell’s equations. For example, according to Mie theory and the size and shape of the particle, the extinction of metal colloids can be due to either absorption or scattering. Incident energy is dissipated by absorption. Far-field radiation is created by scattering. Based on our model small colloids are expected to quench fluorescence because absorption is dominant over scattering. Larger colloids are expected to enhance fluorescence because the scattering component is dominant over absorption. The ability of a metal’s surface to absorb or reflect light is due to wavenumber matching requirements at the metal–sample interface. Wavenumber matching considerations can also be used to predict whether fluorophores at a given distance from a continuous planar surface will be emitted or quenched. These considerations suggest that the so called “lossy surface waves” which quench fluorescence are due to induced electron oscillations which cannot radiate to the far-field because wavevector matching is not possible. We suggest that the energy from the fluorophores thought to be lost by lossy surface waves can be recovered as emission by adjustment of the sample to allow wavevector matching. The RP model provides a rational approach for designing fluorophore–metal configurations with the desired emissive properties and a basis for nanophotonic fluorophore technology. PMID:15691498

  14. pH-Responsive Capsules Engineered from Metal-Phenolic Networks for Anticancer Drug Delivery.

    PubMed

    Ping, Yuan; Guo, Junling; Ejima, Hirotaka; Chen, Xi; Richardson, Joseph J; Sun, Huanli; Caruso, Frank

    2015-05-06

    A new class of pH-responsive capsules based on metal-phenolic networks (MPNs) for anticancer drug loading, delivery and release is reported. The fabrication of drug-loaded MPN capsules, which is based on the formation of coordination complexes between natural polyphenols and metal ions over a drug-coated template, represents a rapid strategy to engineer robust and versatile drug delivery carriers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electrochemical synthesis of hard-alloy compositions based on tungsten carbide and an iron triad metal

    NASA Astrophysics Data System (ADS)

    Kushkhov, Kh. B.; Adamokova, M. N.; Kvashin, V. A.; Kardanov, A. L.

    2010-08-01

    Single and cyclic voltammetry is used to study the electrode processes that occur during electrochemical synthesis of hard-alloy compositions based on tungsten carbide and an iron triad metal in tungstate and tungstate-carbonate Na2WO4-Li2WO4-Li2CO3 (5.0-22.0 wt %) melts. The conditions of bringing the electroprecipitation potentials of tungsten, carbon, and an iron triad metal into coincidence are determined.

  16. Magnetohydrodynamic electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.

    1978-01-01

    An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.

  17. Simplified Technique for Incorporating a Metal Mesh into Record Bases for Mandibular Implant Overdentures.

    PubMed

    Godoy, Antonio; Siegel, Sharon C

    2015-12-01

    Mandibular implant-retained overdentures have become the standard of care for patients with mandibular complete edentulism. As part of the treatment, the mandibular implant-retained overdenture may require a metal mesh framework to be incorporated to strengthen the denture and avoid fracture of the prosthesis. Integrating the metal mesh framework as part of the acrylic record base and wax occlusion rim before the jaw relation procedure will avoid the distortion of the record base and will minimize the chances of processing errors. A simplified method to incorporate the mesh into the record base and occlusion rim is presented in this technique article. © 2015 by the American College of Prosthodontists.

  18. Atmosphere

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Mitra, S. K.

    2014-05-01

    This paper investigates the high-temperature corrosion behavior of microstructurally different regions of the weldment of 9 Cr-1 Mo steel used in thermal power plant boiler in SO2 + O2 environment. The weldment is produced by tungsten inert gas welding method, and the different regions of the weldment (weld metal, heat-affected zone, and base metal) are exposed in SO2 + O2 (ratio 2:1) environment at 973 K for 120 h. The reaction kinetics and corrosion growth rate of different regions of weldment in isothermal condition are evaluated. The post corroded scales of the different specimens are studied in SEM, EDS, and XRD. The results indicate that the weld metal shows higher corrosion rate followed by HAZ and base metal. The higher rate of corrosion of weldmetal is mainly attributed to the least protective inner scale of Cr2O3 with minimum Cr Content. This is due to the formation of delta ferrite, which leads to the precipitation of the Cr-based secondary phases and depletes the free Cr from the matrix. The thermal cycles during welding at high temperature are favorable for the formation of delta ferrite. On the other hand, in absence of delta ferrite, the base metal and HAZ regions of the weldment show lower corrosion rate than weld metal. The difference in corrosion rate in the three regions of the weldment is supplemented by post-corroded scale characterizations.

  19. Modelling interactions of acid–base balance and respiratory status in the toxicity of metal mixtures in the American oyster Crassostrea virginica

    PubMed Central

    Macey, Brett M.; Jenny, Matthew J.; Williams, Heidi R.; Thibodeaux, Lindy K.; Beal, Marion; Almeida, Jonas S.; Cunningham, Charles; Mancia, Annalaura; Warr, Gregory W.; Burge, Erin J.; Holland, A. Fred; Gross, Paul S.; Hikima, Sonomi; Burnett, Karen G.; Burnett, Louis; Chapman, Robert W.

    2010-01-01

    Heavy metals, such as copper, zinc and cadmium, represent some of the most common and serious pollutants in coastal estuaries. In the present study, we used a combination of linear and artificial neural network (ANN) modelling to detect and explore interactions among low-dose mixtures of these heavy metals and their impacts on fundamental physiological processes in tissues of the Eastern oyster, Crassostrea virginica. Animals were exposed to Cd (0.001–0.400 µM), Zn (0.001–3.059 µM) or Cu (0.002–0.787 µM), either alone or in combination for 1 to 27 days. We measured indicators of acid–base balance (hemolymph pH and total CO2), gas exchange (Po2), immunocompetence (total hemocyte counts, numbers of invasive bacteria), antioxidant status (glutathione, GSH), oxidative damage (lipid peroxidation; LPx), and metal accumulation in the gill and the hepatopancreas. Linear analysis showed that oxidative membrane damage from tissue accumulation of environmental metals was correlated with impaired acid–base balance in oysters. ANN analysis revealed interactions of metals with hemolymph acid–base chemistry in predicting oxidative damage that were not evident from linear analyses. These results highlight the usefulness of machine learning approaches, such as ANNs, for improving our ability to recognize and understand the effects of subacute exposure to contaminant mixtures. PMID:19958840

  20. Effect of metal selection and porcelain firing on the marginal accuracy of titanium-based metal ceramic restorations.

    PubMed

    Shokry, Tamer E; Attia, Mazen; Mosleh, Ihab; Elhosary, Mohamed; Hamza, Tamer; Shen, Chiayi

    2010-01-01

    Titanium is the most biocompatible metal used for dental casting; however, there is concern about its marginal accuracy after porcelain application since this aspect has direct influence on marginal fit. The purpose of this study was to determine the effect that metal selection and the porcelain firing procedure have on the marginal accuracy of metal ceramic prostheses. Cast CP Ti, milled CP Ti, cast Ti-6Al-7Nb, and cast Ni-Cr copings (n=5) were fired with compatible porcelains (Triceram for titanium-based metals and VITA VMK 95 for Ni-Cr alloy). The Ni-Cr alloy fired with its porcelain served as the control. Photographs of metal copings placed on a master die were made. Marginal discrepancy was determined on the photographs using an image processing program at 8 predetermined locations before airborne-particle abrasion for porcelain application, after firing of the opaque layer, and after firing of the dentin layer. Repeated-measures 2-way ANOVA was used to investigate the effect of metal selection and firing stage, and paired t tests were used to determine the effect of each firing stage within each material group (alpha=.05). ANOVA showed that both metal selection and firing stage significantly influenced the measured marginal discrepancy (P<.001), and there was interaction between the 2 variables (P<.001). Student-Newman-Keuls multiple comparison tests showed that there were significant differences between any 2 metals compared, at each stage of measurement. Paired t tests showed that significant changes in marginal discrepancy occurred with opaque firing on milled CP Ti (P=.017) and cast Ti-6Al-7Nb alloy (P=.003). Titanium copings fabricated by CAD/CAM demonstrated the least marginal discrepancy among all groups, while the base metal (Ni-Cr) groups exhibited the most discrepancy of all groups tested. Copyright 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  1. Strategies to predict metal mobility in surficial mining environments

    USGS Publications Warehouse

    Smith, Kathleen S.

    2007-01-01

    This report presents some strategies to predict metal mobility at mining sites. These strategies are based on chemical, physical, and geochemical information about metals and their interactions with the environment. An overview of conceptual models, metal sources, and relative mobility of metals under different geochemical conditions is presented, followed by a discussion of some important physical and chemical properties of metals that affect their mobility, bioavailability, and toxicity. The physical and chemical properties lead into a discussion of the importance of the chemical speciation of metals. Finally, environmental and geochemical processes and geochemical barriers that affect metal speciation are discussed. Some additional concepts and applications are briefly presented at the end of this report.

  2. Spatial patterns and origins of heavy metals in Sheyang River catchment in Jiangsu, China based on geographically weighted regression.

    PubMed

    Wu, Shan-Shan; Yang, Hao; Guo, Fei; Han, Rui-Ming

    2017-02-15

    Multivariate statistical analyses combined with geographically weighted regression (GWR) were used to identify spatial variations of heavy metals in sediments and to examine relationships between metal pollution and land use practices in watersheds, including urban land, agriculture land, forest and water bodies. Seven metals (Cu, Zn, Pb, Cr, Ni, Mn and Fe) of sediments were measured at 31 sampling sites in Sheyang River. Most metals were under a certain degree enrichment based on the enrichment factors. Cluster analysis grouped all sites into four statistically significant cluster, severely contaminated areas were concentrated in areas with intensive human activities. Correlation analysis and PCA indicated Cu, Zn and Pb were derived from anthropogenic activities, while the sources of Cr and Ni were complicated. However, Fe and Mn originated from natural sources. According to results of GWR, there are stronger association between metal pollution with urban land than agricultural land and forest. Moreover, the relationships between land use and metal concentration were affected by the urbanization level of watersheds. Agricultural land had a weak associated with heavy metal pollution and the relationships might be stronger in less-urbanized. This study provided useful information for the assessment and management of heavy metal hazards in studied area. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Discussion of Carbon Emissions for Charging Hot Metal in EAF Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Yang, Ling-zhi; Jiang, Tao; Li, Guang-hui; Guo, Yu-feng

    2017-07-01

    As the cost of hot metal is reduced for iron ore prices are falling in the international market, more and more electric arc furnace (EAF) steelmaking enterprises use partial hot metal instead of scrap as raw materials to reduce costs and the power consumption. In this paper, carbon emissions based on 1,000 kg molten steel by charging hot metal in EAF steelmaking is studied. Based on the analysis of material and energy balance calculation in EAF, the results show that 146.9, 142.2, 137.0, and 130.8 kg/t of carbon emissions are produced at a hot metal ratio of 0 %, 30 %, 50 %, and 70 %, while 143.4, 98.5, 65.81, and 31.5 kg/t of carbon emissions are produced at a hot metal ratio of 0 %, 30 %, 50 %, and 70 % by using gas waste heat utilization (coal gas production) for EAF steelmaking unit process. However, carbon emissions are increased by charging hot metal for the whole blast furnace-electric arc furnace (BF-EAF) steelmaking process. In the condition that the hot metal produced by BF is surplus, as carbon monoxide in gas increased by charging hot metal, the way of coal gas production can be used for waste heat utilization, which reduces carbon emissions in EAF steelmaking unit process.

  4. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu 1.5Mn 1.5O 4, identified by exploiting theoretical first principles calculations for ORR and OERmore » in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO 2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO 2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  5. Metal based gas diffusion layers for enhanced fuel cell performance at high current densities

    NASA Astrophysics Data System (ADS)

    Hussain, Nabeel; Van Steen, Eric; Tanaka, Shiro; Levecque, Pieter

    2017-01-01

    The gas diffusion layer strongly influences the performance and durability of polymer electrolyte fuel cells. A major drawback of current carbon fiber based GDLs is the non-controlled variation in porosity resulting in a random micro-structure. Moreover, when subjected to compression these materials show significant reduction in porosity and permeability leading to water management problems and mass transfer losses within the fuel cell. This study investigated the use of uniform perforated metal sheets as GDLs in conjunction with microchannel flowfields. A metal sheet design with a pitch of 110 μm and a hole diameter of 60 μm in combination with an MPL showed superior performance in the high current density region compared to a commercially available carbon paper based GDL in a single cell environment. Fuel cell testing with different oxidants (air, heliox and oxygen) indicate that the metal sheet offers both superior diffusion and reduced flooding in comparison to the carbon based GDL. The presence of the MPL has been found to be critical to the functionality of the metal sheet suggesting that the MPL design may represent an important optimisation parameter for further improvements in performance.

  6. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE PAGES

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; ...

    2016-07-06

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu 1.5Mn 1.5O 4, identified by exploiting theoretical first principles calculations for ORR and OERmore » in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO 2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO 2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  7. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    PubMed Central

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-01-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719

  8. Durable pd-based alloy and hydrogen generation membrane thereof

    DOEpatents

    Benn, Raymond C.; Opalka, Susanne M.; Vanderspurt, Thomas Henry

    2010-02-02

    A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.

  9. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    NASA Astrophysics Data System (ADS)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  10. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts.

    PubMed

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S; Kumta, Prashant N

    2016-07-06

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  11. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China.

    PubMed

    Guan, Qingyu; Wang, Feifei; Xu, Chuanqi; Pan, Ninghui; Lin, Jinkuo; Zhao, Rui; Yang, Yanyan; Luo, Haiping

    2018-02-01

    Hexi Corridor is the most important base of commodity grain and producing area for cash crops. However, the rapid development of agriculture and industry has inevitably led to heavy metal contamination in the soils. Multivariate statistical analysis, GIS-based geostatistical methods and Positive Matrix Factorization (PMF) receptor modeling techniques were used to understand the levels of heavy metals and their source apportionment for agricultural soil in Hexi Corridor. The results showed that the average concentrations of Cr, Cu, Ni, Pb and Zn were lower than the secondary standard of soil environmental quality; however, the concentrations of eight metals (Cr, Cu, Mn, Ni, Pb, Ti, V and Zn) were higher than background values, and their corresponding enrichment factor values were significantly greater than 1. Different degrees of heavy metal pollution occurred in the agricultural soils; specifically, Ni had the most potential for impacting human health. The results from the multivariate statistical analysis and GIS-based geostatistical methods indicated both natural sources (Co and W) and anthropogenic sources (Cr, Cu, Mn, Ni, Pb, Ti, V and Zn). To better identify pollution sources of heavy metals in the agricultural soils, the PMF model was applied. Further source apportionment revealed that enrichments of Pb and Zn were attributed to traffic sources; Cr and Ni were closely related to industrial activities, including mining, smelting, coal combustion, iron and steel production and metal processing; Zn and Cu originated from agricultural activities; and V, Ti and Mn were derived from oil- and coal-related activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Synthesis, characterization and biological approach of metal chelates of some first row transition metal ions with halogenated bidentate coumarin Schiff bases containing N and O donor atoms.

    PubMed

    Prabhakara, Chetan T; Patil, Sangamesh A; Toragalmath, Shivakumar S; Kinnal, Shivashankar M; Badami, Prema S

    2016-04-01

    The impregnation of halogen atoms in a molecule is an emerging trend in pharmaceutical chemistry. The presence of halogens (Cl, Br, I and F) increases the lipophilic nature of molecule and improves the penetration of lipid membrane. The presence of electronegative halogen atoms increases the bio- activity of core moiety. In the present study, Co(II), Ni(II) and Cu(II) complexes are synthesised using Schiff bases (HL(I) and HL(II)), derived from 8-formyl-7-hydroxy-4-methylcoumarin/3-chloro-8-formyl-7-hydroxy-4-methylcoumarin with 2,4-difluoroaniline/o-toluidine respectively. The synthesized compounds were characterized by spectral (IR, NMR, UV-visible, Mass, ESI-MS, ESR), thermal, fluorescence and molar conductivity studies. All the synthesized metal complexes are completely soluble in DMF and DMSO. The non-electrolytic nature of the metal complexes was confirmed by molar conductance studies. Elemental analysis study suggest [ML2(H2O)2] stoichiometry, here M=Co(II), Ni(II) and Cu(II), L=deprotonated ligand. The obtained IR data supports the binding of metal ion to Schiff base. Thermal study suggests the presence of coordinated water molecules. Electronic spectral results reveal six coordinated geometry for the synthesized metal complexes. The Schiff bases and their metal complexes were evaluated for antibacterial (Pseudomonas aureginosa and Proteus mirabilis), antifungal (Aspergillus niger and Rhizopus oryzae), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Benchmarking Anthropogenic Heavy Metals Emissions: Australian and Global Urban Environmental Health Risk Based Indicators of Sustainability

    ERIC Educational Resources Information Center

    Dejkovski, Nick

    2016-01-01

    In Australia, the impacts of urbanisation and human activity are evident in increased waste generation and the emissions of metals into the air, land or water. Metals that have accumulated in urban soils almost exclusively anthropogenically can persist for long periods in the environment. Anthropogenic waste emissions containing heavy metals are a…

  14. Wireless radiation sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamberti, Vincent E.; Howell, Jr, Layton N.; Mee, David K.

    Disclosed is a sensor for detecting radiation. The sensor includes a ferromagnetic metal and a radiation sensitive material coupled to the ferromagnetic metal. The radiation sensitive material is operable to change a tensile stress of the ferromagnetic metal upon exposure to radiation. The radiation is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  15. Development of Cu Clad Cu-Zr Based Metallic Glass and Its Solderability

    NASA Astrophysics Data System (ADS)

    Terajima, Takeshi; Kimura, Hisamichi; Inoue, Akihisa

    Soldering is a candidate technique for joining metallic glasses. It can be processed far below the crystallization temperatures of the various metallic glasses so that there is no possibility of crystallization. However, wettability of Cu-Zr based metallic glass by Pb free solder is poor because a strong surface oxide film interferes direct contact between them. To overcome the problem, Cu thin film clad metallic glass was developed. It was preliminary produced by casting a melt of Cu36Zr48Al8Ag8 pre-alloy into Cu mold cavity, inside which Cu thin film with 2 mm in thickness was set on the wall. Cu36Zr48Al8Ag8 metallic glass, whose surface Cu thin film was welded to, was successfully produced. From the microstructure analyses, it was found that reaction layer was formed at the interface between Cu and Cu36Zr48Al8Ag8 metallic glass, however, there was no oxide in the Cu clad layer. Solderability to the metallic glass was drastically increased. The Cu clad layer played an important role to prevent the formation of surface oxide film and consequently improved the solderability.

  16. The gas-phase metallicities of star-forming galaxies in aperture-matched SDSS samples follow potential rather than mass or average surface density

    NASA Astrophysics Data System (ADS)

    D'Eugenio, Francesco; Colless, Matthew; Groves, Brent; Bian, Fuyan; Barone, Tania M.

    2018-05-01

    We present a comparative study of the relation between the aperture-based gas-phase metallicity and three structural parameters of star-forming galaxies: mass (M ≡ M*), average potential (Φ ≡ M*/Re) and average surface mass density (Σ ≡ M_*/R_e^2; where Re is the effective radius). We use a volume-limited sample drawn from the publicly available SDSS DR7, and base our analysis on aperture-matched sampling by selecting sets of galaxies where the SDSS fibre probes a fixed fraction of Re. We find that between 0.5 and 1.5 Re, the gas-phase metallicity correlates more tightly with Φ than with either {M} or Σ, in that for all aperture-matched samples, the potential-metallicity relation has (i) less scatter, (ii) higher Spearman rank correlation coefficient and (iii) less residual trend with Re than either the mass-metallicity relation and the average surface density-metallicity relation. Our result is broadly consistent with the current models of gas enrichment and metal loss. However, a more natural explanation for our findings is a local relation between the gas-phase metallicity and escape velocity.

  17. Metal artifact reduction through MVCBCT and kVCT in radiotherapy

    NASA Astrophysics Data System (ADS)

    Liugang, Gao; Hongfei, Sun; Xinye, Ni; Mingming, Fang; Zheng, Cao; Tao, Lin

    2016-11-01

    This study proposes a new method for removal of metal artifacts from megavoltage cone beam computed tomography (MVCBCT) and kilovoltage CT (kVCT) images. Both images were combined to obtain prior image, which was forward projected to obtain surrogate data and replace metal trace in the uncorrected kVCT image. The corrected image was then reconstructed through filtered back projection. A similar radiotherapy plan was designed using the theoretical CT image, the uncorrected kVCT image, and the corrected image. The corrected images removed most metal artifacts, and the CT values were accurate. The corrected image also distinguished the hollow circular hole at the center of the metal. The uncorrected kVCT image did not display the internal structure of the metal, and the hole was misclassified as metal portion. Dose distribution calculated based on the corrected image was similar to that based on the theoretical CT image. The calculated dose distribution also evidently differed between the uncorrected kVCT image and the theoretical CT image. The use of the combined kVCT and MVCBCT to obtain the prior image can distinctly improve the quality of CT images containing large metal implants.

  18. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning.

    PubMed

    Caiazzo, Fabrizia; Caggiano, Alessandra

    2018-03-19

    Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.

  19. Deposition and thermal characterization of nano-structured aluminum nitride thin film on Cu-W substrate for high power light emitting diode package.

    PubMed

    Cho, Hyun Min; Kim, Min-Sun

    2014-08-01

    In this study, we developed AlN thick film on metal substrate for hybrid type LED package such as chip on board (COB) using metal printed circuit board (PCB). Conventional metal PCB uses ceramic-polymer composite as electrical insulating layer. Thermal conductivities of such type dielectric film are typically in the range of 1~4 W/m · K depending on the ceramic filler. Also, Al or Cu alloy are mainly used for metal base for high thermal conduction to dissipate heat from thermal source mounted on metal PCB. Here we used Cu-W alloy with low thermal expansion coefficient as metal substrate to reduce thermal stress between insulating layer and base metal. AlN with polyimide (PI) powder were used as starting materials for deposition. We could obtain very high thermal conductivity of 28.3 W/m · K from deposited AlN-PI thin film by AlN-3 wt% PI powder. We made hybrid type high power LED package using AlN-PI thin film. We tested thermal performance of this film by thermal transient measurement and compared with conventional metal PCB substrate.

  20. Metal complexes of quinolone antibiotics and their applications: an update.

    PubMed

    Uivarosi, Valentina

    2013-09-11

    Quinolones are synthetic broad-spectrum antibiotics with good oral absorption and excellent bioavailability. Due to the chemical functions found on their nucleus (a carboxylic acid function at the 3-position, and in most cases a basic piperazinyl ring (or another N-heterocycle) at the 7-position, and a carbonyl oxygen atom at the 4-position) quinolones bind metal ions forming complexes in which they can act as bidentate, as unidentate and as bridging ligand, respectively. In the polymeric complexes in solid state, multiple modes of coordination are simultaneously possible. In strongly acidic conditions, quinolone molecules possessing a basic side nucleus are protonated and appear as cations in the ionic complexes. Interaction with metal ions has some important consequences for the solubility, pharmacokinetics and bioavailability of quinolones, and is also involved in the mechanism of action of these bactericidal agents. Many metal complexes with equal or enhanced antimicrobial activity compared to the parent quinolones were obtained. New strategies in the design of metal complexes of quinolones have led to compounds with anticancer activity. Analytical applications of complexation with metal ions were oriented toward two main directions: determination of quinolones based on complexation with metal ions or, reversely, determination of metal ions based on complexation with quinolones.

  1. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning

    PubMed Central

    2018-01-01

    Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace. PMID:29562682

  2. Dosimetric Evaluation of Metal Artefact Reduction using Metal Artefact Reduction (MAR) Algorithm and Dual-energy Computed Tomography (CT) Method

    NASA Astrophysics Data System (ADS)

    Laguda, Edcer Jerecho

    Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient's medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method. Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three approaches were applied in this research for dosimetric evaluation on CT images with severe metal artefacts. The first part of the research used a water phantom with four iodine syringes. Two sets of plans, multi-arc plans and single-arc plans, using the Volumetric Modulated Arc therapy (VMAT) technique were designed to avoid or minimize influences from high-density objects. The second part of the research used projection-based MAR Algorithm and the Dual-Energy Method. Calculated Doses (Mean, Minimum, and Maximum Doses) to the planning treatment volume (PTV) were compared and homogeneity index (HI) calculated. Results: (1) Without the GSI-based MAR application, a percent error between mean dose and the absolute dose ranging from 3.4-5.7% per fraction was observed. In contrast, the error was decreased to a range of 0.09-2.3% per fraction with the GSI-based MAR algorithm. There was a percent difference ranging from 1.7-4.2% per fraction between with and without using the GSI-based MAR algorithm. (2) A range of 0.1-3.2% difference was observed for the maximum dose values, 1.5-10.4% for minimum dose difference, and 1.4-1.7% difference on the mean doses. Homogeneity indexes (HI) ranging from 0.068-0.065 for dual-energy method and 0.063-0.141 with projection-based MAR algorithm were also calculated. Conclusion: (1) Percent error without using the GSI-based MAR algorithm may deviate as high as 5.7%. This error invalidates the goal of Radiation Therapy to provide a more precise treatment. Thus, GSI-based MAR algorithm was desirable due to its better dose calculation accuracy. (2) Based on direct numerical observation, there was no apparent deviation between the mean doses of different techniques but deviation was evident on the maximum and minimum doses. The HI for the dual-energy method almost achieved the desirable null values. In conclusion, the Dual-Energy method gave better dose calculation accuracy to the planning treatment volume (PTV) for images with metal artefacts than with or without GE MAR Algorithm.

  3. Degradation Mechanisms of Magnesium Metal Anodes in Electrolytes Based on (CF 3SO 2) 2N – at High Current Densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Hyun Deog; Han, Sang-Don; Bolotin, Igor L.

    The energy density of rechargeable batteries utilizing metals as anodes surpasses that of Li ion batteries, which employ carbon instead. Among possible metals, magnesium represents a potential alternative to the conventional choice, lithium, in terms of storage density, safety,stability, and cost. However, a major obstacle for metal-based batteries is the identification of electrolytes that show reversible deposition/dissolution of the metal anode and support reversible intercalation of ions into a cathode. Traditional Grignard-based Mg electrolytes are excellent with respect to the reversible deposition of Mg, but their limited anodic stability and compatibility with oxide cathodes hinder their applicability in Mg batteriesmore » with higher voltage. Non-Grignard electrolytes, which consist of ethereal solutions of magnesium(II) bis(trifluoromethanesulfonyl)imide (Mg(TFSI) 2), remain fairly stable near the potential of Mg deposition. The slight reactivity of these electrolytes toward Mg metal can be remedied by the addition of surface-protecting agents, such as MgCl 2. Hence, ethereal solutions of Mg(TFSI) 2 salt with MgCl 2 as an additive have been suggested as a representative non-Grignard Mg electrolyte. In this work, the degradation mechanisms of a Mg metal anode in the TFSI-based electrolyte were studied using a current density of 1 mA cm -2 and an areal capacity of ~0.4 mAh cm -2, which is close to those used in practical applications. The degradation mechanisms identified include the corrosion of Mg metal, which causes the loss of electronic pathways and mechanical integrity, the nonuniform deposition of Mg, and the decomposition of TFSI - anions. This study not only represents an assessment of the behavior of Mg metal anodes at practical current density and areal capacity but also details the outcomes of interfacial passivation, which was detected by simple cyclic voltammetry experiments. This study also points out the absolute absence of any passivation at the electrode-electrolyte interface for the premise of developing electrolytes compatible with a metal anode.« less

  4. Degradation Mechanisms of Magnesium Metal Anodes in Electrolytes Based on (CF 3SO 2) 2N – at High Current Densities

    DOE PAGES

    Yoo, Hyun Deog; Han, Sang-Don; Bolotin, Igor L.; ...

    2017-06-21

    The energy density of rechargeable batteries utilizing metals as anodes surpasses that of Li ion batteries, which employ carbon instead. Among possible metals, magnesium represents a potential alternative to the conventional choice, lithium, in terms of storage density, safety,stability, and cost. However, a major obstacle for metal-based batteries is the identification of electrolytes that show reversible deposition/dissolution of the metal anode and support reversible intercalation of ions into a cathode. Traditional Grignard-based Mg electrolytes are excellent with respect to the reversible deposition of Mg, but their limited anodic stability and compatibility with oxide cathodes hinder their applicability in Mg batteriesmore » with higher voltage. Non-Grignard electrolytes, which consist of ethereal solutions of magnesium(II) bis(trifluoromethanesulfonyl)imide (Mg(TFSI) 2), remain fairly stable near the potential of Mg deposition. The slight reactivity of these electrolytes toward Mg metal can be remedied by the addition of surface-protecting agents, such as MgCl 2. Hence, ethereal solutions of Mg(TFSI) 2 salt with MgCl 2 as an additive have been suggested as a representative non-Grignard Mg electrolyte. In this work, the degradation mechanisms of a Mg metal anode in the TFSI-based electrolyte were studied using a current density of 1 mA cm -2 and an areal capacity of ~0.4 mAh cm -2, which is close to those used in practical applications. The degradation mechanisms identified include the corrosion of Mg metal, which causes the loss of electronic pathways and mechanical integrity, the nonuniform deposition of Mg, and the decomposition of TFSI - anions. This study not only represents an assessment of the behavior of Mg metal anodes at practical current density and areal capacity but also details the outcomes of interfacial passivation, which was detected by simple cyclic voltammetry experiments. This study also points out the absolute absence of any passivation at the electrode-electrolyte interface for the premise of developing electrolytes compatible with a metal anode.« less

  5. A Bioanalytical Chemistry Experiment for Undergraduate Students: Biosensors Based on Metal Nanoparticles

    ERIC Educational Resources Information Center

    Niagi, John; Warner, John; Andreesco, Silvana

    2007-01-01

    The study describes the development of new biosensors based on metal nanoparticles because of its high surface area and large binding ability. The adopted procedure is extremely simple and versatile and can be used in various applications of electrochemistry.

  6. DNA as Sensors and Imaging Agents for Metal Ions

    PubMed Central

    Xiang, Yu

    2014-01-01

    Increasing interests in detecting metal ions in many chemical and biomedical fields have created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal ion-dependent DNAzymes and metal ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attaching these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detections. These sensors are highly sensitive (with detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of “dipstick tests”, portable fluorometers, computer-readable discs, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state, and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal ion sensing and imaging in many fields of applications. PMID:24359450

  7. Dynamics of metals in backfill of a phosphate mine of guiyang, China using a three-step sequential extraction technique.

    PubMed

    Shi, Ying; Gan, Lei; Li, Xibing; He, Suya; Sun, Cheng; Gao, Li

    2018-02-01

    Phosphate rock in Guiyang (Southwest of China) is used for the phosphate production, and hence generating a by-product phosphogypsum (PG). From 2007, part of the PG was used as main raw material for cemented backfill. The main objective of this paper is to investigate the geochemical evolution of metals before and after the PG inclusion into the backfill matrix. A sequential extraction procedure was selected to determine the chemical speciation of metals in phosphate rock, PG, binder and field backfill samples. Dynamics of metals going from phosphate rock and PG to backfill have been evaluated. The results showed that almost all the metals in the PG and binder had been effectively transferred to the backfill. Furthermore, compared to metals taken out along with phosphate rock exploitation, PG-based cemented backfill might bring some metals back but with only little metals in mobile fraction. Additionally, in order to determine the long-term behavior of metals in PG-based cemented backfill, the field samples which were backfilled from 2007 to 2016 were collected and analyzed. The results showed that total amounts of metals in backfill were all within similar range, indicating that the cemented PG backfill could be an effective method to solidify/stabilize metals in PG. Nevertheless, Due to the high water-soluble fractions detected, the concentrations of As, Mn and Zn should be continuously monitored. Copyright © 2017. Published by Elsevier Ltd.

  8. Influence of part orientation on the geometric accuracy in robot-based incremental sheet metal forming

    NASA Astrophysics Data System (ADS)

    Störkle, Denis Daniel; Seim, Patrick; Thyssen, Lars; Kuhlenkötter, Bernd

    2016-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (`Roboforming') for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet metal forming (ISF) machines, this system offers high geometrical form flexibility without the need of any part-dependent tools. The industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors present the influence of the part orientation and the forming sequence on the geometric accuracy. Their influence is illustrated with the help of various experimental results shown and interpreted within this article.

  9. Process Simulation of Gas Metal Arc Welding Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Paul E.

    2005-09-06

    ARCWELDER is a Windows-based application that simulates gas metal arc welding (GMAW) of steel and aluminum. The software simulates the welding process in an accurate and efficient manner, provides menu items for process parameter selection, and includes a graphical user interface with the option to animate the process. The user enters the base and electrode material, open circuit voltage, wire diameter, wire feed speed, welding speed, and standoff distance. The program computes the size and shape of a square-groove or V-groove weld in the flat position. The program also computes the current, arc voltage, arc length, electrode extension, transfer ofmore » droplets, heat input, filler metal deposition, base metal dilution, and centerline cooling rate, in English or SI units. The simulation may be used to select welding parameters that lead to desired operation conditions.« less

  10. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts.

    PubMed

    Murahashi, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. (Communicated by Ryoji Noyori, M.J.A.).

  11. Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan.

    PubMed

    Verma, Roli; Gupta, Banshi D

    2015-01-01

    Optical fibre surface plasmon resonance (SPR) based sensor for the detection of heavy metal ions in the drinking water is designed. Silver (Ag) metal and indium tin oxide (ITO) are used for the fabrication of the SPR probe which is further modified with the coating of pyrrole and chitosan composite. The sensor works on the wavelength interrogation technique and is capable of detecting trace amounts of Cd(2+), Pb(2+), and Hg(2+) heavy metal ions in contaminated water. Four types of sensing probes are fabricated and characterised for heavy metal ions out of these pyrrole/chitosan/ITO/Ag coated probe is found to be highly sensitive among all other probes. Further, the cadmium ions bind strongly to the sensing surface than other ions and due to this the sensor is highly sensitive for Cd(2+) ions. The sensor's performance is best for the low concentrations of heavy metal ions and its sensitivity decreases with the increasing concentration of heavy metal ions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Anticancer activity of metal complexes: involvement of redox processes.

    PubMed

    Jungwirth, Ute; Kowol, Christian R; Keppler, Bernhard K; Hartinger, Christian G; Berger, Walter; Heffeter, Petra

    2011-08-15

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of "activation by reduction" as well as the "hard and soft acids and bases" theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology.

  13. Environmental tests of metallization systems for terrestrial photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Alexander, P., Jr.

    1985-01-01

    Seven different solar cell metallization systems were subjected to temperature cycling tests and humidity tests. Temperature cycling excursions were -50 deg C to 150 deg C per cycle. Humidity conditions were 70 deg C at 98% relative humidity. The seven metallization systems were: Ti/Ag, Ti/Pd/Ag, Ti/Pd/Cu, Ni/Cu, Pd/Ni/Solder, Cr/Pd/Ag, and thick film Ag. All metallization systems showed a slight to moderate decrease in cell efficiencies after subjection to 1000 temperature cycles. Six of the seven metallization systems also evidenced slight increases in cell efficiencies after moderate numbers of cycles, generally less than 100 cycles. The copper based systems showed the largest decrease in cell efficiencies after temperature cycling. All metallization systems showed moderate to large decreases in cell efficiencies after 123 days of humidity exposure. The copper based systems again showed the largest decrease in cell efficiencies after humidity exposure. Graphs of the environmental exposures versus cell efficiencies are presented for each metallization system, as well as environmental exposures versus fill factors or series resistance.

  14. Development of low-cost welding procedures for thick sections of HY-150 steel

    NASA Technical Reports Server (NTRS)

    Schmidt, P. M.; Snow, R. S.

    1972-01-01

    Low cost welding procedures were developed for welding 6-inch thick HY-150 steel to be used in the manufacture of large diameter motor case Y rings and nozzle attachment flanges. An extensive investigation was made of the mechanical and metallurgical properties and fracture toughness of HY-150 base plate and welds made with manual shielded metal arc process and semi-automatic gas metal arc process in the flat position. Transverse tensiles, all-weld metal tensiles, Charpy V-notch specimens and edge notched bend specimens were tested in the course of the program. In addition metallographic studies and hardness tests were performed on the weld, weld HAZ and base metal. The results of the work performed indicate that both the shielded metal arc and gas metal arc processes are capable of producing consistently sound welds as determined by radiographic and ultrasonic inspection. In addition, the weld metal, deposited by each process was found to exhibit a good combination of strength and toughness such that the selection of a rolled and welded procedure for fabricating rocket motor case components would appear to be technically feasible.

  15. Wire winding increases lifetime of oxide coated cathodes

    NASA Technical Reports Server (NTRS)

    Kerslake, W.; Vargo, D.

    1965-01-01

    Refractory-metal heater base wound with a thin refractory metal wire increases the longevity of oxide-coated cathodes. The wire-wound unit is impregnated with the required thickness of metal oxide. This cathode is useful in magnetohydrodynamic systems and in electron tubes.

  16. Metal oxide nanosensors using polymeric membranes, enzymes and antibody receptors as ion and molecular recognition elements.

    PubMed

    Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain

    2014-05-16

    The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices.

  17. Accounting for metal bioavailability in assessing water quality: A step change?

    PubMed

    Merrington, Graham; Peters, Adam; Schlekat, Christian E

    2016-02-01

    Bioavailability of metals to aquatic organisms can be considered to be a combination of the physicochemical factors governing metal behavior and the specific pathophysiological characteristics of the organism's biological receptor. Effectively this means that a measure of bioavailability will reflect the exposures that organisms in the water column actually "experience". This is important because it has long been established that measures of total metal in waters have limited relevance to potential environmental risk. The concept of accounting for bioavailability in regard to deriving and implementing environmental water quality standards is not new, but the regulatory reality has lagged behind the development of scientific evidence supporting the concept. Practical and technical reasons help to explain this situation. For example, concerns remain from regulators and the regulated that the efforts required to change existing systems of metal environmental protection that have been in place for over 35 yr are so great as not to be commensurate with likely benefits. However, more regulatory jurisdictions are now considering accounting for metal bioavailability in assessments of water quality as a means to support evidence-based decision-making. In the past decade, both the US Environmental Protection Agency and the European Commission have established bioavailability-based standards for metals, including Cu and Ni. These actions have shifted the debate toward identifying harmonized approaches for determining when knowledge is adequate to establish bioavailability-based approaches and how to implement them. © 2016 SETAC.

  18. Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta

    NASA Astrophysics Data System (ADS)

    Vetrimurugan, E.; Brindha, K.; Elango, L.; Ndwandwe, Osman Muzi

    2017-10-01

    Drinking water containing heavy metals above the maximum permissible limits cause potential risk to human health. The aim of this study was to determine the groundwater suitability for drinking use based on heavy metal concentration and the associated human exposure risk in an intensively irrigated part of the Cauvery river basin, Tamil Nadu, India. Sixteen heavy metals analysed were in the order of dominance of chromium < zinc < copper < cadmium < cobalt < iron < aluminium < nickel < titanium < zirconium < boron < silver < manganese < lead < lithium < silicon in groundwater. Chromium and zinc were within permissible limits of the Bureau of Indian Standards for drinking water quality, and silver, lead and nickel were above limits in all the groundwater samples. In less than 50 % of the groundwater samples, aluminium, boron, cadmium, copper, iron and manganese exceeded their individual permissible limits. Heavy metal pollution index based on 11 heavy metals indicated that groundwater quality of this area is poor-to-unsuitable. Non-carcinogenic risk for humans due to ingestion of groundwater through drinking water pathway was very high for infants, children and adults. Silver, lead, nickel, cadmium and manganese largely contributed to the health hazard. Sources of heavy metals were identified to be geological and from human activities, i.e., application of fertilizers in agricultural fields, seawater intrusion due to intensive pumping for agriculture and wastewater from industries. Groundwater and surface water in this area pose large threat due to high levels of heavy metals, and it is necessary to avoid this water for drinking due to potential risk of health hazard. This study also demonstrated the application of HPI and human exposure hazard index to study the groundwater quality based on heavy metals' concentration.

  19. A versatile MOF-based trap for heavy metal ion capture and dispersion.

    PubMed

    Peng, Yaguang; Huang, Hongliang; Zhang, Yuxi; Kang, Chufan; Chen, Shuangming; Song, Li; Liu, Dahuan; Zhong, Chongli

    2018-01-15

    Current technologies for removing heavy metal ions are typically metal ion specific. Herein we report the development of a broad-spectrum heavy metal ion trap by incorporation of ethylenediaminetetraacetic acid into a robust metal-organic framework. The capture experiments for a total of 22 heavy metal ions, covering hard, soft, and borderline Lewis metal ions, show that the trap is very effective, with removal efficiencies of >99% for single-component adsorption, multi-component adsorption, or in breakthrough processes. The material can also serve as a host for metal ion loading with arbitrary selections of metal ion amounts/types with a controllable uptake ratio to prepare well-dispersed single or multiple metal catalysts. This is supported by the excellent performance of the prepared Pd 2+ -loaded composite toward the Suzuki coupling reaction. This work proposes a versatile heavy metal ion trap that may find applications in the fields of separation and catalysis.

  20. Laser beam welding of Waspaloy: Characterization and corrosion behavior evaluation

    NASA Astrophysics Data System (ADS)

    Shoja Razavi, Reza

    2016-08-01

    In this work, a study on Nd:YAG laser welding of Waspaloy sheets has been made. Microstructures, phase changes and hardness of the laser joint were investigated using optical microscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD) and vickers microhardness (HV0.3). Corrosion behavior of the weldment at low temperature in 3.5%wt NaCl solution at room temperature was also investigated using open circuit potential and cyclic potentiodynamic polarization tests. Hot corrosion studies were conducted on samples in the molten salt environment (Na2SO4-60%V2O5) at 900 °C for 50 h. Results indicated that the microstructure of weld zone was mainly dendritic grown epitaxially in the direction perpendicular to the weld boundary and heat transfer. Moreover, the Ti-Mo carbide particles were observed in the structure of the weld zone and base metal. The average size of carbides formed in the base metal (2.97±0.5 μm) was larger than that of the weld zone (0.95±0.2 μm). XRD patterns of the weld zone and base metal showed that the laser welding did not alter the phase structure of the weld zone, being in γ-Ni(Cr) single phase. Microhardness profile showed that the hardness values of the weld zone (210-261 HV) were lower than that of the base metal (323-330 HV). Electrochemical and hot corrosion tests indicated that the corrosion resistance of the weld metal was greater than the base metal in both room and high temperatures.

  1. Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method making the same

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL

    2011-03-08

    The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. A preferred embodiment of the invented electrochemical cell generally comprises a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. A preferred novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

  2. Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method of making the same

    DOEpatents

    Gerald, II; Rex, E [Brookfield, IL; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL

    2011-02-15

    The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. The invented electrochemical cell generally comprising: a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. The novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faraby, H.; DiBattista, M.; Bandaru, P. R., E-mail: pbandaru@ucsd.edu

    Metal deposition through focused ion beam (FIB) based systems is thought to result in material composed of the primary metal from the metallo-organic precursor in addition to carbon, oxygen, and gallium. We determined, through electrical resistance and chemical composition measurements on a wide range of FIB deposited platinum and tungsten lines, that the gallium ion (Ga{sup +}) concentration in the metal lines plays the dominant role in controlling the electrical resistivity. Effective medium theory, based on McLachlan's formalisms, was used to describe the relationship between the Ga{sup +} concentration and the corresponding resistivity.

  4. DARPA - Advanced Composite Materials Annual Presentation Held in Gainesville, Florida on 19-20 November 1992

    DTIC Science & Technology

    1992-11-20

    34 and M.D. Sacks 13) "Fabrication of SiC -Based Composites by Reactive Infiltration of Metals (RIM)" K. Wang," G.W. Scheiffele, P.J. Sanchez-Soto, and...Ig I I keactive Infiltration of Metals (RIM) Ii * Densification with little or no shrinkage e SIC -based composites with little or no residual metal...M.D. Sacks I) Indicates Presenter Intermetallic: Matrix Composites 14) *Processing of Compositionally Tailored Silica-Free MoSi 2/ SiC Composites ’ S

  5. Numerical simulation of reflective infrared absorber based on metal and dielectric nanorings

    NASA Astrophysics Data System (ADS)

    Wei, Dong; Zhang, Guizhong; Ding, Xin; Yao, Jianquan

    2018-04-01

    We propose a subwavelength micro-structure of /metal-ring/dielectric-ring/metal-substrate/ for infrared absorber, and numerically simulate its spectral reflectance in the infrared regime. Besides its pragmatic fabrication, this nanoring structure is characterized by excellent infrared reflectance, angle and polarization insensitivities and large tunability. Based upon the nanoring structure, a multilayered nanoring structure is demonstrated to be able to further tune the resonance wavelength. We also use an area-corrected plasmon polariton model to decipher the resonance wavelengths.

  6. Post-synthetic transformation of a Zn(ii) polyhedral coordination network into a new supramolecular isomer of HKUST-1.

    PubMed

    Chen, Yao; Wojtas, Lukasz; Ma, Shengqian; Zaworotko, Michael J; Zhang, Zhenjie

    2017-08-03

    A Zn-based porphyrin containing metal-organic material (porphMOM-1) was transformed into a novel Cu-based porphyrin-encapsulating metal-organic material (porph@HKUST-1-β) via a one-pot post-synthetic modification (PSM) process involving both metal ion exchange and linker installation of trimesic acid. HKUST-1-β is the first example of yao topology and is to our knowledge the first supramolecular isomer of the archetypal coordination network HKUST-1.

  7. A Plasmid Containing the Human Metallothionein II Gene Can Function as an Antibody-assisted Electrophoretic Biosensor for Heavy Metals

    DTIC Science & Technology

    2015-01-16

    this agarose gel-based method might be useful in heavy metal bioavailability testing of aqueous samples from a variety of sources ( water treatment ...key biological proteins that protect cells from heavy metal poisoning. The gel-based method may be utilized in water treatment facilities or on...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 20 Feb 2015 2. REPORT TYPE

  8. Non-lead environmentally safe projectiles and method of making same

    DOEpatents

    Lowden, Richard A.; McCoig, Thomas M.; Dooley, Joseph B.

    1999-01-01

    A projectile, such as a bullet, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A base constituent, made of a material having density greater than lead, is combined with a binder constituent having less density. The binder constituent is malleable and ductile metallic base material that forms projectile shapes when subjected to a consolidation force, such as compression. The metal constituents can be selected, rationed, and consolidated to achieve desired frangibility characteristics.

  9. A polyhedron-based metal-organic framework with a reo-e net.

    PubMed

    Ren, Guojian; Liu, Shuxia; Wei, Feng; Ma, Fengji; Tang, Qun; Li, Shujun

    2012-10-14

    A polyhedron-based metal-organic framework has been designed and constructed with a reo-e net, which is constructed from trinuclear nickel clusters and mixed ligands (copolymerization pattern). It comprises three kinds of polyhedra, which are the hexahedron, cuboctahedron and rhombicuboctahedron.

  10. Characterizing Metal-Based Nanoparticles in Surface Water by Single-Particle ICPMS

    EPA Science Inventory

    Engineered metal-based nanomaterials are being used in increasing quantities in consumer and industrial products. These materials may be introduced into surface waters by a variety of paths depending on usage, and will be superimposed on concentrations of other particles containi...

  11. Methodology for the effective stabilization of tin-oxide-based oxidation/reduction catalysts

    NASA Technical Reports Server (NTRS)

    Jordan, Jeffrey D. (Inventor); Schryer, David R. (Inventor); Leighty, Bradley D. (Inventor); Watkins, Anthony N. (Inventor); Summers, Jerry C. (Inventor); Davis, Patricia P. (Inventor); Oglesby, Donald M. (Inventor); Schryer, Jacqueline L. (Inventor); Gulati, Suresh T. (Inventor)

    2011-01-01

    The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.

  12. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.

    PubMed

    Yin, Jun; Hu, Ying; Yoon, Juyoung

    2015-07-21

    All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems.

  13. 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions.

    PubMed

    Lu, Qipeng; Yu, Yifu; Ma, Qinglang; Chen, Bo; Zhang, Hua

    2016-03-09

    Hydrogen (H2) is one of the most important clean and renewable energy sources for future energy sustainability. Nowadays, photocatalytic and electrocatalytic hydrogen evolution reactions (HERs) from water splitting are considered as two of the most efficient methods to convert sustainable energy to the clean energy carrier, H2. Catalysts based on transition metal dichalcogenides (TMDs) are recognized as greatly promising substitutes for noble-metal-based catalysts for HER. The photocatalytic and electrocatalytic activities of TMD nanosheets for the HER can be further improved after hybridization with many kinds of nanomaterials, such as metals, oxides, sulfides, and carbon materials, through different methods including the in situ reduction method, the hot-injection method, the heating-up method, the hydro(solvo)thermal method, chemical vapor deposition (CVD), and thermal annealing. Here, recent progress in photocatalytic and electrocatalytic HERs using 2D TMD-based composites as catalysts is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Graphene based resonance structure to enhance the optical pressure between two planar surfaces.

    PubMed

    Hassanzadeh, Abdollah; Azami, Darya

    2015-12-28

    To enhance the optical pressure on a thin dielectric sample, a resonance structure using graphene layers coated over a metal film on a high index prism sputtered with MgF2 was theoretically analyzed. The number of graphene layers and the thicknesses of metal and MgF2 films were optimized to achieve the highest optical pressure on the sample. Effects of three different types of metals on the optical pressure were investigated numerically. In addition, simulations were carried out for samples with various thicknesses. Our numerical results show that the optical pressure increased by more than five orders of magnitude compared to the conventional metal-film-base resonance structure. The highest optical pressure was obtained for 10 layers of graphene deposited on 29-nm thick Au film and 650 nm thickness of MgF2 at 633nm wavelength, The proposed graphene based resonance structure can open new possibilities for optical tweezers, nanomechnical devices and surface plasmon based sensing and imaging techniques.

  15. DNAzyme sensors for detection of metal ions in the environment and imaging them in living cells

    PubMed Central

    McGhee, Claire E.; Loh, Kang Yong

    2017-01-01

    The on-site and real-time detection of metal ions is important for environmental monitoring and for understanding the impact of metal ions on human health. However, developing sensors selective for a wide range of metal ions that can work in the complex matrices of untreated samples and cells presents significant challenges. To meet these challenges, DNAzymes, an emerging class of metal ion-dependent enzymes selective for almost any metal ion, have been functionalized with fluorophores, nanoparticles and other imaging agents and incorporated into sensors for the detection of metal ions in environmental samples and for imaging the metal ions in living cells. Herein, we highlight the recent developments of DNAzyme-based fluorescent, colorimetric, SERS, electrochemical and electrochemiluminscent sensors for metal ions for these applications. PMID:28458112

  16. Synthesis and spectral characterization of Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine derivatives: Antimicrobial evaluation and anticancer studies

    NASA Astrophysics Data System (ADS)

    Dhahagani, K.; Mathan Kumar, S.; Chakkaravarthi, G.; Anitha, K.; Rajesh, J.; Ramu, A.; Rajagopal, G.

    2014-01-01

    Metal(II) chelates of Schiff bases derived from the condensation of 4-morpholinoaniline with substituted salicylaldehyde have been prepared and characterized by 1H NMR, IR, electronic, EPR, and magnetic measurement studies. The complexes are of the type M(X-MPMP)2 [where M = Cu(II), Co(II)), Zn(II), or VO(IV); MPMP = 2-[(4 morpholinophenyl imino) methyl] 4-X-phenol, X = Cl, (L1H), X = Br (L2H)]. Single crystal X-ray crystallography studies confirm the structure of newly synthesized Schiff bases. The Schiff bases act as bidentate monobasic ligands, coordinating through deprotonated phenolic oxygen and azomethine nitrogen atoms. The free ligands and metal complexes are screened for their biopotency. Metal complexes exhibit better activity than ligands. Anticancer activity of ligands and their metal complexes are evaluated in human heptocarcinoma(HepG2) cells. The preliminary bioassay indicates that the Schiff base and its zinc complex exhibit inhibitory activity against the human gastric cancer cell lines.

  17. Development of an all-metal thick film cost effective metallization system for solar cells

    NASA Technical Reports Server (NTRS)

    Ross, B.; Parker, J.

    1983-01-01

    Improved thick film solar cell contacts for the high volume production of low cost silicon solar arrays are needed. All metal screenable pastes made from economical base metals and suitable for application to low to high conductivity silicon were examined. Silver fluoride containing copper pastes and fluorocarbon containing copper pastes were discussed. The effect of hydrogen on the adhesion of metals to silicon was investigated. A cost analysis of various paste materials is provided.

  18. Azobenzenes as light-controlled molecular electronic switches in nanoscale metal-molecule-metal junctions.

    PubMed

    Mativetsky, Jeffrey M; Pace, Giuseppina; Elbing, Mark; Rampi, Maria A; Mayor, Marcel; Samorì, Paolo

    2008-07-23

    Conductance switching associated with the photoisomerization of azobenzene-based (Azo) molecules was observed in nanoscopic metal-molecule-metal junctions. The junctions were formed by using a conducting atomic force microscope (C-AFM) approach, where a metallic AFM tip was used to electrically contact a gold-supported Azo self-assembled monolayer. The measured 30-fold increase in conductance is consistent with the expected decrease in tunneling barrier length resulting from the conformational change of the Azo molecule.

  19. SURFACE MODIFICATION OF SILICA- AND CELLULOSE-BASED MICROFILTRATION MEMBRANES WITH FUNCTIONAL POLYAMINO ACIDS FOR HEAVY METAL SORPTION

    EPA Science Inventory

    Functionalized membranes represent a field with multiple applications. Examination of specific metal-macromolecule interactions on these surfaces presents an excellent method for characterizion of these materials. These interactions may also be exploited for heavy metal sorptio...

  20. Versatile nature of hetero-chitosan based derivatives as biodegradable adsorbent for heavy metal ions; a review.

    PubMed

    Ahmad, Mudasir; Manzoor, Kaiser; Ikram, Saiqa

    2017-12-01

    The polyfunctional chitosan can act as the biological macromolecule ligand not only for the adsorption and the recovery of metal ions from an aqueous media, but also for the fabrication of novel adsorbents which shows selectivity and better adsorption properties. The unmodified chitosan itself, a single cationic polysaccharide, has hydroxyl and amine groups carrying complex properties with the metal ions. In addition, the selectivity of metal ions, the adsorption efficiency and adsorption capacity of the adsorbent can be modified chemically. This review covers the synthetic strategies of chitosan towards the synthesis of hetero-chitosan based adsorbents via chemical modifications in past two decades. It also includes how chemical modification influences the metal adsorption with N, O, S and P containing chitosan derivatives. Hope this review article provides an opportunity for researchers in the future to explore the potential of chitosan as an adsorbent for removal of metal ions from wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Study of single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Doty, J. P.; Reising, J. A.

    1973-01-01

    The growth of single crystals of relatively high melting point metals such as silver, copper, gold, and their alloys was investigated. The purpose was to develop background information necessary to support a space flight experiment and to generate ground based data for comparison. The ground based data, when compared to the data from space grown crystals, are intended to identify any effects which zero-gravity might have on the basic process of single crystal growth of these metals. The ultimate purposes of the complete investigation are to: (1) determine specific metals and alloys to be investigated; (2) grow single metal crystals in a terrestrial laboratory; (3) determine crystal characteristics, properties, and growth parameters that will be effected by zero-gravity; (4) evaluate terrestrially grown crystals; (5) grow single metal crystals in a space laboratory such as Skylab; (6) evaluate the space grown crystals; (7) compare for zero-gravity effects of crystal characteristics, properties, and parameters; and (8) make a recommendation as to production of these crystals as a routine space manufacturing proceses.

  2. Heavy Metal Uptake by Novel Miscanthus Seed-Based Hybrids Cultivated in Heavy Metal Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Krzyżak, Jacek; Pogrzeba, Marta; Rusinowski, Szymon; Clifton-Brown, John; McCalmont, Jon Paul; Kiesel, Andreas; Mangold, Anja; Mos, Michal

    2017-09-01

    When heavy metal contaminated soils are excluded from food production, biomass crops offer an alternative commercial opportunity. Perennial crops have potential for phytoremediation. Whilst the conditions at heavy metal contaminated sites are challenging, successful phytoremediation would bring significant economic and social benefits. Seed-based Miscanthus hybrids were tested alongside the commercial clone Miscanthus × giganteus on arable land, contaminated with Pb, Cd and Zn near Katowice. Before the randomized experimental plots were established (25m2 plots with plant density 2/m2) `time-zero' soil samples were taken to determine initial levels of total (aqua regia) and bioavailable (CaCl2 extraction) concentration of Pb, Cd and Zn. After the growing season plant material was sampled during autumn (October, green harvest) and winter (March, brown harvest) to determine differences in heavy metal uptake. Results after the first growing season are presented, including the plot establishment success, biomass yield and heavy metal uptake.

  3. A "Mesosiderite" Rock from Northern Siberia, Russia: Not a Meteorite

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Lindstrom, David J.; Schwandt, Craig S.; Franchi, Ian A.; Morgan, Matthew L.

    2002-01-01

    A possible mesosiderite meteorite was found in the area of the Putorana Plateau, Noril'sk district, Siberia, Russia. Although this rock resembles a mesosiderite in its hand-sample aspect and in having Ni-bearing iron metal, it is not a meteorite. This inference is based on the lack of a fusion crust, the lack of cosmogenic nuclides, oxygen with terrestrial isotope ratios, and several mineral chemical criteria. Most likely, the rock is from the iron-metal-bearing basalts of the Siberian Trap basalt sequence, which are mined for their base and platinum-group metals. Mesosiderite imposters like this may be recognized by: (1) the presence of Cu metal in hand sample or as microscopic blebs in the low-Ni metal (kamacite), (2) the absence of high-Ni metal (taenite), and (3) the presence of iron carbide (cohenite) enclosing the kamacite. Even if these macroscopic tests are inconclusive, isotopic and mineral chemical tests will also distinguish rocks like this from mesosiderites.

  4. Heteroatom-Doped Carbon Materials for Electrocatalysis.

    PubMed

    Asefa, Tewodros; Huang, Xiaoxi

    2017-08-10

    Fuel cells, water electrolyzers, and metal-air batteries are important energy systems that have started to play some roles in our renewable energy landscapes. However, despite much research works carried out on them, they have not yet found large-scale applications, mainly due to the unavailability of sustainable catalysts that can catalyze the reactions employed in them. Currently, noble metal-based materials are the ones that are commonly used as catalysts in most commercial fuel cells, electrolyzers, and metal-air batteries. Hence, there has been considerable research efforts worldwide to find alternative noble metal-free and metal-free catalysts composed of inexpensive, earth-abundant elements for use in the catalytic reactions employed in these energy systems. In this concept paper, a brief introduction on catalysis in renewable energy systems, followed by the recent efforts to develop sustainable, heteroatom-doped carbon and non-noble metal-based electrocatalysts, the challenges to unravel their structure-catalytic activity relationships, and the authors' perspectives on these topics and materials, are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Thin metal bilayer for surface plasmon resonance sensors in a multimode plastic optical fiber: the case of palladium and gold metal films

    NASA Astrophysics Data System (ADS)

    Cennamo, Nunzio; Zuppella, Paola; Bacco, Davide; Corso, Alain J.; Pelizzo, Maria G.; Pesavento, Maria; Zeni, Luigi

    2016-05-01

    A novel sensing platform based on thin metal bilayer for surface plasmon resonance (SPR) in a D-shaped plastic optical fiber (POF) has been designed, implemented and tested. The experimental results are congruent with the numerical studies. This platform has been properly optimized to work in the 1.38 -1.42 refractive index range and it exhibits excellent sensitivity. This refractive index range is very interesting for bio-chemical applications, where the polymer layer are used as receptors (e.g. molecularly imprinted polymer) or to immobilize the bio-receptor on the metal surface. The proposed metallic bilayer is based on palladium and gold films and replaces the traditional gold by exhibiting higher performances. Furthermore, the deposition of the thin bilayer is a single process and no further manufacturing step is required. In fact, in this case the photoresist buffer layer between the POF core and the metal layer, usually required to increase the refractive index range, is no longer necessary.

  6. Exploration of the medical periodic table: towards new targets.

    PubMed

    Barry, Nicolas P E; Sadler, Peter J

    2013-06-07

    Metallodrugs offer potential for unique mechanisms of drug action based on the choice of the metal, its oxidation state, the types and number of coordinated ligands and the coordination geometry. We discuss recent progress in identifying new target sites and elucidating the mechanisms of action of anti-cancer, anti-bacterial, anti-viral, anti-parasitic, anti-inflammatory, and anti-neurodegenerative agents, as well as in the design of metal-based diagnostic agents. Progress in identifying and defining target sites has been accelerated recently by advances in proteomics, genomics and metal speciation analysis. Examples of metal compounds and chelating agents (enzyme inhibitors) currently in clinical use, clinical trials or preclinical development are highlighted.

  7. Improving Olefin Purification Using Metal Organic Frameworks with Open Metal Sites.

    PubMed

    Luna-Triguero, A; Vicent-Luna, J M; Poursaeidesfahani, A; Vlugt, T J H; Sánchez-de-Armas, R; Gómez-Álvarez, P; Calero, S

    2018-05-16

    The separation and purification of light hydrocarbons is challenging in the industry. Recently, a ZJNU-30 metal-organic framework (MOF) has been found to have the potential for adsorption-based separation of olefins and diolefins with four carbon atoms [H. M. Liu et al. Chem.-Eur. J. 2016, 22, 14988-14997]. Our study corroborates this finding but reveals Fe-MOF-74 as a more efficient candidate for the separation because of the open metal sites. We performed adsorption-based separation, transient breakthrough curves, and density functional theory calculations. This combination of techniques provides an extensive understanding of the studied system. Using this MOF, we propose a separation scheme to obtain a high-purity product.

  8. Carbon-based electrocatalysts for advanced energy conversion and storage

    PubMed Central

    Zhang, Jintao; Xia, Zhenhai; Dai, Liming

    2015-01-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon nanomaterials have been demonstrated to act as efficient metal-free electrocatalysts for ORR and OER in fuel cells and batteries. We present a critical review on the recent advances in carbon-based metal-free catalysts for fuel cells and metal-air batteries, and discuss the perspectives and challenges in this rapidly developing field of practical significance. PMID:26601241

  9. Thermal oxidative degradation reactions of linear perfluoroalky lethers

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Paciorek, K. J. L.; Ito, T. I.; Kratzer, R. H.

    1982-01-01

    Thermal and thermal oxidative stability studies were performed on linear perfluoro alkyl ether fluids. The effect on degradation by metal catalysts and degradation inhibitors are reported. The liner perfluoro alkylethers are inherently unstable at 316 C in an oxidizing atmosphere. The metal catalysts greatly increased the rate of degradation in oxidizing atmospheres. In the presence of these metals in an oxidizing atmosphere, the degradation inhibitors were highly effective in arresting degradation at 288 C. However, the inhibitors had only limited effectiveness at 316 C. The metals promote degradation by chain scission. Based on elemental analysis and oxygen consumption data, the linear perfluoro alkylether fluids have a structural arrangement based on difluoroformyl and tetrafluoroethylene oxide units, with the former predominating.

  10. A review of phytoremediation technology: heavy metals uptake by plants

    NASA Astrophysics Data System (ADS)

    Sumiahadi, A.; Acar, R.

    2018-03-01

    Heavy metal is one of the serious environmental pollutions for now days as impact of industrial development in several countries. Heavy metals give toxic effects on human health and cause several serious diseases. Several techniques have been using for removing heavy metal contaminants from the environmental but these techniques have limitations such as high cost, long time, logistical problems and mechanical complexity. Phytoremediation can be used as an alternative solution for heavy metal remediation process because of its advantages as a cost-effective, efficient, environment- and eco-friendly technology based on the use of metal-accumulating plants. According to previous studies, several plants have a high potential as heavy metals bioaccumulator and can be used for phytoremediation process of heavy metals.

  11. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  12. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOEpatents

    Gangwal, S.; Jothimurugesan, K.

    1999-07-27

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

  13. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOEpatents

    Gangwal, Santosh; Jothimurugesan, Kandaswamy

    1999-01-01

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

  14. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J.; Ingersoll, David

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  15. A microspectrometer based on subwavelength metal nanohole array

    NASA Astrophysics Data System (ADS)

    Cui, Jun; Xia, Liangping; Yang, Zheng; Yin, Lu; Zheng, Guoxing; Yin, Shaoyun; Du, Chunlei

    2014-11-01

    Catering to the active demand of the miniaturization of spectrometers, a simple microspectrometer with small size and light weight is presented in this paper. The presented microspectrometer is a typical filter-based spectrometer using the extraordinary optical transmission property of subwavelength metal hole array structure. Different subwavelength metal nanohole arrays are designed to work as different filter units obtained by changing the lattice parameters. By processing the filter spectra with a unique algorithm based on sparse representation, the proposed spectrometer is demonstrated to have the capability of high spectral resolution and accuracy. Benefit for the thin filmed feature, the microspectrometer is expected to find its application in integrated optical systems.

  16. Optimization of self-aligned double patterning (SADP)-compliant layout designs using pattern matching for sub-20nm metal routing

    NASA Astrophysics Data System (ADS)

    Wang, Lynn T.-N.; Schroeder, Uwe Paul; Madhavan, Sriram

    2017-03-01

    A pattern-based methodology for optimizing SADP-compliant layout designs is developed based on identifying cut mask patterns and replacing them with pre-characterized fixing solutions. A pattern-based library of difficult-tomanufacture cut patterns with pre-characterized fixing solutions is built. A pattern-based engine searches for matching patterns in the decomposed layouts. When a match is found, the engine opportunistically replaces the detected pattern with a pre-characterized fixing solution. The methodology was demonstrated on a 7nm routed metal2 block. A small library of 30 cut patterns increased the number of more manufacturable cuts by 38% and metal-via enclosure by 13% with a small parasitic capacitance impact of 0.3%.

  17. Theoretical model of gravitational perturbation of current collector axisymmetric flow field

    NASA Astrophysics Data System (ADS)

    Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1989-03-01

    Some designs of liquid metal collectors in homopolar motors and generators are essentially rotating liquid metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. The role of gravity in modifying this ejection instability is investigated. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical current collector ejection values neglecting gravity effects. The derivation of the mathematical model which determines the perturbation of the liquid metal base flow due to gravitational effects is documented. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector. A rederivation of the hydrodynamic instability threshold of a liquid metal current collector is presented.

  18. New insights into designing metallacarborane based room temperature hydrogen storage media.

    PubMed

    Bora, Pankaj Lochan; Singh, Abhishek K

    2013-10-28

    Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H2 sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.

  19. Producing Magnesium Metallic Glass By Disintegrated Melt Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanthi, M.; Dept. of Mechanical Engineering, National University of Singapore, Singapore 117576; Gupta, M.

    Bulk metallic glasses are new class of engineering materials that exhibit high resistance to crystallization in the under cooled liquid state. The development of bulk metallic glasses of thickness 1cm or less has opened new doors for fundamental studies of both liquid state and glass transition previously not feasible in metallic materials. Moreover, bulk metallic glasses exhibit superior hardness, strength, specific strength, and elastic strain limit, along with good corrosion and wear resistance. Thus they are potential candidates in various sports, structural, engineering and medical applications. Among several BMGs investigated, magnesium-based BMGs have attracted considerable attention because of their lowmore » density and superior mechanical properties. The major drawback of this magnesium based BMGs is poor ductility. This can be overcome by the addition of ductile particles/reinforcement to the matrix. In this study, a new technique named disintegrated melt deposition technique was used to synthesize magnesium based BMGs. Rods of different sizes are cast using the current method. Mechanical characterization studies revealed that the amorphous rods produced by the current technique showed superior mechanical properties.« less

  20. Enhanced Performance of Gate-First p-Channel Metal-Insulator-Semiconductor Field-Effect Transistors with Polycrystalline Silicon/TiN/HfSiON Stacks Fabricated by Physical Vapor Deposition Based In situ Method

    NASA Astrophysics Data System (ADS)

    Kitano, Naomu; Horie, Shinya; Arimura, Hiroaki; Kawahara, Takaaki; Sakashita, Shinsuke; Nishida, Yukio; Yugami, Jiro; Minami, Takashi; Kosuda, Motomu; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2007-12-01

    We demonstrated the use of an in situ metal/high-k fabrication method for improving the performance of metal-insulator-semiconductor field-effect transistors (MISFETs). Gate-first pMISFETs with polycrystalline silicon (poly-Si)/TiN/HfSiON stacks were fabricated by techniques based on low-damage physical vapor deposition, in which high-quality HfSiON dielectrics were formed by the interface reaction between an ultrathin metal-Hf layer (0.5 nm thick) and a SiO2 underlayer, and TiN electrodes were continuously deposited on the gate dielectrics without exposure to air. Gate-first pMISFETs with high carrier mobility and a low threshold voltage (Vth) were realized by reducing the carbon impurity in the gate stacks and improving the Vth stability against thermal treatment. As a result, we obtained superior current drivability (Ion = 350 μA/μm at Ioff = 200 pA/μm), which corresponds to a 13% improvement over that of conventional chemical vapor deposition-based metal/high-k devices.

Top